WO2021109350A1 - 一种基于能带反转光场限制效应的拓扑体态激光器及方法 - Google Patents

一种基于能带反转光场限制效应的拓扑体态激光器及方法 Download PDF

Info

Publication number
WO2021109350A1
WO2021109350A1 PCT/CN2020/078380 CN2020078380W WO2021109350A1 WO 2021109350 A1 WO2021109350 A1 WO 2021109350A1 CN 2020078380 W CN2020078380 W CN 2020078380W WO 2021109350 A1 WO2021109350 A1 WO 2021109350A1
Authority
WO
WIPO (PCT)
Prior art keywords
topological
laser
center
photonic crystal
mode
Prior art date
Application number
PCT/CN2020/078380
Other languages
English (en)
French (fr)
Inventor
马仁敏
邵增凯
陈华洲
Original Assignee
北京大学
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 北京大学 filed Critical 北京大学
Priority to US17/769,806 priority Critical patent/US20220352691A1/en
Publication of WO2021109350A1 publication Critical patent/WO2021109350A1/zh

Links

Images

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01SDEVICES USING THE PROCESS OF LIGHT AMPLIFICATION BY STIMULATED EMISSION OF RADIATION [LASER] TO AMPLIFY OR GENERATE LIGHT; DEVICES USING STIMULATED EMISSION OF ELECTROMAGNETIC RADIATION IN WAVE RANGES OTHER THAN OPTICAL
    • H01S5/00Semiconductor lasers
    • H01S5/06Arrangements for controlling the laser output parameters, e.g. by operating on the active medium
    • H01S5/065Mode locking; Mode suppression; Mode selection ; Self pulsating
    • H01S5/0651Mode control
    • H01S5/0653Mode suppression, e.g. specific multimode
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01SDEVICES USING THE PROCESS OF LIGHT AMPLIFICATION BY STIMULATED EMISSION OF RADIATION [LASER] TO AMPLIFY OR GENERATE LIGHT; DEVICES USING STIMULATED EMISSION OF ELECTROMAGNETIC RADIATION IN WAVE RANGES OTHER THAN OPTICAL
    • H01S5/00Semiconductor lasers
    • H01S5/10Construction or shape of the optical resonator, e.g. extended or external cavity, coupled cavities, bent-guide, varying width, thickness or composition of the active region
    • H01S5/11Comprising a photonic bandgap structure
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01SDEVICES USING THE PROCESS OF LIGHT AMPLIFICATION BY STIMULATED EMISSION OF RADIATION [LASER] TO AMPLIFY OR GENERATE LIGHT; DEVICES USING STIMULATED EMISSION OF ELECTROMAGNETIC RADIATION IN WAVE RANGES OTHER THAN OPTICAL
    • H01S5/00Semiconductor lasers
    • H01S5/04Processes or apparatus for excitation, e.g. pumping, e.g. by electron beams
    • H01S5/042Electrical excitation ; Circuits therefor
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01SDEVICES USING THE PROCESS OF LIGHT AMPLIFICATION BY STIMULATED EMISSION OF RADIATION [LASER] TO AMPLIFY OR GENERATE LIGHT; DEVICES USING STIMULATED EMISSION OF ELECTROMAGNETIC RADIATION IN WAVE RANGES OTHER THAN OPTICAL
    • H01S5/00Semiconductor lasers
    • H01S5/06Arrangements for controlling the laser output parameters, e.g. by operating on the active medium
    • H01S5/065Mode locking; Mode suppression; Mode selection ; Self pulsating
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01SDEVICES USING THE PROCESS OF LIGHT AMPLIFICATION BY STIMULATED EMISSION OF RADIATION [LASER] TO AMPLIFY OR GENERATE LIGHT; DEVICES USING STIMULATED EMISSION OF ELECTROMAGNETIC RADIATION IN WAVE RANGES OTHER THAN OPTICAL
    • H01S5/00Semiconductor lasers
    • H01S5/10Construction or shape of the optical resonator, e.g. extended or external cavity, coupled cavities, bent-guide, varying width, thickness or composition of the active region
    • H01S5/18Surface-emitting [SE] lasers, e.g. having both horizontal and vertical cavities
    • H01S5/183Surface-emitting [SE] lasers, e.g. having both horizontal and vertical cavities having only vertical cavities, e.g. vertical cavity surface-emitting lasers [VCSEL]
    • H01S5/18361Structure of the reflectors, e.g. hybrid mirrors
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01SDEVICES USING THE PROCESS OF LIGHT AMPLIFICATION BY STIMULATED EMISSION OF RADIATION [LASER] TO AMPLIFY OR GENERATE LIGHT; DEVICES USING STIMULATED EMISSION OF ELECTROMAGNETIC RADIATION IN WAVE RANGES OTHER THAN OPTICAL
    • H01S2301/00Functional characteristics
    • H01S2301/16Semiconductor lasers with special structural design to influence the modes, e.g. specific multimode
    • H01S2301/163Single longitudinal mode
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01SDEVICES USING THE PROCESS OF LIGHT AMPLIFICATION BY STIMULATED EMISSION OF RADIATION [LASER] TO AMPLIFY OR GENERATE LIGHT; DEVICES USING STIMULATED EMISSION OF ELECTROMAGNETIC RADIATION IN WAVE RANGES OTHER THAN OPTICAL
    • H01S5/00Semiconductor lasers
    • H01S5/04Processes or apparatus for excitation, e.g. pumping, e.g. by electron beams
    • H01S5/041Optical pumping
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01SDEVICES USING THE PROCESS OF LIGHT AMPLIFICATION BY STIMULATED EMISSION OF RADIATION [LASER] TO AMPLIFY OR GENERATE LIGHT; DEVICES USING STIMULATED EMISSION OF ELECTROMAGNETIC RADIATION IN WAVE RANGES OTHER THAN OPTICAL
    • H01S5/00Semiconductor lasers
    • H01S5/04Processes or apparatus for excitation, e.g. pumping, e.g. by electron beams
    • H01S5/042Electrical excitation ; Circuits therefor
    • H01S5/0425Electrodes, e.g. characterised by the structure
    • H01S5/04256Electrodes, e.g. characterised by the structure characterised by the configuration
    • H01S5/04257Electrodes, e.g. characterised by the structure characterised by the configuration having positive and negative electrodes on the same side of the substrate
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01SDEVICES USING THE PROCESS OF LIGHT AMPLIFICATION BY STIMULATED EMISSION OF RADIATION [LASER] TO AMPLIFY OR GENERATE LIGHT; DEVICES USING STIMULATED EMISSION OF ELECTROMAGNETIC RADIATION IN WAVE RANGES OTHER THAN OPTICAL
    • H01S5/00Semiconductor lasers
    • H01S5/10Construction or shape of the optical resonator, e.g. extended or external cavity, coupled cavities, bent-guide, varying width, thickness or composition of the active region
    • H01S5/18Surface-emitting [SE] lasers, e.g. having both horizontal and vertical cavities
    • H01S5/183Surface-emitting [SE] lasers, e.g. having both horizontal and vertical cavities having only vertical cavities, e.g. vertical cavity surface-emitting lasers [VCSEL]
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01SDEVICES USING THE PROCESS OF LIGHT AMPLIFICATION BY STIMULATED EMISSION OF RADIATION [LASER] TO AMPLIFY OR GENERATE LIGHT; DEVICES USING STIMULATED EMISSION OF ELECTROMAGNETIC RADIATION IN WAVE RANGES OTHER THAN OPTICAL
    • H01S5/00Semiconductor lasers
    • H01S5/10Construction or shape of the optical resonator, e.g. extended or external cavity, coupled cavities, bent-guide, varying width, thickness or composition of the active region
    • H01S5/18Surface-emitting [SE] lasers, e.g. having both horizontal and vertical cavities
    • H01S5/185Surface-emitting [SE] lasers, e.g. having both horizontal and vertical cavities having only horizontal cavities, e.g. horizontal cavity surface-emitting lasers [HCSEL]

Definitions

  • the invention relates to semiconductor laser technology, in particular to a topological body laser based on the band inversion optical field limitation effect and a control method thereof.
  • the vertical cavity surface emitting laser has the advantages of small size, long life, high brightness, easy integration, and easy mass production. It has been widely used in the fields of laser printing, laser display, industrial sensing and medical diagnosis, especially in recent years. In 2010, application scenarios in emerging markets such as automobiles and consumer electronic terminals, such as face recognition and driverless driving, began to emerge, demonstrating huge market application potential.
  • the vertical cavity surface emitting laser is a commonly used microcavity laser. Its structure is mainly composed of active materials and more than twenty pairs of distributed Bragg reflectors (DBR) grown on the upper and lower sides by material deposition.
  • DBR distributed Bragg reflectors
  • each pair of DBR has a high reflection coefficient, forming a microcavity laser structure with a higher quality factor (Q value).
  • Q value quality factor
  • the high-order oscillation mode begins to gain gain to form multi-mode lasing, which leads to problems such as reduced laser brightness and mode instability;
  • the multilayer DBR structure on the upper and lower sides usually causes the preparation process and active layer
  • a thicker DBR structure is required to provide effective optical field feedback, which brings greater challenges to the growth process, and causes problems such as poor heat dissipation and reduced device life.
  • the present invention proposes a topological bulk laser based on the band inversion optical field limitation effect and its control method, which adopts a new optical field limitation method and has a new mode selection mechanism. It can increase the emission area and increase the output power of the laser while achieving stable and highly directional vertical mode output.
  • An object of the present invention is to provide a topological bulk laser based on the band inversion optical field confinement effect.
  • Topological bulk lasers are electrically injected lasers or optically pumped lasers; electrically injected lasers from bottom to top are: N-type substrate, N-type contact layer, N-type confinement layer, active layer, P-type confinement layer, and P-type contact Layer; From bottom to top, the optically pumped laser is: N-type substrate and active layer.
  • the topological bulk laser based on the band inversion optical field confinement effect of the present invention adopts two-dimensional topological photonic crystals, including topological photonic crystals and topological mediocre photonic crystals; for electric injection lasers, the P-type contact layer and part of the P-type confinement In the layer, topological state photonic crystals and topological mediocre state photonic crystals are constructed; for optical pump lasers, in the active layer, topological state photonic crystals and topological mediocre state photonic crystals are constructed; topological state photonic crystals and topological mediocre state photonic crystals are respectively constructed It consists of a plurality of unit cells periodically arranged into a honeycomb lattice with the same lattice constant.
  • each unit cell is a regular hexagon, and there are six rotationally symmetrical regular triangle nanoholes inside, forming a couple
  • the band structure of the polar mode and the quadrupole mode when the distance between the center of the six nanoholes and the center of the regular hexagon is equal to 1/3 of the period of the two-dimensional topological photonic crystal, due to the coupling constant between the unit cell and the unit cell
  • the dipole and quadrupole modes are degenerate at the center of the Brillouin zone, that is, at the ⁇ point, forming a double-degenerate Dirac cone energy band structure; for the six nanoholes, center the unit cell Performing contraction and expansion operations separately for the center will open the Dirac cone; the distance between the center of the six nanoholes and the center of the regular hexagon is less than 1/3 of the period of the two-dimensional topological photonic crystal, and the dipole and the photonic crystal There is no band inversion between the quadrupole modes.
  • This band structure is called a topological mediocre state, forming a topological mediocre state photonic crystal; the distance between the centers of the six nanoholes and the center of the regular hexagon is greater than that of the two-dimensional topological photonic crystal period. 1/3, the energy band inversion of the dipole mode and the quadrupole mode occurs near the center of the Brillouin zone.
  • This energy band structure is called a topological state and forms a topological state photonic crystal; a topological mediocre state photonic crystal and topology
  • the whole state of photonic crystals are spliced with each other, forming a boundary at the splicing point; because the frequency of the photon states on both sides of the boundary is close to the center of the Brillouin zone, the odd and even symmetry of the wave function is different, and the light in the topological mediocre state photonic crystal cannot propagate In the topological state photonic crystal, on the contrary, the light in the topological state photonic crystal cannot propagate to the topological mediocre state photonic crystal, which will produce reflection and confinement effects of the light field at the interface; bend the boundary and surround it into a closed curve, The photons with a frequency near the center of the Brillouin zone will reflect back and forth inside the boundary, leading to lasing, thereby forming a laser cavity inside the boundary; for optically pumped lasers, when the excitation light enters the laser
  • the reflection at the boundary caused by rotation only occurs in a small wave vector range near the center of the Brillouin zone, that is, the mode limited by the effective light field only exists near the center of the Brillouin zone, which limits the ability to The number of laser resonator modes that obtain effective feedback.
  • voltage is applied on the upper and lower sides of the active layer, carriers are injected and confined in the active layer to emit light.
  • the evanescent field component of the light wave is coupled to the laser cavity to form an effective feedback.
  • the reflection of the boundary only occurs In a small wave vector range near the center of the Brillouin zone, that is, the modes restricted by the effective optical field only exist near the center of the Brillouin zone, thus limiting the number of laser cavity modes that can obtain effective feedback.
  • the reflection caused by the band inversion only occurs near the center of the Brillouin zone, and the modes restricted by the effective light field can only be located near the center of the Brillouin zone.
  • These modes are vertical
  • the direction of the laser cavity has a very large momentum component, which has vertical emission characteristics.
  • topological state photonic crystals and topological mediocre state photonic crystals are arranged on the active layer.
  • Topological body state The wavelength range of the laser ranges from visible, near-infrared, communication bands to mid-infrared light bands, consistent with the gain region of the selected material system, and the refractive index of the active layer is between 2.5 and 3.5.
  • the material system and refractive index corresponding to the active layer are different, and the elements contained in its composition are also different, such as the near-infrared wavelength material system GaAs and the communication band material system InGaAs, InGaAsP and InAlGaAs.
  • the gain region range and the refractive index of the material are adjusted, thereby adjusting the wavelength range of the topological bulk laser.
  • the structure of the active layer includes but is not limited to: a single layer, a multilayer quantum well or a quantum dot structure.
  • the refractive index of the upper and lower surfaces of the active layer is smaller than the refractive index of the active layer. If the refractive index of the N-type substrate is greater than the refractive index of the active layer, remove the part of the N-type substrate under the active layer, so that the lower surface of the active layer is air, so that the light field is affected in the vertical plane direction. Make strong restrictions.
  • the period a of the two-dimensional topological photonic crystal is ⁇ /n eff , n eff is the effective refractive index of the material, and ⁇ is the working wavelength of the topological bulk laser.
  • the upper and lower layers of the active layer where the two-dimensional topological photonic crystal is located are all low-refractive-index materials, so that the optical field is strongly restricted in the plane direction perpendicular to the device.
  • the light-emitting area of the topological bulk laser is increased by adjusting the number of periodically arranged unit cells in the laser cavity.
  • the area ranges from 1 ⁇ m 2 to hundreds of 1mm 2 , and the output power ranges from 1mW to 100mW, which can maintain stable single-mode lasing characteristics.
  • the inside of the laser cavity is set to a topological state photonic crystal or a topological mediocre state photonic crystal.
  • the lasing mode is The quadrupole array has dark radiation mode characteristics and has better light field limitation in the vertical direction; when the laser cavity is in a topological mediocre state, the lasing mode is a dipole array, which has radiation mode characteristics, in the vertical direction Has better radiation characteristics. Therefore, the topological bulk laser is constructed according to the requirements. For example, in practice, the quality factor of the excitation mode is high and the spectral linewidth is narrow. It is preferable to set the topological photonic crystal in the laser cavity and the topological mediocre state outside the laser cavity. Photonic crystals.
  • the P-type contact layer is etched and partly etched to the P-type confinement layer to prevent the photonic crystal structure from damaging the active layer on the lower side.
  • the nanoholes of the unit cell of the two-dimensional topological photonic crystal are filled with a low refractive index dielectric material, such as silicon oxide.
  • the refractive index of the dielectric material is smaller than the refractive index of the active layer.
  • a part of the N-type contact layer is etched through a dry etching process, and a large device platform is formed on the N-type substrate, and the carriers are horizontally restricted.
  • the N-type contact layer and the P-type contact layer are respectively provided with a closed ring-shaped N-type electrode and a P-type electrode surrounding the two-dimensional photonic crystal structure.
  • the active layer and the P-type and N-type confinement layers on the upper and lower sides form a sandwich type. Double heterojunction structure. When a voltage is added between the electrodes, carriers are injected and confined to the active layer to emit light. The evanescent field component of the light wave is coupled to the two-dimensional photonic crystal laser resonator set on the upper side to form an effective feedback. Single-mode lasing is realized under the action of the mode selection mechanism.
  • Another object of the present invention is to provide a realization method of the above-mentioned topological bulk laser based on the band inversion optical field confinement effect.
  • topological photonic crystals and topological mediocre photonic crystals are constructed by etching the P-type contact layer and part of the P-type confinement layer;
  • topological photonics are constructed by etching the active layer Crystals and topological mediocre state photonic crystals;
  • Topological state photonic crystals and topological mediocre state photonic crystals respectively include a plurality of unit cells periodically arranged into a honeycomb lattice with the same lattice constant.
  • the outer edge of each unit cell is a regular hexagon and there are six inside.
  • This kind of energy band structure is called topological mediocre state, forming a topological mediocre state photonic crystal; the distance between the six nanoholes and the center of the regular hexagon is greater than 1/3 of the period of the two-dimensional topological photonic crystal, and the evenness occurs near the center of the Brillouin zone.
  • the energy bands of the polar mode and the quadrupole mode are reversed.
  • This energy band structure is called a topological state and forms a topological photonic crystal;
  • the topological mediocre state photonic crystal and the topological state photonic crystal are spliced together to form a boundary at the splicing point; because the frequency of the photon state on both sides of the boundary is close to the center of the Brillouin zone, the odd and even symmetry of the wave function is different, and the topological mediocre state The light in the topological photonic crystal cannot propagate to the topological photonic crystal.
  • the light in the topological photonic crystal cannot propagate to the topological mediocre photonic crystal, which will produce reflection and confinement effects of the light field at the interface; bending the boundary , And enclosed in a closed curve, the photons with the frequency near the center of the Brillouin zone will be reflected back and forth inside the boundary, causing lasing, thus forming a laser resonant cavity inside the boundary, and the boundary is the cavity wall of the laser resonant cavity;
  • the reflection at the boundary caused by the band inversion only occurs in a small wave vector range near the center of the Brillouin zone, that is, the mode limited by the effective optical field only exists in Near the center of the Brillouin zone, which limits the number of laser resonator modes that can obtain effective feedback.
  • the closer the light wave to the center of the Brillouin zone the more effective the reflection and restriction of the light field, and the higher the quality factor of the mode.
  • single-mode lasing is realized; for electric injection lasers, voltage is applied on the upper and lower sides of the active layer, carriers are injected and confined in the active layer to emit light, and the evanescent field component of the light wave is coupled to the laser cavity to form Effective feedback, the reflection at the boundary caused by the band inversion only occurs in a small wave vector range near the center of the Brillouin zone, that is, the mode limited by the effective light field only exists in the Brillouin zone Near the center, which limits the number of laser resonator modes that can obtain effective feedback, and realizes single-mode lasing;
  • the reflection caused by the band inversion only occurs near the center of the Brillouin zone, and the modes restricted by the effective light field can only be located near the center of the Brillouin zone. These modes are perpendicular to the laser cavity.
  • the direction has a very large momentum component, and thus has a vertical emission characteristic.
  • the gain region range and the refractive index of the material are adjusted by adjusting the composition of one or more elements in the material system of the active layer, thereby adjusting the wavelength range of the topological bulk laser.
  • the lasing mode is a quadrupole array, which has dark radiation mode characteristics and has better optical field limitation in the vertical direction; the laser cavity is topologically mediocre
  • the lasing mode is a dipole array, which has radiation mode characteristics and has better radiation characteristics in the vertical direction.
  • the present invention proposes a new light field reflection and restriction mechanism based on topological energy band physics, and proposes the design idea of the method of the present invention in view of the problems encountered in practical applications.
  • the advantages of the topological bulk laser based on the energy band inversion optical field confinement effect proposed by the present invention are mainly embodied in: the new optical field confinement mechanism can realize a single mode with high directivity, low threshold, narrow line width, and high side mode suppression ratio Vertical laser emission; helps reduce the difficulty and cost of the laser preparation process, improves heat dissipation and electrical injection problems, and improves the stability and service life of components; copy this structural advantage to the electrical injection active material system, and the size can be obtained Controllable, high directivity, low threshold, narrow line width, high side mode suppression ratio electric injection vertical emitting laser.
  • the invention can be applied to the fields of optical communication, solid-state lighting, laser radar, substance detection and medical diagnosis.
  • Embodiment 1 is a schematic diagram of Embodiment 1 of a topological bulk laser based on the band inversion optical field confinement effect of the present invention, in which (a) is a three-dimensional view, (b) is a cross-sectional view, and (c) is a top view.
  • FIG. 2 is a schematic diagram of a two-dimensional topological photonic crystal in Embodiment 1 of a topological bulk laser based on the band inversion optical field confinement effect of the present invention, where (a) is a schematic diagram of a topological state and a topological mediocre state photonic crystal, ( b) is a diagram of the formation process of a topological state and a topological mediocre state photonic crystal, (c) is a schematic diagram of the energy band of a topological state and a topological mediocre state photonic crystal.
  • Figure 3 is a schematic diagram of the construction of a topological bulk laser based on the band inversion optical field confinement effect of the present invention, in which (a) is a schematic diagram of the band inversion optical field reflection and confinement effect, and (b) is the topological state and topology The electric field distribution diagram of the dipole and quadrupole modes in the unit cell of a mediocre photonic crystal.
  • FIG. 4 is a schematic diagram of the boundary formed by the topological state photonic crystal and the topological mediocre state photonic crystal in the first embodiment of the topological state laser based on the band inversion optical field confinement effect of the present invention.
  • FIG. 5 is a diagram of the energy band structure of the first embodiment of the topological bulk laser based on the band inversion optical field confinement effect of the present invention, where (a) is the topological state and the topological mediocre state photonic crystal along the wave in the Brillouin zone
  • Embodiment 6 is an electron micrograph of Embodiment 1 of a topological bulk laser based on the band inversion optical field confinement effect of the present invention, in which (a) is the electron micrograph of the laser resonator, and (b) is the electron micrograph of the boundary.
  • Fig. 9 is a result diagram of embodiment 1 of the topological bulk laser based on the band inversion optical field confinement effect of the present invention under different optical pump powers, in which (a) is the normalized spectrum, (b) is The input and output curves in linear and log coordinates, (c) is the lasing spectrum.
  • FIG. 12 is a schematic structural diagram of Embodiment 2 of a topological bulk laser based on the band inversion optical field confinement effect of the present invention, in which (a) is a three-dimensional view, and (b) is a cross-sectional view.
  • this embodiment adopts optical pump excitation, and the topological body laser based on the band inversion optical field limitation effect includes: a topological photonic crystal and a topological mediocre photonic crystal, using a two-dimensional topological photonic crystal; Etch the active layer 2 to construct a topological state photonic crystal and a topological mediocre state photonic crystal.
  • the material of the active layer is a multilayer quantum well structure (such as InGaAsP/InGaAs) grown on a semiconductor substrate 1 (such as InP) by epitaxy.
  • the refractive index can be selected from 2.5 to -3.5; the topological mediocre state photonic crystal 31 and the topological state photonic crystal 32 are integrally joined to each other to form a boundary at the joint; The boundary is bent and enclosed into a closed curve, thereby forming a laser resonant cavity inside the boundary; when the laser resonant cavity is a topological photonic crystal, the lasing mode is a quadrupole array, which has the characteristics of dark radiation mode, and has more characteristics in the vertical direction.
  • the upper layer of the active layer is an air layer (refractive index ⁇ 1)
  • the lower layer is wet etched to remove the semiconductor substrate
  • the lower surface of the active layer is in the air, so that it is in the plane perpendicular to the device Strongly restrict the light field in the direction.
  • the lasing mode is a dipole array, which has radiation mode characteristics and has better radiation characteristics in the vertical direction; in the embodiment, the quality factor of the excitation mode is required to be higher.
  • the spectral linewidth is narrow.
  • the boundary 4 of the laser resonator is a regular hexagon-like contour, and the length of each side is L ⁇ m ⁇ a, m is the number of periods of the two-dimensional topological photonic crystals arranged on the boundary, taking 1, 2, 3..., a is the period of the two-dimensional topological photonic crystal, that is, the lattice constant; by increasing the crystal inside the laser cavity The number of cells increases the size of the laser cavity, thereby increasing the light-emitting area and output power of the laser.
  • the light-emitting area ranges from a few ⁇ m 2 to hundreds of ⁇ m 2
  • the output power ranges from a few mW to hundreds of mW
  • the photonic crystals arranged outside the resonant cavity generally have no less than 6 periods, which can have a good limit on the optical field in the laser resonant cavity.
  • Figure 2(a) shows that the topological state photonic crystal and the topological mediocre state photonic crystal respectively include a plurality of unit cell arrays periodically arranged into a honeycomb lattice with the same lattice constant, and the outer edge of each unit cell is a regular hexagon. There are six regular triangle nanoholes distributed in rotation symmetry inside.
  • its band structure includes the band structure of dipole p-mode and quadrupole d-mode.
  • the energy of d-mode is higher than that of p-mode, as shown in the left figure of Figure 2(c);
  • the unit cells are periodically arranged in an array, when the distance between the centers of the six nanoholes and the center of the regular hexagon is equal to 1/3 of the period of the two-dimensional topological photonic crystal (that is, the normal unit cell), due to the internal and
  • the dipole and quadrupole modes are degenerate at the center of the Brillouin zone, that is, at the ⁇ point, forming a Dirac cone with double degeneration Type energy band structure; shrink and expand the six nanoholes with the center of the unit cell as the center, as shown in Figure 2(b), all of which will open the Dirac cone; among them, six nanoholes (side length Is d 0 ) and the distance from the center of the regular hexagon is less than 1/3 of the period of the two-dimensional topological photonic crystal
  • the coupling between the unit cells is weaker than the coupling within the unit cell, that is, t′ 1 ⁇ t′ 0 , and the d mode is smaller than the p mode It still has a higher energy. There is no band inversion between the dipole and quadrupole modes of the photonic crystal.
  • This energy band structure is called a topological mediocre state, forming a topological mediocre state photonic crystal; six nanoholes and a regular six
  • the distance between the center of the polygon is greater than 1/3 of the period of the two-dimensional topological photonic crystal, and the coupling between the unit cells is stronger than the coupling within the unit cell, ie t 1 >t 0 , and the dipole mode and quadruple are generated near the center of the Brillouin zone.
  • the energy band of the polar mode is reversed.
  • the p-mode has higher energy than the d-mode.
  • This energy band structure is called a topological state and forms a topological photonic crystal, as shown in the right figure of Figure 2(c).
  • the preferred distance R 1 between the center of the nanohole and the center of the unit cell is between 0.91R 0 and 0.98R 0 ; in the expansion operation, the preferred distance between the center of the nanohole and the center of the unit cell is between 0.91R 0 and 0.98R 0.
  • R 2 is preferably between 1.02R 0 and 1.09R 0.
  • R 0 , R 1 and R 2 are the distances between the center of the nanohole and the center of the regular hexagon under normal unit cell, contraction operation, and expansion operation, respectively.
  • FIG. 3(a) is a schematic diagram of reflecting and confining the light field based on the principle of energy band inversion.
  • the light wave near the edge of the band frequency under the ⁇ point forms a dipole mode in the topological mediocre state photonic crystal, and its light field distribution is shown in the left figure of Figure 3(b); while in the topological state photonic crystal, it is a quadrupole Mode, the light field distribution is shown in the right picture of Figure 3(b).
  • the topological mediocre state and topological state photonic crystals are periodically arranged in a two-dimensional plane, and closed boundaries are formed by turning angles such as 60°, 120°, 240°, and 340°, such as As shown in Figure 4, a topological bulk laser cavity is formed.
  • the photon state of the light wave frequency at the energy band frequency edge close to the ⁇ point will be reflected back and forth inside the closed boundary and cannot be transmitted outwards, providing an effective feedback mechanism for laser lasing.
  • Figure 5(a) shows the four band structures of topological and topologically mediocre photonic crystals along the wave vectors ⁇ -K and ⁇ -M in the Brillouin zone.
  • the external expansion parameters of the topological photonic crystal: R 2 1.04R 0
  • the contraction parameter of the topological mediocre state photonic crystal: R 1 0.95R 0 .
  • the preferred deformation parameters in this embodiment make the size and position of the band gap of the two photonic crystals almost coincide, and a better light field confinement effect can be obtained.
  • the specific gravity of the quadrupole mode components corresponding to the four energy bands in Fig. 5(a) is calculated from the tight-binding model, as shown in Fig. 5(b).
  • the two lower energy bands of the topological state photonic crystal are pure quadrupole modes (accounting for ⁇ 100%) near the ⁇ point, as shown by the dotted line in the left figure of Figure 5(b); the topological mediocre state photon
  • the quadrupole mode of the two lower energy bands of the crystal accounts for ⁇ 0%, which is a pure dipole mode, which is consistent with the above analysis.
  • Figure 6 shows the scanning electron microscope image of the topological bulk laser resonator and the enlarged electron microscope image at the boundary.
  • the active layer used is an InGaAsP multiple quantum well material epitaxially grown on an InP substrate, and its gain wavelength range is about 1400-1600 nm.
  • the quality factors of the different order modes existing in the laser resonator are calculated. As shown in Fig. 7 and Fig.
  • the reflection caused by the band inversion only occurs in a small wave vector range near the center of the Brillouin zone, that is, the mode limited by the effective light field only exists near the center of the Brillouin zone. This feature First, it limits the number of laser resonator modes that can obtain effective feedback.
  • This characteristic has nothing to do with the size of the laser cavity.
  • the circumference of the laser resonator is greater than 40 ⁇ m, and the traditional laser resonator with the same size can support dozens of modes of different orders, and the quality factor is similar. Due to the lack of an internal mode selection mechanism, it is difficult to achieve Stable single-mode lasing.
  • the number of resonant modes of the topology laser of the present invention does not depend on the size of the laser resonant cavity, and does not need to add a complicated mode selection mechanism, which can increase the light-emitting area of the device and increase the output power while maintaining stable single-mode emission.
  • FIG 9(a) when the pump power is greater than the laser threshold P th , single-mode lasing occurs in the laser cavity.
  • Figure 9(b) is the linear relationship between the output optical power and the pump power obtained in the experiment, and the inset figure is the relationship curve under the corresponding log coordinate. From the linear relationship curve, you can clearly see a transition from spontaneous emission to stimulated emission, and the "S"-shaped change curve under the log coordinate. It can be judged that as the pump power increases, the laser cavity mode has been Enter the lasing state. The measurement shows that the topological bulk laser has a very low laser threshold P th , which is about ⁇ 4.5kW cm -2 , which can be compared with the threshold of current commercial laser diode devices.
  • the laser lasing spectrum under semi-log coordinates is shown in Figure 9(c).
  • the side-mode suppression ratio of this single-mode lasing topological bulk laser is about 36dB.
  • the half-height width of the lasing mode is about 0.25nm. This narrow linewidth is comparable to the spectral linewidth of the best diode laser with a similar laser cavity size.
  • the transition from spontaneous emission to stimulated emission of the topological bulk laser of the above embodiment can also be observed in real space, as shown in FIG. 10.
  • the laser When the pump light is lower than the laser threshold, the laser has a uniform radiation distribution throughout the active layer, as shown in Figure 10(a); when the pump light is higher than the laser threshold, you can see from Figure 10(b) An excitation light field distribution that is strongly confined in the laser cavity.
  • spontaneous radiation below the pumping threshold its radiation has no directivity and exhibits a uniform radiation distribution in the momentum space, as shown in Figure 11(a).
  • the emission direction of the laser is mainly concentrated in the direction perpendicular to the plane of the laser cavity, and its light intensity distribution presents a small laser spot in the momentum space.
  • the divergence angle is less than 6° through measurement, as shown in Figure 11(b).
  • the new optical field confinement mechanism can achieve high directivity, low threshold, and narrow line width.
  • this embodiment adopts an electrically injected vertical surface emitting topology laser.
  • a utility model electric injection vertical surface with controllable size, high directivity, low threshold, narrow line width, and high side mode suppression ratio can be obtained.
  • Its structure includes: an epitaxial layer including: an N-type substrate 6; an N-type contact layer 7 located on the N-type substrate; an N-type confinement layer 8; an active layer 2 located on the N-type confinement layer On; P-type confinement layer 9, located on the active layer; P-type contact layer 10, located on the P-type confinement layer.
  • the refractive index of the N-face and P-face material is slightly smaller than that of the active layer, and the refractive index difference is between 0.2 and 0.5.
  • the P-type contact layer 10 the P-type confinement layer 9, the active layer 2 and the N-type confinement layer 8 are etched in sequence by a dry etching process, and then they are etched on the N-type contact layer 7 to form A large device platform, laterally confines injected carriers.
  • the structure is filled with low refractive index dielectric materials such as silicon oxide, silicon nitride, etc. in subsequent process steps.
  • the N-type contact layer 7 and the P-type contact layer 10 are respectively provided with a closed ring-shaped N-type electrode 11 and a P-type electrode 12 surrounding the two-dimensional photonic crystal structure.
  • the active layer and the upper and lower sides of the P-type and N-type confinement The layers constitute a sandwich double heterojunction structure.

Landscapes

  • Physics & Mathematics (AREA)
  • Condensed Matter Physics & Semiconductors (AREA)
  • General Physics & Mathematics (AREA)
  • Electromagnetism (AREA)
  • Optics & Photonics (AREA)
  • Optical Modulation, Optical Deflection, Nonlinear Optics, Optical Demodulation, Optical Logic Elements (AREA)
  • Semiconductor Lasers (AREA)

Abstract

一种基于能带反转光场限制效应的拓扑体态激光器,采用在布里渊区中心附近发生偶极子模式和四极子模式的能带反转的拓扑态光子晶体(32)和不发生能带反转的拓扑平庸态光子晶体(31)相互拼接,拼接的边界处会产生光场的反射和限制效应,边界包围成一个封闭曲线,从而边界内部形成激光器谐振腔。可实现高方向性、低阈值、窄线宽、高边模抑制比的单模垂直激光出射;有助于降低工艺难度和制备成本,改善散热和电注入问题,提高元器件稳定性和使用寿命;复制到电注入有源材料系统中,可获得尺寸可控、高方向性、低阈值、窄线宽、高边模抑制比的垂直发射激光器。可应用于光通讯、固态照明、激光雷达、物质检测和医疗诊断领域。

Description

一种基于能带反转光场限制效应的拓扑体态激光器及方法 技术领域
本发明涉及半导体激光器技术,具体涉及一种基于能带反转光场限制效应的拓扑体态激光器及其控制方法。
背景技术
随着半导体激光科学的快速发展和相关技术突破,半导体激光器的产品质量、波长范围和输出功率正在迅速提高,产品种类日益丰富。其中垂直腔面发射激光器具有体积小、寿命长、亮度高、便于集成、易于大规模生产等优点,在激光打印、激光显示、工业传感和医疗诊断等领域获得了广泛应用,特别在近几年的汽车和消费电子终端等新兴市场的应用场景如人脸识别和无人驾驶中开始崭露头角,展示出巨大的市场应用潜力。垂直腔面发射激光器是常用的微腔激光器,其结构主要是由有源材料和在其上下两侧通过材料淀积生长二十对以上的分布式布拉格反射镜(distributed Bragger reflector,DBR)组成三明治结构,每对DBR具有高反射系数,形成具有较高品质因子(Q值)的微腔激光器结构。随着理论研究的深入、材料生长技术的进步以及封装工艺的发展,垂直腔面发射激光器的输出功率、亮度、稳定性和寿命等性能都有了很大的提高。然而,目前实用化的垂直腔面发射激光器仍然面临如下问题:1)为了提高激光器的单管输出功率,通常需要增大从元件出射的激光束截面积(即出射面积)。当出射面积增加到一定程度时高阶振荡模式开始获得增益形成多模激射,导致激光器亮度降低和模式不稳定等问题;2)上下两侧的多层DBR结构通常引起制备工艺和有源层的电注入困难,特别是当器件运行在长波长范围时需要更厚的DBR结构来提供有效的光场反馈,对生长工艺带来更大的挑战,同时引起散热差进而降低器件寿命等问题。
发明内容
为了解决以上现有技术中存在的问题,本发明提出了一种基于能带反转光场限制效应的拓扑体态激光器及其控制方法,采用新的光场限制方式,具备新的选模机制,能够在增加发射面积、提高激光器输出功率的同时实现稳定的高方向性的垂直模式输出。
本发明的一个目的在于提出一种基于能带反转光场限制效应的拓扑体态激光器。
拓扑体态激光器为电注入激光器,或者光泵浦激光器;电注入激光器从下至上依次为:N型衬底、N型接触层、N型限制层、有源层、P型限制层和P型接触层;光泵浦激光器从下至上依次为:N型衬底和有源层。
本发明的基于能带反转光场限制效应的拓扑体态激光器采用二维拓扑光子晶体,包括拓扑态光子晶体和拓扑平庸态光子晶体;对于电注入激光器,在P型接触层和部分P型限制层内,构建拓扑态光子晶体和拓扑平庸态光子晶体;对于光泵浦激光器,在有源层内,构建拓扑态光子晶体和拓扑平庸态光子晶体;拓扑态光子晶体和拓扑平庸态光子晶体分别包括多个以相同的晶格常数周期性地排列成蜂窝状晶格的晶胞,每一个晶胞的外边缘为正六边形,内部有六个旋转对称分布的正三角形的纳米孔,形成偶极子模式和四极子模式的能带结构;当六个纳米孔中心与正六边形中心的距离等于二维拓扑光子晶体周期的1/3时,由于晶胞内部和晶胞间的耦合常数相同,偶极子和四极子模式在布里渊区中心即Γ点处发生简并,形成一个具有二重简并的狄拉克锥型的能带结构;对六个纳米孔以晶胞中心为中心分别进行收缩和外扩操作,均会打开狄拉克锥;其中,六个纳米孔中心与正六边形中心的距离小于二维拓扑光子晶体周期的1/3,光子晶体的偶极子和四极子模式间没有发生能带反转,这种能带结构称为拓扑平庸态,形成拓扑平庸态光子晶体;六个纳米孔中心与正六边形中心的距离大于二维拓扑光子晶体周期的1/3,在布里渊区中心附近发生偶极子模式和四极子模式的能带反转,这种能带结构称为拓扑态,形成拓扑态光子晶体;拓扑平庸态光子晶体与拓扑态光子晶体整体相互拼接,在拼接处形成边界;由于边界两边的光子态的频率在靠近布里渊区中心处,其波函数的奇偶对称性不同,在拓扑平庸态光子晶体中的光不能传播到拓扑态光子晶体中,反之,拓扑态光子晶体中的光不能传播到拓扑平庸态光子晶体,从而在界面处会产生光场的反射和限制效应;将边界弯曲,并包围成一个封闭曲线,频率在布里渊区中心附近的光子,将在边界内部来回反射,导致激射,从而边界内部形成激光器谐振腔;对于光泵浦激光器,当激发光入射到激光器谐振腔内时,能带反转引起的在边界的反射只发生在靠近布里渊区中心附近的一个很小的波矢范围,也就是受到有效的光场限制的模式只存在于布里渊区中心附近,从而限制了能够获得有效反馈的激光器谐振腔模式数目,同时越靠近布里渊区中心的光波,其光场的反射和限制越有效,模式具有的品质因子越高,最终实现单模激射;对于电注入激光器,在有源层的上下两侧施加电压,载流子被注入并限制在有源层进而发光,光波的倏逝场分量耦合到激光器谐振腔中形成有效的反馈,能带反转引起的在边界的反射只发生在靠近布里渊区中心附近的一个很小的波矢范围,也就是受到有效的光场限制的模式只存在于布里渊区中心附近,从而限制了能够获得有效反馈的激光器谐振腔模式数目,实现单模激射;同时,能带反转引起的反射只发生在靠近布里渊区中心的位置,受到有效的光场限制的模式只能位于布里渊区中心附近,这些模式在垂直于激光器谐振腔的方向具有非常大的动量分量,从而具有垂直发射特性。
对于光泵浦激光器,拓扑态光子晶体和拓扑平庸态光子晶体设置在有源层上。拓扑体态 激光器的波长范围从可见、近红外、通信波段到中红外光波段,与选择的材料体系的增益区一致,有源层的折射率为2.5~3.5之间。有源层对应的材料体系和折射率不同,其组分包含的元素也不同,比如近红外波长材料体系GaAs和通信波段材料体系InGaAs,InGaAsP和InAlGaAs等。通过调整有源层的材料体系中一种或多种元素的组分来调整增益区范围和材料的折射率,从而调整拓扑体态激光器的波长范围。有源层的结构包括但不限于:单层、多层量子阱或者量子点结构。有源层上下表面的折射率小于有源层的折射率。如果N型衬底的折射率大于有源层的折射率,则去除N型衬底位于有源层下的部分,使得有源层的下表面为空气,从而在垂直的平面方向上对光场进行强限制。
二维拓扑光子晶体的周期a为λ/n eff,n eff为材料的有效折射率,λ为拓扑体态激光器的工作波长。二维拓扑光子晶体所在有源层的上下层均为低折射率材料,从而在垂直于器件的平面方向上对光场进行强限制。
拓扑体态激光器的发光面积通过调整激光器谐振腔内周期性排列的晶胞数目来增加,面积从1μm 2到数百1mm 2,输出功率从1mW到100mW,能够保持稳定的单模激射特性。激光器谐振腔内部设置为拓扑态光子晶体或者为拓扑平庸态光子晶体,只需要保证激光器谐振腔内和外设置的光子晶体具有不同的拓扑态:激光器谐振腔内为拓扑态时,激射模式为四极子阵列,具有暗辐射模式特性,在垂直方向上具有更好的光场限制;激光器谐振腔内为拓扑平庸态时,激射模式为偶极子阵列,具有辐射模式特性,在垂直方向具有更好的辐射特性。因此,根据需求来构建拓扑体态激光器,比如实际中需要激发模式的品质因子较高,光谱线宽较窄,优选的是激光器谐振腔内设置为拓扑态光子晶体,激光器谐振腔外为拓扑平庸态光子晶体。
对于电注入激光器,通过刻蚀P型接触层,并部分刻蚀到P型限制层,避免光子晶体结构损伤下侧的有源层。二维拓扑光子晶体的晶胞的纳米孔内填充低折射率电介质材料,比如氧化硅等,电介质材料的折射率小于有源层的折射率。同样地,通过干法刻蚀工艺部分刻蚀到N型接触层上,N型衬底之上,形成一个大的器件平台,对载流子进行横向限制。分别在N型接触层和P型接触层上设置有围绕二维光子晶体结构的闭合环形的N型电极和P型电极,有源层与上下两侧的P型和N型限制层组成三明治型双异质结结构。当在电极之间加入电压时,载流子被注入并限制在有源层进而发光,光波的倏逝场分量耦合到上侧设置的二维光子晶体激光器谐振腔中形成有效的反馈,在上述选模机制的作用下实现单模激射。
本发明的另一个目的在于提出一种上述基于能带反转光场限制效应的拓扑体态激光器的实现方法。
本发明的基于能带反转光场限制效应的拓扑体态激光器的实现方法,包括以下步骤:
1)对于电注入激光器,通过刻蚀P型接触层和部分P型限制层,构建拓扑态光子晶体和拓扑平庸态光子晶体;对于光泵浦激光器,通过刻蚀有源层,构建拓扑态光子晶体和拓扑平庸态光子晶体;
2)拓扑态光子晶体和拓扑平庸态光子晶体分别包括多个以相同的晶格常数周期性地排列成蜂窝状晶格的晶胞,每一个晶胞的外边缘为正六边形,内部有六个旋转对称分布的正三角形的纳米孔,形成偶极子模式和四极子模式的能带结构;
3)当六个纳米孔与正六边形中心的距离等于二维拓扑光子晶体周期的1/3时,由于晶胞内部和晶胞间的相互耦合常数相同,偶极子和四极子模式在布里渊区中心即Γ点处发生简并,形成一个具有二重简并的狄拉克锥型的能带结构;对六个纳米孔以晶胞中心为中心分别进行收缩和外扩操作,均会打开狄拉克锥;其中,六个纳米孔与正六边形中心的距离小于二维拓扑光子晶体周期的1/3,光子晶体的偶极子和四极子模式间没有发生能带反转,这种能带结构称为拓扑平庸态,形成拓扑平庸态光子晶体;六个纳米孔与正六边形中心的距离大于二维拓扑光子晶体周期的1/3,在布里渊区中心附近发生偶极子模式和四极子模式的能带反转,这种能带结构称为拓扑态,形成拓扑态光子晶体;
4)拓扑平庸态光子晶体与拓扑态光子晶体整体相互拼接,在拼接处形成边界;由于边界两边的光子态的频率在靠近布里渊区中心处,波函数的奇偶对称性不同,在拓扑平庸态光子晶体中的光不能传播到拓扑态光子晶体中,反之,拓扑态光子晶体中的光不能传播到拓扑平庸态光子晶体,从而在界面处会产生光场的反射和限制效应;将边界弯曲,并包围成一个封闭曲线,频率在布里渊区中心附近的光子,将在边界内部来回反射,导致激射,从而边界内部形成激光器谐振腔,边界作为激光器谐振腔的腔壁;
5)对于光泵浦激光器,能带反转引起的在边界的反射只发生在靠近布里渊区中心附近的一个很小的波矢范围,也就是受到有效的光场限制的模式只存在于布里渊区中心附近,从而限制了能够获得有效反馈的激光器谐振腔模式数目,同时越靠近布里渊区中心的光波,其光场的反射和限制越有效,模式具有的品质因子越高,最终实现单模激射;对于电注入激光器,在有源层的上下两侧施加电压,载流子被注入并限制在有源层进而发光,光波的倏逝场分量耦合到激光器谐振腔中形成有效的反馈,能带反转引起的在边界的反射只发生在靠近布里渊区中心附近的一个很小的波矢范围,也就是受到有效的光场限制的模式只存在于布里渊区中心附近,从而限制了能够获得有效反馈的激光器谐振腔模式数目,实现单模激射;
6)同时,能带反转引起的反射只发生在靠近布里渊区中心的位置,受到有效的光场限制的模式只能位于布里渊区中心附近,这些模式在垂直于激光器谐振腔的方向具有非常大的动量分量,从而具有垂直发射特性。
其中,对于光泵浦激光器,通过调整有源层的材料体系中一种或多种元素的组分来调整增益区范围和材料的折射率,从而调整拓扑体态激光器的波长范围。
根据需求构建拓扑体态激光器,激光器谐振腔内为拓扑态时,激射模式为四极子阵列,具有暗辐射模式特性,在垂直方向上具有更好的光场限制;激光器谐振腔内为拓扑平庸态时,激射模式为偶极子阵列,具有辐射模式特性,在垂直方向具有更好的辐射特性。
本发明的优点:
本发明基于拓扑能带物理,提出了一种新的光场反射和限制机制,并针对实际应用中遇到的问题提出本发明方法的设计思路。本发明提出的基于能带反转光场限制效应的拓扑体态激光器的优势主要体现在:新的光场限制机制可实现高方向性、低阈值、窄线宽、高边模抑制比的单模垂直激光出射;有助于降低激光器的制备工艺难度和制备成本,改善散热和电注入问题,提高元器件稳定性和使用寿命;将此结构优势复制到电注入有源材料系统中,可获得尺寸可控、高方向性、低阈值、窄线宽、高边模抑制比的电注入垂直发射激光器。本发明可应用于光通讯、固态照明、激光雷达、物质检测和医疗诊断等领域。
附图说明
图1为本发明的基于能带反转光场限制效应的拓扑体态激光器的实施例一的示意图,其中,(a)为立体图,(b)为剖面图,(c)为俯视图。
图2为本发明的基于能带反转光场限制效应的拓扑体态激光器的实施例一的二维拓扑光子晶体的示意图,其中,(a)为拓扑态和拓扑平庸态光子晶体的示意图,(b)为拓扑态和拓扑平庸态光子晶体的形成过程图,(c)为拓扑态和拓扑平庸态光子晶体的能带示意图。
图3为本发明的基于能带反转光场限制效应的拓扑体态激光器的构建示意图,其中,(a)为能带反转光场反射和限制效应的示意图,(b)为拓扑态和拓扑平庸态光子晶体的晶胞中偶极子和四极子模式的电场分布图。
图4为本发明的基于能带反转光场限制效应的拓扑体态激光器的实施例一中拓扑态光子晶体与拓扑平庸态光子晶体形成的边界示意图。
图5为本发明的基于能带反转光场限制效应的拓扑体态激光器的实施例一的能带结构图, 其中,(a)为拓扑态和拓扑平庸态光子晶体在布里渊区沿波矢Γ-K和Γ-M方向的四条能带结构图,(b)为(a)中对应的四极子模式分量曲线图。
图6为本发明的基于能带反转光场限制效应的拓扑体态激光器的实施例一的电镜图,其中,(a)为激光器谐振腔电镜图,(b)为边界处的电镜图。
图7为本发明的基于能带反转光场限制效应的拓扑体态激光器的实施例一的激光器谐振腔支持的阶数分别为l=0,1,2的模式品质因子对比图。
图8为本发明的基于能带反转光场限制效应的拓扑体态激光器的实施例一的激光器谐振腔支持的阶数分别为l=0,1,2的模式电场分布图。
图9为本发明的基于能带反转光场限制效应的拓扑体态激光器的实施例一在不同光泵浦功率下的结果图,其中,(a)为归一化光谱图,(b)为线性和log坐标下的输入输出曲线图,(c)为激射谱图。
图10为本发明的基于能带反转光场限制效应的拓扑体态激光器的实施例一l=0阶模式的实空间输出光强分布图,其中,(a)为在低于泵浦阈值情况下的实空间输出光强分布图,(b)为高于泵浦阈值情况下的实空间输出光强分布图。
图11为本发明的基于能带反转光场限制效应的拓扑体态激光器的实施例一l=0阶激射模式的分布图,其中,(a)为动量空间光强分布图,(b)为角分辨远场空间分布图,(c)为(b)中对应的角分辨远场空间分布图。
图12为本发明的基于能带反转光场限制效应的拓扑体态激光器的实施例二的结构示意图,其中,(a)为立体图,(b)为剖面图。
具体实施方式
下面结合附图,通过具体实施例,进一步阐述本发明。
实施例一
如图1所示,本实施例采用光泵浦激发,基于能带反转光场限制效应的拓扑体态激光器包括:拓扑态光子晶体和拓扑平庸态光子晶体,采用二维拓扑光子晶体;通过刻蚀有源层2,构建拓扑态光子晶体和拓扑平庸态光子晶体,有源层的材料为通过外延法生长在半导体衬底1(如InP)上的多层量子阱结构(如InGaAsP/InGaAs),通过改变有源层材料的元素和元素组分,其折射率在2.5~-3.5之间可选;拓扑平庸态光子晶体31与拓扑态光子晶体32整体相互拼接,在拼接处形成边界;将边界弯曲,并包围成一个封闭曲线,从而边界内部形成激光 器谐振腔;激光器谐振腔内为拓扑态光子晶体时,激射模式为四极子阵列,具有暗辐射模式特性,在垂直方向上具有更好的光场限制;有源层的上层为空气层(折射率~1),下层通过湿法腐蚀的方式将半导体衬底去除,有源层下表面在空气中,从而在垂直于器件的平面方向上对光场进行强限制。激光器谐振腔内为拓扑平庸态光子晶体时,激射模式为偶极子阵列,具有辐射模式特性,在垂直方向具有更好的辐射特性;在实施例中,需要激发模式的品质因子较高,光谱线宽较窄,选择激光器谐振腔的内部为拓扑态光子晶体32,外部为拓扑平庸态光子晶体31;当外界激发光入射到激光器谐振腔内部时,由于能带反转引起的光场反射和限制效应,产生的光在激光器谐振腔中获得有效反馈从而形成在工作波长的激射;本实施例中,激光器谐振腔的边界4为类正六边形轮廓,其每个边的边长L≈m·a,m为边界上排列的二维拓扑光子晶体的周期数,取1,2,3…,a为二维拓扑光子晶体的周期即晶格常数;通过增加激光器谐振腔内部的晶胞的数目来增加激光器谐振腔的尺寸,从而增大激光器的发光面积和输出功率,本实施例中,发光面积从数μm 2到数百μm 2,输出功率从数mW到数百mW;激光器谐振腔外部排列的光子晶体一般不少于6个周期,即可对激光器谐振腔内的光场具有较好的限制。
图2(a)为拓扑态光子晶体和拓扑平庸态光子晶体分别包括多个以相同的晶格常数周期性地排列成蜂窝状晶格的晶胞阵列,每一个晶胞的外边缘为正六边形,内部有六个旋转对称分布的正三角形的纳米孔。对于单个正常晶胞,其能带结构包含偶极子p模式和四极子d模式的能带结构,d模式的能量比p模式的能量高,如图2(c)左图所示;在晶胞周期性地排列成阵列的情况下,当六个纳米孔中心与正六边形中心的距离等于二维拓扑光子晶体周期的1/3时(也就是正常晶胞),由于晶胞内部和晶胞间的相互耦合常数相同即t″ 1=t″ 0,偶极子和四极子模式在布里渊区中心即Γ点处发生简并,形成一个具有二重简并的狄拉克锥型的能带结构;对六个纳米孔以晶胞中心为中心分别进行收缩和外扩操作,如图2(b)所示,均会打开狄拉克锥;其中,六个纳米孔(边长为d 0)与正六边形中心的距离小于二维拓扑光子晶体周期的1/3,晶胞间的耦合比晶胞内的耦合弱即t′ 1<t′ 0,其d模式比p模式依然具有更高的能量,光子晶体的偶极子和四极子模式间没有发生能带反转,这种能带结构称为拓扑平庸态,形成拓扑平庸态光子晶体;六个纳米孔与正六边形中心的距离大于二维拓扑光子晶体周期的1/3,晶胞间的耦合比晶胞内的耦合强即t 1>t 0,在布里渊区中心附近发生偶极子模式和四极子模式的能带反转,p模式比d模式具有更高的能,这种能带结构称为拓扑态,形成拓扑态光子晶体,如图2(c)右图所示。在收缩操作下,优选的纳米孔中心与晶胞中心之间的距离R 1在0.91R 0到0.98R 0之间可取;在外扩操作下,优选的纳米孔中心与晶胞中心之间的距离 R 2在1.02R 0到1.09R 0之间可取。R 0、R 1和R 2分别为正常晶胞、收缩操作下和外扩操作下纳米孔中心与正六边形中心的距离。
当上述两种具有不同拓扑态的光子晶体以相同的晶格常数a周期性拼接时,在其边界处将形成光场的反射和限制效应。图3(a)为基于能带反转原理对光场进行反射和限制的示意图。靠近Γ点下能带频率边沿的光波,在拓扑平庸态光子晶体中形成偶极子模式,其光场分布如图3(b)左图所示;而在拓扑态光子晶体中为四极子模式,其光场分布如图3(b)右图所示。当光波从边界的一侧向另一侧传播时,由于其波函数具有相反的对称性,在边界处将受到反射。对于靠近Γ点处上能带频率边沿的光波,情况亦然。因此,基于以上光场反射效应,由拓扑平庸态和拓扑态的光子晶体在二维平面内进行周期性排列,通过比如60°、120°、240°和340°的转角组成封闭的边界,如图4所示,形成拓扑体态激光器谐振腔。光波频率在靠近Γ点的能带频率边沿处的光子态将在封闭的边界内部被来回反射,无法向外传输,为激光激射提供有效的反馈机制。
如图5(a)所示为拓扑态和拓扑平庸态光子晶体在布里渊区沿波矢Γ-K和Γ-M方向的四条能带结构,拓扑态光子晶体的外扩参数:R 2=1.04R 0,拓扑平庸态光子晶体的收缩参数:R 1=0.95R 0。本实施例中优选的变形参数,使得两种光子晶体的能带间隙大小和位置几乎重合,能够获得较好的光场限制效果。从紧束缚模型计算出图5(a)中四条能带对应的四极子模式分量的比重,如图5(b)所示。从中可以看出拓扑态光子晶体的两条下能带在Γ点附近为纯四极子模式(占比~100%),如图5(b)左图中的虚线所示;拓扑平庸态光子晶体的两条下能带的四极子模式占比~0%,为纯偶极子模式,与上述分析相吻合。
如图6所示为拓扑体态激光器谐振腔的扫描电镜图和边界处的放大电镜图。采用的有源层为外延生长在InP衬底上的InGaAsP多量子阱材料,其增益波长范围约为1400~1600nm。在本实施例中,激光器谐振腔由内部的拓扑态光子晶体和外部的拓扑平庸态光子晶体组成类正六边形的边界,晶格周期常数设置为a=820nm,每个边的光子晶体周期数为9,即边长L~9a。通过全波模拟,计算上述激光器谐振腔中存在的不同阶模式的品质因子,如图7和图8所示,为l=0,1,2阶简并模式的品质因子和在激光激光器谐振腔中的电场分布图,其中l=0阶的两个简并模式具有最高的品质因子,在激光器谐振腔中限制效果最佳;随着阶数越大,模式越远离Γ点,其品质因子越小,光场限制效果越差。由于能带反转引起的反射只发生在靠近布里渊区中心附近的一个很小的波矢范围,也就是受到有效的光场限制的模式只存在于 布里渊区中心附近,这一特征首先限制了能够获得有效反馈的激光器谐振腔模式数目,同时越靠近布里渊区中心的光波,其光场的反射和限制越有效,模式具有的品质因子越高,有利于最终实现单模激射,并且这一特性与激光器谐振腔的大小无关。在本实施例中激光器谐振腔的周长大于40μm,而对于具有相同大小的传统激光器谐振腔可支持数十个不同阶的模式,且其品质因子相近,由于缺少内在选模机制,很难实现稳定的单模激射。本发明的拓扑激光器的谐振模式数不依赖于激光器谐振腔的大小,不需要外加复杂的选模机制,即可在增加器件发光面积、增大输出功率的同时能够保持稳定的单模出射。
如图9(a)所示,当泵浦功率大于激光阈值P th时,激光器谐振腔中出现单模激射。图9(b)为实验得到的输出光功率与泵浦功率之间的线性关系,插入图为对应log坐标下的关系曲线。从线性关系曲线下清晰的看到一个从自发辐射到受激辐射的转折,以及log坐标下的“S”型变化曲线,均可以判断出随着泵浦功率的增加,该激光器谐振腔模式已经进入激射状态。测量得出该拓扑体态激光器具有非常低的激光阈值P th,约为~4.5kW cm -2,能够与目前商用的激光二极管器件的阈值相比拟。在泵浦功率为2P th时,在semi-log坐标下的激光器激射谱如图9(c)所示。该单模激射的拓扑体态激光器的边模抑制比约为36dB。通过高精度的光谱仪测试,得到激射模式的半高宽约为0.25nm,这一窄线宽与目前最好的具有类似激光器谐振腔大小的二极管激光器的光谱线宽可比拟。
上述实施例的拓扑体态激光器从自发辐射到受激辐射的转变也能够从实空间中观察到,如图10所示。在泵浦光低于激光阈值时,激光器在整个有源层具有均匀的辐射分布,如图10(a);当泵浦光高于激光阈值时,从图10(b)中,可以看到一个被强限制在激光器谐振腔内的激发光场分布。通过与数值模拟结果相比对,得出该光场分布为l=0的激发模式即图7和图8中品质因子最高的激光器谐振腔模式。
图11为上述实施方式的拓扑体态激光器l=0阶模式在低于泵浦阈值和高于泵浦阈值下的动量空间光强分布额和角分辨远场空间分布。在低于泵浦阈值的自发辐射情况下,其辐射没有方向性,在动量空间上表现出均匀的辐射分布,如图11(a)所示。圆虚线代表收集物镜的数值孔径(NA=0.42)。在激射情况下,激光的发射方向主要集中在垂直于激光器谐振腔平面的方向上,其光强分布在动量空间上呈现出一个小的激光光斑。通过测量得到其发散角小于6°,如图11(b)所示。沿图11(b)中的虚线,得到其动量空间对应的角分辨能量分布,如图11(c)中的圆圈所示。对图10(b)中沿虚线的实空间光强分布进行傅里叶变换,得到其对应的角分辨能量分布,如图11(c)中的黑色曲线所示。可以看出实验得到的结果与数 值计算结果具有很好的吻合度。
通过一个实施例的实验结果分析,可以展示出本发明提出的基于能带反转光场限制效应的拓扑体态激光器的优势:新的光场限制机制可实现高方向性、低阈值、窄线宽、高边模抑制比的单模垂直激光出射。
实施例二
如图12所示,本实施例采用电注入垂直面发射拓扑体态激光器。将实施例一中的二维拓扑光子晶体复制到电注入有源层中,可获得尺寸可控、高方向性、低阈值、窄线宽、高边模抑制比的的实用新型电注入垂直面发射激光器。其结构包括:一外延层,该外延层包含:N型衬底6;N型接触层7,位于N型衬底之上;N型限制层8;有源层2,位于N型限制层之上;P型限制层9,位于有源层之上;P型接触层10,位于P型限制层之上。其中,N面和P面材料折射率比有源层的略小,折射率差在0.2~0.5之间可选。在该外延层上首先通过干法刻蚀工艺,依次刻蚀P型接触层10、P型限制层9、有源层2和N型限制层8,停刻在N型接触层7上,形成一个大的器件平台,对注入载流子进行横向限制。拓扑体态激光器包含的两种不同拓扑态光子晶体结构3经过自上而下的干法刻蚀工艺设置于有源层2之上,避免刻蚀的结构损伤有源层;刻蚀后的光子晶体结构在随后的工艺步骤中被填充上低折射率电介质材料比如氧化硅,氮化硅等。分别在N型接触层7和P型接触层10上设置有围绕二维光子晶体结构的闭合环形的N型电极11和P型电极12,有源层与上下两侧的P型和N型限制层组成三明治型双异质结结构。当在电极之间加入电压时,载流子被注入并限制在有源层产生光辐射,光波的倏逝场分量耦合到上侧设置的二维光子晶体激光器谐振腔中,在基于上述能带反转光场限制效应下形成有效的反馈,同时在上述新型选模机制的作用下实现稳定的单模激射。
最后需要注意的是,公布实施例的目的在于帮助进一步理解本发明,但是本领域的技术人员可以理解:在不脱离本发明及所附的权利要求的精神和范围内,各种替换和修改都是可能的。因此,本发明不应局限于实施例所公开的内容,本发明要求保护的范围以权利要求书界定的范围为准。

Claims (9)

  1. 一种拓扑体态激光器,是基于能带反转光场限制效应的拓扑体态激光器,所述拓扑体态激光器为电注入激光器或者光泵浦激光器,其中,电注入激光器从下至上依次为:N型衬底、N型接触层、N型限制层、有源层、P型限制层和P型接触层;光泵浦激光器从下至上依次为:N型衬底和有源层;其特征在于,所述拓扑体态激光器采用二维拓扑光子晶体,包括拓扑态光子晶体和拓扑平庸态光子晶体;对于电注入激光器,在P型接触层和部分P型限制层内构建拓扑态光子晶体和拓扑平庸态光子晶体;对于光泵浦激光器,在有源层内构建拓扑态光子晶体和拓扑平庸态光子晶体;拓扑态光子晶体和拓扑平庸态光子晶体分别包括多个以相同的晶格常数周期性地排列成蜂窝状晶格的晶胞,每一个晶胞的外边缘为正六边形,内部有六个旋转对称分布的正三角形的纳米孔,形成偶极子模式和四极子模式的能带结构;当六个纳米孔中心与正六边形中心的距离等于二维拓扑光子晶体周期的1/3时,由于晶胞内部和晶胞间的耦合常数相同,偶极子和四极子模式在布里渊区中心即Γ点处发生简并,形成一个具有二重简并的狄拉克锥型的能带结构;对六个纳米孔以晶胞中心为中心分别进行收缩和外扩操作,均会打开狄拉克锥;其中,六个纳米孔中心与正六边形中心的距离小于二维拓扑光子晶体周期的1/3,光子晶体的偶极子和四极子模式间没有发生能带反转,这种能带结构称为拓扑平庸态,形成拓扑平庸态光子晶体;六个纳米孔中心与正六边形中心的距离大于二维拓扑光子晶体周期的1/3,在布里渊区中心附近发生偶极子模式和四极子模式的能带反转,这种能带结构称为拓扑态,形成拓扑态光子晶体;拓扑平庸态光子晶体与拓扑态光子晶体整体相互拼接,在拼接处形成边界;由于边界两边的光子态的频率在靠近布里渊区中心处,其波函数的奇偶对称性不同,在拓扑平庸态光子晶体中的光不能传播到拓扑态光子晶体中,反之,拓扑态光子晶体中的光不能传播到拓扑平庸态光子晶体,从而在界面处会产生光场的反射和限制效应;将边界弯曲,并包围成一个封闭曲线,频率在布里渊区中心附近的光子将在边界内部来回反射,导致激射,从而边界内部形成激光器谐振腔;对于光泵浦激光器,当激发光入射到激光器谐振腔内时,能带反转引起的在边界的反射只发生在靠近布里渊区中心附近的一个很小的波矢范围,也就是受到有效的光场限制的模式只存在于布里渊区中心附近,从而限制了能够获得有效反馈的激光器谐振腔模式数目,同时越靠近布里渊区中心的光波,其光场的反射和限制越有效,模式具有的品质因子越高,最终实现单模激射;对于电注入激光器,在有源层的上下两侧施加电压,载流子被注入并限制在有源层进而发光,光波的倏逝场分量耦合到激光器谐振腔中形成有 效的反馈,能带反转引起的在边界的反射只发生在靠近布里渊区中心附近的一个很小的波矢范围,也就是受到有效的光场限制的模式只存在于布里渊区中心附近,从而限制了能够获得有效反馈的激光器谐振腔模式数目,实现单模激射;同时,能带反转引起的反射只发生在靠近布里渊区中心的位置,受到有效的光场限制的模式只能位于布里渊区中心附近,这些模式在垂直于激光器谐振腔的方向具有非常大的动量分量,从而具有垂直发射特性。
  2. 如权利要求1所述的拓扑体态激光器,其特征在于,所述有源层上下表面的折射率小于有源层的折射率。
  3. 如权利要求1所述的拓扑体态激光器,其特征在于,所述二维拓扑光子晶体的周期a为λ/n eff,n eff为材料的有效折射率,λ为拓扑体态激光器的工作波长。
  4. 如权利要求1所述的拓扑体态激光器,其特征在于,所述对于光泵浦激光器,有源层的折射率为2.5~3.5。
  5. 如权利要求1所述的拓扑体态激光器,其特征在于,对于光泵浦激光器,通过调整有源层的材料体系中元素的组分来调整增益区范围和材料的折射率,从而调整拓扑体态激光器的波长范围。
  6. 如权利要求1所述的拓扑体态激光器,其特征在于,对于电注入激光器,二维拓扑光子晶体的晶胞的纳米孔内填充低折射率电介质材料,电介质材料的折射率小于有源层的折射率。
  7. 一种如权利要求1所述的拓扑体态激光器的实现方法,包括以下步骤:
    1)对于电注入激光器,通过刻蚀P型接触层和部分P型限制层,构建拓扑态光子晶体和拓扑平庸态光子晶体;对于光泵浦激光器,通过刻蚀有源层,构建拓扑态光子晶体和拓扑平庸态光子晶体;
    2)拓扑态光子晶体和拓扑平庸态光子晶体分别包括多个以相同的晶格常数周期性地排列成蜂窝状晶格的晶胞,每一个晶胞的外边缘为正六边形,内部有六个旋转对称分布的正三角形的纳米孔,形成偶极子模式和四极子模式的能带结构;
    3)当六个纳米孔与正六边形中心的距离等于二维拓扑光子晶体周期的1/3时,由于晶胞内部和晶胞间的相互耦合常数相同,偶极子和四极子模式在布里渊区中心即Γ点处发生简并,形成一个具有二重简并的狄拉克锥型的能带结构;对六个纳米孔以晶胞中心为中心分别进行收缩和外扩操作,均会打开狄拉克锥;其中,六个纳米孔与正六边形中心的距离小于二维拓扑光子晶体周期的1/3,光子晶体的偶极子和四极子模式间没有发生能带反转,这种能带结构称为拓扑平庸态,形成拓扑平庸态光子晶体;六个纳米孔与正六边形中心的距离大于二维拓扑光子晶体周期的1/3,在布里渊区中 心附近发生偶极子模式和四极子模式的能带反转,这种能带结构称为拓扑态,形成拓扑态光子晶体;
    4)拓扑平庸态光子晶体与拓扑态光子晶体整体相互拼接,在拼接处形成边界;由于边界两边的光子态的频率在靠近布里渊区中心处,波函数的奇偶对称性不同,在拓扑平庸态光子晶体中的光不能传播到拓扑态光子晶体中,反之,拓扑态光子晶体中的光不能传播到拓扑平庸态光子晶体,从而在界面处会产生光场的反射和限制效应;将边界弯曲,并包围成一个封闭曲线,频率在布里渊区中心附近的光子,将在边界内部来回反射,导致激射,从而边界内部形成激光器谐振腔,边界作为激光器谐振腔的腔壁;
    5)对于光泵浦激光器,能带反转引起的在边界的反射只发生在靠近布里渊区中心附近的一个很小的波矢范围,也就是受到有效的光场限制的模式只存在于布里渊区中心附近,从而限制了能够获得有效反馈的激光器谐振腔模式数目,同时越靠近布里渊区中心的光波,其光场的反射和限制越有效,模式具有的品质因子越高,最终实现单模激射;对于电注入激光器,在有源层的上下两侧施加电压,载流子被注入并限制在有源层进而发光,光波的倏逝场分量耦合到激光器谐振腔中形成有效的反馈,能带反转引起的在边界的反射只发生在靠近布里渊区中心附近的一个很小的波矢范围,也就是受到有效的光场限制的模式只存在于布里渊区中心附近,从而限制了能够获得有效反馈的激光器谐振腔模式数目,实现单模激射;
    6)能带反转引起的反射只发生在靠近布里渊区中心的位置,受到有效的光场限制的模式只能位于布里渊区中心附近,这些模式在垂直于激光器谐振腔的方向具有非常大的动量分量,从而使所述拓扑体态激光器具有垂直发射特性。
  8. 如权利要求7所述的实现方法,其特征在于,对于光泵浦激光器,通过调整有源层的材料体系中一种或多种元素的组分来调整增益区范围和材料的折射率,从而调整拓扑体态激光器的波长范围。
  9. 如权利要求7所述的实现方法,其特征在于,根据需求构建拓扑体态激光器,激光器谐振腔内为拓扑态时,激射模式为四极子阵列,具有暗辐射模式特性,在垂直方向上具有更好的光场限制;激光器谐振腔内为拓扑平庸态时,激射模式为偶极子阵列,具有辐射模式特性,在垂直方向具有更好的辐射特性。
PCT/CN2020/078380 2019-12-06 2020-03-09 一种基于能带反转光场限制效应的拓扑体态激光器及方法 WO2021109350A1 (zh)

Priority Applications (1)

Application Number Priority Date Filing Date Title
US17/769,806 US20220352691A1 (en) 2019-12-06 2020-03-09 A topological bulk laser and method based on band inversion and reflection of optical field

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
CN201911240265.8 2019-12-06
CN201911240265.8A CN110932091B (zh) 2019-12-06 2019-12-06 一种基于能带反转光场限制效应的拓扑体态激光器及方法

Publications (1)

Publication Number Publication Date
WO2021109350A1 true WO2021109350A1 (zh) 2021-06-10

Family

ID=69858116

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2020/078380 WO2021109350A1 (zh) 2019-12-06 2020-03-09 一种基于能带反转光场限制效应的拓扑体态激光器及方法

Country Status (3)

Country Link
US (1) US20220352691A1 (zh)
CN (1) CN110932091B (zh)
WO (1) WO2021109350A1 (zh)

Families Citing this family (14)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2021091617A2 (en) * 2019-09-12 2021-05-14 The Trustees Of The University Of Pennsylvania An optical switch device configured for topological light steering and related methods
JP2023526771A (ja) * 2020-04-27 2023-06-23 テクニオン リサーチ アンド ディベロップメント ファウンデイション リミテッド トポロジー絶縁体表面発光レーザシステム
CN111443422B (zh) * 2020-06-03 2021-03-05 中国科学院物理研究所 拓扑光子晶体光纤、光纤预制棒、及其制造方法
CN112925058B (zh) * 2021-01-22 2022-03-04 中山大学 一种基于零维拓扑角态的光子晶体窄带滤波器
CN112987176B (zh) * 2021-03-09 2022-02-11 北京大学 基于非线性调控的二维拓扑光子晶体路由器件及实现方法
CN113204130B (zh) * 2021-04-27 2022-05-20 北京大学 一种基于非厄米效应的二维可控拓扑态器件及其实现方法
CN113285346A (zh) * 2021-05-14 2021-08-20 北京邮电大学 一种基于拓扑光子的半导体涡旋光激光器
CN113219584B (zh) * 2021-05-21 2022-08-26 合肥工业大学 一种基于高阶拓扑光子晶体的二次谐波控制器件
CN113219585B (zh) * 2021-05-21 2022-08-26 合肥工业大学 一种基于拓扑光子晶体的高次谐波定向传输器件
CN113805462B (zh) * 2021-08-05 2022-10-14 北京大学 基于拓扑体态面发射激光器的cpt芯片原子钟及其实现方法
CN114637070B (zh) * 2022-02-18 2024-03-26 中国科学院微电子研究所 一种基于介质纳米结构的拓扑边缘态波导及其制造方法
CN114815002B (zh) * 2022-04-20 2023-03-31 北京大学 一种利用片上拓扑光子晶体波导调控单层过渡金属硫族化合物受激发光的方法
CN115840213A (zh) * 2022-07-26 2023-03-24 深圳市速腾聚创科技有限公司 激光雷达及存储介质
CN117317801A (zh) * 2023-09-28 2023-12-29 深圳技术大学 一种电泵浦拓扑光子晶体激光器结构及其制备方法

Citations (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20050226806A1 (en) * 2002-02-01 2005-10-13 Frank Marlow Photonic crystals having a skeleton structure
CN101258652A (zh) * 2005-09-02 2008-09-03 国立大学法人京都大学 二维光子晶体面发光激光光源
CN101867153A (zh) * 2009-04-15 2010-10-20 中国科学院半导体研究所 环形腔光子晶体垂直腔面发射激光器
CN102388513A (zh) * 2009-02-11 2012-03-21 丹麦科技大学 混合垂直腔激光器
CN103972382A (zh) * 2014-04-30 2014-08-06 电子科技大学 一种制造半导体材料的方法
JP2016156971A (ja) * 2015-02-25 2016-09-01 国立研究開発法人物質・材料研究機構 トポロジカルフォトニック結晶
CN110161621A (zh) * 2019-04-30 2019-08-23 江苏大学 一种基于蜂窝状结构的光子晶体慢光波导
CN110727047A (zh) * 2019-10-28 2020-01-24 中国科学院物理研究所 二维拓扑光子晶体腔及其设计方法和在激光器中的应用

Family Cites Families (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN109031519B (zh) * 2018-07-28 2019-07-05 中国地质大学(北京) 一种窄带光滤波器及全光二极管
CN110007398B (zh) * 2019-04-30 2020-11-03 江苏大学 实现光子晶体拓扑边界态光子自旋引导机制的光波导

Patent Citations (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20050226806A1 (en) * 2002-02-01 2005-10-13 Frank Marlow Photonic crystals having a skeleton structure
CN101258652A (zh) * 2005-09-02 2008-09-03 国立大学法人京都大学 二维光子晶体面发光激光光源
CN102388513A (zh) * 2009-02-11 2012-03-21 丹麦科技大学 混合垂直腔激光器
CN101867153A (zh) * 2009-04-15 2010-10-20 中国科学院半导体研究所 环形腔光子晶体垂直腔面发射激光器
CN103972382A (zh) * 2014-04-30 2014-08-06 电子科技大学 一种制造半导体材料的方法
JP2016156971A (ja) * 2015-02-25 2016-09-01 国立研究開発法人物質・材料研究機構 トポロジカルフォトニック結晶
CN110161621A (zh) * 2019-04-30 2019-08-23 江苏大学 一种基于蜂窝状结构的光子晶体慢光波导
CN110727047A (zh) * 2019-10-28 2020-01-24 中国科学院物理研究所 二维拓扑光子晶体腔及其设计方法和在激光器中的应用

Also Published As

Publication number Publication date
CN110932091A (zh) 2020-03-27
CN110932091B (zh) 2020-10-09
US20220352691A1 (en) 2022-11-03

Similar Documents

Publication Publication Date Title
WO2021109350A1 (zh) 一种基于能带反转光场限制效应的拓扑体态激光器及方法
US11050219B2 (en) Laser device and method for its operation
JP4919639B2 (ja) 面発光レーザ素子および面発光レーザアレイおよび面発光レーザ素子の製造方法および面発光レーザモジュールおよび電子写真システムおよび光通信システムおよび光インターコネクションシステム
CN105720479B (zh) 一种具有光束扩散结构的高速半导体激光器
JPH11330629A (ja) レ―ザ装置
JP2006114894A (ja) トンネル接合を備えた高出力レーザー素子、及び該レーザー素子用のレーザーポンピング部
JP2002368333A (ja) 面発光レーザー
US9698562B2 (en) Laser device
US11664642B2 (en) Vertical cavity surface emitting laser including meta structure reflector and optical device including the vertical cavity surface emitting laser
CN104409965A (zh) 布拉格反射波导GaSb基半导体激光器
WO2023050740A1 (zh) 具有小发散角的vcsel激光器、芯片及用于lidar系统的光源
Xun et al. Modal properties of 2-D implant-defined coherently coupled vertical-cavity surface-emitting laser array
Zhou et al. On-chip photonic crystal surface-emitting membrane lasers
Mao et al. Implant-Defined 3$\times $3 In-Phase Coherently Coupled Vertical Cavity Surface Emitting Lasers Array
TW550868B (en) Semiconductor laser with lateral light confinement by polygonal surface optical grating resonator
CN103996972A (zh) 一种同时调制波长和发散角的光子晶体边发射激光器
Chung et al. Speed enhancement in VCSELs employing grating mirrors
JPS63150981A (ja) 半導体レ−ザ装置
Tang et al. Vertical-Cavity Surface-Emitting Laser Linewidth Narrowing Enabled by Internal-Cavity Engineering
US20230231363A1 (en) Surface-emitting semiconductor laser based on a triple-lattice photonic crystal structure
WO2017045161A1 (zh) 半导体激光器及其加工方法
Zhao et al. Effect of ridge structure on electro-optical characteristics of ridge-waveguide lasers with low vertical divergence based on photonic crystal structure
CN113991421A (zh) 半导体微腔激光器
WO2024045607A1 (zh) 巨腔面发射激光器
Iga Semiconductor Lasers and VCSEL History

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 20896010

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 20896010

Country of ref document: EP

Kind code of ref document: A1