WO2021110869A1 - Résine de coulée de polyuréthane ayant une transparence aux uv élevée et une stabilité à haute température - Google Patents

Résine de coulée de polyuréthane ayant une transparence aux uv élevée et une stabilité à haute température Download PDF

Info

Publication number
WO2021110869A1
WO2021110869A1 PCT/EP2020/084530 EP2020084530W WO2021110869A1 WO 2021110869 A1 WO2021110869 A1 WO 2021110869A1 EP 2020084530 W EP2020084530 W EP 2020084530W WO 2021110869 A1 WO2021110869 A1 WO 2021110869A1
Authority
WO
WIPO (PCT)
Prior art keywords
polyurethane
polyurethane according
lenses
leds
optical
Prior art date
Application number
PCT/EP2020/084530
Other languages
German (de)
English (en)
Inventor
Martin Burkhardt
Alexander KALTENBACH
Dirk Krüger
Joachim Bauer
Marko Gutke
Sigurd Schrader
Original Assignee
Technische Hochschule Wildau
resintec GmbH
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Technische Hochschule Wildau, resintec GmbH filed Critical Technische Hochschule Wildau
Priority to DE112020005915.4T priority Critical patent/DE112020005915A5/de
Publication of WO2021110869A1 publication Critical patent/WO2021110869A1/fr

Links

Classifications

    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08GMACROMOLECULAR COMPOUNDS OBTAINED OTHERWISE THAN BY REACTIONS ONLY INVOLVING UNSATURATED CARBON-TO-CARBON BONDS
    • C08G18/00Polymeric products of isocyanates or isothiocyanates
    • C08G18/06Polymeric products of isocyanates or isothiocyanates with compounds having active hydrogen
    • C08G18/28Polymeric products of isocyanates or isothiocyanates with compounds having active hydrogen characterised by the compounds used containing active hydrogen
    • C08G18/40High-molecular-weight compounds
    • C08G18/42Polycondensates having carboxylic or carbonic ester groups in the main chain
    • C08G18/4236Polycondensates having carboxylic or carbonic ester groups in the main chain containing only aliphatic groups
    • C08G18/4238Polycondensates having carboxylic or carbonic ester groups in the main chain containing only aliphatic groups derived from dicarboxylic acids and dialcohols
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08GMACROMOLECULAR COMPOUNDS OBTAINED OTHERWISE THAN BY REACTIONS ONLY INVOLVING UNSATURATED CARBON-TO-CARBON BONDS
    • C08G18/00Polymeric products of isocyanates or isothiocyanates
    • C08G18/06Polymeric products of isocyanates or isothiocyanates with compounds having active hydrogen
    • C08G18/70Polymeric products of isocyanates or isothiocyanates with compounds having active hydrogen characterised by the isocyanates or isothiocyanates used
    • C08G18/72Polyisocyanates or polyisothiocyanates
    • C08G18/77Polyisocyanates or polyisothiocyanates having heteroatoms in addition to the isocyanate or isothiocyanate nitrogen and oxygen or sulfur
    • C08G18/78Nitrogen
    • C08G18/79Nitrogen characterised by the polyisocyanates used, these having groups formed by oligomerisation of isocyanates or isothiocyanates
    • C08G18/791Nitrogen characterised by the polyisocyanates used, these having groups formed by oligomerisation of isocyanates or isothiocyanates containing isocyanurate groups
    • C08G18/792Nitrogen characterised by the polyisocyanates used, these having groups formed by oligomerisation of isocyanates or isothiocyanates containing isocyanurate groups formed by oligomerisation of aliphatic and/or cycloaliphatic isocyanates or isothiocyanates
    • GPHYSICS
    • G02OPTICS
    • G02BOPTICAL ELEMENTS, SYSTEMS OR APPARATUS
    • G02B1/00Optical elements characterised by the material of which they are made; Optical coatings for optical elements
    • G02B1/04Optical elements characterised by the material of which they are made; Optical coatings for optical elements made of organic materials, e.g. plastics
    • G02B1/041Lenses

Definitions

  • the invention relates to a highly transparent and thermally stable polyurethane casting resin which can be used for the production of lenses and lenses for lighting units in conjunction with light sources or light guides. It is important that the material meets the specific requirements for encapsulating micro-LEDs with simultaneous high transmission in the ultraviolet and visible spectral range (UV / VIS range).
  • LEDs light-emitting diodes
  • CMOS image sensors have led to an increasing demand for inexpensive optics and a significant expansion of production capacities. LEDs are considered to be highly efficient light sources that offer a long service life, a wide range of colors and design options.
  • the present invention is based on the object of developing a polymer which protects the LED chips from environmental influences, the applied polymer also being used to shape the beam of the emitted light.
  • the optical properties of the polymers used are therefore of great importance for the light yield and the beam shaping properties. It is therefore of great importance to develop an optical high-performance plastic that combines and unites excellent UV and VIS transparency with high thermal stability, good hardness, high surface tension and a relatively long pot life.
  • the polyurethane casting resin according to the invention is a two-component polyurethane casting resin, the first component being a resin, in particular a polyol, and the second component being a hardener made from an isocyanate.
  • the material preferably consists of a polyester polyol and a hexamethylene diisocyanate oligomer (HMDI).
  • the casting resin preferably consists of> 40% by weight polyester-polyol and> 15% by weight isocyanate.
  • the polyols contain reactive hydroxyl (OH) groups which react with isocyanate (NCO) groups on isocyanates to form polyurethanes. The number of hydroxyl (OH) groups depends on the starting materials of the polyol synthesis. According to “M.
  • EDA ethylenediamine
  • DETA diethylenetriamine
  • MDA diphenylmethane diamine
  • alkylene oxide for example propylene oxide or ethylene oxide
  • the polyurethane casting resin optimized according to the invention is preferably composed of two components, namely a resin component and a hardener component for the production of the polyurethane, such an organic compound with a functional urethane group -NH-CO-O-, the resin component being a Polyester-polyol (polyester resin) with an average OH functionality per molecule of 2-3 and an OH content of at least 130 mg KOH / g, determined according to DIN 53240-2: 207-11.
  • the method mentioned in DIN 53240-2 is based on a catalyzed acetylation of the hydroxyl group.
  • the polyester-polyol has a weight average M w of 800-1350 g / mol.
  • the hardener component is preferably a hexamethylene diisocyanate oligomer with an average NCO functionality per molecule of approx. 2, in particular 2-3 and an NCO content of> 15% by weight, in particular> 20% by weight.
  • Hexamethylene diisocyanate oligomer is available from 1,6-hexamethylene diisocyanate (HMDI) monomers, which, for example, give 1- (6- isocyanatohexyl) -3,5-bis (5-isocyanatopentyl) -1, 3,5-triazinane-2,4, 6-trione or higher isocyanurates can oligomerize. It is preferred that 2 to 10 1, 6-
  • Hexamethylene diisocyanate oligomerize monomers to form a hexamethylene diisocyanate oligomer. This leads to an advantageous networking.
  • Such hexamethylene diisocyanate oligomers are also commercially available (e.g. Spies Hecker, Cologne, Germany).
  • the invention therefore relates to a polyurethane according to the invention, the refractive indices determined from transmission and reflection measurements being approximately 1.5 and the Abbe number assuming a value of 38 to 42.
  • the polyurethane casting resin optimized according to the invention shows excellent transmission in the UV range, which is documented in Table 1 at the wavelength of 300 nm.
  • the transmission was determined from reflection and transmission measurements on thin layers and on thick flat plates of 8 mm.
  • the 50% transmission losses are caused by reflection and absorption.
  • the slight light scattering is integrated by measuring the transmission using an integrating sphere.
  • the invention relates to a polyurethane according to the invention, where with a layer thickness of approx. 5 mm only about 50% of the incident radiation with a wavelength of up to 300 nm is transmitted.
  • the invention also relates to a polyurethane according to the invention, the radiation in the wavelength range from 380 to 780 nm not being absorbed, i.e. advantageously being selected.
  • the invention relates to a polyurethane according to the invention, where with a layer thickness of approx. 5 mm 0.5 to 1% of the incident visible radiation is scattered.
  • the polyurethane according to the invention has the special properties of a low viscosity of approx. 2000 mPa * s and a long pot life of> 24 h.
  • the polyurethane casting resin optimized according to the invention has an initial mixed density (p [g / ml_]) of 1.14 at 23 ° C. and an initial mixed viscosity (h [mPa * s]) of 2000. It has a pot life (Tz [min]) of approx 1440 (approx. 24 hours) at 23 ° C and hardens in 2 hours at 120 ° C.
  • the invention therefore relates to a polyurethane according to the invention which has a viscosity of 2000 to 2800 mPa * s, in particular up to 3200 mPa * s and / or is so viscous that it can be processed using a dispensing method.
  • the viscosity and the long pot life enable time and cost-saving manufacturing techniques based on dispensing systems, the designs of which are available from “K. Angermaier, PH. Müller, save time and money, UV-curing silicones, Carl Hanser Verlag, Kunststoffe 4/2010 ", in the patent application with the file number EP19196944 (filed on September 12, 2019),” WM Lee, A. Upadhya, PJ Reece.
  • the polyurethane casting resin optimized according to the invention is also of potential interest for the production of polymer lenses and polymer lens arrays, as shown in the above-mentioned patent application with the file number EP 19196944.
  • These polymer lenses and polymer lens arrays can be used in the optical industry for lighting optics (eg street lighting) for desired light distributions, whereby specific color properties can also be included in the lighting system optimization.
  • the flow properties and the surface tension of the material ensure that the material, in connection with the particularly advantageous way of direct application to semiconductor substrates or light guides, is also used for encapsulating light sources, in particular LEDs arranged on semiconductor substrates and for packaging LEDs with lens shaping (e.g. Chip-on-Board (CoB) LEDs) is suitable.
  • the high surface tension of the material of> 45 dynes / cm, with a non-polar proportion of 92%, and the curing behavior allow different geometrical lenses to be manufactured with flexible selection of the mixing ratio for different forms of application.
  • high hardnesses of Shore A> 80, in particular a Shore A hardness of 82 to 90, are achieved after curing, and high scratch resistance is achieved.
  • the polyurethane cast resin resin optimized according to the invention has a temperature resistance in continuous use of at least 120 ° C, shows high temporary temperature stability of 300-400 ° C and a temperature stability in soldering processes at 260 ° C and is used to protect the LEDs from external influences (moisture, Vibrations, dust, UV etc.) and shows a decomposition temperature of> 350 ° C by means of dynamic differential calorimetry (DSC) and thermogravimetric analysis (TGA).
  • DSC dynamic differential calorimetry
  • TGA thermogravimetric analysis
  • the invention therefore relates to a polyurethane according to the invention which has a glass transition temperature of -12 to -13 ° C, in particular -12.5 ° C and a decomposition temperature of at least 350 ° C.
  • the invention also relates to the use of a polyurethane according to the invention for the production of optical assemblies, lenses, packaging of LEDs with lens shaping, light guides, optical fiber coating with lens formation, sensors with lenses, chip-integrated LEDs, light units for light sources and microlens arrays or a corresponding method, the polyurethane according to the invention is used for manufacturing purposes.
  • the invention also relates to the use of an inventive
  • the invention also relates to the use of a polyurethane according to the invention, at least one lens being produced using the polyurethane by means of a dispensing and / or dropping process, or a corresponding process, the polyurethane according to the invention being used for production purposes.
  • the two components (polyester-polyol and hexamethylene diisocyanate oligomer) were mixed in a mixing ratio of 100: 60% by weight, and heated to 50 ° C with the magnetic stirrer IKA C-Mag HS7 homogenized for 2 min.
  • the Eppendorf EDOS-5221 dispenser was used to manufacture microlenses.
  • the polyurethane was cured in an oven at 120 ° C. for 2 hours.
  • FIGS. 1a) and 1b) show an InGaN CoB-LED 1 with the Cpip dimensions of 250x250 pm in a ceramic housing 2 from EPIGAP Optronic GmbH with the dimensions 2x2, 5x1 mm (width, height, depth) with a microlens 3, which was coated with the aid of the highly transparent and temperature-stable material 4 according to the invention by dispensing, the special lens shape being produced by drop dispensing and subsequent drying or hardening.
  • the housing surface was modified with polytetrafluoroethylene (PTFE) in order to reduce the radius of the microlens even further.
  • FIG. 1 c) shows the associated measurement result of the targeted light distribution at a wavelength of 525 nm.

Landscapes

  • Chemical & Material Sciences (AREA)
  • Health & Medical Sciences (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Medicinal Chemistry (AREA)
  • Polymers & Plastics (AREA)
  • Organic Chemistry (AREA)
  • Physics & Mathematics (AREA)
  • General Physics & Mathematics (AREA)
  • Optics & Photonics (AREA)
  • Polyurethanes Or Polyureas (AREA)

Abstract

L'invention concerne un polyuréthane caractérisé par une très bonne transparence optique, une stabilité thermique, une tension de surface élevée et une durée d'utilisation très longue, et par conséquent par une aptitude au traitement avantageuse, et qui est approprié en particulier pour la production d'ensembles optiques tels que des lentilles (1) et une unité lampe ayant une lentille produite de cette manière. Le polyuréthane est constitué de deux composants, un composant de résine constitué de polyester-polyol et un composant durcisseur constitué d'un oligomère de diiosocyanate d'hexaméthylène, dont la composition a été optimisée pour des applications optiques et remplit les exigences spécifiques de production pour des ensembles optiques spécifiquement pour l'enrobage de micro-DEL. La présente invention est caractérisée en ce que l'indice de réfraction du matériau est d'environ 1,5, le nombre d'Abbe est d'environ 40 et la transparence à une épaisseur de 1 mm est d'environ 91 % d'une longueur d'onde de 300 nm. Le polymère a une bande interdite ou une bande lumo-homo de Eg ≈ 5 eV et présente ainsi une transparence exceptionnelle dans la plage UV et VIS et est idéalement approprié pour produire des lentilles optiques et un matériau d'enrobage ayant un moulage de lentille pour des DEL haute performance. Le matériau remplit également toutes les exigences thermiques et mécaniques pour des matériaux d'enrobage et des lentilles pour des DEL.
PCT/EP2020/084530 2019-12-04 2020-12-03 Résine de coulée de polyuréthane ayant une transparence aux uv élevée et une stabilité à haute température WO2021110869A1 (fr)

Priority Applications (1)

Application Number Priority Date Filing Date Title
DE112020005915.4T DE112020005915A5 (de) 2019-12-04 2020-12-03 Polyurethan Gießharz mit hoher UV-Transparenz und hoher Temperaturstabilität

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
DE102019133078.5A DE102019133078A1 (de) 2019-12-04 2019-12-04 Polyurethan Gießharz mit hoher UV Transparenz und hoher Temperaturstabilität
DE102019133078.5 2019-12-04

Publications (1)

Publication Number Publication Date
WO2021110869A1 true WO2021110869A1 (fr) 2021-06-10

Family

ID=73855497

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/EP2020/084530 WO2021110869A1 (fr) 2019-12-04 2020-12-03 Résine de coulée de polyuréthane ayant une transparence aux uv élevée et une stabilité à haute température

Country Status (2)

Country Link
DE (2) DE102019133078A1 (fr)
WO (1) WO2021110869A1 (fr)

Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP0978523A1 (fr) * 1998-08-04 2000-02-09 Basf Aktiengesellschaft Procédé de préparation de produits de polyaddition de polyisocyanate compacts et transparents
DE102009005711A1 (de) * 2009-01-22 2010-07-29 Bayer Materialscience Ag Polyurethanvergussmassen
EP2910586A1 (fr) 2014-02-21 2015-08-26 Bayer MaterialScience AG Polyuréthanes transparents à température de transition vitreuse Tg élevée

Family Cites Families (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE102008009408A1 (de) * 2008-02-15 2009-08-20 Bayer Materialscience Ag Klebstoff

Patent Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP0978523A1 (fr) * 1998-08-04 2000-02-09 Basf Aktiengesellschaft Procédé de préparation de produits de polyaddition de polyisocyanate compacts et transparents
DE102009005711A1 (de) * 2009-01-22 2010-07-29 Bayer Materialscience Ag Polyurethanvergussmassen
EP2910586A1 (fr) 2014-02-21 2015-08-26 Bayer MaterialScience AG Polyuréthanes transparents à température de transition vitreuse Tg élevée

Non-Patent Citations (5)

* Cited by examiner, † Cited by third party
Title
"Proc. of SPIE", vol. 7788, article "Polymer Optics Design, Fabrication, and Materials", pages: 778805
CHIEN-LIN CHANG CHIENYU-CHE HUANGSYUE-FONGHUCHUNG-MIN CHANGMING-CHUEN YIPWEILEUN FANG: "Polymer dispensing and embossing technology for the lens type LED packaging", J. MICROMECH. MICROENG., vol. 23, 2013, pages 065019
K. ANGERMAIERPH. MÜLLER: "UV-härtende Silicone", 2010, CARL HANSER VERLAG, article "Zeit und Kosten sparen"
M. LONECU: "Chemistry and Technology of Polyols for Polyurethanes", RAPRA TECHNOLOGY LIMITED, ISBN: 1-85957-491-2, 2005
W. M. LEEA. UPADHYAP. J. REECETRI GIANG PHAN: "Fabricating low cost and high performance elastomer lenses using hanging droplets", BIOMEDICAL OPTICS EXPRESS, vol. 5, 2014, pages 1626, XP055216455, DOI: 10.1364/BOE.5.001626

Also Published As

Publication number Publication date
DE102019133078A1 (de) 2021-06-10
DE112020005915A5 (de) 2022-10-06

Similar Documents

Publication Publication Date Title
EP1570983B1 (fr) Composites de matériaux en pièce moulée en compositions plastiques de moulage thermoplastiques transparentes ou translucides pouvant être colorées
DE602004006610T2 (de) Optisch transparente, temperaturbeständige polysiloxane mit hohem brechungsindex
EP1196478B1 (fr) Polycondensats d'acide silicique modifies organiquement, leur production et leur utilisation
EP1925629B1 (fr) Composition polymérisable à base de polythiouréthane et résine optique obtenue à partir de celle-ci
EP1746118B1 (fr) Composition polymérisable de polyuréthane et procédé servant a produire une résine optique composée de celle-ci
DE102005036520A1 (de) Optisches Bauteil, optoelektronisches Bauelement mit dem Bauteil und dessen Herstellung
DE3830053A1 (de) Mischung zur herstellung abriebfester beschichtungen
CN103415549B (zh) 树脂、光学材料及光学器件
KR20080110688A (ko) 플라스틱 편광 렌즈
KR101945883B1 (ko) 광학 재료용 폴리티올 조성물 및 이의 제조방법
DE112011103312T5 (de) Melamin-Epoxidharzmonomer und -Harzzusammensetzung
WO2021110869A1 (fr) Résine de coulée de polyuréthane ayant une transparence aux uv élevée et une stabilité à haute température
KR20160021742A (ko) 광학재료용 조성물
KR101902974B1 (ko) 폴리티올 화합물의 탈수 방법
KR20170034835A (ko) 티오우레탄계 광분산용 플라스틱 렌즈 및 그 제조방법
EP0682271A1 (fr) Dispositifs optiques et procédé de fabrication
EP3033372A1 (fr) Utilisation de polypropylèneimine en tant que durcisseur pour résines époxydes
DE102005029683A1 (de) Melaminharz
KR101893558B1 (ko) 플라스틱 렌즈용 중합성 조성물
EP4010429B1 (fr) Polyestersiloxanes ramifiés
TW200730551A (en) Polythiourethane and poly(trithiocarbonate)polythioether
EP3505547B1 (fr) Composition polymérisable pour matériau optique
DD141677A1 (de) Verfahren zur herstellung von hochmolekularen thermoplastischen epoxid-amin-polyaddukten
DE102007017651B4 (de) Transparenter duroplastischer Komposit aus organischer Matrix mit nanoskaligen Glaspartikeln, Verfahren zur Herstellung desselben und dessen Verwendung
DE19823405C1 (de) Verfahren zur Herstellung von Polymeren mit 2-Ethyliden-6-hepten-5-olid

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 20828026

Country of ref document: EP

Kind code of ref document: A1

REG Reference to national code

Ref country code: DE

Ref legal event code: R225

Ref document number: 112020005915

Country of ref document: DE

122 Ep: pct application non-entry in european phase

Ref document number: 20828026

Country of ref document: EP

Kind code of ref document: A1