WO2021109838A1 - 车轮平动传动机构 - Google Patents

车轮平动传动机构 Download PDF

Info

Publication number
WO2021109838A1
WO2021109838A1 PCT/CN2020/128687 CN2020128687W WO2021109838A1 WO 2021109838 A1 WO2021109838 A1 WO 2021109838A1 CN 2020128687 W CN2020128687 W CN 2020128687W WO 2021109838 A1 WO2021109838 A1 WO 2021109838A1
Authority
WO
WIPO (PCT)
Prior art keywords
shaft
wheel
elastic
main shaft
slave
Prior art date
Application number
PCT/CN2020/128687
Other languages
English (en)
French (fr)
Inventor
强海胜
Original Assignee
强海胜
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 强海胜 filed Critical 强海胜
Priority to CN202080005210.3A priority Critical patent/CN112867624A/zh
Publication of WO2021109838A1 publication Critical patent/WO2021109838A1/zh

Links

Images

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60BVEHICLE WHEELS; CASTORS; AXLES FOR WHEELS OR CASTORS; INCREASING WHEEL ADHESION
    • B60B9/00Wheels of high resiliency, e.g. with conical interacting pressure-surfaces
    • B60B9/26Wheels of high resiliency, e.g. with conical interacting pressure-surfaces comprising resilient spokes

Definitions

  • the present invention is an applied basic research in the field of automobile power technology, and mainly relates to the power technology field of wheeled motor transportation vehicles such as automobiles and trains.
  • the present invention is based on the PCT invention patent "Wheel Horizontal Rotation Transmission Mechanism (PCT/CN2019/122981)".
  • the combined star wheel design is modified on the main shaft to realize the invention goal of turning wheel rotation into translational motion, and aims to fundamentally solve the problem
  • Existing automobile power technology is energy-saving and environmental protection issues, etc., and a systematic wheel flat dynamic theory (invention theory definition) is created to promote the progress and development of automobile technology.
  • the existing wheel rotation dynamics theory (new definition) believes that when the engine drives the car to accelerate, the body and the wheels are the main body, and the road surface is the object; the wheels acted by the engine are the internal force of the car’s inertial motion system, and the friction and adhesion between the wheels and the road surface (rolling static friction force) ) Is the main external force for the acceleration of the car, and the extreme value of the external force is the bottleneck of the car's power technology.
  • people will naturally no longer delve into the relative motion and interaction between the car body and the wheel, and will pay attention to the frictional external force between the wheel and the road surface.
  • the relationship between the force and the force of the car body and the wheel relative to the road surface is scarce. Some people are concerned about it. Therefore, the basic theory of vehicle dynamics has not made breakthrough research progress.
  • wheel drive and wheel braking belong to the category of automobile dynamics. They are all three-body dynamics (there is a periodic solution) about the relative motion and interaction of "body, wheel, and road surface”. From the kinematics point of view, when the engine drives the car to accelerate, the body moves horizontally relative to the road, the wheels rotate relative to the axle, and roll on the road, which has a multi-body compound motion characteristic of "translation + rotation + rolling”. Aiming at this movement characteristic, the present invention designs a transmission mechanism that converts wheel rotation into translation. That is, through this mechanism, when the automobile engine drives the wheel backward to rub the road surface, the wheel relative to the axle produces both positive and opposite rotation.
  • the present invention aims at The installation position of the combined star wheel and the installation method of the elastic cuboid are designed to be revised:
  • the wheel translational transmission mechanism includes a cylindrical main shaft, a cylindrical slave shaft, a slave shaft flange, a combined star wheel, an elastic cuboid and a bearing.
  • the slave shaft is mounted on the main shaft through a bearing and has the function of relative rotation.
  • One end of the main shaft is connected with the output shaft of the engine gearbox.
  • On the circumference of the other end of the main shaft a circular groove with a circular cross-section and axially open outward is provided on the other end of the main shaft, and a pair of radial grooves are provided on the circular groove Outward and radially inward openings, the pair of openings are both axially outwardly open, and the longitudinal section of the shaft is rectangular.
  • the elastic rectangular parallelepiped simultaneously generates elastic bending moment deformation in the constrained elastic cavity formed by the main shaft, the slave shaft, the bearing and the slave shaft flange.
  • One end of the slave shaft with uniformly distributed rectangular grooves is coaxially connected with the slave shaft flange through an axial bolt, and the slave shaft flange is coaxially connected with the wheel hub rotating shaft.
  • a flange is provided at one end of the main shaft without circular grooves for connection with the output shaft of the automobile engine gearbox; a coaxial shaft section with a spline structure is provided on the secondary shaft flange , Used for the coaxial connection with the wheel hub shaft; at the coaxial rotation connection of the main shaft and the slave shaft, a combination of two rolling bearings or a sliding bearing is used to realize the coaxial positioning function and anti-friction effect of the main shaft and the slave shaft ;
  • the circular radius of the rotation axis of the combined star wheel is equal or close to the radius of the combined star wheel, the best wheel translational transmission effect will be produced;
  • the number of the combined star wheel and elastic cuboid shall be at least two, and they shall be evenly distributed on the main shaft, From the shaft; the elastic cuboid is processed by spring steel to meet the requirements of the strength of the elastic bending moment; the elastic cavity is filled with grease to realize the reduction of the combined star wheel in the circular groove of the main shaft and the elastic
  • the output shaft of the automobile engine gearbox has no torque acting on the main shaft.
  • the main shaft does not produce elastic bending moments on the slave shaft and the slave shaft flange and the wheel hub rotation shaft.
  • the main shaft, the slave shaft, the combined star wheel, and the elastic cuboid The coupling mechanism composed of bearings and slave shaft flanges can rotate freely in synchronization with the wheels.
  • the output shaft of the automobile engine gearbox starts to act on the main shaft.
  • the two ends of the elastic cuboid are synchronously meshed to produce periodic elastic bending moments in the elastic cavity.
  • the combined star wheel and the main shaft produce synchronous revolution, and the combined star wheel produces synchronous periodic rotation in the circular groove of the main shaft.
  • one end of the elastic cuboid produces synchronous small displacement sliding in the combined star wheel. It acts on the wheel hub rotating shaft with the slave shaft flange, so that the wheel produces translational friction on the road surface, and forms a moment balance and a balanced force boosting effect on the axle.
  • the driving efficiency can be greatly improved and the energy saving is about 40%, and the power performance and adaptive matching performance of the automobile can be greatly improved, and the use is economical. It can greatly improve the acceleration performance of the car, and also provide the necessary active safety technology protection function for the car to avoid sudden traffic hazards.
  • the present invention is also applicable to other wheeled motor vehicles such as trains or other mechanical transmission fields.
  • Figure 1 is a schematic view of the axial front view of the overall assembly structure (without slave shaft flange) of embodiment 1
  • Figure 2 is a schematic diagram of the axial cross-sectional view of the overall assembly structure (with a slave shaft flange) of embodiment 1
  • Figures 3a and 3b are respectively the axial front view and the cross-sectional schematic diagram of the main shaft (including the combined star wheel) of Example 1
  • 4a and 4b are the axial front view and cross-sectional schematic diagram of the slave shaft (including elastic body) in Example 1, respectively
  • Figures 5a and 5b are respectively the axial front view and cross-sectional view of the shaft flange of Example 1
  • Figure 6 is a schematic diagram of a shaft transverse cross-sectional view of the overall assembly structure (without slave shaft flange) of embodiment 2
  • Figure 7 is a schematic diagram of a longitudinal sectional view of the shaft of the overall assembly structure (with a slave shaft flange) of the second embodiment
  • Figure 8 is a schematic diagram of the working principle of embodiment 1
  • Figure 9 is a schematic diagram of the frictional force analysis of the wheel and the road surface when working in Example 1
  • Example 2 take the design scheme of two evenly distributed combined star wheels for the wheel translational transmission mechanism as Example 1, and use the design scheme of evenly distributed three combined star wheels as Example 2, and the structure and working principle of Example 1
  • Example 2 take the design scheme of two evenly distributed combined star wheels for the wheel translational transmission mechanism as Example 1, and use the design scheme of evenly distributed three combined star wheels as Example 2, and the structure and working principle of Example 1
  • Figures 1 and 2 are respectively an axial front view and a cross-sectional schematic view of the overall assembly structure of Embodiment 1:
  • 1 is a cylindrical main shaft, which is coaxially connected to the ball cage (omitted) through the main shaft flange 16, and then connected to the output shaft of the automobile engine gearbox through the ball cage;
  • 2 is a cylindrical slave shaft, which is connected to the wheel through the slave shaft flange 6
  • the hub shaft is coaxially connected.
  • 3 is a combined star wheel (indicated by its rotation axis in Figure 2), 4 is an elastic cuboid, the two combined star wheels are arranged symmetrically on the axis center line, and the combined star wheel is composed of two short cylinder halves and one end of the elastic cuboid.
  • the cylindrical, elastic rectangular parallelepiped can produce elastic bending moment in the range of elastic action, which can meet the use requirements of the maximum torque of the automobile engine.
  • 5 is a rolling bearing.
  • Two deep groove ball bearings with metal seal rings on both sides are used in combination to realize the coaxial positioning and rotation function of the main shaft and the slave shaft.
  • 7 is the main shaft circular groove, which is used for the self-rotating installation of the combined star wheel on the main shaft, and the circumferential radius of the circular groove axis is equal to or close to the radius of the combined star wheel to ensure the best wheel level when the main shaft acts on the slave shaft.
  • Dynamic driving effect; 8 is the rectangular groove of the slave shaft, which is used to insert one end of the elastic cuboid.
  • the part in Figure 2 is indicated by the dotted line.
  • 9 is the radially outer opening on the circular groove of the main shaft
  • 10 is the rectangular bell mouth on the rectangular groove of the slave shaft, which together with the combined star wheel, rolling bearing and flange of the slave shaft form an elastic cavity for generating elastic deformation of the elastic cuboid.
  • the cavity should be filled with grease in an appropriate amount to reduce the sliding friction and wear of the combined star in the circular groove of the main shaft and the elastic cuboid in the combined star, and apply lubrication to the two rolling bearings to extend the working life of the frictional moving parts of the mechanism .
  • 11 is an axial threaded hole on the slave shaft
  • 12 is an axial fastening bolt, which is used to fasten the coaxial bolt between the slave shaft and the slave shaft flange 6.
  • 15 is the inner ring circlip of the rolling bearing.
  • 22 is the radial inner opening on the circular groove of the spindle.
  • Figures 3a and 3b are respectively the axial front view and the cross-sectional schematic diagram of the main shaft (with a combined star wheel) of embodiment 1:
  • 3 is a combined star wheel, composed of two short cylinder halves.
  • 7 is a circular groove, the transverse cross-section of the shaft is circular, and the axially opens outward.
  • 9 is the radially outer opening on the circular groove of the main shaft, the longitudinal section of the shaft is rectangular, and the opening is outward in the axial direction, and the extension of the opening is in the shape of a small trumpet;
  • 22 is the radial inner opening on the circular groove of the main shaft, and the longitudinal section of the shaft is It is rectangular, opening axially outwards, and the inner extension of the opening is slightly different from the radial outer opening 9.
  • 13 is the installation shaft section of the inner ring of the two rolling bearing.
  • 16 is the spindle flange.
  • 17 is the ball cage spin cavity for external ball cage use.
  • 18 is the round through hole of the axial bolt of the flange, which is used for the coaxial fastening connection with the external ball cage.
  • Figures 4a and 4b are respectively the axial front view and cross-sectional schematic diagram of the slave shaft (with elastic body) in embodiment 1:
  • 4 is an elastic cuboid.
  • 8 is a rectangular groove, the radial opening of which is inward, the transverse section of the shaft and the longitudinal section of the shaft are rectangular, and the axial section is open to the outside;
  • 10 is a rectangular horn opening from the opening of the rectangular groove of the shaft, and its radial opening is inward ,
  • the longitudinal section of the shaft is rectangular, the transverse section of the shaft is trumpet, and the shaft is open to the outside.
  • 11 is the axial threaded hole.
  • 14 is the installation shaft section of the outer ring of the two rolling bearing.
  • Figures 5a and 5b are respectively the axial front view and the sectional view of the shaft flange of the embodiment 1:
  • 19 is a round through hole for axial bolts, which is used to fasten connection with bolts on the outer end surface of the slave shaft.
  • 20 is the grease storage cavity.
  • 21 is a coaxial shaft section on the flange of the slave shaft, on which a spline structure connected with the rotation shaft of the wheel hub is provided (default).
  • Figures 6 and 7 are respectively the cross-sectional schematic diagrams of the transverse axis and the longitudinal axis of the overall assembly structure of the second embodiment:
  • Example 1 Compared with Example 1, the number of combination star wheel and main shaft circular groove, elastic cuboid and slave axis rectangular groove is different.
  • the former adopts three combined star wheels and three elastic cuboid, while the latter adopts two A combined star wheel and two elastic cuboids, considering the symmetry of the structure, therefore, only the horizontal and vertical cross-sectional schematic diagrams of the overall assembly structure of embodiment 2 are given here, and the description of the structure and composition can also refer to the embodiment To understand the structural composition of Figure 1, the component descriptions of the two embodiments have the same lead numbers, which will not be repeated here.
  • the main shaft, the slave shaft, the combined star wheel and the slave shaft flange can be made of 45 or 40Cr steel, which can be processed by conventional turning technology; the elastic cuboid should be processed by suitable spring steel, rolling bearings and other
  • the circlip is made of standard mechanical parts.
  • the embodiments of the present invention can be installed on the wheel drive shaft and used as a horizontal output shaft on the automobile engine gearbox. .
  • Fig. 8 is a schematic diagram of the working principle of embodiment 1:
  • Point O is the axial projection of the main axis and the axis of the slave axis; Point O'is the axial projection of the rotation axis of the two combined star wheels; the area inside the D circle represents the axial projection of the main axis.
  • the ring area between the circles W1 and W2 represents the axial projection from the axis; the ring area between the circles D and W2 represents the projection of the rolling bearing.
  • R is the radius of the circumference where the openings of the two grooves of the secondary shaft are located; r is the radius of the combined star wheel; r'is the inner diameter of the circular groove of the main shaft, and r ⁇ r'; L is the deformation length of the elastic cuboid under the action of the elastic bending moment.
  • ⁇ 0 is the angular velocity of the slave shaft and the wheel
  • ⁇ 1 is the angular velocity of the main shaft.
  • Te is the magnitude of the torque output by the engine gearbox; M(t) is the time function of the elastic bending moment produced by each elastic cuboid when the mechanism is working, and M(t0) is the maximum bending produced by the two elastic cuboids each time they work synchronously.
  • R, r, L, the length/width/height of the elastic rectangular parallelepiped and the mechanical performance parameters of the elastic material, etc. are the core design parameters of the present invention.
  • Figure 9 is a schematic diagram of the frictional force analysis of the wheel and the road surface when working in Example 1:
  • f and fmax are the static friction between the wheel and the road surface and the maximum value respectively.
  • Fd is the magnitude of the forward driving force of the wheel on the axle;
  • F is the magnitude of the pair of balance force formed when the wheel is moving on the road.
  • R 1 is the radius of the wheel.
  • ⁇ 0 is the angular velocity of the wheels;
  • V is the linear velocity of the vehicle body. The angle ⁇ corresponds to that in FIG. 8.
  • the coupling transmission mechanism is composed of the main shaft, the slave shaft, the combined star wheel, the slave shaft flange, the elastic cuboid and the bearing.
  • the hub rotating shaft will not produce elastic bending moment, which can be understood with reference to Figures 8 and 9.
  • the circular groove of the main shaft synchronously engages one end of the two elastic cuboids in the clockwise direction to generate an elastic bending moment.
  • the other ends of the two elastic cuboids are synchronously meshed with the rectangular grooves of the slave shaft, and then the elasticity is output from the slave shaft.
  • the couple moment 2M(t) acts on the wheel hub shaft to make the wheels start to rub the road backwards at an angular velocity ⁇ 0 and generate backward static friction.
  • the combined star wheel While the main shaft and the combined star wheel produce a clockwise revolution angle ⁇ relative to point O, the combined star wheel synchronously generates a relatively counterclockwise rotation angle ⁇ in the circular groove of the main shaft.
  • the slave shaft and the slave shaft flange are generated relative to the main shaft.
  • the elastic action bending moment M(t) produced by the two elastic cuboids that cause the wheels to rub against the road surface is a periodic simple harmonic function
  • the forward driving force Fd(t) of the axle relative to the road surface is also a periodic action peak of 3f ⁇ 3fmax period simple harmonic function (sine wave), and the frequency of action will increase with the increase of engine and wheel speed, as shown in the schematic diagram of the action waveform in Figure 9.
  • the present invention will not only affect the acceleration of the automobile. Ride comfort, moreover, will also provide an excellent power adaptive matching performance for the automotive power system.
  • the main shaft When the mechanism is finished, once the torque of the output shaft of the automobile engine gearbox disappears, the main shaft will immediately stop the elastic bending moment of the slave shaft.
  • the main shaft, the slave shaft, the slave shaft flange, the combined star wheel and the wheel relative to the axle will immediately stop the elastic bending moment.
  • the movement ends immediately, and the wheel ends the translational friction and balance boosting action on the road surface.
  • the present invention also needs the support of the existing ASR/TCS wheel anti-skid drive electronic active safety control function to ensure that the wheels are always in a low slip rate rolling static friction state on the road surface and produce the best and Safe car driving efficiency until the end of the organization's full work.
  • the present invention can also greatly improve the acceleration of the car. Safety performance.
  • the elastic rectangular parallelepiped produces synchronous elastic potential energy storage and release, and the axle produces a balanced boosting effect in the range of 0 to 2f ⁇ 2fmax relative to the road surface, thereby generating a sine wave driving force with a peak value of 3f ⁇ 3fmax.
  • Wheels use this energy conversion method of translational friction on the road surface, which can convert the rotational mechanical energy output by the automobile engine into the translational kinetic energy of the automobile, which greatly improves the energy conversion efficiency.
  • the area of the sine wave within one period of action represents the amount of work done by the invention technology
  • the rectangular area represents the existing
  • the difference in the amount of work done by the two areas is about 40% of the area of the rectangle; that is to say, under the same conditions, the invented technology performs about 40% more work than the prior art, so the technology of the present invention can save about 40% of energy.
  • the energy-saving indicators of the technology of the present invention are: fuel-fuel vehicles save about 40%, and electric vehicles save about 40% of electricity.
  • Embodiments 1 and 2 are basically the same, the analysis and description of the working principle of Embodiment 2 can be understood with reference to the foregoing Embodiment 1, and will not be repeated.
  • the first is low-cost, high-efficiency, simple structure, safe and reliable; the second is to greatly reduce vehicle fuel consumption and exhaust emissions; the third is to greatly improve the power performance of the vehicle and the adaptive matching performance, handling performance and driving experience of the power system; Significantly improve the safety of the car, reduce the friction load and wear of the wheels and tires; fifth, greatly increase the cruising range of electric vehicles; sixth, by greatly improving the acceleration performance of the car, provide the necessary active safety technology protection functions for the car.
  • the present invention is also applicable to other wheeled motor vehicles such as trains or other mechanical transmission fields.
  • the present invention proposes an economic and technical solution for automobile power and expounds the theory of wheel flat dynamics. It aims to solve the historical technical problems left by automobiles in terms of safety, energy saving, and environmental protection, and promote global wheeled motor transportation technology At the same time, in order to solve the ecological and environmental problems caused by traditional industrial technology and the long-term sustainable development of human society and economy, it has opened up the space for technological innovation based on Newtonian mechanics...
  • Main shaft-the columnar shaft connected to the output shaft of the automobile engine or motor (engine) gearbox is defined as the "active shaft”, or “main shaft” for short.
  • slave flange Slave shaft flange-the flange that is coaxially and fastened with one end of the cylindrical slave shaft and is used for coaxial connection with the wheel hub shaft.
  • Combined star wheel star wheel
  • star wheel radius-a combined short cylinder composed of two short cylinder halves and one end of an elastic cuboid, defined as “combined star wheel”, referred to as “star wheel”; this combined short cylinder
  • the radius of the cylinder is defined as the "radius of the star wheel”.
  • Spindle circular groove (circular groove), radial outer opening, radial inner opening-are evenly distributed on the circumference of one end of the main shaft, open axially outward, and the transverse cross section of the shaft is a circular groove, which is defined “Spindle circular groove”, referred to as “circular groove”; a pair of radially outward and radially inward openings provided on the circular groove are respectively defined as “radially outer opening and radially inner opening”. “Opening”, the two openings are both axially open to the outside, and the longitudinal cross-section of the shaft is rectangular.
  • Rectangular grooves (rectangular grooves) from the shaft, rectangular bell mouths-evenly distributed on the circular ring surface at one end of the shaft, opening axially outwards, radial openings inward, and both the shaft transverse section and the shaft longitudinal section are rectangular Rectangular grooves are defined as “rectangular grooves from the shaft", referred to as “rectangular grooves"; the openings of the rectangular grooves are provided with axially outward openings, radial openings inward, and the longitudinal section of the shaft is rectangular.
  • An opening with a trumpet-shaped transverse cross-section is called a "rectangular horn".
  • the elastic cuboid When the wheel transmission mechanism of the present invention is working, the elastic cuboid is installed in a cavity formed by the main shaft, the slave shaft, the combined star wheel, the rolling bearing and the flange of the slave shaft, through the circular groove of the main shaft and the combined star wheel. , Synchronous meshing of the two ends of the elastic cuboid from the shaft groove can produce elastic bending moment and deformation, so the cavity is defined as "elastic cavity”.
  • Revolution, rotation, and wheel translational friction-when the wheel transmission mechanism of the present invention works, if the main shaft and the combined star wheel rotate in the positive direction relative to the axis, it is defined as “revolution", and the combined star wheel rotates in the circular groove of the main shaft. It is defined as “rotation”.
  • revolution When the angular velocity changes of revolution and rotation are equal or approximately equal, the friction generated by the driving wheels on the road surface is defined as “wheel translational friction”.

Landscapes

  • Engineering & Computer Science (AREA)
  • Mechanical Engineering (AREA)
  • Arrangement Or Mounting Of Propulsion Units For Vehicles (AREA)
  • Electric Propulsion And Braking For Vehicles (AREA)

Abstract

一种车轮平动传动机构,由主轴(1)、从轴(2)、星轮(3)、弹性体(4)、轴承(5)和从轴法兰盘(6)构成;与从轴法兰盘(6)同轴相连的从轴(2)通过轴承(5)设在主轴(1)上并可相对转动,由弹性体(4)一端与两半短圆柱体组成的星轮(3)均设在主轴圆凹槽(7)内并可自转,弹性体(4)另一端均设在从轴矩形凹槽(8)内;引擎变速箱作用主轴(1)旋转,通过星轮(3)、从轴矩形凹槽(8)啮合弹性体(4)两端在弹力腔内产生同步周期性弹性弯矩作用,并伴有星轮(3)相对主轴圆凹槽(7)的同步周期性自转,由从轴法兰盘(6)驱动车轮在路面上产生平动摩擦和平衡增力作用,该传动机构能够增大汽车驱动功效、节能环保。

Description

车轮平动传动机构 技术领域
本发明是汽车动力技术领域的一项应用基础研究,主要涉及汽车、列车等轮式机动交通运输工具的动力技术领域。
背景技术
本发明以PCT发明专利《车轮平旋传动机构(PCT/CN2019/122981)》为基础,把组合星轮设计改装在主轴上,以实现车轮转动转化成平动的发明目标,旨在从根本上解决现有汽车动力技术的节能环保问题等,并创建系统的车轮平动力学理论(发明理论定义),推动汽车技术的进步发展。
现有车轮转动力学理论(新定义)认为,引擎驱动汽车加速时,车身和车轮为主体,路面为客体;引擎作用车轮是汽车惯性运动系统的内力,车轮与路面的摩擦附着力(滚动静摩擦力)则是汽车加速运动的主要作用外力,该外力作用极值就是汽车动力技术瓶颈。据此理论,人们自然不再会深究车身、车轮之间的相对运动与相互作用,都会关注车轮与路面的摩擦外力作用,但对于车身和车轮相对于路面的施力、受力作用关系,却鲜有人研究关注。因此,导致汽车动力学基础理论一直没有取得突破性的研究进展。
其实,车轮驱动、车轮制动,均属汽车动力学范畴的问题,都是关于“车身、车轮、路面”相对运动与相互作用的三体动力学问题(存在周期解)。从运动学来看,引擎驱动汽车加速时,车身相对路面平动、车轮相对车轴转动,并在路面上滚动,具有“平动+转动+滚动”的多体复合运动特性。针对此运动特性,本发明设计了一种把车轮转动转化为平动的传动机构,即通过该机构,汽车引擎驱动车轮向后摩擦路面时,车轮相对车轴产生既有正向转动又有相对反向转动的平动运动,使车轴能够主动施力作用车轮并向后摩擦路面,从而形成车轮力矩作用平衡和平衡增力作用,因此大幅提升汽车引擎的驱动功效。然而,汽车引擎通过现有传动机构驱动车轮转动并向后摩擦路面、向前加速滚动时,车轮形成的力矩平衡作用,只能由车轮向前施力作用车轴,使车身相对路面处于前向被动受力状态,因而形成不了平衡增力作用。这既是基于现有动力学理论的传统汽车技术路线无法解决汽车节能环保难题的根本原因,也是汽车制动安全问题无法解决的主因!
发明内容
为了实现车轮平动驱动发明目标、突破现有汽车技术瓶颈、解决汽车节能减排问题,在PCT发明专利《车轮平旋传动机构(PCT/CN2019/122981)》的设计结构基础上,本发明针对其组合星轮的安装位置、弹性长方体的安装方式,进行设计修正:
车轮平动传动机构,包括一个柱状主轴、一个筒状从轴、一个从轴法兰盘、组合星轮、弹性长方体和轴承。从轴通过轴承安装在主轴上,并有相对转动功能。主轴一端与引擎变速箱输出轴连接,在主轴另一端面圆周上,均布轴横向截面为圆形、轴向向外开放的圆凹槽,并在该圆 凹槽上都设置一对径向向外、径向向内的开口,该对开口都是轴向向外开放、轴纵向截面为矩形。在从轴一端的圆环面上,均布轴向向外开放、径向开口向内、轴横向截面和轴纵向截面皆为矩形的矩形凹槽,并在该矩形凹槽的开口上都设置一个轴向向外开放、径向开口向内、轴纵向截面为矩形、轴横向截面为喇叭形的矩形喇叭口。在主轴圆凹槽内,都设置一个由弹性长方体一端与两半短圆柱体插接组成的组合星轮并有相对自转功能,弹性长方体的另一端分别插接安装在从轴矩形凹槽内,使弹性长方体在由主轴、从轴、轴承和从轴法兰盘共同构成的约束弹力腔内同时产生弹性弯矩作用形变。均布矩形凹槽的从轴一端,通过轴向螺栓与从轴法兰盘同轴连接,从轴法兰盘与车轮轮毂转轴同轴连接。
上述传动机构中,在不设置圆凹槽的主轴一端设置一个法兰盘,用于与汽车引擎变速箱输出轴的连接;从轴法兰盘上设置一段设有花键结构的同轴轴段,用于与车轮轮毂转轴的同轴连接;在主轴、从轴的同轴转动连接处,组合使用两只滚动轴承,或者使用滑动轴承,以实现主轴、从轴的同轴定位功能及减摩作用;组合星轮自转轴线所在的圆周半径与组合星轮半径相等或相近时,产生最佳的车轮平动传动作用效果;组合星轮和弹性长方体的数量最少设置两个,并均布在主轴、从轴上;弹性长方体采用弹簧钢加工,以满足弹性弯矩作用强度要求;在弹力腔内填加润滑脂,以实现组合星轮在主轴圆凹槽内、弹性长方体在组合星轮内的减摩润滑和轴承润滑。上述传动机构,或者安装在车轮驱动轴上作为联轴器使用,或者安装在汽车引擎变速箱中作为横置输出轴使用。
传动机构不工作时,汽车引擎变速箱输出轴无扭矩作用主轴,主轴对于从轴和从轴法兰盘及车轮轮毂转轴不产生弹性弯矩作用,由主轴、从轴、组合星轮、弹性长方体、轴承和从轴法兰盘组成的联轴机构,与车轮一起作同步自由转动。
传动机构工作时,汽车引擎变速箱输出轴开始作用主轴,通过主轴圆凹槽及组合星轮、从轴矩形凹槽同步啮合弹性长方体两端,在弹力腔内产生周期性的弹性弯矩作用及形变,与此同时,组合星轮与主轴既产生同步公转,组合星轮在主轴圆凹槽内又产生同步周期性自转,同时弹性长方体一端在组合星轮内产生同步小位移滑动,由从轴和从轴法兰盘作用车轮轮毂转轴,使车轮在路面上产生平动摩擦,并在车轴上形成力矩作用平衡和平衡增力作用。所述车轮平动摩擦作用中,由于车轴相对于路面主动施力向后作用的力为周期简谐函数,且其每个周期的作用峰值大于车轮与路面静摩擦力的二倍,所以,同比现有技术,汽车引擎作用车轮产生的前向驱动力及作用功效得以大幅提升。
传动机构工作结束时,一旦汽车引擎变速箱输出轴作用扭矩消失,主轴将停止对从轴和从轴法兰盘及车轮轮毂转轴的周期性弹性弯矩作用,车轮在路面上结束平动摩擦和平衡增力作用。
本发明的技术效果是:
汽车引擎通过本发明传动机构驱动车轮以平动方式摩擦路面时,同比现有汽车技术,可大幅提升驱动功效且节能约40%,并可大幅提升汽车的动力性能及自适应匹配性能、使用经济性、操控性能和驾驶体验等;大幅提高汽车的加速性能,还可为汽车提供必要的主动安全技术保护功能,以躲避交通突发危险。
而在PCT发明专利《车轮平旋传动机构(PCT/CN2019/122981)》已公开的车轮传动机构中,因其组合星轮设计在从轴上、没有设计在主轴上,故在该传动机构作用下,实现不了车轮平动摩擦路面、汽车节能40%的发明目标,与现有的技术效果相同。
除了作为汽车基础共性技术应用外,本发明亦适用于列车等其它轮式机动交通运输工具或其它机械传动领域。
附图说明
图1为实施例1的总体装配结构(无从轴法兰盘)的轴向前视示意图
图2为实施例1的总体装配结构(有从轴法兰盘)的轴向剖视示意图
图3a、3b分别为实施例1主轴(含组合星轮)的轴向前视、剖视示意图
图4a、4b分别为实施例1从轴(含弹性体)的轴向前视、剖视示意图
图5a、5b分别为实施例1从轴法兰盘的轴向前视、剖视示意图
图6为实施例2的总体装配结构(无从轴法兰盘)的轴横向剖视示意图
图7为实施例2的总体装配结构(有从轴法兰盘)的轴纵向剖视示意图
图8为实施例1的工作原理示意图
图9为实施例1工作时车轮与路面的摩擦受力分析示意图
具体实施方式
在此,以车轮平动传动机构采用均布两个组合星轮的设计方案作为实施例1、采用均布三个组合星轮的设计方案作为实施例2,将实施例1结构组成和工作原理进行较为详细的说明,对于实施例2仅作简要说明:
一、结构组成
图1、2分别为实施例1的总体装配结构的轴向前视、剖视示意图:
1为柱状主轴,通过主轴法兰盘16与球笼(省略)同轴连接,再通过球笼与汽车引擎变速箱输出轴连接;2为筒状从轴,通过从轴法兰盘6与车轮轮毂转轴同轴连接。3为组合星轮(图2中用其自转轴线表示),4为弹性长方体,两个组合星轮采用轴中心线对称方式设置,组合星轮是由两半短圆柱体与弹性长方体一端组成完整的圆柱体,弹性长方体能在弹性作用范围内产生弹性弯矩作用,满足汽车引擎最大作用扭矩的使用要求。5为滚动轴承,组合使用两只自带双侧金属密封圈的深沟球轴承,以实现主轴、从轴的同轴定位与转动功能。7为主轴圆凹槽,用于组合星轮在主轴上的可自转安装,且圆凹槽轴线所在圆周半径与组合星轮半径相等或者相近,以确保主轴作用从轴时产生最佳的车轮平动驱动效果;8为从轴矩形凹槽,用于插装弹性长方体一端,图2中 部分使用虚线表示。9为主轴圆凹槽上的径向外开口,10为从轴矩形凹槽上的矩形喇叭口,与组合星轮、滚动轴承和从轴法兰盘共同构成弹性长方体产生弹性形变的弹力腔,该腔内应适量填加润滑脂,以降低组合星轮在主轴圆凹槽内、弹性长方体在组合星轮内的滑动摩擦和磨损,并对两只滚动轴承施加润滑,以延长机构摩擦运动部件的工作寿命。11为从轴上的轴向螺纹孔,12为轴向紧固螺栓,用于从轴与从轴法兰盘6的同轴螺栓紧固连接。15为滚动轴承的内圈卡簧。22为主轴圆凹槽上的径向内开口。注:从轴法兰盘,在图1中缺省,在图2中用虚轮廓线表示。
图3a、3b分别为实施例1主轴(有组合星轮)的轴向前视、剖视示意图:
3为组合星轮,由两半短圆柱体组成。7为圆凹槽,其轴横向截面为圆形,轴向向外开放。9为主轴圆凹槽上的径向外开口,其轴纵向截面为矩形,轴向向外开放,开口外延呈小喇叭形;22为主轴圆凹槽上的径向内开口,其轴纵向截面为矩形,轴向向外开放,开口内延与径向外开口9略有不同。13为两滚动轴承内圈的安装轴段。16为主轴法兰盘。17为球笼旋腔,供外接球笼使用。18为法兰盘的轴向螺栓圆通孔,用于与外接球笼的同轴紧固连接。
图4a、4b分别为实施例1从轴(有弹性体)的轴向前视、剖视示意图:
4为弹性长方体。8为矩形凹槽,其径向开口向内、轴横向截面和轴纵向截面皆为矩形、轴向向外开放;10为从轴矩形凹槽开口上的矩形喇叭口,其径向开口向内、轴纵向截面为矩形、轴横向截面为喇叭形、轴向向外开放。11为轴向螺纹孔。14为两滚动轴承外圈的安装轴段。
图5a、5b分别为实施例1从轴法兰盘的轴向前视、剖视示意图:
19为轴向螺栓圆通孔,用于与从轴外端面的螺栓紧固连接。20为润滑脂储腔。21为从轴法兰盘上的同轴轴段,其上设有与车轮轮毂转轴连接的花键结构(缺省)。
图6、7分别为实施例2的总体装配结构的轴横向、轴纵向剖视示意图:
实施例2与实施例1相比,仅是组合星轮及主轴圆凹槽、弹性长方体及从轴矩形凹槽的数量不同,前者采用三个组合星轮、三个弹性长方体,后者采用两个组合星轮、两个弹性长方体,考虑结构上的对称性,所以,在此仅给出实施例2的总体装配结构的轴横向、轴纵向剖视示意图,其结构组成说明也可以参考实施例1的结构组成示意图来理解,两个实施例的部件说明引线标号相同,不再赘述。
有关部件的生产工艺设计考虑有,主轴、从轴、组合星轮和从轴法兰盘均可选用45或40Cr钢,通过常规车削工艺方法加工;弹性长方体选用合适的弹簧钢加工,滚动轴承及其卡簧选用标准机械零部件。
总之,作为一种低成本、高功效、结构简单的车用联轴器,本发明实施例,既可安装在车轮驱动轴上使用,又可安装在汽车引擎变速箱上作为横置输出轴使用。
二、工作原理
图8为实施例1的工作原理示意图:
O点为主轴和从轴轴线的轴向投影;O′点为两个组合星轮自转轴线的轴向投影;D圆内区域表示主轴的轴向投影。W1、W2两圆间的圆环区域表示从轴的轴向投影;D、W2两圆间的圆环区域表示滚动轴承投影。R为从轴两凹槽开口所在圆周的半径;r为组合星轮半径;r′为主轴圆凹槽内径,且r<r′;L为弹性长方体的弹性弯矩作用形变长度。ω0为从轴和车轮的角速度;ω1为主轴角速度。Te为引擎变速箱输出的扭矩作用大小;M(t)为机构工作时每个弹性长方体产生的弹性作用弯矩的时间函数,M(t0)为两弹性长方体每次同步工作时产生的最大弯矩作用数值,设此时刻为t0;Td为从轴和车轮的扭矩作用大小;Tr为从轴和车轮的反向力矩作用大小。
其中,R、r、L和弹性长方体的长/宽/高及弹性材料力学性能参数等,都是本发明的核心设计参数。通过这些参数的优化设计,只要确保机构工作时,主轴的公转角、组合星轮在主轴圆凹槽内的同步相对自转角均等于或近似等于θ,就能确保机构在最大扭矩作用范围内,产生最佳的车轮平动摩擦和平衡增力作用效果。
图9为实施例1工作时车轮与路面的摩擦受力分析示意图:
f、fmax分别为车轮与路面的静摩擦力及最大值。Fd为车轮在车轴上的前向驱动力作用大小;F为车轮在路面上平动时形成的一对平衡力作用大小。R 1为车轮半径。ω0为车轮角速度;V为车身线速度。θ角与图8中的相对应。
机构不工作时,汽车引擎变速箱输出轴无扭矩作用主轴,即Te=0,由主轴、从轴、组合星轮、从轴法兰盘、弹性长方体和轴承组成的联轴传动机构,对于车轮轮毂转轴不会产生弹性弯矩作用,可参考图8、9来理解。
为便于分析说明和理解,下面仅阐述汽车处于静止状态(ω0=ω1=0、V=0)时的匀加速原理。但对于汽车行驶途中匀加速原理,不再赘述。
机构工作时,汽车引擎变速箱输出轴开始以角速度ω1在顺时针方向上加速旋转,并输出扭矩Te=fR 1作用主轴,其最大作用数值及增加速率,将由每次汽车起动时所需的加速度大小决定,如图8、9所示。
在主轴恒定扭矩作用下,通过主轴圆凹槽在顺时针方向上同步啮合两弹性长方体一端产生弹性弯矩作用,同时通过两弹性长方体另一端同步啮合从轴矩形凹槽,再由从轴输出弹性力偶矩2M(t)作用车轮轮毂转轴,使车轮开始以角速度ω0向后摩擦路面,并产生后向静摩擦力,同时路面产生前向静摩擦力反作用车轮,产生反向作用力矩Tr=fR 1。主轴和组合星轮在相对O点产生顺时针公转角θ的同时,组合星轮在主轴圆凹槽内又同步产生相对逆时针的自转角θ,从轴和从轴法兰盘相对于主轴产生反转,同时两弹性长方体在弹力腔内同步产生弹性弯矩作用形变,并在组合星轮内产生同步小位移滑动;当两星轮相对于主轴圆凹槽的逆时针自转角θ同步达到最大值、M(t)=M(t0)时,两星轮立刻开始同步产生相对顺时针自转;一旦M(t)=0,则主轴两圆凹槽内的星轮又将立刻开始新周期的相对逆时针、顺时针自转,循环往复,直至机构工作结束 为止。因此,从轴和从轴法兰盘相对于主轴产生平动,并使车轮在路面上产生平动摩擦作用。
而在车轮平动摩擦路面过程中,由于通过车轴主动施力向后作用车轮并以f≤fmax大小的摩擦力向后作用路面,可使车轮周缘面在路面上形成一对大小为F=f、作用方向相反的平衡力作用,所以车轴相对路面可以产生f+2F≤3fmax大小的后向作用力。根据牛顿第三定律,由于车轴相对路面主动向后施力等于车轴前向受力,所以,汽车引擎输出扭矩Te=fR 1通过机构作用车轮时,车轴相对于路面可以产生Fd=f+2F=3f≤3fmax大小的前向驱动作用力;此时,车轮的等效力矩作用平衡方程为Td+FR 1=Tr+FR 1,式中,Td=fR 1=Tr,而FR 1则是因车轮相对于车轴的转动惯性力和弹性弯矩共同作用而产生。由于引发车轮平动摩擦路面的两弹性长方体所产生的弹性作用弯矩M(t)为周期性简谐函数,所以,车轴相对于路面的前向驱动力Fd(t)也是一个周期作用峰值为3f≤3fmax大小的周期简谐函数(正弦波),且作用频率将会随着引擎和车轮转速的增加而增加,如图9中的作用波形示意图所示。
机构工作过程中,因为两弹性长方体的弹性作用弯矩M(t)及驱动力Fd(t),支持汽车引擎变速箱输出扭矩的实时作用变化,所以,本发明不仅不会影响汽车加速运动的平顺性,而且,还会为汽车动力系统提供一种卓越的动力自适应匹配性能。
机构工作结束时,一旦汽车引擎变速箱输出轴作用扭矩消失,主轴将会立刻停止对从轴的弹性弯矩作用,主轴、从轴、从轴法兰盘、组合星轮及车轮相对车轴的平动立刻结束,车轮结束在路面上的平动摩擦和平衡增力作用。
机构全力工作时,一旦引擎变速箱输出轴作用扭矩大于路面最大静摩擦力作用车轮所产生的反向力矩作用,即Te>fmaxR 1时,因为驱动车轮在路面上打滑时,车身会出现跑偏或甩尾等危险工况,所以,本发明也需要现有ASR/TCS车轮防滑驱动电子主动安全控制功能的支持,以确保车轮在路面上始终处于低滑移率的滚动静摩擦状态、产生最佳和安全的汽车驱动功效,直至机构全力工作结束为止。同比现有技术,由于汽车驱动力的大幅提升,并没改变车轮与路面静摩擦力的作用大小,相当于大幅提升了车轮与路面的等效摩擦力,所以本发明还可大幅提升汽车加速行驶的安全性能。
从能量守恒原理分析,汽车引擎输出恒定的作用扭矩Te=fR1,通过机构驱动车轮在0至f≤fmax范围内的力向后平动摩擦路面、做功时,可以使车轴主动施力作用车轮,同时弹性长方体产生同步弹性势能存储与释放,车轴相对路面在0至2f≤2fmax范围内产生平衡增力作用,从而产生作用峰值为3f≤3fmax的正弦波驱动力。车轮以这种平动摩擦作用路面的能量转化方式,可把汽车引擎输出的转动机械能更多地转化成汽车的平动动能,使能量转化效率大幅提升。如图9中驱动力Fd(t)作用示意波形所示,基于微积分法计算分析,汽车匀加速时,一个作用周期内的正弦波面积表示发明技术的做功量,而矩形面积则表示现有技术的做功量,两面积差大约是矩形面积的40%;也就是说, 在同比条件下,发明技术比现有技术做功大约多40%,因此本发明技术可以大约节能40%。
而在PCT发明专利《车轮平旋传动机构(PCT/CN2019/122981)》已公开的车轮传动机构中,因其组合星轮设计在从轴上、没有设计在主轴上,故在该传动机构作用下,实现不了车轮平动摩擦路面、汽车节能40%的发明目标,并通过整车试验证明,与现有技术效果相同。
综上分析,本发明技术的节能指标是:燃油汽车节油约40%、电动汽车省电约40%。
考虑实施例1、2的工作原理基本相同,因此关于实施例2的工作原理分析说明可以参考上述实施例1来理解,不再赘述。
本发明的主要技术优势有:
一是低成本、高功效、结构简单、安全可靠;二是大幅降低汽车油耗和尾气排放;三是大幅提高汽车的动力性能及动力系统的自适应匹配性能、操控性能和驾驶体验等;四是大幅提高汽车行驶的安全性、降低车轮轮胎的摩擦负荷及磨损;五是大幅提升电动汽车的续航里程;六是通过大幅提高汽车的加速性能,为汽车提供必要的主动安全技术保护功能等。
因此,有理由预言,本发明若能成功产业化实施,将会引发一场令人期待的汽车动力技术革命!
除汽车应用外,本发明亦适用于列车等其它轮式机动交通运输工具或其它机械传动领域。
结束语
本发明,提出了一种汽车动力经济技术解决方案,并阐述了车轮平动力学理论,旨在解决汽车在安全、节能、环保方面的历史性技术遗留问题,推动全球轮式机动交通运输工具技术的长足进步;同时,为解决传统产业技术带来的生态环境问题,以及人类社会经济长期可持续发展问题,打开了基于牛顿力学理论的技术创新空间……
本发明的名词定义:
主轴——与汽车发动机或电机(引擎)变速箱输出轴相连的柱状转轴,被定义为“主动轴”,简称“主轴”。
从轴——与现车用车轮轴承单元转轴同轴相连的筒状转轴,被定义为“从动轴”,简称“从轴”。
从轴法兰盘——与筒状从轴一端面同轴紧固连接,用于与车轮轮毂转轴同轴连接的法兰盘,被称作“从轴法兰盘”。
组合星轮(星轮)、星轮半径——由两半短圆柱体与弹性长方体一端构成的组合式短圆柱体,被定义为“组合星轮”,简称“星轮”;该组合式短圆柱体的半径,被定义为“星轮半径”。
主轴圆凹槽(圆凹槽)、径向外开口、径向内开口——均布在主轴一端面的圆 周上,轴向向外开放、轴横向截面为圆形的圆凹槽,被定义为“主轴圆凹槽”,简称“圆凹槽”;在该圆凹槽上设置的一对径向向外、径向向内的开口,分别被定义为“径向外开口、径向内开口”,该两开口都是轴向向外开放、轴纵向截面皆为矩形。
从轴矩形凹槽(矩形凹槽)、矩形喇叭口——均布在从轴一端圆环面上,轴向向外开放、径向开口向内、轴横向截面和轴纵向截面皆为矩形的矩形凹槽,被定义为“从轴矩形凹槽”,简称“矩形凹槽”;在该矩形凹槽开口上设置的轴向向外开放、径向开口向内、轴纵向截面为矩形、轴横向截面为喇叭形的开口,被称作“矩形喇叭口”。
弹力腔——本发明车轮传动机构工作时,因弹性长方体安装在由主轴、从轴、组合星轮、滚动轴承和从轴法兰盘多面共同构成的腔体内,经主轴圆凹槽及组合星轮、从轴凹槽同步啮合弹性长方体两端可产生弹性弯矩作用及形变,故该腔体被定义为“弹力腔”。
公转、自转、车轮平动摩擦——本发明车轮传动机构工作时,若主轴和组合星轮相对于轴线的正向转动被定义为“公转”,同时组合星轮在主轴圆凹槽内的相对转动被定义为“自转”,当公转、自转的角速度变化数值相等或近似相等时,驱动车轮在路面上产生的摩擦作用,则被定义为“车轮平动摩擦”。

Claims (10)

  1. 一种车轮平动传动机构,其特征在于,包括一个柱状主轴、一个筒状从轴、一个从轴法兰盘、组合星轮、弹性长方体和轴承;从轴通过轴承安装在主轴上,并有相对转动功能;主轴一端与引擎变速箱输出轴连接,在主轴另一端面圆周上,均布轴横向截面为圆形、轴向向外开放的圆凹槽,并在该圆凹槽上都设置一对径向向外、径向向内的开口,该对开口都是轴向向外开放、轴纵向截面为矩形;在从轴一端的圆环面上,均布轴向向外开放、径向开口向内、轴横向截面和轴纵向截面皆为矩形的矩形凹槽,并在该矩形凹槽的开口上都设置一个轴向向外开放、径向开口向内、轴纵向截面为矩形、轴横向截面为喇叭形的矩形喇叭口;在主轴圆凹槽内,都设置一个由弹性长方体一端与两半短圆柱体插接组成的组合星轮并有相对自转功能,弹性长方体的另一端分别插接安装在从轴矩形凹槽内,使弹性长方体在由主轴、从轴、轴承和从轴法兰盘共同构成的约束弹力腔内同时产生弹性弯矩作用形变;均布矩形凹槽的从轴一端,通过轴向螺栓与从轴法兰盘同轴连接,从轴法兰盘与车轮轮毂转轴同轴连接。
  2. 根据权利要求1所述的车轮平动传动机构,其特征在于,机构工作时,汽车引擎变速箱输出轴开始作用主轴,通过主轴圆凹槽及组合星轮、从轴矩形凹槽同步啮合弹性长方体两端,在弹力腔内产生周期性的弹性弯矩作用及形变,与此同时,组合星轮与主轴既产生同步公转,组合星轮在主轴圆凹槽内又产生同步周期性自转,同时弹性长方体一端在组合星轮内产生同步小位移滑动,由从轴和从轴法兰盘作用车轮轮毂转轴,使车轮在路面上产生平动摩擦,并在车轴上形成力矩作用平衡和平衡增力作用;所述车轮平动摩擦作用中,由于车轴相对于路面主动施力向后作用的力为周期简谐函数,且其每个周期的作用峰值大于车轮与路面静摩擦力的二倍,所以,同比现有技术,汽车引擎作用车轮产生的前向驱动力及作用功效得以大幅提升。
  3. 根据权利要求1所述的车轮平动传动机构,其特征在于,在不设置圆凹槽的主轴一端设置一个法兰盘,用于与汽车引擎变速箱输出轴的连接。
  4. 根据权利要求1所述的车轮平动传动机构,其特征在于,从轴法兰盘上设置一段设有花键结构的同轴轴段,用于与车轮轮毂转轴的同轴连接。
  5. 根据权利要求1所述的车轮平动传动机构,其特征在于,在主轴、从轴的同轴转动连接处,组合使用两只滚动轴承,或者使用滑动轴承,以实现主轴、从轴的同轴定位功能及减摩作用。
  6. 根据权利要求1所述的车轮平动传动机构,其特征在于,组合星轮自转轴线所在的圆周半径与组合星轮半径相等或相近时,产生最佳的车轮平动传动作用效果。
  7. 根据权利要求1所述的车轮平动传动机构,其特征在于,组合星轮和弹性长方体的数量最少设置两个,并均布在主轴、从轴上。
  8. 根据权利要求1所述的车轮平动传动机构,其特征在于,弹性长方体采用弹簧钢加工,以满足弹性弯矩作用强度要求。
  9. 根据权利要求1所述的车轮平动传动机构,其特征在于,在弹力腔内填加润滑脂,以实现组合星轮在主轴圆凹槽内、弹性长方体在组合星轮内的减摩润滑和轴承润滑。
  10. 根据权利要求1所述的车轮平动传动机构,其特征在于,或者安装在车轮驱动轴上作为联轴器使用,或者安装在汽车引擎变速箱中作为横置输出轴使用。
PCT/CN2020/128687 2019-05-07 2020-11-13 车轮平动传动机构 WO2021109838A1 (zh)

Priority Applications (1)

Application Number Priority Date Filing Date Title
CN202080005210.3A CN112867624A (zh) 2019-12-04 2020-11-13 车轮平动传动机构

Applications Claiming Priority (3)

Application Number Priority Date Filing Date Title
CN2019085779 2019-05-07
PCT/CN2019/122981 WO2020224255A1 (zh) 2019-05-07 2019-12-04 车轮平旋传动机构
CNPCT/CN2019/122981 2019-12-04

Publications (1)

Publication Number Publication Date
WO2021109838A1 true WO2021109838A1 (zh) 2021-06-10

Family

ID=73050998

Family Applications (2)

Application Number Title Priority Date Filing Date
PCT/CN2019/122981 WO2020224255A1 (zh) 2019-05-07 2019-12-04 车轮平旋传动机构
PCT/CN2020/128687 WO2021109838A1 (zh) 2019-05-07 2020-11-13 车轮平动传动机构

Family Applications Before (1)

Application Number Title Priority Date Filing Date
PCT/CN2019/122981 WO2020224255A1 (zh) 2019-05-07 2019-12-04 车轮平旋传动机构

Country Status (1)

Country Link
WO (2) WO2020224255A1 (zh)

Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2003034103A (ja) * 2001-07-24 2003-02-04 Kayaba Ind Co Ltd サスペンション内蔵ホイール
JP3649793B2 (ja) * 1994-12-28 2005-05-18 Ntn株式会社 フリーホイールクラッチ
CN101797867A (zh) * 2010-03-23 2010-08-11 沈阳工业大学 行星齿轮制动节能轮装置
US20130260961A1 (en) * 2012-04-03 2013-10-03 Spicer Off-Highway Belgium N.V. Active wheel hub transmission
KR20140081188A (ko) * 2012-12-21 2014-07-01 현대모비스 주식회사 인휠 모터 시스템의 동력전달구조
CN103935503A (zh) * 2013-01-22 2014-07-23 雅马哈发动机株式会社 螺旋桨单元用冲击吸收部件、螺旋桨单元和船舶推进器
WO2018145601A1 (zh) * 2016-12-23 2018-08-16 强海胜 盘式缓冲摩擦制动机构与制动系统

Family Cites Families (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20100096911A1 (en) * 2008-10-17 2010-04-22 Sherif Fahmy Eldeeb Energy Wheel
CN108973673A (zh) * 2018-08-22 2018-12-11 倍能科技(广州)有限公司 直齿式车胎能量回收组件
CN109353165B (zh) * 2018-12-11 2024-06-25 苏冀 一种刚柔并济弹性轮及具有该弹性轮的装备

Patent Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP3649793B2 (ja) * 1994-12-28 2005-05-18 Ntn株式会社 フリーホイールクラッチ
JP2003034103A (ja) * 2001-07-24 2003-02-04 Kayaba Ind Co Ltd サスペンション内蔵ホイール
CN101797867A (zh) * 2010-03-23 2010-08-11 沈阳工业大学 行星齿轮制动节能轮装置
US20130260961A1 (en) * 2012-04-03 2013-10-03 Spicer Off-Highway Belgium N.V. Active wheel hub transmission
KR20140081188A (ko) * 2012-12-21 2014-07-01 현대모비스 주식회사 인휠 모터 시스템의 동력전달구조
CN103935503A (zh) * 2013-01-22 2014-07-23 雅马哈发动机株式会社 螺旋桨单元用冲击吸收部件、螺旋桨单元和船舶推进器
WO2018145601A1 (zh) * 2016-12-23 2018-08-16 强海胜 盘式缓冲摩擦制动机构与制动系统

Also Published As

Publication number Publication date
WO2020224255A1 (zh) 2020-11-12

Similar Documents

Publication Publication Date Title
CN203945935U (zh) 一种汽车馈能悬架减震器
WO2018000573A1 (zh) 一种磁悬浮动力系统
CN210502248U (zh) 一种低速大扭矩电动轮装置及电动车
CN201183586Y (zh) 两轮车的双动力装置
WO2021109838A1 (zh) 车轮平动传动机构
CN103475151B (zh) 带同轴行星齿轮的开关磁阻电机
CN114987193A (zh) 一种轮毂电驱动装置及车辆
CN203739623U (zh) 用于纯电动汽车的两档单向行星减速轮毂电机驱动装置
CN117863866B (zh) 一种羊角型汽车轮毂电驱动装置
CN209987734U (zh) 一种低速大扭矩电动轮装置和电动汽车
CN112867624A (zh) 车轮平动传动机构
CN209217870U (zh) 矿用自卸车大型电动轮直驱外转子轮边驱动电机
CN111791689A (zh) 一种商用车集成式轮毂电机及其控制方法
CN105751886B (zh) 新能源汽车轮毂电机动力总成驱动系统
CN111183303A (zh) 车轮平旋传动机构
CN105805241B (zh) 一种电动车用自适应自动增矩节能驱动总成
CN210830348U (zh) 通用二能行星摩擦减速器
CN201439487U (zh) 一种绞车的制动装置
CN206273635U (zh) 电驱动车桥及框架运输车
CN206968633U (zh) 行车驻车两用多片湿式制动器及轮式农业收获机械变速箱
CN214728187U (zh) 一种组合式高强度金属注射二级轮
CN221137393U (zh) 轮毂轴承系统及具有其的车辆
CN110725902A (zh) 一种用于混凝土搅拌车的减速器及其使用方法
CN215153910U (zh) 一种汽车混动变速器
CN204493576U (zh) 一种柴油机曲轴飞轮组件

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 20896425

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 20896425

Country of ref document: EP

Kind code of ref document: A1

32PN Ep: public notification in the ep bulletin as address of the adressee cannot be established

Free format text: NOTING OF LOSS OF RIGHTS PURSUANT TO RULE 112(1) EPC (EPO FORM 1205A DATED 13/02/2023)

122 Ep: pct application non-entry in european phase

Ref document number: 20896425

Country of ref document: EP

Kind code of ref document: A1