WO2021109889A1 - 一种基于半互穿聚合物网络的响应性材料及其应用 - Google Patents

一种基于半互穿聚合物网络的响应性材料及其应用 Download PDF

Info

Publication number
WO2021109889A1
WO2021109889A1 PCT/CN2020/130844 CN2020130844W WO2021109889A1 WO 2021109889 A1 WO2021109889 A1 WO 2021109889A1 CN 2020130844 W CN2020130844 W CN 2020130844W WO 2021109889 A1 WO2021109889 A1 WO 2021109889A1
Authority
WO
WIPO (PCT)
Prior art keywords
liquid crystal
polymer network
responsive
temperature
semi
Prior art date
Application number
PCT/CN2020/130844
Other languages
English (en)
French (fr)
Inventor
卡尔奥古斯丁•祖瑟夫•祖翰
杨 波尔迪克•
斯凯宁阿尔伯特•彼得勒斯•亨里克斯•约翰内斯
周国富
Original Assignee
深圳市国华光电科技有限公司
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 深圳市国华光电科技有限公司 filed Critical 深圳市国华光电科技有限公司
Publication of WO2021109889A1 publication Critical patent/WO2021109889A1/zh

Links

Images

Classifications

    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08LCOMPOSITIONS OF MACROMOLECULAR COMPOUNDS
    • C08L83/00Compositions of macromolecular compounds obtained by reactions forming in the main chain of the macromolecule a linkage containing silicon with or without sulfur, nitrogen, oxygen or carbon only; Compositions of derivatives of such polymers
    • C08L83/04Polysiloxanes
    • C08L83/06Polysiloxanes containing silicon bound to oxygen-containing groups
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08FMACROMOLECULAR COMPOUNDS OBTAINED BY REACTIONS ONLY INVOLVING CARBON-TO-CARBON UNSATURATED BONDS
    • C08F220/00Copolymers of compounds having one or more unsaturated aliphatic radicals, each having only one carbon-to-carbon double bond, and only one being terminated by only one carboxyl radical or a salt, anhydride ester, amide, imide or nitrile thereof
    • C08F220/02Monocarboxylic acids having less than ten carbon atoms; Derivatives thereof
    • C08F220/10Esters
    • C08F220/26Esters containing oxygen in addition to the carboxy oxygen
    • C08F220/30Esters containing oxygen in addition to the carboxy oxygen containing aromatic rings in the alcohol moiety
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08FMACROMOLECULAR COMPOUNDS OBTAINED BY REACTIONS ONLY INVOLVING CARBON-TO-CARBON UNSATURATED BONDS
    • C08F283/00Macromolecular compounds obtained by polymerising monomers on to polymers provided for in subclass C08G
    • C08F283/12Macromolecular compounds obtained by polymerising monomers on to polymers provided for in subclass C08G on to polysiloxanes
    • CCHEMISTRY; METALLURGY
    • C09DYES; PAINTS; POLISHES; NATURAL RESINS; ADHESIVES; COMPOSITIONS NOT OTHERWISE PROVIDED FOR; APPLICATIONS OF MATERIALS NOT OTHERWISE PROVIDED FOR
    • C09DCOATING COMPOSITIONS, e.g. PAINTS, VARNISHES OR LACQUERS; FILLING PASTES; CHEMICAL PAINT OR INK REMOVERS; INKS; CORRECTING FLUIDS; WOODSTAINS; PASTES OR SOLIDS FOR COLOURING OR PRINTING; USE OF MATERIALS THEREFOR
    • C09D11/00Inks
    • C09D11/02Printing inks
    • C09D11/10Printing inks based on artificial resins
    • C09D11/101Inks specially adapted for printing processes involving curing by wave energy or particle radiation, e.g. with UV-curing following the printing
    • CCHEMISTRY; METALLURGY
    • C09DYES; PAINTS; POLISHES; NATURAL RESINS; ADHESIVES; COMPOSITIONS NOT OTHERWISE PROVIDED FOR; APPLICATIONS OF MATERIALS NOT OTHERWISE PROVIDED FOR
    • C09DCOATING COMPOSITIONS, e.g. PAINTS, VARNISHES OR LACQUERS; FILLING PASTES; CHEMICAL PAINT OR INK REMOVERS; INKS; CORRECTING FLUIDS; WOODSTAINS; PASTES OR SOLIDS FOR COLOURING OR PRINTING; USE OF MATERIALS THEREFOR
    • C09D4/00Coating compositions, e.g. paints, varnishes or lacquers, based on organic non-macromolecular compounds having at least one polymerisable carbon-to-carbon unsaturated bond ; Coating compositions, based on monomers of macromolecular compounds of groups C09D183/00 - C09D183/16
    • C09D4/06Organic non-macromolecular compounds having at least one polymerisable carbon-to-carbon unsaturated bond in combination with a macromolecular compound other than an unsaturated polymer of groups C09D159/00 - C09D187/00
    • CCHEMISTRY; METALLURGY
    • C09DYES; PAINTS; POLISHES; NATURAL RESINS; ADHESIVES; COMPOSITIONS NOT OTHERWISE PROVIDED FOR; APPLICATIONS OF MATERIALS NOT OTHERWISE PROVIDED FOR
    • C09DCOATING COMPOSITIONS, e.g. PAINTS, VARNISHES OR LACQUERS; FILLING PASTES; CHEMICAL PAINT OR INK REMOVERS; INKS; CORRECTING FLUIDS; WOODSTAINS; PASTES OR SOLIDS FOR COLOURING OR PRINTING; USE OF MATERIALS THEREFOR
    • C09D5/00Coating compositions, e.g. paints, varnishes or lacquers, characterised by their physical nature or the effects produced; Filling pastes
    • C09D5/26Thermosensitive paints
    • CCHEMISTRY; METALLURGY
    • C09DYES; PAINTS; POLISHES; NATURAL RESINS; ADHESIVES; COMPOSITIONS NOT OTHERWISE PROVIDED FOR; APPLICATIONS OF MATERIALS NOT OTHERWISE PROVIDED FOR
    • C09KMATERIALS FOR MISCELLANEOUS APPLICATIONS, NOT PROVIDED FOR ELSEWHERE
    • C09K19/00Liquid crystal materials
    • C09K19/04Liquid crystal materials characterised by the chemical structure of the liquid crystal components, e.g. by a specific unit
    • C09K19/38Polymers
    • C09K19/3833Polymers with mesogenic groups in the side chain
    • CCHEMISTRY; METALLURGY
    • C09DYES; PAINTS; POLISHES; NATURAL RESINS; ADHESIVES; COMPOSITIONS NOT OTHERWISE PROVIDED FOR; APPLICATIONS OF MATERIALS NOT OTHERWISE PROVIDED FOR
    • C09KMATERIALS FOR MISCELLANEOUS APPLICATIONS, NOT PROVIDED FOR ELSEWHERE
    • C09K19/00Liquid crystal materials
    • C09K19/04Liquid crystal materials characterised by the chemical structure of the liquid crystal components, e.g. by a specific unit
    • C09K19/38Polymers
    • C09K19/3833Polymers with mesogenic groups in the side chain
    • C09K19/3842Polyvinyl derivatives
    • C09K19/3852Poly(meth)acrylate derivatives
    • CCHEMISTRY; METALLURGY
    • C09DYES; PAINTS; POLISHES; NATURAL RESINS; ADHESIVES; COMPOSITIONS NOT OTHERWISE PROVIDED FOR; APPLICATIONS OF MATERIALS NOT OTHERWISE PROVIDED FOR
    • C09KMATERIALS FOR MISCELLANEOUS APPLICATIONS, NOT PROVIDED FOR ELSEWHERE
    • C09K19/00Liquid crystal materials
    • C09K19/04Liquid crystal materials characterised by the chemical structure of the liquid crystal components, e.g. by a specific unit
    • C09K19/38Polymers
    • C09K19/3833Polymers with mesogenic groups in the side chain
    • C09K19/3842Polyvinyl derivatives
    • C09K19/3852Poly(meth)acrylate derivatives
    • C09K19/3857Poly(meth)acrylate derivatives containing at least one asymmetric carbon atom
    • CCHEMISTRY; METALLURGY
    • C09DYES; PAINTS; POLISHES; NATURAL RESINS; ADHESIVES; COMPOSITIONS NOT OTHERWISE PROVIDED FOR; APPLICATIONS OF MATERIALS NOT OTHERWISE PROVIDED FOR
    • C09KMATERIALS FOR MISCELLANEOUS APPLICATIONS, NOT PROVIDED FOR ELSEWHERE
    • C09K2219/00Aspects relating to the form of the liquid crystal [LC] material, or by the technical area in which LC material are used
    • C09K2219/13Aspects relating to the form of the liquid crystal [LC] material, or by the technical area in which LC material are used used in the technical field of thermotropic switches

Definitions

  • the invention relates to the field of liquid crystal materials, in particular to a responsive material based on a semi-interpenetrating polymer network and its application.
  • Liquid crystal is a state of matter between a disordered liquid and a three-dimensional ordered solid.
  • Liquid crystal molecules can form an ordered arrangement in one or two dimensions, so there are many liquid crystal phases, such as smectic (two-dimensional order) and Nematic (one-dimensional order).
  • a special case of the nematic phase is the cholesteric phase.
  • the twist of the orientation of the liquid crystal molecules is induced by chiral molecules. Due to this twist, the liquid crystal molecules form a periodic spiral structure that can reflect light of a specific wavelength. The wavelength of the reflected light depends on the length of the liquid crystal molecule director to complete a 360° rotation, and this is called the pitch. The reflected wavelength can be adjusted by adjusting the pitch.
  • CLC materials Due to the selective reflective properties of cholesteric liquid crystals (CLC) and the ability to change the pitch or undergo a phase change to an isotropic phase when exposed to external stimuli (such as temperature), CLC materials have been developed to be used as visual real-time temperature interesting material for sensors and time-temperature integrators. When a product (such as food or medicine) is exposed to a specific temperature within a specific time, the time temperature integrator will change the color to monitor the quality of the product. In order to have temperature responsiveness, CLC materials usually contain low molecular weight liquid crystal (LMWLC), which is a small molecule that easily changes the degree of order.
  • LMWLC low molecular weight liquid crystal
  • LMWLC is usually stabilized by a polymer network (polymer stabilized liquid crystal, PSLC) or encapsulated in a polymer matrix as droplets (polymer dispersed liquid crystal, PDLC). Due to the volatility of LMWLC, PSLC systems are not suitable for coating applications and are therefore limited to closed systems, such as keeping them between two glass plates.
  • PSLC polymer stabilized liquid crystal
  • PDLC polymer dispersed liquid crystal
  • Temperature-responsive color-changing coatings can also be realized by using photonic-structured hydrogels or block copolymers. These materials can change color by swelling and de-swelling, depending on the temperature of the solvent environment in which they are located (Reference 1 : M. Chen, L. Zhou, Y. Guan and Y. Zhang, Angew. Chemie Int. Ed., 2013, 52, 9961-9965; Reference 2: Y. Takeoka and M. Watanabe, Langmuir, 2003, 19 , 9104-9106; Reference 3: S. Valkama, H. Kosonen, J. Ruokolainen, T. Haatainen, M. Torkkeli, R. Serimaa, G. Ten Brinke and O.
  • the purpose of the present invention is to provide a responsive material based on a semi-interpenetrating polymer network and its application.
  • the semi-interpenetrating network structure can undergo a phase separation process with temperature changes, thereby realizing a reversible color change.
  • the responsive material There is no need to change the color by solvent swelling, and the required coating can be obtained by using conventional processes such as coating technology, which has a good application prospect in temperature-responsive coatings and temperature-responsive liquid crystal devices.
  • the present invention provides a responsive material based on a semi-interpenetrating polymer network, including a semi-interpenetrating polymer network formed by a liquid crystal elastomer and a cholesteric liquid crystal polymer network.
  • the cholesteric liquid crystal polymer network is composed of A liquid crystal mixture of liquid crystal monomers is formed by polymerization.
  • the liquid crystal monomer includes at least one liquid crystal monomer compound, and at least one of the liquid crystal monomer compounds is a monofunctional liquid crystal monomer.
  • “Functional group” refers to a reactive group, and here refers to a group that can participate in a reaction to form a liquid crystal polymer network.
  • the uncrosslinked liquid crystal elastomer can diffuse out and return to the cholesteric liquid crystal polymer network, that is, the liquid crystal elastomer and the cholesteric liquid crystal polymer network are phase separated, causing cholesteric
  • the increase and decrease of the pitch of the phase liquid crystal polymer network leads to the change of the color of the material.
  • only diacrylate monomers are added to form an interpenetrating or semi-interpenetrating network, which has a relatively high crosslinking density and therefore cannot cause diffusion and/or changes in pitch.
  • the liquid crystal monomer is a monoacrylate monomer with a monofunctional group to form a semi-interpenetrating polymer network
  • the liquid crystal elastomer cannot be wound and fixed, so that the diffusion of the liquid crystal elastomer is possible, and the color of the material is changed.
  • the cholesteric liquid crystal polymer network is formed by polymerization of a liquid crystal mixture including liquid crystal monomers, photoinitiators and surfactants, and at least one of the liquid crystal monomer compounds is a chiral polymerizable liquid crystal monomer.
  • “Chiral” and “monofunctional group” are characteristics that define liquid crystal monomers from two angles, and they do not affect each other. That is, in a preferred embodiment, the type of the liquid crystal monomer may be a polymerizable liquid crystal monomer having a monofunctional group and being chiral; or it may be a polymerizable liquid crystal monomer having a monofunctional group and being achiral and having a double A combination of functional groups and chiral polymerizable liquid crystal monomers.
  • the purpose of defining the liquid crystal monomer as a chiral polymerizable liquid crystal monomer is to induce the formation of a cholesteric phase to reflect light of a specific wavelength.
  • the liquid crystal monomer compounds are a chiral polymerizable liquid crystal monomer and an achiral polymerizable liquid crystal monomer
  • the raw material of the responsive material includes 70 to 80 parts by mass of liquid crystal elastomer, 5 to 5 25 parts by mass of chiral polymerizable liquid crystal monomer, 4 to 11 parts by mass of achiral polymerizable liquid crystal monomer, 0.5 to 2 parts by mass of photoinitiator, and 0.5 to 2 parts by mass of surfactant.
  • the liquid crystal monomers form a cholesteric liquid crystal polymer network under the action of a photoinitiator, and interpenetrate with the uncrosslinked liquid crystal elastomer to form a semi-interpenetrating polymer network.
  • the added surfactant can improve the molecule Arrangement. That is, in a preferred embodiment, the type of the liquid crystal monomer may be a polymerizable liquid crystal monomer having a monofunctional group and being chiral and a polymerizable liquid crystal monomer having a monofunctional group and being achiral; or it may be a monomer having a monofunctional group and being achiral. A combination of a functional group and chiral polymerizable liquid crystal monomer and a bifunctional group and achiral polymerizable liquid crystal monomer.
  • the liquid crystal monomer compounds are monofunctional liquid crystal monomers and bifunctional liquid crystal monomers. That is, in some preferred embodiments, the liquid crystal monomer may be a polymerizable liquid crystal monomer having a monofunctional group and being chiral and a polymerizable liquid crystal monomer having a difunctional group and being achiral; or the liquid crystal monomer may be a polymerizable liquid crystal monomer having a double function. A functional group and a chiral polymerizable liquid crystal monomer and a monofunctional group and a achiral polymerizable liquid crystal monomer.
  • the functional group is an acrylate group, that is, the liquid crystal monomer in a preferred embodiment includes a monofunctional acrylate monomer and a bifunctional acrylate monomer.
  • the ratio of bifunctional liquid crystal monomer: monofunctional liquid crystal monomer is increased, the liquid crystal elastomer is more constrained by the cholesteric liquid crystal polymer network, and the phase separation ability is reduced, which will cause rapid but small color changes of the material.
  • the molar ratio of the monofunctional liquid crystal monomer: the bifunctional liquid crystal monomer is 1: (1-50). More preferably, the molar ratio of the monofunctional liquid crystal monomer: the bifunctional liquid crystal monomer is 1:(4-16).
  • the above-mentioned responsive materials based on semi-interpenetrating polymer networks are used in the fields of temperature-responsive liquid crystal devices, temperature-responsive coatings, anti-counterfeiting labels, and monitoring indicators.
  • the above-mentioned responsive material based on the semi-interpenetrating polymer network has the characteristics of temperature response and color change, and is suitable for temperature-responsive liquid crystal devices, temperature-responsive coatings such as temperature-responsive color decoration, anti-counterfeiting labels, monitoring indicators, such as time -Temperature indicator to monitor the cold chain of food and medicine.
  • a temperature-responsive liquid crystal device includes the above-mentioned responsive material based on a semi-interpenetrating polymer network.
  • a temperature-responsive coating includes the above-mentioned responsive material based on a semi-interpenetrating polymer network.
  • the temperature-responsive coating is a patterned coating.
  • the present invention also provides a method for preparing the above-mentioned patterned coating, which includes the following steps:
  • Light one is applied to the target patterned area of the coating, and light two is applied to the remaining areas, and the light intensity of the light one is less than the light intensity of the light two.
  • the light intensity will affect the color change of the coating. A higher light intensity will cause a slower but larger color shift. As long as there is a difference between the light intensity of light one and the light intensity of light two, a patterned coating can be formed.
  • the light intensity of the first light ⁇ the light intensity of the second light ⁇ 32 mw/cm 2 .
  • the light intensity can be arbitrarily selected.
  • the intensity range we used in the experiment is 0.01 ⁇ 32mw/cm 2 .
  • 32 mw/cm 2 light intensity irradiation is used for post-curing.
  • the present invention provides a responsive material based on a semi-interpenetrating polymer network, including a semi-interpenetrating polymer network formed by a liquid crystal elastomer (LCE) and a cholesteric liquid crystal polymer network (LCN).
  • the responsive material is When heated above the cholesteric phase-isotropic transition temperature (Tch-I) of the material, phase separation between the liquid crystal elastomer and the cholesteric liquid crystal polymer network will occur, and the LCE will diffuse out of the LCN, resulting in residual
  • the monofunctional liquid crystal monomer in the liquid crystal network has a higher concentration, which leads to a decrease in the cholesteric pitch, and thus a blue shift of the reflection wavelength is observed.
  • the LCE When cooled below Tch-I, the LCE can be oriented again and mixed into the LCN.
  • the mixing again reduces the concentration of the monofunctional liquid crystal monomer in the LCN, which leads to an increase in the cholesteric pitch and therefore a red shift of the reflected wavelength.
  • the responsive material of the present invention does not need to use a swelling solvent, and can realize the blue shift and red shift of the reflection wavelength with temperature changes, thereby displaying temperature-induced color changes.
  • Fig. 1 is a graph showing the influence of temperature-responsive coatings at different temperatures over time in Example 1;
  • Figure 2 is a picture of the patterned coating in Example 2 taken during different temperature-time processes.
  • This embodiment provides a responsive material based on a semi-interpenetrating polymer network, which is prepared through the following steps:
  • the liquid crystal mixture includes 16 parts by mass of the chiral polymerizable liquid crystal monomer RM-1 and 5 parts by mass of the achiral polymerizable liquid crystal monomer.
  • the structural formula of the liquid crystal elastomer used in this embodiment is The chiral polymerizable liquid crystal monomer RM-1 is a left-handed liquid crystal monomer, and its structural formula is The structural formula of achiral polymerizable liquid crystal monomer RM-2 is The photoinitiator is Irgacure651, the structural formula is The structural formula of surfactant is Among them, RM-1 contains one acrylate end group, which is a monofunctional liquid crystal monomer, and RM-2 contains two acrylate end groups, which is a bifunctional liquid crystal monomer.
  • the liquid crystal mixture of this embodiment is polymerized under ultraviolet light to form a cholesteric liquid crystal polymer, which interpenetrates with the unpolymerized liquid crystal elastomer to form a semi-interpenetrating polymer network, and finally polymerizes on the substrate to form a temperature-responsive coating.
  • the cholesteric phase-isotropic transition temperature (Tch-I) of the temperature-responsive coating of this example was 47°C when heated and 42°C when cooled.
  • the spectrum changes from near infrared (799nm) to green (515nm) within 3.75h.
  • the relationship between the blue shifted wavelength and time is shown in the figure. Shown in 1 in B.
  • the transmission spectrum has a red shift with time, and it red shifts to 706 nm within about a week.
  • the relationship between the wavelength of the red shift and time is shown in Figure 1 D.
  • the results show that after the first heating and cooling cycle, the temperature-responsive coating can achieve a completely reversible blue shift and red shift.
  • C in Fig. 1 represents the pictures taken at room temperature during different temperature-time processes of the temperature-responsive coating, and the results show that the temperature-responsive coating changes color with temperature.
  • This embodiment provides a patterned coating, which is prepared according to the following steps:
  • the paint used in this example has the same composition as the paint of example 1;
  • This embodiment provides a temperature-responsive coating, which is prepared by the following steps, and the raw materials used in this embodiment are the same as those in Embodiment 1:
  • the liquid crystal mixture includes 5 parts by mass of the chiral polymerizable liquid crystal monomer RM-1 and 11 parts by mass of the achiral polymerizable liquid crystal monomer.
  • This embodiment provides a temperature-responsive coating, which is prepared by the following steps, and the raw materials used in this embodiment are the same as those in Embodiment 1:
  • the liquid crystal mixture includes 25 parts by mass of the chiral polymerizable liquid crystal monomer RM-1 and 4 parts by mass of the achiral polymerizable liquid crystal monomer.
  • This embodiment provides a temperature-responsive coating, which is prepared by the following steps, and the raw materials used in this embodiment are the same as those in Embodiment 1:
  • the liquid crystal mixture includes 35 parts by mass of the liquid crystal monomer compound, 1 part by mass of a photoinitiator and 2 parts by mass of a surfactant, wherein
  • the liquid crystal monomer compound is a chiral polymerizable liquid crystal monomer RM-1 and an achiral polymerizable liquid crystal monomer RM-2, and the molar ratio of RM-1:RM-2 is 1:4;
  • This embodiment provides a temperature-responsive coating, which is prepared by the following steps, and the raw materials used in this embodiment are the same as those in Embodiment 1:
  • the liquid crystal mixture includes 40 parts by mass of the liquid crystal monomer compound, 1.8 parts by mass of a photoinitiator, and 0.5 parts by mass of a surfactant, wherein
  • the liquid crystal monomer compound is a chiral polymerizable liquid crystal monomer RM-1 and an achiral polymerizable liquid crystal monomer RM-2, and the molar ratio of RM-1:RM-2 is 1:16;
  • This embodiment provides a temperature-responsive coating, which is prepared by the following steps, and the raw materials used in this embodiment are the same as those in Embodiment 1:
  • the liquid crystal mixture includes 38 parts by mass of the liquid crystal monomer compound, 0.5 parts by mass of a photoinitiator and 0.5 parts by mass of a surfactant, wherein
  • the liquid crystal monomer compound is a chiral polymerizable liquid crystal monomer RM-1 and an achiral polymerizable liquid crystal monomer RM-2, and the molar ratio of RM-1:RM-2 is 1:50;

Landscapes

  • Chemical & Material Sciences (AREA)
  • Organic Chemistry (AREA)
  • Materials Engineering (AREA)
  • Engineering & Computer Science (AREA)
  • Crystallography & Structural Chemistry (AREA)
  • Polymers & Plastics (AREA)
  • Health & Medical Sciences (AREA)
  • Medicinal Chemistry (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Wood Science & Technology (AREA)
  • Liquid Crystal Substances (AREA)
  • Liquid Crystal (AREA)
  • Processes Of Treating Macromolecular Substances (AREA)

Abstract

本发明公开了一种基于半互穿聚合物网络的响应性材料,包括由液晶弹性体和胆甾相液晶聚合物网络形成的半互穿聚合物网络,所述胆甾相液晶聚合物网络由包括液晶单体的液晶混合物聚合形成,所述液晶单体包括一种及以上的液晶单体化合物,至少一种所述液晶单体化合物为单官能团液晶单体。所述半互穿聚合物网络中,液晶弹性体和胆甾相液晶聚合物网络能够随温度改变发生相分离过程,进而实现颜色的可逆改变,该响应性材料不需要通过溶剂溶胀来改变颜色,利用常规工艺如涂布技术即可获得所需涂层,在温度响应液晶器件、温度响应涂层、防伪标签、监测指示领域中具有较好的应用前景。

Description

一种基于半互穿聚合物网络的响应性材料及其应用 技术领域
本发明涉及液晶材料领域,尤其是涉及一种基于半互穿聚合物网络的响应性材料及其应用。
背景技术
液晶(LC)是无序液体和三维有序固体之间的物质状态,液晶分子可以在一个或两个维度形成有序排列,因此存在许多液晶相,例如近晶相(二维有序)和向列相(一维有序)。向列相的一个特例是胆甾相,其液晶分子取向的扭曲是由手性分子诱导的,由于这种扭曲,液晶分子形成周期性螺旋结构,能够反射特定波长的光。反射光的波长取决于液晶分子指向矢完成360°旋转所需的长度,而这被称为螺距。可以通过调节螺距来调节反射波长。
由于胆甾相液晶(CLC)的选择性反射特性,以及在暴露于外部刺激(例如温度)时改变螺距或经历相变到各向同性相的能力,CLC材料已发展成为可用作视觉实时温度传感器和时间温度积分器的有趣材料。当产品(如食品或药品)在特定时间内暴露于特定温度时,时间温度积分器会改变颜色,从而监控产品质量。为了具有温度响应性,CLC材料通常含有低分子量液晶(LMWLC),这是一种易于改变有序度的小分子。LMWLC通常通过聚合物网络(聚合物稳定液晶,PSLC)被稳定或在聚合物基质内被封装为液滴(聚合物分散液晶,PDLC)。由于LMWLC的挥发性,PSLC系统不适合涂层应用,因此仅限于封闭系统,例如将它们保持在两块玻璃板之间。
通过使用光子结构的水凝胶或嵌段共聚物也可以实现温度响应性变色涂层,这些材料可以通过溶胀和消溶胀来改变颜色,这取决于它们所处的溶剂环境的温度(参考文献1:M.Chen,L.Zhou,Y.Guan and Y.Zhang,Angew.Chemie Int.Ed.,2013,52,9961–9965;参考文献2:Y.Takeoka and M.Watanabe,Langmuir,2003,19,9104–9106;参考文献3:S.Valkama,H.Kosonen,J.Ruokolainen,T.Haatainen,M.Torkkeli,R.Serimaa,G.Ten Brinke and O.Ikkala,Nat.Mater.,2004,3,872–876)。但是由水凝胶和嵌段共聚物制成的可逆温度响应变色光子涂层需要溶胀溶剂,这限制了它们的应用范围。为避免使用溶胀溶剂,可以使用胆甾相液晶主链聚合物获得温度响应变色涂层,然而它们在通过光聚合交联之后会失去其温度响应性质。此外,可以通过使用互穿网络(IPN)制造刺激响应性CLC涂层,只需其中至少一个网络是液晶聚合物网络(LCN),这些材料对湿度和pH值有响应,但在温度改变时不会改变颜色。
发明内容
本发明的目的是提供一种基于半互穿聚合物网络的响应性材料及其应用,所述半互穿网络结构能够随温度改变发生相分离过程,进而实现颜色的可逆改变,该响应性材料不需要通过溶剂溶胀来改变颜色,利用常规工艺如涂布技术即可获得所需涂层,在温度响应涂层和温度响应液晶器件中具有较好的应用前景。
本发明所采取的技术方案是:
本发明提供一种基于半互穿聚合物网络的响应性材料,包括由液晶弹性体和胆甾相液晶聚合物网络形成的半互穿聚合物网络,所述胆甾相液晶聚合物网络由包括液晶单体的液晶混合物聚合形成,所述液晶单体包括至少一种液晶单体化合物,至少一种所述液晶单体化合物为单官能团液晶单体。“官能团”指的是具有反应性的基团,此处指的是可参与反应形成液晶聚合物网络的基团。半互穿聚合物网络中,未交联的液晶弹性体能够扩散出并返回到胆甾相液晶聚合物网络,即液晶弹性体与胆甾相液晶聚合物网络发生了相分离,从而引起胆甾相液晶聚合物网络螺距的增加和缩小,进而导致材料颜色的变化。现有技术中仅加入二丙烯酸酯单体形成互穿或半互穿网络,其具有较高的交联密度,因而不能引起扩散和/或螺距的改变,而本申请使用单官能团液晶单体形成的半互穿聚合物网络(譬如在一些优选的实施例中使用液晶单体为具有单官能团的单丙烯酸酯单体形成半互穿聚合物网络)具有相对较低的交联密度,在一定的阈值温度时(如在一些优选的实施例中为47℃)不能缠绕固定液晶弹性体,从而使得液晶弹性体的扩散成为可能,进而会引起材料颜色的变化。
优选地,所述胆甾相液晶聚合物网络由包括液晶单体、光引发剂和表面活性剂的液晶混合物聚合形成,至少一种所述液晶单体化合物为手性可聚合液晶单体。“手性”和“单官能团”是从两个角度对液晶单体进行限定的特征,两者之间互不影响。即在优选的实施例中所述液晶单体的类型可以为具有单官能团且为手性的可聚合液晶单体;或者可以为具有单官能团且为非手性的可聚合液晶单体与具有双官能团且为手性的可聚合液晶单体形成的组合。限定液晶单体为手性可聚合液晶单体的目的是用来诱导形成胆甾相以反射特定波长的光。
优选地,至少两种所述液晶单体化合物为手性可聚合液晶单体和非手性可聚合液晶单体,所述响应性材料的原料包括70~80质量份的液晶弹性体、5~25质量份的手性可聚合液晶单体、4~11质量份的非手性可聚合液晶单体、0.5~2质量份的光引发剂和0.5~2质量份的表面活性剂。在光照条件下,液晶单体在光引发剂的作用下形成胆甾相液晶聚合物网络,与未交联的液晶弹性体互穿形成半互穿聚合物网络,加入的表面活性剂能够改善分子的排 列。即在优选的实施例中所述液晶单体的类型可以为具有单官能团且为手性的可聚合液晶单体和具有单官能团且为非手性的可聚合液晶单体;或者可以为具有单官能团且为手性的可聚合液晶单体与具有双官能团且为非手性的可聚合液晶单体形成的组合。
进一步地,至少两种所述液晶单体化合物为单官能团液晶单体和双官能团液晶单体。即在一些优选的实施例中液晶单体可以为具有单官能团且为手性的可聚合液晶单体和具有双官能团且为非手性的可聚合液晶单体;或者液晶单体可以为具有双官能团且为手性的可聚合液晶单体和具有单官能团且为非手性的可聚合液晶单体。由于聚合物网络的密度高时对温度的敏感度会降低,密度低时稳定性会差,采用单官能团液晶单体和双官能液晶单体的方式能够更容易调节聚合物网络密度。在一些优选的实施例中,官能团为丙烯酸酯基,即优选的实施例中液晶单体包括单官能度丙烯酸酯单体和两官能度丙烯酸酯单体。
当增加双官能团液晶单体:单官能团液晶单体的比率时,液晶弹性体受胆甾相液晶聚合物网络的约束作用更多,相分离能力降低,会引起材料快速但小的颜色变化。优选所述单官能团液晶单体:双官能团液晶单体的摩尔比为1:(1~50)。更进一步优选地,所述单官能团液晶单体:双官能团液晶单体的摩尔比为1:(4~16)。
上述的基于半互穿聚合物网络的响应性材料在温度响应液晶器件、温度响应涂层、防伪标签、监测指示领域中的应用。上述的基于半互穿聚合物网络的响应性材料具有温度响应、颜色变化的特性,适用于温度响应液晶器件、温度响应涂层如用于温度响应色彩装饰、防伪标签、监测指示领域如作为时间-温度指示器来监测食品和药品的冷链。
一种温度响应液晶器件,包括上述的基于半互穿聚合物网络的响应性材料。
一种温度响应涂层,包括上述的基于半互穿聚合物网络的响应性材料。
在一些优选的实施例中,所述温度响应涂层为图案化涂层。
本发明还提供一种上述的图案化涂层的制备方法,包括以下步骤:
将所述基于半互穿聚合物网络的响应性材料覆于基材上形成涂层;
所述涂层的目标图案化区域处施加光照一,其余区域处施加光照二,所述光照一的光照强度小于所述光照二的光照强度。光照强度会影响涂层的颜色变化,较高的光照强度会导致较慢但较大的色位移,只要光照一的光照强度与光照二的光照强度存在差异,即可形成图案化涂层。
优选地,0.01mw/cm 2≤所述光照一的光照强度<所述光照二的光照强度≤32mw/cm 2。原则上,只要光照一的光照强度小于光照二的光照强度,光照强度可以任意选择,我们在实验时使用的强度范围为0.01~32mw/cm 2。在低强度(<2.7mw/cm 2)的光照强度条件下为 确保形成半互穿聚合物网络,在一些实施例中会使用32mw/cm 2的光照强度照射进行后固化。
本发明的有益效果是:
本发明提供一种基于半互穿聚合物网络的响应性材料,包括液晶弹性体(LCE)和胆甾相液晶聚合物网络(LCN)形成的半互穿聚合物网络,所述响应型材料在加热到材料的胆甾相-各向同性转变温度(Tch-I)以上时,会发生液晶弹性体和胆甾相液晶聚合物网络之间的相分离,LCE会从LCN中扩散出来,导致剩余液晶网络中单官能团液晶单体具有较高的浓度,从而导致胆甾相螺距减小,由此观察到反射波长的蓝移。当冷却到Tch-I以下时,LCE可以再次获得取向并混入LCN中,混合再次降低了LCN中单官能团液晶单体的浓度,这导致胆甾相螺距增大并因此导致反射波长的红移。本发明的响应性材料不需要使用溶胀溶剂,且能够随温度变化实现反射波长的蓝移和红移,从而显示温度诱导的颜色变化。
附图说明
图1为实施例1中温度响应涂层在不同温度下随时间变化的影响图;
图2为实施例2中图案化涂层在不同温度-时间过程中拍摄的图片。
具体实施方式
以下将结合实施例对本发明的构思及产生的技术效果进行清楚、完整地描述,以充分地理解本发明的目的、特征和效果。显然,所描述的实施例只是本发明的一部分实施例,而不是全部实施例,基于本发明的实施例,本领域的技术人员在不付出创造性劳动的前提下所获得的其他实施例,均属于本发明保护的范围。
实施例1
本实施例提供一种基于半互穿聚合物网络的响应性材料,通过以下步骤制得:
(1)称取77质量份的液晶弹性体和液晶混合物混合形成涂料,所述液晶混合物包括16质量份的手性可聚合液晶单体RM-1、5质量份的非手性可聚合液晶单体RM-2、1质量份的光引发剂和1质量份的表面活性剂;
(2)使用刮刀涂布将上述涂料涂覆在摩擦的聚酰亚胺玻璃基材上,随后通过UV聚合(光强I=32mw/cm 2,在氮气环境中10分钟)。
本实施例中使用的液晶弹性体的结构式为液晶弹性体的结构式为
Figure PCTCN2020130844-appb-000001
手性可聚合液晶单体RM-1为左旋液晶单体,其结构式为
Figure PCTCN2020130844-appb-000002
非手性可聚合液晶单体RM-2的结构式为
Figure PCTCN2020130844-appb-000003
光引发剂为Irgacure651,结构式为
Figure PCTCN2020130844-appb-000004
表面活性剂结构式为
Figure PCTCN2020130844-appb-000005
其中RM-1含有一个丙烯酸酯端基,属于单官能团液晶单体,RM-2含有两个丙烯酸酯端基,属于双官能团液晶单体。
本实施例液晶混合物在紫外光下聚合形成胆甾相液晶聚合物,与未聚合的液晶弹性体互穿形成半互穿聚合物网络,最终在基材上聚合形成了一种温度响应涂层,本实施例温度响应涂层的胆甾相-各向同性转变温度(Tch-I)在加热时为47℃,在冷却时为42℃。考察在该温度响应涂层在不同温度下随时间变化的影响,结果如图1所示,其中图1中A表示温度响应涂层在不同温度-时间历程的透射光谱,黑色实线表示起始在21℃下的透射光谱,灰色虚线表示65℃下不同时间(t1=0h、t2=1h、t3=2h、t4=3.75h)的透射光谱,灰色实线表示38℃下不同时间(T1=0h、T2=36h、T3=420h)的透射光谱。结果显示在65℃(T>Tch-I)下透射光谱随时间发生了蓝移,在3.75h内图谱从近红外(799nm)变为绿色(515nm),蓝移的波长与时间的关系如图1中B所示。在38℃(T<Tch-I)下透射光谱随时间发生了红移,在约一周内红移至706nm,红移的波长与时间的关系如图1中D所示。结果表明在第一次加热和冷却循环之后,该温度响应涂层可以达到蓝移和红移完全可逆的效果。图1中C表示温度响应涂层在不同温度-时间过程中在室温下拍摄的图片,结果显示该温度响应涂层随温度发生了颜色的变化。
实施例2
本实施例提供一种图案化涂层,按照以下步骤制备:
(1)本实施例中使用的涂料与实施例1的涂料成分一样;
(2)采用柔性版印刷工艺将上述涂料涂覆在摩擦的聚酰亚胺玻璃基材上,利用具有三叶草图案的光掩模,在三叶草图案化区域处通过具有0.01mw/cm 2的紫外光强度照射,而图案化区域周围以2.7mw/cm 2的强度照射。
上述图案化涂层在不同温度-时间过程中拍摄的图片如图2所示,从图中可以看出三叶草图案的周围区域在高温(65℃)下变得可见,在较低温度(28℃)下不可见。由于不同的聚合条件,三叶草图案化区域不会转移至可见波长,而在1.4小时内加热至65℃时,图案化区域周围变为橙色,从而使得三叶草图案化区域变得可见,在冷却至38℃时,图案化区域周围的涂层在22小时内再次红移至近红外区域,因而三叶草图案变得不可见。
实施例3
本实施例提供一种温度响应涂层,通过以下步骤制得,本实施例使用的原料与实施例1中相同:
(1)称取80质量份的液晶弹性体和液晶混合物混合形成涂料,所述液晶混合物包括5质量份的手性可聚合液晶单体RM-1、11质量份的非手性可聚合液晶单体RM-2、2质量份的光引发剂和2质量份的表面活性剂;
(2)使用刮刀涂布将上述涂料涂覆在摩擦的聚酰亚胺玻璃基材上,随后通过UV聚合(光强I=32mw/cm 2,在氮气环境中10分钟)。
观察本实施例的温度响应涂层在不同温度-时间过程中的变化,结果显示该温度响应涂层随温度发生了颜色的变化。
实施例4
本实施例提供一种温度响应涂层,通过以下步骤制得,本实施例使用的原料与实施例1中相同:
(1)称取70质量份的液晶弹性体和液晶混合物混合形成涂料,所述液晶混合物包括25质量份的手性可聚合液晶单体RM-1、4质量份的非手性可聚合液晶单体RM-2、0.5质量份的光引发剂和0.5质量份的表面活性剂;
(2)使用刮刀涂布将上述涂料涂覆在摩擦的聚酰亚胺玻璃基材上,随后通过UV聚合(光强I=32mw/cm 2,在氮气环境中20分钟)。
观察本实施例的温度响应涂层在不同温度-时间过程中的变化,结果显示该温度响应涂层随温度发生了颜色的变化。
实施例5
本实施例提供一种温度响应涂层,通过以下步骤制得,本实施例使用的原料与实施例1中相同:
(1)称取75质量份的液晶弹性体和液晶混合物混合形成涂料,所述液晶混合物包括35质量份的液晶单体化合物,1质量份的光引发剂和2质量份的表面活性剂,其中液晶单体化合物为手性可聚合液晶单体RM-1和非手性可聚合液晶单体RM-2,RM-1:RM-2的摩尔比为1:4;
(2)使用刮刀涂布将上述涂料涂覆在摩擦的聚酰亚胺玻璃基材上,随后通过UV聚合(光强I=3mw/cm 2,在氮气环境中20分钟)。
观察本实施例的温度响应涂层在不同温度-时间过程中的变化,结果显示该温度响应涂层随温度发生了颜色的变化。
实施例6
本实施例提供一种温度响应涂层,通过以下步骤制得,本实施例使用的原料与实施例1中相同:
(1)称取75质量份的液晶弹性体和液晶混合物混合形成涂料,所述液晶混合物包括40质量份的液晶单体化合物,1.8质量份的光引发剂和0.5质量份的表面活性剂,其中液晶单体化合物为手性可聚合液晶单体RM-1和非手性可聚合液晶单体RM-2,RM-1:RM-2的摩尔比为1:16;
(2)使用刮刀涂布将上述涂料涂覆在摩擦的聚酰亚胺玻璃基材上,随后通过UV聚合(光强I=15mw/cm 2,在氮气环境中20分钟)。
观察本实施例的温度响应涂层在不同温度-时间过程中的变化,结果显示该温度响应涂层随温度发生了颜色的变化。
实施例7
本实施例提供一种温度响应涂层,通过以下步骤制得,本实施例使用的原料与实施例1中相同:
(1)称取78质量份的液晶弹性体和液晶混合物混合形成涂料,所述液晶混合物包括38质量份的液晶单体化合物,0.5质量份的光引发剂和0.5质量份的表面活性剂,其中液晶单体化合物为手性可聚合液晶单体RM-1和非手性可聚合液晶单体RM-2,RM-1:RM-2的摩尔比为1:50;
(2)使用刮刀涂布将上述涂料涂覆在摩擦的聚酰亚胺玻璃基材上,随后通过UV聚合(光强I=20mw/cm 2,在氮气环境中20分钟)。
观察本实施例的温度响应涂层在不同温度-时间过程中的变化,结果显示该温度响应涂层随温度发生了颜色的变化。

Claims (11)

  1. 一种基于半互穿聚合物网络的响应性材料,其特征在于,包括由液晶弹性体和胆甾相液晶聚合物网络形成的半互穿聚合物网络,所述胆甾相液晶聚合物网络由包括液晶单体的液晶混合物聚合形成,所述液晶单体包括一种及以上的液晶单体化合物,至少一种所述液晶单体化合物为单官能团液晶单体。
  2. 根据权利要求1所述的基于半互穿聚合物网络的响应性材料,其特征在于,所述胆甾相液晶聚合物网络由包括液晶单体、光引发剂和表面活性剂的液晶混合物聚合形成,至少一种所述液晶单体化合物为手性可聚合液晶单体。
  3. 根据权利要求1所述的基于半互穿聚合物网络的响应性材料,其特征在于,至少两种所述液晶单体化合物为手性可聚合液晶单体和非手性可聚合液晶单体,所述响应性材料的原料包括70~80质量份的液晶弹性体、5~25质量份的手性可聚合液晶单体、4~11质量份的非手性可聚合液晶单体、0.5~2质量份的光引发剂和0.5~2质量份的表面活性剂。
  4. 根据权利要求1-3任一项所述的基于半互穿聚合物网络的响应性材料,其特征在于,至少两种所述液晶单体化合物为单官能团液晶单体和双官能团液晶单体。
  5. 根据权利要求4所述的基于半互穿聚合物网络的响应性材料,其特征在于,所述单官能团液晶单体:双官能团液晶单体的摩尔比为1:(1~50)。
  6. 权利要求1-5任一项所述的基于半互穿聚合物网络的响应性材料在温度响应液晶器件、温度响应涂层、防伪标签、监测指示领域中的应用。
  7. 一种温度响应液晶器件,其特征在于,包括权利要求1-5任一项所述的基于半互穿聚合物网络的响应性材料。
  8. 一种温度响应涂层,其特征在于,包括权利要求1-5任一项所述的基于半互穿聚合物网络的响应性材料。
  9. 根据权利要求8所述的温度响应涂层,其特征在于,所述温度响应涂层为图案化涂层。
  10. 权利要求9所述的温度响应涂层的制备方法,其特征在于,包括以下步骤:
    将所述基于半互穿聚合物网络的响应性材料覆于基材上形成涂层;
    所述涂层的目标图案化区域处施加光照一,其余区域处施加光照二,所述光照一的光照强度小于所述光照二的光照强度。
  11. 根据权利要求10所述的温度响应涂层的制备方法,其特征在于,0.01mw/cm 2≤所述光照一的光照强度<所述光照二的光照强度≤32mw/cm 2
PCT/CN2020/130844 2019-12-06 2020-11-23 一种基于半互穿聚合物网络的响应性材料及其应用 WO2021109889A1 (zh)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
CN201911238308.9 2019-12-06
CN201911238308.9A CN111087818B (zh) 2019-12-06 2019-12-06 一种基于半互穿聚合物网络的响应性材料及其应用

Publications (1)

Publication Number Publication Date
WO2021109889A1 true WO2021109889A1 (zh) 2021-06-10

Family

ID=70394809

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2020/130844 WO2021109889A1 (zh) 2019-12-06 2020-11-23 一种基于半互穿聚合物网络的响应性材料及其应用

Country Status (2)

Country Link
CN (1) CN111087818B (zh)
WO (1) WO2021109889A1 (zh)

Families Citing this family (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN111087818B (zh) * 2019-12-06 2021-11-09 深圳市国华光电科技有限公司 一种基于半互穿聚合物网络的响应性材料及其应用
CN114410157B (zh) * 2022-02-23 2023-09-22 四川龙华光电薄膜股份有限公司 一种配向涂布液及其应用
CN115851087B (zh) * 2022-12-29 2023-10-10 广东粤港澳大湾区黄埔材料研究院 一种防蓝光光扩散涂料及其应用

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20050099575A1 (en) * 2001-01-11 2005-05-12 Rong-Chang Liang Transmissive or reflective liquid crystal display and process for its manufacture
CN104046368A (zh) * 2014-06-09 2014-09-17 京东方科技集团股份有限公司 一种液晶薄膜及其制备方法和温度响应器件、圆偏振片
CN109085712A (zh) * 2018-09-03 2018-12-25 深圳市国华光电科技有限公司 一种温度响应型液晶材料、光调节器及其制作方法
CN110168050A (zh) * 2016-08-17 2019-08-23 深圳市国华光电科技有限公司 通过合适的方式将侧链液晶聚合物与反应性液晶基混合制备的刺激-响应性聚合物膜或涂层和响应装置,其制备方法
CN111087818A (zh) * 2019-12-06 2020-05-01 深圳市国华光电科技有限公司 一种基于半互穿聚合物网络的响应性材料及其应用

Family Cites Families (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN108641582B (zh) * 2018-04-09 2019-12-31 深圳市国华光电科技有限公司 一种温度响应型光反射涂层的制备方法及该光反射涂层

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20050099575A1 (en) * 2001-01-11 2005-05-12 Rong-Chang Liang Transmissive or reflective liquid crystal display and process for its manufacture
CN104046368A (zh) * 2014-06-09 2014-09-17 京东方科技集团股份有限公司 一种液晶薄膜及其制备方法和温度响应器件、圆偏振片
CN110168050A (zh) * 2016-08-17 2019-08-23 深圳市国华光电科技有限公司 通过合适的方式将侧链液晶聚合物与反应性液晶基混合制备的刺激-响应性聚合物膜或涂层和响应装置,其制备方法
CN109085712A (zh) * 2018-09-03 2018-12-25 深圳市国华光电科技有限公司 一种温度响应型液晶材料、光调节器及其制作方法
CN111087818A (zh) * 2019-12-06 2020-05-01 深圳市国华光电科技有限公司 一种基于半互穿聚合物网络的响应性材料及其应用

Also Published As

Publication number Publication date
CN111087818A (zh) 2020-05-01
CN111087818B (zh) 2021-11-09

Similar Documents

Publication Publication Date Title
WO2021109889A1 (zh) 一种基于半互穿聚合物网络的响应性材料及其应用
Zhang et al. An easily coatable temperature responsive cholesteric liquid crystal oligomer for making structural colour patterns
US4637896A (en) Polymeric liquid crystals
Mucha Polymer as an important component of blends and composites with liquid crystals
US5270843A (en) Directly formed polymer dispersed liquid crystal light shutter displays
Rajaram et al. Effect of polymerization temperature on the morphology and electrooptic properties of polymer-stabilized liquid crystals
Liu et al. Photo‐switchable surface topologies in chiral nematic coatings
CN1051380C (zh) 用于液晶调整的热稳定光聚合材料
Lub et al. Stable photopatterned cholesteric layers made by photoisomerization and subsequent photopolymerization for use as color filters in liquid‐crystal displays
Zhang et al. Reversible thermochromic photonic coatings with a protective topcoat
CN110168050B (zh) 刺激响应性反射涂层及其制备方法和应用
JPS6364029A (ja) 画像表示セルおよびこれに用いる単量体
Akiyama et al. Command surfaces, 10. Novel polymethacrylates with laterally attached azobenzene groups displaying photoinduced optical anisotropy
Shi et al. Wearable optical sensing of strain and humidity: a patterned dual‐responsive semi‐interpenetrating network of a cholesteric main‐chain polymer and a poly (ampholyte)
EP2221592A1 (en) Multifunctional optical sensor
JPH0572416A (ja) 光散乱素子およびその製造方法
McConney et al. Dynamic high contrast reflective coloration from responsive polymer/cholesteric liquid crystal architectures
Zhang et al. Easily processable temperature-responsive infrared-reflective polymer coatings
West et al. Characterization of polymer dispersed liquid‐crystal shutters by ultraviolet/visible and infrared absorption spectroscopy
Yu et al. Light intensity-selective photopolymerization and photoisomerization for creating colorful polymer-stabilized cholesteric liquid crystal patterns
JP2011508281A (ja) 液晶材料を吸収したポリマーナノ粒子を含む位相補償フィルム
Hegoburu et al. Characterisation of polymerisation-induced phase separation process in polymer-dispersed liquid crystals based on hydroxyalkyl-methacrylate matrices
WO2023165378A1 (zh) 一种油墨及其制备方法和应用
Liu et al. Optical properties of chiral nematic side‐chain copolymers bearing cholesteryl and azobenzene building blocks
CN113238410B (zh) 一种光反射涂层及其制备方法和光学器件

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 20896092

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 20896092

Country of ref document: EP

Kind code of ref document: A1

32PN Ep: public notification in the ep bulletin as address of the adressee cannot be established

Free format text: NOTING OF LOSS OF RIGHTS PURSUANT TO RULE 112(1) EPC (EPO FORM 1205A DATED 01/12/2022)

122 Ep: pct application non-entry in european phase

Ref document number: 20896092

Country of ref document: EP

Kind code of ref document: A1