WO2021110052A1 - 液冷板及散热设备 - Google Patents

液冷板及散热设备 Download PDF

Info

Publication number
WO2021110052A1
WO2021110052A1 PCT/CN2020/133393 CN2020133393W WO2021110052A1 WO 2021110052 A1 WO2021110052 A1 WO 2021110052A1 CN 2020133393 W CN2020133393 W CN 2020133393W WO 2021110052 A1 WO2021110052 A1 WO 2021110052A1
Authority
WO
WIPO (PCT)
Prior art keywords
liquid
cooling
phase
heat
fin
Prior art date
Application number
PCT/CN2020/133393
Other languages
English (en)
French (fr)
Inventor
刘帆
陶成
李帅
Original Assignee
中兴通讯股份有限公司
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 中兴通讯股份有限公司 filed Critical 中兴通讯股份有限公司
Priority to EP20897060.8A priority Critical patent/EP4072254A4/en
Priority to US17/781,691 priority patent/US20230022410A1/en
Publication of WO2021110052A1 publication Critical patent/WO2021110052A1/zh

Links

Images

Classifications

    • HELECTRICITY
    • H05ELECTRIC TECHNIQUES NOT OTHERWISE PROVIDED FOR
    • H05KPRINTED CIRCUITS; CASINGS OR CONSTRUCTIONAL DETAILS OF ELECTRIC APPARATUS; MANUFACTURE OF ASSEMBLAGES OF ELECTRICAL COMPONENTS
    • H05K7/00Constructional details common to different types of electric apparatus
    • H05K7/20Modifications to facilitate cooling, ventilating, or heating
    • H05K7/2039Modifications to facilitate cooling, ventilating, or heating characterised by the heat transfer by conduction from the heat generating element to a dissipating body
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F28HEAT EXCHANGE IN GENERAL
    • F28DHEAT-EXCHANGE APPARATUS, NOT PROVIDED FOR IN ANOTHER SUBCLASS, IN WHICH THE HEAT-EXCHANGE MEDIA DO NOT COME INTO DIRECT CONTACT
    • F28D15/00Heat-exchange apparatus with the intermediate heat-transfer medium in closed tubes passing into or through the conduit walls ; Heat-exchange apparatus employing intermediate heat-transfer medium or bodies
    • F28D15/02Heat-exchange apparatus with the intermediate heat-transfer medium in closed tubes passing into or through the conduit walls ; Heat-exchange apparatus employing intermediate heat-transfer medium or bodies in which the medium condenses and evaporates, e.g. heat pipes
    • F28D15/025Heat-exchange apparatus with the intermediate heat-transfer medium in closed tubes passing into or through the conduit walls ; Heat-exchange apparatus employing intermediate heat-transfer medium or bodies in which the medium condenses and evaporates, e.g. heat pipes having non-capillary condensate return means
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L23/00Details of semiconductor or other solid state devices
    • H01L23/34Arrangements for cooling, heating, ventilating or temperature compensation ; Temperature sensing arrangements
    • H01L23/46Arrangements for cooling, heating, ventilating or temperature compensation ; Temperature sensing arrangements involving the transfer of heat by flowing fluids
    • H01L23/473Arrangements for cooling, heating, ventilating or temperature compensation ; Temperature sensing arrangements involving the transfer of heat by flowing fluids by flowing liquids
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L23/00Details of semiconductor or other solid state devices
    • H01L23/34Arrangements for cooling, heating, ventilating or temperature compensation ; Temperature sensing arrangements
    • H01L23/36Selection of materials, or shaping, to facilitate cooling or heating, e.g. heatsinks
    • H01L23/373Cooling facilitated by selection of materials for the device or materials for thermal expansion adaptation, e.g. carbon
    • H01L23/3733Cooling facilitated by selection of materials for the device or materials for thermal expansion adaptation, e.g. carbon having a heterogeneous or anisotropic structure, e.g. powder or fibres in a matrix, wire mesh, porous structures
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L23/00Details of semiconductor or other solid state devices
    • H01L23/34Arrangements for cooling, heating, ventilating or temperature compensation ; Temperature sensing arrangements
    • H01L23/42Fillings or auxiliary members in containers or encapsulations selected or arranged to facilitate heating or cooling
    • H01L23/427Cooling by change of state, e.g. use of heat pipes
    • HELECTRICITY
    • H05ELECTRIC TECHNIQUES NOT OTHERWISE PROVIDED FOR
    • H05KPRINTED CIRCUITS; CASINGS OR CONSTRUCTIONAL DETAILS OF ELECTRIC APPARATUS; MANUFACTURE OF ASSEMBLAGES OF ELECTRICAL COMPONENTS
    • H05K7/00Constructional details common to different types of electric apparatus
    • H05K7/20Modifications to facilitate cooling, ventilating, or heating
    • H05K7/2029Modifications to facilitate cooling, ventilating, or heating using a liquid coolant with phase change in electronic enclosures
    • H05K7/20309Evaporators
    • HELECTRICITY
    • H05ELECTRIC TECHNIQUES NOT OTHERWISE PROVIDED FOR
    • H05KPRINTED CIRCUITS; CASINGS OR CONSTRUCTIONAL DETAILS OF ELECTRIC APPARATUS; MANUFACTURE OF ASSEMBLAGES OF ELECTRICAL COMPONENTS
    • H05K7/00Constructional details common to different types of electric apparatus
    • H05K7/20Modifications to facilitate cooling, ventilating, or heating
    • H05K7/2029Modifications to facilitate cooling, ventilating, or heating using a liquid coolant with phase change in electronic enclosures
    • H05K7/20318Condensers
    • HELECTRICITY
    • H05ELECTRIC TECHNIQUES NOT OTHERWISE PROVIDED FOR
    • H05KPRINTED CIRCUITS; CASINGS OR CONSTRUCTIONAL DETAILS OF ELECTRIC APPARATUS; MANUFACTURE OF ASSEMBLAGES OF ELECTRICAL COMPONENTS
    • H05K7/00Constructional details common to different types of electric apparatus
    • H05K7/20Modifications to facilitate cooling, ventilating, or heating
    • H05K7/2029Modifications to facilitate cooling, ventilating, or heating using a liquid coolant with phase change in electronic enclosures
    • H05K7/20327Accessories for moving fluid, for connecting fluid conduits, for distributing fluid or for preventing leakage, e.g. pumps, tanks or manifolds
    • HELECTRICITY
    • H05ELECTRIC TECHNIQUES NOT OTHERWISE PROVIDED FOR
    • H05KPRINTED CIRCUITS; CASINGS OR CONSTRUCTIONAL DETAILS OF ELECTRIC APPARATUS; MANUFACTURE OF ASSEMBLAGES OF ELECTRICAL COMPONENTS
    • H05K7/00Constructional details common to different types of electric apparatus
    • H05K7/20Modifications to facilitate cooling, ventilating, or heating
    • H05K7/2029Modifications to facilitate cooling, ventilating, or heating using a liquid coolant with phase change in electronic enclosures
    • H05K7/20336Heat pipes, e.g. wicks or capillary pumps
    • HELECTRICITY
    • H05ELECTRIC TECHNIQUES NOT OTHERWISE PROVIDED FOR
    • H05KPRINTED CIRCUITS; CASINGS OR CONSTRUCTIONAL DETAILS OF ELECTRIC APPARATUS; MANUFACTURE OF ASSEMBLAGES OF ELECTRICAL COMPONENTS
    • H05K7/00Constructional details common to different types of electric apparatus
    • H05K7/20Modifications to facilitate cooling, ventilating, or heating
    • H05K7/20536Modifications to facilitate cooling, ventilating, or heating for racks or cabinets of standardised dimensions, e.g. electronic racks for aircraft or telecommunication equipment
    • H05K7/20663Liquid coolant with phase change, e.g. heat pipes
    • H05K7/20681Liquid coolant with phase change, e.g. heat pipes within cabinets for removing heat from sub-racks
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F28HEAT EXCHANGE IN GENERAL
    • F28DHEAT-EXCHANGE APPARATUS, NOT PROVIDED FOR IN ANOTHER SUBCLASS, IN WHICH THE HEAT-EXCHANGE MEDIA DO NOT COME INTO DIRECT CONTACT
    • F28D15/00Heat-exchange apparatus with the intermediate heat-transfer medium in closed tubes passing into or through the conduit walls ; Heat-exchange apparatus employing intermediate heat-transfer medium or bodies
    • F28D15/02Heat-exchange apparatus with the intermediate heat-transfer medium in closed tubes passing into or through the conduit walls ; Heat-exchange apparatus employing intermediate heat-transfer medium or bodies in which the medium condenses and evaporates, e.g. heat pipes
    • F28D15/04Heat-exchange apparatus with the intermediate heat-transfer medium in closed tubes passing into or through the conduit walls ; Heat-exchange apparatus employing intermediate heat-transfer medium or bodies in which the medium condenses and evaporates, e.g. heat pipes with tubes having a capillary structure
    • F28D15/046Heat-exchange apparatus with the intermediate heat-transfer medium in closed tubes passing into or through the conduit walls ; Heat-exchange apparatus employing intermediate heat-transfer medium or bodies in which the medium condenses and evaporates, e.g. heat pipes with tubes having a capillary structure characterised by the material or the construction of the capillary structure
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F28HEAT EXCHANGE IN GENERAL
    • F28DHEAT-EXCHANGE APPARATUS, NOT PROVIDED FOR IN ANOTHER SUBCLASS, IN WHICH THE HEAT-EXCHANGE MEDIA DO NOT COME INTO DIRECT CONTACT
    • F28D15/00Heat-exchange apparatus with the intermediate heat-transfer medium in closed tubes passing into or through the conduit walls ; Heat-exchange apparatus employing intermediate heat-transfer medium or bodies
    • F28D15/02Heat-exchange apparatus with the intermediate heat-transfer medium in closed tubes passing into or through the conduit walls ; Heat-exchange apparatus employing intermediate heat-transfer medium or bodies in which the medium condenses and evaporates, e.g. heat pipes
    • F28D2015/0291Heat-exchange apparatus with the intermediate heat-transfer medium in closed tubes passing into or through the conduit walls ; Heat-exchange apparatus employing intermediate heat-transfer medium or bodies in which the medium condenses and evaporates, e.g. heat pipes comprising internal rotor means, e.g. turbine driven by the working fluid

Definitions

  • This application relates to the technical field of liquid cooling and heat dissipation, for example, to a liquid cooling plate and a heat dissipation device.
  • the phase-change working fluid circuit heat dissipation system based on flow boiling heat exchange has significant advantages over single-phase heat transfer in solving high local heat flux density and large-scale heat transfer.
  • the two-phase fluid circuit will be an effective way to solve high heat flux in the future.
  • the two-phase liquid usually has the problem of subcooling when it enters the cold plate.
  • the one-way heat transfer has a larger thermal resistance than the two-phase heat transfer, which will cause the uniformity of the inlet heat dissipation unit and other heat dissipation units to be reduced; and due to the pressure comparison of the two-phase system Large, the flow channel structure optimization method inside the cold plate is limited, and the convection heat exchange area for heat dissipation is limited. When used for cabinet cooling, the chip has the risk of exceeding the temperature.
  • This application provides a liquid cooling plate and heat dissipation equipment.
  • the embodiment of the application provides a liquid cooling plate, including:
  • a single-phase channel and a two-phase channel is provided with first fins at intervals, and the two-phase channel is provided with second fins at intervals; After the liquid cooling liquid undergoes heat exchange, the liquid cooling liquid after the heat exchange is converted into a gas-liquid two-phase cooling liquid, and the second fin is arranged to be in contact with the gas-liquid two-phase flowing through the two-phase channel. After the cooling liquid exchanges heat, the heat-exchanged cooling liquid is output.
  • the embodiment of the present application provides a heat dissipation device, including:
  • the pump is arranged to make the passing cooling liquid flow to the liquid-cooling plate to absorb heat, and the condenser is arranged to make the cooling liquid that has absorbed heat release heat and then flow back to the liquid-cooling plate again.
  • FIG. 1 is a schematic structural diagram of a liquid cooling plate provided by an embodiment of the application
  • FIG. 2a is a schematic structural diagram of a liquid cooling plate provided by an embodiment of the application.
  • FIG. 2b is a schematic structural diagram of a liquid cooling plate provided by an embodiment of the application.
  • Fig. 3 is an example diagram of a fin surface provided by an embodiment of the application.
  • FIG. 4 is a schematic diagram of the application of a metal foam provided by an embodiment of the application.
  • FIG. 5 is a schematic diagram of another application of metal foam provided by an embodiment of the application.
  • FIG. 6 is a schematic diagram of another application of metal foam provided by an embodiment of the application.
  • FIG. 7 is a schematic structural diagram of a heat dissipation device provided by an embodiment of the application.
  • FIG. 8 is a schematic structural diagram of another heat dissipation device provided by an embodiment of the application.
  • FIG. 9 is a connection diagram of a liquid cooling plate provided by an embodiment of the application.
  • the liquid cooling plate is a phase change working fluid circuit heat dissipation structure based on flow boiling heat exchange, which can solve the problems of high local heat flux density and large-scale heat transfer.
  • the two-phase liquid cooling technology has the following advantages:
  • the boiling heat transfer coefficient can reach 1-10W/cm 2 K, which is an order of magnitude higher than single-phase.
  • phase change process uses the latent heat of liquid vaporization, and the latent heat value of the phase change is dozens of times that of water cooling.
  • the temperature uniformity is better. In the evaporation process, the isothermal phase change evaporation, so the temperature uniformity of multiple cold plates in the multi-evaporator series system is better, and the uniform multi-point heat source has outstanding advantages.
  • the liquid-cooling plate is arranged in two parts including a single-phase passage for liquid cooling and supercooling and a two-phase passage for gas overheating.
  • the low-temperature liquid coolant and the high-temperature gas-liquid two-phase refrigerant are carried out in the liquid-cooled plate.
  • the heat exchange allows the supercooled coolant to be preheated to a certain degree and is close to the saturation state, thereby solving the problems of high chip temperature and poor overall temperature uniformity caused by single-phase heat exchange at the inlet.
  • Fig. 1 is a schematic structural diagram of a liquid cooling plate provided by an embodiment of the application.
  • the liquid cooling plate in the embodiment of the present application includes a single-phase channel 10 and a two-phase channel 20.
  • a first fin 11 is provided, and second fins 21 are arranged in the two-phase channel 20 at intervals; the liquid cooling liquid becomes a gas-liquid two-phase after heat exchange through the first fin 11 in the single-phase channel 10
  • the cooling liquid is output after heat exchange through the second fin 21 of the two-phase channel 20.
  • the liquid cooling plate in the embodiment of the present application includes: a single-phase channel and a two-phase channel.
  • the single-phase channel is provided with first fins at intervals, and the two-phase channel is provided with second fins at intervals; the first fins
  • the fins are arranged to exchange heat with the liquid cooling liquid flowing through the single-phase channel, so that the liquid cooling liquid after the heat exchange is converted into a gas-liquid two-phase cooling liquid, and the second fins are arranged to flow After the gas-liquid two-phase cooling liquid passing through the two-phase channel exchanges heat, the heat-exchanged cooling liquid is output.
  • the single-phase channel 10 may be a channel through which the cooling liquid flows.
  • the structure of the single-phase channel 10 may be a round tube or a flat tube.
  • the single-phase channel 10 may be provided with a first fin 11, The number of the first fins 11 may be multiple.
  • the first fins 11 in the single-phase channel 10 may flow in the same direction as the cooling liquid, and multiple first fins 11 may be arranged in parallel.
  • the arrangement of the first fin 11 in the single-phase channel 10 can increase the heat exchange efficiency and improve the heat dissipation effect of the cooling liquid.
  • the structure of the two-phase channel 20 can be the same as that of the single-phase channel 10, and can be a round tube or a flat tube structure.
  • the second fins 21 can be arranged inside, and a plurality of second fins 21 can be arranged at intervals.
  • the two-phase channel 20 It can be a channel through which the cooling liquid of a gas-liquid two-phase working medium flows.
  • the cooling liquid can absorb heat in the single-phase channel 10 and convert the liquid into a gas-liquid two-phase cooling liquid, and the cooling liquid that is converted into a gas-liquid two-phase can be renewed
  • the two-phase channel 20 flows into the liquid cold plate to perform heat exchange again, and the gas-liquid two-phase cooling liquid can flow out of the liquid cold plate after heat exchange again. Since the gas-liquid two-phase cooling liquid has a low heat exchange temperature difference, the problem of overcooling of the liquid-cooled plate can be prevented.
  • Figures 2a and 2b are schematic diagrams of the structure of a liquid cooling plate provided by an embodiment of the present application. See Figures 2a and 2b, where Figure 2b is a view of the liquid cooling plate in Figure 2a in the aa direction.
  • the liquid cooling plate 100 may be composed of a single-phase channel and a two-phase channel, wherein the cooling liquid in a liquid state can flow into the single-phase channel of the liquid cooling plate through the single-phase inlet 50 of the single-phase channel, and the single-phase channel may include fins. There are gaps between the fins 22 and the plurality of fins 22 to form a fluid channel 30 through which the cooling liquid flows.
  • the cooling liquid can exchange heat in the fluid channel 30 to absorb the heat from the chip to be dissipated.
  • the cooling liquid can be replaced by the liquid after heat exchange.
  • the state is converted to a gas-liquid two-phase state, that is, it includes both liquid cooling liquid and gas cooling liquid.
  • the gas-liquid two-phase cooling liquid can flow out from the single-phase outlet 40.
  • the cooling liquid in the gas-liquid two-phase state can flow in through the inlet 60 of the two-phase channel, exchange heat in the fluid channel again, and flow through the outlet 70 of the two-phase channel.
  • the structure of the two-phase channel can be the same as that of the single-phase channel.
  • the two-phase channel and the single-phase channel can be separated by a gap 80.
  • the two-phase channel can also include fins 22 to increase the heat dissipation area and improve The heat exchange effect of the liquid cold plate.
  • a liquid cooling plate is formed by a single-phase channel and a two-phase channel.
  • the first fin is spaced in the single-phase channel and the second fin is spaced in the two-phase channel.
  • the liquid coolant passes through the single-phase channel. After heat exchange, the first fin becomes a gas-liquid two-phase cooling liquid, which is output after heat exchange through the second fin in the two-phase channel to realize the temperature uniformity of the liquid cooling plate, reduce the convective heat transfer resistance, and improve the cooling The effect can effectively prevent the occurrence of overcooling problems.
  • the surface of the first fin in the liquid cooling plate is a rough surface; and/or the surface of the second fin is a rough surface.
  • FIG. 3 is an example diagram of a fin surface provided by an embodiment of the application; referring to FIG. 3, in the embodiment of the application, the fin in the liquid cooling plate can be mechanically processed, so that the surface of the fin becomes a rough surface , Can increase the heat dissipation area, and form the vaporization core of boiling heat exchange, so as to improve the heat exchange effect of the liquid-cooled plate.
  • the surface of the first fin in the single-phase channel can be treated as a rough surface or the surface of the second fin in the two-phase channel can be treated as a rough surface according to the heat dissipation requirements of the liquid cooling plate, for example,
  • the second fin in the two-phase channel can be processed as a rough surface, and the first fin in the single-phase channel is not processed and remains as a smooth surface.
  • the surface of the first fin in the single-phase channel and the surface in the two-phase channel may not be rough surfaces at the same time.
  • the inner surface of the cavity in the single-phase channel and the two-phase channel can also be treated as a rough surface.
  • metal foam is filled between the first fins; and/or metal foam is filled between the second fins.
  • FIG. 4 is a schematic diagram of the application of a metal foam provided by an embodiment of the application; referring to FIG. 4, in an embodiment, a metal foam 111 may be filled between the fins 22 in the liquid cooling plate to increase the heat dissipation area.
  • 111 can be a special metal material containing foam pores, which can be used as a vaporization core for boiling heat exchange.
  • the liquid cooling plate may be filled with metal foam in the gaps between the first fins and metal foam in the gaps between the second fins, respectively. In an embodiment, only the gaps between the first fins may be filled with metal foam, or only the gaps between the second fins may be filled with metal foam.
  • metal foam is attached to the surface of the first fin; and/or metal foam is attached to the surface of the second fin.
  • metal foam can also be attached to the inner fins of the liquid cooling plate.
  • FIG. 5 is a schematic diagram of another metal foam application provided by the embodiments of this application. See FIG. 5, the inner fins 22 of the liquid cooling plate can be surrounded by The metal foam 111 is wrapped. The metal foam 111 can be attached to the surface of the first fin or the surface of the second fin. In one embodiment, the metal foam can be attached only to the surface of the first fin or only to the second fin. Metal foam is attached to the surface of the sheet.
  • the first fin is made of metal foam; and/or, the second fin is made of metal foam.
  • the metal foam in the liquid cooling plate can be directly used as fins for heat exchange, which can increase the heat dissipation area of the cooling liquid and the liquid cooling plate, and improve the heat dissipation effect through boiling heat exchange.
  • the first fin or the second fin can be used to exchange heat.
  • the two fins are made of metal foam.
  • FIG. 6 is a schematic diagram of another metal foam application provided by the embodiment of the application. Referring to FIG. 6, the metal foam 111 can be used as fins and arranged in the liquid cooling plate, and can be used as single-phase channels. The first fin and the second fin of the two-phase channel. In an embodiment, the first fin and the second fin may not be metal foam at the same time.
  • the first fin and the second fin in the liquid cooling plate may not be all metal foam at the same time, there may be a threshold number of second fins in the two-phase channel, which may be metal foam, and the other second fins may be Fins of normal materials, such as iron, copper, and aluminum.
  • FIG. 7 is a schematic structural diagram of a heat dissipation device provided by an embodiment of the application.
  • the heat dissipation device in an embodiment of the application may include a condenser 300, a pump 200, and a liquid as described in any of the embodiments of the application.
  • the cold plate 100 the cooling liquid flows through the pump 200 to the liquid cold plate 100 to absorb heat. After the heat is absorbed, the cooling liquid passes through the condenser 300 to release heat and then flows back to the liquid cold plate 100.
  • the pump is configured to cause the passing cooling liquid to flow to the liquid cooling plate to absorb heat
  • the condenser is configured to cause the cooling liquid after the heat absorption to release heat and then flow back to the pump again.
  • the heat dissipation device may be composed of a liquid cold plate 100, a pump 200, and a condenser 300.
  • the liquid cold plate 100 may be connected to the pump 200 and the condenser 300 through a fluid pipe, and the cooling liquid may be connected to the liquid cold plate through a fluid pipe. 100.
  • the pump 200 and the condenser 300 circulate in circulation.
  • the pump 200 can be a cooling liquid circulating pump, which can speed up the circulation of the cooling liquid in the heat dissipation device.
  • the pump 200 can include a vacuum pump and a turbo pump.
  • the condenser 300 may be a device that absorbs the heat of the cooling liquid and converts the cooling liquid from a gaseous state or a two-phase gas-liquid phase to a liquid, and may include a spray condenser, a packed condenser, and a shower condenser. In the heat dissipation equipment, the coolant absorbs heat in the liquid cold plate and releases heat in the condenser, dissipating the heat of the object to be dissipated. In one embodiment, the condenser 300 may generally store chilled water or refrigerant to convert the cooling liquid from gas to liquid. In an embodiment, in order to speed up the heat dissipation efficiency, the heat dissipation device may include a plurality of liquid cooling plates 100, and the liquid cooling plates 100 may be connected in series or in parallel.
  • the temperature of the coolant entering the pump 200 needs to be kept below a certain temperature.
  • a liquid cooling plate including only a single-phase channel can be installed in front of the inlet of the pump 200, so that the liquid The cold plate is too cold, reducing the temperature of the coolant entering the pump 200.
  • FIG. 8 is a schematic structural diagram of another heat dissipation device provided by an embodiment of the application.
  • the heat dissipation device of the embodiment of the application further includes a liquid storage tank 3, a liquid supply pipeline 5, a liquid supply branch pipeline 6, and a liquid supply Liquid separator 7, connecting pipe 8, veneer 9, liquid return collection pipe 101, liquid return branch pipe 110, and liquid return main pipe 12; at least two of the liquid cooling plates are arranged in the single plate 9; the condenser 2.
  • the liquid return collecting pipe 101, the liquid return branch pipe 110 and the liquid return main pipe 12 are connected in sequence to form a loop.
  • the liquid storage tank 3 may be a storage tank for storing refrigerant or chilled water, wherein the refrigerant may be Freon, which may provide refrigerant for the condenser, the liquid supply pipeline 5, the liquid supply branch pipeline 6,
  • the liquid supply distributor 7, the connecting pipe 8, the liquid return collecting pipe 101, the liquid return branch pipe 110, and the liquid return main pipe 12 can be fluid channels connecting multiple single plates 9, which can facilitate the circulation of cooling liquid in the heat dissipation device ,
  • the cooling liquid is driven by the pump 4 and enters the liquid supply distributor 7 through the liquid supply pipeline 5 and the liquid supply branch pipeline 6.
  • the liquid phase refrigerant is distributed through the liquid supply separator 7 and then enters the connecting pipe 8 and the cold plate.
  • the cold plate can be connected to the object to be dissipated.
  • the coolant absorbs heat and boils, transforming into gas and liquid.
  • Phase state then flows through the connecting pipe 8 to collect into the liquid return collection pipe 101, and then return to the pump drive unit 1 through the liquid return branch pipe 110 and the liquid return main pipe 12.
  • the two-phase refrigerant dissipates heat through the condenser 2 Get out.
  • the single board 9 may be a device provided with a plurality of liquid cooling plates, and a card slot can be preset in the single board 9 and the liquid cooling plate can be inserted into the card slot.
  • the single boards 9 may include multiple, and the single boards 9 may be connected in series or in parallel, and only the parallel connection is shown in FIG. 8.
  • the cooling liquid can enter the liquid-cooling plate in the veneer 9 through the lower part of the veneer 9, and the two-phase channel in the liquid-cooling plate close to the upper part of the veneer can enter the gas-liquid two-phase cooling liquid, and the liquid underneath The single-phase channel in the cold plate can enter the liquid coolant.
  • the heat exchange structure of the liquid cold plate in the embodiments of the present application can accelerate the speed of the supercooled liquid approaching the saturated state, and reduce the convective heat transfer resistance in the liquid cold plate, which can improve the heat exchange efficiency.
  • At least two liquid cooling plates in the single plate 9 are connected in series.
  • multiple liquid cooling plates may be provided in the single plate 9 as required, and the liquid cooling plates in the single plate may be connected in series or in parallel.
  • the veneer 9 may also include a liquid-cooling board containing only a single-phase channel.
  • FIG. 9 is a connection diagram of a liquid-cooling board provided in an embodiment of the application. See FIG. 9, in the veneer 9 It includes a two-phase liquid cooling plate 9-3 with a single-phase channel and a two-phase channel, and three single-phase liquid cooling plates 9-4 with a single-phase channel. Multiple liquid cooling plates are connected in series.
  • a two-phase liquid cooling plate 9-3 can be installed at the veneer inlet 9-1, and a single-phase liquid cooling plate 9-4 can be installed at the veneer outlet 9-5, which can reduce the temperature of the coolant and ensure that it enters the pump 4. The coolant temperature will not cause damage to the pump 4.
  • the cooling liquid flows through multiple liquid cooling plates through the fluid channel 9-2, and the liquid cooling liquid becomes gas-liquid after passing through one or more two-phase liquid cooling plates 9-3 or single-phase liquid cooling plates 9-4.
  • the two-phase cooling liquid can re-flow the gas-liquid two-phase cooling liquid into the two-phase channel of the two-phase liquid cooling plate 9-3 for heat exchange.
  • the gas-liquid two-phase cooling liquid is returned to the two-phase liquid cooling plate 9-3 for sufficient heat exchange, which can reduce the convection heat transfer resistance in the veneer, make the heat exchange of the veneer uniform, and improve the heat exchange effect of the heat sink .
  • the single board is connected to at least one chip to be dissipated.
  • the chip to be dissipated may be a chip that needs to be dissipated.
  • the chip to be dissipated can emit a large amount of heat during operation. In the case that the chip to be dissipated has uneven heat dissipation or does not dissipate heat in time, the heat dissipating chip itself can be damaged.
  • the chip to be dissipated can be connected to the single board 9 of the heat dissipating device by means of thermally conductive silicone paste or insertion, see FIG. 9, a two-phase liquid cooling plate 9-3 and a single-phase liquid cooling plate 9 -4 can be pasted with multiple chips to be dissipated.
  • the cooling liquid absorbs the heat generated by the chip and boils, changing from liquid to gas-liquid two-phase, and then flows through the connecting cold plate outlet 9-2 to return to the pump 4.
  • the two-phase liquid cooling plate 9-3 can be connected to a low-power chip
  • the single-phase liquid cooling plate 9-4 can be connected to a high-power chip, where the heat generated when the low-power chip works is less than the high-power chip works.
  • the chips to be dissipated may be connected to multiple liquid cooling plates according to the power of the chips to be dissipated for heat dissipation.
  • the heat dissipation device includes at least two single boards, and the at least two single boards are connected in parallel.
  • the heat dissipation device can be composed of multiple single boards.
  • the heat dissipation device can be designed according to the cabinet to be dissipated.
  • the single board can be set to multiple layers, and multiple single boards can be set in each layer.
  • Multiple liquid cooling plates can be arranged on the board, and multiple chips to be dissipated can be arranged on each liquid cooling plate.
  • the single boards in multiple layers can be connected in parallel.
  • the liquid cooling plate provided in the embodiment of the present application is applied to two-phase heat dissipation of electronic devices.
  • the liquid cooling plate provided in the present application is to solve the problem of using a two-phase working fluid evaporative heat exchange cold plate to dissipate the circuit board.
  • the supercooled liquid phase working medium causes the problems of poor temperature uniformity of the liquid-cooled plate at the entrance, and the limited heat dissipation area of the liquid-cooled plate itself and large thermal resistance.

Landscapes

  • Engineering & Computer Science (AREA)
  • Microelectronics & Electronic Packaging (AREA)
  • Physics & Mathematics (AREA)
  • Thermal Sciences (AREA)
  • General Physics & Mathematics (AREA)
  • Condensed Matter Physics & Semiconductors (AREA)
  • Computer Hardware Design (AREA)
  • Power Engineering (AREA)
  • Mechanical Engineering (AREA)
  • General Engineering & Computer Science (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Sustainable Development (AREA)
  • Chemical & Material Sciences (AREA)
  • Materials Engineering (AREA)
  • Aviation & Aerospace Engineering (AREA)
  • Cooling Or The Like Of Electrical Apparatus (AREA)

Abstract

一种液冷板及散热设备,其中,该液冷板包括单相通道(10)和两相通道(20),所述单相通道(10)内间隔设置第一翅片(11),所述两相通道(20)内间隔设置第二翅片(21);所述第一翅片(11)设置为与流经所述单相通道(10)的液态的冷却液进行换热后,使换热后的液态的冷却液转化为气液两相的冷却液,所述第二翅片(21)设置为与流经所述两相通道(20)的气液两相的冷却液进行换热后,使换热后的冷却液输出。

Description

液冷板及散热设备
本申请要求在2019年12月03日提交中国专利局、申请号为201911221327.0的中国专利申请的优先权,该申请的全部内容通过引用结合在本申请中。
技术领域
本申请涉及液冷散热技术领域,例如涉及一种液冷板和散热设备。
背景技术
随着通信技术的不断发展,电子设备的功耗不断提升,单个机柜的机耗已由过去3~4KW增加到百千瓦量级,热流密度达20W/cm 2以上,风冷与单相液难以满足未来高热流密度电子产品的高可靠的散热需求,温度控制已经成为制约高热流密度电子产品发展的关键因素。
基于流动沸腾换热的相变工质流体回路散热系统在解决局部热流密度高和大规模热量传输方面相对单相换热均具有显著优势,两相流体回路将是解决未来高热流的有效途径。但是两相液在进入冷板时工作通常存在过冷的问题,单向换热比两相换热热阻大,会造成入口散热单元与其他散热单元均匀性降低;并且由于两相系统压力比较大,冷板内部的流道结构优化方式有限,散热用的对流换热面积有限,用于机柜降温时,芯片存在温度超标的风险。
发明内容
本申请提供一种液冷板和散热设备。
本申请实施例提供一种液冷板,包括:
单相通道和两相通道,所述单相通道内间隔设置第一翅片,所述两相通道内间隔设置第二翅片;所述第一翅片设置为与流经所述单相通道的液态的冷却液进行换热后,使换热后的液态的冷却液转化为气液两相的冷却液,所述第二翅片设置为与流经所述两相通道的气液两相的冷却液进行换热后,使换热后的冷却液输出。
本申请实施例提供一种散热设备,包括:
冷凝器、泵以及如本申请实施例中任一所述的液冷板;
泵设置为使经过的冷却液流向所述液冷板进行吸热,冷凝器设置为使吸热后的冷却液放热后重新流回所述液冷板。
附图说明
图1为本申请实施例提供的一种液冷板的结构示意图;
图2a为本申请实施例提供的一种液冷板的结构示意图;
图2b为本申请实施例提供的一种液冷板的结构示意图;
图3为本申请实施例提供的一种翅片表面的示例图;
图4为本申请实施例提供的一种金属泡沫的应用示意图;
图5为本申请实施例提供的另一种金属泡沫的应用示意图;
图6为本申请实施例提供的另一种金属泡沫的应用示意图;
图7为本申请实施例提供的一种散热设备的结构示意图;
图8为本申请实施例提供的另一种散热设备的结构示意图;
图9为本申请实施例提供的一种液冷板的连接关系图。
具体实施方式
下文中将结合附图对本申请的实施例进行说明。在不冲突的情况下,本申请中的实施例及实施例中的特征可以相互任意组合。本申请实施例中,液冷板为基于流动沸腾换热的相变工质流体回路散热结构,可以解决局部热流密度高和大规模热量传输的问题,两相液冷技术具有以下几方面优势:
1.换热热流密度高。沸腾换热系数可达1~10W/cm 2K,比单相高一个数量级。
2.热量传输能力高。相变过程利用液体气化潜热,相变潜热值是水冷的几十倍以上。
3.温度均匀性较好。蒸发过程中,等温相变蒸发,因此多蒸发器串联系统中多个冷板温度均匀性较好,均匀多点热源具有突出的优势。
本申请实施例通过将液冷板设置为包括液冷过冷的单相通路和气体过热的两相通路两个部分,低温液态的冷却液与高温气液两相制冷剂在液冷板内进行热量交换,使得过冷的冷却液得到一定的预热,接近饱和态,从而解决进口处单相换热导致的芯片温度较高和芯片整体温度均匀性较差的问题。对液冷板内通道表面进行机械加工,人为增加表面的粗糙度或者增加泡沫金属材料,增加 沸腾换热系数,在有限的对流换热面积下,来强化沸腾换热,降低对流换热热阻,降低芯片与冷却工质之间的温差,解决流道设计中对流换热热阻比较大和芯片容易超温的问题。
图1为本申请实施例提供的一种液冷板的结构示意图,参见图1,本申请实施例中的液冷板包括单相通道10和两相通道20,所述单相通道10内间隔设置第一翅片11,所述两相通道20内间隔设置第二翅片21;液态的冷却液经所述单相通道10中的第一翅片11换热后,成为气液两相的冷却液,经所述两相通道中20的第二翅片21换热后输出。
本申请实施例中的液冷板,包括:单相通道和两相通道,所述单相通道内间隔设置第一翅片,所述两相通道内间隔设置第二翅片;所述第一翅片设置为与流经所述单相通道的液态的冷却液进行换热后,使换热后的液态的冷却液转化为气液两相的冷却液,所述第二翅片设置为与流经所述两相通道的气液两相的冷却液进行换热后,使换热后的冷却液输出。在一实施例中,单相通道10可以为冷却液流过的通道,单相通道10的结构可以为圆管或者扁管,该单相通道10内可以设置有第一翅片11,设置的第一翅片11的数量可以为多个,在单相通道10内第一翅片11可以与冷却液的流动方向相同,多个第一翅片11可以平行设置。第一翅片11设置在单相通道10内可以增大换热效率,提高冷却液的散热效果。两相通道20的结构可与单相通道10的结构相同,可以为圆管或者扁管结构,内部可以布置有第二翅片21,多个第二翅片21可以间隔布置,两相通道20可以是气液两相工质的冷却液流过的通道,冷却液可以在单相通道10中吸热由液体转化为气液两相的冷却液,转化为气液两相的冷却液可以重新通过两相通道20流入液冷板重新进行换热,气液两相的冷却液经过再次换热后可以流出液冷板。由于气液两相的冷却液的换热温差低,可以防止液冷板出现过冷的问题。
在本申请实施例中,图2a和图2b为本申请实施例提供的一种液冷板的结构示意图,参见图2a和图2b,其中,图2b为图2a中液冷板在a-a方向的剖视图,液冷板100可以由单相通道和两相通道组成,其中,液体状态的冷却液可以经单相通道的单相入口50流入液冷板的单相通道,单相通道内可以包括翅片22,多个翅片22之间存在空隙构成冷却液流通的流体通道30,冷却液可以在流体通道30内进行换热以吸收待散热芯片发出的热量,冷却液经过换热后可以由液体状态转换为气液两相状态,也就是既包括液体冷却液,又包括气体冷却液。气液两相的冷却液可以从单相出口40流出。气液两相状态的冷却液可以通过两相通道入口60流入,在流体通道内再次进行换热,经两相通道出口70流处。在一实施例中,两相通道的结构可以与单相通道的结构相同,两相通道和单相通道可以通过间隔80分隔,两相通道也可以包括有翅片22以增大散热面积, 提高液冷板的换热效果。
本申请实施例的技术方案,通过单相通道和两相通道组成液冷板,单相通道内间隔设置第一翅片和两相通道内间隔设置第二翅片,液态的冷却液经过单相通道的第一翅片换热后成为气液两相的冷却液,经过两相通道中的第二翅片换热后输出,实现液冷板的温度均匀性,降低对流换热热阻,提高降温效果,可有效防止出现过冷的问题。
一种实施方式中,液冷板中所述第一翅片的表面为粗糙表面;和/或所述第二翅片的表面为粗糙表面。
图3为本申请实施例提供的一种翅片表面的示例图;参见图3,本申请实施例中可以对液冷板内的翅片进行机械加工,使得该翅片的表面变为粗糙表面,可以增多散热面积,并形成沸腾换热的汽化核心,以提高液冷板的换热效果。在一实施例中,可以根据液冷板的散热需求,将单相通道内的第一翅片的表面处理为粗糙表面或者将两相通道内的第二翅片的表面处理为粗糙表面,例如,为了满足待散热芯片的散热效果要求,可以将两相通道内的第二翅片处理为粗糙表面,将单相通道内的第一翅片不进行处理,仍保持为光滑表面。在一实施例中,单相通道内第一翅片的表面和两相通道内的表面可以不同时为粗糙表面。在一实施例中,还可以将单相通道和两相通道内的腔体内表面处理为粗糙表面。
一种实施方式中,所述第一翅片之间填充金属泡沫;和/或,所述第二翅片之间填充金属泡沫。
图4为本申请实施例提供的一种金属泡沫的应用示意图;参见图4,在一实施例中,液冷板内还可以在翅片22之间填充金属泡沫111以增加散热面积,金属泡沫111可以是含有泡沫气孔的特种金属材料,可以作为沸腾换热的汽化核心。液冷板中可以分别在第一翅片之间的空隙内填充金属泡沫以及在第二翅片之间的空隙内填充金属泡沫。在一实施例中,可以仅在第一翅片之间的空隙内填充金属泡沫,也可以仅在第二翅片之间的空隙内填充金属泡沫。
一种实施方式中,所述第一翅片表面附着金属泡沫;和/或,所述第二翅片表面附着金属泡沫。
本申请实施例中,还可以在液冷板内翅片上附着金属泡沫,图5为本申请实施例提供的另一种金属泡沫的应用示意图,参见图5,液冷板内翅片22周围可以包裹有金属泡沫111,金属泡沫111可以附着在第一翅片表面或者第二翅片表面,在一实施例中,可以仅在第一翅片的表面附着金属泡沫,也可以仅在第二翅片的表面附着金属泡沫。
一种实施方式中,第一翅片由金属泡沫构成;和/或,所述第二翅片由金属 泡沫构成。
在一实施例中,液冷板中可以将金属泡沫直接作为翅片进行换热,可以提高冷却液与液冷板的散热面积,通过沸腾换热提高散热效果,可以将第一翅片或者第二翅片由金属泡沫构成,图6为本申请实施例提供的另一种金属泡沫的应用示意图,参见图6,金属泡沫111可以作为翅片设置在液冷板内,可以分别作为单相通道的第一翅片和两相通道的第二翅片。在一实施例中,第一翅片和第二翅片可以不同时为金属泡沫。在一实施例中,液冷板内第一翅片和第二翅片可以不同时全为金属泡沫,两相通道内可以存在阈值数量的第二翅片可以为金属泡沫,其他第二翅片可以为正常材质的翅片,例如,铁、铜和铝等。
图7为本申请实施例提供的一种散热设备的结构示意图,参见图7,本申请实施例中的散热设备可以包括冷凝器300、泵200以及如本申请实施例中任一所述的液冷板100;冷却液经过所述泵200流向所述液冷板100进行吸热,吸热后所述冷却液经所述冷凝器300放热后重新流回所述液冷板100。
所述泵设置为使经过的冷却液流向所述液冷板进行吸热,所述冷凝器设置为使吸热后的冷却液放热后重新流回所述泵。
在一实施例中,散热设备可以由液冷板100、泵200和冷凝器300组成,液冷板100可以通过流体管道连接到泵200和冷凝器300,冷却液可以通过流体管道在液冷板100、泵200和冷凝器300中循环流转,泵200可以为冷却液循环泵,可以加快冷却液在该散热设备中的流转速度,泵200可以包括真空泵和涡轮泵等。冷凝器300可以是吸收冷却液热量,使冷却液从气态或者气液两相转换为液体的设备,可以包括喷淋式冷凝器、充填式冷凝器和淋水式冷凝器等。散热设备中冷却液在液冷板吸热并在冷凝器放热,将待散热物体的热量散发。在一实施例中,冷凝器300中一般可以存储冷冻水或者制冷剂以使冷却液由气体转换为液体。在一实施例中,为加快散热效率,散热设备可以包括多块液冷板100,液冷板100可以通过串联或者并联的方式连接。
一种实施方式中,为了保护泵200的安全,进入泵200的冷却液的温度需要保持在一定温度以下,可以在泵200的入口前方设置仅包括单相通道的液冷板,使得所述液冷板过冷,降低进入泵200的冷却液温度。
图8为本申请实施例提供的另一种散热设备的结构示意图,参见图8,本申请实施例的散热设备还包括储液罐3、供液管路5、供液支管路6、供液分液器7、连接管8、单板9、回液集液管101、回液支管110和回液主管12;所述单板9中布置至少两个所述液冷板;所述冷凝器2、所述储液罐3、所述泵4、所述供液管路5、所述供液支管路6、所述供液分液器7、所述连接管8、所述单板9、所述回液集液管101、所述回液支管110和所述回液主管12依次连接形 成回路。
在一实施例中,储液罐3可以是存储冷冻剂或者冷冻水的存储罐,其中,冷冻剂可以为氟利昂,可以为冷凝器提供制冷剂,供液管路5、供液支管路6、供液分液器7、连接管8、回液集液管101、回液支管110和回液主管12可以是连接多个单板9的流体通道,可以便于冷却液在散热设备中的循环流转,冷却液在泵4的驱动下,经供液管路5、供液支管路6进入供液分液器7。液相制冷剂通过供液分液器7分配后进入连接管8和冷板内,冷板可以与待散热物体连接,当待散热物体散热时,冷却液吸收热量发生沸腾,转变为气液两相状态,之后流经连接管8汇集到回液集液管101内,再经过回液支管110、回液主管12回到泵驱机组1内,两相制冷剂通过冷凝器2将热量排散出去。单板9可以为设置有多个液冷板的装置,单板9中可以预设有卡槽,可以将液冷板插放在该卡槽内。在一实施例中,单板9可以包括多个,单板9之间可以采用串联或者并联的方式连接,图8中仅示出了并联连接的方式。
本申请实施例中,冷却液可以经过单板9下方进入单板9内的液冷板,靠近单板上方的液冷板内两相通道,可以进入气液两相的冷却液,下方为液冷板内单相通道,可以进入液体的冷却液。可以通过本申请实施例中液冷板的换热结构,加快过冷却液接近饱和态的速度,并减小液冷板内的对流换热热阻,可以提高换热效率。
一种实施方式中,单板9内的至少两个液冷板间以串联方式连接。
在一实施例中,单板9内可以根据需要设置多个液冷板,单板内的液冷板可以通过串联或者并联的方式连接。在一实施例中,单板9内还可以包括仅含有单相通道的液冷板,图9为本申请实施例提供的一种液冷板的连接关系图,参见图9,单板9内包括一个存在单相通道和两相通道的两相液冷板9-3,以及包括三个存在一个单相通道的单相液冷板9-4,多个液冷板之间采用串联的方式连接,单板入口9-1处可以设置两相液冷板9-3,在单板出口9-5处可以设置单相液冷板9-4,可以降低冷却液的温度,保证进入泵4的冷却液温度不会对泵4造成损坏。冷却液通过流体通道9-2流经多个液冷板,液体状态的冷却液在经过一个或者多个两相液冷板9-3或者单相液冷板9-4后变为气液两相的冷却液,可以将气液两相的冷却液重新流入两相液冷板9-3的两相通道进行换热。气液两相的冷却液返回到两相液冷板9-3中进行充分换热,可以减少单板内对流换热热阻,可以使得单板的换热均匀,提高散热设备的换热效果。
一种实施方式中,单板与至少一个待散热芯片连接。
待散热芯片可以为需要进行散热的芯片,待散热芯片在工作时可以放出大量热量,在待散热芯片散热不均匀或者散热不及时的情况下,可以对待散热芯 片本身造成损坏。
本申请实施例中,可以将待散热芯片通过导热硅脂粘贴或者插放的方式连接到散热设备的单板9中,参见图9,两相液冷板9-3和单相液冷板9-4可以粘贴有多个待散热芯片,当待散热芯片工作时,冷却液吸收芯片产热发生沸腾,由液体转变为气液两相,之后流经连接冷板出口9-2重新回到泵4。在一实施例中,两相液冷板9-3可以连接低功耗芯片,单相液冷板9-4可以连接高功率芯片,其中,低功率芯片工作时生成的热量小于高功率芯片工作时产生的热量。可以根据进行散热的待散热芯片的功率的不同,将待散热芯片连接到多个液冷板。
一种实施方式中,所述散热设备包括至少两个单板,所述至少两个单板之间通过并联方式连接。
在本申请实施例中,散热设备可以由多个单板构成,散热设备可以根据被散热的机柜进行设计,将单板设置为多层,可以在每层内设置多个单板,每个单板上可以设置多个液冷板,每个液冷板上可以布置多个待散热芯片,在一实施例中,多层内的单板可以采用并联的方式连接。
在可能的方式中,本申请实施例提供的液冷板应用于电子器件两相散热中,本申请提供的液冷板是为了解决采用两相工质的蒸发换热冷板对电路板进行散热时,过冷的液相工质使入口处液冷板温度均匀性差、以及液冷板自身散热面积有限热阻大的问题。
以上所述,仅为本申请的示例性实施例而已,并非用于限定本申请的保护范围。

Claims (10)

  1. 一种液冷板,包括:单相通道和两相通道,所述单相通道内间隔设置第一翅片,所述两相通道内间隔设置第二翅片;
    所述第一翅片设置为与流经所述单相通道的液态的冷却液进行换热后,使换热后的液态的冷却液转化为气液两相的冷却液,所述第二翅片设置为与流经所述两相通道的气液两相的冷却液进行换热后,使换热后的冷却液输出。
  2. 根据权利要求1所述的液冷板,其中,以下至少之一的表面为粗糙表面:所述第一翅片、或所述第二翅片。
  3. 根据权利要求1所述的液冷板,其中,在以下至少之一之间填充金属泡沫:所述第一翅片、或所述第二翅片。
  4. 根据权利要求1所述的液冷板,其中,在以下至少之一表面附着金属泡沫:所述第一翅片、或所述第二翅片。
  5. 根据权利要求1所述的液冷板,其中,以下至少之一由金属泡沫构成:所述第一翅片、或所述第二翅片。
  6. 一种散热设备,包括:
    冷凝器、泵以及如权利要求1-5中任一项所述的液冷板;
    所述泵设置为使经过的冷却液流向所述液冷板进行吸热,所述冷凝器设置为使吸热后的冷却液放热后重新流回所述液冷板。
  7. 根据权利要求6所述的散热设备,还包括:
    储液罐、供液管路、供液支管路、供液分液器、连接管、单板、回液集液管、回液支管和回液主管;
    所述单板中布置至少两个所述液冷板;
    所述冷凝器、所述储液罐、所述泵、所述供液管路、所述供液支管路、所述供液分液器、所述连接管、所述单板、所述回液集液管、所述回液支管和所述回液主管依次连接形成回路。
  8. 根据权利要求7所述的散热设备,其中,所述单板与至少一个待散热芯片连接。
  9. 根据权利要求7所述的散热设备,其中,所述单板内的至少两个液冷板间以串联方式连接。
  10. 根据权利要求7所述的散热设备,其中,所述散热设备包括至少两个单板,所述至少两个单板之间通过并联方式连接。
PCT/CN2020/133393 2019-12-03 2020-12-02 液冷板及散热设备 WO2021110052A1 (zh)

Priority Applications (2)

Application Number Priority Date Filing Date Title
EP20897060.8A EP4072254A4 (en) 2019-12-03 2020-12-02 LIQUID-COOLED PLATE AND HEAT DISSIPATION DEVICE
US17/781,691 US20230022410A1 (en) 2019-12-03 2020-12-02 Liquid-cooled plate and heat dissipation device

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
CN201911221327.0 2019-12-03
CN201911221327.0A CN112902715A (zh) 2019-12-03 2019-12-03 一种液冷板及散热设备

Publications (1)

Publication Number Publication Date
WO2021110052A1 true WO2021110052A1 (zh) 2021-06-10

Family

ID=76104077

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2020/133393 WO2021110052A1 (zh) 2019-12-03 2020-12-02 液冷板及散热设备

Country Status (4)

Country Link
US (1) US20230022410A1 (zh)
EP (1) EP4072254A4 (zh)
CN (1) CN112902715A (zh)
WO (1) WO2021110052A1 (zh)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP4299450A1 (en) * 2022-07-01 2024-01-03 Airbus Defence and Space SAS Improved system for thermal regulation of a spacecraft

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN117435009A (zh) * 2022-07-27 2024-01-23 中兴智能科技南京有限公司 芯片散热方法、单板、电子设备、计算机设备和存储介质

Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2002170915A (ja) * 2000-11-30 2002-06-14 Toyo Radiator Co Ltd 水冷ヒートシンク
CN1624911A (zh) * 2003-11-26 2005-06-08 热成型及功能有限公司 使用相变制冷剂的泵送液体冷却系统
CN102869943A (zh) * 2010-05-19 2013-01-09 日本电气株式会社 沸腾冷却装置
CN203722976U (zh) * 2013-11-27 2014-07-16 阳光电源股份有限公司 一种散热装置及具有该散热装置的电子设备
CN204948593U (zh) * 2015-08-12 2016-01-06 河北瑞发汽车散热器有限公司 服务器机柜水冷散热装置
CN205755233U (zh) * 2016-06-13 2016-11-30 西安交通大学 一种用于电子发热设备自然冷却的金属泡沫散热器
CN107275300A (zh) * 2017-07-06 2017-10-20 华南理工大学 一种模块化的igbt液冷板及其制造方法

Family Cites Families (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US7044199B2 (en) * 2003-10-20 2006-05-16 Thermal Corp. Porous media cold plate
CN201226636Y (zh) * 2008-07-04 2009-04-22 北京奇宏科技研发中心有限公司 一种带有蒸发腔体的液冷散热装置
US7782616B1 (en) * 2009-04-23 2010-08-24 Delphi Technologies, Inc. Heat-dissipating component having stair-stepped coolant channels
KR101810167B1 (ko) * 2015-11-11 2017-12-19 전남대학교산학협력단 3차원 열흡수 장치

Patent Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2002170915A (ja) * 2000-11-30 2002-06-14 Toyo Radiator Co Ltd 水冷ヒートシンク
CN1624911A (zh) * 2003-11-26 2005-06-08 热成型及功能有限公司 使用相变制冷剂的泵送液体冷却系统
CN102869943A (zh) * 2010-05-19 2013-01-09 日本电气株式会社 沸腾冷却装置
CN203722976U (zh) * 2013-11-27 2014-07-16 阳光电源股份有限公司 一种散热装置及具有该散热装置的电子设备
CN204948593U (zh) * 2015-08-12 2016-01-06 河北瑞发汽车散热器有限公司 服务器机柜水冷散热装置
CN205755233U (zh) * 2016-06-13 2016-11-30 西安交通大学 一种用于电子发热设备自然冷却的金属泡沫散热器
CN107275300A (zh) * 2017-07-06 2017-10-20 华南理工大学 一种模块化的igbt液冷板及其制造方法

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
See also references of EP4072254A4

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP4299450A1 (en) * 2022-07-01 2024-01-03 Airbus Defence and Space SAS Improved system for thermal regulation of a spacecraft
WO2024002772A1 (en) * 2022-07-01 2024-01-04 Airbus Defence And Space Sas Improved system for thermal regulation of a spacecraft

Also Published As

Publication number Publication date
EP4072254A1 (en) 2022-10-12
EP4072254A4 (en) 2023-12-27
CN112902715A (zh) 2021-06-04
US20230022410A1 (en) 2023-01-26

Similar Documents

Publication Publication Date Title
CN107743354B (zh) 数据中心机房的制冷系统和数据中心
US8619425B2 (en) Multi-fluid, two-phase immersion-cooling of electronic component(s)
US8369091B2 (en) Interleaved, immersion-cooling apparatus and method for an electronic subsystem of an electronics rack
WO2021110052A1 (zh) 液冷板及散热设备
WO2019015407A1 (zh) 一种能够同时实现对cpu芯片和服务器进行散热的系统
CN110958818B (zh) 单相浸没式液冷机柜及单相浸没式液冷系统
TW200815968A (en) Phase change heat dissipation device and method
CN105180504A (zh) 一种用于循环冷却系统的半导体制冷装置
EP3457829B1 (en) Cooling system of working medium contact type for heat dissipation of computer and data centre
CN104159437B (zh) 复合散热装置
US20210274683A1 (en) Server, server rack and data centre
CN113311929A (zh) 一种风冷液冷一体化cpu散热器及散热方法
US20110198060A1 (en) Heat Dissipation Apparatus for Data Center
CN115529796A (zh) 一种散热系统和包括散热系统的服务器
WO2017186081A1 (zh) 散热系统及具有所述散热系统的通讯设备
US20110192572A1 (en) Heat exchanger
TWI487473B (zh) 資料中心之冷卻系統
CN114071972A (zh) 一种用于高功率密度机柜的泵驱双环路热管组合散热系统
CN210740789U (zh) 一种半导体制冷系统及冰箱
WO2023025093A1 (zh) 基于双冷却通路的液冷散热结构
Brunschwiler et al. Hotspot-adapted cold plates to maximize system efficiency
US20220205699A1 (en) Chiller and energy storage system
CN213586803U (zh) 用于数据中心的冷却系统
CN106993393A (zh) 一种散热设备及终端
CN109671690B (zh) 一种电子元器件散热用多头螺旋流道液体冷却器

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 20897060

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

ENP Entry into the national phase

Ref document number: 2020897060

Country of ref document: EP

Effective date: 20220704