WO2021110314A1 - Procédé de coloration de matière kératinique, comprenant l'utilisation d'un alcoxysilane en c1-c6 organique et de fibres - Google Patents
Procédé de coloration de matière kératinique, comprenant l'utilisation d'un alcoxysilane en c1-c6 organique et de fibres Download PDFInfo
- Publication number
- WO2021110314A1 WO2021110314A1 PCT/EP2020/079328 EP2020079328W WO2021110314A1 WO 2021110314 A1 WO2021110314 A1 WO 2021110314A1 EP 2020079328 W EP2020079328 W EP 2020079328W WO 2021110314 A1 WO2021110314 A1 WO 2021110314A1
- Authority
- WO
- WIPO (PCT)
- Prior art keywords
- composition
- group
- stands
- weight
- pigments
- Prior art date
Links
- WYTZZXDRDKSJID-UHFFFAOYSA-N CCO[Si](CCCN)(OCC)OCC Chemical compound CCO[Si](CCCN)(OCC)OCC WYTZZXDRDKSJID-UHFFFAOYSA-N 0.000 description 3
- AQIQPUUNTCVHBS-UHFFFAOYSA-N CCO[Si](CCCN(C)C)(OCC)OCC Chemical compound CCO[Si](CCCN(C)C)(OCC)OCC AQIQPUUNTCVHBS-UHFFFAOYSA-N 0.000 description 1
- HIDSYZNEEQQANV-UHFFFAOYSA-N CCO[Si](CCCN)(O)O Chemical compound CCO[Si](CCCN)(O)O HIDSYZNEEQQANV-UHFFFAOYSA-N 0.000 description 1
- JTXUAHIMULPXKY-UHFFFAOYSA-N NCCC[Si](O)(O)O Chemical compound NCCC[Si](O)(O)O JTXUAHIMULPXKY-UHFFFAOYSA-N 0.000 description 1
Classifications
-
- A—HUMAN NECESSITIES
- A61—MEDICAL OR VETERINARY SCIENCE; HYGIENE
- A61K—PREPARATIONS FOR MEDICAL, DENTAL OR TOILETRY PURPOSES
- A61K8/00—Cosmetics or similar toiletry preparations
- A61K8/02—Cosmetics or similar toiletry preparations characterised by special physical form
- A61K8/0241—Containing particulates characterized by their shape and/or structure
- A61K8/027—Fibers; Fibrils
-
- A—HUMAN NECESSITIES
- A61—MEDICAL OR VETERINARY SCIENCE; HYGIENE
- A61K—PREPARATIONS FOR MEDICAL, DENTAL OR TOILETRY PURPOSES
- A61K8/00—Cosmetics or similar toiletry preparations
- A61K8/18—Cosmetics or similar toiletry preparations characterised by the composition
- A61K8/19—Cosmetics or similar toiletry preparations characterised by the composition containing inorganic ingredients
-
- A—HUMAN NECESSITIES
- A61—MEDICAL OR VETERINARY SCIENCE; HYGIENE
- A61K—PREPARATIONS FOR MEDICAL, DENTAL OR TOILETRY PURPOSES
- A61K8/00—Cosmetics or similar toiletry preparations
- A61K8/18—Cosmetics or similar toiletry preparations characterised by the composition
- A61K8/30—Cosmetics or similar toiletry preparations characterised by the composition containing organic compounds
- A61K8/58—Cosmetics or similar toiletry preparations characterised by the composition containing organic compounds containing atoms other than carbon, hydrogen, halogen, oxygen, nitrogen, sulfur or phosphorus
- A61K8/585—Organosilicon compounds
-
- A—HUMAN NECESSITIES
- A61—MEDICAL OR VETERINARY SCIENCE; HYGIENE
- A61K—PREPARATIONS FOR MEDICAL, DENTAL OR TOILETRY PURPOSES
- A61K8/00—Cosmetics or similar toiletry preparations
- A61K8/18—Cosmetics or similar toiletry preparations characterised by the composition
- A61K8/72—Cosmetics or similar toiletry preparations characterised by the composition containing organic macromolecular compounds
- A61K8/73—Polysaccharides
- A61K8/731—Cellulose; Quaternized cellulose derivatives
-
- A—HUMAN NECESSITIES
- A61—MEDICAL OR VETERINARY SCIENCE; HYGIENE
- A61Q—SPECIFIC USE OF COSMETICS OR SIMILAR TOILETRY PREPARATIONS
- A61Q5/00—Preparations for care of the hair
- A61Q5/06—Preparations for styling the hair, e.g. by temporary shaping or colouring
- A61Q5/065—Preparations for temporary colouring the hair, e.g. direct dyes
-
- A—HUMAN NECESSITIES
- A61—MEDICAL OR VETERINARY SCIENCE; HYGIENE
- A61K—PREPARATIONS FOR MEDICAL, DENTAL OR TOILETRY PURPOSES
- A61K2800/00—Properties of cosmetic compositions or active ingredients thereof or formulation aids used therein and process related aspects
- A61K2800/40—Chemical, physico-chemical or functional or structural properties of particular ingredients
- A61K2800/42—Colour properties
- A61K2800/43—Pigments; Dyes
-
- A—HUMAN NECESSITIES
- A61—MEDICAL OR VETERINARY SCIENCE; HYGIENE
- A61K—PREPARATIONS FOR MEDICAL, DENTAL OR TOILETRY PURPOSES
- A61K2800/00—Properties of cosmetic compositions or active ingredients thereof or formulation aids used therein and process related aspects
- A61K2800/40—Chemical, physico-chemical or functional or structural properties of particular ingredients
- A61K2800/42—Colour properties
- A61K2800/43—Pigments; Dyes
- A61K2800/432—Direct dyes
- A61K2800/4322—Direct dyes in preparations for temporarily coloring the hair further containing an oxidizing agent
-
- A—HUMAN NECESSITIES
- A61—MEDICAL OR VETERINARY SCIENCE; HYGIENE
- A61K—PREPARATIONS FOR MEDICAL, DENTAL OR TOILETRY PURPOSES
- A61K2800/00—Properties of cosmetic compositions or active ingredients thereof or formulation aids used therein and process related aspects
- A61K2800/80—Process related aspects concerning the preparation of the cosmetic composition or the storage or application thereof
- A61K2800/88—Two- or multipart kits
- A61K2800/882—Mixing prior to application
-
- A—HUMAN NECESSITIES
- A61—MEDICAL OR VETERINARY SCIENCE; HYGIENE
- A61K—PREPARATIONS FOR MEDICAL, DENTAL OR TOILETRY PURPOSES
- A61K2800/00—Properties of cosmetic compositions or active ingredients thereof or formulation aids used therein and process related aspects
- A61K2800/80—Process related aspects concerning the preparation of the cosmetic composition or the storage or application thereof
- A61K2800/88—Two- or multipart kits
- A61K2800/884—Sequential application
Definitions
- a method of coloring keratinous material comprising the use of an organic C 1 -C 6 alkoxysilane and fibers
- the present application is in the field of cosmetics and relates to a method for treating keratinous material, in particular human hair, which comprises the use of two compositions (A) and (B).
- the composition (A) is a preparation which contains at least one organic C 1 -C 6 -alkoxysilane, and the composition (B) contains fibers or a fibrous material.
- a second subject matter of the present invention is a multi-component packaging unit (kit-of-parts) for coloring keratinous material, which, separately packaged in two packaging units, comprises the two compositions (A) and (B) described above
- Oxidation dyes are usually used for permanent, intensive dyeings with good fastness properties and good gray coverage. Such colorants usually contain oxidation dye precursors, so-called developer components and coupler components, which, under the influence of oxidizing agents such as hydrogen peroxide, form the actual dyes with one another. Oxidation dyes are characterized by very long-lasting dyeing results.
- color pigments are generally understood to mean insoluble, coloring substances. These are undissolved in the form of small particles in the dye formulation and are only deposited on the outside of the hair fibers and / or the surface of the skin. Therefore, they can usually be removed without residue by a few washes with detergents containing surfactants. Various products of this type are available on the market under the name of hair mascara. If the user wants particularly long-lasting coloring, the use of oxidative coloring agents has so far been his only option. However, despite multiple attempts at optimization, an unpleasant smell of ammonia or amine cannot be completely avoided with oxidative hair coloring. The hair damage still associated with the use of oxidative coloring agents also has a detrimental effect on the user's hair.
- EP 2168633 B1 deals with the problem of producing long-lasting hair colorations using pigments.
- the document teaches that when a combination of pigment, organic silicon compound, hydrophobic polymer and a solvent is used, hair can be colored which is particularly resistant to shampooing.
- the organic silicon compounds used in EP 2168633 B1 are reactive compounds from the class of alkoxy-silanes. These alkoxy-silanes hydrolyze in the presence of water at high speed and - depending on the amounts of alkoxy-silane and water used in each case - form hydrolysis products and / or condensation products. The influence of the amount of water used in this reaction on the properties of the hydrolysis or condensation product is described, for example, in WO 2013068979 A2.
- a film or coating is formed on the keratin material, which completely envelops the keratin material and in this way strongly influences the properties of the keratin material.
- Possible areas of application are, for example, permanent styling or the permanent change in shape of keratin fibers.
- the keratin fibers are mechanically brought into the desired shape and then fixed in this shape by forming the above-described coating.
- Another very particularly suitable application is the coloring of keratin material.
- the coating or the film is produced in the presence of a coloring compound, for example a pigment. The film colored by the pigment remains on the keratin material or the keratin fibers and results in surprisingly wash-resistant colorations.
- the great advantage of the alkoxy-silane-based coloring principle is that the high reactivity of this class of compounds enables very fast coating. In this way, good staining results can be achieved after a short application period of just a few minutes.
- the coating is created on the surface of the keratin material and does not change the structure inside the keratin, so this coloring technology is a very gentle method of changing the color of the keratin material.
- Coloring processes that use the formation of colored films or coatings, however, are still in need of optimization. In particular, the color intensities and the fastness properties of the dyeings achieved with this dyeing system can still be further improved. The manageability, the consistency and the applicability of the formulations also still require optimization.
- the first composition (A) contains at least one organic C 1 -C 6 -alkoxy-silane (A1) and / or its condensation product
- the second composition (B) is characterized by its fiber content or its content of a fibrous one Material.
- a first object of the present invention is a method for treating keratinic material, in particular human hair, in which the keratinic material is used
- composition (A) was applied to the keratin material in the course of a dyeing process, an improvement in the color intensity, the wash fastness and the rub fastness could be found, especially if the compositions (A) and (B) were mixed with one another before application and in their mixture were added to the keratin material. Even when the composition (B) was applied to the keratin material in the form of an aftertreatment agent after application of the composition (A), very good results could be obtained.
- Keratinic material is understood to mean hair, skin, and nails (such as fingernails and / or toenails, for example). Furthermore, wool, furs and feathers also fall under the definition of keratinic material.
- Keratinic material is preferably understood to mean human hair, human skin and human nails, in particular fingernails and toenails. Keratinic material is very particularly preferably understood to mean human hair.
- composition (A) is characterized in that it contains one or more organic C 1 -C 6 -alkoxy-silanes (A1) and / or their condensation products.
- the organic C 1 -C 6 -alkoxy-silane (s) are organic, non-polymeric silicon compounds which are preferably selected from the group of the silanes having one, two or three silicon atoms.
- Organic silicon compounds which are alternatively referred to as organosilicon compounds, are compounds that either have a direct silicon-carbon bond (Si-C) or in which the carbon is attached to the silicon via an oxygen, nitrogen or sulfur atom. Atom is linked.
- the organic silicon compounds according to the invention are preferably compounds which contain one to three silicon atoms.
- the organic silicon compounds particularly preferably contain one or two silicon atoms.
- silane stands for a group of chemical compounds based on a silicon skeleton and hydrogen.
- the hydrogen atoms have been completely or partially replaced by organic groups such as, for example, (substituted) alkyl groups and / or alkoxy groups.
- C 1 -C 6 alkoxy-silanes that at least one C 1 -C 6 - alkoxy group is bonded directly to a silicon atom.
- the C 1 -C 6 -alkoxy-silanes according to the invention thus comprise at least one structural unit R'R "R '" Si-O- (C 1 -C 6 -alkyl) where the radicals R', R "and R"'represent the three remaining bond valences of the silicon atom.
- the C 1 -C 6 alkoxy group or groups bonded to the silicon atom are very reactive and are hydrolyzed at high speed in the presence of water, the reaction speed also depending, among other things, on the number of hydrolyzable groups per molecule. If the hydrolyzable C 1 -C 6 alkoxy group is an ethoxy group, then the organic silicon compound preferably contains a structural unit R'R "R"'Si-O-CH 2 -CH3. The radicals R ', R "and R"' again represent the three remaining free valences of the silicon atom.
- a condensation product is understood to mean a product that is formed by the reaction of at least two organic C 1 -C 6 -alkoxy-silanes with elimination of water and / or with elimination of a C 1 -C 6 -alkanol.
- the condensation products can be, for example, dimers, but also trimers or oligomers, the condensation products being in equilibrium with the monomers.
- a method according to the invention is characterized in that the composition (A) contains one or more organic C 1 -C 6 -alkoxy-silanes (A1) selected from silanes with one, two or three silicon atoms wherein the organic silicon compound further comprises one or more basic chemical functions.
- A1 organic C 1 -C 6 -alkoxy-silanes
- This basic group can be, for example, an amino group, an alkylamino group or a dialkylamino group, which is preferably connected to a silicon atom via a linker.
- the basic group is preferably an amino group, a C 1 -C 6 -alkylamino group or a di (C 1 -C 6 ) alkylamino group.
- composition (A) contains one or more organic C 1 -C 6 -alkoxy-silanes (A1) which are selected from the group of silanes with one, two or three silicon atoms, and wherein the C 1 -C 6 -alkoxy-silanes further comprise one or more basic chemical functions.
- a method according to the invention is characterized in that the first composition (A) contains one or more organic C 1 -C 6 -alkoxy-silanes (A1) of the formula (S1) and / or (S-II) contains,
- R 1 , R 2 independently of one another represent a hydrogen atom or a C 1 -C 6 -alkyl group
- L stands for a linear or branched, divalent C 1 -C 20 alkylene group
- R 3 , R 4 independently of one another represent a C 1 -C 6 -alkyl group, a, represents an integer from 1 to 3, and b represents the integer 3 - a, and
- R5, R5 ', R5 ", R 6 , R 6 ' and R 6 " independently of one another represent a C 1 -C 6 -alkyl group
- A, A ', A “, A“' and A ““ independently of one another represent a linear or branched, divalent C 1 -C 20 alkylene group
- R 7 and R 8 independently of one another represent a hydrogen atom, a C 1 -C 6 -alkyl group, a hydroxy-C 1 -C 6 -alkyl group, a C 2 -C 6 -alkenyl group, an amino-C 1 -C 6 -alkyl - a group or a grouping of the formula (S-III),
- - h stands for 0 or 1, - With the proviso that at least one of the radicals from e, f, g and h is different from 0, and / or their condensation products.
- Examples of a C 1 -C 6 -alkyl group are the groups methyl, ethyl, propyl, isopropyl, n-butyl, s-butyl and t-butyl, n-pentyl and n-hexyl. Propyl, ethyl and methyl are preferred alkyl radicals.
- Examples of a C 2 -C 6 -alkenyl group are vinyl, allyl, but-2-enyl, but-3-enyl and isobutenyl, preferred C 2 -C 6 -alkenyl radicals are vinyl and allyl.
- a hydroxy-C 1 -C 6 -alkyl group are a hydroxymethyl, a 2-hydroxyethyl, a 2-hydroxypropyl, a 3-hydroxypropyl, a 4-hydroxybutyl group, a 5-hydroxypentyl and a 6 -Hydroxyhexyl group; a 2-hydroxyethyl group is particularly preferred.
- Examples of an amino-C 1 -C 6 -alkyl group are the aminomethyl group, the 2-aminoethyl group and the 3-aminopropyl group. The 2-aminoethyl group is particularly preferred.
- Examples of a linear divalent C 1 -C 20 alkylene group are, for example, the methylene group (-CH 2 -), the ethylene group (-CH 2 -CH 2 -), the propylene group (-CH 2 -CH 2 -CH 2 - ) and the butylene group (-CH 2 -CH 2 -CH 2 -CH 2 -).
- the propylene group (-CH 2 -CH 2 -CH 2 -) is particularly preferred.
- divalent alkylene groups can also be branched. Examples of branched, divalent C 3 -C 20 alkylene groups are (-CH 2 - CH (CH 3 ) -) and (-CH 2 -CH (CH 3 ) -CH 2 -).
- the radicals R 1 and R 2 very particularly preferably both represent a hydrogen atom.
- the linker -L- which stands for a linear or branched, divalent C 1 -C 20 alkylene group.
- the divalent C 1 - C 20 alkylene group may alternatively be referred to as a divalent or a divalent C 1 -C 20 alkylene group, by which is meant that each group -L- may enter into two bonds.
- -L- is preferably a linear, divalent C 1 -C 20 alkylene group.
- -L- stands for a linear divalent C 1 -C 6 alkylene group.
- L very particularly preferably represents a propylene group (—CH 2 —CH 2 —CH 2 -).
- R 1 R 2 NL-Si (OR 3 ) a (R 4 ) b (Sl) each carry the silicon-containing grouping -Si (OR 3 ) a (R 4 ) b at one end .
- the radicals R 3 and R4 independently of one another represent a C 1 -C 6 -alkyl group, particularly preferably R 3 and R 4 independently of one another represent a methyl group or a Ethyl group.
- a stands for an integer from 1 to 3
- b stands for the integer 3 - a. If a is 3, then b is 0. If a is 2, then b is 1. If a is 1, then b is 2.
- Keratin treatment agents with particularly good properties could be produced if the composition (A) contains at least one organic C 1 -C 6 -alkoxy-silane of the formula (S1) in which the radicals R 3 , R 4 independently of one another represent a methyl group or for stand for an ethyl group.
- composition (A) contains at least one organic C 1 -C 6 -alkoxy-silane of the formula (S1) in which the radical a stands for the number 3. In this case, the remainder b stands for the number 0.
- composition (A) contains one or more organic C 1 -C 6 -alkoxy-silanes of the formula (S1), where
- R 3 , R 4 independently of one another represent a methyl group or an ethyl group
- composition (A) contains at least one or more organic C 1 -C 6 -alkoxy-silanes of the formula (S1),
- - L is a linear, divalent C 1 -C 6 alkylene group, preferably a propylene group (- CH 2 --CH 2 --CH 2 -) or an ethylene group (--CH 2 --CH 2 -),
- R 3 stands for an ethyl group or a methyl group
- R 4 represents a methyl group or an ethyl group
- Organic silicon compounds of the formula (I) which are particularly suitable for achieving the object of the invention are - (3-aminopropyl) triethoxysilane
- a method according to the invention is characterized in that the first composition (A) contains at least one organic C 1 -C 6 -alkoxysilane (A1) of the formula (S1) which is selected from the group of
- organic silicon compounds of the formula (I) are commercially available.
- (3-Aminopropyl) trimethoxysilane can be purchased from Sigma-Aldrich, for example.
- (3-Aminopropyl) triethoxysilane is also commercially available from Sigma-Aldrich.
- composition (A) can also contain one or more organic C 1 -C 6 -alkoxy-silanes of the formula (Sl I),
- organosilicon compounds of the formula (S-II) according to the invention each have the silicon-containing groups (R 5 O) c (R 6 ) d Si and -Si (R 6 ') d ' (OR 5 ') at their two ends c
- each of the radicals e, f, g and h can independently represent the number 0 or 1, with the proviso that at least one of the radicals e, f, g and h is from 0 is different.
- an inventive organic silicon compound of the formula (II) contains at least one group from the group consisting of - (A) - and - [NR 7 - (A ')] - and - [O- (A ”)] - and - [NR 8 - (A ”')] -
- the radicals R5, R5', R5 ′′ stand independently of one another for a C 1 -C 6 alkyl group.
- the radicals R6, R6 'and R6 ′′ stand independently of one another for a C 1 -C 6 -alkyl group.
- c stands for an integer from 1 to 3
- d stands for the integer 3 - c. If c is 3, then d is 0. If c is 2, then d is 1. If c is 1, then d is 2.
- d‘ stands for the integer 3 - c ‘. If c ‘stands for the number 3, then d‘ equals 0. If c clergy stands for the number 2, then d ‘equals 1. If c ‘stands for the number 1, then d‘ is 2.
- composition (A) contains one or more organic C 1 -C 6 -alkoxy-silanes of the formula (S-II),
- R5 and R5 ‘independently represent a methyl group or an ethyl group
- the radicals e, f, g and h can independently represent the number 0 or 1, at least one radical from e, f, g and h being different from zero.
- the abbreviations e, f, g and h define which of the groupings - (A) e - and - [NR 7 - (A ')] f and - [O- (A ”)] g - and - [ NR 8 - (A ”')] h - are located in the middle part of the organic silicon compound of the formula (II).
- the radicals A, A ', A “, A”' and A “” stand independently of one another for a linear or branched, divalent C 1 -C 20 alkylene group.
- the radicals A, A ', A “, A”' and A “” are preferably, independently of one another, a linear, divalent C 1 -C 20 alkylene group.
- the radicals A, A ', A ", A"' and A “" are more preferably, independently of one another, a linear divalent C 1 -C 6 alkylene group.
- the divalent C 1 -C 20 alkylene group can alternatively be referred to as a divalent or divalent C1 -C 20 alkylene group, which means that each grouping A, A ', A ", A"' and A "" has two bonds can enter.
- the radicals A, A ', A “, A”' and A “” are particularly preferably, independently of one another, a methylene group (-CH 2 -), an ethylene group (-CH 2 -CH 2 -), a propylene group (-CH 2 -CH 2 -CH 2 -) or a butylene group (-CH 2 -CH 2 -CH 2 -CH 2 -).
- the radicals A, A ', A ", A”' and A "" are very particularly preferably a propylene group (—CH 2 —CH 2 —CH 2 -).
- the organic silicon compound of the formula (II) according to the invention contains a structural grouping - [NR 7 - (A ')] -.
- the organic silicon compound of the formula (II) according to the invention contains a structural grouping - [NR 8 - (A ”')] -.
- radicals R 7 and R 8 independently represent a hydrogen atom, a C 1 -C 6 - alkyl group, a hydroxy-C 1 -C 6 alkyl group, a C 2 -C 6 alkenyl group, an amino-C 1 - C 6 alkyl group or a grouping of the formula (S-III)
- the organic silicon compound according to the invention contains the grouping [NR 7 - (A ')], but not the grouping - [NR 8 - (A ”')] if the radical R7 is a grouping of the formula (III), the organic silicon compound comprises 3 reactive silane groups.
- a method according to the invention is characterized in that the composition (A) contains one or more organic C 1 -C 6 -alkoxy-silanes (A1) of the formula (S-II)
- R7 represents a hydrogen atom, a methyl group, a 2-hydroxyethyl group, a 2-alkenyl group, a 2-aminoethyl group or a grouping of the formula (S-III).
- composition (A) contains one or more organic C 1 -C 6 -alkoxy-silanes (A1) of the formula (S-II), where
- a and A 'independently of one another represent a methylene group (-CH 2 -), an ethylene group (-CH 2 -CH 2 -) or a propylene group (-CH 2 -CH 2 -CH 2 ), and
- R7 represents a hydrogen atom, a methyl group, a 2-hydroxyethyl group, a 2-alkenyl group, a 2-aminoethyl group or a grouping of the formula (S-III).
- organic silicon compounds of the formula (S-II) are commercially available.
- Bis (trimethoxysilylpropyl) amine with the CAS number 82985-35-1 can be purchased from Sigma-Aldrich, for example.
- Bis [3- (triethoxysilyl) propyl] amine with the CAS number 13497-18-2 can be purchased from Sigma-Aldrich, for example.
- N-methyl-3- (trimethoxysilyl) -N- [3- (trimethoxysilyl) propyl] -1-propanamine is alternatively also referred to as bis (3-trimethoxysilylpropyl) -N-methylamine and can be purchased commercially from Sigma-Aldrich or Fluorochem .
- composition (A) contains one or more organic C 1 -C 6 -alkoxy-silanes of the formula (S-II) which are selected from the group of
- the compounds of the formula (S-IV) are organic silicon compounds which are selected from silanes having one, two or three silicon atoms, the organic silicon compound comprising one or more hydrolyzable groups per molecule.
- organic silicon compound or compounds of the formula (S-IV) can also be referred to as silanes of the alkyl-C 1 -C 6 -alkoxysilane type,
- R 9 stands for a C1-C 12 alkyl group
- R 10 represents a C 1 -C 6 -alkyl group
- R 11 represents a C 1 -C 6 -alkyl group
- a particularly preferred method according to the invention is characterized in that the first composition (A) contains one or more organic C 1 -C 6 -alkoxy-silanes (A1) of the formula (S-IV),
- R 9 stands for a C 1 -C 12 -alkyl group
- R 10 stands for a C 1 -C 6 -alkyl group
- R 11 stands for a C 1 -C 6 -alkyl group
- k stands for an integer from 1 to 3
- m stands for the integer 3 - k, and / or their condensation products.
- the radical R 9 stands for a C 1 -C 12 -alkyl group.
- This C1-C12 alkyl group is saturated and may be linear or branched.
- Rg preferably stands for a linear C1-C8-alkyl group.
- Rg is preferably a methyl group, an ethyl group, an n-propyl group, an n-butyl group, an n-pentyl group, an n-hexyl group, an n- Octyl group or an n-dodecyl group.
- R 9 particularly preferably represents a methyl group, an ethyl group or an n-octyl group.
- the radical R 10 stands for a C 1 -C 6 -alkyl group. Rio particularly preferably represents a methyl group or an ethyl group.
- the radical R 11 stands for a C 1 -C 6 -alkyl group.
- R 11 particularly preferably represents a methyl group or an ethyl group.
- k stands for an integer from 1 to 3, and m stands for the integer 3 - k. If k is 3, then m is 0. If k is 2, then m is 1. If k is 1, then m is 2.
- composition (A) contains at least one organic C 1 -C 6 -alkoxy-silane (A1) of the formula (S-IV) in which the radical k stands for the number 3. In this case, the remainder m stands for the number 0.
- Organic silicon compounds of the formula (S-IV) which are particularly suitable for achieving the object of the invention are methyltrimethoxysilane
- n-Dodecyltrimethoxysilane also referred to as dodecyltrimethoxysilane
- / or - n-Dodecyltriethoxysilane also referred to as dodecyltriethoxysilane
- an inventive method is characterized in that the first composition (A) at least one organic C1-C 6 - alkoxysilane (A1) includes the formula (S-IV), which is selected from the group consisting of
- the corresponding hydrolysis or condensation products are, for example, the following compounds.
- the condensation products represent a maximum of oligomeric compounds, but not polymers.
- the hydrolysis reaction can also take place several times per C 1 -C 6 -alkoxy-silane used:
- the hydrolysis reaction can also take place several times per C 1 -C 6 -alkoxy-silane used: or.
- Possible condensation reactions are for example (shown on the basis of the mixture (3-aminopropyl) triethoxysilane and methyltrimethoxysilane): and or and or and or and or and or
- condensation to form a dimer is shown in each case, but more extensive condensation to form oligomers with several silane atoms are also possible and also preferred.
- Both partially hydrolyzed and fully hydrolyzed C 1 -C 6 -alkoxysilanes of the formula (S1) can take part in these condensation reactions, which condensation with as yet unreacted, partially or completely hydrolyzed C 1 -C 6 -alkoxysilanes of the formula (S1) run through. In this case, the C 1 -C 6 -alkoxysilanes of the formula (S1) react with themselves.
- both partially hydrolyzed and fully hydrolyzed C 1 -C 6 -alkoxysilanes of the formula (S1) can also take part in the condensation reactions, which condensation with as yet unreacted, partially or completely hydrolyzed C 1 -C 6 -alkoxysilanes of the formula (S. -IV).
- the C 1 -C 6 -alkoxysilanes of the formula (S1) react with the C 1 -C 6 -alkoxysilanes of the formula (S-IV).
- both partially hydrolyzed and fully hydrolyzed C 1 -C 6 -alkoxysilanes of the formula (S-IV), which undergo condensation with not yet reacted, partially or completely hydrolyzed C 1 -C 6 -alkoxysilanes, can also take part in the condensation reactions Run through formula (S-IV).
- the C 1 -C 6 -alkoxysilanes of the formula (S-IV) react with themselves.
- composition (A) according to the invention can contain one or more organic C 1 -C 6 -alkoxysilanes (A1) in various proportions.
- the person skilled in the art determines this as a function of the desired thickness of the silane coating on the keratin material and of the amount of the keratin material to be treated.
- composition (A) - based on its total weight - has one or more organic C 1 -C 6 -alkoxysilanes (A1) and / or the condensation products thereof in a total amount of 40.0 to 99.0% by weight, preferably from 50.0 to 98.0% by weight, more preferably from 60.0 to 97.0% by weight, even more preferably from 70.0 to 96 , 0% by weight and very particularly preferably from 80.0 to 95.0% by weight.
- a very particularly preferred method is characterized in that the composition (A) - based on the total weight of the composition (A) - one or more organic C 1 -C 6 alkoxysilanes (A1) and / or the condensation products thereof in a total amount from 40.0 to 99.0% by weight, preferably from 50.0 to 98.0% by weight, more preferably from 60.0 to 97.0% by weight, even more preferably from 70 , 0 to 96.0% by weight and very particularly preferably from 80.0 to 95.0% by weight.
- composition (A) Further cosmetic ingredients in composition (A)
- composition (A) can also contain one or more further cosmetic ingredients.
- the cosmetic ingredients that can optionally be used in the composition (A) can be all suitable constituents in order to impart further positive properties to the agent.
- a solvent a surface-active compound from the group of the nonionic, cationic, anionic or zwitterionic / amphoteric surfactants, the coloring compounds from the group of the pigments, the substantive dyes, the oxidation dye precursors, the fatty components from the group C 8 -C 30 fatty alcohols, hydrocarbon compounds, fatty acid esters, acids and bases belonging to the group of pH regulators, perfumes, preservatives, plant extracts and protein hydrolysates.
- the method according to the invention is characterized by the use of a first composition (A) on the keratinic material.
- the composition (A) can be characterized in that it is low in water, preferably essentially free of water.
- the composition (A) therefore preferably contains less than 15% by weight of water, based on the total weight of the composition (A).
- the compositions (A) are storage-stable over long periods of time.
- the first composition (A) contains - based on the total weight of the composition (A) - preferably 0.01 to 15.0% by weight, preferably 0.1 to 13.0% by weight, more preferably 0, 5 to 11.0 and very particularly preferably 1.0 to 9.0 wt .-% water.
- a method according to the invention is characterized in that the first composition (A) - based on the total weight of the composition (A) - 0.01 to 15.0% by weight, preferably 0.1 to 13 , 0 wt .-%, more preferably 0.5 to 11.0 and very particularly preferably 1.0 to 9.0 wt .-% water.
- a water-containing composition (A) can also be applied to the keratin material.
- a method according to the invention is characterized in that the first composition (A) - based on the total weight of the composition (A) - 50.0 to 99.0% by weight, preferably 60.0 to 98.0% by weight .-%, more preferably 65.0 to 97.0 and very particularly preferably 70.0 to 96.0% by weight of water. pH of the compositions (Aj
- the pH values of the composition (A) can have an influence on the color intensities obtained during the dyeing. It was found here that alkaline pH values in particular have an advantageous effect on the dyeing performance that can be achieved in the process.
- compositions (A) have a pH of from 7.0 to 12.0, preferably from 7.5 to 11.5, more preferably from 8.0 to 11.0 and very particularly preferably from 8.0 to 10.5.
- the pH value can be measured using the usual methods known from the prior art, such as, for example, pH value measurement using glass electrodes using combination electrodes or using pH indicator paper.
- a method according to the invention is characterized in that the composition (A) has a pH of from 7.0 to 12.0, preferably from 7.5 to 11.5, more preferably from 8.0 to 11.0 and very particularly preferably from 8.0 to 10.5.
- the method according to the invention comprises the application of a second composition (B) to the keratin material.
- the composition (B) is characterized in that it contains fibers (B1). Fibers in the context of the present invention are understood to mean a material that is present in fiber form.
- a first object of the present invention is a method for treating keratinic material, in particular human hair, in which the keratinic material is used
- fiber is understood to mean an object with a length L and a diameter D, the length L being greater than the diameter D. Whether a material is in fiber form can be determined, for example, by microscopic observation of the material.
- the length L indicates the length of a fiber and D its diameter D, where D can be represented in simplified form as the diameter of a circle.
- the ratio of L to D can also be referred to as the shape factor, for example in the range from 3.5 to 2000, preferably from 5 to 500, more preferably from 5 to 150.
- Fibers are particularly preferably understood to mean stretched, flexible structures made of fiber material with a length to diameter ratio above 3: 1, preferably above 5: 1 and in particular above 10: 1. Fibers cannot absorb compressive forces in the longitudinal direction, only tensile forces.
- the fibers can range in length from 1 ⁇ m (mycrometer) to 10 mm (millimeters), for example from 0.1 mm to 5 mm, such as from 0.3 mm to 3 mm.
- Their cross section can be within a circle with a diameter in the range from 2 nm to 900 ⁇ m, preferably in the range from 100 nm to 700 ⁇ m.
- the weight or the yarn strength of the fibers is often given in denier or decitex, and represents the weight in grams per 9 km of yarn.
- the fibers according to the present disclosure can have a yarn count in the range from 1 to 3 0.01 denier to 10 denier, for example from 0.1 denier to 2 denier, such as from 0.3 denier to 0.7 denier.
- the fibers which are used in the composition (B) can be of organic or mineral origin. Furthermore, the fibers can be of synthetic or natural origin. Furthermore, the fibers can be short or long, single or organized such as braided, hollow or solid. The fibers can also have any shape, for example circular or polygonal (square, hexagonal or octagonal). In one embodiment of the present disclosure, the fibers are blunt and / or polished at their ends in order to avoid injury.
- Natural fibers are all those fibers that are obtained from plant, animal or mineral material without any chemical modification.
- a method according to the invention is characterized in that the second composition (B) contains (B1) fibers of organic origin (B1).
- Fibers of organic origin can be, for example, vegetable fibers. In plants, plant fibers occur as vascular bundles in the stem, trunk, bark or as seed extensions. Plant fibers usually consist mainly of cellulose. Corresponding fibers are grouped together under the name cellulose fibers.
- plant fibers are divided into seed fibers, bast fibers, leaf fibers and fruit fibers.
- the group of seed fibers includes, for example, cotton fibers, kapok, akon and poplar fluff.
- the group of bast fibers includes, among others, bamboo fiber, fiber nettle, hemp fiber, jute and flax fiber. Sisal belongs to the leaf fibers, while coconut fibers belong to the group of fruit fibers.
- the fibers that can be used include those used in the manufacture of textiles such as silk fibers, cotton fibers, wool, fiber, flax fiber, cellulose fiber, e.g. extracted from wood, from legumes or from algae, rayon fibers, polyamide (Nylon®) - Fiber, viscose fiber, acetate fiber such as rayon, acetate fiber, acrylic polymer fiber, for example: polymethyl methacrylate fiber or poly (2-hydroxyethyl methacrylate) fiber, polyolefin fiber such as polyethylene or polypropylene fiber, glass fiber, silica fiber, carbon fiber, for example in Graphite form, polytetrafluoroethylene (such as Teflon®) fiber, insoluble collagen fiber, polyester fiber, polyvinyl chloride fiber or polyvinylidene chloride fiber, polyvinyl alcohol fiber, polyacrylonitrile fiber, chitosan fiber, polyurethane fiber, polyethylene phthalate fiber and fibers formed from a mixture of polymers such as those mentioned above, for example poly
- the fibers are polyamide fibers (Nylon®).
- the fibers used in the cosmetic compositions are selected from the group of fibers made from natural fiber materials.
- the use of animal fibers from the group of silk fibers, cashmere fibers and wool fibers is also preferred.
- the use of cellulose fibers is particularly preferred.
- composition (B) contains fibers made of cellulose or cellulose fibers.
- a method according to the invention is characterized in that the second composition (B) contains cellulose fibers (B1).
- a method according to the invention is characterized in that the second composition (B) contains cellulose in fiber form (B1).
- a method according to the invention is characterized in that the second composition (B) contains fibers based on cellulose (B1).
- cellulose fibers can be obtained commercially, for example, from CFF GmbH & Co. KG under the trade name Sensocel® fibers.
- the cellulose fibers of the Sensocel® series are cellulose-based plant fibers that are obtained from beech, bamboo, wheat, oats and sugar cane, for example.
- the following types are particularly suitable:
- a method according to the invention is characterized in that the second composition (B) contains cellulose fibers (B1) which are obtained from beech, bamboo, wheat and / or oats.
- Animal fibers are also suitable for use in composition (B).
- the fibers from the spinneret include silk, for example.
- the group of fibers derived from hair follicles includes wool, alpaca, camel hair, angora, cashmere, mohair, yak hair, goat hair, bovine hair or horsehair.
- fibers based on synthetic fiber materials can also be used in the compositions (B).
- the use of synthetic fiber materials obtained by modification of vegetable or animal starting materials is particularly preferred.
- these preferred fibers include, for example, fibers made of viscose, polylactic acid, alginate, chitin or chitosan.
- Further preferred synthetic fiber materials are polyamides, polyesters and polyhydroxyalkanoates.
- the proportions by weight of the fibers in the total weight of the composition (B) of 0.1 to 10.0% by weight, preferably 0.1 to 8.0% by weight, more preferably 0, have proven to be particularly advantageous for the technical and cosmetic effect , 1 to 6.0% by weight and very particularly preferably 0.1 to 4.0% by weight.
- a method according to the invention is characterized in that the second composition (B) - based on the total weight of the composition (B) - contains
- (B1) 0.1 to 10.0% by weight, preferably 0.1 to 8.0% by weight, more preferably 0.1 to 6.0% by weight and very particularly preferably 0.1 to 4 , 0% by weight cellulose fibers.
- composition (B) contains the celluloses (B1) and (B2) in a cosmetic carrier, preferably in an aqueous cosmetic carrier.
- composition (B) - based on the total weight of the composition (B) - 5.0 to 90.0% by weight, preferably 30.0 to 98.0% by weight. %, preferably 40.0 to 95.0% by weight, more preferably 45.0 to 90.0% by weight, even more preferably 50.0 to 90.0% by weight and very particularly preferably 55.0 contains up to 90.0% by weight of water.
- a method according to the invention is characterized in that the second composition (B) - based on the total weight of the composition (B) - 30.0 to 98.0% by weight, preferably 40.0 to 95.0 % By weight, more preferably 45.0 to 90.0% by weight, even more preferably 50.0 to 90.0% by weight and very particularly preferably 55.0 to 90.0% by weight of water .
- composition (B) can also contain one or more further cosmetic ingredients.
- the cosmetic ingredients that can optionally be used in the composition (B) can be all suitable constituents in order to impart further positive properties to the agent.
- a solvent a surface-active compound from the group of nonionic, cationic, anionic or zwitterionic / amphoteric surfactants, the coloring compounds from the group of Pigments, substantive dyes, film-forming polymers, fatty components from the group of C 8 -C 30 fatty alcohols, hydrocarbon compounds, fatty acid esters, acids and bases belonging to the group of pH regulators, perfumes, preservatives and plant extracts be included.
- the films formed on the keratin material not only had good rub fastness, but also a particularly high color intensity when a coloring compound from the group of pigments and / or direct dyes is used in the process has been.
- the use of pigments has proven to be very particularly preferred.
- These additional coloring compounds can be incorporated into the composition (A) and / or into the composition (B).
- a method according to the invention is characterized in that the first composition (A) contains at least one coloring compound a from the group of pigments and / or substantive dyes.
- a method according to the invention is characterized in that the second composition (B) contains at least one coloring compound a from the group of pigments and / or substantive dyes.
- coloring compounds into a third, separately prepared composition (C), which is then applied to the keratinous material.
- a method is preferred in which the keratin material is used:
- a third composition (C) which contains at least one coloring compound as from the group of pigments and / or substantive dyes.
- the coloring compound (s) can be selected from the group of pigments and substantive dyes, and the substantive dyes can also be photochromic dyes and thermochromic dyes.
- composition (A) and / or the composition (B) and / or the optionally usable composition (C) very particularly preferably contains at least one pigment.
- Pigments in the context of the present invention are understood to mean coloring compounds which at 25 ° C. in water have a solubility of less than 0.5 g / L, preferably less than 0.1 g / L, even more preferably less than 0, 05 g / L.
- the water solubility can for example take place by means of the method described below: 0.5 g of the pigment is weighed out in a beaker. A stir fry is added. Then one liter of distilled water is added. This mixture is heated to 25 ° C. for one hour while stirring on a magnetic stirrer. If undissolved constituents of the pigment are still visible in the mixture after this period, the solubility of the pigment is below 0.5 g / L.
- the mixture is filtered. If a proportion of undissolved pigments remains on the filter paper, the solubility of the pigment is below 0.5 g / L.
- Suitable color pigments can be of inorganic and / or organic origin.
- the agent according to the invention is characterized in that it contains at least one coloring compound from the group of inorganic and / or organic pigments.
- Preferred color pigments are selected from synthetic or natural inorganic pigments.
- Inorganic color pigments of natural origin can be made from chalk, ocher, umber, green earth, burnt Terra di Siena or graphite, for example.
- black pigments such as. B. iron oxide black, colored pigments such. B. ultramarine or iron oxide red and fluorescent or phosphorescent pigments can be used.
- Colored metal oxides, hydroxides and oxide hydrates, mixed-phase pigments, sulfur-containing silicates, silicates, metal sulfides, complex metal cyanides, metal sulfates, metal chromates and / or metal molybdates are particularly suitable.
- Particularly preferred color pigments are black iron oxide (CI 77499), yellow iron oxide (CI 77492), red and brown iron oxide (CI 77491), manganese violet (CI 77742), ultramarines (sodium aluminum sulfosilicates, CI 77007, Pigment Blue 29), chromium oxide hydrate (CI77289 ), Iron blue (Ferric Ferrocyanide, CI77510) and / or carmine (Cochineal).
- Coloring compounds from the group of pigments which are likewise particularly preferred according to the invention are colored pearlescent pigments. These are usually based on mica and / or mica and can be coated with one or more metal oxides. Mica is one of the layered silicates. The most important representatives of these silicates are muscovite, phlogopite, paragonite, biotite, lepidolite and margarite. To produce the pearlescent pigments in conjunction with metal oxides, the mica, predominantly muscovite or phlogopite, is coated with a metal oxide.
- a method according to the invention is characterized in that the composition (A) and / or the composition (B) contains at least one coloring compound from the group of inorganic pigments, which is selected from the group of colored metal oxides, Metal hydroxides, metal oxide hydrates, silicates, metal sulfides, complex metal cyanides, metal sulfates, bronze pigments and / or colored pigments based on mica or mica coated with at least one metal oxide and / or a metal oxychloride.
- the group of inorganic pigments which is selected from the group of colored metal oxides, Metal hydroxides, metal oxide hydrates, silicates, metal sulfides, complex metal cyanides, metal sulfates, bronze pigments and / or colored pigments based on mica or mica coated with at least one metal oxide and / or a metal oxychloride.
- synthetic mica coated with one or more metal oxide (s) can also be used as a pearlescent pigment.
- Particularly preferred pearlescent pigments are based on natural or synthetic mica (mica) and are coated with one or more of the aforementioned metal oxides. The color of the respective pigments can be varied by varying the layer thickness of the metal oxide (s).
- the composition (A) and / or the composition (B) according to the invention is characterized in that it contains at least one coloring compound from the group of pigments, which is selected from the group of colored metal oxides, metal hydroxides, metal oxide hydrates, Silicates, metal sulfides, complex metal cyanides, metal sulfates, bronze pigments and / or from coloring compounds based on mica or mica coated with at least one metal oxide and / or a metal oxychloride.
- a composition (A) and / or composition (B) according to the invention is characterized in that it contains at least one coloring compound which is selected from pigments based on mica or mica which are mixed with one or more metal oxides from the group made of titanium dioxide (CI 77891), black iron oxide (CI 77499), yellow iron oxide (CI 77492), red and / or brown iron oxide (CI 77491, CI 77499), manganese violet (CI 77742), ultramarines (sodium aluminum sulfosilicates, CI 77007, Pigment Blue 29), chromium oxide hydrate (CI 77289), chromium oxide (CI 77288) and / or iron blue (Ferric Ferrocyanide, CI 77510) are coated.
- at least one coloring compound which is selected from pigments based on mica or mica which are mixed with one or more metal oxides from the group made of titanium dioxide (CI 77891), black iron oxide (CI 77499), yellow iron oxide (CI 77492), red and
- color pigments are commercially available, for example, under the trade names Rona®, Colorona®, Xirona®, Dichrona® and Timiron® from Merck, Ariabel® and Unipure® from Sensient, Prestige® from Eckart Cosmetic Colors and Sunshine® available from Sunstar.
- Colorona® Particularly preferred color pigments with the trade name Colorona® are, for example:
- color pigments with the trade name Unipure® are, for example:
- Timiron® particularly preferred color pigments with the trade name Timiron® are, for example:
- Timiron Diamond Cluster MP 149 Merck, Mica, CI 77891 (Titan dioxide)
- Timiron Splendid Gold Merck, CI 77891 (Titan dioxide)
- Mica Silica Timiron Super Sulver, Merck, Mica, CI 77891 (Titan dioxide)
- composition (A) and / or the composition (B) and / or an optionally usable composition (C) can also contain one or more coloring compounds from the group of organic pigments
- the organic pigments according to the invention are correspondingly insoluble, organic dyes or color lakes, for example from the group of nitroso, nitro, azo, xanthene, anthraquinone, isoindolinone, isoindoline, quinacridone, perinone, perylene -, Diketopyrrolopyorrole, indigo, thioindido, dioxazine, and / or triarylmethane compounds can be selected.
- Particularly suitable organic pigments are, for example, carmine, quinacridone, phthalocyanine, sorghum, blue pigments with the color index numbers CI 42090, CI 69800, CI 69825, CI 73000, CI 74100, CI 74160, yellow pigments with the color index numbers CI 11680 , CI 11710, CI 15985, CI 19140, CI 20040, CI 21100, CI 21108, CI 47000, CI 47005, green pigments with the color index numbers CI 61565, CI 61570, CI 74260, orange pigments with the color index numbers CI 11725 , CI 15510, CI 45370, CI 71105, red pigments with the color index numbers CI 12085, CI 12120, CI 12370, CI 12420, CI 12490, CI 14700, CI 15525, CI 15580, CI 15620, CI 15630, CI 15800
- a method according to the invention is characterized in that the composition (A) and / or the composition (B) contains at least one coloring compound from the group of organic pigments, which is selected from the group of carmine, quinacridone, phthalocyanine , Sorgho, blue pigments with the color index numbers CI 42090, CI 69800, CI 69825, CI 73000, CI 74100, CI 74160, yellow pigments with the color index numbers CI 11680, CI 11710, CI 15985, CI 19140, CI 20040, CI 21100, CI 21108, CI 47000, CI 47005, green pigments with the color index numbers CI 61565, CI 61570, CI 74260, orange pigments with the color index numbers CI 11725, CI 15510, CI 45370, CI 71105, red pigments with the color index numbers CI 12085, CI 12120, CI 12370,
- the organic pigment can also be a colored lacquer.
- the term colored lacquer is understood to mean particles which comprise a layer of absorbed dyes, the unit of particles and dye being insoluble under the above-mentioned conditions.
- the particles can be, for example, inorganic substrates, which can be aluminum, silica, calcium borosilicate, calcium aluminum borosilicate or also aluminum.
- the alizarin color varnish can be used as the color varnish.
- the use of the aforementioned pigments in the agents according to the invention is particularly preferred. It is also preferred if the pigments used have a certain particle size. This particle size leads, on the one hand, to a uniform distribution of the pigments in the polymer film formed and, on the other hand, prevents the hair or skin feeling rough after the cosmetic agent has been applied. It is therefore advantageous according to the invention if the at least one pigment has an average particle size D 50 of 1.0 to 50 ⁇ m, preferably 5.0 to 45 ⁇ m, preferably of 10 to 40 ⁇ m, in particular from 14 to 30 ⁇ m.
- the mean particle size Dso can be determined using dynamic light scattering (DLS), for example.
- Pigments with a specific shape can also have been used to color the keratin material.
- a pigment based on a lamellar and / or a lenticular substrate platelet can be used.
- Coloring on the basis of a substrate platelet, which comprises a vacuum metallized pigment, is also possible.
- composition (A) and / or the composition (B) and / or an optionally usable composition (C) can also contain one or more coloring compounds from the group of pigments based on a lamellar substrate platelet, the pigments based a lenticular substrate wafer and the vacuum metallized pigments.
- the substrate platelets of this type have an average thickness of at most 50 nm, preferably less than 30 nm, particularly preferably at most 25 nm, for example at most 20 nm.
- the average thickness of the substrate platelets is at least 1 nm, preferably at least 2.5 nm, particularly preferably at least 5 nm, for example at least 10 nm.
- Preferred ranges for the thickness of the substrate platelets are 2.5 to 50 nm, 5 to 50 nm, 10 to 50 nm; 2.5 to 30 nm, 5 to 30 nm, 10 to 30 nm; 2.5 to 25 nm, 5 to 25 nm, 10 to 25 nm, 2.5 to 20 nm, 5 to 20 nm and 10 to 20 nm.
- Each substrate plate preferably has a thickness that is as uniform as possible.
- the pigment Due to the small thickness of the substrate platelets, the pigment has a particularly high hiding power.
- the substrate platelets have a monolithic structure.
- monolithic means consisting of a single closed unit without breaks, layers or inclusions, although changes in structure can occur within the substrate platelets.
- the substrate platelets are preferably constructed homogeneously, i.e. no concentration gradient occurs within the platelets. In particular, the substrate platelets are not constructed in layers and have no particles or particles distributed therein.
- the size of the substrate platelet can be matched to the particular application, in particular the desired effect on the keratinic material.
- the substrate platelets have a mean largest diameter of about 2 to 200 ⁇ m, in particular about 5 to 100 ⁇ m.
- the aspect ratio, expressed by the ratio of the mean size to the average thickness is at least 80, preferably at least 200, more preferably at least 500, particularly preferably more than 750.
- the mean size of the uncoated substrate platelets is understood to be the d50 value of the uncoated substrate platelets. Unless otherwise stated, the d50 value was determined using a Sympatec Helos device with Quixel wet dispersion. To prepare the sample, the sample to be examined was predispersed in isopropanol for a period of 3 minutes.
- the substrate platelets can be constructed from any material which can be brought into platelet form.
- the substrate platelets can be of natural origin, but they can also be manufactured synthetically.
- Materials from which the substrate platelets can be constructed are, for example, metals and metal alloys, metal oxides, preferably aluminum oxide, inorganic compounds and minerals such as mica and (semi) precious stones, as well as plastics.
- the substrate platelets are preferably constructed from metal (alloys).
- metal suitable for metallic luster pigments can be considered as the metal.
- metals include iron and steel, as well as all air and water-resistant (semi) metals such as platinum, zinc, chromium, molybdenum and silicon, and their alloys such as aluminum bronze and brass.
- Preferred metals are aluminum, copper, silver and gold.
- Preferred substrate platelets are aluminum platelets and brass platelets, with substrate platelets made of aluminum being particularly preferred.
- Lamellar substrate platelets are characterized by an irregularly structured edge and are also referred to as "cornflakes" because of their appearance.
- pigments based on lamellar substrate platelets Due to their irregular structure, pigments based on lamellar substrate platelets generate a high proportion of scattered light. In addition, the pigments based on lamellar substrate platelets do not completely cover the existing color of a keratinic material and effects analogous to natural graying can be achieved, for example.
- VMP vacuum metallized pigments
- Substrate platelets which comprise a pigment metallized in a vacuum are also referred to in the context of this application as VMP substrate platelets.
- VMP substrate platelets made of aluminum can be obtained, for example, by releasing aluminum from metallized foils.
- the substrate platelets made of metal or metal alloy can be passivated, for example by anodizing (oxide layer) or chromating.
- Uncoated lamellar, lenticular and / or VPM substrate platelets in particular those made of metal or metal alloy, reflect the incident light to a high degree and produce a light-dark flop, but no color impression.
- a color impression can be generated, for example, on the basis of optical interference effects.
- Such pigments can be based on at least once coated substrate platelets. These show interference effects due to the superposition of differently refracted and reflected light rays.
- preferred pigments are pigments based on a coated lamellar substrate platelet.
- the substrate platelet preferably has at least one coating B made of a high-index metal oxide with a coating thickness of at least 50 nm.
- a further coating A is preferably located between the coating B and the surface of the substrate platelet.
- another coating C which is different from the layer B below, is located on the layer B.
- Suitable materials for the coatings A, B and C are all substances that can be applied permanently and in film form to the substrate platelets and, in the case of the layers A and B, have the required optical properties.
- a coating of part of the surface of the substrate platelets is sufficient to obtain a pigment with a glossy effect.
- only the upper and / or lower side of the substrate platelets can be coated, with the side surface (s) being cut out.
- the entire surface of the optionally passivated substrate platelets, including the side surfaces, is preferably covered by coating B.
- the substrate platelets are therefore completely encased by coating B. This improves the optical properties of the pigment and increases the mechanical and chemical resistance of the pigments.
- the foregoing also applies to layer A and preferably also to layer C, if any.
- the coated substrate platelets preferably each have only one coating A, B and, if present, C.
- the coating B is made up of at least one high-index metal oxide. Highly refractive materials have a refractive index of at least 1.9, preferably at least 2.0 and particularly preferably at least 2.4.
- the coating B preferably comprises at least 95% by weight, particularly preferably at least 99% by weight, of high-index metal oxide (s).
- the coating B has a thickness of at least 50 nm.
- the thickness of coating B is preferably not more than 400 nm, particularly preferably at most 300 nm.
- High refractive index metal oxides suitable for coating B are preferably selectively light-absorbing (ie colored) metal oxides such as iron (III) oxide (a- and y-Fe 2 O 3, red), cobalt (II) oxide (blue), chromium (III) oxide (g rü n), titanium (111) oxide (blue, is usually a mixture with titanium oxynitrides and titanium nitrides) and vanadium (V) oxide (orange) and their mixtures. Colorless, high-index oxides such as titanium dioxide and / or zirconium oxide are also suitable.
- ie colored metal oxides such as iron (III) oxide (a- and y-Fe 2 O 3, red), cobalt (II) oxide (blue), chromium (III) oxide (g rü n), titanium (111) oxide (blue, is usually a mixture with titanium oxynitrides and titanium nitrides) and vanadium (V) oxide (orange) and their mixtures.
- Coating B can contain a selectively absorbing dye, preferably 0.001 to 5% by weight, particularly preferably 0.01 to 1% by weight, based in each case on the total amount of coating B.
- the coating A preferably has at least one low refractive index metal oxide and / or metal oxide hydrate.
- Coating A preferably comprises at least 95% by weight, particularly preferably at least 99% by weight, of low-refractive-index metal oxide (hydrate).
- Low refractive index materials have a refractive index of at most 1.8, preferably at most 1.6.
- the low refractive index metal oxides which are suitable for coating A include, for example, silicon (di) oxide, silicon oxide hydrate, aluminum oxide, aluminum oxide hydrate, boron oxide, germanium oxide, manganese oxide, magnesium oxide and mixtures thereof, silicon dioxide being preferred.
- the coating A preferably has a thickness of 1 to 100 nm, particularly preferably 5 to 50 nm, particularly preferably 5 to 20 nm.
- the distance between the surface of the substrate platelets and the inner surface of coating B is preferably at most 100 nm, particularly preferably at most 50 nm, particularly preferably at most 20 nm the distance between the surface of the substrate platelets and coating B is in the range specified above, it can be ensured that the pigments have a high hiding power.
- the pigment based on a lamellar substrate flake has only one layer A, it is preferred for the pigment to have a lamellar substrate flake made of aluminum and a layer A made of silicon dioxide. If the pigment based on a lamellar substrate flake has a layer A and a layer B, it is preferred for the pigment to have a lamellar substrate flake made of aluminum, a layer A made of silicon dioxide and a layer B made of iron oxide.
- the pigments have a further coating C made of a metal oxide (hydrate), which is different from the coating B below.
- Suitable metal oxides are, for example, silicon (di) oxide, silicon oxide hydrate, aluminum oxide, aluminum oxide hydrate, zinc oxide, tin oxide, titanium dioxide, zirconium oxide, iron (III) oxide and chromium (III) oxide. Silica is preferred.
- the coating C preferably has a thickness of 10 to 500 nm, particularly preferably 50 to 300 nm.
- Layers A and C serve in particular as protection against corrosion and also for chemical and physical stabilization.
- Layers A and C particularly preferably contain silicon dioxide or aluminum oxide, which are applied by the sol-gel process.
- This method comprises dispersing the uncoated lamellar substrate flakes or the lamellar substrate flakes already coated with layer A and / or layer B in a solution of a metal alkoxide such as tetraethyl orthosilicate or aluminum triisopropoxide (usually in a solution of organic solvent or a mixture of organic solvent and water with at least 50% by weight organic solvent such as a C1 to C4 alcohol), and adding a weak base or acid to hydrolyze the metal alkoxide, whereby a film of the metal oxide is formed on the surface of the (coated) substrate platelets.
- a metal alkoxide such as tetraethyl orthosilicate or aluminum triisopropoxide
- Layer B can be produced, for example, by hydrolytic decomposition of one or more organic metal compounds and / or by precipitation of one or more dissolved metal salts and, if necessary, subsequent aftertreatment (for example conversion of a hydroxide-containing layer that has formed into the oxide layers by annealing).
- each of the coatings A, B and / or C can be composed of a mixture of two or more metal oxides (hydrate), each of the coatings is preferably composed of a metal oxide (hydrate).
- the pigments based on coated lamellar or lenticular substrate platelets or the pigments based on coated VMP substrate platelets preferably have a thickness of 70 to 500 nm, particularly preferably 100 to 400 nm, particularly preferably 150 to 320 nm, for example 180 to 290 nm, on. Due to the small thickness of the substrate platelets, the pigment has a particularly high hiding power.
- the small thickness of the coated substrate platelets is achieved in particular in that the thickness of the uncoated substrate platelets is small, but also in that the thicknesses of the coatings A and, if present, C are set to the smallest possible value.
- the thickness of coating B determines the color impression of the pigment.
- the adhesion and abrasion resistance of pigments based on coated substrate platelets in the keratinic material can be significantly increased by additionally modifying the outermost layer, depending on the structure, layer A, B or C, with organic compounds such as silanes, phosphoric acid esters, titanates, borates or carboxylic acids becomes.
- the organic compounds are bound to the surface of the outermost layer A, B or C, preferably containing metal oxide.
- the outermost layer denotes the layer which is spatially furthest away from the lamellar substrate plate.
- the organic compounds are preferably functional silane compounds which can bond to the layer A, B or C containing metal oxide. These can be either mono- or bifunctional compounds. Examples of bifunctional organic compounds are methacryloxypropenyltrimethoxysilane, 3- methacryloxypropyltrimethoxysilane, 3- acryloxypropyltrimethoxysilane, 2-
- a modification with a monofunctional silane in particular an alkylsilane or arylsilane, can take place outermost metal oxide-containing layer) or, if it is not completely covered, can bond to the metal surface.
- the hydrocarbon residue of the silane faces away from the pigment.
- examples of such silanes are hexadecyltrimethoxysilane, propyltrimethoxysilane, etc.
- Pigments based on silicon dioxide-coated aluminum substrate platelets are surface-modified with a monofunctional silane.
- Octyltrimethoxysilane, octyltriethoxysilane, hecadecyltrimethoxysilane and hecadecyltriethoxysilane are particularly preferred.
- the changed surface properties / hydrophobization can improve adhesion, abrasion resistance and alignment in the application.
- Suitable pigments based on a lamellar substrate platelet include, for example, the pigments of the VISIONAIRE series from Eckart.
- Pigments based on a lenticular substrate platelet are available, for example, under the name Alegrace® Spotify from Schlenk Metallic Pigments GmbH.
- Pigments based on a substrate platelet which comprises a vacuum metallized pigment are available, for example, under the name Alegrace® Marvelous or Alegrace® Aurous from Schlenk Metallic Pigments GmbH.
- a method according to the invention is characterized in that the composition (A) - based on the total weight of the composition (A) - has one or more pigments in a total amount of 0.001 to 20% by weight, in particular 0.05 up to 5% by weight.
- a method according to the invention is characterized in that the composition (B) - based on the total weight of the composition (B) - has one or more pigments in a total of 0.001 to 20% by weight, in particular 0.05 up to 5% by weight.
- compositions according to the invention can also contain one or more substantive dyes as coloring compounds.
- Substantive dyes are dyes that are absorbed directly onto the hair and do not require an oxidative process to develop the color.
- Substantive dyes are usually nitrophenylenediamines, nitroaminophenols, azo dyes, anthraquinones, triarylmethane dyes or indophenols.
- the substantive dyes for the purposes of the present invention have a solubility in water (760 mmHg) at 25 ° C. of more than 0.5 g / L and are therefore not to be regarded as pigments.
- the substantive dyes preferably have a solubility in water (760 mmHg) at 25 ° C. of more than 1.0 g / l.
- Particularly preferred have the substantive dyes within the meaning of the present invention have a solubility in water (760 mmHg) at 25 ° C of more than 1.5 g / L.
- Substantive dyes can be divided into anionic, cationic and nonionic substantive dyes.
- an agent according to the invention is characterized in that it contains at least one anionic, cationic and / or nonionic substantive dye as the coloring compound.
- a method according to the invention is characterized in that the composition (B) and / or the composition (C) contains at least one coloring compound from the group of anionic, nonionic and / or cationic substantive dyes.
- Suitable cationic substantive dyes are, for example, Basic Blue 7, Basic Blue 26, Basic Violet 2 and Basic Violet 14, Basic Yellow 57, Basic Red 76, Basic Blue 16, Basic Blue 347 (Cationic Blue 347 / Dystar), HC Blue No. 16, Basic Blue 99, Basic Brown 16, Basic Brown 17, Basic Yellow 57, Basic Yellow 87, Basic Orange 31, Basic Red 51 Basic Red 76
- Nonionic nitro and quinone dyes and neutral azo dyes can be used as nonionic substantive dyes.
- Suitable nonionic direct dyes are those under the international names or trade names HC Yellow 2, HC Yellow 4, HC Yellow 5, HC Yellow 6, HC Yellow 12, HC Orange 1, Disperse Orange 3, HC Red 1, HC Red 3 , HC Red 10, HC Red 11, HC Red 13, HC Red BN, HC Blue 2, HC Blue 11, HC Blue 12, Disperse Blue 3, HC Violet 1, Disperse Violet 1, Disperse Violet 4, Disperse Black 9 known compounds , as well as 1, 4-diamino-2-nitrobenzene, 2-amino-4-nitrophenol, 1, 4-bis- (2-hydroxyethyl) -amino-2-nitrobenzene, 3-nitro-4- (2-hydroxyethyl) - aminophenol, 2- (2-
- Anionic substantive dyes are also referred to as acid dyes.
- Acid dyes are taken to mean substantive dyes which have at least one carboxylic acid group (—COOH) and / or one sulfonic acid group (—SO 3 H).
- carboxylic acid group —COOH
- SO 3 H sulfonic acid group
- the protonated forms (-COOH, -SO 3 H) of the carboxylic acid or sulfonic acid groups are in equilibrium with their deprotonated forms (-COO-, -SO 3 - before). With decreasing pH The proportion of protonated forms increases in value.
- the carboxylic acid groups or sulfonic acid groups are in deprotonated form and are neutralized with corresponding stoichiometric equivalents of cations to maintain electrical neutrality.
- Acid dyes according to the invention can also be used in the form of their sodium salts and / or their potassium salts.
- the acid dyes for the purposes of the present invention have a solubility in water (760 mmHg) at 25 ° C. of more than 0.5 g / L and are therefore not to be regarded as pigments.
- the acid dyes preferably have a solubility in water (760 mmHg) at 25 ° C. of more than 1.0 g / l.
- alkaline earth salts such as calcium salts and magnesium salts
- aluminum salts of acid dyes often have poorer solubility than the corresponding alkali salts. If the solubility of these salts is below 0.5 g / L (25 ° C, 760 mmHg), they do not fall under the definition of a substantive dye.
- acid dyes are their ability to form anionic charges, the carboxylic acid or sulfonic acid groups responsible for this usually being linked to different chromophoric systems.
- Suitable chromophoric systems are found, for example, in the structures of nitrophenylenediamines, nitroaminophenols, azo dyes, anthraquinone dyes, triarylmethane dyes, xanthene dyes, rhodamine dyes, oxazine dyes and / or indophenol dyes.
- Acid Yellow 1 (D&C Yellow 7, Citronin A, Ext. D&C Yellow No. 7, Japan Yellow 403, CI 10316, COLIPA n ° B001), Acid Yellow 3 (COLIPA n °: C 54, D&C Yellow N ° 10, Quinoline Yellow, E104, Food Yellow 13), Acid Yellow 9 (CI 13015), Acid Yellow 17 (C1 18965), Acid Yellow 23 (COLIPA n ° C 29, Covacap Jaune W 1100 (LCW), Sicovit Tartrazine 85 E 102 (BASF), Tartrazine, Food Yellow 4, Japan Yellow 4, FD&C Yellow No.
- Acid Yellow 1 (D&C Yellow 7, Citronin A, Ext. D&C Yellow No. 7, Japan Yellow 403, CI 10316, COLIPA n ° B001), Acid Yellow 3 (COLIPA n °: C 54, D&C Yellow N ° 10, Quinoline Yellow, E104, Food Yellow 13), Acid Yellow 9 (CI 13015), Acid Yellow 17 (C1 18965), Acid Yellow 23 (COL
- Acid Yellow 36 (CI 13065), Acid Yellow 121 (CI 18690), Acid Orange 6 (CI 14270), Acid Orange 7 (2- naphthol orange, Orange II, CI 15510, D&C Orange 4, COLIPA n ° C015), Acid Orange 10 (Cl 16230; Orange G sodium salt), Acid Orange 11 (CI 45370), Acid Orange 15 (CI 50120), Acid Orange 20 (CI 14600), Acid Orange 24 (BROWN 1; CI 20170; KATSU201; nosodiumsalt; Brown No.201; RESORCIN BROWN; ACID ORANGE 24; Japan Brown 201; D & C Brown No.1), Acid Red 14 (C.1.14720), acid red 18 (E124, red 18; C1 16255), Acid Red 27 (E 123, C1 16185, C-Red 46, Echtrot D, FD&C Red Nr.2, Food Red 9, Naphtholrot S), Acid Red 33 (Red 33, Fuchsia Red, D&C Red 33, C1 17200), Acid Red
- Acid Green 50 (Brillantklare indispensable BS, Cl 44090, Acid Brilliant Green BS, E 142), Acid Black 1 (Black n ° 401 , Naphthalene Black 10B, Amido Black 10B, CI 20 470, COLIPA n ° B15), Acid Black 52 (CI 15711), Food Yellow 8 (CI 14270), Food Blue 5, D&C Yellow 8, D&C Green 5, D&C Orange 10, D&C Orange 11, D&C Red 21, D&C Red 27, D&C Red 33, D&C Violet 2 and / or D&C Brown 1.
- the water solubility of the anionic substantive dyes can be determined, for example, in the following way. 0.1 g of the anionic substantive dye are placed in a beaker. A stir bar is added. Then 100 ml of water are added. This mixture is heated to 25 ° C. on a magnetic stirrer while stirring. It is stirred for 60 minutes. The aqueous mixture is then assessed visually. If there are still undissolved residues, the amount of water is increased - for example in steps of 10 ml. Water is added until the amount of dye used has completely dissolved. If the dye-water mixture cannot be assessed visually due to the high intensity of the dye, the mixture is filtered.
- the solubility test is repeated with a larger amount of water. If 0.1 g of the anionic substantive dye dissolves in 100 ml of water at 25 ° C., the solubility of the dye is 1.0 g / l.
- Acid Yellow 1 is called 8-hydroxy-5,7-dinitro-2-naphthalenesulfonic acid disodium salt and has a solubility in water of at least 40 g / L (25 ° C).
- Acid Yellow 3 is a mixture of the sodium salts of mono- and sisulfonic acids of 2- (2-quinolyl) -1 H-indene-1,3 (2H) -dione and has a water solubility of 20 g / L (25 ° C).
- Acid Yellow 9 is the disodium salt of 8-hydroxy-5,7-dinitro-2-naphthalenesulfonic acid, its water solubility is above 40 g / L (25 ° C).
- Acid Yellow 23 is the trisodium salt of 4,5-dihydro-5-oxo-1 - (4-sulfophenyl) -4 - ((4-sulfophenyl) azo) -1H-pyrazole-3-carboxylic acid and is good at 25 ° C soluble in water.
- Acid Orange 7 is the sodium salt of 4 - [(2-Hydroxy-1-naphthyl) azo] benzene sulfonate. Its water solubility is more than 7 g / L (25 ° C).
- Acid Red 18 is the trinity salt of 7-hydroxy-8 - [(E) - (4-sulfonato-1-naphthyl) -diazenyl)] - 1,3-naphthalenedisulfonate and has a very high solubility in water of more than 20 wt. %.
- Acid Red 33 is the diantrium salt of 5-amino-4-hydroxy-3- (phenylazo) -naphthalene-2,7-disulphonate, its water solubility is 2.5 g / L (25 ° C).
- Acid Red 92 is the disodium salt of 3,4,5,6-tetrachloro-2- (1,4,5,8-tetrabromo-6-hydroxy-3-oxoxanthen-9-yl) benzoic acid, its water solubility is specified with more than 10 g / L (25 ° C).
- Acid Blue 9 is the disodium salt of 2 - ( ⁇ 4- [N-ethyl (3-sulfonatobenzyl] amino] phenyl ⁇ ⁇ 4 - [(N-ethyl (3-sulfonatobenzyl) imino] -2,5-cyclohexadiene-1- ylidene ⁇ methyl) benzene sulfonate and has a water solubility of more than 20% by weight (25 ° C).
- thermochromic dyes can also be used.
- Thermochromism includes the property of a material to change its color reversibly or irreversibly depending on the temperature. This can be done both by changing the intensity and / or the wavelength maximum.
- Photochromism includes the property of a material to change its color reversibly or irreversibly depending on the irradiation with light, especially UV light. This can be done both by changing the intensity and / or the wavelength maximum.
- composition (A), the composition (B) and / or the optionally applicable composition (C) can each also contain at least one film-forming polymer.
- a method according to the invention is characterized in that the composition (A), the composition (B) and / or the composition (C) contains at least one film-forming polymer.
- Polymers are understood to mean macromolecules with a molecular weight of at least 1000 g / mol, preferably of at least 2500 g / mol, particularly preferably of at least 5000 g / mol, which consist of identical, repeating organic units.
- the polymers of the present invention can be synthetically produced polymers which are produced by polymerizing one type of monomer or by polymerizing different types of monomers which are structurally different from one another. If the polymer is produced by polymerizing one type of monomer, it is called homo-polymer. If structurally different types of monomers are used in the polymerization, the resulting polymer is referred to as a copolymer.
- the maximum molecular weight of the polymer depends on the degree of polymerisation (number of polymerised monomers) and the batch size and is also determined by the polymerisation method. For the purposes of the present invention, it is preferred if the maximum molecular weight of the film-forming, hydrophobic polymer (c) is not more than 10 7 g / mol, preferably not more than 10 6 g / mol and particularly preferably not more than 10 5 g / mol is.
- a film-forming polymer is understood to mean a polymer which is able to form a film on a substrate, for example on a keratinic material or a keratinic fiber.
- the formation of a film can be demonstrated, for example, by viewing the keratin material treated with the polymer under a microscope.
- the film-forming polymers can be hydrophilic or hydrophobic.
- composition (B) it may be preferred to use at least one hydrophobic, film-forming polymer in composition (B).
- a hydrophobic polymer is understood to mean a polymer that has a solubility in water at 25 ° C. (760 mmHg) of less than 1% by weight.
- the water solubility of the film-forming, hydrophobic polymer can be determined, for example, in the following way. 1.0 g of the polymer are placed in a beaker. Make up to 100 g with water. A stir bar is added and the mixture is warmed to 25 ° C on a magnetic stirrer while stirring. It is stirred for 60 minutes. The aqueous mixture is then assessed visually. If the polymer-water mixture cannot be assessed visually due to the high turbidity of the mixture, the mixture is filtered. If a proportion of undissolved polymer remains on the filter paper, the solubility of the polymer is less than 1% by weight.
- the polymers of the acrylic acid type, the polyurethanes, the polyesters, the polyamides, the polyureas, the nitro-cellulose polymers, the silicone polymers, the polymers of the acrylamide type and the polyisoprenes can be mentioned here in particular.
- Particularly suitable film-forming, hydrophobic polymers are, for example, polymers from the group of copolymers of acrylic acid, copolymers of methacrylic acid, homopolymers or copolymers of acrylic acid esters, homopolymers or copolymers of methacrylic acid esters, homopolymers or copolymers of acrylic acid amides, homopolymers or copolymers of methacrylic acid amides, copolymers of vinyl pyrrolidone, copolymers of vinyl alcohol, copolymers of vinyl acetate, homopolymers or copolymers of Ethylene, homopolymers or copolymers of propylene, homopolymers or copolymers of styrene, polyurethanes, polyesters and / or polyamides.
- the film-forming hydrophobic polymers which are selected from the group of synthetic polymers, polymers obtainable by free radical polymerization or natural polymers have proven to be particularly suitable for achieving the object of the invention.
- suitable film-forming hydrophobic polymers can be selected from the homopolymers or copolymers of olefins, such as cycloolefins, butadiene, isoprene or styrene, vinyl ethers, vinyl amides, the esters or amides of (meth) acrylic acid with at least one C 1 -C 20 - Alkyl group, an aryl group or a C 2 -C 10 - hydroxyalkyl group.
- olefins such as cycloolefins, butadiene, isoprene or styrene
- vinyl ethers vinyl amides
- the esters or amides of (meth) acrylic acid with at least one C 1 -C 20 - Alkyl group, an aryl group or a C 2 -C 10 - hydroxyalkyl group such as cycloolefins, butadiene, isoprene or styrene,
- Further film-forming hydrophobic polymers can be selected from the homo- or copolymers of isooctyl (meth) acrylate; isononyl (meth) acrylate; 2-ethylhexyl (meth) acrylate; Lauryl (meth) acrylate); isopentyl (meth) acrylate; n-butyl (meth) acrylate); isobutyl (meth) acrylate; Ethyl (meth) acrylate; Methyl (meth) acrylate; tert-butyl (meth) acrylate; Stearyl (meth) acrylate; Hydroxyethyl (meth) acrylate; 2-hydroxypropyl (methacrylate; 3-hydroxypropyl (meth) acrylate and / or mixtures thereof).
- Further film-forming hydrophobic polymers can be selected from the homo- or copolymers of (meth) acrylamide; N-alkyl- (meth) acrylamides, in particular those with C2-C18 alkyl groups, such as, for example, N-ethyl-acrylamide, N-tert-butyl-acrylamide, N-octyl-acrylamide; N-di (C1-C4) alkyl (meth) acrylamide.
- anionic copolymers are, for example, copolymers of acrylic acid, methacrylic acid or their C 1 -C 6 -alkyl esters, as sold under the INCI declaration Acrylates Copolymers.
- a suitable commercial product is, for example Aculyn ® 33 from Rohm & Haas.
- copolymers of acrylic acid, methacrylic acid or their C 1 -C 6 -alkyl esters and the esters of an ethylenically unsaturated acid and an alkoxylated fatty alcohol are also preferred.
- Suitable ethylenically unsaturated acids are in particular acrylic acid, methacrylic acid and itaconic acid; suitable alkoxylated fatty alcohols are, in particular, steareth-20 or ceteth-20.
- Particularly preferred polymers on the market are, for example, Aculyn® 22 (Acrylates / Steareth-20 Methacrylate Copolymer), Aculyn® 28 (Acrylates / Beheneth-25 Methacrylate Copolymer), Structure 2001® (Acrylates / Steareth-20 Itaconate Copolymer), Structure 3001® (Acrylates / Ceteth-20 Itaconate Copolymer), Structure Plus® (Acrylates / Aminoacrylates C10-30 Alkyl PEG-20 Itaconate Copolymer), Carbopol® 1342, 1382, Ultrez 20, Ultrez 21 (Acrylates / C 10-30 Alkyl Acrylate Crosspolymer), Synthalen W 2000® (Acrylates / Palmeth-25 Acrylate Copolymer) or the Soltex sold by Rohme and Haas OPT (Acrylates / C 12-22 alkyl methacrylate copolymer).
- Suitable polymers based on vinyl monomers are the homo- and copolymers of N-vinylpyrrolidone, vinylcaprolactam, vinyl (C1-C6) alkyl pyrrole, vinyl oxazole, vinyl thiazole, of vinyl pyrimidine, of vinyl imidazole.
- copolymers octylacrylamide / acrylates / butylaminoethyl methacrylate copolymer such as is sold commercially by NATIONAL STARCH under the trade names AMPHOMER® or LOVOCRYL® 47, or the copolymers of acrylates / octylacrylamides under the trade names, are also very particularly suitable DERMACRYL® LT and DERMACRYL® 79 are distributed by NATIONAL STARCH.
- Suitable polymers based on olefins are the homo- and copolymers of ethylene, propylene, butene, isoprene and butadiene.
- block copolymers which comprise at least one block of styrene or the derivatives of styrene can be used as film-forming hydrophobic polymers.
- These block copolymers can be copolymers which, in addition to a styrene block, contain one or more other blocks, such as, for example, styrene / ethylene, styrene / ethylene / butylene, styrene / butylene, styrene / isoprene, styrene / butadiene.
- Corresponding polymers are sold commercially by BASF under the trade name “Luvitol HSB”.
- a hydrophilic polymer is understood to mean a polymer that has a solubility in water at 25 ° C. (760 mmHg) of more than 1% by weight, preferably more than 2% by weight.
- the water solubility of the film-forming hydrophilic polymer can be determined, for example, in the following way. 1.0 g of the polymer are placed in a beaker. Make up to 100 g with water. A stir bar is added and the mixture is warmed to 25 ° C on a magnetic stirrer while stirring. It is stirred for 60 minutes. The aqueous mixture is then assessed visually. A completely dissolved polymer appears to be homogeneous under a markoscopy. If the polymer-water mixture cannot be assessed visually due to the high turbidity of the mixture, the mixture is filtered. If no undissolved polymer remains on the filter paper, then the solubility of the polymer is more than 1% by weight.
- Nonionic, anionic and cationic polymers can be used as film-forming, hydrophilic polymers.
- Suitable film-forming, hydrophilic polymers can, for example, from the group of polyvinyl pyrrolidone (co) polymers, polyvinyl alcohol (co) polymers, vinyl acetate (co) polymers, carboxyvinyl (co) polymers, acrylic acid (co) Polymers, methacrylic acid (co) polymers, natural gums, polysaccharides and / or acrylamide (co) polymers can be selected.
- PVP polyvinylpyrrolidone
- / or a vinylpyrrolidone-containing copolymer as the film-forming hydrophilic polymer.
- composition (A), (B) and / or (C) according to the invention contains polyvinylpyrrolidone (PVP) as the film-forming, hydrophilic polymer.
- PVP polyvinylpyrrolidone
- polyvinylpyrrolidones are available for example under the name Luviskol K from BASF SE, in particular Luviskol ® K 90 or Luviskol ® K 85 from BASF SE.
- the polymer PVP K30 which is sold by the Ashland company (ISP, POI Chemical), can also be used as another polyvinylpyrrolidone (PVP) that is explicitly very particularly suitable.
- PVP K 30 is a polyvinylpyrrolidone which is very soluble in cold water and has the CAS number 9003-39-8.
- the molecular weight of PVP K 30 is approx. 40,000 g / mol.
- polyvinylpyrrolidones are the substances known under the trade names LUVITEC K 17, LUVITEC K 30, LUVITEC K 60, LUVITEC K 80, LUVITEC K 85, LUVITEC K 90 and LUVITEC K 115 and available from BASF.
- film-forming hydrophilic polymers from the group of copolymers of polyvinylpyrrolidone has also led to particularly good and washable color results.
- Vinylester vinylpyrrolidone copolymers can be mentioned, as they are sold for example under the trademark Luviskol ® (BASF) in this context.
- Luviskol ® VA 64 and Luviskol ® VA 73, each vinyl pyrrolidone / vinyl acetate copolymers, are particularly preferred nonionic polymers.
- styrene / VP copolymer and / or a vinylpyrrolidone-vinyl acetate copolymer and / or a VP / DMAPA acrylates copolymer and / or a VP / vinyl caprolactam / DMAPA acrylates copolymer are very particularly preferably used in the cosmetic compositions .
- Vinylpyrrolidone-vinyl acetate copolymers are sold under the name Luviskol® VA by BASF SE.
- a VP / vinyl caprolactam / DMAPA acrylates copolymer is sold by Ashland Inc. under the trade name Aquaflex® SF-40, for example.
- a VP / DMAPA Acrylates copolymer is sold, for example, under the name Styleze CC-10 by Ashland and is a highly preferred vinylpyrrolidone-containing copolymer.
- copolymers obtained by reacting N-vinylpyrrolidone with at least one further monomer from the group consisting of V-vinylformamide, vinyl acetate, ethylene, propylene, acrylamide, vinylcaprolactam, vinylcaprolactone and / or vinyl alcohol can also be mentioned as further suitable copolymers of polyvinylpyrrolidone .
- Another suitable copolymer of vinylpyrrolidone is the polymer known under the INCI name maltodextrin / VP copolymer.
- composition (B) contain at least one nonionic, film-forming, hydrophilic polymer.
- a nonionic polymer is understood to mean a polymer which in a protic solvent - such as, for example, water - does not carry structural units with permanently cationic or anionic groups under standard conditions which have to be compensated by counterions while maintaining electrical neutrality.
- Cationic groups include, for example, quaternized ammonium groups but not protonated amines.
- Anionic groups include, for example, carboxyl and sulfonic acid groups.
- the agents are very particularly preferred which contain, as the nonionic, film-forming, hydrophilic polymer, at least one polymer selected from the group consisting of
- copolymers of N-vinylpyrrolidone and vinyl acetate are used, it is again preferred if the molar ratio of the structural units contained in the monomer N-vinylpyrrolidone to the structural units in the polymer contained in the monomer vinyl acetate is in the range from 20:80 to 80:20, in particular from 30 to 70 to 60 to 40.
- Suitable copolymers of vinyl pyrrolidone and vinyl acetate are available, for example, under the trademarks Luviskol® VA 37, Luviskol® VA 55, Luviskol® VA 64 and Luviskol® VA 73 from BASF SE.
- Another particularly preferred polymer is selected from the polymers with the INCI name VP / Methacrylamide / Vinyl Imidazole Copolymer, which are available, for example, from BASF SE under the trade name Luviset Clear.
- Another very particularly preferred nonionic, film-forming, hydrophilic polymer is a copolymer of N-vinylpyrrolidone and N, N-dimethylaminiopropyl methacrylamide, which, for example, with the INCI name VP / DMAPA Acrylates Copolymer z. B. is sold under the trade name Styleze®CC 10 by the company ISP.
- a cationic polymer according to the invention is the copolymer of N-vinylpyrrolidone, N-vinylcaprolactam, N- (3-dimethylaminopropyl) methacrylamide and 3- (methacryloylamino) propyl-lauryl-dimethylammonium chloride (INCI name: Polyquaternium-69), which is available, for example, under the trade name AquaStyle ® 300 (28-32% by weight of active substance in an ethanol-water mixture, molecular weight 350,000) is sold by ISP.
- AquaStyle ® 300 28-32% by weight of active substance in an ethanol-water mixture, molecular weight 350,000
- hydrophilic polymers are, for example
- Vinylpyrrolidone-vinylimidazolium methochloride copolymers as offered under the names Luviquat ® FC 370, FC 550 and the INCI name Polyquaternium-16 as well as FC 905 and HM 552,
- Vinylpyrrolidone-vinyl caprolactam-acrylate terpolymers such as those offered by Acrylklareestern and acrylamides as the third monomer commercially, for example under the name Aqua Flex ® SF 40th
- Polyquaternium-11 is the reaction product of diethyl sulfate with a copolymer of vinyl pyrrolidone and dimethylaminoethyl methacrylate. Suitable commercial products are available, for example, under the names Dehyquart® CC 11 and Luviquat® PQ 11 PN from BASF SE or Gafquat 440, Gafquat 734, Gafquat 755 or Gafquat 755N from Ashland Inc.
- Polyquaternium-46 is the reaction product of vinyl caprolactam and vinyl pyrrolidone with methyl vinyl imidazolium methosulfate and is available, for example, under the name Luviquat® Hold from BASF SE.
- Polyquaternium-46 is preferably used in an amount of 1 to 5% by weight, based on the total weight of the cosmetic composition. It is very particularly preferred that Polyquaternium-46 is used in combination with a cationic guar compound. It is even highly preferred that Polyquaternium-46 is used in combination with a cationic guar compound and Polyquaternium-11.
- Acrylic acid polymers for example, which can be present in uncrosslinked or crosslinked form, can be used as suitable anionic film-forming, hydrophilic polymers.
- Corresponding products are sold commercially, for example, under the trade names Carbopol 980, 981, 954, 2984 and 5984 from Lubrizol or under the names Synthalen M and Synthalen K from 3V Sigma (The Sun Chemicals, Inter Harz).
- Suitable film-forming, hydrophilic polymers from the group of natural gums are xanthan gum, gellan gum, carob gum.
- Suitable film-forming, hydrophilic polymers from the group of acrylamides are, for example, polymers which are produced starting from monomers of (methyl) acrylamido-C1-C4-alkyl-sulfonic acid or the salts thereof.
- Corresponding polymers can be selected from the polymers of polyacrylamidoethanesulfonic acid, polyacrylamidoethanesulfonic acid, polyacrylamidopropanesulfonic acid, poly2-acrylamido-2-methylpropanesulfonic acid, poly-2-methylacrylamido-2-methylpropanesulfonic acid and / or poly-2-methylacrylamido-n-butanesulfonic acid.
- Preferred polymers of the poly (meth) arylamido-C1-C4-alkyl-sulfonic acids are crosslinked and at least 90% neutralized. These polymers can be crosslinked or else uncrosslinked.
- Crosslinked and completely or partially neutralized polymers of the type of poly-2-acrylamido-2-methylpropanesulfonic acids are known under the INCI names "Ammonium Polyacrylamido-2-methylpropanesulphonate” or "Ammonium Polyacryldimethyltauramide”.
- composition (A), (B) and / or the optionally applicable composition (C) contains at least one anionic, film-forming polymer.
- composition (A), (B) and / or the optionally applicable composition (C) contains at least one film-forming polymer which has at least one structural unit of the formula (Pl) and at least one structural unit of the Formula (P-II) includes in which
- M for a hydrogen atom or for ammonium (NH 4 ), sodium, potassium, Magnesium or Calcium stands.
- the structural unit of the formula (P-1) is based on an acrylic acid unit.
- the structural unit of the formula (P-1) is based on the ammonium salt of acrylic acid.
- the structural unit of the formula (P-1) is based on the sodium salt of acrylic acid.
- the structural unit of the formula (P-1) is based on the potassium salt of acrylic acid.
- the structural unit of the formula (P-1) is based on the magnesium salt of acrylic acid.
- the structural unit of the formula (P-1) is based on the calcium salt of acrylic acid.
- the film-forming polymer or polymers according to the invention are preferably used in certain quantity ranges in the respective composition.
- the composition - based in each case on its total weight - has one or more film-forming polymers in a total amount of 0.1 to 18.0% by weight, preferably 1 , 0 to 16.0% by weight, more preferably from 5.0 to 14.5% by weight and very particularly preferably from 8.0 to 12.0% by weight.
- the method according to the invention comprises the application of the two compositions (A) and (B) to the keratinic material.
- the two compositions (A) and (B) are two different compositions.
- compositions (A) and (B) can be preferred to mix the compositions (A) and (B) with one another before use on the keratin material, so that the mixture of (A) and (B) is applied to the keratin material.
- compositions (A) and (B) can also be preferred to mix the compositions (A) and (B) with a third composition (C) described above before use on the keratin material, so that the mixture from (A) and (B) and (C) is applied.
- a method according to the invention is characterized in that an application mixture is applied to the keratinic material which
- compositions (A) and (B) are also possible and also according to the invention, i.e. in this case the composition (A) is first applied to the keratin material, left to act and, if necessary, rinsed out again. Then the composition (B) is then applied to the keratin material, left to act and, if necessary, rinsed out again.
- a method according to the invention is characterized by the following steps:
- composition (A) allowing the composition (A) to act on the keratin material for a period of 1 to 10 minutes, preferably 1 to 5 minutes,
- composition (A) from the keratin material
- composition (B) (4) applying the composition (B) to the keratin material
- composition (B) allowing the composition (B) to act on the keratin material for a period of 1 to 10 minutes, preferably 1 to 5 minutes,
- composition (B) from the keratin material.
- the rinsing of the keratinous material with water in steps (3) and (6) of the method is understood according to the invention to mean that only water is used for the rinsing process, without any further compositions different from compositions (a) and (b) would be used.
- the composition (A) is first applied to the keratin materials, in particular the human hair.
- composition (A) is allowed to act on the keratin materials.
- exposure times of 10 seconds to 10 minutes, preferably from 20 seconds to 5 minutes and very particularly preferably from 30 seconds to 2 minutes on the hair have proven to be particularly advantageous.
- the composition (A) can now be rinsed out of the keratin materials before the composition (B) is applied to the hair in the subsequent step.
- step (4) the composition (B) is now applied to the keratin materials. After application, the composition (B) is now allowed to act on the hair.
- compositions (A) and (B) are left to act for a short time.
- Contact times of from 10 seconds to 10 minutes, preferably from 20 seconds to 5 minutes and very particularly preferably from 30 seconds to 3 minutes on the hair have proven to be particularly advantageous.
- step (6) the composition (B) is then rinsed out of the keratin material with water.
- a method according to the invention comprises the following steps in the order given:
- composition (A) allowing the composition (A) to act on the keratin material for a period of 1 to 10 minutes, preferably 1 to 5 minutes,
- composition (A) from the keratin material
- composition (B) (4) applying the composition (B) to the keratin material
- composition (B) allowing the composition (B) to act on the keratin material for a period of 1 to 10 minutes, preferably 1 to 5 minutes,
- composition (B) from the keratin material. If, in addition, the optionally applicable third composition (C) is also applied to the keratin material, it can be applied in various ways.
- composition (A) is mixed with the composition (C) before use, and then to apply the mixture of (A) and (C) to the keratin material.
- composition (B) Another possibility is to mix the composition (B) with the composition (C) before use, and then to apply the mixture of (B) and (C) to the keratin material.
- compositions (A), (B) and (C) are mixed with one another and then this mixture of (A), (B) and (C) is applied to the keratin material becomes.
- composition (A) allowing the composition (A) to act on the keratin material for a period of 1 to 10 minutes, preferably 1 to 5 minutes,
- composition (A) from the keratin material
- composition (B) (4) applying the composition (B) to the keratin material
- composition (B) allowing the composition (B) to act on the keratin material for a period of 1 to 10 minutes, preferably 1 to 5 minutes,
- composition (B) rinsing the composition (B) from the keratin material.
- composition (C) Application of the composition (C) to the keratin material,
- composition (C) allowing the composition (C) to act on the keratin material for a period of 1 to 10 minutes, preferably 1 to 5 minutes,
- composition (C) rinsing the composition (C) from the keratin material.
- composition (C) Application of the composition (C) to the keratin material
- composition (C) allowing the composition (C) to act on the keratin material for a period of 1 to 10 minutes, preferably 1 to 5 minutes, and
- composition (C) rinsing the composition (C) from the keratin material.
- Multi-component packaging unit (kit-of-parts)
- a second subject matter of the present invention is a multi-component packaging unit (kit-of-parts) for treating keratinic material, comprising, separately packaged from one another, a first container with a first composition (A) and a second container with a second composition (B), wherein the compositions (A) and (B) were disclosed in the description of the first subject matter of the invention in detail,
- the multicomponent packaging unit according to the invention can also comprise a third packaging unit containing a cosmetic preparation (C).
- preparation (C) very particularly preferably contains at least one coloring compound.
- the multicomponent packaging unit (kit-of-parts) according to the invention comprises, separately packaged from one another, a third container with a third composition (C), the third composition (C) at least one coloring compound from the group of pigments and / or the substantive dyes.
Landscapes
- Life Sciences & Earth Sciences (AREA)
- Health & Medical Sciences (AREA)
- Animal Behavior & Ethology (AREA)
- General Health & Medical Sciences (AREA)
- Public Health (AREA)
- Veterinary Medicine (AREA)
- Birds (AREA)
- Epidemiology (AREA)
- Chemical & Material Sciences (AREA)
- Inorganic Chemistry (AREA)
- Cosmetics (AREA)
Abstract
L'invention concerne un procédé de traitement de matière kératinique, en particulier de cheveux humains, selon lequel on utilise, sur la matière kératinique : - une première composition (A) contenant (A1) un ou plusieurs alcoxy en C1-C6 organiques et/ou leurs produits de condensation ; et - une seconde composition (B) contenant des fibres (B1).
Applications Claiming Priority (2)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
DE102019218857.5A DE102019218857A1 (de) | 2019-12-04 | 2019-12-04 | Verfahren zur Färbung von Keratinmaterial, umfassend die Anwendung eines organischen C1-C6-Alkoxysilans und Fasern |
DE102019218857.5 | 2019-12-04 |
Publications (1)
Publication Number | Publication Date |
---|---|
WO2021110314A1 true WO2021110314A1 (fr) | 2021-06-10 |
Family
ID=73020176
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
PCT/EP2020/079328 WO2021110314A1 (fr) | 2019-12-04 | 2020-10-19 | Procédé de coloration de matière kératinique, comprenant l'utilisation d'un alcoxysilane en c1-c6 organique et de fibres |
Country Status (2)
Country | Link |
---|---|
DE (1) | DE102019218857A1 (fr) |
WO (1) | WO2021110314A1 (fr) |
Citations (4)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
EP2168633A2 (fr) * | 2008-09-30 | 2010-03-31 | L'oreal | Composition cosmétique comprenant un composé organique du silicium comportant au moins une fonction basique, un polymère filmogène hydrophobe, un pigment et un solvant volatil |
WO2013068979A2 (fr) | 2011-11-09 | 2013-05-16 | L'oreal | Composition cosmétique comprenant au moins un alcoxysilane |
WO2013107771A1 (fr) * | 2012-01-18 | 2013-07-25 | Unilever Plc | Composition pour soins capillaires |
DE102017220773A1 (de) * | 2017-11-21 | 2019-05-23 | Henkel Ag & Co. Kgaa | Sprühbares kosmetisches Mittel mit Farbeffekt |
-
2019
- 2019-12-04 DE DE102019218857.5A patent/DE102019218857A1/de not_active Withdrawn
-
2020
- 2020-10-19 WO PCT/EP2020/079328 patent/WO2021110314A1/fr active Application Filing
Patent Citations (5)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
EP2168633A2 (fr) * | 2008-09-30 | 2010-03-31 | L'oreal | Composition cosmétique comprenant un composé organique du silicium comportant au moins une fonction basique, un polymère filmogène hydrophobe, un pigment et un solvant volatil |
EP2168633B1 (fr) | 2008-09-30 | 2016-03-30 | L'Oréal | Composition cosmétique comprenant un composé organique du silicium comportant au moins une fonction basique, un polymère filmogène hydrophobe, un pigment et un solvant volatil |
WO2013068979A2 (fr) | 2011-11-09 | 2013-05-16 | L'oreal | Composition cosmétique comprenant au moins un alcoxysilane |
WO2013107771A1 (fr) * | 2012-01-18 | 2013-07-25 | Unilever Plc | Composition pour soins capillaires |
DE102017220773A1 (de) * | 2017-11-21 | 2019-05-23 | Henkel Ag & Co. Kgaa | Sprühbares kosmetisches Mittel mit Farbeffekt |
Also Published As
Publication number | Publication date |
---|---|
DE102019218857A1 (de) | 2021-06-10 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
EP4007558A1 (fr) | Procédé de traitement de matière kératinique, comprenant l'application d'un alcoxy en c1-c6 organique et d'un acide aminé et/ou d'un dérivé d'acide aminé | |
WO2021018443A1 (fr) | Procédé de traitement d'une matière kératinique, comprenant l'utilisation d'un alcoxysilane organique en c1-c6 et d'un acide aminé et/ou d'un dérivé d'acide aminé | |
EP4076351A1 (fr) | Procédé de coloration de matières kératiniques, comprenant l'utilisation d'un alcoxysilane en c1-c6 organique et de l'acide tannique | |
WO2021013516A1 (fr) | Procédé de coloration d'une matière kératinique comprenant l'application d'un composé organosilicié, d'un pigment à effet enrobé et d'un polymère filmogène ii | |
EP4076352A1 (fr) | Procédé de coloration de matières kératiniques, comprenant l'utilisation d'un alcoxysilane en c1-c6 organique et d'un copolymère de styrène et d'acide maléique (anhydride) | |
EP4007562A1 (fr) | Procédé de coloration de matière kératinique, comprenant l'utilisation d'un alcoxy-silane en c1-c6 organique et d'un agent d'alcalinisation | |
DE102019203669A1 (de) | Verfahren zum Färben von keratinischem Material, umfassend die Anwendung von einer siliciumorganischen Verbindung, eines Effektpigments und eines filmbildenden Polymers I | |
WO2021018447A1 (fr) | Procédé de coloration de matière kératinique, comprenant l'utilisation d'un c1-c6-alcoxysilane organique et d'un agent d'alcalinisation | |
WO2022058065A1 (fr) | Agent de décoloration des matières kératiniques qui ont été teintes en utilisant un composé organosilicié et un pigment | |
WO2021121726A1 (fr) | Procédé de teinture de matière kératinique, comprenant l'utilisation d'un alcoxysilane organique en c1-c6, d'un composé de teinture et de galactomannane | |
WO2021121717A1 (fr) | Procédé de coloration de matières kératinique comprenant l'utilisation d'un alcoxysilane en c1-c6 organique, d'un composé colorant et d'un ester oligomérique | |
WO2021110314A1 (fr) | Procédé de coloration de matière kératinique, comprenant l'utilisation d'un alcoxysilane en c1-c6 organique et de fibres | |
WO2021110313A1 (fr) | Procédé de coloration de matière kératinique, comprenant l'utilisation d'un alcoxy-silane en c1-c6 organique et de deux types de cellulose structurellement différents | |
WO2021121724A1 (fr) | Procédé de coloration de matières kératiniques, comprenant l'utilisation d'un alcoxysilane en c1 à c6 organique, d'un composé colorant et de gomme laque | |
EP4076368A1 (fr) | Procédé de coloration de matières kératiniques, comprenant l'utilisation d'un alcoxysilane en c1-c6 organique et d'un copolymère d'acide (méth)acrylique et d'acide maléique (anhydride) | |
EP4323069A1 (fr) | Procédé de coloration de matières kératiniques, comprenant l'utilisation d'un alcoxysilane organique en c1-c6, d'un composé de coloration et d'un traitement thermique | |
EP4031104A1 (fr) | Procédé de coloration de matière kératinique, comprenant l'utilisation d'un alcoxy c1-c8 organique et d'un acidifiant | |
EP3999189A1 (fr) | Procédé de coloration d'une matière kératinique comprenant l'application d'un composé organosilicié, d'un pigment à effet coloré et d'un polymère filmogène ii | |
DE102019218855A1 (de) | Verfahren zur Färbung von Keratinmaterial, umfassend die Anwendung eines organischen C1-C6-Alkoxysilans und einer anorganischen oder organischen Borverbindung | |
EP3941591A1 (fr) | Procédé destiné à teindre de la matière kératinique, comprenant l'application d'un composé organique au silicium, d'un pigment à effet et d'un polymère filmogène iii | |
DE102019214205A1 (de) | Verfahren zum Färben von keratinischem Material, umfassend die Anwendung von einer siliciumorganischen Verbindung, eines Effektpigments und eines filmbildenden Polymers | |
DE102019203677A1 (de) | Verfahren zum Färben von keratinischem Material, umfassend die Anwendung von einer siliciumorganischen Verbindung, eines Effektpigments und eines filmbildenden Polymers II |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
121 | Ep: the epo has been informed by wipo that ep was designated in this application |
Ref document number: 20797412 Country of ref document: EP Kind code of ref document: A1 |
|
NENP | Non-entry into the national phase |
Ref country code: DE |
|
122 | Ep: pct application non-entry in european phase |
Ref document number: 20797412 Country of ref document: EP Kind code of ref document: A1 |