WO2021107229A1 - 임펠러 가공 장치 및 이를 이용한 가공방법 - Google Patents

임펠러 가공 장치 및 이를 이용한 가공방법 Download PDF

Info

Publication number
WO2021107229A1
WO2021107229A1 PCT/KR2019/016765 KR2019016765W WO2021107229A1 WO 2021107229 A1 WO2021107229 A1 WO 2021107229A1 KR 2019016765 W KR2019016765 W KR 2019016765W WO 2021107229 A1 WO2021107229 A1 WO 2021107229A1
Authority
WO
WIPO (PCT)
Prior art keywords
end mill
substrate
impeller
posture
driving unit
Prior art date
Application number
PCT/KR2019/016765
Other languages
English (en)
French (fr)
Inventor
권영석
Original Assignee
주식회사 티씨티
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 주식회사 티씨티 filed Critical 주식회사 티씨티
Priority to PCT/KR2019/016765 priority Critical patent/WO2021107229A1/ko
Priority to US16/785,649 priority patent/US20210162519A1/en
Publication of WO2021107229A1 publication Critical patent/WO2021107229A1/ko

Links

Images

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B23MACHINE TOOLS; METAL-WORKING NOT OTHERWISE PROVIDED FOR
    • B23CMILLING
    • B23C3/00Milling particular work; Special milling operations; Machines therefor
    • B23C3/16Working surfaces curved in two directions
    • B23C3/18Working surfaces curved in two directions for shaping screw-propellers, turbine blades, or impellers
    • GPHYSICS
    • G05CONTROLLING; REGULATING
    • G05BCONTROL OR REGULATING SYSTEMS IN GENERAL; FUNCTIONAL ELEMENTS OF SUCH SYSTEMS; MONITORING OR TESTING ARRANGEMENTS FOR SUCH SYSTEMS OR ELEMENTS
    • G05B19/00Programme-control systems
    • G05B19/02Programme-control systems electric
    • G05B19/18Numerical control [NC], i.e. automatically operating machines, in particular machine tools, e.g. in a manufacturing environment, so as to execute positioning, movement or co-ordinated operations by means of programme data in numerical form
    • G05B19/182Numerical control [NC], i.e. automatically operating machines, in particular machine tools, e.g. in a manufacturing environment, so as to execute positioning, movement or co-ordinated operations by means of programme data in numerical form characterised by the machine tool function, e.g. thread cutting, cam making, tool direction control
    • G05B19/186Generation of screw- or gearlike surfaces
    • GPHYSICS
    • G05CONTROLLING; REGULATING
    • G05BCONTROL OR REGULATING SYSTEMS IN GENERAL; FUNCTIONAL ELEMENTS OF SUCH SYSTEMS; MONITORING OR TESTING ARRANGEMENTS FOR SUCH SYSTEMS OR ELEMENTS
    • G05B2219/00Program-control systems
    • G05B2219/30Nc systems
    • G05B2219/45Nc applications
    • G05B2219/45225Making impellers, propellers

Definitions

  • the present invention relates to an impeller processing apparatus, a processing method, and a computer-readable recording medium in which a program is recorded.
  • the impeller is a key component in turbomachinery used for high-temperature compression and high-speed transfer of water, refrigerant, and gas, etc., and the impeller is operatively coupled to a high-speed rotating shaft to compress a fluid such as water, refrigerant, or gas. or transfer function.
  • a method of manufacturing an impeller is widely known in the prior art, for example, an example of a conventional impeller manufacturing method is disclosed in Korean Patent No. 10-0561204 (March 8, 2006).
  • the impeller is automatically produced by a device capable of 5-axis machining equipped with an end mill.
  • Figure 1 is a view showing a conventional impeller processing apparatus capable of 5-axis machining
  • Figure 2 is a view for explaining the operation of roughing with a ball end mill (T) in the conventional impeller processing apparatus.
  • the cutting edge of the ball end mill (T) directly processes the substrate (M).
  • the cutting edge of the ball end mill (T) is processed in contact with the substrate, there is a high risk of deformation of the substrate (M) by the ball end mill (T) applying an excessive load to the substrate (M).
  • the cutting edge of the ball end mill (T) is also weak, making it difficult to perform fast machining.
  • an impeller processing apparatus that reduces the processing time and applies a small load to the substrate.
  • an impeller processing method in which the processing time is shortened and a load is applied to the substrate with a small amount.
  • a computer-readable recording medium recording a program for executing the impeller processing method, which reduces the processing time and applies a small load to the substrate, may be provided.
  • End mill drive unit equipped with an end mill; a substrate driving unit for moving the substrate;
  • a control device for controlling the end mill driving unit and the substrate driving unit so that the side part of the end mill processes the substrate may include.
  • a control device for generating an end mill position control command for controlling the position of the end mill, an attitude control command for controlling the attitude of the end mill, and a substrate attitude control command for controlling the attitude of the substrate; an end mill driving unit for moving the end mill to have a position determined by the end mill position control command and an attitude determined by the attitude control command; and a substrate driving unit for moving the substrate to have a posture determined by the substrate posture control command.
  • the end mill position control command, the attitude control command, and the substrate attitude control command may be generated so that the side portion of the end mill processes the substrate.
  • the end mill position control command, the attitude control command, and the substrate attitude control command are such that the normal vector of the part to be processed on the substrate - the processing part - is perpendicular to the side surface of the end mill. may have been created.
  • the end mill position control command may be generated to move the end mill along a trochoid shape.
  • the end mill position control command, the attitude control command, and the substrate attitude control command may be generated to perform the roughing step.
  • a computer-readable recording medium in which a program for executing an impeller processing method in a computer is recorded.
  • the impeller processing method is to process the substrate using the side part of the end mill mounted on the impeller processing apparatus.
  • the impeller processing method generates an end mill position control command for controlling the position of the end mill mounted on the impeller processing device, an attitude control command for controlling the attitude of the end mill, and a substrate attitude control command for controlling the attitude of the substrate may include;
  • the end mill position control command, the attitude control command, and the substrate attitude control command may be generated so that the side portion of the end mill processes the substrate.
  • the end mill position control command, the attitude control command, and the substrate attitude control command are generated so that the normal vector of the part to be processed on the substrate - the processing part - is perpendicular to the side part of the end mill it may be
  • the end mill position control command may be generated to move the end mill along a trochoid shape.
  • the impeller machining method may be a method of performing a roughing step.
  • the load on the substrate during processing is significantly reduced.
  • the processing time is reduced by 40% to 50% compared to the prior art.
  • FIG. 1 is a view showing an impeller processing apparatus capable of conventional 5-axis processing.
  • FIG. 2 is a view for explaining the operation of roughing with a ball end mill (T) in the conventional impera processing apparatus.
  • 3 to 7 are views for explaining the impeller processing apparatus 100 according to an embodiment of the present invention.
  • FIG. 8 is a view for explaining an impeller processing method according to an embodiment of the present invention.
  • impeller processing device 10 substrate
  • control unit 30 end mill drive unit
  • 'program' means 'a set of instructions suitable for processing by a computer'.
  • the expression 'a program is installed on a certain device' means that the program is stored in a storage device controllable by the device and can be executed by a computer processor controllable by the device. .
  • 'computer' includes a computer processor and storage device, operating system, firmware, application program, communication unit, and other resources, where the operating system (OS: OPERATING SYSTEM) is other hardware, firmware, or application program (eg, For example, a management program) can be operatively linked.
  • the communication unit means a module composed of software and hardware for transmitting and receiving data with the outside.
  • the computer processor and the memory device, the operating system, the application program, the firmware, the communication unit, and other resources are operatively connected to each other directly or through a communication network.
  • 'server' refers to one or more memories (not shown), one or more computer processors (not shown), and one or more programs (one or more programs) (not shown).
  • 'communication network' refers to any facility that supports transmission and reception of data by wire and/or wirelessly - all programs, machines, electrical and electronic devices, base stations, and cables for communication supporting communication includes - means a network that is capable of sending and receiving data to each other by wire and/or wirelessly over a wide area network (WAN), metropolitan area network (MAN), local area network (LAN), and/or personal network (PAN)).
  • WAN wide area network
  • MAN metropolitan area network
  • LAN local area network
  • PAN personal network
  • the 'substrate 10' means a processing target of the impeller processing apparatus 100 according to the present embodiment, and may be made of, for example, a material such as metal. 4 exemplarily shows a representative shape of the substrate 10 .
  • 3 to 7 are views for explaining the impeller processing apparatus 100 according to an embodiment of the present invention.
  • the impeller processing apparatus 100 may include a control device 20 , an end mill driving unit 30 , and a substrate driving unit 40 .
  • the impeller processing apparatus 100 may process the substrate 10 in five dimensions ('5-axis processing').
  • the substrate holding unit 41 may move in two dimensions, and at the same time, the end mill driving unit 30 may move in three dimensions.
  • the impeller machining apparatus 100 according to the present embodiment may be preferably applied to rough cut machining or roughing. As will be described later with reference to FIG. 8 , the impeller machining apparatus 100 according to the present embodiment may perform a roughing step, and additionally, a Finish cut machining or finishing may be performed. For example, when the flat end mill 31 is mounted on the impeller processing apparatus 100 according to this embodiment, the roughing step is performed, and when the ball end mill 31 is mounted, the finishing step can be performed. have.
  • control device 20 simultaneously controls the operation of the end mill driving unit 30 and the substrate driving unit 40 so that the side portion of the end mill 31 processes the substrate 10 .
  • the control device 20 may generate various commands for the operation of the end mill driving unit 30 and the substrate driving unit 40 . These commands may include operation commands and control commands for operating the end mill.
  • the control device 20 includes an end mill position control command for controlling the position of the end-mill 31 , a posture control command for controlling the posture of the end mill 31 , and the base 10 . It is possible to generate a base posture control command for controlling the posture of By these control commands, the position of the substrate 10 and the end mill ( 31) is determined.
  • the end mill 31 may be a flat end mill 31 (flat end-mill) that can be machined using a side part.
  • the control device 20 controls the operations of the end mill driving unit 30 and the substrate driving unit 40 so that the side surface of the end mill 31 is processed for all 'processed parts' of the substrate 10 .
  • the control device 20 processes all the 'processing parts' of the substrate 10
  • the normal vector of each 'processing part' is perpendicular to the side surface of the end mill 31.
  • the posture of the base material 10 and the position and posture of the end mill 31 are controlled so that the side part of 31 is in contact with the processing site to process the base material 10 .
  • the posture of the substrate 10 is There may be a method of fixing and adjusting the position and posture of the end mill 31 , or adjusting both the posture of the substrate 10 and the position and posture of the end mill 31 .
  • control device 20 adjusts only the position and posture of the end mill 31 so that the side part of the end mill 31 is in contact with the processing part, depending on the shape or arrangement of the processing part, or Alternatively, the position and posture of the end mill 31 and the posture of the substrate 10 may also be adjusted so that the side surface of the end mill 31 is in contact with the processing part.
  • the control device 20 may be a computer in which programs (not shown) can be executed.
  • a program (not shown) for executing the impeller processing method may be installed in the control device 20, and this program is installed in the control device 20 described with reference to FIGS. 3 to 7 to perform its operation. Consists of.
  • the program for executing the impeller machining method is configured to execute the operations of the control device 20 described in this specification. That is, the program for executing the impeller processing method can control the operation of the end mill driving unit 30 and the substrate driving unit 40 so that the side surface of the end mill 31 is processed for all 'processed parts' of the substrate 10. have.
  • the program for executing the impeller processing method includes an end mill position control command for controlling the position of the end-mill 31, an attitude control command for controlling the attitude of the end mill 31, and a base ( 10) by generating a substrate posture control command for controlling the posture, it is possible to control the operation of the end mill driving unit 30 and the substrate driving unit 40.
  • the program for executing the impeller processing method is stored in a storage device (computer processor-readable recording medium, for example, RAM, ROM, hard disk (HDD), or may be stored in a solid state drive (SSD), and may be executed by a computer processor (not shown).
  • a storage device computer processor-readable recording medium, for example, RAM, ROM, hard disk (HDD), or may be stored in a solid state drive (SSD), and may be executed by a computer processor (not shown).
  • the program for executing the impeller processing method is installed and executed on a server (not shown) connected to the control device 30 and a wired or communication network through a communication network, and the end mill driving unit 30 and the server (not shown) Commands (including a position control command, an attitude control command, and a substrate attitude control command) for operation and control of the substrate driving unit 40 are transmitted to the control device 30 , and the control device 30 is based on the commands to operate the end mill driving unit 30 and the substrate driving unit 40 .
  • the control device 20 may be directly connected to the end mill driving unit 30 and the substrate driving unit 40 by wire or may be connected through a communication network.
  • the commands generated by the control device 20 are converted into signals recognizable by the end mill driving unit 30 and the substrate driving unit 40 and provided to the end mill driving unit 30 and the substrate driving unit 40 .
  • a component that converts a command into the form of a signal recognizable by the end mill drive unit 30 and the substrate drive unit 40 may be, for example, a program called a driver.
  • a driver may be installed and executed in the control device 20 or may be installed and executed in a separately provided device (not shown).
  • the end mill position control command for controlling the position of the end mill 31 follows a trochoid shape.
  • a trochoid is a curve drawn by a vertex located inside or outside a circle rolling along a straight line. That is, the control device 20 controls the position of the end mill 31 to move along the trochoid shape.
  • the posture control command for controlling the posture of the end mill 31 and the posture control command for controlling the posture of the substrate 10 are determined according to the shape to be machined.
  • Korean Patent Publication No. 10-0833112 a method of generating a roughing path for manufacturing an impeller
  • a method for generating a machining path is disclosed.
  • the contents disclosed in Korean Patent No. 10-0833112 are incorporated as a part of the present specification to the extent that they do not conflict with the present invention.
  • the end mill driving unit 30 moves the end mill 31 to have a position determined by the end mill position control command and an attitude determined by the attitude control command, and rotates the end mill 31 at the predetermined position and attitude. to process the substrate 10 .
  • the end mill 31 coupled to the end mill driving unit 30 may be moved in a three-dimensional space, as shown in FIG. 3 .
  • the position or posture of the end mill 31 may be defined by another three-dimensional coordinate system (eg, a spherical coordinate system).
  • a spherical coordinate system e.g., a spherical coordinate system
  • the end mill driving unit 30 receives the end mill position control command and the end mill attitude control command from the control device 20 , and moves the end mill 31 to match the position and attitude according to the received control commands. As described above, the end mill driving unit 30 moves the end mill 31 so that the side surface of the end mill 31 processes the processing portion.
  • the substrate driving unit 40 moves the substrate 10 to have a posture determined by the substrate posture control command.
  • the substrate fixing part 41 may be rotated in both directions ('A direction') about the X axis, and may also rotate in both directions ('C direction') based on the Z axis. As such, the substrate fixing part 41 may move by a combination of the A-direction and the C-direction.
  • the movable part of the substrate 10 may rotate the A-direction movable part (not shown) capable of rotating the substrate fixing part 41 in the A direction, and the substrate fixing part 41 may rotate in the C direction. It may include a C-direction movable part (not shown), and the substrate fixing part 41 is moved in two dimensions by these movable parts. Since the configuration of the A-direction movable part (not shown) and the C-direction movable part (not shown) is a well-known technique in the prior art, a detailed description thereof will be omitted.
  • the substrate fixing unit 41 is configured to move in two dimensions, this is exemplary and it will be possible to be configured to move in three dimensions. What is important is the relative position and posture of the substrate 10 and the end mill 31 . That is, it is important to simultaneously control the positions and postures of the end mill 31 and the substrate 10 so that the side portion of the end mill 31 contacts and processes the substrate 10 .
  • FIGS. 4 and 5 show an exemplary state when the impeller processing apparatus 100 according to an embodiment of the present invention starts a processing operation. Referring to these drawings, it can be seen that the side part of the end mill 31 is preparing to process the 'processing part' of the substrate 10 .
  • the control device 20 sets the normal vector of the 'processing site' of the substrate 10 to S When defined as , the normal vector S
  • the position of the end mill 31 , the posture of the end mill 31 , and the posture of the base material 10 are simultaneously controlled so that the end mill 31 is vertically incident on the side surface of the end mill 31 . That is, the control device 20 controls the end mill driving unit 30 and the substrate driving unit 40 so that the side part of the end mill 31 processes the 'processing part'.
  • FIG. 6 an example of a 'processing site' is shown.
  • the normal vectors of the machining parts are S1 , S2 , and S3 respectively
  • the position of the end mill 31 the posture of the end mill 31 so that each of these vectors is incident perpendicularly to the side surface of the end mill 31 , and the posture of the substrate 10 are simultaneously controlled.
  • the position of the normal vector S1 of the processing site S1-nosed, 31 so as to vertically incident upon a side surface portion of the end mill 31, the position of the end mill 31, and the substrate The posture of (10) is controlled at the same time.
  • the posture, and the base material 10 at the time of processing the processing site S2 the normal vector S2 of the processing site S2 is incident perpendicular to the side surface of the end reel, the position of the end mill 31, the end mill 31 The posture is controlled at the same time. The rest of the processing is performed in the same way.
  • FIG. 7 another example of a 'processing site' is shown.
  • the normal vectors of the processing parts are respectively S4 , S5 , S6 , and S7 .
  • the posture of and the posture of the substrate 10 are simultaneously controlled.
  • the remaining processing parts are performed in the same manner as described with reference to FIG. 6 .
  • FIG. 8 is a view for explaining an impeller processing method according to an embodiment of the present invention.
  • the impeller processing method is a step (S101), roughing processing step (S103), the impeller processing apparatus 100 of mounting the flat end mill 31 to the impeller angular hole apparatus 100. It may include a step (S105) of mounting the ball end mill 31, and a finishing processing step (S107).
  • the step of mounting the flat end mill 31 to the impeller processing apparatus 100 is a step of mounting the flat end mill 31 to the impeller processing apparatus 100 described with reference to FIGS. 3 to 7 .
  • the roughing processing step (S103) is performed by the impeller processing apparatus 100 equipped with the flat end mill 31 in the step S101.
  • the impeller processing apparatus 100 equipped with the flat end mill 31 operates so that the side surface of the flat end mill 31 processes the substrate 10 .
  • the posture of the substrate 10 and the position of the end mill 31 so that the normal vector of the 'processing portion' of the substrate 10 is perpendicular to the side surface of the end mill 31 . And while controlling the posture, the substrate 10 is processed.
  • the impeller processing apparatus 100 equipped with the flat end mill 31 mounts the end mill 31 to process the side surface of the end mill 31 with respect to all 'processing parts' of the substrate 10. ), the substrate 10 is processed in a state where the position and posture and the posture of the moving part of the substrate 10 are controlled. Specifically, in the roughing processing step (S103), the impeller processing apparatus 100 equipped with the flat end mill 31 is the normal vector of each 'machining part' when processing all the 'processing parts' of the substrate 10. The base material 10 is processed while controlling the posture of the base material 10 and the position and posture of the end mill 31 so that the end mill 31 is perpendicular to the side surface thereof.
  • a program for performing the roughing step ( S103 ) may be installed in the impeller machining apparatus 100 performing the roughing step ( S103 ).
  • the roughing processing step (S103) is an end mill position control command for controlling the position of the end mill 31, a posture control command for controlling the posture of the end mill 31, and a posture control command for controlling the posture of the substrate 10 It may include generating a substrate posture control command, and these end mill position control commands, end mill posture control commands, and substrate posture control commands are such that the side portion of the end mill 31 processes the substrate 10 . it is for
  • the end mill position control command, the end mill attitude control command, and the substrate attitude control command process the 'machining part' in a state where the normal vector of the 'machining part' is perpendicular to the side part of the end mill 31. It is to do
  • the roughing processing step (S103) please refer to the description of the impeller processing apparatus 100 described with reference to FIGS. 3 to 7 .
  • the impeller processing apparatus 100 for mounting the ball end mill 31 in step S105 may be the impeller processing apparatus 100 used in the roughing processing step S103 or other impeller processing apparatus 100 .
  • the impeller processing apparatus 100 used in step S103 is used in step S105
  • the ball end mill 31 instead of the flat end mill 31 mounted in step S101 is used as the impeller processing apparatus 100
  • the finishing machining step (S107) is a step of precisely machining to fit the dimensions to be machined. Since there are conventionally widely known techniques for finishing machining, a description thereof will be omitted.

Landscapes

  • Engineering & Computer Science (AREA)
  • Mechanical Engineering (AREA)
  • Human Computer Interaction (AREA)
  • Manufacturing & Machinery (AREA)
  • Physics & Mathematics (AREA)
  • General Physics & Mathematics (AREA)
  • Automation & Control Theory (AREA)
  • Structures Of Non-Positive Displacement Pumps (AREA)

Abstract

본 발명의 일 실시예에 따른 임펠러 가공 장치는, 엔드밀을 장착한 엔드밀 구동부; 기재를 움직이는 기재 구동부; 및 엔드밀의 측면부가 기재를 가공하도록 엔드밀 구동부와 기재 구동부를 제어하는 제어장치를 포함할 수 있다.

Description

임펠러 가공 장치 및 이를 이용한 가공방법
본 발명은 임펠러 가공 장치 및 가공방법과 프로그램을 기록한 컴퓨터로 읽을 수 있는 기록매체에 관한 것이다.
물, 냉매, 가스 등의 고온 압축과 고속 이송에 사용되는 터보 기계 등에 있어서 임펠러는 핵심적인 부품이며, 임펠러는 고속회전하는 축과 동작적으로 결합되어 물, 냉매, 또는 가스와 같은 유체를 압축시키거나 이송시키는 기능을 한다.
임펠러를 제조하는 방법은 종래 널리 알려져 있으며, 예를 들면 한국등록특허공보 10-0561204(2006. 3. 8)에 종래 임펠러 제조 방법의 일 예가 개시되어 있다. 한편, 산업의 전반적인 자동화 추세에 따라서, 엔드밀이 장착된 5축 가공이 가능한 장치에 의해 임펠러가 자동적으로 생산되고 있다.
도 1은 종래의 5축 가공이 가능한 임펠러 가공 장치를 나타내는 도면이고, 도 2는 종래의 임페라 가공장치에서 볼 엔드밀(T)로 황삭 가공하는 동작을 설명하기 위한 도면이다.
도 2를 특히 참조하면, 볼 엔드밀(T)의 절삭날이 기재(M)를 직접 가공하는 것을 볼 수 있다. 이처럼, 볼 엔드밀(T)의 절삭날이 기재에 접촉하여 가공할 경우, 볼 엔드밀(T)이 기재(M)에 과도한 부하를 가함으로써 기재(M)의 변형이 발생될 위험이 높고. 볼 엔드밀(T)의 절삭날도 약하여 빠른 가공을 하기가 힘들다.
본 발명의 일 실시예에 따르면, 가공 시간이 단축되고 기재에 부하를 적게 가하는 임펠러 가공 장치가 제공될 수 있다.
본 발명의 일 실시예에 따르면, 가공 시간이 단축되고 기재에 부하를 적게 가하는 임펠러 가공 방법이 제공될 수 있다.
본 발명의 일 실시예에 따르면, 가공 시간이 단축되고 기재에 부하를 적게 가하는 임펠러 가공 방법을 컴퓨터에 실행시키기 위한 프로그램을 기록한 컴퓨터로 읽을 수 있는 기록매체가 제공될 수 있다.
본 발명의 일 실시예에 따른 임펠러 가공 장치에 있어서,
엔드밀을 장착한 엔드밀 구동부; 기재를 움직이는 기재 구동부; 및
엔드밀의 측면부가 기재를 가공하도록 엔드밀 구동부와 기재 구동부를 제어하는 제어장치; 를 포함할 수 있다.
본 발명의 다른 실시예에 따른 임펠러 가공 장치에 있어서,
엔드밀(flat end-mill)의 위치를 제어하는 엔드밀 위치 제어명령, 상기 엔드밀의 자세를 제어하는 자세 제어명령, 및 기재의 자세를 제어하는 기재 자세 제어명령을 생성하는 제어장치; 상기 엔드밀 위치 제어명령에 의해 정해지는 위치와, 상기 자세 제어명령에 의해 정해지는 자세를 가지도록 상기 엔드밀을 움직이는 엔드밀 구동부; 및 상기 기재 자세 제어명령에 의해 정해지는 자세를 가지도록 상기 기재를 움직이는 기재 구동부; 를 포함할 수 있다.
상술한 임펠러 가공 장치에 있어서, 상기 엔드밀 위치 제어명령, 상기 자세 제어명령, 및 상기 기재 자세 제어명령은, 상기 엔드밀의 측면부가 상기 기재를 가공하도록 생성된 것일 수 있다.
상술한 임펠러 가공 장치에 있어서, 상기 엔드밀 위치 제어명령, 상기 자세 제어명령, 및 상기 기재 자세 제어명령은, 상기 기재에서 가공될 부위 - 가공 부위 - 의 법선 벡터가 상기 엔드밀의 측면부에 수직이 되도록 생성된 것일 수 있다.
상술한 임펠러 가공 장치에 있어서, 상기 엔드밀 위치 제어명령은 트로코이드 (trochoid) 형상을 따라 상기 엔드밀이 이동되도록 생성된 것일 수 있다.
상술한 임펠러 가공 장치에 있어서, 상기 엔드밀 위치 제어명령, 상기 자세 제어명령, 및 상기 기재 자세 제어명령은, 황삭 단계를 수행하도록 생성된 것일 수 있다.
본 발명의 일 실시예에 따르면, 컴퓨터에 임펠러 가공 방법을 실행시키기 위한 프로그램을 기록한 컴퓨터로 읽을 수 있는 기록매체가 제공된다.
상기 임펠러 가공 방법은 임펠러 가공 장치에 장착된 엔드밀의 측면부를 이용하여 기재를 가공하는 것이다.
상기 임펠러 가공 방법은 임펠러 가공 장치에 장착된 엔드밀의 위치를 제어하기 위한 엔드밀 위치 제어명령, 상기 엔드밀의 자세를 제어하기 위한 자세 제어명령, 및 기재의 자세를 제어하기 위한 기재 자세 제어명령을 생성하는 단계;를 포함할 수 있다.
상술한 임펠러 가공 방법에서, 상기 엔드밀 위치 제어명령, 상기 자세 제어명령, 및 상기 기재 자세 제어명령은, 상기 엔드밀의 측면부가 상기 기재를 가공하도록 생성된 것일 수 있다.
상술한 임펠러 가공 방법에서, 상기 엔드밀 위치 제어명령, 상기 자세 제어명령, 및 상기 기재 자세 제어명령은, 상기 기재에서 가공될 부위 - 가공 부위 - 의 법선 벡터가 상기 엔드밀의 측면부에 수직이 되도록 생성되는 것일 수 있다.
상술한 임펠러 가공 방법에서, 상기 엔드밀 위치 제어명령은 트로코이드 (trochoid) 형상을 따라 상기 엔드밀이 이동되도록 생성되는 것일 수 있다.
상술한 임펠러 가공 방법에서, 상기 임펠러 가공 방법은 황삭 단계를 수행하는 방법일 수 있다.
본 발명의 하나 이상의 실시예에 따르면, 가공과정에 기재가 부하가 현격히 줄어든다. 또한, 가공 시간이 종래 대비하여 40%~50%가 단축된다.
도 1은 종래의 5축 가공이 가능한 임펠러 가공 장치를 나타내는 도면이다.
도 2는 종래의 임페라 가공장치에서 볼 엔드밀(T)로 황삭 가공하는 동작을 설명하기 위한 도면이다.
도 3 내지 도 7은 본 발명의 일 실시예에 따른 임펠러 가공 장치(100)를 설명하기 위한 도면들이다.
도 8은 본 발명의 일 실시예에 따른 임펠러 가공 방법을 설명하기 위한 도면이다.
[부호의 설명]
100: 임펠러 가공 장치 10: 기재
20: 제어장치 30: 엔드밀 구동부
31: 엔드밀 33: 엔드밀 지그
40: 기재 구동부 41: 기재 고정부
S: 법선 벡터
본 명세서에서, 어떤 구성요소가 다른 구성요소 상에 있다고 언급되는 경우에 그것은 다른 구성요소 상에 직접 형성될 수 있거나 또는 그들 사이에 제 3의 구성요소가 개재될 수도 있다는 것을 의미한다. 또한, 도면들에 있어서, 구성요소들의 두께는 기술적 내용의 효과적인 설명을 위해 과장된 것이다.
본 명세서에서 제1, 제2 등의 용어가 구성요소들을 기술하기 위해서 사용된 경우, 이들 구성요소들이 이 같은 용어들에 의해서 한정되어서는 안된다. 이들 용어들은 단지 어느 구성요소를 다른 구성요소와 구별시키기 위해서 사용되었을 뿐이다. 여기에 설명되고 예시되는 실시예들은 그것의 상보적인 실시예들도 포함한다.
본 명세서에서, 단수형은 문구에서 특별히 언급하지 않는 한 복수형도 포함한다. 명세서에서 사용되는 '포함한다(comprise)' 및/또는 '포함하는(comprising)'은 언급된 구성요소는 하나 이상의 다른 구성요소의 존재 또는 추가를 배제하지 않는다.
이하 도면을 참조하여 본 발명을 상세히 설명하도록 한다. 아래의 특정 실시예들을 기술하는데 있어서 여러 가지의 특정적인 내용들은 발명을 더 구체적으로 설명하고 이해를 돕기 위해 작성되었다. 하지만 본 발명을 이해할 수 있을 정도로 이 분야의 지식을 갖고 있는 당업자는 이러한 여러 가지의 특정적인 내용들이 없어도 사용될 수 있다는 것을 인지할 수 있다. 어떤 경우에는, 발명을 기술하는 데 있어서 흔히 알려졌으면서 발명과 크게 관련 없는 부분들은 본 발명을 설명하는 데 있어 혼돈을 막기 위해 기술하지 않음을 미리 언급해 둔다.
용어의 정의
본원 명세서에서, 용어 '프로그램'은 '컴퓨터로 처리하기에 적합한 명령의 집합'을 의미한다.
본원 명세서에서, '프로그램이 어떤 동작(또는 단계)을 수행 (또는 실행)한다'는 취지의 표현은,”컴퓨터에 어떤 동작(또는 단계)을 수행 또는 실행시킨다”는 것을 의미한다.
본원 명세서에서, '프로그램이 어떤 장치에 설치되어 있다'는 취지의 표현은, 프로그램이 그 장치에 의해 제어가능한 기억장치에 저장되어 그 장치에 의해 제어가능한 컴퓨터 프로세서의 의해 실행될 수 있는 상태임을 의미한다.
본원 명세서에서, '컴퓨터'는 컴퓨터 프로세서와 기억장치, 운영체제, 펌웨어, 응용 프로그램, 통신부, 및 기타 리소스를 포함하며, 여기서, 운영체제(OS: OPERATING SYSTEM)은 다른 하드웨어, 펌웨어, 또는 응용프로그램(예를 들면, 관리 프로그램)을 동작적으로 연결시킬 수 있다. 통신부는 외부와의 데이터를 송수신하기 위한 소프트웨어 및 하드웨어로 이루어진 모듈을 의미한다. 또한, 컴퓨터 프로세서와 기억장치, 운영체제, 응용 프로그램, 펌웨어, 통신부, 및 기타 리소스는 서로 동작적으로(operatively) 직접 또는 통신망을 통해서 연결되어 있다.
본원 명세서에서, '서버'는 하나 이상의 메모리들(미 도시), 하나 이상의 컴퓨터 프로세서들(one or more Computor processors)(미 도시), 및 하나 이상의 프로그램들(one or more programs)(미 도시)을 포함하도록 구성된 컴퓨터를 의미하며, 여기서, 하나 이상의 프로그램은 서버에 포함된 메모리에 저장되어 상기 하나 이상의 프로세서들에 의해 실행되도록(executed) 구성되며, 하나 이상의 메모리, 하나 이상의 컴퓨터 프로세서들, 하나 이상의 프로그램들은 물리적으로 동일한 장치에 위치되어 직접 연결되거나 또는 통신망에 의해 연결되어 있을 수 있다.
본원 명세서에서, '통신망'은 데이터를 유선 및/또는 무선으로 송수신할 수 있도록 지원하는 일체의 시설 - 통신을 지원하는 일체의 프로그램들, 기계들, 전기 및 전자 장치들, 기지국들, 및 통신용 케이블들을 포함 - 을 의미하며, 이러한 통신망은 광역 통신망(WAN), 도시권 통신망(MAN), 근거리 통신망(LAN), 및/또는 개인 통신망(PAN))으로 데이터를 유선 및/또는 무선으로 상호 송수신할 수 있도록 지원한다.
본원 명세서에서, '기재(10)'는 본 실시예에 따른 임펠러 가공 장치(100)의 가공 대상을 의미하며, 예를 들면, 금속과 같은 재질로 구성될 수 있다. 도 4에는 기재(10)의 대표적인 형상이 예시적으로 도시되어 있다.
도 3 내지 도 7은 본 발명의 일 실시예에 따른 임펠러 가공 장치(100)를 설명하기 위한 도면들이다.
이 도면들을 참조하면, 본 발명의 일 실시예에 따른 임펠러 가공 장치(100)는 제어장치(20), 엔드밀 구동부(30), 및 기재 구동부(40)를 포함할 수 있다.
본 실시예에 따른 임펠러 가공 장치(100)는 5차원 상에서 기재(10)를 가공('5축 가공')할 수 있다. 예를 들면, 기재 고정부(41)는 2차원 상에서 움직일 수 있고, 동시에 엔드밀 구동부(30)는 3차원 상에서 움직일 수 있다.
본 실시예에 따른 임펠러 가공 장치(100)는 바람직하게는 황삭 단계(Rough cut machining or roughing)에 적용될 수 있다. 도 8을 참조하여 후술하겠지만, 본 실시예에 따른 임펠러 가공 장치(100)는 황삭 단계를 수행할 수 있고, 추가적으로 정삭 단계(Finish cut machining or finishing)도 수행할 수 있다. 예를 들면, 본 실시예에 따른 임펠러 가공 장치(100)에 평 엔드밀(31)이 장착된 경우에는 황삭 단계가 수행되고, 볼 엔드밀(31)이 장착된 경우에는 정삭 단계가 수행될 수 있다.
제어장치(20)
본 실시예에 따르면, 제어장치(20)는 엔드밀(31)의 측면부가 기재(10)를 가공하도록 엔드밀 구동부(30)와 기재 구동부(40)의 동작을 동시에 제어한다.
제어장치(20)는 엔드밀 구동부(30)와 기재 구동부(40)의 동작을 위한 다양한 명령들을 생성할 수 있다. 이러한 명령들에는 엔드밀을 동작시키는 동작명령과 제어명령들이 포함되어 있을 수 있다.
예를 들면, 제어장치(20)는 엔드밀(31)(end-mill)의 위치를 제어하는 엔드밀 위치제어명령, 엔드밀(31)의 자세를 제어하는 자세제어명령, 및 기재(10)의 자세를 제어하는 기재 자세제어명령을 생성할 수 있다. 이들 제어 명령들에 의해서, 기재(10)에서 가공되는 부위 - 이하, '가공 부위' - 의 법선 벡터가 엔드밀(31)의 측면부에 수직으로 입사되도록, 기재(10)의 자세와 엔드밀(31)의 위치 및 자세가 정해진다. 본 실시예에서 엔드밀(31)은 측면부를 이용하여 가공이 가능한 평 엔드밀(31)(flat end-mill)일 수 있다.
제어장치(20)는 기재(10)의 모든 '가공 부위'에 대하여 엔드밀(31)의 측면부가 가공하도록 엔드밀 구동부(30)와 기재 구동부(40)의 동작을 제어한다. 구체적인 예를 들면, 제어장치(20)는 기재(10)의 모든 '가공 부위'들을 가공할 때 각각의 '가공 부위'의 법선 벡터가 엔드밀(31)의 측면부에 수직이 된 상태로 엔드밀(31)의 측면부가 가공부위에 접촉되어 기재(10)를 가공하도록, 기재(10)의 자세와 엔드밀(31)의 위치 및 자세를 제어한다. '가공 부위'의 법선 벡터가 엔드밀(31)의 측면부에 수직이 된 상태로 엔드밀(31)의 측면부가 '가공 부위'에 접촉되도록 하기 위해서는, 예를 들면, 기재(10)의 자세를 고정하고 엔드밀(31)의 위치 및 자세를 조절하거나, 또는 기재(10)의 자세와 엔드밀(31)의 위치 및 자세를 모두 조절하는 방법이 있을 수 있다. 즉, 제어장치(20)는, 가공 부위가 어떤 형상인지 또는 어떤 배치인지에 따라서, 엔드밀(31)의 위치 및 자세 만을 조절하여 엔드밀(31)의 측면부가 가공부위에 접촉되도록 조절하거나, 또는 엔드밀(31)의 위치 및 자세와 기재(10)의 자세도 같이 조절하여 엔드밀(31)의 측면부가 가공부위에 접촉되도록 조절할 수 있다.
제어장치(20)는 프로그램들(미 도시)이 실행될 수 있는 컴퓨터일 수 있다. 제어장치(20)에는 임펠러 가공 방법을 실행시키는 프로그램(미 도시)이 설치되어 있을 수 있으며, 이러한 프로그램은 도 3 내지 도 7을 참조하여 설명하는 제어장치(20)에 설치되어 제 동작을 수행하도록 구성되어 있다.
임펠러 가공 방법을 실행시키는 프로그램은 본원 명세서에서 설명하는 제어장치(20)의 제 동작들을 실행되도록 구성되어 있다. 즉, 임펠러 가공 방법을 실행시키는 프로그램은 기재(10)의 모든 '가공 부위'에 대하여 엔드밀(31)의 측면부가 가공하도록 엔드밀 구동부(30)와 기재 구동부(40)의 동작을 제어할 수 있다. 구체적으로, 임펠러 가공 방법을 실행시키는 프로그램은, 엔드밀(31)(end-mill)의 위치를 제어하는 엔드밀 위치제어명령, 엔드밀(31)의 자세를 제어하는 자세제어명령, 및 기재(10)의 자세를 제어하는 기재 자세제어명령을 생성하여, 엔드밀 구동부(30)와 기재 구동부(40)의 동작을 제어할 수 있다.
임펠러 가공 방법을 실행시키는 프로그램은 제어장치(30)에 내장된 기억장치(컴퓨터 프로세서가 읽을 수 있는 기록매체에, 예를 들면, 램(ram), 롬(rom), 하드디스크(HDD), 또는 SSD(Solid State Drive)와 같은 것일 수 있음)에 저장되어 있을 수 있고, 컴퓨터 프로세서(미 도시)에 의해 실행될 수 있다.
대안으로(Alternatively), 임펠러 가공 방법을 실행시키는 프로그램은 제어장치(30)와 유선 또는 통신망을 통해서 연결된 서버(미 도시)에 설치되어 실행되며, 서버(미 도시)에서 엔드밀 구동부(30) 및 기재 구동부(40)의 동작과 제어를 위한 명령들(위치제어명령, 자세제어명령, 기재 자세제어명령을 포함)을 제어장치(30)에게 전송하고, 제어장치(30)는 그러한 명령들에 기초하여 엔드밀 구동부(30)과 기재 구동부(40)를 동작시킬 수 있다.
제어장치(20)는 엔드밀 구동부(30) 및 기재 구동부(40)와 유선으로 직접 연결되거나 또는 통신망을 통해서 연결될 수 있다. 제어장치(20)에 의해 생성된 명령들은 엔드밀 구동부(30) 및 기재 구동부(40)에서 인식가능한 신호의 형태로 변환되어 엔드밀 구동부(30) 및 기재 구동부(40)에게 제공된다. 명령을 엔드밀 구동부(30) 및 기재 구동부(40)에서 인식가능한 신호의 형태로 변환하는 구성요소는 예를 들면 드라이버(driver)라고 불리우는 프로그램일 수 있다. 이러한 드라이버는 제어장치(20)에 설치되어 실행되거나 또는 별도로 마련된 장치(미 도시)에 설치되어 의해 수행될 수 있다.
엔드밀(31)(end-mill)의 위치를 제어하는 엔드밀 위치제어명령은 트로코이드(trochoid) 형상을 따른다. 트로코이드는 직선을 따라 굴러가는 원의 안 또는 바깥에 위치한 한 정점이 그리는 곡선을 의미한다. 즉, 제어장치(20)는 엔드밀(31)의 위치가 트로코이드 형상을 따라서 이동하도록 제어한다.
엔드밀(31)의 자세를 제어하는 자세제어명령과 기재(10)의 자세를 제어하는 기재 자세제어명령은, 가공할 형상에 따라서 결정된다. 예를 들면, 한국등록특허공보 10-0833112호(임펠러제작을 위한 황삭가공경로 생성방법)을 참조하면, 가공경로를 생성하는 방법이 개시되어 있다. 한국등록특허공보 10-0833112호에 개시된 내용은 본원 발명과 상충되지 않는 한도에서 본원 명세서의 일부로서 결합된다.
엔드밀 구동부(30)
엔드밀 구동부(30)는 엔드밀 위치제어명령에 의해 정해지는 위치와, 자세제어명령에 의해 정해지는 자세를 가지도록 엔드밀(31)을 움직이고, 정해진 위치와 자세에서 엔드밀(31)을 회전시켜서 기재(10)를 가공한다.
엔드밀 구동부(30)에 결합된 엔드밀(31)은 도 3에 도시된 바와 같이, 3차원 공간에서 이동될 수 있다. 본 실시예에서는, XYZ 좌표계에 의해 정의된 것으로 설명하고 있지만, 이는 예시적인 것으로, 다른 3차원 좌표계(예를 들면, 구면좌표계)에 의해서도 엔드밀(31)의 위치나 자세가 정의될 수 있을 것이다. 엔드밀 구동부(30)의 자체 구성은 종래 널리 알려진 기술이므로 이에 대한 상세한 설명은 생략하기로 한다.
엔드밀 구동부(30)는 엔드밀 위치제어명령과 엔드밀 자세제어명령을 제어장치(20)로부터 수신하고, 수신한 제어 명령들에 따른 위치와 자세에 맞도록 엔드밀(31)을 이동시킨다. 상술한 바와 같이 엔드밀 구동부(30)는 엔드밀(31)의 측면부가 가공 부위를 가공하도록 엔드밀(31)을 이동시킨다.
기재 구동부(40)
기재 구동부(40)는 기재 자세제어명령에 의해 정해지는 자세를 가지도록 기재(10)를 움직인다.
기재 고정부(41)는 X축을 기준으로 양 방향 회전('A 방향')할 수 있고, 또한 Z 축을 기준으로 양 방향 회전('C 방향')할 수 있다. 이처럼, 기재 고정부(41)는 A 방향과 C 방향의 조합에 의해 움직일 수 있다. 도 3에 도시하지는 않았지만, 기재(10) 가동부는 기재 고정부(41)를 A 방향으로 회전시킬 수 있는 A방향 가동부(미 도시)와, 기재 고정부(41)를 C 방향으로 회전시킬 수 있는 C 방향 가동부(미 도시)를 포함할 수 있으며, 이러한 가동부들에 의해서 기재 고정부(41)가 2차원상에서 움직이게 된다. A방향 가동부(미 도시)와 C방향 가동부(미 도시)의 구성은 종래 널리 알려진 기술이므로 이에 대한 상세한 설명은 생략하기로 한다.
한편, 본 실시예에서, 기재 고정부(41)가 2차원 상에서 움직이도록 구성되어 있다고 설명하였지만, 이는 예시적인 것으로 3차원 상에서 움직이도록 구성되는 것도 가능할 것이다. 중요한 것은, 기재(10)와 엔드밀(31)의 상대적 위치와 자세이다. 즉, 엔드밀(31)의 측면부가 기재(10)에 접촉하여 가공하도록 엔드밀(31)과 기재(10)의 위치와 자세를 동시에 제어하는 것이 중요하다.
도 4와 도 5는 본 발명의 일 실시예에 따른 임펠러 가공 장치(100)가 가공 동작을 시작할 때의 예시적인 모습을 나타낸다. 이들 도면을 참조하면, 엔드밀(31)의 측면부가 기재(10)의 '가공 부위'를 가공할 준비를 하고 있는 것을 알 수 있다.
제어장치(20)는, 기재(10)의 '가공 부위'의 법선 벡터를 S 라고 정의할 때, 법선 벡터 S 가 엔드밀(31)의 측면부에 수직으로 입사되도록, 엔드밀(31)의 위치, 엔드밀(31)의 자세 및 기재(10)의 자세를 동시에 제어한다. 즉, 제어장치(20)는 엔드밀(31)의 측면부가 '가공 부위'를 가공하도록 엔드밀 구동부(30)와 기재 구동부(40)를 제어한다.
도 6을 참조하면, '가공 부위'의 예를 나타낸다. 가공부위들의 법선 벡터들을 각각 S1 , S2 , 및 S3 라고 할 때, 이들 각각의 벡터가 엔드밀(31) 의 측면부에 수직으로 입사되도록, 엔드밀(31)의 위치, 엔드밀(31)의 자세, 및 기재(10)의 자세가 동시에 제어 된다. 구체적으로, 가공부위 S1을 가공할 때, 가공부위 S1의 법선 벡터 S1 가 엔드밀(31)의 측면부에 수직으로 입사하도록, 엔드밀(31)의 위치, 엔드밀(31)의 자세, 및 기재(10)의 자세가 동시에 제어 된다. 또한, 가공부위 S2를 가공할 때, 가공부위 S2의 법선 벡터 S2 가 엔드릴의 측면부에 수직으로 입사하도록, 엔드밀(31)의 위치, 엔드밀(31)의 자세, 및 기재(10)의 자세가 동시에 제어 된다. 나머지 가공부위들도 같은 방식으로 진행된다.
도 7을 참조하면, '가공 부위'의 다른 예를 나타낸다. 가공부위들의 법선 벡터들을 각각 S4 , S5 , S6 , 및 S7 라고 할 때, 이들 각각의 벡터가 엔드밀(31) 의 측면부에 수직으로 입사되도록, 엔드밀(31)의 위치, 엔드밀(31)의 자세, 및 기재(10)의 자세가 동시에 제어 된다. 나머지 가공부위들도 도 6을 참조하여 설명한 방식과 같은 방식으로 진행된다.
도 8은 본 발명의 일 실시예에 따른 임펠러 가공 방법을 설명하기 위한 도면이다.
도 8을 참조하면, 본 발명의 일 실시예에 따른 임펠러 가공 방법은 임펠러 각공 장치에 평 엔드밀(31)을 장착하는 단계(S101), 황삭 가공 단계(S103), 임펠러 가공 장치(100)에 볼 엔드밀(31)을 장착하는 단계(S105), 및 정삭 가공 단계(S107)를 포함할 수 있다.
임펠러 가공 장치(100)에 평 엔드밀(31)을 장착하는 단계(S101)는 도 3 내지 도 7을 참조하여 설명한 임펠러 가공 장치(100)에 평 엔드밀(31)을 장착하는 단계이다.
황삭 가공 단계(S103)는 S101 단계에서 평 엔드밀(31)이 장착된 임펠러 가공 장치(100)에 의해 수행된다. 황삭 가공 단계(S103)에서, 평 엔드밀(31)을 장착한 임펠러 가공 장치(100)는 평 엔드밀(31)의 측면부가 기재(10)를 가공하도록 동작한다. 예를 들면, 임펠러 가공 장치(100)는, 기재(10)의 '가공 부위'의 법선 벡터가 엔드밀(31)의 측면부에 수직이 되도록 기재(10)의 자세와 엔드밀(31)의 위치 및 자세를 제어하면서, 기재(10)를 가공한다.
황삭 가공 단계(S103)에서, 평 엔드밀(31)이 장착된 임펠러 가공 장치(100)는 기재(10)의 모든 '가공 부위'에 대하여 엔드밀(31)의 측면부가 가공하도록 엔드밀(31)의 위치 및 자세와 기재(10) 가동부의 자세를 제어한 상태에서 기재(10)를 가공한다. 구체적으로, 황삭 가공 단계(S103)에서, 평 엔드밀(31)이 장착된 임펠러 가공 장치(100)는 기재(10)의 모든 '가공 부위'들을 가공할 때 각각의 '가공 부위'의 법선 벡터가 엔드밀(31)의 측면부에 수직이 되도록 기재(10)의 자세와 엔드밀(31)의 위치 및 자세를 제어하면서, 기재(10)를 가공한다.
황삭 가공 단계(S103)를 수행하는 임펠러 가공 장치(100)에는 황삭 가공 단계(S103)을 수행하는 프로그램이 설치되어 있을 수 있다. 황삭 가공 단계(S103)는 엔드밀(31)의 위치를 제어하기 위한 엔드밀 위치제어명령, 엔드밀(31)의 자세를 제어하기 위한 자세제어명령, 및 기재(10)의 자세를 제어하기 위한 기재 자세제어명령을 생성하는 단계를 포함할 수 있으며, 이러한 엔드밀 위치제어명령, 엔드밀 자세제어명령, 및 기재 자세제어명령은, 엔드밀(31)의 측면부가 기재(10)를 가공하도록 하기 위함이다.
상술한 바와 같이, 엔드밀 위치제어명령, 엔드밀 자세제어명령, 및 기재 자세제어명령은 '가공 부위'의 법선 벡터가 엔드밀(31)의 측면부에 수직이 된 상태에서 '가공 부위'를 가공하기 위한 것이다. 황삭 가공 단계(S103)에 대한 보다 상세한 내용은 도 3 내지 도 7을 참조하여 설명한 임펠러 가공 장치(100)의 설명을 참조하기 바란다.
단계(S105)에서 볼 엔드밀(31)을 장착하는 임펠러 가공 장치(100)는, 황삭 가공 단계(S103)에서 사용된 임펠러 가공 장치(100)이거나 또는 다른 임펠러 가공 장치(100)일 수 있다. 단계(S103)에서 사용된 임펠러 가공 장치(100)를 단계(S105)에 사용할 경우, 단계(S101) 단계에서 장착된 평 엔드밀(31) 대신에 볼 엔드밀(31)을 임펠러 가공 장치(100)에 장착한다. 정삭 가공 단계(S107)는 가공하고자 하는 치수에 맞도록 정밀하게 가공하는 단계이다. 정삭 가공은 종래 널리 알려진 기술들이 있으므로 이에 대한 설명은 생략하기로 한다.
이와 같이 본 발명이 속하는 분야에서 통상의 지식을 가진 자라면 이러한 명세서의 기재(10)로부터 다양한 수정 및 변형이 가능함을 이해할 수 있으며, 그러므로 본 발명의 범위는 설명된 실시예에 국한되어 정해져서는 아니되며 후술하는 특허청구범위뿐 아니라 이 특허청구범위와 균등한 것들에 의해 정해져야 한다.

Claims (8)

  1. 임펠러 가공 장치에 있어서,
    엔드밀을 장착한 엔드밀 구동부;
    기재를 움직이는 기재 구동부; 및
    엔드밀의 측면부가 상기 기재를 가공하도록 엔드밀 구동부와 기재 구동부를 제어하는 제어장치;를 포함하는 것인, 임펠러 가공 장치.
  2. 제1항에 있어서,
    상기 제어 장치는, 상기 기재에서 가공될 부위 - 가공 부위 - 의 법선 벡터가 상기 엔드밀의 측면부에 수직이 되도록 상기 엔드밀의 위치와 자세 및 상기 기재의 자세를 제어하는 것인, 임펠러 가공 장치.
  3. 제2항에 있어서,
    상기 엔드밀의 위치는 트로코이드 (trochoid) 형상을 따라 이동되는 것인, 임펠러 가공 장치.
  4. 제2항에 있어서,
    상기 제어 장치에 의한 상기 기재의 가공은 황삭 단계를 수행하는 것인, 임펠러 가공 장치.
  5. 컴퓨터에 임펠러 가공 방법을 실행시키기 위한 프로그램을 기록한 컴퓨터로 읽을 수 있는 기록매체에 있어서,
    상기 임펠러 가공 방법은, 임펠러 가공 장치에 장착된 엔드밀의 측면부가 기재를 가공하도록 제어하는 것인, 임펠러 가공 방법을 실행시키기 위한 프로그램을 기록한 컴퓨터로 읽을 수 있는 기록매체.
  6. 제5항에 있어서,
    상기 임펠러 가공 방법은, 상기 기재에서 가공될 부위 - 가공 부위 - 의 법선 벡터가 상기 엔드밀의 측면부에 수직이 되도록 상기 엔드밀의 위치와 자세 및 상기 기재의 자세를 제어하는 것인, 임펠러 가공 방법을 실행시키기 위한 프로그램을 기록한 컴퓨터로 읽을 수 있는 기록매체.
  7. 제6항에 있어서,
    상기 엔드밀의 위치는 트로코이드 (trochoid) 형상을 따라 이동되는 것인, 임펠러 가공 방법을 실행시키기 위한 프로그램을 기록한 컴퓨터로 읽을 수 있는 기록매체.
  8. 제6항에 있어서,
    상기 임펠러 가공 방법은 황삭 단계를 수행하는 방법인 것인, 임펠러 가공 방법을 실행시키기 위한 프로그램을 기록한 컴퓨터로 읽을 수 있는 기록매체.
PCT/KR2019/016765 2019-11-29 2019-11-29 임펠러 가공 장치 및 이를 이용한 가공방법 WO2021107229A1 (ko)

Priority Applications (2)

Application Number Priority Date Filing Date Title
PCT/KR2019/016765 WO2021107229A1 (ko) 2019-11-29 2019-11-29 임펠러 가공 장치 및 이를 이용한 가공방법
US16/785,649 US20210162519A1 (en) 2019-11-29 2020-02-10 Impeller manufacturing apparatus and manufacturing method using the same

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
PCT/KR2019/016765 WO2021107229A1 (ko) 2019-11-29 2019-11-29 임펠러 가공 장치 및 이를 이용한 가공방법

Related Child Applications (1)

Application Number Title Priority Date Filing Date
US16/785,649 Continuation US20210162519A1 (en) 2019-11-29 2020-02-10 Impeller manufacturing apparatus and manufacturing method using the same

Publications (1)

Publication Number Publication Date
WO2021107229A1 true WO2021107229A1 (ko) 2021-06-03

Family

ID=76091142

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/KR2019/016765 WO2021107229A1 (ko) 2019-11-29 2019-11-29 임펠러 가공 장치 및 이를 이용한 가공방법

Country Status (2)

Country Link
US (1) US20210162519A1 (ko)
WO (1) WO2021107229A1 (ko)

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR100902863B1 (ko) * 2008-04-28 2009-06-16 전북대학교산학협력단 임펠러의 황삭가공을 위한 공구조합 선정방법
JP5331083B2 (ja) * 2010-10-27 2013-10-30 株式会社スギノマシン 回転バランス修正方法および回転バランス修正機
US8844117B2 (en) * 2008-02-29 2014-09-30 Chiron-Werke Gmbh & Co. Kg Machine tool, particularly for milling a turbocharger compressor impeller
CN104475842A (zh) * 2014-11-24 2015-04-01 四川成发航空科技股份有限公司 一种整体叶盘结构型面铣削加工工艺方法
JP2019116870A (ja) * 2017-12-27 2019-07-18 トヨタ自動車株式会社 インペラの製造方法

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US8844117B2 (en) * 2008-02-29 2014-09-30 Chiron-Werke Gmbh & Co. Kg Machine tool, particularly for milling a turbocharger compressor impeller
KR100902863B1 (ko) * 2008-04-28 2009-06-16 전북대학교산학협력단 임펠러의 황삭가공을 위한 공구조합 선정방법
JP5331083B2 (ja) * 2010-10-27 2013-10-30 株式会社スギノマシン 回転バランス修正方法および回転バランス修正機
CN104475842A (zh) * 2014-11-24 2015-04-01 四川成发航空科技股份有限公司 一种整体叶盘结构型面铣削加工工艺方法
JP2019116870A (ja) * 2017-12-27 2019-07-18 トヨタ自動車株式会社 インペラの製造方法

Also Published As

Publication number Publication date
US20210162519A1 (en) 2021-06-03

Similar Documents

Publication Publication Date Title
WO2013009118A2 (en) Apparatus and method for inspecting pipelines
US7798764B2 (en) Substrate processing sequence in a cartesian robot cluster tool
US6675070B2 (en) Automation equipment control system
US6234738B1 (en) Thin substrate transferring apparatus
CN109531538B (zh) 机器人控制装置、机器人以及机器人系统
JP2007038360A (ja) 多関節搬送装置及びそれを用いた半導体製造装置
KR20010031303A (ko) 로봇 제어 장치와 그 제어 방법
KR20170082615A (ko) 툴 자동-교시 방법 및 장치
TW201008730A (en) Transfer robot control method
WO2013100339A1 (ko) 공구 교환 제어 장치 및 그 방법
WO2021107229A1 (ko) 임펠러 가공 장치 및 이를 이용한 가공방법
WO2012033309A2 (ko) 터닝 센터 베드의 리브 구조체
CN111618843A (zh) 机器人系统以及控制方法
WO2022108287A1 (ko) 전자 장치에 의해 수행되는 고정밀 위치 제어를 위한 강인한 최적 외란 관측기를 포함하는 시스템 및 제어 방법
WO2013058481A1 (ko) 공작기계의 볼스크류 변형에 의한 실시간 위치 보정 방법 및 장치
WO2020246808A1 (ko) 피니싱 작업을 위한 매니퓰레이터 및 그의 제어 방법
US6279059B1 (en) Docking station
JP2009049250A (ja) ティーチング用機構を備えたカセットステージ及びそれを備えた基板搬送装置、半導体製造装置
CA2130064A1 (en) Method and Apparatus for Transferring Data Between a Host Processor and a Subsystem Processor in a Data Processing System
WO2020105983A1 (ko) 로봇팔을 이용한 정밀 가공장치 및 이의 작동방법
JPS59223807A (ja) 数値制御装置の結合方式
KR20210067521A (ko) 임펠러 가공 장치 및 이를 이용한 가공방법
WO2022010010A1 (ko) 어태치먼트 교환 장치 및 이를 포함하는 수평형 보링 머신
WO2023120848A1 (ko) 예지정비 기능을 구비한 위성 안테나 포지셔너
JPH05134736A (ja) データ転送方法

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 19954614

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 19954614

Country of ref document: EP

Kind code of ref document: A1