WO2021110128A1 - 数据存储方法、装置、设备及存储介质 - Google Patents

数据存储方法、装置、设备及存储介质 Download PDF

Info

Publication number
WO2021110128A1
WO2021110128A1 PCT/CN2020/133827 CN2020133827W WO2021110128A1 WO 2021110128 A1 WO2021110128 A1 WO 2021110128A1 CN 2020133827 W CN2020133827 W CN 2020133827W WO 2021110128 A1 WO2021110128 A1 WO 2021110128A1
Authority
WO
WIPO (PCT)
Prior art keywords
circuit
motor
input terminal
drive
voltage
Prior art date
Application number
PCT/CN2020/133827
Other languages
English (en)
French (fr)
Inventor
兰昊
冯宇翔
Original Assignee
广东美的白色家电技术创新中心有限公司
美的集团股份有限公司
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 广东美的白色家电技术创新中心有限公司, 美的集团股份有限公司 filed Critical 广东美的白色家电技术创新中心有限公司
Publication of WO2021110128A1 publication Critical patent/WO2021110128A1/zh

Links

Images

Classifications

    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02PCONTROL OR REGULATION OF ELECTRIC MOTORS, ELECTRIC GENERATORS OR DYNAMO-ELECTRIC CONVERTERS; CONTROLLING TRANSFORMERS, REACTORS OR CHOKE COILS
    • H02P5/00Arrangements specially adapted for regulating or controlling the speed or torque of two or more electric motors
    • H02P5/74Arrangements specially adapted for regulating or controlling the speed or torque of two or more electric motors controlling two or more ac dynamo-electric motors
    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02MAPPARATUS FOR CONVERSION BETWEEN AC AND AC, BETWEEN AC AND DC, OR BETWEEN DC AND DC, AND FOR USE WITH MAINS OR SIMILAR POWER SUPPLY SYSTEMS; CONVERSION OF DC OR AC INPUT POWER INTO SURGE OUTPUT POWER; CONTROL OR REGULATION THEREOF
    • H02M1/00Details of apparatus for conversion
    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02PCONTROL OR REGULATION OF ELECTRIC MOTORS, ELECTRIC GENERATORS OR DYNAMO-ELECTRIC CONVERTERS; CONTROLLING TRANSFORMERS, REACTORS OR CHOKE COILS
    • H02P27/00Arrangements or methods for the control of AC motors characterised by the kind of supply voltage
    • H02P27/04Arrangements or methods for the control of AC motors characterised by the kind of supply voltage using variable-frequency supply voltage, e.g. inverter or converter supply voltage
    • H02P27/06Arrangements or methods for the control of AC motors characterised by the kind of supply voltage using variable-frequency supply voltage, e.g. inverter or converter supply voltage using dc to ac converters or inverters
    • H02P27/08Arrangements or methods for the control of AC motors characterised by the kind of supply voltage using variable-frequency supply voltage, e.g. inverter or converter supply voltage using dc to ac converters or inverters with pulse width modulation
    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02PCONTROL OR REGULATION OF ELECTRIC MOTORS, ELECTRIC GENERATORS OR DYNAMO-ELECTRIC CONVERTERS; CONTROLLING TRANSFORMERS, REACTORS OR CHOKE COILS
    • H02P27/00Arrangements or methods for the control of AC motors characterised by the kind of supply voltage
    • H02P27/04Arrangements or methods for the control of AC motors characterised by the kind of supply voltage using variable-frequency supply voltage, e.g. inverter or converter supply voltage
    • H02P27/06Arrangements or methods for the control of AC motors characterised by the kind of supply voltage using variable-frequency supply voltage, e.g. inverter or converter supply voltage using dc to ac converters or inverters
    • H02P27/08Arrangements or methods for the control of AC motors characterised by the kind of supply voltage using variable-frequency supply voltage, e.g. inverter or converter supply voltage using dc to ac converters or inverters with pulse width modulation
    • H02P27/085Arrangements or methods for the control of AC motors characterised by the kind of supply voltage using variable-frequency supply voltage, e.g. inverter or converter supply voltage using dc to ac converters or inverters with pulse width modulation wherein the PWM mode is adapted on the running conditions of the motor, e.g. the switching frequency

Definitions

  • the invention relates to the technical field of intelligent power modules, in particular to a high-voltage integrated circuit, an intelligent power module and a drive control method.
  • Intelligent Power Module is a power drive product that integrates high-voltage integrated circuits (HVIC, High Voltage Integrated Circuit) and power switching devices, and has built-in faults such as overvoltage, overcurrent, and overheating. Detection circuit. It is widely used in the fields of AC motor frequency conversion speed regulation and DC motor chopping speed regulation and various high-performance power supplies.
  • HVIC High Voltage Integrated Circuit
  • the HVIC in the smart power module usually implements a three-phase inverter drive alone.
  • the motor of the fan and the motor of the compressor in the air conditioner two smart power modules are required to achieve the drive, which has the problem of low integration. Conducive to the miniaturized design of the air conditioner drive control.
  • the purpose of the present invention is to propose a high-voltage integrated circuit, an intelligent power module and a drive control method in view of the above-mentioned shortcomings of the prior art.
  • the purpose is achieved by the following technical solutions.
  • the first aspect of the present invention provides a high-voltage integrated circuit for a smart power module, the high-voltage integrated circuit including a first motor control input terminal, a first motor drive circuit, a second motor control input terminal, a second motor drive circuit, and Signal processing circuit;
  • the input end of the signal processing circuit is respectively connected to the first motor control input end and the second motor control input end; the output end of the signal processing circuit is respectively connected to the input end of the first motor drive circuit and the second motor drive The input terminal of the circuit is connected.
  • the second aspect of the present invention provides a high-voltage integrated circuit of a smart power module, the high-voltage integrated circuit includes a first motor control input terminal, a first motor drive circuit, a first motor power inverter circuit, and a second motor control input Terminal, a second motor drive circuit and a signal processing circuit;
  • the input end of the signal processing circuit is respectively connected to the first motor control input end and the second motor control input end; the output end of the signal processing circuit is respectively connected to the input end of the first motor drive circuit and the second motor drive The input terminal of the circuit is connected; the input terminal of the first motor power inverter circuit is connected with the output terminal of the first motor drive circuit.
  • the third aspect of the present invention provides an intelligent power module, the intelligent power module includes: a first motor power inverter circuit, a second motor power inverter circuit, and the high voltage of the smart power module as described in the first aspect above integrated circuit;
  • the output terminal of the first motor drive circuit of the high-voltage integrated circuit is connected to the input terminal of the first motor power inverter circuit
  • the output terminal of the second motor drive circuit of the high-voltage integrated circuit is connected to the input terminal of the second motor power inverter circuit.
  • the fourth aspect of the present invention provides an intelligent power module, the intelligent power module includes: a second motor power inverter circuit and the high-voltage integrated circuit of the intelligent power module as described in the second aspect;
  • the output terminal of the second motor drive circuit of the high-voltage integrated circuit is connected to the input terminal of the second motor power inverter circuit.
  • a fifth aspect of the present invention provides an air conditioner, the air conditioner outdoor unit includes a fan, a compressor, and the smart power module described in the third or fourth aspect;
  • the fan is connected to the output terminal of the first motor power inverter circuit of the smart power module; the compressor is connected to the output terminal of the second motor power inverter circuit of the smart power module.
  • the sixth aspect of the present invention proposes a drive control method for applying the smart power module as described in the third or fourth aspect, the method includes:
  • the first motor control input terminal receives a first low voltage drive signal used to drive the first motor, and the second motor control input terminal receives a second low voltage drive signal used to drive the second motor;
  • a signal processing circuit performs signal processing on the first low-voltage drive signal and then inputs it into the first motor drive circuit, and performs signal processing on the second low-voltage drive signal and then inputs it into the second motor drive circuit;
  • the first motor drive circuit converts the processed first low voltage drive signal into a first high voltage drive signal and inputs it to a first motor power inverter circuit, and the first motor power inverter circuit is based on the first high voltage drive signal Provide power for the external first motor;
  • the second motor drive circuit converts the processed second low voltage drive signal into a second high voltage drive signal and inputs it to a second motor power inverter circuit, and the second motor power inverter circuit is based on the second high voltage drive signal Provide power for the external second motor.
  • the high-voltage integrated circuit of the smart power module integrates the drive circuits of two motors, namely the first motor drive circuit and the second motor drive circuit, so that the power of the high-voltage integrated circuit and the two motors is
  • the inverter part is integrated and packaged in a smart power module, and then one smart power module can be used to drive the fan and compressor in the air conditioner.
  • the drive control of the air conditioner can be reduced.
  • the volume is conducive to the miniaturized design of drive control.
  • Fig. 1 is a schematic diagram showing a driving control structure of an air conditioner according to an exemplary embodiment of the present invention
  • FIG. 2 is a schematic structural diagram of a high-voltage integrated circuit of a smart power module according to an exemplary embodiment of the present invention
  • FIG. 3 is a schematic structural diagram of an intelligent power module according to the embodiment shown in FIG. 2 according to the present invention.
  • FIG. 4 is a schematic structural diagram of another high-voltage integrated circuit of a smart power module according to an exemplary embodiment of the present invention.
  • FIG. 5 is a schematic structural diagram of an intelligent power module according to the embodiment shown in FIG. 4 according to the present invention.
  • Fig. 6 is a flowchart of an embodiment of a driving control method according to an exemplary embodiment of the present invention.
  • first, second, third, etc. may be used in the present invention to describe various information, the information should not be limited to these terms. These terms are only used to distinguish the same type of information from each other.
  • first information may also be referred to as second information, and similarly, the second information may also be referred to as first information.
  • word “if” as used herein can be interpreted as "when” or “when” or "in response to determination”.
  • the IPM module includes HVIC and power inverter circuit.
  • An IPM module realizes a three-phase inverter drive of a motor.
  • PFC Power Factor Correction
  • the intelligent power module 1 receives the first low-voltage drive signal of the MCU (Microcontroller Unit) to realize the three-phase inverter control of the fan motor.
  • the power module 2 receives the second low voltage drive signal of the MCU to realize the three-phase inverter control of the compressor motor.
  • the PFC drive module receives the PFC control signal of the MCU, and according to the PFC control signal, it is divided into the smart power module 1 and the smart power module 2.
  • the power inverter circuit provides a high-voltage reference signal.
  • the package size is relatively large and the integration level is relatively low, which is not conducive to the miniaturization design of the drive control.
  • the present invention integrates the high-voltage integrated circuit of the fan and the high-voltage integrated circuit of the compressor into one high-voltage integrated circuit, so as to facilitate the miniaturized design of the air conditioner drive control.
  • the high-voltage integrated circuit structure of a smart power module proposed by the present invention includes a first motor control input terminal (HIN1 ⁇ HIN3, LIN1 ⁇ LIN3), a first motor drive circuit 102, and a second motor control Input terminals (HIN4 to HIN6, LIN4 to LIN6), the second motor drive circuit 103, and the signal processing circuit 101; the input terminals of the signal processing circuit 101 are respectively connected to the first motor control input terminal and the second motor control input terminal; The output terminal of the signal processing circuit 101 is connected to the input terminal of the first motor drive circuit 102 and the input terminal of the second motor drive circuit 103 respectively.
  • the signal processing circuit 101 is configured to perform signal processing on the first low-voltage drive signal at the first motor control input terminal, and/or perform signal processing on the second low-voltage drive signal at the second motor control input terminal.
  • the signal processing circuit 101 includes an input logic circuit and a dead zone protection and interlock circuit.
  • the input logic circuit is used to filter, reshape, and delay the signal.
  • the dead zone protection and interlock circuit are used to prevent access to the upper
  • the signal of the bridge driving circuit and the signal entering the lower bridge driving circuit are both at high level.
  • the high-voltage integrated circuit of the smart power module integrates the drive circuits of the two motors, that is, the first motor drive circuit and the second motor drive circuit, the power of the high-voltage integrated circuit and the two motors is reversed.
  • the variable part is integrated and packaged in a smart power module, and then one smart power module can be used to drive the fan and compressor in the air conditioner. Compared with the existing use of two smart power modules to drive, it can reduce the drive control of the air conditioner.
  • the volume is conducive to the miniaturized design of drive control.
  • both the first motor drive circuit 102 and the second motor drive circuit 103 include an undervoltage protection circuit, an upper bridge drive circuit, and a lower bridge drive circuit; the undervoltage protection circuit is connected to the upper bridge drive circuit.
  • the first low voltage drive signal input to the first motor control input terminals HIN1 to HIN3 is processed by the signal processing circuit 101 and then input to the upper bridge drive circuit in the first motor drive circuit 102, and the first low voltage drive signal input to LIN1 to LIN3 passes through
  • the signal processing circuit 101 is processed and then input to the lower bridge drive circuit in the first motor drive circuit 102;
  • the second low voltage drive signal input to the second motor control input terminals HIN4 ⁇ HIN6 is processed by the signal processing circuit 101 and then input to the second motor drive circuit 103
  • the second low voltage drive signals input from LIN4 to LIN6 are processed by the signal processing circuit 101 and then input to the lower bridge drive circuit in the second motor drive circuit 103.
  • the high-voltage integrated circuit may further include a bootstrap circuit 104 and a working voltage input terminal VCC; the input terminal of the bootstrap circuit 104 is connected to the working voltage input terminal VCC, The output terminal of the bootstrap circuit 104 is respectively connected to the undervoltage protection circuit in the first motor drive circuit 102 and the undervoltage protection circuit in the second motor drive circuit 103.
  • the bootstrap circuit 104 is used to ensure the normal operation of the first motor drive circuit 102 and the second motor drive circuit 103.
  • the bootstrap circuit 104 may be a diode + resistor mode, or a MOS tube + control circuit mode, which is not specifically limited in the present invention.
  • the PFC drive module since the motor drive also requires a PFC drive module, the PFC drive module includes a PFC drive circuit and a PFC switch.
  • the PFC switch is a high-power device and is not suitable for integration in a high-voltage integrated circuit.
  • the PFC drive circuit has little power. Therefore, the PFC driving circuit can be integrated into the high-voltage integrated circuit to reduce the number of devices in the smart power module, thereby reducing the layout and packaging difficulties of the smart power module.
  • the high-voltage integrated circuit may also include a PFC drive circuit and a PFC control input terminal PFCIN; the PFC control input terminal PFCIN is connected to the input terminal of the signal processing circuit 101, and the signal processing The output terminal of the circuit 101 is also connected to the PFC driving circuit 105.
  • the PFC control signal received by the PFC control input terminal after being processed by the signal processing circuit, sequentially passes through the PFC driving circuit and the PFC switch.
  • the PFC switch is connected to the power inverter part of the motor, and is used to provide a high-voltage reference signal for the power inverter part.
  • the high-voltage integrated circuit may further include a protection circuit 106 to ensure the normal operation of the smart power module.
  • the protection circuit may include an overcurrent protection circuit, an undervoltage protection circuit, an overheat protection circuit, and so on.
  • the smart power module shown in Figure 3 can be obtained, including the first motor power inverter circuit 107, the second motor power inverter circuit 108, and the above-mentioned Figure 2 High-voltage integrated circuits.
  • the output terminal of the first motor drive circuit 102 of the high-voltage integrated circuit is connected to the input terminal of the first motor power inverter circuit 107; the output terminal of the second motor drive circuit 103 of the high-voltage integrated circuit is connected to the second motor
  • the input terminal of the power inverter circuit 108 is connected.
  • the working voltage input terminal VCC, the first motor control input terminal and the second motor control input terminal of the high-voltage integrated circuit are all used as the input terminals of the intelligent power module.
  • the smart power module also includes some other circuit structures, which are connected to the output terminals of other circuits in Figure 2.
  • the smart power module also includes a PFC switch.
  • the input terminal of the PFC switch is similar to the PFC in Figure 2.
  • the output terminal of the driving circuit is connected, and the output terminal of the PFC switch is respectively connected with the first motor power inverter circuit and the second motor power inverter circuit.
  • the power inverter part of the wind turbine can also be integrated into the high-voltage integrated circuit to reduce the number of components in the smart power module, thereby reducing the layout and packaging difficulties of the smart power module, and reducing Electromagnetic interference inside the smart power module.
  • the compressor has a relatively large power, and its corresponding power inverter part is not suitable for integration into a high-voltage integrated circuit.
  • the high-voltage integrated circuit also includes the first motor power In the inverter circuit 107, the output terminal of the first motor drive circuit 102 is connected to the input terminal of the first motor power inverter circuit 107.
  • the first motor power inverter circuit is used to provide power to the first motor
  • the second motor power inverter circuit is used to provide power to the second motor.
  • the power of the first motor is less than the power of the second motor.
  • the first motor is a fan and the second motor is a compressor.
  • the first motor power inverter circuit and the second motor power inverter circuit both include a first switching tube, a second switching tube, a third switching tube, a fourth switching tube, a fifth switching tube, and a sixth switching tube .
  • the intelligent power module shown in FIG. 5 can be obtained including: the second motor power inverter circuit 108 and the high-voltage integrated circuit shown in FIG.
  • the output terminal of the second motor drive circuit 103 of the high-voltage integrated circuit is connected to the input terminal of the second motor power inverter circuit 108.
  • the working voltage input terminal VCC, the first motor control input terminal, and the second motor control input terminal of the high-voltage integrated circuit are also used as input terminals of the intelligent power module.
  • the present invention also provides an air conditioner, which includes a fan, a compressor, and the above-mentioned intelligent power module shown in FIG. 3 or FIG. 5.
  • the fan is connected to the output terminal of the first motor power inverter circuit of the smart power module
  • the compressor is connected to the output terminal of the second motor power inverter circuit of the smart power module.
  • Fig. 6 is a flowchart of an embodiment of a drive control method according to an exemplary embodiment of the present invention. Based on the above-mentioned smart power module shown in Fig. 3 or Fig. 5, the drive control method includes the following steps:
  • Step 610 The first motor control input terminal receives a first low-voltage drive signal for driving the first motor, and the second motor control input terminal receives a second low-voltage drive signal for driving the second motor.
  • the first low-voltage driving signal and the second low-voltage driving signal may be square wave signals with the same or different frequencies.
  • Step 620 The signal processing circuit performs signal processing on the first low voltage drive signal and then inputs it into the first motor drive circuit, and performs signal processing on the second low voltage drive signal and then inputs it into the second motor drive circuit.
  • Step 630 The first motor drive circuit converts the processed first low voltage drive signal into a first high voltage drive signal and inputs it to the first motor power inverter circuit.
  • the first motor power inverter circuit is external according to the first high voltage drive signal.
  • the first motor provides power.
  • the conversion process is to first convert the first low-voltage drive signal into a first low-voltage pulse signal, and then perform electrical operation on the first low-voltage pulse signal. Level conversion to obtain the first high-voltage drive signal.
  • Step 640 The second motor drive circuit converts the processed second low-voltage drive signal into a second high-voltage drive signal and inputs it to the second motor power inverter circuit.
  • the second motor power inverter circuit provides external signals according to the second high-voltage drive signal.
  • the second motor provides power.
  • the present invention does not limit the execution order of the foregoing step 630 and step 640.
  • step 610 to step 640 For the above-mentioned process from step 610 to step 640, reference may be made to the relevant description of the embodiment shown in FIG. 2 to FIG. 5, which will not be described in detail.

Landscapes

  • Engineering & Computer Science (AREA)
  • Power Engineering (AREA)
  • Inverter Devices (AREA)
  • Control Of Ac Motors In General (AREA)

Abstract

一种高压集成电路、智能功率模块及驱动控制方法,高压集成电路包括:第一电机控制输入端、第一电机驱动电路(102)、第二电机控制输入端、第二电机驱动电路(103)以及信号处理电路(101);信号处理电路(101)的输入端分别与第一电机控制输入端、第二电机控制输入端连接;信号处理电路(101)的输出端分别与第一电机驱动电路(102)的输入端、第二电机驱动电路(103)的输入端连接。由于智能功率模块的高压集成电路集成了两个电机的驱动电路,从而通过将该高压集成电路和两个电机的功率逆变部分集成封装在一个智能功率模块,便可用一个智能功率模块实现空调器中风机和压缩机的驱动,相对现有用两个智能功率模块实现驱动,可以减小空调器驱动控制的体积,有利于驱动控制的小型化设计。

Description

数据存储方法、装置、设备及存储介质
本申请要求于2019年12月04日提交中国专利局、申请号为201911230252.2、申请名称为“高压集成电路、智能功率模块及驱动控制方法”的中国专利申请的优先权,其全部内容通过引用结合在本申请中。
技术领域
本发明涉及智能功率模块技术领域,具体涉及一种高压集成电路、智能功率模块及驱动控制方法。
背景技术
智能功率模块(IPM,Intelligent Power Module)是一种集成了高压集成电路(HVIC,High Voltage Integrated Circuit)和功率开关器件的功率驱动类产品,并且内藏有过电压、过电流、和过热等故障检测电路。其广泛应用于交流电机变频调速和直流电机斩波调速以及各种高性能电源领域。
目前,智能功率模块中的HVIC通常是单独实现三相逆变驱动,对于空调器中的风机的电机和压缩机的电机,需要两个智能功率模块来实现驱动,存在集成度低的问题,不利于空调器驱动控制的小型化设计。
发明内容
本发明的目的是针对上述现有技术的不足提出的一种高压集成电路、智能功率模块及驱动控制方法,该目的是通过以下技术方案实现的。
本发明的第一方面提出了一种智能功率模块的高压集成电路,所述高压集成电路包括第一电机控制输入端、第一电机驱动电路、第二电机控制输入端、第二电机驱动电路以及信号处理电路;
其中,所述信号处理电路的输入端分别与第一电机控制输入端、第二电机控制输入端连接;所述信号处理电路的输出端分别与第一电机驱动电路的输入端、第二电机驱动电路的输入端连接。
本发明的第二方面提出了一种智能功率模块的高压集成电路,所述高压集成电路包括第一电机控制输入端、第一电机驱动电路、第一电机功率逆变电路、第二电机控制输入端、第二电机驱动电路以及信号处理电路;
其中,所述信号处理电路的输入端分别与第一电机控制输入端、第二电机控制输入端连接;所述信号处理电路的输出端分别与第一电机驱动电路的输入端、第二电机驱动电路的输入端连接;所述第一电机功率逆变电路的输入端与所述第一电机驱动电路的输出端连接。
本发明的第三方面提出了一种智能功率模块,所述智能功率模块包括:第一电机功率逆变电路、第二电机功率逆变电路以及如上述第一方面所述的智能功率模块的高压集成电路;
其中,所述高压集成电路的第一电机驱动电路的输出端与所述第一电机功率逆变电路的输入端连接;
所述高压集成电路的第二电机驱动电路的输出端与所述第二电机功率逆变 电路的输入端连接。
本发明的第四方面提出了一种智能功率模块,所述智能功率模块包括:第二电机功率逆变电路和如上述第二方面所述的智能功率模块的高压集成电路;
其中,所述高压集成电路的第二电机驱动电路的输出端与所述第二电机功率逆变电路的输入端连接。
本发明的第五方面提出了一种空调器,所述空调外机包括风机、压缩机以及上述第三方面或第四方面所述的智能功率模块;
其中,所述风机与智能功率模块的第一电机功率逆变电路的输出端连接;所述压缩机与智能功率模块的第二电机功率逆变电路的输出端连接。
本发明的第六方面提出了一种应用如上述第三方面或第四方面所述的智能功率模块的驱动控制方法,所述方法包括:
第一电机控制输入端接收用于驱动第一电机的第一低压驱动信号,第二电机控制输入端接收用于驱动第二电机的第二低压驱动信号;
信号处理电路对所述第一低压驱动信号进行信号处理后输入第一电机驱动电路,以及对所述第二低压驱动信号进行信号处理后输入第二电机驱动电路;
所述第一电机驱动电路将处理后的第一低压驱动信号转换为第一高压驱动信号并输入第一电机功率逆变电路,所述第一电机功率逆变电路根据所述第一高压驱动信号为外部的第一电机提供功率;
所述第二电机驱动电路将处理后的第二低压驱动信号转换为第二高压驱动信号并输入第二电机功率逆变电路,所述第二电机功率逆变电路根据所述第二高压驱动信号为外部的第二电机提供功率。
在本申请实施例中,由于智能功率模块的高压集成电路集成了两个电机的驱动电路,即第一电机驱动电路和第二电机驱动电路,从而通过将该高压集成电路和两个电机的功率逆变部分集成封装在一个智能功率模块中,便可利用一个智能功率模块实现空调器中风机和压缩机的驱动,相对于现有利用两个智能功率模块实现驱动,可以减小空调器驱动控制的体积,有利于驱动控制的小型化设计。
附图说明
通过阅读下文优选实施方式的详细描述,各种其他的优点和益处对于本领域普通技术人员将变得清楚明了。附图仅用于示出优选实施方式的目的,而并不认为是对本申请的限制。而且在整个附图中,用相同的参考符号表示相同的部件。在附图中:
图1为本发明根据一示例性实施例示出的一种空调器的驱动控制结构示意图;
图2为本发明根据一示例性实施例示出的一种智能功率模块的高压集成电路的结构示意图;
图3为本发明根据图2所示实施例示出的一种智能功率模块的结构示意图;
图4为本发明根据一示例性实施例示出的另一种智能功率模块的高压集成电路的结构示意图;
图5为本发明根据图4所示实施例示出的一种智能功率模块的结构示意图;
图6为本发明根据一示例性实施例示出的一种驱动控制方法的实施例流程 图。
具体实施方式
这里将详细地对示例性实施例进行说明,其示例表示在附图中。下面的描述涉及附图时,除非另有表示,不同附图中的相同数字表示相同或相似的要素。以下示例性实施例中所描述的实施方式并不代表与本发明相一致的所有实施方式。相反,它们仅是与如所附权利要求书中所详述的、本发明的一些方面相一致的装置和方法的例子。
在本发明使用的术语是仅仅出于描述特定实施例的目的,而非旨在限制本发明。在本发明和所附权利要求书中所使用的单数形式的“一种”、“所述”和“该”也旨在包括多数形式,除非上下文清楚地表示其他含义。还应当理解,本文中使用的术语“和/或”是指并包含一个或多个相关联的列出项目的任何或所有可能组合。
应当理解,尽管在本发明可能采用术语第一、第二、第三等来描述各种信息,但这些信息不应限于这些术语。这些术语仅用来将同一类型的信息彼此区分开。例如,在不脱离本发明范围的情况下,第一信息也可以被称为第二信息,类似地,第二信息也可以被称为第一信息。取决于语境,如在此所使用的词语“如果”可以被解释成为“在……时”或“当……时”或“响应于确定”。
通常,IPM模块包括HVIC和功率逆变电路。一个IPM模块实现一个电机的三相逆变驱动。
目前,对于空调器风机和压缩机的驱动,一种是采用两个6通道的IPM模块+PFC(Power Factor Correction,功率因数校正)驱动模块,另一种是采用一个6通道的IPM模块+一个7通道的IPM模块(IPM中集成了三相逆变控制和PFC驱动功能)。
如图1所示,为一种现有的空调器驱动控制结构,智能功率模块1接收MCU(Microcontroller Unit,微控制单元)的第一低压驱动信号,实现风机电机的三相逆变控制,智能功率模块2接收MCU的第二低压驱动信号,实现压缩机电机的三相逆变控制,PFC驱动模块接收MCU的PFC控制信号,并根据PFC控制信号分别为智能功率模块1和智能功率模块2中的功率逆变电路提供高压参考信号。
由于空调器的驱动控制需要两个智能功率模块,其封装体积比较大,集成度比较低,因此不利于驱动控制的小型化设计。
为解决上述技术问题,本发明通过将风机的高压集成电路和压缩机的高压集成电路集成在一个高压集成电路中,以利于空调器驱动控制的小型化设计。
如图2所示,为本发明提出的一种智能功率模块的高压集成电路结构,包括第一电机控制输入端(HIN1~HIN3、LIN1~LIN3)、第一电机驱动电路102、第二电机控制输入端(HIN4~HIN6、LIN4~LIN6)、第二电机驱动电路103以及信号处理电路101;所述信号处理电路101的输入端分别与第一电机控制输入端、第二电机控制输入端连接;所述信号处理电路101的输出端分别与第一电机驱动电路102的输入端、第二电机驱动电路103的输入端连接。
其中,信号处理电路101用于对第一电机控制输入端的第一低压驱动信号进行信号处理,和/或对第二电机控制输入端的第二低压驱动信号进行信号处理。
示例性的,信号处理电路101包括输入逻辑电路和死区保护和互锁电路, 输入逻辑电路用于对信号进行滤波、整形、延时等处理,死区保护和互锁电路用于防止进入上桥驱动电路的信号和进入下桥驱动电路的信号同时为高电平。
在本实施例中,由于智能功率模块的高压集成电路集成了两个电机的驱动电路,即第一电机驱动电路和第二电机驱动电路,从而通过将该高压集成电路和两个电机的功率逆变部分集成封装在一个智能功率模块中,便可利用一个智能功率模块实现空调器中风机和压缩机的驱动,相对于现有利用两个智能功率模块实现驱动,可以减小空调器驱动控制的体积,有利于驱动控制的小型化设计。
在一实施例中,第一电机驱动电路102和第二电机驱动电路103中均包括欠压保护电路、上桥驱动电路和下桥驱动电路;欠压保护电路与上桥驱动电路连接。
其中,输入第一电机控制输入端HIN1~HIN3的第一低压驱动信号经过信号处理电路101处理之后输入第一电机驱动电路102中的上桥驱动电路,输入LIN1~LIN3的第一低压驱动信号经过信号处理电路101处理之后输入第一电机驱动电路102中的下桥驱动电路;输入第二电机控制输入端HIN4~HIN6的第二低压驱动信号经过信号处理电路101处理之后输入第二电机驱动电路103中的上桥驱动电路,输入LIN4~LIN6的第二低压驱动信号经过信号处理电路101处理之后输入第二电机驱动电路103中的下桥驱动电路。
在一实施例中,如上述图2所示,该高压集成电路还可包括自举电路104和工作电压输入端VCC;所述自举电路104的输入端与所述工作电压输入端VCC连接,所述自举电路104的输出端分别与所述第一电机驱动电路102中的欠压保护电路、所述第二电机驱动电路103中的欠压保护电路连接。
其中,自举电路104用于确保第一电机驱动电路102和第二电机驱动电路103正常工作。
示例性的,自举电路104可以是二极管+电阻的模式,也可以是MOS管+控制电路的模式,本发明对此不进行具体限定。
在一实施例中,由于实现电机驱动还需要PFC驱动模块,PFC驱动模块包括PFC驱动电路和PFC开关,而PFC开关属于大功率器件,不适合集成在高压集成电路中,PFC驱动电路功率不大,因此可以将PFC驱动电路集成到高压集成电路中,以减少智能功率模块中的器件数量,进而降低智能功率模块的布局和封装困难。
基于此,如上述图2所示,该高压集成电路还可包括PFC驱动电路和PFC控制输入端PFCIN;所述PFC控制输入端PFCIN与所述信号处理电路101的输入端连接,所述信号处理电路101的输出端还与所述PFC驱动电路105连接。
其中,PFC控制输入端接收到的PFC控制信号,经过信号处理电路处理之后依次经过PFC驱动电路、PFC开关。该PFC开关与电机的功率逆变部分连接,用于为功率逆变部分提供高压参考信号。
在一实施例中,再如上述图2所示,该高压集成电路还可以包括保护电路106,以用于确保智能功率模块的正常运行。
示例性的,保护电路可以包括过流保护电路、欠压保护电路、过热保护电路等等。
基于上述图2所示的高压集成电路基础上,可得到如图3所示的智能功率模块,包括第一电机功率逆变电路107、第二电机功率逆变电路108以及上述图2所示的高压集成电路。其中,所述高压集成电路的第一电机驱动电路102 的输出端与第一电机功率逆变电路107的输入端连接;所述高压集成电路的第二电机驱动电路103的输出端与第二电机功率逆变电路108的输入端连接。
高压集成电路的工作电压输入端VCC、第一电机控制输入端及第二电机控制输入端均作为智能功率模块的输入端。
本领域技术人员可以理解的是,智能功率模块还包括一些其他电路结构,与图2中的其他电路输出端连接,例如,智能功率模块还包括PFC开关,PFC开关的输入端与图2中PFC驱动电路输出端连接,PFC开关的输出端分别与第一电机功率逆变电路、第二电机功率逆变电路连接。
需要说明的是,由于风机的功率较低,可以将风机的功率逆变部分也集成到高压集成电路,以减少智能功率模块中的器件数量,进而降低智能功率模块的布局和封装困难,并降低智能功率模块内部的电磁干扰。而压缩机的功率较大,其对应的功率逆变部分不适合集成到高压集成电路中。
基于此,如图4所示,为本发明提出的另一种智能功率模块的高压集成电路结构,在上述图2所示的高压集成电路结构基础上,该高压集成电路还包括第一电机功率逆变电路107,第一电机驱动电路102的输出端与所述第一电机功率逆变电路107的输入端连接。
其中,第一电机功率逆变电路用于为第一电机提供功率,第二电机功率逆变电路用于为第二电机提供功率。第一电机的功率小于第二电机的功率。当应用在空调器中,第一电机为风机,第二电机为压缩机。
示例性的,第一电机功率逆变电路和第二电机功率逆变电路均包括第一开关管、第二开关管、第三开关管、第四开关管、第五开关管以及第六开关管。
基于上述图4所示的高压集成电路基础上,可得到如图5所示的智能功率模块包括:第二电机功率逆变电路108和图4所示的高压集成电路。
其中,所述高压集成电路的第二电机驱动电路103的输出端与第二电机功率逆变电路108的输入端连接。
高压集成电路的工作电压输入端VCC、第一电机控制输入端及第二电机控制输入端也均作为智能功率模块的输入端。
本发明还提供了一种空调器,该空调器包括风机、压缩机以及上述图3或图5所示的智能功率模块。
其中,风机与智能功率模块的第一电机功率逆变电路的输出端连接,压缩机与智能功率模块的第二电机功率逆变电路的输出端连接。
图6为本发明根据一示例性实施例示出的一种驱动控制方法的实施例流程图,基于上述图3或图5所示的智能功率模块,该驱动控制方法包括如下步骤:
步骤610:第一电机控制输入端接收用于驱动第一电机的第一低压驱动信号,第二电机控制输入端接收用于驱动第二电机的第二低压驱动信号。
其中,第一低压驱动信号和第二低压驱动信号可以是频率相同或不相同的方波信号。
步骤620:信号处理电路对第一低压驱动信号进行信号处理后输入第一电机驱动电路,以及对第二低压驱动信号进行信号处理后输入第二电机驱动电路。
步骤630:第一电机驱动电路将处理后的第一低压驱动信号转换为第一高压驱动信号并输入第一电机功率逆变电路,第一电机功率逆变电路根据第一高压驱动信号为外部的第一电机提供功率。
以第一电机驱动电路将第一低压驱动信号转换为第一高压驱动信号为例,其转换过程为先将第一低压驱动信号转换为第一低压脉冲信号,然后对第一低 压脉冲信号进行电平转换得到第一高压驱动信号。
步骤640:第二电机驱动电路将处理后的第二低压驱动信号转换为第二高压驱动信号并输入第二电机功率逆变电路,通过第二电机功率逆变电路根据第二高压驱动信号为外部的第二电机提供功率。
本发明对上述步骤630和步骤640的执行顺序不进行限定。
针对上述步骤610至步骤640的过程,可以参见上述图2至图5所示实施例的相关描述,不再详述。
本领域技术人员在考虑说明书及实践这里公开的发明后,将容易想到本发明的其它实施方案。本发明旨在涵盖本发明的任何变型、用途或者适应性变化,这些变型、用途或者适应性变化遵循本发明的一般性原理并包括本发明未公开的本技术领域中的公知常识或惯用技术手段。说明书和实施例仅被视为示例性的,本发明的真正范围和精神由下面的权利要求指出。
还需要说明的是,术语“包括”、“包含”或者其任何其他变体意在涵盖非排他性的包含,从而使得包括一系列要素的过程、方法、商品或者设备不仅包括那些要素,而且还包括没有明确列出的其他要素,或者是还包括为这种过程、方法、商品或者设备所固有的要素。在没有更多限制的情况下,由语句“包括一个……”限定的要素,并不排除在包括所述要素的过程、方法、商品或者设备中还存在另外的相同要素。
以上所述仅为本发明的较佳实施例而已,并不用以限制本发明,凡在本发明的精神和原则之内,所做的任何修改、等同替换、改进等,均应包含在本发明保护的范围之内。

Claims (9)

  1. 一种智能功率模块的高压集成电路,其特征在于,所述高压集成电路包括第一电机控制输入端、第一电机驱动电路、第二电机控制输入端、第二电机驱动电路以及信号处理电路;
    其中,所述信号处理电路的输入端分别与第一电机控制输入端、第二电机控制输入端连接;所述信号处理电路的输出端分别与第一电机驱动电路的输入端、第二电机驱动电路的输入端连接。
  2. 根据权利要求1所述的高压集成电路,其特征在于,所述第一电机驱动电路和第二电机驱动电路均包括欠压保护电路、上桥驱动电路和下桥驱动电路;所述欠压保护电路与所述上桥驱动电路连接。
  3. 根据权利要求2所述的高压集成电路,其特征在于,所述高压集成电路还包括自举电路和工作电压输入端;
    其中,所述自举电路的输入端与所述工作电压输入端连接,所述自举电路的输出端分别与所述第一电机驱动电路中的欠压保护电路、所述第二电机驱动电路中的欠压保护电路连接。
  4. 根据权利要求1所述的高压集成电路,其特征在于,所述高压集成电路还包括功率因数校正PFC驱动电路和PFC控制输入端;
    所述PFC控制输入端与所述信号处理电路的输入端连接,所述信号处理电路的输出端还与所述PFC驱动电路连接。
  5. 一种智能功率模块的高压集成电路,其特征在于,所述高压集成电路包括第一电机控制输入端、第一电机驱动电路、第一电机功率逆变电路、第二电机控制输入端、第二电机驱动电路以及信号处理电路;
    其中,所述信号处理电路的输入端分别与第一电机控制输入端、第二电机控制输入端连接;所述信号处理电路的输出端分别与第一电机驱动电路的输入端、第二电机驱动电路的输入端连接;所述第一电机功率逆变电路的输入端与所述第一电机驱动电路的输出端连接。
  6. 一种智能功率模块,其特征在于,所述智能功率模块包括:第一电机功率逆变电路、第二电机功率逆变电路以及如上述权利要求1-4任一项所述的智能功率模块的高压集成电路;
    其中,所述高压集成电路的第一电机驱动电路的输出端与所述第一电机功率逆变电路的输入端连接;
    所述高压集成电路的第二电机驱动电路的输出端与所述第二电机功率逆变电路的输入端连接。
  7. 一种智能功率模块,其特征在于,所述智能功率模块包括:第二电机功率逆变电路和如上述权利要求5所述的智能功率模块的高压集成电路;
    其中,所述高压集成电路的第二电机驱动电路的输出端与所述第二电机功率逆变电路的输入端连接。
  8. 一种空调器,其特征在于,所述空调外机包括风机、压缩机以及上述权利要求6或7所述的智能功率模块;
    其中,所述风机与智能功率模块的第一电机功率逆变电路的输出端连接;所述压缩机与智能功率模块的第二电机功率逆变电路的输出端连接。
  9. 一种应用如上述权利要求6或7所述的智能功率模块的驱动控制方法,其特征在于,所述方法包括:
    第一电机控制输入端接收用于驱动第一电机的第一低压驱动信号,第二电机控制输入端接收用于驱动第二电机的第二低压驱动信号;
    信号处理电路对所述第一低压驱动信号进行信号处理后输入第一电机驱动电路,以及对所述第二低压驱动信号进行信号处理后输入第二电机驱动电路;
    所述第一电机驱动电路将处理后的第一低压驱动信号转换为第一高压驱动信号并输入第一电机功率逆变电路,所述第一电机功率逆变电路根据所述第一高压驱动信号为外部的第一电机提供功率;
    所述第二电机驱动电路将处理后的第二低压驱动信号转换为第二高压驱动信号并输入第二电机功率逆变电路,所述第二电机功率逆变电路根据所述第二高压驱动信号为外部的第二电机提供功率。
PCT/CN2020/133827 2019-12-04 2020-12-04 数据存储方法、装置、设备及存储介质 WO2021110128A1 (zh)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
CN201911230252.2 2019-12-04
CN201911230252.2A CN112910320A (zh) 2019-12-04 2019-12-04 高压集成电路、智能功率模块及驱动控制方法

Publications (1)

Publication Number Publication Date
WO2021110128A1 true WO2021110128A1 (zh) 2021-06-10

Family

ID=76110793

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2020/133827 WO2021110128A1 (zh) 2019-12-04 2020-12-04 数据存储方法、装置、设备及存储介质

Country Status (2)

Country Link
CN (1) CN112910320A (zh)
WO (1) WO2021110128A1 (zh)

Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US6043998A (en) * 1998-06-25 2000-03-28 Sharp Kabushiki Kaisha Voltage multiplying device
CN204559377U (zh) * 2015-03-23 2015-08-12 广东美的制冷设备有限公司 集成功率模块和空调器
CN208479500U (zh) * 2018-07-24 2019-02-05 广东美的制冷设备有限公司 智能功率模块的驱动ic电路、智能功率模块及空调器
CN109861501A (zh) * 2019-03-25 2019-06-07 广东美的制冷设备有限公司 智能功率模块和空调器
CN109995261A (zh) * 2019-04-30 2019-07-09 广东美的制冷设备有限公司 智能功率模块和空调器
CN110085581A (zh) * 2019-05-30 2019-08-02 广东美的制冷设备有限公司 高集成智能功率模块及空调器

Family Cites Families (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US7715698B2 (en) * 2005-08-31 2010-05-11 Thor Power Corporation Control electronics for brushless motors
CN205429695U (zh) * 2016-02-18 2016-08-03 杭州士兰微电子股份有限公司 Igbt管保护电路以及使用该保护电路的功率模块
US9704789B1 (en) * 2016-10-16 2017-07-11 Alpha And Omega Semiconductor (Cayman) Ltd. Molded intelligent power module
CN109643959B (zh) * 2017-03-09 2020-11-06 三菱电机株式会社 电力变换装置以及逻辑电路
CN108092521B (zh) * 2017-12-28 2019-11-29 佛山市顺德区蚬华多媒体制品有限公司 智能功率模块
CN207884527U (zh) * 2018-01-30 2018-09-18 广东美的制冷设备有限公司 智能功率模块及空调器
CN208316603U (zh) * 2018-06-13 2019-01-01 重庆美的制冷设备有限公司 智能功率模块的驱动ic电路、智能功率模块及空调器
CN208386448U (zh) * 2018-07-24 2019-01-15 广东美的制冷设备有限公司 智能功率模块的驱动ic电路、智能功率模块及空调器
CN110492795A (zh) * 2019-08-27 2019-11-22 广东美的制冷设备有限公司 用于空调器的智能功率模块和空调器

Patent Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US6043998A (en) * 1998-06-25 2000-03-28 Sharp Kabushiki Kaisha Voltage multiplying device
CN204559377U (zh) * 2015-03-23 2015-08-12 广东美的制冷设备有限公司 集成功率模块和空调器
CN208479500U (zh) * 2018-07-24 2019-02-05 广东美的制冷设备有限公司 智能功率模块的驱动ic电路、智能功率模块及空调器
CN109861501A (zh) * 2019-03-25 2019-06-07 广东美的制冷设备有限公司 智能功率模块和空调器
CN109995261A (zh) * 2019-04-30 2019-07-09 广东美的制冷设备有限公司 智能功率模块和空调器
CN110085581A (zh) * 2019-05-30 2019-08-02 广东美的制冷设备有限公司 高集成智能功率模块及空调器

Also Published As

Publication number Publication date
CN112910320A (zh) 2021-06-04

Similar Documents

Publication Publication Date Title
KR100617884B1 (ko) 펄스폭변조기시스템
US6160724A (en) Boost doubler circuit wherein an AC bridge rectifier is not required
CN105162370A (zh) 一种混合动力电动车用开关磁阻电机控制器及其控制方法
CN207853873U (zh) 一种驱动互锁电路及汽车
CN108063435B (zh) 智能功率模块、空调器控制器及空调器
US20200252017A1 (en) Electric motor drive device
WO2021110128A1 (zh) 数据存储方法、装置、设备及存储介质
CN105407582B (zh) 一种led驱动电路和led电路
EP4075658B1 (en) Inverter circuit control method and related device
CN110752788A (zh) 智能功率模块的驱动ic电路、智能功率模块及空调器
Jungreis et al. Adjustable speed drive for residential applications
CN108123419B (zh) 一种过电流保护方法、装置、芯片和控制电路
CN218920290U (zh) 分立半桥三相逆变电路、控制板和空调器
CN109039094A (zh) 一种智能功率模块
WO2024011823A1 (zh) 一种pwm信号解码器及使用其的单输入高压集成电路
CN108931041A (zh) 电控组件及空调器
CN114625045A (zh) 一种具有可编程驱动hvic芯片
CN109379018A (zh) 一种三相交流电机的变频控制电路及控制方法
CN105553313B (zh) 具有保护结构的npc型三电平逆变器驱动电路及方法
CN107769568A (zh) 隔离电源电路、设置方法、功率驱动电源及设备
CN212413040U (zh) 智能功率模块及空调器
CN210240080U (zh) 一种高压吊扇控制器
CN209419505U (zh) 改进型全桥驱动电路
CN111769766A (zh) 一种小型化航空高压电机控制器
CN209748427U (zh) 一种冰箱变频驱动器

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 20896842

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

32PN Ep: public notification in the ep bulletin as address of the adressee cannot be established

Free format text: NOTING OF LOSS OF RIGHTS PURSUANT TO RULE 112(1) EPC (EPO FORM 1205A DATED 10.11.2022)

122 Ep: pct application non-entry in european phase

Ref document number: 20896842

Country of ref document: EP

Kind code of ref document: A1