WO2021109681A1 - 电池管理系统、处理装置、电池管理方法和电池管控系统 - Google Patents

电池管理系统、处理装置、电池管理方法和电池管控系统 Download PDF

Info

Publication number
WO2021109681A1
WO2021109681A1 PCT/CN2020/116591 CN2020116591W WO2021109681A1 WO 2021109681 A1 WO2021109681 A1 WO 2021109681A1 CN 2020116591 W CN2020116591 W CN 2020116591W WO 2021109681 A1 WO2021109681 A1 WO 2021109681A1
Authority
WO
WIPO (PCT)
Prior art keywords
failed
battery
target
cell
configuration information
Prior art date
Application number
PCT/CN2020/116591
Other languages
English (en)
French (fr)
Inventor
张世昌
曹野
张苗苗
Original Assignee
宁德时代新能源科技股份有限公司
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 宁德时代新能源科技股份有限公司 filed Critical 宁德时代新能源科技股份有限公司
Priority to EP20875662.7A priority Critical patent/EP3859867B1/en
Priority to ES20875662T priority patent/ES2931835T3/es
Priority to US17/234,770 priority patent/US11929469B2/en
Publication of WO2021109681A1 publication Critical patent/WO2021109681A1/zh

Links

Images

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M10/00Secondary cells; Manufacture thereof
    • H01M10/42Methods or arrangements for servicing or maintenance of secondary cells or secondary half-cells
    • H01M10/425Structural combination with electronic components, e.g. electronic circuits integrated to the outside of the casing
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M10/00Secondary cells; Manufacture thereof
    • H01M10/42Methods or arrangements for servicing or maintenance of secondary cells or secondary half-cells
    • H01M10/4207Methods or arrangements for servicing or maintenance of secondary cells or secondary half-cells for several batteries or cells simultaneously or sequentially
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M10/00Secondary cells; Manufacture thereof
    • H01M10/42Methods or arrangements for servicing or maintenance of secondary cells or secondary half-cells
    • H01M10/44Methods for charging or discharging
    • H01M10/441Methods for charging or discharging for several batteries or cells simultaneously or sequentially
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M10/00Secondary cells; Manufacture thereof
    • H01M10/42Methods or arrangements for servicing or maintenance of secondary cells or secondary half-cells
    • H01M10/48Accumulators combined with arrangements for measuring, testing or indicating the condition of cells, e.g. the level or density of the electrolyte
    • H01M10/482Accumulators combined with arrangements for measuring, testing or indicating the condition of cells, e.g. the level or density of the electrolyte for several batteries or cells simultaneously or sequentially
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M10/00Secondary cells; Manufacture thereof
    • H01M10/42Methods or arrangements for servicing or maintenance of secondary cells or secondary half-cells
    • H01M10/425Structural combination with electronic components, e.g. electronic circuits integrated to the outside of the casing
    • H01M2010/4271Battery management systems including electronic circuits, e.g. control of current or voltage to keep battery in healthy state, cell balancing
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M10/00Secondary cells; Manufacture thereof
    • H01M10/42Methods or arrangements for servicing or maintenance of secondary cells or secondary half-cells
    • H01M10/425Structural combination with electronic components, e.g. electronic circuits integrated to the outside of the casing
    • H01M2010/4278Systems for data transfer from batteries, e.g. transfer of battery parameters to a controller, data transferred between battery controller and main controller

Definitions

  • This application relates to the field of battery power, in particular to battery management systems, processing devices, battery management methods, and battery management and control systems.
  • the battery management system (Battery Management System, BMS) is used to manage the battery pack. However, if the connection relationship between the cells in the battery pack is changed, the BMS management operation of the battery pack will be misoperation, which reduces the BMS's management accuracy of the battery pack.
  • the battery management system, processing device, battery management method, and battery management and control system provided by the embodiments of the present application ensure the accuracy of the battery pack management by the BMS.
  • an embodiment of the present application provides a battery management system, including: an information sending module, configured to: if it is determined that the target battery pack is isolated from the target failed battery cell, the target battery pack’s non-failed battery cell When the connection relationship changes, the original configuration information of the target battery pack is sent to the processing device, so that the processing device generates adjusted configuration information according to the original configuration information; the information receiving module is used to receive the adjusted configuration information sent by the processing device, The adjusted configuration information includes the identification of the target failed battery cell; the management module is used to perform management operations on the non-failed battery cell of the target battery pack according to the adjusted configuration information.
  • the processing device when the connection relationship between the non-failed cells of the target battery pack is changed due to the existence of the target failed cell in the target battery pack, the processing device can generate an adjustment including the identification of the target failed cell After the configuration information.
  • the BMS receives the adjusted configuration information sent by the processing device, it can determine the target failed battery cell in the target battery pack according to the identification of the target failed battery cell. BMS avoids unclear whether each battery cell in the target battery pack fails. The management accuracy of the battery pack is reduced, thereby ensuring the management accuracy of the BMS on the target battery pack.
  • the battery management system further includes:
  • the first instruction receiving module is configured to receive the first work instruction sent by the processing device
  • the first instruction response module is used to respond to the first work instruction to determine that the connection relationship between the non-failed cells of the target battery pack changes when the target failed cell is isolated in the target battery pack, and is used in the target battery pack Identify the suspected failed battery cell in the package, obtain the identification of the suspected failed battery, and send the identification of the suspected failed battery to the processing device for the processing device to determine whether the suspected failed battery is the target failed battery based on the identification of the suspected failed battery .
  • the processing device sends the first work instruction to the battery management system, which can prompt the connection relationship between the non-failed battery cells of the target battery pack in the battery management system If the change occurs, the battery management system can be instructed to return to the original configuration information and the identification of the suspected failed battery, so that the information of the suspected failed battery can be accurately obtained through the interaction with the battery management system.
  • the battery management system further includes:
  • the second instruction receiving module is configured to receive the second work instruction sent by the processing device
  • the second instruction response module is used to determine, according to the second work instruction, that the connection relationship between the non-failed battery cells of the target battery pack changes when the target battery pack is isolated from the failed battery cells.
  • the processing device sends a second work instruction to the battery management system to remind the battery management system that the connection relationship between the non-failed battery cells of the target battery pack has occurred. Change and instruct the battery management system to return to the original configuration information. Thereby, the management accuracy of the target battery pack is further ensured.
  • the adjusted configuration information further includes information about non-failed cells of the target battery pack
  • the management module includes:
  • the adjustment coefficient determining unit is used to determine the adjustment coefficient of the performance parameters of the target battery pack according to the information of the non-failed cells of the target battery pack;
  • the performance parameter calculation unit is used to calculate the performance parameters of the target battery pack by using the adjustment coefficient and the original performance parameters of the target battery pack,
  • the performance parameters include charging characteristic parameters and/or discharging characteristic parameters.
  • the management module can determine the adjustment coefficient of the performance parameter of the target battery pack according to the information of the non-failed cells of the target battery pack, and according to the adjustment coefficient and The original performance parameters accurately calculate the current performance parameters of the target battery pack, so that the performance change of the target battery pack can be accurately measured.
  • the management module includes:
  • the parameter collection unit is used to collect the state parameters of the non-failed cells in the target battery pack according to the adjusted configuration information
  • the state judging unit is used for judging whether the state of the non-failed battery cell is abnormal according to the state parameter of the non-failed battery cell.
  • the management module can have the function of adjusting the abnormal diagnosis object, so as to accurately warn the state of the non-failed battery cell, and improve the safety of the target battery pack.
  • the battery management system further includes:
  • the failed battery cell determination module is used to determine the target failed battery cell of the target battery pack according to the identification of the target failed battery cell;
  • the first arrangement module is used for arranging the historical information of other battery cells in sequence according to the arrangement order of the battery cells except the target failed battery cell in the target battery pack;
  • the second arrangement module is used to arrange the historical information of the target failed cell after the historical information of the last cell among other cells,
  • the historical information includes cell parameters that characterize the usage of the cell.
  • the historical data of the non-failed battery cell can be distinguished from the historical data of the failed battery cell, so that the historical data of each battery cell can be externally called in the subsequent process.
  • the original configuration information includes the identification of other failed cells in the target battery pack except for the target failed cell or an identification that indicates that the target battery pack does not have any failed cells.
  • the original configuration information can accurately indicate the specific conditions of the battery cells in the target battery pack through the battery cell identifier.
  • the original configuration information and the adjusted configuration information further include the information of the non-failed cells in the target battery pack,
  • the information of the non-failed cells in the target battery pack includes at least one of the following information:
  • the number of non-failed cells in the target battery pack, the number of non-failed cells corresponding to each cell management unit, the number of status collection units corresponding to the non-failed cells in the target battery pack, and each cell management unit The number of corresponding status collection units, the identification of the non-failed cells in the target battery pack, the identification of the non-failed cells corresponding to each cell management unit, and the status of the status collection unit corresponding to the non-failed cells in the target battery pack The identification and the identification of the state collection unit corresponding to each cell management unit.
  • the specific conditions of the non-failed battery cells in the target battery pack in the configuration information can be accurately represented by the battery cell identifier.
  • the storage area of the program that implements the battery management method when executed by the BMS is different from the storage area of the configuration information.
  • the battery management system can separate the program from the configuration, and the configuration can be individually modified without affecting the execution of the program.
  • an embodiment of the present application provides a processing device that includes: a configuration information generation module for generating, based on the original configuration information of the target battery pack sent by the BMS and the identification of the target failed cell in the target battery pack, Adjusted configuration information; the configuration information sending module is used to send the adjusted configuration information to the BMS, so that the BMS can manage the non-failed cells of the target battery pack according to the adjusted configuration information.
  • the processing device when the connection relationship between the non-failed cells of the target battery pack is changed due to the existence of the target failed cell in the target battery pack, the processing device can generate an adjusted post-adjustment that includes the identification of the target failed cell Configuration information.
  • the BMS After the BMS receives the adjusted configuration information sent by the processing device, it can determine the target failed battery cell in the target battery pack according to the identification of the target failed battery cell. BMS avoids unclear whether each battery cell in the target battery pack fails. The management accuracy of the battery pack is reduced, thereby ensuring the management accuracy of the target battery pack.
  • the configuration information generating module includes:
  • the identification processing unit is used to add the identification of the target failed battery cell to the original configuration information
  • the configuration information processing unit is configured to use the original configuration information added with the identification of the target failed cell as the adjusted configuration information.
  • the adjusted configuration information can be generated according to the failure of the cells in the target battery pack, so that the adjusted configuration information can better reflect the actual state of each cell in the target battery pack, and make the adjusted configuration The information is more accurate.
  • the processing device further includes:
  • the first work instruction sending module is configured to send the first work instruction to the BMS to prompt the BMS target battery pack that the connection relationship between the non-failed cells has changed and instruct the BMS to return the original configuration information and the identification of the suspected failed cell;
  • the identification receiving module is used to receive the original configuration information and the identification of the suspected failure battery
  • the identification processing module is used for if it is determined that the suspected failed battery cell is the target failed battery based on the identification of the suspected failed battery cell, the identification of the suspected failed battery cell is used as the identification of the target failed battery.
  • the target failed cell can be determined jointly by the BMS and the processing module, which reduces the probability of misjudgment, thereby improving the accuracy of determining the target failed cell.
  • the processing device further includes:
  • the first input response module is used to respond to the input operation characterizing the suspected failed battery as the target failed battery, and determine that the suspected failed battery is the target failed battery.
  • external information can be combined to jointly determine the target failed cell, thereby improving the accuracy of the judgment of the failed cell.
  • the processing device further includes:
  • the second input response module is used to respond to the input operation of the identification of the target failed battery cell and send a second work instruction to the BMS to remind the BMS that the connection relationship between the non-failed battery cells of the target battery pack has changed and instruct the BMS to return to the original configuration information.
  • the processing device sends a second work instruction to the battery management system to remind the battery management system that the connection relationship between the non-failed battery cells of the target battery pack has occurred. Change and instruct the battery management system to return to the original configuration information. Thereby further ensuring the management accuracy.
  • an embodiment of the present application provides a battery management method applied to a battery management system, including: if it is determined that the target battery pack is isolated from the target failed battery cell, the connection between the non-failed battery cells of the target battery pack The relationship changes, the original configuration information of the target battery pack is sent to the processing device, so that the processing device generates adjusted configuration information according to the original configuration information; the adjusted configuration information sent by the processing device is received, and the adjusted configuration information includes the target The identification of the failed battery cell; according to the adjusted configuration information, the management operation of the non-failed battery cell of the target battery pack is performed.
  • the processing device when the connection relationship between the non-failed cells of the target battery pack changes due to the presence of the target failed cells in the target battery pack, the processing device can generate an adjustment that includes the identification of the target failed cell After the configuration information.
  • the BMS receives the adjusted configuration information sent by the processing device, it can determine the target failed battery cell in the target battery pack according to the identification of the target failed battery cell. BMS avoids unclear whether each battery cell in the target battery pack fails. The management accuracy of the battery pack is reduced, thereby ensuring the management accuracy of the BMS on the target battery pack.
  • the battery management method further includes:
  • the processing device sends the first work instruction to the battery management system, which can prompt the connection relationship between the non-failed battery cells of the target battery pack in the battery management system If the change occurs, the battery management system can be instructed to return to the original configuration information and the identification of the suspected failed battery, so that the information of the suspected failed battery can be accurately obtained through the interaction with the battery management system.
  • the battery management method further includes:
  • the second work instruction it is determined that the connection relationship between the non-failed battery cells of the target battery pack is changed in the case of isolating the target failed battery cells in the target battery pack.
  • the processing device sends a second work instruction to the battery management system to remind the battery management system that the connection relationship between the non-failed battery cells of the target battery pack has occurred. Change and instruct the battery management system to return to the original configuration information. Thereby, the management accuracy of the target battery pack is further ensured.
  • the adjusted configuration information further includes the information of the non-failed cells of the target battery pack,
  • the performance parameters include charging characteristic parameters and/or discharging characteristic parameters.
  • the management module can determine the adjustment coefficient of the performance parameter of the target battery pack according to the information of the non-failed cells of the target battery pack, and according to the adjustment coefficient and The original performance parameters accurately calculate the current performance parameters of the target battery pack, so that the performance change of the target battery pack can be accurately measured.
  • performing management operations on the non-failed cells of the target battery pack according to the adjusted configuration information includes:
  • the management module can have the function of adjusting the abnormal diagnosis object, so as to accurately warn the state of the non-failed battery cell, and improve the safety of the target battery pack.
  • the battery management method further includes:
  • the historical information includes cell parameters that characterize the usage of the cell.
  • the historical data of the non-failed battery cell can be distinguished from the historical data of the failed battery cell, so that the historical data of each battery cell can be externally called in the subsequent process.
  • the original configuration information includes the identification of other failed cells in the target battery pack except for the target failed cell or an identification that indicates that the target battery pack does not have any failed cells.
  • the original configuration information can accurately indicate the specific conditions of the battery cells in the target battery pack through the battery cell identifier.
  • the original configuration information and the adjusted configuration information further include the information of the non-failed cells in the target battery pack,
  • the information of the non-failed cells in the target battery pack includes at least one of the following information: the number of non-failed cells in the target battery pack, the number of non-failed cells corresponding to each cell management unit, and the number of cells in the target battery pack.
  • the number of status collection units corresponding to non-failed cells, the number of status collection units corresponding to each cell management unit, the identification of non-failed cells in the target battery pack, and the number of non-failed cells corresponding to each cell management unit The identification of the state collection unit corresponding to the non-failed cell in the target battery pack, and the identification of the state collection unit corresponding to each cell management unit.
  • the specific conditions of the non-failed battery cells in the target battery pack in the configuration information can be accurately represented by the battery cell identifier.
  • the storage area of the program that implements the battery management method when executed by the BMS is different from the storage area of the configuration information.
  • the battery management system can separate the program from the configuration, and the configuration can be individually modified without affecting the execution of the program.
  • an embodiment of the present application provides a battery management method, applied to a processing device, including: generating adjustments based on the original configuration information of the target battery pack sent by the BMS and the acquired identification of the target failed battery cell in the target battery pack After the configuration information; the adjusted configuration information is sent to the BMS for the BMS to perform management operations on the non-failed cells of the target battery pack according to the adjusted configuration information.
  • the processing device when the connection relationship between the non-failed cells of the target battery pack changes due to the existence of the target failed cells in the target battery pack, the processing device can generate an adjustment that includes the identification of the target failed cell After the configuration information.
  • the BMS receives the adjusted configuration information sent by the processing device, it can determine the target failed battery cell in the target battery pack according to the identification of the target failed battery cell. BMS avoids unclear whether each battery cell in the target battery pack fails. The management accuracy of the battery pack is reduced, thereby ensuring the management accuracy of the target battery pack.
  • generating the adjusted configuration information includes:
  • the original configuration information added with the identification of the target failed cell is used as the adjusted configuration information.
  • the adjusted configuration information can be generated according to the failure of the cells in the target battery pack, so that the adjusted configuration information can better reflect the actual state of each cell in the target battery pack, and make the adjusted configuration The information is more accurate.
  • the battery management method further includes:
  • the identification of the suspected failed battery cell is used as the identification of the target failed battery cell.
  • the target failed cell can be determined jointly by the BMS and the processing module, which reduces the probability of misjudgment, thereby improving the accuracy of determining the target failed cell.
  • the battery management method further includes:
  • the suspected failed battery is determined as the target failed battery.
  • external information can be combined to jointly determine the target failed cell, thereby improving the accuracy of the judgment of the failed cell.
  • the battery management method further includes:
  • a second work instruction is sent to the BMS to prompt the BMS that the connection relationship between the non-failed battery cells of the target battery pack has changed and instruct the BMS to return to the original configuration information.
  • the processing device sends a second work instruction to the battery management system to remind the battery management system that the connection relationship between the non-failed battery cells of the target battery pack has occurred. Change and instruct the battery management system to return to the original configuration information. Thereby further ensuring the management accuracy.
  • an embodiment of the present application provides a battery management and control system, including: the battery management system provided in the embodiment of the present application, and the processing device provided in the embodiment of the present application.
  • the processing device when the connection relationship between the non-failed cells of the target battery pack changes due to the existence of the target failed cells in the target battery pack, the processing device can generate an adjustment that includes the identification of the target failed cell After the configuration information.
  • the BMS receives the adjusted configuration information sent by the processing device, it can determine the target failed battery cell in the target battery pack according to the identification of the target failed battery cell. BMS avoids unclear whether each battery cell in the target battery pack fails. The management accuracy of the battery pack is reduced, thereby ensuring the management accuracy of the target battery pack.
  • FIG. 1 is a schematic structural diagram of a battery management and control system disclosed in an embodiment of the present application
  • FIG. 2 is a schematic diagram of a specific structure of a battery management and control system disclosed in an embodiment of the present application
  • FIG. 3 is a schematic flowchart of a battery management method disclosed in an embodiment of the present application.
  • FIG. 4 is a schematic flowchart of a battery management method disclosed in an embodiment of the present application.
  • the embodiments of the application provide a battery management system, a processing device, a battery management method, and a battery management and control system, which can be applied to isolate target failed cells in a target battery pack and the connection relationship between the non-failed cells of the target battery pack changes. In this case, adjust the BMS's management of battery cells in specific scenarios.
  • the battery pack may be a battery pack including at least one battery module, or a battery pack without a module, which is not limited herein.
  • the module-less battery pack includes at least one battery cell, and each battery cell does not need to be packaged as a battery module.
  • the connection mode between the cells can be series, parallel or hybrid connection, and the connection mode is not specifically limited.
  • cell failure can be cell performance failure, such as capacity diving, cycle performance degradation, abnormal voltage, abnormal current, excessive internal resistance, self-discharge, high/low temperature failure, poor rate performance, poor consistency, and so on.
  • the cell failure can be the safety failure of the cell, such as thermal runaway, short circuit, liquid leakage, flatulence, lithium evolution, expansion deformation, puncture, squeeze, and so on.
  • the failed battery cell can be isolated by manual operation by maintenance personnel and other non-failed batteries in the battery pack.
  • the core is connected.
  • the isolation method may be to remove the failed battery cells from the battery pack and then connect to other non-failed battery cells, or bypass the failed battery cells still placed in the battery pack to connect to other non-failed battery cells.
  • a battery pack without a module when a battery cell fails, the traditional solution needs to replace the entire battery pack without a module.
  • the connection mode of the other non-failed battery cells in the battery pack and the performance parameters of the battery pack will occur. Variety. If the battery management system performs management operations on the battery cells in the previous manner, the management accuracy of the battery management system will be affected. For example, the battery management system may continue to collect the state parameters of the failed battery cells, or continue to monitor the state of the failed battery cells, or may continue to use the original battery pack performance parameters as the current battery pack performance parameters. The compatibility of the battery management system with the battery pack becomes poor.
  • FIG. 1 is a schematic structural diagram of a battery management and control system according to an embodiment of the application.
  • the battery management and control system 10 includes a battery management system 11 and a processing device 12.
  • the battery management system 11 and the processing module can be connected via a wired connection or a wireless communication connection, which is not limited.
  • the battery management system 11 may perform management operations on the target battery pack 20 according to the original configuration information of the battery pack.
  • the target battery pack 20 repairs the new battery cell failure, that is, the target battery pack 20 generates new failed batteries, which causes the new failed battery cells in the target battery pack 20 to be isolated and other non-failed batteries in the target battery pack 20.
  • the battery management unit 11 can send the original configuration information that is only compatible with the target battery 20 before repair to the processing module 12, and the processing module 12 generates a new one based on the original configuration information, which is more suitable for use after repair.
  • the adjusted configuration information of the target battery pack 20 is possible to send the original configuration information that is only compatible with the target battery 20 before repair to the processing module 12, and the processing module 12 generates a new one based on the original configuration information, which is more suitable for use after repair. The adjusted configuration information of the target battery pack 20.
  • the configuration information including the original configuration information and the adjusted configuration information can all indicate the failed cells in the target battery pack 20.
  • the identification of the failed battery cell may be included, and the identification is used to prove the identity of the failed battery cell in the target battery pack 20. For example, there is no restriction on the number of the failed battery cell or the location of the failed battery cell.
  • the configuration information includes an identifier indicating that the target battery pack 20 does not have a failed battery cell. For example, an agreed default value can be used to characterize that the target battery pack 20 does not have failed cells.
  • the value of a certain position in the configuration information is "#05", it means that the 5th cell in the target battery pack is a failed cell, and if the value of the configuration information is "#00", it means that the target battery pack is 20 There are no failed batteries.
  • the configuration information may also include information of the state collection unit corresponding to the failed battery cell.
  • the state collecting unit may also be a sensor for collecting the voltage, current and other states of the failed battery cell, which is not limited.
  • the configuration information may also include the information of the non-failed cells in the target battery pack 20.
  • the information of the non-failed battery cells may be embodied by the quantitative characteristics or the identification characteristics of the non-failed battery cores.
  • the information of the non-failed battery cells may include at least one of the following: the number of non-failed battery cells in the target battery pack, the number of non-failed battery cells corresponding to each cell management unit of the battery management system, and the target battery pack The number of status collection units corresponding to the non-failed cells in the battery management system, the number of status collection units corresponding to each cell management unit of the battery management system, the identification of the non-failed cells in the target battery pack, and each battery management system The identification of the non-failed cell corresponding to the cell management unit, the identification of the state collection unit corresponding to the non-failed cell in the target battery pack, and the identification of the state collection unit corresponding to each cell management unit of the battery management system.
  • FIG. 2 is a schematic diagram of a specific structure of a battery management and control system according to an embodiment of the application.
  • the battery management system 11 may include an information sending module 111, an information receiving module 112 and a management module 113.
  • the information sending module 111 is configured to send the original configuration information of the target battery pack 20 to the target battery pack 20 if it is determined that the target battery pack 20 is isolated from the target failed battery cell, and the connection relationship between the non-failed battery cells is changed.
  • the processing device 12 enables the processing device 12 to generate adjusted configuration information according to the original configuration information.
  • the target failed battery cell is a failed battery cell newly generated in the target battery pack 20. Before the target failed battery cell fails, none of the battery cells in the target battery pack 20 fails or there are other failed battery cells. It should be particularly noted that if the target battery pack 20 also contains other failed battery cells before the target failed battery cell fails, the repair operation can be performed on the other failed battery cells, that is, the other failed battery cells can be isolated from the target battery pack 20 And adjust the connection relationship between the cells that have not failed. At this time, the adjusted configuration information corresponding to the target battery pack 20 that isolates other failed cells is used as the original configuration information corresponding to the target battery pack that isolates the target failed cells. The original configuration information corresponding to the target battery pack 20 that isolates the target failed battery cell includes the identification of the other failed battery cell.
  • the difference between the original configuration information and the adjusted configuration information is:
  • the adjusted configuration information includes the identification of the target failed cell
  • the configuration information also includes the information of the non-failed cells in the target battery pack 20, the number of non-failed cells in the target battery pack 20 and the number of non-failed cells in the cell management unit corresponding to the target failed cell 20
  • the number of cores the adjusted configuration information is less than the original configuration information than the number of target failed cells.
  • the adjusted configuration information is less than the original configuration information.
  • the adjusted configuration information reduces the target failure cell compared to the original configuration information.
  • the adjusted configuration information is less than the original configuration information by the number of target failed batteries. And, for the identification of the state collection unit corresponding to the non-failed cell in the target battery pack 20 and the identification of the state collection unit corresponding to each cell management unit of the battery management system 11, the adjusted configuration information is less than the original configuration information The identification of the state acquisition unit corresponding to the target failed battery cell.
  • the battery management system 11 may, after receiving the work instruction sent by the processing device 12, determine that the connection relationship between the non-failed cells of the target battery pack 20 is changed when the target failed cell is isolated in the target battery pack 20.
  • the work order may be the first work order or the second work order.
  • the processing device 12 if the processing device 12 cannot know the identification of the target failed battery in advance, the processing device 12 sends a first work instruction to the battery management system 11 for prompting the battery management system 11 of the target battery pack 20 between the non-failed battery cells. The connection relationship changes, and the battery management system 11 is instructed to return the original configuration information and the identification of the suspected failed battery cell. If the processing device 12 has learned the identification of the target failed battery cell in advance, the processing device 12 sends a second work instruction to the battery management system 11 to prompt the battery management system 11 that the connection relationship between the non-failed battery cells of the target battery pack 20 has changed. And instruct the battery management system 11 to return to the original configuration information.
  • the battery management system 11 in order to be able to successfully respond to the first work instruction, the battery management system 11 further includes a first instruction receiving module and a first instruction response module.
  • the first instruction receiving module is used for receiving the first work instruction sent by the processing device.
  • the first instruction response module is configured to respond to the first work instruction and determine that the connection relationship between the non-failed cells of the target battery pack 20 changes when the target battery pack 20 isolates the target failed cells.
  • the first command response module is also used to determine the suspected failed battery cell in the target battery pack 20, obtain the identity of the suspected failed battery, and send the identity of the suspected failed battery to the processing device 12 for the processing device 12 to follow the suspected failed battery.
  • the identification of the core determines whether the suspected failed battery is the target failed battery. Wherein, considering that the voltage across the isolated failed cell may drop to 0, the target battery pack 20 may collect the voltage parameters of each cell, and identify the cell with a voltage parameter of 0 as a suspected failed cell.
  • the battery management system 11 in order to be able to successfully respond to the second work instruction, the battery management system 11 further includes a second instruction receiving module and a second instruction response module.
  • the second instruction receiving module is configured to receive the second work instruction sent by the processing device 12.
  • the second instruction response module is used to determine, according to the second work instruction, that the connection relationship between the non-failed battery cells of the target battery pack 20 changes when the target battery pack 20 isolates the target failed battery cells.
  • the specific implementation of the second command response module is the same as that of the first command response module, and will not be repeated here.
  • the information receiving module 112 is configured to receive the adjusted configuration information sent by the processing device 12, and the adjusted configuration information includes the identification of the target failed cell.
  • the adjusted configuration information please refer to the relevant content in the foregoing embodiment, which will not be repeated here.
  • the management module 113 is configured to perform management operations on the non-failed cells of the target battery pack 20 according to the adjusted configuration information.
  • the management operation may include calculating the performance parameters of the target battery pack 20, adjusting the sampling object, adjusting the abnormal diagnosis object, and so on.
  • the management module 113 may include an adjustment coefficient determination unit and a performance parameter calculation unit.
  • the adjustment coefficient determining unit is used to determine the adjustment coefficient of the performance parameter of the target battery pack 20 according to the information of the non-failed cells of the target battery pack 20.
  • the adjustment factor may be the number of non-failed battery cells divided by the sum of the number of non-failed battery cells and the number of target failed battery cells. For example, if the number of non-failed cells is N and the number of target failed cells is M, the adjustment system is equal to N/(N+M), and M and N are integers.
  • the performance parameter calculation unit is used to calculate the performance parameters of the target battery pack 20 by using the adjustment coefficient and the original performance parameters of the target battery pack 20.
  • the performance parameter of the target battery pack 20 may be the product of the original performance parameter and the adjustment coefficient.
  • the performance parameters include charging characteristic parameters and/or discharging characteristic parameters.
  • the charging characteristic parameters may include at least one of the following: charging voltage, charging current, charging power, charging state of charge, SOC, charging capacity, and so on.
  • the discharge characteristic parameters may include at least one of the following: discharge voltage, discharge current, discharge power, discharge SOC, discharge capacity, and so on.
  • the management module 113 may include a parameter collection unit.
  • the parameter collection unit is used to collect the state parameters of the non-failed cells in the target battery pack 20 according to the adjusted configuration information. That is, before adjusting the sampling object, the battery management system 11 needs to collect the state parameters of the target failed battery cells and the state parameters of the non-failed battery cells. After adjusting the sampling object, there is no need to collect the state parameters of the target failed cells, only the state parameters of the non-failed cells need to be collected.
  • the collected state parameters only include the state parameters of the non-failed cells, which can reduce the amount of data processing of the battery management system 11, and avoid the error influence of the state parameters of the non-failed cells on the subsequent processing process.
  • the state parameters of the non-failed cell include one or more of current, voltage, and temperature. Other status parameters can also be collected according to other needs, and there is no restriction on this.
  • the management module 113 may include a parameter collection unit and a status judgment unit.
  • the state judging unit is used for judging whether the state of the non-failed battery cell is abnormal according to the state parameter of the non-failed battery core. Specifically, it can be judged whether the state exceeds the normal value range. Before adjustment, the management module 113 needs to diagnose whether the non-failed cell and the target failed cell are in abnormal state. After the adjustment, the management module 113 only needs to diagnose whether the non-failed battery cells are in abnormal state.
  • the processing device 12 when the connection relationship between the non-failed cells of the target battery pack 20 is changed due to the existence of the target failed cells in the target battery pack 20, the processing device 12 can generate the target battery pack 20 containing the target failed cells. The identified adjusted configuration information. After the battery management system 11 receives the adjusted configuration information sent by the processing device 12, it can determine the target failed battery cell in the target battery pack 20 according to the identification of the target failed battery cell. The battery management system 11 avoids unclear target battery packs. Whether each battery cell in 20 fails and the management accuracy is reduced, thereby ensuring the management accuracy of the battery management system 11.
  • the battery management system 11 may also sort the historical data of each battery cell.
  • the historical data may include cell parameters that characterize the usage of the cell. For example, it may be one or more of the SOC of the battery cell, the state of health (SOH) of the battery cell, and the direct current resistance (DCR).
  • the battery management system 11 when implementing the sorting function, includes: a failed cell determination module, a first arranging module, and a second arranging module.
  • the failed cell determination module is used to determine the target failed cell of the target battery pack 20 according to the identification of the target failed cell.
  • the first arranging module is used for arranging the historical information of the other battery cells in sequence according to the arranging order of the battery cells except the target failed battery cell in the target battery pack 20.
  • the second arrangement module is used to arrange the historical information of the target failed battery cell after the historical information of the last battery cell among other battery cells.
  • the target battery pack 20 includes 6 cells, the cells are cell 1, cell 2, cell 3, cell 4, cell 5, and cell 6 in order.
  • the cell 5 is the target failed cell, and the other cells are non-failed cells.
  • the result of the arrangement is the historical data of cell 1, the historical data of cell 2, the historical data of cell 3, the historical data of cell 4, the historical data of cell 6, and the historical data of cell 5.
  • the historical data of the target failed cell can be placed in the last digit, and then the other historical cells can be arranged.
  • the specific sorting steps are not limited.
  • the historical data of the non-failed battery cell can be distinguished from the historical data of the failed battery cell, so that the historical data of each battery cell can be externally used for data analysis and processing in the subsequent process, or It is convenient for the battery management system 11 to use the historical data of each battery cell. For example, it is convenient to use the SOC of each battery cell to accurately calculate the SOC of the target battery pack 20.
  • the storage area of the program that implements the battery management method when executed by the battery management system 11 is different from the storage area of the configuration information.
  • the configuration information can be called.
  • the executable program and the configuration information can be divided into different memory address segments, respectively, and the executable program and the configuration information will be stored in different address spaces when the software is compiled.
  • the configuration information and the execution program are mixed together, and the configuration information cannot be modified separately.
  • the battery management system 11 separates the program from the configuration, and the configuration can be individually modified without affecting the execution of the program.
  • the configuration information can be stored in a non-volatile memory (Non-Volatile Memory, NVM).
  • NVM Non-Volatile Memory
  • the processing device 12 includes a configuration information generating module 121 and a configuration information sending module 122.
  • the configuration information generating module 121 is configured to generate adjusted configuration information based on the original configuration information of the target battery pack 20 sent by the battery management system 11 and the acquired identification of the target failed cell in the target battery pack.
  • the identification of the target failed battery cell may be directly input to the processing device 12 from the outside of the battery management and control system 10. For example, it can be entered by maintenance personnel.
  • the processing device 12 may respond to the input operation of the identification of the target failed cell to obtain the identification of the target failed cell.
  • the processing device 12 further includes a second input response module, which is used to respond to the input operation of the identification of the target failed battery cell and send a second work instruction to the battery management system 11 to prompt the battery management system 11 of the failure of the target battery pack 20
  • the connection relationship between the failed battery cells is changed and the battery management system 11 is instructed to return to the original configuration information.
  • the processing device 12 also includes a first work instruction sending module, a first work instruction sending module, an identification receiving module, and an identification processing module.
  • the first work instruction sending module is used to send the first work instruction to the battery management system 11 to prompt the battery management system 11 that the connection relationship between the non-failed cells of the target battery pack 20 has changed and instruct the battery management system 11 to return to the original configuration information And the identification of the suspected failed battery cell.
  • the identification receiving module is used to receive the original configuration information and the identification of the suspected failed battery cell.
  • the identification processing module is used for if the suspected failed battery cell is determined to be the target failed battery based on the identification of the suspected failed battery cell, the identification of the suspected failed battery cell is used as the identification of the target failed battery cell.
  • the processing device 12 itself can determine whether the suspected failed cell is the target failed cell. Specifically, the processing device 12 may obtain the voltage parameters of each cell, and confirm the target failed cell according to the voltage parameters of each cell. For example, a battery cell with a voltage parameter of 0 is identified as a suspected failure battery cell. Among them, the processing device 12 can confirm the target failed cell according to the voltage parameters of each cell.
  • the processing module 12 provides the voltage parameters of each cell to the outside, and responds to the input operation of the target failed cell from the outside to confirm the target failed cell. Alternatively, it may be confirmed externally by the battery management and control system 10.
  • the processing device 12 further includes a first input response module.
  • the first input response module is used to respond to the input operation characterizing the suspected failed battery as the target failed battery, and determine that the suspected failed battery is the target failed battery.
  • the input operation may be an input operation by a maintenance person, or an automatic input operation of an external program, which is not limited.
  • the configuration information generating module 121 may include an identification processing unit and a configuration information processing unit.
  • the identification processing unit is used to add the identification of the target failed battery cell to the original configuration information.
  • the identification processing unit may replace the identifier that characterizes that the target battery pack 20 does not have failed cells in the original configuration information with the target. Identification of failed batteries.
  • the processing module 12 may add the identification of the target cell failure on the basis of the original configuration information, and then add the identification of the target cell failure identification.
  • the original configuration information is used as the adjusted configuration information. For example, if the original configuration information includes the identification of the failed cell A and the identification of the failed cell B, the adjusted configuration information includes the identification of the failed cell A, the identification of the failed cell B, and the target of the failed cell C. logo.
  • the configuration information processing unit is configured to use the original configuration information added with the identification of the target failed cell as the adjusted configuration information.
  • the configuration information sending module 122 is configured to send the adjusted configuration information to the BMS, so that the BMS can perform management operations on the non-failed cells of the target battery pack according to the adjusted configuration information.
  • the processing device 12 when the connection relationship between the non-failed cells of the target battery pack 20 changes due to the existence of the target failed cells in the target battery pack 20, the processing device 12 can generate an identification containing the target failed cells The adjusted configuration information. After the battery management system 11 receives the adjusted configuration information sent by the processing device 12, it can determine the target failed battery cell in the target battery pack 20 according to the identification of the target failed battery cell. The battery management system 11 avoids unclear target battery packs. Whether each battery cell in 20 fails and the management accuracy is reduced, thereby ensuring the management accuracy of the battery management system 11.
  • FIG. 3 is a schematic flowchart of a battery management method according to an embodiment of the application.
  • the battery management method is applied to the battery management system. As shown in FIG. 3, the battery management method includes S310 to S330.
  • S320 Receive adjusted configuration information sent by the processing device, where the adjusted configuration information includes the identification of the target failed battery cell.
  • S330 Perform a management operation on the non-failed cells of the target battery pack according to the adjusted configuration information.
  • the battery management method 300 further includes:
  • the battery management method 300 further includes:
  • the adjusted configuration information further includes the information of the non-failed cells of the target battery pack.
  • S330 includes:
  • the performance parameters include charging characteristic parameters and/or discharging characteristic parameters.
  • S330 includes:
  • the state parameters of the non-failed cells in the target battery pack are collected. Determine whether the state of the non-failed battery cell is abnormal according to the state parameter of the non-failed battery core.
  • the battery management method 300 further includes:
  • the target failed battery cell of the target battery pack according to the identification of the target failed battery cell; arrange the historical information of the other battery cells in order according to the order of the other battery cells in the target battery pack except the target failed battery cell;
  • the historical information of the failed battery cell is arranged after the historical information of the last battery cell among the other batteries.
  • the historical information includes cell parameters that characterize the usage of the cell.
  • the original configuration information includes the identification of other failed cells in the target battery pack except for the target failed cell or an identification that indicates that the target battery pack does not have any failed cells.
  • the original configuration information and the adjusted configuration information also include the information of the non-failed cells in the target battery pack,
  • the information of the non-failed cells in the target battery pack includes at least one of the following information: the number of non-failed cells in the target battery pack, the number of non-failed cells corresponding to each cell management unit, and the number of cells in the target battery pack.
  • the number of status collection units corresponding to non-failed cells, the number of status collection units corresponding to each cell management unit, the identification of non-failed cells in the target battery pack, and the number of non-failed cells corresponding to each cell management unit The identification of the state collection unit corresponding to the non-failed cell in the target battery pack, and the identification of the state collection unit corresponding to each cell management unit.
  • the storage area of the program that implements the battery management method when executed by the BMS is different from the storage area of the configuration information.
  • FIG. 4 is a schematic flowchart of a battery management method according to an embodiment of the application.
  • the battery management method is applied to the processing device. As shown in FIG. 4, the battery management method includes S410 and S420.
  • S410 Generate adjusted configuration information based on the original configuration information of the target battery pack sent by the BMS and the acquired identification of the target failed cell in the target battery pack.
  • S420 Send the adjusted configuration information to the BMS, so that the BMS can perform management operations on the non-failed cells of the target battery pack according to the adjusted configuration information.
  • S410 includes:
  • the identification of the target failed cell is added to the original configuration information; the original configuration information with the identification of the target failed cell is added as the adjusted configuration information.
  • the battery management method 400 further includes:
  • the battery management method 400 further includes:
  • the suspected failed battery is determined as the target failed battery.
  • the battery management method 400 further includes:
  • a second work instruction is sent to the BMS to prompt the BMS that the connection relationship between the non-failed battery cells of the target battery pack has changed and instruct the BMS to return to the original configuration information.
  • the functional modules in the foregoing embodiments may be implemented as hardware, software, firmware, or a combination thereof.
  • it can be, for example, an electronic circuit, an application specific integrated circuit (ASIC), appropriate firmware, a plug-in, a function card, and so on.
  • ASIC application specific integrated circuit
  • the elements of this application are programs or code segments used to perform required tasks.
  • the program or code segment may be stored in a machine-readable medium, or transmitted on a transmission medium or a communication link through a data signal carried in a carrier wave.
  • "Machine-readable medium" may include any medium that can store or transmit information.

Landscapes

  • Engineering & Computer Science (AREA)
  • Manufacturing & Machinery (AREA)
  • Chemical & Material Sciences (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Electrochemistry (AREA)
  • General Chemical & Material Sciences (AREA)
  • Microelectronics & Electronic Packaging (AREA)
  • Charge And Discharge Circuits For Batteries Or The Like (AREA)

Abstract

本申请公开了电池管理系统、处理装置、电池管理方法和电池管控系统,涉及动力电池领域。该电池管理系统包括:信息发送模块,用于若确定在目标电池包中隔离目标失效电芯的情况下,目标电池包的未失效电芯间的连接关系发生改变,将目标电池包的原始配置信息发送至处理装置,以使处理装置根据原始配置信息生成调整后的配置信息;信息接收模块,用于接收处理装置发送的调整后的配置信息,调整后的配置信息包括目标失效电芯的标识;管理模块,用于根据调整后的配置信息,对目标电池包的未失效电芯进行管理操作。根据本申请实施例提供的技术方案,保证了BMS对电池包的管理精度。

Description

电池管理系统、处理装置、电池管理方法和电池管控系统
相关申请的交叉引用
本申请要求享有于2019年12月04日提交的名称为“电池管理系统、处理装置、电池管理方法和电池管控系统”的中国专利申请201911226463.9的优先权,该申请的全部内容通过引用并入本文中。
技术领域
本申请涉及电池电力领域,尤其涉及电池管理系统、处理装置、电池管理方法和电池管控系统。
背景技术
随着新能源的发展,越来越多的领域采用新能源作为动力。由于具有能量密度高、可循环充电、安全环保等优点,电池被广泛应用于新能源汽车、消费电子、储能系统等领域中。
电池管理系统(Battery Management System,BMS)用于对电池包进行管理操作。然而若电池包内电芯间的连接关系发生改变,BMS对电池包的管理操作会出现误操作,降低了BMS对电池包的管理精度。
发明内容
本申请实施例提供的电池管理系统、处理装置、电池管理方法和电池管控系统,保证了BMS对电池包的管理精度。
第一方面,本申请实施例提供了一种电池管理系统,包括:信息发 送模块,用于若确定在目标电池包中隔离目标失效电芯的情况下,目标电池包的未失效电芯间的连接关系发生改变,将目标电池包的原始配置信息发送至处理装置,以使处理装置根据原始配置信息生成调整后的配置信息;信息接收模块,用于接收处理装置发送的调整后的配置信息,调整后的配置信息包括目标失效电芯的标识;管理模块,用于根据调整后的配置信息,对目标电池包的未失效电芯进行管理操作。
根据本申请实施例中的电池管理系统,当目标电池包的未失效电芯间的连接关系因目标电池包存在目标失效电芯而改变时,处理装置能够生成包含目标失效电芯的标识的调整后的配置信息。BMS接收到处理装置发送的调整后的配置信息后,能够根据目标失效电芯的标识确定目标电池包中的目标失效电芯,BMS避免了因不明确目标电池包中各电芯是否失效而导致的管理精度下降,从而保证了BMS对目标电池包的管理精度。
在一些实施例中,电池管理系统还包括:
第一指令接收模块,用于接收处理装置发送的第一工作指令;
第一指令响应模块,用于响应第一工作指令,确定在目标电池包中隔离目标失效电芯的情况下,目标电池包的未失效电芯间的连接关系发生改变,以及用于在目标电池包中确定疑似失效电芯,获取疑似失效电芯的标识,将疑似失效电芯的标识发送至处理装置,以供处理装置根据疑似失效电芯的标识判断疑似失效电芯是否为目标失效电芯。
通过本实施例,若处理装置无法提前得知目标失效电芯的标识时,处理装置向电池管理系统发送第一工作指令,可以通过提示电池管理系统目标电池包的未失效电芯间的连接关系发生改变,因而能够指示电池管理系统返回原始配置信息和疑似失效电芯的标识,从而能够通过和电池管理系统之间的交互准确的获取疑似失效电芯的信息。
在一些实施例中,电池管理系统还包括:
第二指令接收模块,用于接收处理装置发送的第二工作指令;
第二指令响应模块,用于根据第二工作指令,确定在目标电池包中隔离目标失效电芯的情况下,目标电池包的未失效电芯间的连接关系发生改变。
通过本实施例,若处理装置已提前得知目标失效电芯的标识,处理装置通过向电池管理系统发送第二工作指令,以提示电池管理系统目标电池包的未失效电芯间的连接关系发生改变,并指示电池管理系统返回原始配置信息。从而进一步保证了对目标电池包的管理精度。
在一些实施例中,调整后的配置信息还包括目标电池包的未失效电芯的信息,管理模块包括:
调整系数确定单元,用于根据目标电池包的未失效电芯的信息,确定目标电池包的性能参数的调整系数;
性能参数计算单元,用于利用调整系数和目标电池包的原有性能参数,计算目标电池包的性能参数,
其中,性能参数包括充电特性参数和/或放电特性参数。
通过本实施例,由于在电池失效前后目标电池的性能参数会发生变化,管理模块可以根据目标电池包的未失效电芯的信息,确定目标电池包的性能参数的调整系数,并根据调整系数和原有性能参数准确的计算目标电池包的当前性能参数,从而能够准确的衡量目标电池包的性能变化。
在一些实施例中,管理模块包括:
参数采集单元,用于根据调整后的配置信息,采集目标电池包中的未失效电芯的状态参数;
状态判断单元,用于根据未失效电芯的状态参数判断未失效电芯的状态是否异常。
通过本实例,管理模块可以具备调整异常诊断对象的功能,从而能够对未失效电芯的状态进行准确预警,提高了目标电池包的安全性。
在一些实施例中,电池管理系统还包括:
失效电芯确定模块,用于根据目标失效电芯的标识,确定目标电池包的目标失效电芯;
第一排列模块,用于按照目标电池包内的除目标失效电芯外的其他电芯的排列次序,对其他电芯的历史信息依次排列;
第二排列模块,用于将目标失效电芯的历史信息排列至其他电芯中最后一个电芯的历史信息之后,
其中,历史信息包括表征电芯的使用情况的电芯参数。
在本实施例中,通过对各电芯的排列次序重新排序,可以将未失效电芯的历史数据和失效电芯的历史数据区分开来,以便于后续过程中外部调用各电芯的历史数据进行数据分析处理、或者方便电池管理系统对各电芯的历史数据的使用。例如,方便利用各电芯的SOC准确计算目标电池包的SOC。
在一些实施例中,原始配置信息包括目标电池包中除目标失效电芯外的其他失效电芯的标识或者表征目标电池包不存在失效电芯的标识。
通过本实施例,原始配置信息可以通过电芯标识准确表示目标电池包内的电芯的具体情况。
在一些实施例中,原始配置信息和调整后的配置信息还包括目标电池包内未失效电芯的信息,
目标电池包内未失效电芯的信息包括以下信息的至少一种:
目标电池包内的未失效电芯的数量、每个电芯管理单元对应的未失效电芯的数量、目标电池包内的未失效电芯对应的状态采集单元的数量、每个电芯管理单元对应的状态采集单元的数量、目标电池包内的未失效电芯的标识、每个电芯管理单元对应的未失效电芯的标识、目标电池包内的未失效电芯对应的状态采集单元的标识和每个电芯管理单元对应的状态采集单元的标识。
通过本实施例,可以通过电芯标识准确表示配置信息中的目标电池包内的未失效电芯的具体情况。
在一些实施例中,被BMS执行时实现电池管理方法的程序的存储区域与配置信息的存储区域不同。
相较于配置信息与执行程序被混合在一起,无法单独修改配置信息的技术方案。通过本实施例,电池管理系统可以将程序与配置分离,可对配置进行单独修改而不影响执行程序。
第二方面,本申请实施例提供一种处理装置,包括:配置信息生成模块,用于基于BMS发送的目标电池包的原始配置信息和获取的目标电池包中的目标失效电芯的标识,生成调整后的配置信息;配置信息发送模块,用于将调整后的配置信息发送至BMS,以供BMS根据调整后的配置信息对目标电池包的未失效电芯进行管理操作。
根据本申请实施例中的处理装置,当目标电池包的未失效电芯间的连接关系因目标电池包存在目标失效电芯而改变时,处理装置能够生成包含目标失效电芯的标识的调整后的配置信息。BMS接收到处理装置发送的调整后的配置信息后,能够根据目标失效电芯的标识确定目标电池包中的目标失效电芯,BMS避免了因不明确目标电池包中各电芯是否失效而导致 的管理精度下降,从而保证了对目标电池包的管理精度。
在一些实施例中,配置信息生成模块包括:
标识处理单元,用于在原始配置信息中添加目标失效电芯的标识;
配置信息处理单元,用于将添加有目标失效电芯的标识的原始配置信息作为调整后的配置信息。
通过本实施例,可以根据目标电池包内的电芯失效情况生成调整后的配置信息,从而使得调整后的配置信息更能够反映目标电池包内各电芯的实际状态,以及使得调整后的配置信息更准确。
在一些实施例中,处理装置还包括:
第一工作指令发送模块,用于向BMS发送第一工作指令,以提示BMS目标电池包的未失效电芯间的连接关系发生改变并指示BMS返回原始配置信息和疑似失效电芯的标识;
标识接收模块,用于接收原始配置信息和疑似失效电芯的标识;
标识处理模块,用于若根据疑似失效电芯的标识确定疑似失效电芯为目标失效电芯,将疑似失效电芯的标识作为目标失效电芯的标识。
通过本实施例,可以通过BMS和处理模块共同确定目标失效电芯,降低了误判的概率,从而提高了确定目标失效电芯的准确性。
在一些实施例中,处理装置还包括:
第一输入响应模块,用于响应表征疑似失效电芯为目标失效电芯的输入操作,确定疑似失效电芯为目标失效电芯。
通过本实施例,可以结合外部信息,共同判断目标失效电芯,从而提高了失效电芯的判断准确度。
在一些实施例中,处理装置还包括:
第二输入响应模块,用于响应目标失效电芯的标识的输入操作,向BMS发送第二工作指令,以提示BMS目标电池包的未失效电芯间的连接关系发生改变并指示BMS返回原始配置信息。
通过本实施例,若处理装置已提前得知目标失效电芯的标识,处理装置通过向电池管理系统发送第二工作指令,以提示电池管理系统目标电池包的未失效电芯间的连接关系发生改变,并指示电池管理系统返回原始配置信息。从而进一步保证了管理精度。
第三方面,本申请实施例提供一种电池管理方法,应用于电池管理系统,包括:若确定在目标电池包中隔离目标失效电芯的情况下,目标电池包的未失效电芯间的连接关系发生改变,将目标电池包的原始配置信息发送至处理装置,以使处理装置根据原始配置信息生成调整后的配置信息;接收处理装置发送的调整后的配置信息,调整后的配置信息包括目标失效电芯的标识;根据调整后的配置信息,对目标电池包的未失效电芯进行管理操作。
根据本申请实施例中的电池管理方法,当目标电池包的未失效电芯间的连接关系因目标电池包存在目标失效电芯而改变时,处理装置能够生成包含目标失效电芯的标识的调整后的配置信息。BMS接收到处理装置发送的调整后的配置信息后,能够根据目标失效电芯的标识确定目标电池包中的目标失效电芯,BMS避免了因不明确目标电池包中各电芯是否失效而导致的管理精度下降,从而保证了BMS对目标电池包的管理精度。
在一些实施例中,电池管理方法还包括:
接收处理装置发送的第一工作指令;
响应第一工作指令,确定在目标电池包中隔离目标失效电芯的情况 下,目标电池包的未失效电芯间的连接关系发生改变,
并在目标电池包中确定疑似失效电芯,获取疑似失效电芯的标识,将疑似失效电芯的标识发送至处理装置,以供处理装置根据疑似失效电芯的标识判断疑似失效电芯是否为目标失效电芯。
通过本实施例,若处理装置无法提前得知目标失效电芯的标识时,处理装置向电池管理系统发送第一工作指令,可以通过提示电池管理系统目标电池包的未失效电芯间的连接关系发生改变,因而能够指示电池管理系统返回原始配置信息和疑似失效电芯的标识,从而能够通过和电池管理系统之间的交互准确的获取疑似失效电芯的信息。
在一些实施例中,电池管理方法还包括:
接收处理装置发送的第二工作指令;
根据第二工作指令,确定在目标电池包中隔离目标失效电芯的情况下,目标电池包的未失效电芯间的连接关系发生改变。
通过本实施例,若处理装置已提前得知目标失效电芯的标识,处理装置通过向电池管理系统发送第二工作指令,以提示电池管理系统目标电池包的未失效电芯间的连接关系发生改变,并指示电池管理系统返回原始配置信息。从而进一步保证了对目标电池包的管理精度。
在一些实施例中,调整后的配置信息还包括目标电池包的未失效电芯的信息,
根据调整后的配置信息,对目标电池包的未失效电芯进行管理操作,包括:
根据目标电池包的未失效电芯的信息,确定目标电池包的性能参数的调整系数;
利用调整系数和目标电池包的原有性能参数,计算目标电池包的性能参数,
其中,性能参数包括充电特性参数和/或放电特性参数。
通过本实施例,由于在电池失效前后目标电池的性能参数会发生变化,管理模块可以根据目标电池包的未失效电芯的信息,确定目标电池包的性能参数的调整系数,并根据调整系数和原有性能参数准确的计算目标电池包的当前性能参数,从而能够准确的衡量目标电池包的性能变化。
在一些实施例中,根据调整后的配置信息,对目标电池包的未失效电芯进行管理操作,包括:
根据调整后的配置信息,采集目标电池包中的未失效电芯的状态参数;
根据未失效电芯的状态参数判断未失效电芯的状态是否异常。
通过本实例,管理模块可以具备调整异常诊断对象的功能,从而能够对未失效电芯的状态进行准确预警,提高了目标电池包的安全性。
在一些实施例中,电池管理方法还包括:
根据目标失效电芯的标识,确定目标电池包的目标失效电芯;
按照目标电池包内的除目标失效电芯外的其他电芯的排列次序,对其他电芯的历史信息依次排列;
将目标失效电芯的历史信息排列至其他电芯中最后一个电芯的历史信息之后,
其中,历史信息包括表征电芯的使用情况的电芯参数。
在本实施例中,通过对各电芯的排列次序重新排序,可以将未失效 电芯的历史数据和失效电芯的历史数据区分开来,以便于后续过程中外部调用各电芯的历史数据进行数据分析处理、或者方便电池管理系统对各电芯的历史数据的使用。例如,方便利用各电芯的SOC准确计算目标电池包的SOC。
在一些实施例中,原始配置信息包括目标电池包中除目标失效电芯外的其他失效电芯的标识或者表征目标电池包不存在失效电芯的标识。
通过本实施例,原始配置信息可以通过电芯标识准确表示目标电池包内的电芯的具体情况。
在一些实施例中,原始配置信息和调整后的配置信息还包括目标电池包内未失效电芯的信息,
目标电池包内未失效电芯的信息包括以下信息的至少一种:目标电池包内的未失效电芯的数量、每个电芯管理单元对应的未失效电芯的数量、目标电池包内的未失效电芯对应的状态采集单元的数量、每个电芯管理单元对应的状态采集单元的数量、目标电池包内的未失效电芯的标识、每个电芯管理单元对应的未失效电芯的标识、目标电池包内的未失效电芯对应的状态采集单元的标识和每个电芯管理单元对应的状态采集单元的标识。
通过本实施例,可以通过电芯标识准确表示配置信息中的目标电池包内的未失效电芯的具体情况。
在一些实施例中,被BMS执行时实现电池管理方法的程序的存储区域与配置信息的存储区域不同。
相较于配置信息与执行程序被混合在一起,无法单独修改配置信息的技术方案。通过本实施例,电池管理系统可以将程序与配置分离,可对配置进行单独修改而不影响执行程序。
第四方面,本申请实施例提供一种电池管理方法,应用于处理装置,包括:基于BMS发送的目标电池包的原始配置信息和获取的目标电池包中的目标失效电芯的标识,生成调整后的配置信息;将调整后的配置信息发送至BMS,以供BMS根据调整后的配置信息对目标电池包的未失效电芯进行管理操作。
根据本申请实施例中的电池管控系统,当目标电池包的未失效电芯间的连接关系因目标电池包存在目标失效电芯而改变时,处理装置能够生成包含目标失效电芯的标识的调整后的配置信息。BMS接收到处理装置发送的调整后的配置信息后,能够根据目标失效电芯的标识确定目标电池包中的目标失效电芯,BMS避免了因不明确目标电池包中各电芯是否失效而导致的管理精度下降,从而保证了对目标电池包的管理精度。
在一些实施例中,基于BMS发送的目标电池包的原始配置信息和获取的目标电池包中的目标失效电芯的标识,生成调整后的配置信息,包括:
在原始配置信息中添加目标失效电芯的标识;
将添加有目标失效电芯的标识的原始配置信息作为调整后的配置信息。
通过本实施例,可以根据目标电池包内的电芯失效情况生成调整后的配置信息,从而使得调整后的配置信息更能够反映目标电池包内各电芯的实际状态,以及使得调整后的配置信息更准确。
在一些实施例中,电池管理方法还包括:
向BMS发送第一工作指令,以提示BMS目标电池包的未失效电芯间的连接关系发生改变并指示BMS返回原始配置信息和疑似失效电芯的标识;
接收原始配置信息和疑似失效电芯的标识;
若根据疑似失效电芯的标识确定疑似失效电芯为目标失效电芯,将疑似失效电芯的标识作为目标失效电芯的标识。
通过本实施例,可以通过BMS和处理模块共同确定目标失效电芯,降低了误判的概率,从而提高了确定目标失效电芯的准确性。
在一些实施例中,电池管理方法还包括:
响应表征疑似失效电芯为目标失效电芯的输入操作,确定疑似失效电芯为目标失效电芯。
通过本实施例,可以结合外部信息,共同判断目标失效电芯,从而提高了失效电芯的判断准确度。
在一些实施例中,电池管理方法还包括:
响应目标失效电芯的标识的输入操作,向BMS发送第二工作指令,以提示BMS目标电池包的未失效电芯间的连接关系发生改变并指示BMS返回原始配置信息。
通过本实施例,若处理装置已提前得知目标失效电芯的标识,处理装置通过向电池管理系统发送第二工作指令,以提示电池管理系统目标电池包的未失效电芯间的连接关系发生改变,并指示电池管理系统返回原始配置信息。从而进一步保证了管理精度。
第五方面,本申请实施例提供一种电池管控系统,包括:本申请实施例提供的电池管理系统,和本申请实施例提供的处理装置。
根据本申请实施例中的电池管控系统,当目标电池包的未失效电芯间的连接关系因目标电池包存在目标失效电芯而改变时,处理装置能够生成包含目标失效电芯的标识的调整后的配置信息。BMS接收到处理装置 发送的调整后的配置信息后,能够根据目标失效电芯的标识确定目标电池包中的目标失效电芯,BMS避免了因不明确目标电池包中各电芯是否失效而导致的管理精度下降,从而保证了对目标电池包的管理精度。
附图说明
为了更清楚地说明本申请实施例的技术方案,下面将对本申请实施例中所需要使用的附图作简单地介绍,显而易见地,下面所描述的附图仅仅是本申请的一些实施例,对于本领域普通技术人员来讲,在不付出创造性劳动的前提下,还可以根据附图获得其他的附图。
图1是本申请一实施例公开的一种电池管控系统的结构示意图;
图2是本申请一实施例公开的一种电池管控系统的具体结构示意图;
图3是本申请一实施例公开的一种电池管理方法的流程示意图;
图4是本申请一实施例公开的一种电池管理方法的流程示意图。
具体实施方式
下面将详细描述本申请的各个方面的特征和示例性实施例,为了使本申请的目的、技术方案及优点更加清楚明白,以下结合附图及实施例,对本申请进行进一步详细描述。应理解,此处所描述的具体实施例仅意在解释本申请,并不是限定本申请。对于本领域技术人员来说,本申请可以在不需要这些具体细节中的一些细节的情况下实施。下面对实施例的描述仅仅是为了通过示出本申请的示例来提供对本申请更好的理解。
需要说明的是,在本文中,诸如第一和第二等之类的关系术语仅仅用来将一个实体或者操作与另一个实体或操作区分开来,而不一定要求 或者暗示这些实体或操作之间存在任何这种实际的关系或者顺序。而且,术语“包括”、“包含”或者其任何其他变体意在涵盖非排他性的包含,从而使得包括一系列要素的过程、方法、物品或者设备不仅包括那些要素,而且还包括没有明确列出的其他要素,或者是还包括为这种过程、方法、物品或者设备所固有的要素。在没有更多限制的情况下,由语句“包括……”限定的要素,并不排除在包括要素的过程、方法、物品或者设备中还存在另外的相同要素。
下述描述中出现的方位词均为图中示出的方向,并不是对本申请的具体结构进行限定。在本申请的描述中,还需要说明的是,除非另有明确的规定和限定,术语“安装”、“相连”、“连接”应做广义理解,例如,可以是固定连接,也可以是可拆卸连接,或一体地连接;可以是直接相连,也可以通过中间媒介间接相连。对于本领域的普通技术人员而言,可视具体情况理解上述术语在本申请中的具体含义。
本申请实施例提供了电池管理系统、处理装置、电池管理方法和电池管控系统,可应用于在目标电池包中隔离目标失效电芯且目标电池包的未失效电芯间的连接关系发生改变的情况下,调整BMS对电芯的管理方式的具体场景中。电池包可以是包括至少一个电池模组的电池包,或者是无模组电池包,在此并不限定。无模组电池包包括至少一个电芯,各电芯无需被封装为电池模组。电芯之间的连接方式可以是串联、并联或混联,对连接方式不作具体限定。
在本申请实施例中,若电池包中的电芯在生产、运输、使用过程中出现失效现象,可能会对电池包的性能、可靠性以及电池安全问题造成影响。其中,电芯失效可以是电芯性能失效,例如容量跳水、循环性能衰减、电压异常、电流异常、内阻过大、自放电、高/低温失效、倍率性能 差、一致性差等。电芯失效可以是电芯安全性失效,例如热失控、短路、漏液、胀气、析锂、膨胀形变、刺穿、挤压等等。
在本申请实施例中,若电池包中的电芯出现失效现象,为了保证电池包的正常工作和使用,可以通过维修人员手动操作等方式隔离该失效电芯并对电池包中其他未失效电芯进行连接。例如,针对包括多个相串联电芯的电池包,当其中一个电芯失效时,可以将该电芯的前一个电芯和该电芯的后一个电芯串联起来。其中,隔离的方式可以是将失效电芯从电池包中去除后对其他未失效电芯进行连接,或者绕过仍放置于电池包内的失效电芯对其他未失效电芯进行连接。特别是对于无模组电池包,当其出现失效电芯时,传统方案需要更换整个无模组电池包。而本申请实施例中仅需要隔离失效电芯即可保证无模组电池包的正常工作和使用,延长了无模组电池包的使用寿命并降低了其使用成本。
在一些实施例中,考虑到从电池包中隔离掉失效电芯并对电池包中其他未失效电芯重新连接后,电池包中其他未失效电芯的连接方式以及电池包的性能参数会发生变化。若电池管理系统再按照之前的方式对电芯执行管理操作,会影响电池管理系统的管理精度。例如,电池管理系统可能会继续采集失效电芯的状态参数,或者继续监控失效电芯的状态,或者可能会继续将原先的电池包的性能参数作为当前电池包性能参数。电池管理系统与电池包的适配性变差。
因此,需要一种能够保证电池管理系统对包含失效电芯的电池包的管理精度的技术方案。
图1为本申请一实施例的电池管控系统的结构示意图。如图1所示,电池管控系统10包括电池管理系统11和处理装置12。其中,电池管理系统11和处理模块之间可以有线连接,或者无线通讯连接,对此不做 限制。
若目标电池包20不存在失效电芯或者没有新的失效电芯产生时,电池管理系统11可以根据电池包的原始配置信息对目标电池包20执行管理操作。
若目标电池包20修复了新的电芯失效情况,即目标电池包20因产生新的失效电芯而导致目标电池包20中新的失效电芯被隔离且目标电池包20中其他未失效电芯间的连接关系发生改变,电池管理单元11可以将仅与修复前的目标电池20相适配的原始配置信息发送至处理模块12处理模块12根据原始配置信息生成新的、更加适用于修复后的目标电池包20的调整后的配置信息。
其中,包括原始配置信息和调整后的配置信息在内的配置信息,均能够标明目标电池包20中的失效电芯。具体地,可以包含失效电芯的标识,该标识用于在目标电池包20中证明失效电芯的身份。例如,失效电芯的编号或者失效电芯的位置等,对此不作限制。如果目标电池包没有失效电芯,则配置信息包含表征目标电池包20不存在失效电芯的标识。例如,可以用约定好的默认值表征目标电池包20不存在失效电芯。比如,如果配置信息中的某一位置的值为“#05”,则表征目标电池包中第5个电芯为失效电芯,如果配置信息的值为“#00”,则表征目标电池包20不存在失效电芯。
在一些实施例中,配置信息还可以包括失效电芯对应的状态采集单元的信息。例如,用于采集失效电芯温度的负温度系数传感器(Negative Temperature Coefficient,NTC)的位置或者该NTC的标识等。状态采集单元还可以是用于采集失效电芯的电压、电流等其他状态的传感器,对此不做限定。
此外,配置信息还可以包括目标电池包20内未失效电芯的信息。其中,未失效电芯的信息可以由未失效电芯的数量特征或者标识特征来体现。具体地,未失效电芯的信息可以包括以下至少一种:目标电池包内的未失效电芯的数量、电池管理系统的每个电芯管理单元对应的未失效电芯的数量、目标电池包内的未失效电芯对应的状态采集单元的数量、电池管理系统的每个电芯管理单元对应的状态采集单元的数量、目标电池包内的未失效电芯的标识、电池管理系统的每个电芯管理单元对应的未失效电芯的标识、目标电池包内的未失效电芯对应的状态采集单元的标识和电池管理系统的每个电芯管理单元对应的状态采集单元的标识等。其中,未失效电芯的标识和状态采样单元的标识的相关内容,可参见上述部分内容中对失效电芯的标识的相关描述,在此不再赘述。
图2为本申请一实施例的电池管控系统的具体结构示意图。如图2所示,电池管理系统11可包括信息发送模块111、信息接收模块112和管理模块113。
信息发送模块111用于若确定在目标电池包20中隔离目标失效电芯的情况下,目标电池包20的未失效电芯间的连接关系发生改变,将目标电池包20的原始配置信息发送至处理装置12,以使处理装置12根据原始配置信息生成调整后的配置信息。
目标失效电芯为目标电池包20中新产生的失效电芯。在目标失效电芯失效前,目标电池包20中的所有电芯均未失效或者存在其他失效电芯。需要特别说明的是,如果在目标失效电芯失效前目标电池包20还包含其他失效电芯,则可以对该其他失效电芯执行修复操作,即从目标电池包20中隔离该其他失效电芯并对未失效电芯间的连接关系进行调整。此时,隔离掉其他失效电芯的目标电池包20对应的调整的配置信息作为隔 离掉目标失效电芯的目标电池包对应的原始配置信息。隔离掉目标失效电芯的目标电池包20对应的原始配置信息包含该其他失效电芯的标识。
关于原始配置信息和调整后的配置信息的不同之处在于:
第一,调整后的配置信息包括目标失效电芯的标识;
第二,若配置信息还包括目标电池包20内未失效电芯的信息,针对目标电池包20内的未失效电芯的数量、对应于目标失效电芯20的电芯管理单元的未失效电芯的数量,调整后的配置信息比原始配置信息少了目标失效电芯的数量。
针对目标电池包20内的未失效电芯对应的状态采集单元的数量、电池管理系统11的每个电芯管理单元对应的状态采集单元的数量,调整后的配置信息比原始配置信息少了目标失效电芯对应的状态采集单元的数量。以及,针对目标电池包20内的未失效电芯的标识、电池管理系统11的每个电芯管理单元对应的未失效电芯的标识,调整后的配置信息比原始配置信息减少了目标失效电芯的标识。
针对目标电池包20内的未失效电芯的标识、电池管理系统11的每个电芯管理单元对应的未失效电芯的标识和电池管理系统11的每个电芯管理单元对应的状态采集单元的标识,调整后的配置信息比原始配置信息少了目标失效电芯的数量。以及,针对目标电池包20内的未失效电芯对应的状态采集单元的标识和电池管理系统11的每个电芯管理单元对应的状态采集单元的标识,调整后的配置信息比原始配置信息减少了目标失效电芯对应的状态采集单元的标识。
其他关于原始配置信息和调整后的配置信息的具体描述,可参见上述实施例中的相关内容,对此不再赘述。
此外,电池管理系统11可以在接收到处理装置12发送的工作指令 后,确定在目标电池包20中隔离目标失效电芯的情况下目标电池包20的未失效电芯间的连接关系发生改变。工作指令可以是第一工作指令或第二工作指令。
其中,若处理装置12无法提前得知目标失效电芯的标识时,处理装置12向电池管理系统11发送第一工作指令,用于提示电池管理系统11目标电池包20的未失效电芯间的连接关系发生改变,并指示电池管理系统11返回原始配置信息和疑似失效电芯的标识。若处理装置12已提前得知目标失效电芯的标识,处理装置12向电池管理系统11发送第二工作指令,以提示电池管理系统11目标电池包20的未失效电芯间的连接关系发生改变并指示电池管理系统11返回原始配置信息。
在一些实施例中,为了能够成功响应第一工作指令,电池管理系统11还包括第一指令接收模块和第一指令响应模块。
第一指令接收模块用于接收处理装置发送的第一工作指令。
第一指令响应模块用于响应第一工作指令,确定在目标电池包20中隔离目标失效电芯的情况下,目标电池包20的未失效电芯间的连接关系发生改变。
第一指令响应模块还用于在目标电池包20中确定疑似失效电芯,获取疑似失效电芯的标识,将疑似失效电芯的标识发送至处理装置12,以供处理装置12根据疑似失效电芯的标识判断疑似失效电芯是否为目标失效电芯。其中,考虑到被隔离的失效电芯两端的电压可能会降为0,目标电池包20可以采集各电芯的电压参数,将电压参数为0的电芯识别为疑似失效电芯。
在一些实施例中,为了能够成功响应第二工作指令,电池管理系统11还包括第二指令接收模块和第二指令响应模块。
第二指令接收模块用于接收处理装置12发送的第二工作指令。
第二指令响应模块用于根据第二工作指令,确定目标电池包20中隔离目标失效电芯的情况下,目标电池包20的未失效电芯间的连接关系发生改变。其中,第二指令响应模块的具体实施方式与第一指令响应模块相同,在此不再赘述。
信息接收模块112用于接收处理装置12发送的调整后的配置信息,调整后的配置信息包括目标失效电芯的标识。其中,关于调整后的配置信息的具体描述,可参见上述实施例中的相关内容,对此不再赘述。
管理模块113用于根据调整后的配置信息,对目标电池包20的未失效电芯进行管理操作。其中,管理操作可包括计算目标电池包20的性能参数,调整采样对象,调整异常诊断对象等。
若管理模块113具备计算目标电池包20的性能参数的功能,管理模块113可包括调整系数确定单元和性能参数计算单元。其中,调整系数确定单元用于根据目标电池包20的未失效电芯的信息,确定目标电池包20的性能参数的调整系数。调整系数可以是未失效电芯的数量除以未失效电芯的数量和目标失效电芯的数量的和值。例如,未失效电芯的数量是N,目标失效电芯的数量是M,则调整系统等于N/(N+M),M和N为整数。性能参数计算单元用于利用调整系数和目标电池包20的原有性能参数,计算目标电池包20的性能参数。具体地,目标电池包20的性能参数可以是原有性能参数与调整系数的乘积。其中,性能参数包括充电特性参数和/或放电特性参数。充电特性参数可包括以下至少一种:充电电压、充电电流、充电功率、充电荷电状态(State of Charge),SOC、充电容量等。放电特性参数可包括以下至少一种:放电电压、放电电流、放电功率、放电SOC、放电容量等。
需要说明的是,由于原有的性能参数比重新计算的性能参数偏大,如果继续沿用原有的性能参数,会影响电池管理系统11的计算精度,且使用原有的性能参数可能会影响目标电池包20的安全性。
若管理模块113具备调整采样对象的功能,管理模块113可包括参数采集单元。参数采集单元用于根据调整后的配置信息,采集目标电池包20中的未失效电芯的状态参数。也就是说,调整采样对象之前,电池管理系统11需要采集目标失效电芯的状态参数和未失效电芯的状态参数。调整采样对象之后,无需再对目标失效电芯的状态参数进行采集,仅需采集未失效电芯的状态参数。从而保证了采集的状态参数中仅包含未失效电芯的状态参数,能够减少电池管理系统11的数据处理量,以及避免了未失效电芯的状态参数对后续处理过程带来的误差影响。其中,未失效电芯的状态参数包括电流、电压和温度中的一个或多个。还可以根据其他需要所要求采集其他状态参数,对此不作限制。
若管理模块113具备调整异常诊断对象的功能,管理模块113可包括参数采集单元和状态判断单元。参数采集单元的相关内容可参见上述实施例的具体描述,对此不再赘述。状态判断单元用于根据未失效电芯的状态参数判断未失效电芯的状态是否异常。具体地,可以判断状态是否超出正常取值范围。在调整之前,管理模块113需要诊断未失效电芯和目标失效电芯是否状态异常。在调整之后,管理模块113仅需诊断未失效电芯是否状态异常。
根据本申请实施例中的电池管理系统,当目标电池包20的未失效电芯间的连接关系因目标电池包20存在目标失效电芯而改变时,处理装置12能够生成包含目标失效电芯的标识的调整后的配置信息。电池管理系统11接收到处理装置12发送的调整后的配置信息后,能够根据目标失 效电芯的标识确定目标电池包20中的目标失效电芯,电池管理系统11避免了因不明确目标电池包20中各电芯是否失效而导致的管理精度下降,从而保证了电池管理系统11的管理精度。
在本申请的一些实施例中,电池管理系统11还可以对各电芯的历史数据进行排序。其中,历史数据可以包括表征电芯使用情况的电芯参数。例如,可以是电芯的SOC、电芯的健康度(State of Health,SOH)、直流阻抗(Direct Current Resistance,DCR)中的一个或多个。
具体地,在实现排序功能时,电池管理系统11包括:失效电芯确定模块、第一排列模块和第二排列模块。失效电芯确定模块用于根据目标失效电芯的标识,确定目标电池包20的目标失效电芯。第一排列模块用于按照目标电池包20内的除目标失效电芯外的其他电芯的排列次序,对其他电芯的历史信息依次排列。第二排列模块用于将目标失效电芯的历史信息排列至其他电芯中最后一个电芯的历史信息之后。示例性地,如果目标电池包20包括6个电芯,依次是电芯1、电芯2、电芯3、电芯4、电芯5和电芯6。其中,电芯5为目标失效电芯,其他电芯均为未失效电芯。则排列结果是电芯1的历史数据、电芯2的历史数据、电芯3的历史数据、电芯4的历史数据、电芯6的历史数据、电芯5的历史数据。需要说明的是,可以先将目标失效电芯的历史数据放在最后一位,再对其他历史电芯进行排列。在保证排序结果相同的前提下,对具体的排序步骤不作限定。
通过对各电芯的排列次序重新排序,可以将未失效电芯的历史数据和失效电芯的历史数据区分开来,以便于后续过程中外部调用各电芯的历史数据进行数据分析处理、或者方便电池管理系统11对各电芯的历史数据的使用。例如,方便利用各电芯的SOC准确计算目标电池包20的 SOC。
在本申请的一些实施例中,被电池管理系统11执行时实现电池管理方法的程序的存储区域与配置信息的存储区域不同。当电池管理系统11需要使用配置信息时,可以调用配置信息。具体地,可以将该执行程序与配置信息分别划分到不同的内存地址段,软件编译时会把执行程序与配置信息存储到不同的地址空间。
在一些情形下,配置信息与执行程序被混合在一起,无法单独修改配置信息。在本申请实施例中,电池管理系统11将程序与配置分离,可对配置进行单独修改而不影响执行程序。
此外,为了防止配置信息因电池管理系统11掉电而消失,可将配置信息存储至非易失性存储器(Non-Volatile Memory,NVM)。
继续参见图2,如图2所示,处理装置12包括配置信息生成模块121和配置信息发送模块122。
配置信息生成模块121用于基于电池管理系统11发送的目标电池包20的原始配置信息和获取的目标电池包中的目标失效电芯的标识,生成调整后的配置信息。
首先,目标失效电芯的标识可以是电池管控系统10外部直接输入至处理装置12的。例如,可以是维修人员输入的。此时,处理装置12可以响应目标失效电芯的标识的输入操作,获取目标失效电芯的标识。相应地,处理装置12还包括第二输入响应模块,用于响应目标失效电芯的标识的输入操作,向电池管理系统11发送第二工作指令,以提示电池管理系统11目标电池包20的未失效电芯间的连接关系发生改变并指示电池管理系统11返回原始配置信息。
或者,目标失效电芯的标识可以是根据电池管理系统11发送的疑 似失效电芯的标识确认的。处理装置12还包括第一工作指令发送模块、第一工作指令发送模块、标识接收模块和标识处理模块。
第一工作指令发送模块用于向电池管理系统11发送第一工作指令,以提示电池管理系统11目标电池包20的未失效电芯间的连接关系发生改变并指示电池管理系统11返回原始配置信息和疑似失效电芯的标识。
标识接收模块用于接收原始配置信息和疑似失效电芯的标识。
标识处理模块用于若根据疑似失效电芯的标识确定疑似失效电芯为目标失效电芯,将疑似失效电芯的标识作为目标失效电芯的标识。其中,处理装置12自身可以确定疑似失效电芯是否为目标失效电芯。具体地,处理装置12可以获取各电芯的电压参数,并根据各电芯的电压参确认目标失效电芯。例如,将电压参数为0的电芯识别为疑似失效电芯。其中,可以由处理装置12根据各电芯的电压参确认目标失效电芯。也可以是处理模块12将各电芯的电压参数提供给外部,并响应外部的目标失效电芯的输入操作,来确认目标失效电芯。又或者,可以由电池管控系统10外部确认。相应地,处理装置12还包括第一输入响应模块。第一输入响应模块用于响应表征疑似失效电芯为目标失效电芯的输入操作,确定疑似失效电芯为目标失效电芯。其中,输入操作可以是由维修人员的输入操作,也可以是外部程序的自动输入操作,对此不作限定。
其次,配置信息生成模块121可包括标识处理单元和配置信息处理单元。
标识处理单元用于在原始配置信息中添加目标失效电芯的标识。在一种实施例中,若原始配置信息包括表征目标电池包20不存在失效电芯的标识,标识处理单元可将原始配置信息中的表征目标电池包20不存 在失效电芯的标识替换为目标失效电芯的标识。在另一种实施例中,如果原始配置信息包括其他失效电芯的标识,则处理模块12可以在原始配置信息的基础上添上目标失效电芯的标识后,将添加有目标电芯失效标识的原始配置信息作为调整后的配置信息。例如,如果原始配置信息中包含括失效电芯A的标识和失效电芯B的标识,则调整后的配置信息包括失效电芯A的标识、失效电芯B的标识和目标失效电芯C的标识。
配置信息处理单元用于将添加有目标失效电芯的标识的原始配置信息作为调整后的配置信息。
配置信息发送模块122用于将调整后的配置信息发送至BMS,以供BMS根据调整后的配置信息对目标电池包的未失效电芯进行管理操作。
根据本申请实施例中的处理模块,当目标电池包20的未失效电芯间的连接关系因目标电池包20存在目标失效电芯而改变时,处理装置12能够生成包含目标失效电芯的标识的调整后的配置信息。电池管理系统11接收到处理装置12发送的调整后的配置信息后,能够根据目标失效电芯的标识确定目标电池包20中的目标失效电芯,电池管理系统11避免了因不明确目标电池包20中各电芯是否失效而导致的管理精度下降,从而保证了电池管理系统11的管理精度。
图3为本申请一实施例的电池管理方法的流程示意图。电池管理方法应用于电池管理系统,如图3所示,电池管理方法包括S310至S330。
S310,若确定在目标电池包中隔离目标失效电芯的情况下,目标电池包的未失效电芯间的连接关系发生改变,将目标电池包的原始配置信息发送至处理装置,以使处理装置根据原始配置信息生成调整后的配置信息。
S320,接收处理装置发送的调整后的配置信息,调整后的配置信息包括目标失效电芯的标识。
S330,根据调整后的配置信息,对目标电池包的未失效电芯进行管理操作。
在本申请的一些实施例中,电池管理方法300还包括:
接收处理装置发送的第一工作指令;响应第一工作指令,确定在目标电池包中隔离目标失效电芯的情况下,目标电池包的未失效电芯间的连接关系发生改变;并在目标电池包中确定疑似失效电芯,获取疑似失效电芯的标识,将疑似失效电芯的标识发送至处理装置,以供处理装置根据疑似失效电芯的标识判断疑似失效电芯是否为目标失效电芯。
在本申请的一些实施例中,电池管理方法300还包括:
接收处理装置发送的第二工作指令;根据第二工作指令,确定在目标电池包中隔离目标失效电芯的情况下,目标电池包的未失效电芯间的连接关系发生改变。
在本申请的一些实施例中,调整后的配置信息还包括目标电池包的未失效电芯的信息。S330包括:
根据目标电池包的未失效电芯的信息,确定目标电池包的性能参数的调整系数;利用调整系数和目标电池包的原有性能参数,计算目标电池包的性能参数。其中,性能参数包括充电特性参数和/或放电特性参数。
在本申请的一些实施例中,S330包括:
根据调整后的配置信息,采集目标电池包中的未失效电芯的状态参数。根据未失效电芯的状态参数判断未失效电芯的状态是否异常。
在本申请的一些实施例中,电池管理方法300还包括:
根据目标失效电芯的标识,确定目标电池包的目标失效电芯;按照目标电池包内的除目标失效电芯外的其他电芯的排列次序,对其他电芯的历史信息依次排列;将目标失效电芯的历史信息排列至其他电芯中最后一个电芯的历史信息之后。其中,历史信息包括表征电芯的使用情况的电芯参数。
在本申请的一些实施例中,原始配置信息包括目标电池包中除目标失效电芯外的其他失效电芯的标识或者表征目标电池包不存在失效电芯的标识。
在本申请的一些实施例中,原始配置信息和调整后的配置信息还包括目标电池包内未失效电芯的信息,
目标电池包内未失效电芯的信息包括以下信息的至少一种:目标电池包内的未失效电芯的数量、每个电芯管理单元对应的未失效电芯的数量、目标电池包内的未失效电芯对应的状态采集单元的数量、每个电芯管理单元对应的状态采集单元的数量、目标电池包内的未失效电芯的标识、每个电芯管理单元对应的未失效电芯的标识、目标电池包内的未失效电芯对应的状态采集单元的标识和每个电芯管理单元对应的状态采集单元的标识。
在本申请的一些实施例中,被BMS执行时实现电池管理方法的程序的存储区域与配置信息的存储区域不同。
本申请实施例中的电池管理方法的具体实施方式及有益效果,可参见上述结合图1和图2描述的电池管理系统,在此不再赘述。
图4为本申请一实施例的电池管理方法的流程示意图。电池管理方法应用于处理装置,如图4所示,电池管理方法包括S410和S420。
S410,基于BMS发送的目标电池包的原始配置信息和获取的目标 电池包中的目标失效电芯的标识,生成调整后的配置信息。
S420,将调整后的配置信息发送至BMS,以供BMS根据调整后的配置信息对目标电池包的未失效电芯进行管理操作。
在本申请的一些实施例中,S410包括:
在原始配置信息中添加目标失效电芯的标识;将添加有目标失效电芯的标识的原始配置信息作为调整后的配置信息。
在本申请的一些实施例中,电池管理方法400还包括:
向BMS发送第一工作指令,以提示BMS目标电池包的未失效电芯间的连接关系发生改变并指示BMS返回原始配置信息和疑似失效电芯的标识;接收原始配置信息和疑似失效电芯的标识;若根据疑似失效电芯的标识确定疑似失效电芯为目标失效电芯,将疑似失效电芯的标识作为目标失效电芯的标识。
在本申请的一些实施例中,电池管理方法400还包括:
响应表征疑似失效电芯为目标失效电芯的输入操作,确定疑似失效电芯为目标失效电芯。
在本申请的一些实施例中,电池管理方法400还包括:
响应目标失效电芯的标识的输入操作,向BMS发送第二工作指令,以提示BMS目标电池包的未失效电芯间的连接关系发生改变并指示BMS返回原始配置信息。
本申请实施例中的电池管理方法的具体实施方式及有益效果,可参见上述结合图1和图2描述的电池管理系统和处理装置,在此不再赘述。需要明确的是,本说明书中的各个实施例均采用递进的方式描述,各个实施例之间相同或相似的部分互相参见即可,每个实施例重点说明的都 是与其他实施例的不同之处。其中方法实施例和电池管控系统实施例描述得比较简单,相关之处请参见电池管理系统实施例、处理装置的说明部分。本申请并不局限于上文所描述并在图中示出的特定步骤和结构。本领域的技术人员可以在领会本申请的构思之后,作出各种改变、修改和添加,或者改变步骤之间的顺序。并且,为了简明起见,这里省略对已知方法技术的详细描述。
上述实施例中的功能模块可以实现为硬件、软件、固件或者它们的组合。当以硬件方式实现时,其可以例如是电子电路、专用集成电路(ASIC)、适当的固件、插件、功能卡等等。当以软件方式实现时,本申请的元素是被用于执行所需任务的程序或者代码段。程序或者代码段可以存储在机器可读介质中,或者通过载波中携带的数据信号在传输介质或者通信链路上传送。“机器可读介质”可以包括能够存储或传输信息的任何介质。
虽然已经参考优选实施例对本申请进行了描述,但在不脱离本申请的范围的情况下,可以对其进行各种改进并且可以用等效物替换其中的部件。尤其是,只要不存在结构冲突,各个实施例中所提到的各项技术特征均可以任意方式组合起来。本申请并不局限于文中公开的特定实施例,而是包括落入权利要求的范围内的所有技术方案。

Claims (29)

  1. 一种电池管理系统,包括:
    信息发送模块,用于若确定在目标电池包中隔离目标失效电芯的情况下,所述目标电池包的未失效电芯间的连接关系发生改变,将所述目标电池包的原始配置信息发送至所述处理装置,以使所述处理装置根据所述原始配置信息生成所述调整后的配置信息;
    信息接收模块,用于接收所述处理装置发送的调整后的配置信息,所述调整后的配置信息包括所述目标失效电芯的标识;
    管理模块,用于根据所述调整后的配置信息,对所述目标电池包的未失效电芯进行管理操作。
  2. 根据权利要求1所述的电池管理系统,其中,所述电池管理系统还包括:
    第一指令接收模块,用于接收所述处理装置发送的第一工作指令;
    第一指令响应模块,用于响应所述第一工作指令,确定在所述目标电池包中隔离目标失效电芯的情况下,所述目标电池包的未失效电芯间的连接关系发生改变,以及用于在所述目标电池包中确定疑似失效电芯,获取所述疑似失效电芯的标识,将所述疑似失效电芯的标识发送至所述处理装置,以供所述处理装置根据所述疑似失效电芯的标识判断所述疑似失效电芯是否为所述目标失效电芯。
  3. 根据权利要求1或2所述的电池管理系统,其中,所述电池管理系统还包括:
    第二指令接收模块,用于接收所述处理装置发送的第二工作指令;
    第二指令响应模块,用于根据所述第二工作指令,确定在所述目标电池包中隔离目标失效电芯的情况下,所述目标电池包的未失效电芯间的连 接关系发生改变。
  4. 根据权利要求1所述的电池管理系统,其中,所述调整后的配置信息还包括所述目标电池包的未失效电芯的信息,所述管理模块包括:
    调整系数确定单元,用于根据所述目标电池包的未失效电芯的信息,确定所述目标电池包的性能参数的调整系数;
    性能参数计算单元,用于利用所述调整系数和所述目标电池包的原有性能参数,计算所述目标电池包的性能参数,
    其中,所述性能参数包括充电特性参数和/或放电特性参数。
  5. 根据权利要求1或4所述的电池管理系统,其中,所述管理模块包括:
    参数采集单元,用于根据所述调整后的配置信息,采集所述目标电池包中的未失效电芯的状态参数;
    状态判断单元,用于根据所述未失效电芯的状态参数判断所述未失效电芯的状态是否异常。
  6. 根据权利要求1-5任一项所述的电池管理系统,其中,所述电池管理系统还包括:
    失效电芯确定模块,用于根据所述目标失效电芯的标识,确定所述目标电池包的所述目标失效电芯;
    第一排列模块,用于按照所述目标电池包内的除所述目标失效电芯外的其他电芯的排列次序,对所述其他电芯的历史信息依次排列;
    第二排列模块,用于将所述目标失效电芯的历史信息排列至所述其他电芯中最后一个电芯的历史信息之后,
    其中,所述历史信息包括表征所述电芯的使用情况的电芯参数。
  7. 根据权利要求1-5任一项所述的电池管理系统,其中,所述原始配置信息包括所述目标电池包中除所述目标失效电芯外的其他失效电芯的标 识或者表征所述目标电池包不存在失效电芯的标识。
  8. 根据权利要求7所述的电池管理系统,其中,所述原始配置信息和调整后的配置信息还包括所述目标电池包内未失效电芯的信息,
    所述目标电池包内未失效电芯的信息包括以下信息的至少一种:
    所述目标电池包内的未失效电芯的数量、每个电芯管理单元对应的未失效电芯的数量、所述目标电池包内的未失效电芯对应的状态采集单元的数量、每个电芯管理单元对应的状态采集单元的数量、所述目标电池包内的未失效电芯的标识、每个电芯管理单元对应的未失效电芯的标识、所述目标电池包内的未失效电芯对应的状态采集单元的标识和每个电芯管理单元对应的状态采集单元的标识。
  9. 根据权利要求1-5任一项所述的电池管理系统,其中,被所述BMS执行时实现电池管理方法的程序的存储区域与所述配置信息的存储区域不同。
  10. 一种处理装置,包括:
    配置信息生成模块,用于基于BMS发送的目标电池包的原始配置信息和获取的所述目标电池包中的目标失效电芯的标识,生成调整后的配置信息;
    配置信息发送模块,用于将所述调整后的配置信息发送至所述BMS,以供所述BMS根据所述调整后的配置信息对所述目标电池包的未失效电芯进行管理操作。
  11. 根据权利要求10所述的处理装置,其中,所述配置信息生成模块包括:
    标识处理单元,用于在所述原始配置信息中添加所述目标失效电芯的标识;
    配置信息处理单元,用于将添加有所述目标失效电芯的标识的所述原始配置信息作为所述调整后的配置信息。
  12. 根据权利要求10或11所述的处理装置,其中,所述处理装置还包括:
    第一工作指令发送模块,用于向所述BMS发送第一工作指令,以提示所述BMS所述目标电池包的未失效电芯间的连接关系发生改变并指示所述BMS返回所述原始配置信息和疑似失效电芯的标识;
    标识接收模块,用于接收所述原始配置信息和所述疑似失效电芯的标识;
    标识处理模块,用于若根据所述疑似失效电芯的标识确定所述疑似失效电芯为所述目标失效电芯,将所述疑似失效电芯的标识作为所述目标失效电芯的标识。
  13. 根据权利要求12所述的处理装置,其中,所述处理装置还包括:
    第一输入响应模块,用于响应表征所述疑似失效电芯为所述目标失效电芯的输入操作,确定所述疑似失效电芯为所述目标失效电芯。
  14. 根据权利要求10-13任一项所述的处理装置,其中,所述处理装置还包括:
    第二输入响应模块,用于响应所述目标失效电芯的标识的输入操作,向所述BMS发送第二工作指令,以提示所述BMS所述目标电池包的未失效电芯间的连接关系发生改变并指示所述BMS返回所述原始配置信息。
  15. 一种电池管理方法,应用于电池管理系统BMS,所述电池管理方法包括:
    若确定在所述目标电池包中隔离目标失效电芯的情况下,所述目标电池包的未失效电芯间的连接关系发生改变,将所述目标电池包的原始配置 信息发送至处理装置,以使所述处理装置根据所述原始配置信息生成所述调整后的配置信息;
    接收所述处理装置发送的调整后的配置信息,所述调整后的配置信息包括所述目标失效电芯的标识;
    根据所述调整后的配置信息,对所述目标电池包的未失效电芯进行管理操作。
  16. 根据权利要求15所述的电池管理方法,其中,所述电池管理方法还包括:
    接收所述处理装置发送的第一工作指令;
    响应所述第一工作指令,确定在所述目标电池包中隔离目标失效电芯的情况下,所述目标电池包的未失效电芯间的连接关系发生改变,
    并在所述目标电池包中确定疑似失效电芯,获取所述疑似失效电芯的标识,将所述疑似失效电芯的标识发送至所述处理装置,以供所述处理装置根据所述疑似失效电芯的标识判断所述疑似失效电芯是否为所述目标失效电芯。
  17. 根据权利要求15或16所述的电池管理方法,其中,所述电池管理方法还包括:
    接收所述处理装置发送的第二工作指令;
    根据所述第二工作指令,确定在所述目标电池包中隔离目标失效电芯的情况下,所述目标电池包的未失效电芯间的连接关系发生改变。
  18. 根据权利要求15所述的电池管理方法,其中,所述调整后的配置信息还包括所述目标电池包的未失效电芯的信息,
    所述根据所述调整后的配置信息,对所述目标电池包的未失效电芯进行管理操作,包括:
    根据所述目标电池包的未失效电芯的信息,确定所述目标电池包的性 能参数的调整系数;
    利用所述调整系数和所述目标电池包的原有性能参数,计算所述目标电池包的性能参数,
    其中,所述性能参数包括充电特性参数和/或放电特性参数。
  19. 根据权利要求15或18所述的电池管理方法,其中,所述根据所述调整后的配置信息,对所述目标电池包的未失效电芯进行管理操作,包括:
    根据所述调整后的配置信息,采集所述目标电池包中的未失效电芯的状态参数;
    根据所述未失效电芯的状态参数判断所述未失效电芯的状态是否异常。
  20. 根据权利要求15-19任一项所述的电池管理方法,其中,所述电池管理方法还包括:
    根据所述目标失效电芯的标识,确定所述目标电池包的所述目标失效电芯;
    按照所述目标电池包内的除所述目标失效电芯外的其他电芯的排列次序,对所述其他电芯的历史信息依次排列;
    将所述目标失效电芯的历史信息排列至所述其他电芯中最后一个电芯的历史信息之后,
    其中,所述历史信息包括表征所述电芯的使用情况的电芯参数。
  21. 根据权利要求15-19任一项所述的电池管理方法,其中,所述原始配置信息包括所述目标电池包中除所述目标失效电芯外的其他失效电芯的标识或者表征所述目标电池包不存在失效电芯的标识。
  22. 根据权利要求21所述的电池管理方法,其中,所述原始配置信息和调整后的配置信息还包括所述目标电池包内未失效电芯的信息,
    所述目标电池包内未失效电芯的信息包括以下信息的至少一种:所述目标电池包内的未失效电芯的数量、每个电芯管理单元对应的未失效电芯的数量、所述目标电池包内的未失效电芯对应的状态采集单元的数量、每个电芯管理单元对应的状态采集单元的数量、所述目标电池包内的未失效电芯的标识、每个电芯管理单元对应的未失效电芯的标识、所述目标电池包内的未失效电芯对应的状态采集单元的标识和每个电芯管理单元对应的状态采集单元的标识。
  23. 根据权利要求15-19任一项所述的电池管理方法,其中,被所述BMS执行时实现电池管理方法的程序的存储区域与所述配置信息的存储区域不同。
  24. 一种电池管理方法,应用于处理装置,所述电池管理方法包括:
    基于BMS发送的目标电池包的原始配置信息和获取的所述目标电池包中的目标失效电芯的标识,生成调整后的配置信息;
    将所述调整后的配置信息发送至所述BMS,以供所述BMS根据所述调整后的配置信息对所述目标电池包的未失效电芯进行管理操作。
  25. 根据权利要求24所述的电池管理方法,其中,
    所述基于BMS发送的目标电池包的原始配置信息和获取的所述目标电池包中的目标失效电芯的标识,生成调整后的配置信息,包括:
    在所述原始配置信息中添加所述目标失效电芯的标识;
    将添加有所述目标失效电芯的标识的所述原始配置信息作为所述调整后的配置信息。
  26. 根据权利要求24或25所述的电池管理方法,其中,所述电池管理方法还包括:
    向所述BMS发送第一工作指令,以提示所述BMS所述目标电池包的 未失效电芯间的连接关系发生改变并指示所述BMS返回所述原始配置信息和疑似失效电芯的标识;
    接收所述原始配置信息和所述疑似失效电芯的标识;
    若根据所述疑似失效电芯的标识确定所述疑似失效电芯为所述目标失效电芯,将所述疑似失效电芯的标识作为所述目标失效电芯的标识。
  27. 根据权利要求26所述的电池管理方法,其中,所述电池管理方法还包括:
    响应表征所述疑似失效电芯为所述目标失效电芯的输入操作,确定所述疑似失效电芯为所述目标失效电芯。
  28. 根据权利要求24-27任一项所述的电池管理方法,其中,所述电池管理方法还包括:
    响应所述目标失效电芯的标识的输入操作,向所述BMS发送第二工作指令,以提示所述BMS所述目标电池包的未失效电芯间的连接关系发生改变并指示所述BMS返回所述原始配置信息。
  29. 一种电池管控系统,包括:
    如权利要求1至权利要求9任一项所述的电池管理系统,和,如权利要求10至权利要求14任一项所述的处理装置。
PCT/CN2020/116591 2019-12-04 2020-09-21 电池管理系统、处理装置、电池管理方法和电池管控系统 WO2021109681A1 (zh)

Priority Applications (3)

Application Number Priority Date Filing Date Title
EP20875662.7A EP3859867B1 (en) 2019-12-04 2020-09-21 Battery management system, processing device, battery management method, and battery management and control system
ES20875662T ES2931835T3 (es) 2019-12-04 2020-09-21 Sistema de gestión de baterías, dispositivo de tratamiento, método de gestión de baterías y sistema de gestión y control de baterías
US17/234,770 US11929469B2 (en) 2019-12-04 2021-04-19 Battery management system, processing device, battery management method, and battery management and control system

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
CN201911226463.9A CN112909355A (zh) 2019-12-04 2019-12-04 电池管理系统、处理装置、电池管理方法和电池管控系统
CN201911226463.9 2019-12-04

Related Child Applications (1)

Application Number Title Priority Date Filing Date
US17/234,770 Continuation US11929469B2 (en) 2019-12-04 2021-04-19 Battery management system, processing device, battery management method, and battery management and control system

Publications (1)

Publication Number Publication Date
WO2021109681A1 true WO2021109681A1 (zh) 2021-06-10

Family

ID=76104512

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2020/116591 WO2021109681A1 (zh) 2019-12-04 2020-09-21 电池管理系统、处理装置、电池管理方法和电池管控系统

Country Status (6)

Country Link
US (1) US11929469B2 (zh)
EP (1) EP3859867B1 (zh)
CN (1) CN112909355A (zh)
ES (1) ES2931835T3 (zh)
HU (1) HUE060576T2 (zh)
WO (1) WO2021109681A1 (zh)

Families Citing this family (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN114167292B (zh) * 2021-12-08 2023-10-27 章鱼博士智能技术(上海)有限公司 一种电池包的电池参数确定方法及装置、电子设备
CN115064793B (zh) * 2022-07-27 2022-11-01 湖南省正源储能材料与器件研究所 一种电池替换装置、电池模组以及电池替换方法
CN118073681A (zh) * 2024-04-19 2024-05-24 西安航天民芯科技有限公司 一种储能用电池系统自动适配电池包数量的方法

Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN105393426A (zh) * 2013-07-11 2016-03-09 日本碍子株式会社 确定二次电池系统的异常发生部位的装置、方法和程序
CN105676136A (zh) * 2016-01-14 2016-06-15 北京新能源汽车股份有限公司 动力电池连接件的故障检测方法、装置和管理系统
CN107425572A (zh) * 2017-08-17 2017-12-01 北京胜风合力系统技术有限公司 一种动力电池组的能量智能管理系统
CN108323186A (zh) * 2017-08-25 2018-07-24 深圳市云中飞网络科技有限公司 终端设备及其电池安全监控方法和监控系统
US20190245237A1 (en) * 2012-05-29 2019-08-08 Nutech Ventures Rechargeable multi-cell battery
CN110165310A (zh) * 2018-02-10 2019-08-23 北京众诺达科技有限公司 一种电池组智能管控系统

Family Cites Families (12)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US7750641B2 (en) * 2005-11-30 2010-07-06 General Electric Company Battery system and method for monitoring a battery
US8330419B2 (en) * 2009-04-10 2012-12-11 The Regents Of The University Of Michigan Dynamically reconfigurable framework for a large-scale battery system
JP5686789B2 (ja) * 2012-12-19 2015-03-18 オムロンオートモーティブエレクトロニクス株式会社 電池管理システム、統合電池管理装置
KR102201102B1 (ko) * 2013-03-15 2021-01-12 디자인 플럭스 테크놀로지스, 엘엘씨 동적으로 재구성가능한 에너지 스토리지 장치를 생성하기 위한 방법 및 장치
CN203504219U (zh) * 2013-09-13 2014-03-26 中航锂电(洛阳)有限公司 一种电池组并行充电维护装置
US10379166B2 (en) * 2014-10-02 2019-08-13 LiiON, LLC Cabinet and battery management and monitoring system for use with uninterruptible power supplies
EP3349296A4 (en) * 2015-09-08 2019-05-01 Kabushiki Kaisha Toshiba STORAGE BATTERY DEVICE, METHOD, STORAGE BATTERY SYSTEM, AND PROGRAM
CN108736077B (zh) * 2017-04-18 2020-09-18 奥动新能源汽车科技有限公司 电池管理系统的从控制器的配置方法和配置系统
CN207067281U (zh) * 2017-07-27 2018-03-02 深圳市昂盛达电子有限公司 一种电池模拟器
CN108899982B (zh) * 2018-07-27 2021-08-13 青岛双益信息科技有限公司 多组锂电池充放电智能管理系统的控制方法
CN109808517B (zh) * 2019-01-11 2022-11-08 王宁豪 一种新能源汽车电压可选的通用动力电池
CN110350624B (zh) * 2019-07-22 2021-01-26 奇越科技(北京)有限公司 一种智能电池过放电失效保护装置及方法

Patent Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20190245237A1 (en) * 2012-05-29 2019-08-08 Nutech Ventures Rechargeable multi-cell battery
CN105393426A (zh) * 2013-07-11 2016-03-09 日本碍子株式会社 确定二次电池系统的异常发生部位的装置、方法和程序
CN105676136A (zh) * 2016-01-14 2016-06-15 北京新能源汽车股份有限公司 动力电池连接件的故障检测方法、装置和管理系统
CN107425572A (zh) * 2017-08-17 2017-12-01 北京胜风合力系统技术有限公司 一种动力电池组的能量智能管理系统
CN108323186A (zh) * 2017-08-25 2018-07-24 深圳市云中飞网络科技有限公司 终端设备及其电池安全监控方法和监控系统
CN110165310A (zh) * 2018-02-10 2019-08-23 北京众诺达科技有限公司 一种电池组智能管控系统

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
See also references of EP3859867A4 *

Also Published As

Publication number Publication date
CN112909355A (zh) 2021-06-04
EP3859867A4 (en) 2022-01-19
EP3859867A1 (en) 2021-08-04
HUE060576T2 (hu) 2023-03-28
US11929469B2 (en) 2024-03-12
US20210242506A1 (en) 2021-08-05
EP3859867B1 (en) 2022-10-12
ES2931835T3 (es) 2023-01-03

Similar Documents

Publication Publication Date Title
WO2021109681A1 (zh) 电池管理系统、处理装置、电池管理方法和电池管控系统
EP3557269B1 (en) Online detection method for internal short-circuit of battery
KR102059076B1 (ko) 스위치 부품의 고장 진단 장치 및 방법
EP2720056B1 (en) Isolation resistance measuring apparatus having fault self-diagnosing function and self-diagnosing method using the same
US12040458B2 (en) Slave BMS inspection system and method
US9573472B2 (en) Battery control system and vehicle control system
JP7127762B2 (ja) バッテリー診断システム及び方法
US11815558B2 (en) Apparatus and method for diagnosing abnormal degradated battery cell
CN211045641U (zh) 温度采集单元及电池管理系统
CN111983488B (zh) 一种电池管理系统及其电压信号处理方法
KR102404977B1 (ko) 충방전기 고장 진단 시스템 및 이를 이용한 고장 진단 방법
KR20220122358A (ko) 배터리 진단 장치 및 방법
CN115692878B (zh) 用于电池系统的电池包管理方法、电池包和电池系统
KR102678141B1 (ko) Bms의 소프트웨어 호환성 진단 장치 및 방법
EP4414727A1 (en) Battery diagnosis apparatus and method for leakage current detection
CN117396771A (zh) 一种电池检测方法、检测设备、电池管理系统和存储介质
KR102697277B1 (ko) Bms의 소프트웨어 호환성 진단 장치 및 방법
US20240339679A1 (en) Apparatus and method for managing battery
AU2023406191A1 (en) Battery system and battery balancing method thereof
KR20230073447A (ko) 배터리 셀들의 결함을 판단하기 위한 장치
CN114184973A (zh) 锂电池包充电过程中潜在不良的诊断方法及系统
KR20240076305A (ko) 배터리 장치 및 배터리 장치의 어플리케이션 결정 방법
CN118294812A (zh) 一种检测车辆电池异常的方法、装置、电子设备及介质
CN118140378A (zh) 用于通信丢失的电池控制装置和包括其的能量存储系统

Legal Events

Date Code Title Description
ENP Entry into the national phase

Ref document number: 2020875662

Country of ref document: EP

Effective date: 20210421

NENP Non-entry into the national phase

Ref country code: DE