WO2021110624A1 - Material zur verarbeitung im selektiven-laser-sinter-verfahren, verwendung des materials sowie daraus hergestellter formkörper - Google Patents

Material zur verarbeitung im selektiven-laser-sinter-verfahren, verwendung des materials sowie daraus hergestellter formkörper Download PDF

Info

Publication number
WO2021110624A1
WO2021110624A1 PCT/EP2020/084014 EP2020084014W WO2021110624A1 WO 2021110624 A1 WO2021110624 A1 WO 2021110624A1 EP 2020084014 W EP2020084014 W EP 2020084014W WO 2021110624 A1 WO2021110624 A1 WO 2021110624A1
Authority
WO
WIPO (PCT)
Prior art keywords
sls
amorphous
polymer
range
powder
Prior art date
Application number
PCT/EP2020/084014
Other languages
English (en)
French (fr)
Inventor
Maximilian KUNKEL
Manfred OCHSENKÜHN
Original Assignee
Siemens Mobility GmbH
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Siemens Mobility GmbH filed Critical Siemens Mobility GmbH
Priority to DE112020005979.0T priority Critical patent/DE112020005979A5/de
Publication of WO2021110624A1 publication Critical patent/WO2021110624A1/de

Links

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B33ADDITIVE MANUFACTURING TECHNOLOGY
    • B33YADDITIVE MANUFACTURING, i.e. MANUFACTURING OF THREE-DIMENSIONAL [3-D] OBJECTS BY ADDITIVE DEPOSITION, ADDITIVE AGGLOMERATION OR ADDITIVE LAYERING, e.g. BY 3-D PRINTING, STEREOLITHOGRAPHY OR SELECTIVE LASER SINTERING
    • B33Y70/00Materials specially adapted for additive manufacturing
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B29WORKING OF PLASTICS; WORKING OF SUBSTANCES IN A PLASTIC STATE IN GENERAL
    • B29CSHAPING OR JOINING OF PLASTICS; SHAPING OF MATERIAL IN A PLASTIC STATE, NOT OTHERWISE PROVIDED FOR; AFTER-TREATMENT OF THE SHAPED PRODUCTS, e.g. REPAIRING
    • B29C64/00Additive manufacturing, i.e. manufacturing of three-dimensional [3D] objects by additive deposition, additive agglomeration or additive layering, e.g. by 3D printing, stereolithography or selective laser sintering
    • B29C64/10Processes of additive manufacturing
    • B29C64/141Processes of additive manufacturing using only solid materials
    • B29C64/153Processes of additive manufacturing using only solid materials using layers of powder being selectively joined, e.g. by selective laser sintering or melting
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B33ADDITIVE MANUFACTURING TECHNOLOGY
    • B33YADDITIVE MANUFACTURING, i.e. MANUFACTURING OF THREE-DIMENSIONAL [3-D] OBJECTS BY ADDITIVE DEPOSITION, ADDITIVE AGGLOMERATION OR ADDITIVE LAYERING, e.g. BY 3-D PRINTING, STEREOLITHOGRAPHY OR SELECTIVE LASER SINTERING
    • B33Y10/00Processes of additive manufacturing
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B33ADDITIVE MANUFACTURING TECHNOLOGY
    • B33YADDITIVE MANUFACTURING, i.e. MANUFACTURING OF THREE-DIMENSIONAL [3-D] OBJECTS BY ADDITIVE DEPOSITION, ADDITIVE AGGLOMERATION OR ADDITIVE LAYERING, e.g. BY 3-D PRINTING, STEREOLITHOGRAPHY OR SELECTIVE LASER SINTERING
    • B33Y80/00Products made by additive manufacturing
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08LCOMPOSITIONS OF MACROMOLECULAR COMPOUNDS
    • C08L71/00Compositions of polyethers obtained by reactions forming an ether link in the main chain; Compositions of derivatives of such polymers
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08LCOMPOSITIONS OF MACROMOLECULAR COMPOUNDS
    • C08L81/00Compositions of macromolecular compounds obtained by reactions forming in the main chain of the macromolecule a linkage containing sulfur with or without nitrogen, oxygen or carbon only; Compositions of polysulfones; Compositions of derivatives of such polymers
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08GMACROMOLECULAR COMPOUNDS OBTAINED OTHERWISE THAN BY REACTIONS ONLY INVOLVING UNSATURATED CARBON-TO-CARBON BONDS
    • C08G2650/00Macromolecular compounds obtained by reactions forming an ether link in the main chain of the macromolecule
    • C08G2650/28Macromolecular compounds obtained by reactions forming an ether link in the main chain of the macromolecule characterised by the polymer type
    • C08G2650/38Macromolecular compounds obtained by reactions forming an ether link in the main chain of the macromolecule characterised by the polymer type containing oxygen in addition to the ether group
    • C08G2650/40Macromolecular compounds obtained by reactions forming an ether link in the main chain of the macromolecule characterised by the polymer type containing oxygen in addition to the ether group containing ketone groups, e.g. polyarylethylketones, PEEK or PEK
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02PCLIMATE CHANGE MITIGATION TECHNOLOGIES IN THE PRODUCTION OR PROCESSING OF GOODS
    • Y02P10/00Technologies related to metal processing
    • Y02P10/25Process efficiency

Definitions

  • the invention relates to a material as a starting material for the SLS process which, in addition to special, required flame retardant properties, gives a molded article produced therefrom in the SLS process as well as optimal mechanical properties such as elongation at break, tensile strength and / or elasticity.
  • the invention also relates to a flame-retardant molded body which can be produced using the selective laser sintering process, or SLS process for short, and which in particular meets the fire protection requirements of DIN 45545.
  • the material according to the invention is used, for example, to produce a molded body that is suitable for the mobility industry, that is, it forms part of the interior lining of a vehicle, such as a rail vehicle, automobile or aircraft in particular.
  • a vehicle such as a rail vehicle, automobile or aircraft in particular.
  • the aspect of protecting passengers and / or staff from smoke and / or toxic gases in the event of a fire must also be taken into account, as specified in DIN standard EN 45545.
  • the SLS method is a process in which plastic in powder form is preferably completely melted in layers in a construction space, there in the so-called powder bed, and / or melted in the thermoplastic edge areas, in particular without the use of binders, but rather only by irradiation with a laser, whereby a shaped body with high density is formed after solidification.
  • the powdery starting material is mate rial by a laser, for example a CO2 laser, an Nd: YAG laser and / or another laser, according to a
  • a laser for example a CO2 laser, an Nd: YAG laser and / or another laser, according to a
  • the given component plan in the powder bed is melted.
  • a defined temperature prevails in the installation space.
  • the temperature range suitable for this is specified via the hot crystallization point and the melting point of the powdery starting material.
  • the temperature can also be up to 380 ° C.
  • Semi-crystalline plastics are particularly suitable for processing / use in the selective laser sintering process (SLS process), but they have poor fire protection properties.
  • the fire protection properties can be improved by adding fire protection additives, which, however, significantly affects the mechanical properties of the molded bodies produced in the SLS.
  • the disadvantage of the previously known technology is in particular that the so-called "old powder" remaining in the powder bed after production, at least 50% by weight, has to be mixed with fresh powder that has not yet been in the installation space so that the mechanical properties, in particular also the dimensional stability of the molded body produced and, last but not least, the surface quality - keyword "orange peel" of the molded body produced in a flame-retardant manner.
  • amorphous plastics are generally not suitable for processing in the SLS process because their softening and / or melting and / or solidification properties are suitable for the SLS process , in which is melted in the short term, so that subsequently solidification occurs for a short time, are not suitable.
  • DE 102017 203 962 discloses a material for use in the SLS process, a compound of at least a first partially crystalline plastic selected from the group of polyaryletherketones, -PAEK-, polyetherketoneketone, -PEKK-, polyetherketone -PEK-, polyetheretherketone -PEEK- and a second amorphous plastic selected from the group consisting of polyetherimide - PEI-, polyethersulfone -PES-, polyphenylene sulfone -PPSU- and / or polysulfone -PSU-, all derivatives of the compounds mentioned being included and both the first in the compound as well as the second plastic in turn can be present as a mixture.
  • a significant increase in the recyclability of the old powder remaining in the powder bed is found without any measurable impairment of a molded body produced with it.
  • the procedure is that a partially crystalline blend is initially mixed with an amorphous blend to shift the crystallization point.
  • the mixed blend used must have a partial crystallinity of at least 10% up to a maximum of 100% partially crystalline material.
  • This blend is compounded and processed into powder, then the powder obtained in this way is poured into an SLS powder bed, from which a shaped body is produced by laser irradiation, which, depending on the composition of the powder, can also exhibit flame-retardant properties.
  • the disadvantage of the prior art known to date is that at least one starting material for producing the compound must be partially crystalline so that the temperature window for the installation space temperature of the device for performing the SLS process can be determined. Partially crystalline
  • polymers are expensive to purchase and more complicated to use than amorphous polymers.
  • a second polymer is added to the partially crystalline polymer before processing in the SLS process so that the hot crystallization temperature of the material composed of the two polymers is reduced by at least 3 ° C, so that there is an extended temperature window for processing in the SLS Procedure results.
  • Another disadvantage of the state of the art for producing flame-retardant components in the SLS process is the extensive material consumption and lack of sustainability, since usually only around 20% of the powder present in the powder bed is actually processed into a component. Apart from that, the additional process steps for disposal and the costs incurred, as well as the additional material consumption, are disadvantageous in the known state of the art for producing flame-retardant plastic components in the SLS process.
  • a powder with at least a partially crystalline portion, possibly also in a blend with amorphous powders is basically present in the powder bed for a successful production of a component in the SLS process.
  • This temperature window usually begins at the melting point, especially a few degrees below the melting point of the powder.
  • Amorphous powders do not show such a melting point and therefore no SLS temperature window can be defined for amorphous powders, so that previously amorphous powders cannot be used for the SLS process.
  • the known powdery starting materials always deliver a large amount of waste in the SLS process, because because of the high proportions of partially crystalline polymer in the material of the powder bed and the high installation space temperature, the non-ver built powder of the powder bed does not share or only to a small extent for another SLS process can be used.
  • the object of the present invention is therefore to provide a material for producing a powder for use in the SLS process that leaves little scrap in the processability of the SLS process and at the same time is suitable for the production of flame-retardant components in the SLS process.
  • the present invention therefore relates to a material for producing a powdery starting material for use in an SLS powder bed, at least one first polymer, which is an amorphous polyaryletherketone, and a second polymer, which is an amorphous polymer from the group of intrinsically flame-retardant thermoplastics , containing, the first and second polymer in the material each Weil in an amount of 5% by weight to 95% by weight, based on the polymer substance of the powdery starting material, present.
  • the invention also relates to the use of the material in the SLS process, in particular in SLS processes at an elevated, for example preferably at least 150 ° C., in particular from 200 ° C. to 300 ° C., generally between 240 ° C.
  • a molded body in particular a flame-retardant molded body with partially crystalline components, can be produced by processing the material in the SLS process at an elevated installation space temperature of 150 ° C. or more.
  • amorphous polymers do not show discrete temperature windows as clearly as partially crystalline polymers show, they do Have a glass transition point from which a minimum process temperature can be derived.
  • a flame-retardant molded body with demonstrably partially crystalline proportions can be produced.
  • a processing window for a temperature range in the installation space of an SLS device has been derived from a hot crystallization temperature and a melting temperature so far - as shown in FIG. 1.
  • FIG. 1 shows a typical processing window in the SLS method using the example of the partially crystalline material PA12.
  • both a hot crystallization temperature and a cold crystallization temperature are measured.
  • amorphous polymer compounds In the present case, the principle of process-induced morphology transformation is used, with at least two amorphous polymer compounds being compounded with one another. The resulting compound clearly shows no partially crystalline components. In further pulverization measures, an amorphous powder is created from this, which also does not contain any partially crystalline components, but is present entirely as an amorphous powder.
  • the surrounding powder which has not been exposed to a laser, i.e. the residual and / or old powder, remains in the amorphous morphology and, in contrast to known powders with partially crystalline components, does not show any in the powder bed significant signs of aging, but can easily be reused.
  • the molded bodies produced also have high fire protection properties and, at the same time, good and adequate mechanical properties, dimensional accuracy and good surface quality.
  • “Compounding” is understood here when a material that comprises at least two different amorphous polymers, the compound partners, comprises in at least one processing and / or compounding step by melting the at least one polymer (polymer or polymer mixture) Polymer matrix is compounded to a homogeneous and uniform new material.
  • the compound can of course comprise further polymers and / or polymer mixtures and / or further additives such as additives, fillers and the like for the production of the molded body.
  • an elevated temperature for example 300 ° C to 340 ° C, in particular between 320 ° C and 330 ° C, depending on the compounding partner and can also be up to 380 ° C.
  • the granules are amorphous.
  • the processing of the granulate into SLS powder takes place, for example, by ensuring a predetermined grain size distribution by appropriate sieving and / or rounding of the powder.
  • a powder prepared in this way can be used in the SLS powder bed to produce a shaped body with partially crystalline components in the SLS process.
  • material is understood to mean the material according to the invention, at least two amorphous polymer components, one of which comprises an intrinsically flame-retardant thermoplastic polymer.
  • the two polymers are preferably present in a ratio of 95: 5% by weight to 5:95% by weight. This material is - after compounding - for the produc- tion of a powder that can be used in the SLS process for the production of moldings, in particular intrinsically flame-retardant moldings according to DIN 45545.
  • amorphous is a polymer in which no more than 10% by weight of crystalline fractions are present in the solid of the polymer. This state is generally determined by differential scanning calorimetry - "DSC” measurement, which is used to determine melting and / or glass transition temperatures suitable for plastics.
  • the amorphous powder in question here shows a glass transition region in the DSC, but neither post-crystallization nor a melting range.
  • the first polymer is at least one amorphous poly aryl ether ketone "PAEK", such as a polyether ketone ketone PEKK, polyether ketone PEK, polyether ether ketone PEEK.
  • PAEK amorphous poly aryl ether ketone
  • These polymers can be used individually and in any desired mixtures and combinations as the first amorphous polymer.
  • PAEKs are characterized by this from the fact that when they are processed in the SLS process under increased installation space temperature, for example at least 150 ° C, they result in a molded body with demonstrable partial crystallinity.
  • PEKK is particularly preferred, which has an amorphous character and retains this in the compound / powder until SLS processing.
  • a melting peak is also not found in the second heating in the DSC - see FIG. 6 in this regard.
  • the second polymer is at least one amorphous polymer from the group of intrinsically flame-retardant thermoplastics, for example selected from the group of the following polymers: polyetherimide “PEI”, polyether sulfone “PESU”, polyphenylene sulfone “PPSU”, and / or polysulfone “PSU”. These polymers can also be used again individually and in any mixtures and combinations as the second amorphous polymer.
  • the powdery starting material for the SLS process from these two polymers, optionally with additives and / or other polymers, can be used in the SLS powder bed with high resistance of the powder stored in the installation space but not exposed to laser radiation.
  • additives includes on the one hand process-improving additives, such as for the flowability, these are in an amount, well below 5% by weight, mostly 1 to 2% by weight, based on 100 parts by mass of the pulverför-shaped starting material, the at least two amorphous polymers comprising, added.
  • it also includes functional additives that change the property profile, these are used, for example, in an amount of 5 to 70% by weight such as fillers and reinforcing materials, such as glass fibers, C fibers, etc., which can significantly improve the property profile sequentially , added.
  • Additives in the form of process-improving additives are in the range of ⁇ 5% by weight, whereas additives in the form of functional fillers in the range of up to 70% by weight, in particular 5-65% by weight, preferably in the range of SLS powders approx. 15-30% by weight can be added.
  • the additives are embedded in a polymer matrix and / or they are added to the powder as a dry mixture directly before application to the powder bed.
  • the polymer substance in the form of the polymeric matrix which is formed from the at least two amorphous polymers in the powdered starting material according to the inven tion and according to the mass and / or weight fraction, both in the powder of the powder bed and on the finished molded body len can be analyzed.
  • Those specified in the invention Percentages by weight in which the first and second polymer are present relate to this polymer substance.
  • FIG. 2 shows the heating
  • FIG. 3 shows the cooling curve
  • the measuring device used for the DSC measurement is a DSC Q100 V9.9 Build 303 from TA "Texas Instruments", the heating rate being 10K / min.
  • PEI from Example 1 is an intrinsically flame-retardant, amorphous thermoplastic which, according to the invention, is used with at least one second, polymeric and amorphous substance, a polyaryletherketone, to produce the material.
  • FIG. 4 shows an example of a DSC measurement DSC measuring device 204F1 Phoenix from Netzsch, the same heating rate at 10K / min as in the measurement of Example 1 above, of a polyether ketone, here the polyether ketone ketone “PEKK” also present in amorphous form.
  • PEKK polyether ketone ketone
  • a commercially available granulate was measured lat. In the second heating, this initially naturally shows the glass transition area as in Example 1 "pure PEI" but also in the temperature range up to 350 ° C an amorphous-partially crystalline transition from approx. 220 ° C, T onset 223.4 ° C. This shows the post-crystallization with a seamless melting range.
  • the post-crystallization shows a peak at 244.7 ° C (onset at 223.4 ° C) and an enthalpy of -9.4J / g.
  • the melting range begins smoothly with a peak at 292.0 (onset 274.2 ° C) and a melting enthalpy of ll.2J / g. Since the enthalpy of crystallization and enthalpy of fusion are almost the same, it is clear that the material was amorphous before it was melted.
  • Partially crystalline polymers in the state of maximum attainable partial crystallinity show no post-crystallization during the DSC measurements - 1st heating. If they are in a state of partial partial crystallinity, especially in the case of rapid cooling processes, they show post-crystallization during the 1st heating, in an area in which the molecular chains that are frozen due to the rapid cooling become mobile and join together to form partially crystalline areas.
  • the melting energy consists on the one hand of the energy of the post-crystallized areas such as the areas to be "de-partially crystallized” (energy absorption) and, on the other hand, of the energy required to melt the partially crystalline areas that were already present (before the post-crystallization) almost the same, this means that there were no partially crystalline areas before the first melting.
  • the powder grain sizes of the powder produced from the compound for processing in the SLS process are in the range of less than 100 ⁇ m which is customary for the SLS process, in particular in the range from 10 ⁇ m to 80 ⁇ m, in particular around 50 ⁇ m. Powder forms that show a certain flowability are particularly suitable so that they can be better processed in the powder bed, for example with a doctor blade.
  • the powder grains are in a rounded shape.
  • the density of the Ma used to prepare the compounds terials is preferably in the range of 1 g / cm 3 to 2 g / cm 3, in particular in the range of 1 g / cm 3 to 1.5 g / cm 3, wherein at play, in a PEKK PEI compound, in which the density of both plastic components is 1.27 g / cm 3 , the volume percent correspond to the weight percent.
  • FIG. 5 shows three DSC measurements of three exemplary materials according to the invention, in the form of their compounds, because before compounding there is no homogeneous material, but rather a loose mixture. Only in the form of the compound does the material show a uniform behavior in the DSC measurement, in particular the heating and cooling curve.
  • Example 5 The compound of Example 5 was also subjected to a check by means of a further three DSC measurements of the same device, but with changed heating rates. The result can be seen in FIG. Figure 6 shows the second heating. The three graphs shown show from top to bottom:
  • Example 5 top graph Figure 6: heating rate 20K / min Example 5, middle graph Figure 6: heating rate 10K / min Example 5, bottom graph Figure 6: heating rate 5K / min
  • the measurement of the middle graph from FIG. 6 corresponds to the measurement of the bottom graph from FIG. 5 because both examples show 5 with a heating rate of 10K / min.
  • the invention makes it possible for the first time to use an amorphous compound, obtainable by compounding amorphous poly mers, to produce an amorphous powdery starting material for use in an SLS powder bed to produce a molded body with partially crystalline components.
  • flame-retardant moldings as they are part of interior and / or exterior cladding) and / or equipment (s) of vehicles, Rail vehicles, ships, aircraft, but also part of buildings, housings, and / or other products can be produced.

Landscapes

  • Chemical & Material Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Materials Engineering (AREA)
  • Manufacturing & Machinery (AREA)
  • Medicinal Chemistry (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Health & Medical Sciences (AREA)
  • Polymers & Plastics (AREA)
  • Organic Chemistry (AREA)
  • Physics & Mathematics (AREA)
  • Optics & Photonics (AREA)
  • Mechanical Engineering (AREA)
  • Compositions Of Macromolecular Compounds (AREA)
  • Processes Of Treating Macromolecular Substances (AREA)

Abstract

Die Erfindung betrifft ein Material als Ausgangsstoff für das SLS-Verfahren, das neben besonderen, geforderten Flammschutzeigenschaften gleichzeitig optimale Verarbeitbarkeit im SLS Verfahren sowie optimale mechanische Eigenschaften wie Bruchdehnung, Zugfestigkeit und/oder Elastizität einem daraus im SLS Verfahren hergestellten Formkörper verleiht. Darüber hinaus betrifft die Erfindung einen flammwidrigen Formkörper, der im Selektiven Laser Sinterverfahren, kurz SLS-Verfahren genannt, herstellbar ist und insbesondere die Brandschutzanforderungen nach DIN 45545 erfüllt. Durch die Erfindung ist es erstmals möglich, aus einem amorphen Compound, erhältlich durch Compoundierung amorpher Polymere, ein amorphes pulverförmiges Ausgangsmaterial für die Verwendung in einem SLS- Pulverbett zur Herstellung eines Formkörpers mit teilkristallinen Anteilen herzustellen. Durch die Verarbeitung des pulverförmigen Ausgangsmaterials im SLS-Verfahren werden flammwidrige Formkörper, wie sie Teil von Innen- und/oder Außenverkleidung von Fahrzeugen, Schienenfahrzeugen, Schiffen, Flugzeugen sein können, aber auch Teil von Gebäuden, Gehäusen, und oder sonstiger Produkte, hergestellt.

Description

Beschreibung
Material zur Verarbeitung im Selektiven-Laser-Sinter-Verfäh ren, Verwendung des Materials sowie daraus hergestellter Formkörper
Die Erfindung betrifft ein Material als Ausgangsstoff für das SLS-Verfahren, das neben besonderen, geforderten Flamm- schutzeigenschaften gleichzeitig optimale Verarbeitbarkeit im SLS Verfahren sowie optimale mechanische Eigenschaften wie Bruchdehnung, Zugfestigkeit und/oder Elastizität einem daraus im SLS Verfahren hergestellten Formkörper verleiht. Darüber hinaus betrifft die Erfindung einen flammwidrigen Formkörper, der im Selektiven Laser Sinterverfahren, kurz SLS-Verfahren genannt, herstellbar ist und insbesondere die Brandschutzan forderungen nach DIN 45545 erfüllt.
Das Material gemäß der Erfindung dient beispielsweise zur Herstellung eines Formkörpers, der für die Branche Mobilität geeignet ist, also einen Teil der Innenverkleidung eines Fahrzeugs, wie insbesondere Schienenfahrzeugs, Autos oder Flugzeugs, bildet. Dabei ist neben der reinen Flammwidrigkeit auch der Aspekt des Schutzes der Passagiere und/oder des Per sonals vor Rauch und/oder toxischen Gasen im Falle eines Brandes zu berücksichtigen, wie in der DIN Norm EN 45545 festgelegt .
Als SLS-Verfahren wird ein Prozess bezeichnet, bei dem Kunst stoff in Pulverform, in einem Bauraum, dort im so genannten Pulverbett vorliegend, schichtweise bevorzugt vollständig aufgeschmolzen und/oder in den thermoplastischen Randberei chen angeschmolzen wird, dies insbesondere ohne Einsatz von Bindern, sondern nur durch Bestrahlen mit einem Laser, wobei nach Erstarrung ein Formkörper mit hoher Dichte entsteht.
In einem SLS-Verfahren wird das pulverförmige Ausgangsmate rial durch einen Laser, beispielsweise einen CO2 Laser, einen Nd:YAG Laser und/oder einen sonstigen Laser, gemäß einem vorgegebenen Bauteilplan im Pulverbett vorliegend aufge schmolzen. Dabei herrscht im Bauraum eine definierte Tempera tur vor. Der dafür geeignete Temperaturbereich wird über den Heiß-Kristallisationspunkt und den Schmelzpunkt des pulver förmigen Ausgangsmaterials vorgegeben.
Im Bauraum herrscht während des SLS-Verfahrens eine erhöhte Temperatur von beispielsweise 150°C oder mehr, insbesondere kann die Temperatur auch bis 380°C betragen.
Semi-kristalline Kunststoffe sind für die Verarbeitung/Ver wendung im Selektiven Laser Sinter Verfahren (SLS Verfahren) besonders geeignet, zeigen aber mangelnde Brandschutzeigen schaften. Durch Zugabe von Brandschutz-Additiven können die Brandschutzeigenschaften verbessert werden, was allerdings die mechanischen Eigenschaften der im SLS erzeugten Formkör per deutlich beeinträchtigt.
Nachteilig an der bislang bekannten Technik ist insbesondere, dass das nach der Herstellung im Pulverbett verbleibende, so genannte „Alt-Pulver" zu zumindest 50% Masseanteile mit fri schen, noch nicht im Bauraum gewesenem Pulver versetzt werden muss, damit die mechanischen Eigenschaften, insbesondere auch die Formstabilität des gefertigten Formkörpers und nicht zu letzt auch die Oberflächenqualität - Stichwort „Orangenhaut" des flammwidrig gefertigten Formkörpers erhalten wird.
Tests haben gezeigt, dass beim Einsatz von - PEK - „Po lyetherketon" in einer „Teilkristallinität" von ca. 20% bis 60% Masseanteile kristallin vorliegend, das Altpulver sogar zu 100% nach Durchführung eines SLS Verfahrend entsorgt wer den muss (Fa. EOS, PEK, „PEEK HP3").
Stand der Technik, beispielsweise der DE 102017 203 962, ist, dass amorph vorliegende Kunststoffe sich grundsätzlich nicht für die Verarbeitung im SLS-Verfahren eignen, weil de ren Erweichungs- und/oder Aufschmelzungs- und/oder Erstar rungseigenschaften sich für das SLS-Verfahren, bei dem kurzfristig aufgeschmolzen wird, damit nachfolgend kurzfris tig eine Erstarrung eintritt, nicht eignen.
Aus der DE 102017 203 962 ist ein Material zur Verwendung im SLS-Verfahren, einen Compound zumindest aus einem ersten teilkristallinen Kunststoff, ausgewählt aus der Gruppe der Polyaryletherketone, -PAEK-, Polyetherketonketon, -PEKK- Polyetherketon -PEK-, Polyetheretherketon -PEEK- und einem zweiten amorphen Kunststoff, ausgewählt aus der Gruppe Polyetherimid - PEI-, Polyethersulfon -PES-, Polyphe- nylensulfon -PPSU- und/oder Polysulfon -PSU- umfassend, wobei alle Derivate der genannten Verbindungen mit umfasst sind und im Compound sowohl der erste als auch der zweite Kunststoff ihrerseits als Mischung vorliegen können, bekannt. Bei diesem Pulver wird bereits eine deutliche Steigerung der Wiederverwertbarkeit des im Pulverbett verbliebenen Altpul vers ohne messbare Beeinträchtigung eines damit gefertigten Formkörpers festgestellt.
Bei der Verarbeitung eines Materials zum SLS-fähigen Kunst stoff-Compound nach dem Stand der Technik - wie er beispiels weise aus der DE 102017 203 962 bekannt ist - wird so vorge gangen, dass zunächst ein teilkristallines Blend mit einem amorphen Blend versetzt wird, um den Kristallisationspunkt zu verschieben. Dazu wird eine Teilkristallinität des einge setzten gemischten Blends von zumindest 10 % bis zu maximal 100% teilkristallinem Material vorausgesetzt. Dieses Blend wird compoundiert und zum Pulver verarbeitet, dann wird das so erhaltene Pulver in ein SLS-Pulverbett gefüllt, aus dem heraus durch Laserbestrahlung ein Formkörper, der je nach Zu sammensetzung des Pulvers auch flammwidrige Eigenschaften zeigen kann, gefertigt wird.
Nachteilig an dem bislang bekannten Stand der Technik ist, dass zumindest ein Ausgangsstoff zur Herstellung des Com pounds teilkristallin vorliegen muss, damit das Temperatur fenster für die Bauraum-Temperatur der Vorrichtung zur Durch führung des SLS-Verfahrens feststellbar ist. Teilkristalline Polymere sind jedoch teuer in der Anschaffung und komplizier ter in der Handhabung als amorphe Polymere.
Nach der US20150259530 Al wird dem teilkristallinen Polymer vor der Verarbeitung im SLS Verfahren noch ein zweites Poly mer zugesetzt, damit die Heißkristallisationstemperatur des aus beiden Polymeren zusammengesetzten Materials zumindest um 3°C reduziert wird, so dass sich ein erweitertes Temperatur fenster für die Verarbeitung im SLS Verfahren ergibt.
Nachteilig am Stand der Technik zur Herstellung flammwidriger Bauteile im SLS-Verfahren ist darüber hinaus der extensive Materialverbrauch und fehlende Nachhaltigkeit, da in der Re gel nur ca. 20% Masseanteile des im Pulverbett vorhandenen Pulvers tatsächlich zu einem Bauteil verarbeitet werden. Ab gesehen davon sind auch die zusätzlichen Prozessschritte zur Entsorgung und die anfallenden Kosten, sowie der zusätzliche Materialverbrauch nachteilig am bekannten Stand der Technik zur Herstellung flammwidriger Kunststoff-Bauteile im SLS Ver fahren.
Die schlechte Wiederverwertbarkeit des Pulvers liegt zum gro ßen Teil auch an der Teilkristallinität des im Pulverbett des Bauraums gelagerten Pulvers. Nach bisherigen technisch-wis senschaftlichen Erkenntnissen liegt für eine erfolgreiche Herstellung eines Bauteils im SLS Verfahren grundsätzlich ein Pulver mit zumindest teilkristallinem Anteil, möglicherweise auch im Blend mit amorphen Pulvern, im Pulverbett vor. Dies insbesondere deshalb, weil für die Verarbeitung im SLS Ver fahren ein Prozess-Temperaturfenster für das Pulver im Pul verbett definiert wird, innerhalb dessen das Aufschmelzen und Wieder-Erstarren des Pulvers durch den Laserstrahl erfolgt (Figur 1). Dieses Temperaturfenster beginnt in der Regel un gefähr am Schmelzpunkt, insbesondere auch wenige Grade unter halb des Schmelzpunktes des Pulvers. Amorphe Pulver zeigen keinen derartigen Schmelzpunkt und daher können für amorphe Pulver keine SLS-Temperatur-Fenster definiert werden, so dass bisher amorphe Pulver nicht für das SLS-Verfahren eingesetzt werden.
Die bekannten pulvertörmigen Ausgangsmaterialien liefern im SLS-Verfahren immer einen großen Ausschuss, weil wegen der hohen Anteile an teilkristallinem Polymer im Material des Pulverbetts und der hohen Bauraumtemperatur das nicht ver baute Pulver des Pulverbetts nicht oder nur zu geringen An teilen für ein weiteres SLS-Verfahren einsetzbar ist.
Aufgabe der vorliegenden Erfindung ist es daher, ein Material zur Herstellung eines Pulvers für die Verwendung im SLS Ver fahren anzugeben, das wenig Ausschuss bei der Verarbeitbar keit SLS Verfahren zurücklässt und gleichzeitig im SLS Ver fahren zur Herstellung flammwidriger Bauteile geeignet ist.
Gegenstand der vorliegenden Erfindung ist daher ein Material zur Herstellung eines pulvertörmigen Ausgangsmaterials zur Verwendung in einem SLS-Pulverbett, zumindest ein erstes Polymer, das ein amorph vorliegendes Polyaryletherke ton ist und ein zweites Polymer, das ein amorphes Polymer aus der Gruppe der intrinsisch flammwidrigen Thermoplasten ist, enthaltend, wobei erstes und zweites Polymer im Material je weils in einer Menge von 5 Gew% bis 95Gew%, bezogen auf die Polymersubstanz des pulvertörmigen Ausgangsmaterials, vorlie gen. Außerdem ist Gegenstand der Erfindung die Verwendung des Materials im SLS-Verfahren, insbesondere im SLS-Verfahren un ter erhöhter, z.B. bevorzugt zumindest 150°C betragender, insbesondere von 200°C bis 300°C, in der Regel zwischen 240°C bis 280°C betragender, Bauraum-Temperatur. Schließlich ist noch ein Formkörper, insbesondere ein flammwidriger Formkör per mit teilkristallinen Anteilen, herstellbar durch Verar beitung des Materials im SLS-Verfahren bei erhöhter Bauraum- Temperatur von 150°C oder mehr Gegenstand der Erfindung.
Allgemeine Erkenntnis der Erfindung ist es, dass amorphe Po lymere zwar nicht so eindeutig diskrete Temperatur-Fenster zeigen wie teil-kristalline Polymere zeigen, allerdings einen Glasübergangspunkt haben, aus dem sich eine Mindest-Prozess- Temperatur ableiten lässt. Darüber hinaus konnte gezeigt wer den, dass trotz der fehlenden Teilkristallinität durch den SLS-Prozess, durchgeführt an amorphem Ausgangsmaterial ein flammwidriger Formkörper mit nachweislich teilkristallinen Anteilen herstellbar ist.
Beim SLS Verfahren wurde bislang - wie in Figur 1 gezeigt - aus einer Heiß-Kristallisations-Temperatur und einer Schmelz temperatur ein Bearbeitungsfenster für einen Temperaturbe reich im Bauraum einer SLS-Vorrichtung abgeleitet.
Figur 1 zeigt so ein typisches Bearbeitungsfenster im SLS- Verfahren am Beispiel des teilkristallinen Materials PA12.
Bei teilkristallinen Materialien wird sowohl eine Heißkris tallisationstemperatur als auch eine Kaltkristallisationstem- peratur gemessen.
Vorliegend wird das Prinzip der prozessinduzierten Morpholo gie-Transformation ausgenutzt, wobei zumindest zwei amorph vorliegende polymere Verbindungen miteinander compoundiert werden. Der hervorgehende Compound zeigt eindeutig keine teilkristallinen Anteile. In weiteren Pulverisierungsmaßnah men entsteht daraus ein amorphes Pulver, das ebenfalls keine teilkristallinen Anteile umfasst, sondern komplett als amor phes Pulver vorliegt.
Durch Einbringen dieses amorphen pulverförmigen Ausgangsmate rials in das Pulverbett einer SLS-Vorrichtung wird durch die Wärmeexposition im Bauraum in Zusammenwirkung mit der Laser exposition eine Morphologietransformation in der Schmelze re alisiert, so dass ein Formkörper mit teilkristallinen Antei len durch den SLS-Prozess herstellbar ist.
Das umgebende Pulver, welches keine Laserexposition erfahren hat, also das Rest- und/oder Altpulver, verbleibt in der amorphen Morphologie und zeigt im Gegensatz zu bekannten Pul vern mit teilkristallinen Anteilen im Pulverbett keine signifikanten Alterungserscheinungen, sondern kann problemlos wiederverwendet werden.
Die gefertigten Formkörper weisen zudem hohe Brandschutzei genschaften sowie gleichzeitig gute und ausreichende mechani sche Eigenschaften, Formtreue und gute Oberflächenqualität auf.
Unter „Compoundieren" wird vorliegend verstanden, wenn ein Material, das mindesten zwei verschiedene amorphe Polymere, die Compoundpartner, umfasst, in mindestens einem Verarbei- tungs- und/oder Compoundierschritt über ein Aufschmelzen der mindestens ein Polymer (Polymer- oder Polymergemisch) umfas senden Polymermatrix zu einem homogenen und einheitlichen neuen Material compoundiert wird. Das Compound kann natürlich weitere Polymere und/oder Polymergemische und/oder weitere Zusatzstoffe wie Additive, Füllstoffe und ähnliches zur Her stellung des Formkörpers umfassen. Bei der Compoundierung herrscht eine erhöhte Temperatur, beispielsweise 300°C bis 340°C, insbesondere auch zwischen 320°C und 330°C, jeweils abhängig von den Compoundierung-Partnern und kann eben auch bis zu 380°C betragen.
Nach der Compoundierung liegt das Granulat amorph vor. Die Verarbeitung des Granulats zum SLS-Pulver erfolgt durch bei spielsweise Sicherstellung einer vorgegebenen Korn-Größenver- teilung durch entsprechendes Sieben und/oder Verrunden des Pulvers. Ein derartig vorbereitetes Pulver kann im SLS- Pulverbett zur Herstellung eines Formkörpers mit teilkristal linen Anteilen im SLS-Verfahren eingesetzt werden.
Unter „Material" wird vorliegend das erfindungsgemäße Mate rial, zumindest zwei amorph vorliegende Polymerbestandteile, einer davon ein intrinsisch flammwidriges thermoplastisches Polymer, umfassend, verstanden. Bevorzugt liegen die beiden Polymer im Verhältnis 95:5 Gew% bis 5:95 Gew% vor. Dieses Material wird - nach der Compoundierung - zur Herstel lung eines Pulvers, das im SLS-Verfahren zur Herstellung von Formkörpern, insbesondere von intrinsisch flammwidrigen Form körpern nach DIN 45545, einsetzbar ist, verwendet.
Als „amorph" wird vorliegend ein Polymer bezeichnet, bei dem nicht mehr als 10Gew% kristalline Anteile im Feststoff des Polymers vorliegen. Dieser Zustand wird im Allgemeinen durch eine Differential Scanning Calorimetry - „DSC"-Messung, die sich für die Feststellung von Schmelz- und/oder Glasüber gangstemperaturen bei Kunststoffen eignet, nachgewiesen.
Das hier in Rede stehende amorphe Pulver zeigt in der DSC ei nen Glasübergangsbereich, aber weder eine Nachkristallisation noch ein Schmelzbereich.
Das erste Polymer ist zumindest ein amorph vorliegendes Poly aryletherketon „PAEK", wie beispielsweise ein Polyetherketon keton PEKK, Polyetherketon PEK, Polyetheretherketon PEEK. Diese Polymere können einzeln und in beliebigen Mischungen und Kombinationen als erstes amorphes Polymer eingesetzt wer den. Diese PAEKs zeichnen sich dadurch aus, dass sie bei der Verarbeitung im SLS-Verfahren unter erhöhter Bauraum-Tempera tur, beispielsweise mindestens 150°C, einen Formkörper mit nachweisbarer Teilkristallinität ergeben.
PEKK ist dabei besonders bevorzugt, welches amorphen Charak ter hat und diesen im Compound/Pulver bis zur SLS Verarbei tung beibehält. Man findet auch nicht bei der zweiten Aufhei zung in der DSC - siehe dazu Figur 6 - einen Schmelzpeak.
Als zweites Polymer liegt zumindest ein amorphes Polymer aus der Gruppe der intrinsisch flammwidrigen Thermoplaste vor, beispielsweise ausgewählt aus der Gruppe folgender Polymere: Polyetherimid „PEI", Polyethersulfon „PESU", Polyphenylensul- fon "PPSU", und/oder Polysulfon „PSU". Diese Polymere können auch wieder einzeln und in beliebigen Mischungen und Kombina tionen als zweites amorphes Polymer eingesetzt werden. Das pulverförmige Ausgangsmaterial für das SLS-Verfahren aus diesen beiden Polymeren, gegebenenfalls mit Zusatzstoffen und/oder weiteren Polymeren, ist zur Verwendung im SLS- Pulverbett bei hoher Beständigkeit des im Bauraum gelagerten, aber keiner Lasereinstrahlung ausgesetzten Pulvers, verwend bar.
Unter dem Begriff „Zusatzstoffe" fallen einerseits prozess verbessernde Additive, wie z.B. für die Rieselfähigkeit, diese werden in einer Menge, deutlich unter 5 Gew%, meistens bei 1 bis 2 Gew%, bezogen auf 100 Masseanteile des pulverför migen Ausgangsmaterials, die zumindest zwei amorphen Polymere umfassend, zugesetzt.
Andererseits werden darunter auch funktionelle Zusatzstoffe, die das Eigenschaftsprofil verändern, verstanden, diese wer den beispielsweise in einer Menge von 5 bis 70Gew% wie Füll- und Verstärkungsstoffe, wie z.B. Glasfasern, C-Fasern, etc., welche das Eigenschaftsprofil sequenziell deutlich verbessern können, zugesetzt.
Zusatzstoffe in Form von prozessverbessernden Additiven lie gen im Bereich von <5Gew.-%, wohingegen Zusatzstoffe in Form von funktionellen Füllstoffen im Bereich von bis zu 70 Gew%, insbesondere von 5-65Gew.-%, bevorzugt bei SLS Pulvern im Be reich von ca. 15-30Gew.-% zugesetzt sein können.
Durch die Compoundierung werden die Zusatzstoffe in eine po lymere Matrix eingebettet und/oder sie werden dem Pulver als Trockenmischung direkt vor der Auftragung ins Pulverbett, zu gegeben.
Egal wie, kann man sowohl im Pulver des Pulverbetts als auch am fertigen Formkörper die Polymersubstanz in Form der poly meren Matrix erkennen, die aus den zumindest zwei amorphen Polymeren im pulverförmigen Ausgangsmaterial gemäß der Erfin dung gebildet ist und die nach Masse- und/oder Gewichtsantei len analysiert werden kann. Die in der Erfindung angegebenen Gewichtsprozente, in denen erstes und zweites Polymer vorlie gen, beziehen sich auf diese Polymersubstanz.
Beispiel 1:
Wie in Figuren 2 und 3 gezeigt, findet sich im amorphen Pul ver, hier am Beispiel 1, reines PEI-Polyetherimid-amorph- ge zeigt, im Material kein Schmelzpunkt, der als Peak erkennt lich wäre, sondern „nur" einen Glasübergangsbereich, das Ma terial liegt also - gemäß DSC - amorph vor.
Figur 2 zeigt dabei die Aufheizung, wohingegen Figur 3 die Abkühlkurve zeigt.
Das zur DSC Messung eingesetzte Messgerät ist ein DSC Q100 V9.9 Build 303 der Firma TA „Texas Instruments", wobei die Heizrate 10K/min betrug.
PEI aus dem Beispiel 1 ist ein intrinsisch flammwidrig amorph vorliegender Thermoplast, der gemäß der Erfindung mit zumin dest einer zweiten, polymeren und amorph vorliegenden Sub stanz, einem Polyaryletherketon, zur Herstellung des Materi als eingesetzt wird.
Beispiel 2: Reines Polyetherketonketon:
Figur 4 zeigt beispielhaft eine DSC Messung DSC-Messgerät 204F1 Phoenix der Firma Netzsch, gleiche Heizrate mit 10K/min wie bei der Vermessung des Beispiels 1 oben, eines Polya ryletherketons, hier des Polyetherketonketons „PEKK" auch amorph vorliegend. Gemessen wurde ein handelsübliches Granu lat. Dieses zeigt in der zweiten Aufheizung zunächst natür lich den Glasübergangsbereich wie auch schon beim Beispiel 1 „reines PEI" aber auch im Temperaturbereich bis 350°C einen Übergang amorph-teilkristallin ab ca. 220°C, T Onset 223.4°C. Dieser zeigt die Nachkristallisation mit übergangslosem Schmelzbereich an. Wie aus der Messung ersichtlich, zeigt die Nachkristallisa tion einen Peak bei 244,7°C (Onset bei 223,4°C) und eine Ent halpie von -9,4J/g. Übergangslos beginnt der Schmelzbereich mit einem Peak bei 292,0 (Onset 274,2°C) und einer Schmel zenthalpie von ll,2J/g. Da Nachkristallisationsenthalpie und Schmelzenthalpie nahezu gleich sind, ist klar, dass das Mate rial vor dem Aufschmelzen amorph vorlag.
Teilkristalline Polymere zeigen im Zustand maximal erreichba rer Teilkristallinität keine Nachkristallisation während der DSC Messungen - 1.Aufheizung. Wenn sie im Zustand einer teil weisen Teilkristallinität vorliegen, insbesondere bei schnel len Abkühlvorgängen, zeigen sie Nachkristallisation bei der 1.Aufheizung, in einem Bereich in welchem die, aufgrund der schnellen Abkühlung, eingefrorenen Molekülketten beweglich werden und sich zu teilkristallinen Bereichen zusammenschlie ßen. Energetisch betrachtet besteht die Schmelzenergie aus einerseits der Energie die nachkristallisierten Bereiche wie der zu „ent-teilkristallisieren" (Energieaufnahme) und ande rerseits der Energie, die bereits davor vorliegenden (vor der Nachkristallisation) teilkristallinen Bereiche aufzuschmel zen. Sind nun Nachkristallisationsenthalpie und Schmelzent halpie betragsmäßig nahezu gleich, bedeutet dies, dass es keine teilkristallinen Bereiche vor der ersten AufSchmelzung gab.
Üblicherweise wird der (Teil-)Kristallinitätsgrad Xc über die Differenz der Beträge von Schmelzenthalpie AHs und Nachkris tallisationsenthalpie AHnk, sowie einem max. Teilkrisallini- tätswert - dieser umfasst die gemessene Schmelzenthalpie AHs und eine approximierte Schmelzenthalpie - hundertprozentig kristallinem Materials DH0 - zu AHs/AHO berechnet:
Figure imgf000013_0001
Teilkristallinitätsgrad = (Schmelzenthalpie - Nachkristalli- sationsentahlpie) / Schmelzenthalpie x max. Teilkristallini- tätswert); relativer Teilkrisallinitätswert = Anteil an der maximal erreichbaren Teilkristallinität
Die Pulverkorngrößen des zur Verarbeitung im SLS-Verfahren aus dem Compound hergestellten Pulvers liegen in dem für das SLS-Verfahren üblichen Bereich von kleiner lOOpm, insbeson dere im Bereich von lOpm bis 80 gm, insbesondere um die 50gm. Besonders geeignet sind Pulverformen, die eine gewisse Fließ fähigkeit zeigen, damit sie im Pulverbett, beispielsweise mit einer Rakel, besser verarbeitbar sind. Dazu liegen gemäß ei ner vorteilhaften Ausführungsform der Erfindung die Pulver körner in abgerundeter Form vor.
Die Dichte des zur Herstellung des Compounds eingesetzten Ma terials liegt vorzugsweise im Bereich von 1 g/cm3 bis 2g/cm3 insbesondere im Bereich von 1 g/cm3 bis 1,5 g/cm3, wobei bei spielsweise bei einem PEKK-PEI Compound, bei dem die Dichte beider Kunststoff-Komponenten 1,27 g/cm3 beträgt, die Volu menprozente den Gewichtsprozenten entsprechen.
Figur 5 zeigt drei DSC Messungen von drei beispielhaften Ma terialien nach der Erfindung, in Form ihrer Compounds, weil vor der Compoundierung kein homogenes Material, sondern eine lose Mischung, vorliegt. Erst in Form des Compounds zeigt das Material ein einheitliches Verhalten bei der DSC-Messung, insbesondere der Aufheiz- und Abkühlkurve.
Hier die DSC-Vermessung der Compounds nach den Beispielen 3 bis 5, diese zeigen beiden amorphen Ausgangsstoffe PEI und PEKK im Verhältnis
Beispiel 3:
PEI:PEKK wie 70:30 in Figur 5 der zuoberst liegende Graph - Beispiel 4:
PEI:PEKK wie 50:50 in Figur 5 der mittlere Graph
- Beispiel 5:
PEI:PEKK wie 30:70 in Figur 5 der unterste Graph
Alle Graphen aus der Figur 5, jeweils gemessen mit DSC- Messgerät 204F1 Phoenix der Firma Netzsch, alle Messung bei der gleichen Heizrate von 10K/min.
Diese Graphen zeigen alle weder Schmelzpunkt noch Kristalli sationspunkt, sondern nur einen Glasübergangsbereich, das ist der klare Beweis dafür, dass das compoundierte Material amorph vorliegt.
Der Compound des Beispiels 5 wurde auch noch einer Überprü fung durch weitere drei DSC-Messungen des gleichen Gerätes, allerdings mit geänderten Heizraten, unterzogen. Das Resultat ist in Figur 6 ersichtlich. Figur 6 zeigt die zweite Aufhei zung. Die drei gezeigten Graphen zeigen von oben nach unten:
Beispiel 5, oberster Graph Figur 6: Heizrate 20K/min Beispiel 5, mittlerer Graph Figur 6: Heizrate 10K/min Beispiel 5, unterster Graph Figur 6: Heizrate 5K/min
Dabei entspricht die Messung des mittleren Graphs aus Figur 6 der Messung des untersten Graphs der Figur 5, weil beide Bei spiel 5 zeigen mit Heizrate 10K/min.
Durch die Erfindung ist es erstmals möglich, aus einem amor phen Compound, erhältlich durch Compoundierung amorpher Poly mere, ein amorphes pulverförmiges Ausgangsmaterial für die Verwendung in einem SLS-Pulverbett zur Herstellung eines Formkörpers mit teilkristallinen Anteilen herzustellen. Durch die Verarbeitung des pulverförmigen amorphen Ausgangsmateri als im SLS-Verfahren bei erhöhter Bauraum-Temperatur, werden flammwidrige Formkörper, wie sie Teil von Innen- und/oder Au ßenverkleidungien) und/oder Ausstattung(en) von Fahrzeugen, Schienenfahrzeugen, Schiffen, Flugzeugen sein können, aber auch Teil von Gebäuden, Gehäusen, und oder sonstiger Produkte sein können, herstellbar.

Claims

Patentansprüche
1.Material zur Herstellung eines pulvertörmigen Ausgangsma terials zur Verwendung in einem SLS-Pulverbett, zumindest ein
- erstes Polymer, das ein amorph vorliegendes Polya ryletherketon ist und ein zweites Polymer, das ein amorphes Polymer aus der Gruppe der intrinsisch flammwidrigen Thermoplasten ist, enthaltend, wobei erstes und zweites Polymer im Material jeweils in einer Menge von 5 Gew% bis 95Gew%, bezogen auf die Polymersubstanz des daraus hergestellten pulverförmi gen Ausgangsmaterials, das die polymere Matrix bildet, vorliegen .
2. Material nach Anspruch 1, das in der DSC-Messung einen Glasübergangsbereich, aber weder eine Nachkristallisation noch einen Schmelzbereich zeigt.
3.Material nach einem der Ansprüche 1 oder 2, das als erstes Polymer zumindest ein amorph vorliegendes Polyaryletherke ton „PAEK", wie beispielsweise ein Polyetherketonketon PEKK, Polyetherketon PER, Polyetheretherketon PEER auf weist.
4.Material nach einem der vorhergehenden Ansprüche, wobei das zweite Polymer ausgewählt ist aus der Gruppe folgender Polymere: Polyetherimid „PEI", Polyethersulfon „PESU", Po- lyphenylensulfon "PPSU", und/oder Polysulfon „PSU".
5.Material nach einem der vorhergehenden Ansprüche, das Zu satzstoffe umfasst.
6.Material nach einem der vorhergehenden Ansprüche, das ein Verhältnis von erstem zu zweitem Polymer im Bereich von 30:70 bis 70:30 Masseanteilen hat.
7.Material nach einem der vorhergehenden Ansprüche, das ein Verhältnis von erstem zu zweitem Polymer im Bereich von 40: 60 bis 60: 40 Gewichtsprozent hat.
8.Material nach einem der vorstehenden Ansprüche, wobei das pulvert örmige Material Partikel mit einer Korngröße im Be reich unter lOOpm, insbesondere im Bereich zwischen lOpm und 80pm hat.
9.Material nach einem der vorstehenden Ansprüche, wobei das pulvert örmige Ausgangsmaterial abgerundete Partikel um fasst.
10. Verwendung eines amorphen Pulvers nach einem der Ansprü che 1 bis 9 zur Verarbeitung im SLS-Verfahren, insbeson dere ein SLS-Verfahren in einem Bauraum mit Temperatur über 150°C, insbesondere im Bereich zwischen 200°C bis
300°C.
11. Verwendung nach Anspruch 10 zur Herstellung eines Form körpers mit teilkristallinen Anteilen im SLS-Verfahren.
12. Flammwidriger Formkörper, erhältlich durch Verarbeitung eines pulvertörmigen und amorphen Ausgangsmaterials aus einem Material nach einem der Ansprüche 1 bis 9 im SLS- Verf ahren.
13. Formkörper nach Anspruch 12, der Teil einer Innen- und/oder Außenverkleidung eines Fahrzeugs, eines Schienen fahrzeugs, eines Schiffes und/oder Flugzeugs ist.
14. Formkörper nach Anspruch 12, der Teil einer Innen- und/oder Außenausstattung eines Fahrzeugs, eines Schienen fahrzeugs, eines Schiffes und/oder Flugzeugs ist.
15. Formkörper nach Anspruch 12, der Teil eines Gebäudes, ei nes Produktes und/oder eines Gehäuses ist.
PCT/EP2020/084014 2019-12-06 2020-12-01 Material zur verarbeitung im selektiven-laser-sinter-verfahren, verwendung des materials sowie daraus hergestellter formkörper WO2021110624A1 (de)

Priority Applications (1)

Application Number Priority Date Filing Date Title
DE112020005979.0T DE112020005979A5 (de) 2019-12-06 2020-12-01 Material zur Verarbeitung im Selektiven- Laser- Sinter-Verfahren, Verwendung des Materials sowie daraus hergestellter Formkörper

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
DE102019219086.3 2019-12-06
DE102019219086.3A DE102019219086A1 (de) 2019-12-06 2019-12-06 Material zur Verarbeitung im Selektiven-Laser-Sinter-Verfahren, Verwendung des Materials sowie daraus hergestellter Formkörper

Publications (1)

Publication Number Publication Date
WO2021110624A1 true WO2021110624A1 (de) 2021-06-10

Family

ID=73834459

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/EP2020/084014 WO2021110624A1 (de) 2019-12-06 2020-12-01 Material zur verarbeitung im selektiven-laser-sinter-verfahren, verwendung des materials sowie daraus hergestellter formkörper

Country Status (2)

Country Link
DE (2) DE102019219086A1 (de)
WO (1) WO2021110624A1 (de)

Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20150259530A1 (en) 2012-11-21 2015-09-17 Stratasys, Inc. Semi-crystalline build materials
DE102017203962A1 (de) 2017-03-10 2018-09-13 Siemens Aktiengesellschaft Material als Ausgangsstoff für das Selektive Laser Sinterverfahren
DE212018000172U1 (de) * 2017-03-06 2019-11-07 Siemens Mobility GmbH Material zur Verarbeitung im Selektiven-Laser-Sinter-Verfahren, daraus hergestellter Formkörper, sowie Verwendung im SLS-Verfahren

Family Cites Families (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US11117311B2 (en) * 2015-10-05 2021-09-14 Arevo, Inc. Amorphous polyaryletherketone and blends thereof for use in additive manufacturing

Patent Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20150259530A1 (en) 2012-11-21 2015-09-17 Stratasys, Inc. Semi-crystalline build materials
DE212018000172U1 (de) * 2017-03-06 2019-11-07 Siemens Mobility GmbH Material zur Verarbeitung im Selektiven-Laser-Sinter-Verfahren, daraus hergestellter Formkörper, sowie Verwendung im SLS-Verfahren
DE102017203962A1 (de) 2017-03-10 2018-09-13 Siemens Aktiengesellschaft Material als Ausgangsstoff für das Selektive Laser Sinterverfahren

Also Published As

Publication number Publication date
DE102019219086A1 (de) 2021-06-10
DE112020005979A5 (de) 2022-09-15

Similar Documents

Publication Publication Date Title
EP1674497B1 (de) Verwendung von Polyarylenetherketonpulver in einem dreidimensionalen pulverbasierenden werkzeuglosen Herstellverfahren, sowie daraus hergestellte Formteile
EP0313603B2 (de) Verfahren zur herstellung von bitumenmassen
EP1783161B1 (de) Dämmender geschäumter Werkstoff
DE102017200447A1 (de) Leitfähiges Polymerkomposit
EP1982816A1 (de) Komposit-Pulver, Verwendung in einem formgebenden Verfahren und Formkörper, hergestellt aus diesem Pulver
DE102008024288A1 (de) Selektives Sintern von strukturell modifizierten Polymeren
DD141031A5 (de) Verfahren zur herstellung von teilen aus wasserhaertendem werkstoff
DE2418803A1 (de) Verstaerkte plastische massen
WO2019096805A1 (de) Schmelzdispergierte zusammensetzung
WO2021032511A1 (de) Selektives sintern von polymerbasierten verbundwerkstoffen
EP3576947B1 (de) Material zur verarbeitung im selektiven-laser-sinter-verfahren, daraus hergestellter formkörper, sowie verwendung im sls-verfahren
EP3351369B1 (de) Dreidimensionales faserformteil, vorrichtung und verfahren zur herstellung eines dreidimensionalen faserformteils
WO2021110624A1 (de) Material zur verarbeitung im selektiven-laser-sinter-verfahren, verwendung des materials sowie daraus hergestellter formkörper
EP2662199A1 (de) Verfahren zur schichtweisen Herstellung von dreidimensionalen Objekten
EP2743292B1 (de) Verfahren zur Herstellung eines dreidimensionalen Formkörpers und Halbzeug
DD159978A5 (de) Verfahren fuer die herstellung von farbigen thermoplastischen erzeugnissen
DE102012015804A1 (de) Werkstoff für pulverschichtaufschmelzende additive Fertigung eines Formkörpers und Verfahren zum Fertigen eines solchen Formkörpers
DE102017203962A1 (de) Material als Ausgangsstoff für das Selektive Laser Sinterverfahren
DE2444420A1 (de) Konstruktionsmaterial sowie verfahren zu seiner herstellung
DE1259095B (de) Formmassen aus Polyolefinen mit einem Gehalt an feinteiligem Koks
DE1955720A1 (de) Verfahren zur Herstellung einheitlicher Formkoerper aus einem thermoplastischen Polymeren
EP4344874A1 (de) Zusammensetzung für additive fertigungsverfahren
DE2340369A1 (de) Verfahren zur herstellung von faserverstaerkten granalien aus einem thermoplastischen polymer
DE19860878A1 (de) Füllstoff für organische und anorganische Polymere, Verfahren zur Herstellung eines Polymerwerkstoffes mit diesem Füllstoff sowie Verwendung dieses Polymerwerkstoffes
WO2023057337A1 (de) Zusammensetzung für additive fertigungsverfahren

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 20824122

Country of ref document: EP

Kind code of ref document: A1

REG Reference to national code

Ref country code: DE

Ref legal event code: R225

Ref document number: 112020005979

Country of ref document: DE

122 Ep: pct application non-entry in european phase

Ref document number: 20824122

Country of ref document: EP

Kind code of ref document: A1