CN113219585B - 一种基于拓扑光子晶体的高次谐波定向传输器件 - Google Patents

一种基于拓扑光子晶体的高次谐波定向传输器件 Download PDF

Info

Publication number
CN113219585B
CN113219585B CN202110554898.7A CN202110554898A CN113219585B CN 113219585 B CN113219585 B CN 113219585B CN 202110554898 A CN202110554898 A CN 202110554898A CN 113219585 B CN113219585 B CN 113219585B
Authority
CN
China
Prior art keywords
topological
photonic crystal
harmonic
spin
transmission device
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Fee Related
Application number
CN202110554898.7A
Other languages
English (en)
Other versions
CN113219585A (zh
Inventor
郭凯
郭忠义
马骏
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Hefei University of Technology
Original Assignee
Hefei University of Technology
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Hefei University of Technology filed Critical Hefei University of Technology
Priority to CN202110554898.7A priority Critical patent/CN113219585B/zh
Publication of CN113219585A publication Critical patent/CN113219585A/zh
Application granted granted Critical
Publication of CN113219585B publication Critical patent/CN113219585B/zh
Expired - Fee Related legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Classifications

    • GPHYSICS
    • G02OPTICS
    • G02BOPTICAL ELEMENTS, SYSTEMS OR APPARATUS
    • G02B6/00Light guides; Structural details of arrangements comprising light guides and other optical elements, e.g. couplings
    • G02B6/10Light guides; Structural details of arrangements comprising light guides and other optical elements, e.g. couplings of the optical waveguide type
    • G02B6/12Light guides; Structural details of arrangements comprising light guides and other optical elements, e.g. couplings of the optical waveguide type of the integrated circuit kind
    • G02B6/122Basic optical elements, e.g. light-guiding paths
    • G02B6/1225Basic optical elements, e.g. light-guiding paths comprising photonic band-gap structures or photonic lattices
    • GPHYSICS
    • G02OPTICS
    • G02BOPTICAL ELEMENTS, SYSTEMS OR APPARATUS
    • G02B1/00Optical elements characterised by the material of which they are made; Optical coatings for optical elements
    • G02B1/002Optical elements characterised by the material of which they are made; Optical coatings for optical elements made of materials engineered to provide properties not available in nature, e.g. metamaterials
    • G02B1/005Optical elements characterised by the material of which they are made; Optical coatings for optical elements made of materials engineered to provide properties not available in nature, e.g. metamaterials made of photonic crystals or photonic band gap materials
    • GPHYSICS
    • G02OPTICS
    • G02FOPTICAL DEVICES OR ARRANGEMENTS FOR THE CONTROL OF LIGHT BY MODIFICATION OF THE OPTICAL PROPERTIES OF THE MEDIA OF THE ELEMENTS INVOLVED THEREIN; NON-LINEAR OPTICS; FREQUENCY-CHANGING OF LIGHT; OPTICAL LOGIC ELEMENTS; OPTICAL ANALOGUE/DIGITAL CONVERTERS
    • G02F1/00Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics
    • G02F1/35Non-linear optics
    • G02F1/353Frequency conversion, i.e. wherein a light beam is generated with frequency components different from those of the incident light beams
    • GPHYSICS
    • G02OPTICS
    • G02FOPTICAL DEVICES OR ARRANGEMENTS FOR THE CONTROL OF LIGHT BY MODIFICATION OF THE OPTICAL PROPERTIES OF THE MEDIA OF THE ELEMENTS INVOLVED THEREIN; NON-LINEAR OPTICS; FREQUENCY-CHANGING OF LIGHT; OPTICAL LOGIC ELEMENTS; OPTICAL ANALOGUE/DIGITAL CONVERTERS
    • G02F1/00Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics
    • G02F1/35Non-linear optics
    • G02F1/365Non-linear optics in an optical waveguide structure

Landscapes

  • Physics & Mathematics (AREA)
  • Nonlinear Science (AREA)
  • General Physics & Mathematics (AREA)
  • Optics & Photonics (AREA)
  • Chemical & Material Sciences (AREA)
  • Crystallography & Structural Chemistry (AREA)
  • Engineering & Computer Science (AREA)
  • Microelectronics & Electronic Packaging (AREA)
  • Optical Modulation, Optical Deflection, Nonlinear Optics, Optical Demodulation, Optical Logic Elements (AREA)
  • Optical Integrated Circuits (AREA)

Abstract

本发明涉及凝聚态物理中的拓扑光子晶体技术领域,公开了一种基于拓扑光子晶体的高次谐波定向传输器件,包括基于光量子自旋霍尔效应产生的拓扑边界态波导,所述拓扑边界态波导由AlGaAs介质柱周期性排列而成,通过在数值仿真中模拟电磁场效应,使用极化分量诱导二次谐波的产生,利用拓扑光子晶体边界态波导来增强和低损耗定向传输谐波。本发明利用C6v对称拓扑晶体绝缘体的非线性光学响应,基于自旋‑轨道耦合(SOC),可以得到两个赝自旋方向相反(自旋向上和自旋向下)的边界态波导,因为拓扑边界态对光子的高局域特性,光子之间的相互作用更强,实现了在波导中定向传播非线性高次谐波(HHG),且后向散射小,为非线性谐波控制提供了一种新的途径。

Description

一种基于拓扑光子晶体的高次谐波定向传输器件
技术领域
本发明涉及凝聚态物理中的拓扑光子晶体技术领域,尤其涉及一种基于拓扑光子晶体的高次谐波定向传输器件。
背景技术
拓扑光子晶体由于其广阔的应用前景而引起了国内外研究者广泛的研究。它们起源于凝聚态物理中物质的拓扑相。在过去的十年里,拓扑光子晶体为光调控提供了一个新的平台。由拓扑保护的能带包含了各种新颖的物理性质和光学现象,推动了拓扑光子晶体领域深入的研究与发展。到目前为止,科学家们在以整数量子霍尔效应(QHE)、量子自旋霍尔效应(QSHE)、量子谷霍尔效应(QVHE)等为理论基础的光子晶体结构中发现了拓扑相的存在,由拓扑不变量引起的一系列如体边对应关系,高阶拓扑绝缘体等新奇的物理现象,使得拓扑光子学在集成光学,光通信等领域取得了长足的进步。
在非线性光学中,研究人员利用倍频、混频、可调谐光参量振荡和受激散射等效应产生强相干光辐射,为激光辐射源的产生开辟了一条新的物理途径。通过对强光与物质相互作用的研究,本发明可以获得有关物质组成、结构、状态、能量耦合和传递以及各种内部动力学过程的重要信息。目前,对高次谐波的控制已经引起了众多研究者的极大兴趣。不久前,研究者们利用自旋轨道耦合(SOC)实现了对超表面高次谐波自旋态的控制。随着知识体系的不断完善,研究者们开始了对拓扑光子学中非线性效应的探索。
发明内容
基于背景技术存在的技术问题,本发明提出了一种基于拓扑光子晶体的高次谐波定向传输器件。
本发明提出的一种基于拓扑光子晶体的高次谐波定向传输器件,包括基于光量子自旋霍尔效应产生的拓扑边界态波导,所述拓扑边界态波导由AlGaAs介质柱周期性排列而成,通过在数值仿真中模拟电磁场效应,使用极化分量诱导二次谐波的产生,利用拓扑光子晶体边界态波导来增强和低损耗定向传输谐波。
优选地,所述拓扑边界态波导的晶格常数为765nm,工作波长为1560nm。
优选地,所述拓扑边界态波导由AlGaAs介质柱周期性排列的单元格呈C6v对称性光子晶体结构。
优选地,所述C6v对称性光子晶体结构拥有两个自旋方向相反的赝自旋边界态。
优选地,所述二次谐波用非线性极化
Figure BDA0003076845630000021
表示,其中χ2表示为二阶磁化张量,E1z表示为连续输入垂直于平面的正弦波。
与现有技术相比,本发明中的有益效果:
1、拓扑光子晶体器件在能带Dirac点简并被打开,基于体边对应关系产生的拓扑边界态波导,存在对光子高局域的特性,从某种意义上说,构成了一个效果很好的光学谐振腔,这大大提升了光子之间的相互作用概率,从而使非线性二次谐波更容易被激发;
2、本发明在工作中,相同波长处有两个携带相反轨道角动量(OAM)的本征模式,使用两个携带相反OAM的点源阵列分别激发对应匹配的本征模,在此基础上我们实现了以二次谐波为主要研究对象的高次谐波传输调控,定向控制谐波传输方向,同时能量正向传输效率远高于后向散射率,从而成功地实现了拓扑光子晶体中高次谐波的控制,为非线性光学与拓扑光子学的两个领域的交叉研究提供了一条新的途径。
附图说明
图1是本发明中拓扑光子晶体的周期性结构和能带结构示意图;
图2是拓扑光子晶体在1560nm附近的能带和本征模式示意图;
图3是携带相反OAM的点源阵列调控谐波传输方向示意图;
图4是谐波产生强度与激励源的幅值大小的关系示意图;
图5是不同数量的弯折对谐波产生效率的影响示意图。
具体实施方式
下面结合具体实施例对本发明作进一步解说。
(1)本发明的结构是由AlGaAs介质柱周期性排列而成的,如图1a所示。当只考虑相邻单元间的耦合,长程相互作用忽略不计时,本发明将结构看作是一个紧束缚模型(TBM),设单元间的耦合强度为tinter,单元内的耦合强度为tintra。当tinter=tintra时,由于细胞的C6v对称性,结构在低能级K和K’处具有Dirac简并性,能带折叠使K和K′处的Dirac简并点折叠Γ,而两个耦合强度不等时有能带劈裂的存在,当tinter>tintra时,结构是平凡的,当tinter<tintra时,结构是拓扑非平凡的。本发明使用单元之间的距离h1来表示单元之间的耦合强度tinter,同样,本发明用介电柱与单元格中心之间的距离h2来表示单元内部的耦合强度tintra,当然无论如何变化总有h1+2h2=a,当h1/h2从0.9到1.1时,能带明显翻转,由p和d表示的偶极子模式和四极子模式的波长可知,随着结构尺寸的变化,p模式和d模式发生了相对翻转,如图1b-1d所示。另一方面,d模式和p模式分别含有px(py)和
Figure BDA0003076845630000043
本发明用它们来构造赝自旋,得到了两种不同的赝自旋态d±和p±,
Figure BDA0003076845630000041
Figure BDA0003076845630000042
这些组合形成的赝自旋,和量子自旋霍尔效应的两个自旋边界态波导十分类似,具有上述两个赝自旋的光子将在垂直于入射平面的方向上相互分离,从而产生自旋诱导分裂光束。
接下来,本发明给出了光子晶体结构的具体参数,其中晶格常数a=765nm,该结构由拓扑光子晶体PC1和普通光子晶体PC2组成。PC1和PC2中单个的介质柱直径为a/4.5,h1=0.3a,h2=0.37a,本发明取周期性结构的其中一个超晶格,通过数值仿真得到其整体结构的能带,如图2a所示,红色实线表示其边界态。由于PC1与PC2边界附近的对称性被破坏,边界态之间出现明显的带隙,在此不再详细讨论。本发明着重研究了1560nm处的两个特征模式,它们在能带中的位置由A和B表示(如图2a所示)。本发明发现,两个本征态的电场分布和能流方向(图2c和2d中用黑色箭头表示)是相反的,分别用ψ+和ψ-表示。通过设置点源阵列,可以激发两种不同的赝自旋态,实现可控光传输,本发明在下一部分重点对其讨论。
(2)利用具有相对轨道角动量的点源阵列控制光波的传播方向。激发源工作波长1560nm,源的相位分布如图所示,激励源携带的OAM分别与A、B处本征模OAM匹配,使光的传播方向随激励源相位的变化而变化。另外,本发明测量了电场的后向散射,如图3b所示,分别将探针放置在1和2两个位置,测得后向散射能量仅为正向传输能量的4.0%。与后向散射二次谐波信号相比,在基频电场和倍频电场耦合下,正向传播的二次谐波信号具有一个数量级的增强。
本发明使用极化分量作为诱导二次谐波产生,得到了一个连续输入垂直于平面正弦波作为E1z=E0sin(Ω1×t),E0设置为3e9V/m,并有Ω1=2πf1。二次谐波用非线性极化
Figure BDA0003076845630000051
表示,二阶磁化张量χ2设置为100pm/V。由上述公式可以看出,谐波的强度应随着入射电场的增强成二次函数的关系,本发明对其进行了验证,如图4所示,首先当E0小于阈值时,本发明没有发现二次谐波的产生。当E0大于阈值时,本发明可以看到激发入射曲线呈二次函数曲线的趋势,从而验证了本发明的结论。
(3)拓扑光子晶体波导的一个主要优势是,相比于光纤不能弯折的缺点,拓扑光子晶体波导在有弯折的时候仍然有高传输效率,在下文中本发明对这个特性进行研究,讨论了谐波在拓扑边界态波导中传输的鲁棒性。如图5a所示,本发明在路径上分别设置了2个120°弯折和4个120°弯折,并在端口测量谐波的出射能量。在研究过程中本发明均采用幅值E0=3e9V/m的激励源。从电场可以看出,在弯折附近未发生散射。为了便于观察,本发明对信号进行傅里叶变换后取对数,如图5b所示,在入射端口到出射端口距离相同的情况下,波导的谐波传输效率类似,弯折对谐波传输的影响很低。
以上所述,仅为本发明较佳的具体实施方式,但本发明的保护范围并不局限于此,任何熟悉本技术领域的技术人员在本发明揭露的技术范围内,根据本发明的技术方案及其发明构思加以等同替换或改变,都应涵盖在本发明的保护范围之内。

Claims (4)

1.一种基于拓扑光子晶体的高次谐波定向传输器件,其特征在于,包括基于光量子自旋霍尔效应产生的拓扑边界态波导,所述拓扑边界态波导由AlGaAs介质柱周期性排列而成,通过在数值仿真中模拟电磁场效应,使用极化分量诱导二次谐波的产生,利用拓扑光子晶体边界态波导来增强和低损耗定向传输谐波。
2.根据权利要求1所述的一种基于拓扑光子晶体的高次谐波定向传输器件,其特征在于,所述拓扑边界态波导由AlGaAs介质柱周期性排列的单元格呈C6v对称性结构,品质因子较高,对光子的高局域性导致了非线性增益较容易产生。
3.根据权利要求2所述的一种基于拓扑光子晶体的高次谐波定向传输器件,其特征在于,所述C6v对称性光子晶体结构拥有两个不同的赝自旋态。
4.根据权利要求1所述的一种基于拓扑光子晶体的高次谐波定向传输器件,其特征在于,所述二次谐波用非线性极化
Figure DEST_PATH_IMAGE001
表示,其中χ2表示为二阶磁化张量,E1z表示为连续输入垂直于平面的正弦波。
CN202110554898.7A 2021-05-21 2021-05-21 一种基于拓扑光子晶体的高次谐波定向传输器件 Expired - Fee Related CN113219585B (zh)

Priority Applications (1)

Application Number Priority Date Filing Date Title
CN202110554898.7A CN113219585B (zh) 2021-05-21 2021-05-21 一种基于拓扑光子晶体的高次谐波定向传输器件

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
CN202110554898.7A CN113219585B (zh) 2021-05-21 2021-05-21 一种基于拓扑光子晶体的高次谐波定向传输器件

Publications (2)

Publication Number Publication Date
CN113219585A CN113219585A (zh) 2021-08-06
CN113219585B true CN113219585B (zh) 2022-08-26

Family

ID=77093641

Family Applications (1)

Application Number Title Priority Date Filing Date
CN202110554898.7A Expired - Fee Related CN113219585B (zh) 2021-05-21 2021-05-21 一种基于拓扑光子晶体的高次谐波定向传输器件

Country Status (1)

Country Link
CN (1) CN113219585B (zh)

Families Citing this family (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN114637074B (zh) * 2022-03-14 2022-11-25 北京大学 一种基于二维拓扑光子晶体奇异点的光学器件及其方法
CN114725640B (zh) * 2022-04-25 2022-10-21 华南理工大学 一种微波拓扑无阻传输线
CN115267970B (zh) * 2022-08-04 2023-05-09 南京信息工程大学 一种光子自旋定向耦合器
CN116247405B (zh) * 2023-03-17 2024-04-12 电子科技大学 一种基于拓扑谷边界态的高效电磁波导

Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN110932091A (zh) * 2019-12-06 2020-03-27 北京大学 一种基于能带反转光场限制效应的拓扑体态激光器及方法

Family Cites Families (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US7689068B1 (en) * 2008-12-08 2010-03-30 Massachusetts Institute Of Technology One-way waveguides using gyrotropic photonic crystals
CN110007398B (zh) * 2019-04-30 2020-11-03 江苏大学 实现光子晶体拓扑边界态光子自旋引导机制的光波导
CN110161621B (zh) * 2019-04-30 2020-11-03 江苏大学 一种基于蜂窝状结构的光子晶体慢光波导
CN111965736B (zh) * 2020-08-12 2021-12-24 太原理工大学 基于能带反转实现光波单向传输的拓扑光子晶体复合结构
CN112540427B (zh) * 2020-12-04 2022-07-12 天津大学 一种基于光学量子自旋霍尔效应的太赫兹拓扑传输波导

Patent Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN110932091A (zh) * 2019-12-06 2020-03-27 北京大学 一种基于能带反转光场限制效应的拓扑体态激光器及方法

Also Published As

Publication number Publication date
CN113219585A (zh) 2021-08-06

Similar Documents

Publication Publication Date Title
CN113219585B (zh) 一种基于拓扑光子晶体的高次谐波定向传输器件
Galiffi et al. Photonics of time-varying media
Staude et al. All-dielectric resonant meta-optics lightens up
Grinblat Nonlinear dielectric nanoantennas and metasurfaces: frequency conversion and wavefront control
Kruk et al. Nonlinear optical magnetism revealed by second-harmonic generation in nanoantennas
Yuan et al. Synthetic frequency dimensions in dynamically modulated ring resonators
Tripathi et al. Lasing action from anapole metasurfaces
Hayran et al. Capturing broadband light in a compact bound state in the continuum
Plum et al. Controlling the optical response of 2D matter in standing waves
Ahmadivand et al. Deep-and vacuum-ultraviolet metaphotonic light sources
Xiong et al. Mixing of spin and orbital angular momenta via second-harmonic generation in plasmonic and dielectric chiral nanostructures
Wang et al. Spin emitters beyond the point dipole approximation in nanomagnonic cavities
Bahng et al. Mie resonance engineering in meta-shell supraparticles for nanoscale nonlinear optics
Wang et al. Realizing tunable evolution of bound states in the continuum and circularly polarized points by symmetry breaking
Davidson et al. Ultrafast plasmonic control of second harmonic generation
Zhirihin et al. Topological photonics on a small scale
Dutt et al. Experimental demonstration of dynamical input isolation in nonadiabatically modulated photonic cavities
Goulain et al. Femtosecond broadband frequency switch of terahertz three-dimensional meta-atoms
Wang et al. Single-photon transport in a topological waveguide from a dynamically modulated photonic system
Chu et al. Subradiant states for two imperfect quantum emitters coupled by a nanophotonic waveguide
Jalali Mehrabad et al. Topological photonics: Fundamental concepts, recent developments, and future directions
Hang et al. Spatial solitons and instabilities of light beams in a three-level atomic medium with a standing-wave control field
Zhou et al. Controllable second harmonic generation based on topological spin-dependent edge states
Arab et al. Se-doped NH2-functionalized graphene quantum dot for single-photon emission at free-space quantum communication wavelength
Li et al. Controlled optical high-order sidebands via bichromatic driving of a cavity mode detected by an undriven second cavity mode

Legal Events

Date Code Title Description
PB01 Publication
PB01 Publication
SE01 Entry into force of request for substantive examination
SE01 Entry into force of request for substantive examination
GR01 Patent grant
GR01 Patent grant
CF01 Termination of patent right due to non-payment of annual fee
CF01 Termination of patent right due to non-payment of annual fee

Granted publication date: 20220826