WO2013058481A1 - 공작기계의 볼스크류 변형에 의한 실시간 위치 보정 방법 및 장치 - Google Patents

공작기계의 볼스크류 변형에 의한 실시간 위치 보정 방법 및 장치 Download PDF

Info

Publication number
WO2013058481A1
WO2013058481A1 PCT/KR2012/007535 KR2012007535W WO2013058481A1 WO 2013058481 A1 WO2013058481 A1 WO 2013058481A1 KR 2012007535 W KR2012007535 W KR 2012007535W WO 2013058481 A1 WO2013058481 A1 WO 2013058481A1
Authority
WO
WIPO (PCT)
Prior art keywords
ball screw
pitch
correction
feed shaft
torque
Prior art date
Application number
PCT/KR2012/007535
Other languages
English (en)
French (fr)
Inventor
김기홍
Original Assignee
두산인프라코어 주식회사
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 두산인프라코어 주식회사 filed Critical 두산인프라코어 주식회사
Publication of WO2013058481A1 publication Critical patent/WO2013058481A1/ko

Links

Images

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B23MACHINE TOOLS; METAL-WORKING NOT OTHERWISE PROVIDED FOR
    • B23QDETAILS, COMPONENTS, OR ACCESSORIES FOR MACHINE TOOLS, e.g. ARRANGEMENTS FOR COPYING OR CONTROLLING; MACHINE TOOLS IN GENERAL CHARACTERISED BY THE CONSTRUCTION OF PARTICULAR DETAILS OR COMPONENTS; COMBINATIONS OR ASSOCIATIONS OF METAL-WORKING MACHINES, NOT DIRECTED TO A PARTICULAR RESULT
    • B23Q15/00Automatic control or regulation of feed movement, cutting velocity or position of tool or work
    • B23Q15/20Automatic control or regulation of feed movement, cutting velocity or position of tool or work before or after the tool acts upon the workpiece
    • B23Q15/22Control or regulation of position of tool or workpiece
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B23MACHINE TOOLS; METAL-WORKING NOT OTHERWISE PROVIDED FOR
    • B23QDETAILS, COMPONENTS, OR ACCESSORIES FOR MACHINE TOOLS, e.g. ARRANGEMENTS FOR COPYING OR CONTROLLING; MACHINE TOOLS IN GENERAL CHARACTERISED BY THE CONSTRUCTION OF PARTICULAR DETAILS OR COMPONENTS; COMBINATIONS OR ASSOCIATIONS OF METAL-WORKING MACHINES, NOT DIRECTED TO A PARTICULAR RESULT
    • B23Q5/00Driving or feeding mechanisms; Control arrangements therefor
    • B23Q5/22Feeding members carrying tools or work
    • B23Q5/34Feeding other members supporting tools or work, e.g. saddles, tool-slides, through mechanical transmission
    • B23Q5/38Feeding other members supporting tools or work, e.g. saddles, tool-slides, through mechanical transmission feeding continuously
    • B23Q5/40Feeding other members supporting tools or work, e.g. saddles, tool-slides, through mechanical transmission feeding continuously by feed shaft, e.g. lead screw
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B23MACHINE TOOLS; METAL-WORKING NOT OTHERWISE PROVIDED FOR
    • B23QDETAILS, COMPONENTS, OR ACCESSORIES FOR MACHINE TOOLS, e.g. ARRANGEMENTS FOR COPYING OR CONTROLLING; MACHINE TOOLS IN GENERAL CHARACTERISED BY THE CONSTRUCTION OF PARTICULAR DETAILS OR COMPONENTS; COMBINATIONS OR ASSOCIATIONS OF METAL-WORKING MACHINES, NOT DIRECTED TO A PARTICULAR RESULT
    • B23Q15/00Automatic control or regulation of feed movement, cutting velocity or position of tool or work
    • B23Q15/20Automatic control or regulation of feed movement, cutting velocity or position of tool or work before or after the tool acts upon the workpiece
    • B23Q15/22Control or regulation of position of tool or workpiece
    • B23Q15/24Control or regulation of position of tool or workpiece of linear position
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B23MACHINE TOOLS; METAL-WORKING NOT OTHERWISE PROVIDED FOR
    • B23QDETAILS, COMPONENTS, OR ACCESSORIES FOR MACHINE TOOLS, e.g. ARRANGEMENTS FOR COPYING OR CONTROLLING; MACHINE TOOLS IN GENERAL CHARACTERISED BY THE CONSTRUCTION OF PARTICULAR DETAILS OR COMPONENTS; COMBINATIONS OR ASSOCIATIONS OF METAL-WORKING MACHINES, NOT DIRECTED TO A PARTICULAR RESULT
    • B23Q17/00Arrangements for observing, indicating or measuring on machine tools
    • B23Q17/09Arrangements for observing, indicating or measuring on machine tools for indicating or measuring cutting pressure or for determining cutting-tool condition, e.g. cutting ability, load on tool
    • B23Q17/0952Arrangements for observing, indicating or measuring on machine tools for indicating or measuring cutting pressure or for determining cutting-tool condition, e.g. cutting ability, load on tool during machining
    • B23Q17/0961Arrangements for observing, indicating or measuring on machine tools for indicating or measuring cutting pressure or for determining cutting-tool condition, e.g. cutting ability, load on tool during machining by measuring power, current or torque of a motor
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B23MACHINE TOOLS; METAL-WORKING NOT OTHERWISE PROVIDED FOR
    • B23QDETAILS, COMPONENTS, OR ACCESSORIES FOR MACHINE TOOLS, e.g. ARRANGEMENTS FOR COPYING OR CONTROLLING; MACHINE TOOLS IN GENERAL CHARACTERISED BY THE CONSTRUCTION OF PARTICULAR DETAILS OR COMPONENTS; COMBINATIONS OR ASSOCIATIONS OF METAL-WORKING MACHINES, NOT DIRECTED TO A PARTICULAR RESULT
    • B23Q17/00Arrangements for observing, indicating or measuring on machine tools
    • B23Q17/09Arrangements for observing, indicating or measuring on machine tools for indicating or measuring cutting pressure or for determining cutting-tool condition, e.g. cutting ability, load on tool
    • B23Q17/0952Arrangements for observing, indicating or measuring on machine tools for indicating or measuring cutting pressure or for determining cutting-tool condition, e.g. cutting ability, load on tool during machining
    • B23Q17/0966Arrangements for observing, indicating or measuring on machine tools for indicating or measuring cutting pressure or for determining cutting-tool condition, e.g. cutting ability, load on tool during machining by measuring a force on parts of the machine other than a motor
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B23MACHINE TOOLS; METAL-WORKING NOT OTHERWISE PROVIDED FOR
    • B23QDETAILS, COMPONENTS, OR ACCESSORIES FOR MACHINE TOOLS, e.g. ARRANGEMENTS FOR COPYING OR CONTROLLING; MACHINE TOOLS IN GENERAL CHARACTERISED BY THE CONSTRUCTION OF PARTICULAR DETAILS OR COMPONENTS; COMBINATIONS OR ASSOCIATIONS OF METAL-WORKING MACHINES, NOT DIRECTED TO A PARTICULAR RESULT
    • B23Q17/00Arrangements for observing, indicating or measuring on machine tools
    • B23Q17/20Arrangements for observing, indicating or measuring on machine tools for indicating or measuring workpiece characteristics, e.g. contour, dimension, hardness
    • GPHYSICS
    • G05CONTROLLING; REGULATING
    • G05BCONTROL OR REGULATING SYSTEMS IN GENERAL; FUNCTIONAL ELEMENTS OF SUCH SYSTEMS; MONITORING OR TESTING ARRANGEMENTS FOR SUCH SYSTEMS OR ELEMENTS
    • G05B19/00Programme-control systems
    • G05B19/02Programme-control systems electric
    • G05B19/18Numerical control [NC], i.e. automatically operating machines, in particular machine tools, e.g. in a manufacturing environment, so as to execute positioning, movement or co-ordinated operations by means of programme data in numerical form
    • G05B19/404Numerical control [NC], i.e. automatically operating machines, in particular machine tools, e.g. in a manufacturing environment, so as to execute positioning, movement or co-ordinated operations by means of programme data in numerical form characterised by control arrangements for compensation, e.g. for backlash, overshoot, tool offset, tool wear, temperature, machine construction errors, load, inertia
    • GPHYSICS
    • G05CONTROLLING; REGULATING
    • G05BCONTROL OR REGULATING SYSTEMS IN GENERAL; FUNCTIONAL ELEMENTS OF SUCH SYSTEMS; MONITORING OR TESTING ARRANGEMENTS FOR SUCH SYSTEMS OR ELEMENTS
    • G05B2219/00Program-control systems
    • G05B2219/30Nc systems
    • G05B2219/37Measurements
    • G05B2219/37357Force, pressure, weight or deflection
    • GPHYSICS
    • G05CONTROLLING; REGULATING
    • G05BCONTROL OR REGULATING SYSTEMS IN GENERAL; FUNCTIONAL ELEMENTS OF SUCH SYSTEMS; MONITORING OR TESTING ARRANGEMENTS FOR SUCH SYSTEMS OR ELEMENTS
    • G05B2219/00Program-control systems
    • G05B2219/30Nc systems
    • G05B2219/41Servomotor, servo controller till figures
    • G05B2219/41055Kind of compensation such as pitch error compensation
    • GPHYSICS
    • G05CONTROLLING; REGULATING
    • G05BCONTROL OR REGULATING SYSTEMS IN GENERAL; FUNCTIONAL ELEMENTS OF SUCH SYSTEMS; MONITORING OR TESTING ARRANGEMENTS FOR SUCH SYSTEMS OR ELEMENTS
    • G05B2219/00Program-control systems
    • G05B2219/30Nc systems
    • G05B2219/49Nc machine tool, till multiple
    • G05B2219/49198Using lookup table, map, position and corresponding quasi static error

Definitions

  • the present invention relates to a position correction by deformation of a ball screw of a machine tool, and more particularly to detecting a force applied to a ball screw of a feed shaft by using torque data acting on a servo motor of a feed shaft during feed and machining of a machine tool. And calculates the ball screw deformation caused by the detected force and the resulting pitch error, and corrects the feed position in real time according to the pitch error, thereby real-time position correction by ball screw deformation of the machine tool which improves the precision of feed and machining.
  • a method and apparatus are disclosed.
  • the ball screw and coupling used in the feed shaft of a general machine tool have their own stiffness values for their axial and torsional directions, so that the friction force (the opposite direction to feed) Axial and torsional deformation inversely proportional to the above stiffness due to the frictional force acting as a force), the machining cutting force, the acceleration and deceleration force, and the like.
  • an additional position feedback device such as a linear scale or a rotary encoder is mounted on the feed shaft to identify the feed position and to perform correction according to the recognized feed position.
  • the above position feedback apparatus has a problem that the unit cost of the equipment is relatively expensive.
  • a machine tool without a position feedback device is equipped with a program including a pitch error correction function inside a numerical controller (NC) that controls the machine tool.
  • NC numerical controller
  • the conventional correction method simply compensates for the length error existing in the pitch of each ball screw thread, and thus does not need to modify the pitch error table in real time. Therefore, there is a problem in that it is impossible to cope with the deformation of the ball screw caused by the force applied to the ball screw during the feeding and processing, and the variation of the pitch error. This problem is a major cause of deterioration of the accuracy of the feeding and processing.
  • the backlash error corresponds to the backlash amount measured under no-load condition in the correction parameter.
  • the correction is not made for the material weight, lubrication condition, and feed surface friction coefficient that act on the actual backlash, the backlash error cannot be compensated. There is a problem.
  • the present invention has been made to solve the above problems, by using the torque data acting on the servo motor of the feed shaft during the feed and machining of the machine tool to detect the force applied to the ball screw, the detected force and the ball screw Calculates the error of pitch caused by the deformation of the ball screw in consideration of the mechanical rigidity of the feed axis, including the accuracy of the feed and machining by correcting the data in the pre-stored pitch error table by using the calculated error of the pitch. It is an object of the present invention to provide a real-time position correction method and apparatus by the ball screw deformation of the machine tool improved.
  • the real-time position correction device by the ball screw elastic deformation of the machine tool of the present invention the ball screw is rotated by the driving of the servo motor and the ball screw rotates the transfer table A feed shaft for feeding;
  • a pitch change amount detecting unit detecting a torque generated from the servo motor of the feed shaft to detect a pitch change amount per thread due to elastic deformation of the ball screw;
  • a feed shaft nut position calculator for calculating a center position of a nut for feeding the feed table according to the rotational change amount detected from the servo motor of the feed shaft; And calculating a correction value according to the thread pitch error of the ball screw using the pitch change per thread of the ball screw detected by the pitch change amount detecting unit and the center position of the nut calculated through the feed shaft nut position calculation unit.
  • a pitch error correction unit correcting the driving of the servo motor by one correction value to compensate the position of the feed shaft in real time.
  • a real-time position correction method by elastically elastic ball screw of the machine tool of the present invention detecting the torque change of the servo motor of the servo motor of the feed shaft by detecting the torque of the servo motor; Detecting a pitch change amount per thread of a ball screw rotating by driving the servomotor by using the detected torque of the servomotor; Calculating a position of the feed shaft from the rotation change amount of the servomotor; Calculating a correction value according to the thread pitch error of the ball screw using the pitch change amount per thread of the ball screw and the position of the feed shaft; Compensating the drive of the servo motor by the calculated correction value to compensate for the position of the feed shaft in real time.
  • the pitch change per thread is calculated using the torque data of the motor proportional to the elastic deformation of the ball screw, and based on the calculated result, the pitch error correction table is modified to feed according to the corrected pitch error correction table. And it is possible to correct in real time the position error of the feed shaft generated during processing. Thus, it provides an effect of improving the accuracy of the feeding and processing.
  • the current numerical controller records various internal information in a specific memory area in real time so that torque data of the feed shaft proportional to the feed error and the amount of elastic deformation of the feed system can be obtained in real time by referring to the corresponding address of the memory. Do. Therefore, there is an effect that can be implemented without the addition of expensive equipment.
  • FIG. 1 is a block diagram illustrating a feed shaft for explaining the concept of a ball screw deformation and a pitch error caused by the feed shaft of the present invention.
  • FIG. 2 is a graph showing a relationship between speed and torque with respect to a feed shaft of a machine tool.
  • Figure 3 is a block diagram showing an apparatus for real-time position correction by the ball screw elastic deformation in the machine tool of the present invention.
  • FIG. 4 is a view showing a lookup table that defines the relationship between the torque for the servomotor of the feed shaft and the pitch change amount per thread.
  • 5 is a diagram illustrating a relationship between torque of a servomotor and a pitch change amount per thread using linear interpolation.
  • FIG. 6 is a graph showing the pitch error correction amount of the present invention.
  • FIG. 7 is a flowchart illustrating a real-time position correction method by the ball screw deformation in the machine tool of the present invention.
  • FIG. 8 is a detailed flowchart of FIG. 7.
  • correction function selection input unit 112 storage unit
  • FIG. 1 is a block diagram showing a feed shaft for explaining the concept of the ball screw deformation and the resulting pitch error in the feed shaft of the present invention
  • Figure 2 is a graph showing the relationship between the speed and torque for the feed shaft of the machine tool.
  • the feed shaft is an end bearing supporting one side of the ball screw 14 and a ball screw 14 for feeding the feed table 17 to the X, Y, and Z axes to process the workpiece.
  • a motor side bearing (13) and a transfer table (17) which are opposed to the end bearing (15) and connected to the other side of the ball skew (14) to transfer power supplied from the servomotor (10). It includes a nut 16 for the purpose.
  • the servomotor 10 In order to transfer the workpiece in the a direction using the feed shaft, the servomotor 10 includes an inertial force proportional to the weight and acceleration of the workpiece applied to the ball screw 14, frictional force of the transfer table, cutting force, and the like. Torque is generated by the force and transmitted to the ball screw 14 through the motor side bearing (13). Then, the transfer table 17 is moved toward the servomotor 10 so that the ball screw 14 between the motor side bearing 13 and the nut 16 is proportional to the force required to pull the transfer table 17. It is increased by ⁇ L 1, and the ballscrew 14 between the nut 16 and the end bearing 15 is reduced by ⁇ L 2. At this time, ⁇ L1, ⁇ L2 means the pitch change by the ball screw elastic deformation.
  • the force applied to the ball screw 14 may include a machining cutting force (F1), an acceleration and deceleration force (F2), a feed friction force (F3), etc., in the present invention, these three forces (F1, F2, F3) Only the ball screw elastic deformation caused by) is considered.
  • a load of about 5,000 kg was applied in response to the force applied to the ball screw of the feed shaft, and the torque of the servomotor according to the speed was measured while reciprocating the feed shaft in the + and ⁇ directions.
  • the measurement result is the same as the graph of FIG.
  • G1 indicated in the graph is a graph showing the speed transferred in the + and-directions with time
  • G2 is a graph showing the torque of the servomotor according to the load.
  • the torque of the servomotor is about -5 instead of 0 in the section where the speed is zero, that is, the section in which the feed shaft stops.
  • the ball screw causes elastic deformation inversely proportional to the stiffness due to the frictional force during the transfer. Even if the feed shaft stops, a relatively large static frictional force is generated compared to the kinetic friction generated during the transfer, thereby maintaining the elastic deformation of the ball screw or more. Because it grows.
  • the present invention is to compensate for the pitch change amount per thread of the ball screw using the torque of the servo motor proportional to the elastic deformation of the ball screw, and to calculate the transfer error according to the pitch change amount to compensate.
  • the real-time position correction device of the machine tool for this is as shown in Figures 3 to 6 below.
  • FIG. 3 is a block diagram showing a device for real-time position correction by elastically elastic ball screw in the machine tool of the present invention
  • Figure 4 is a look-up table that defines the relationship between the torque and the amount of pitch change per thread for the servo motor of the feed shaft
  • FIG. 5 is a diagram illustrating a relationship between a torque of a servomotor and a pitch change amount per thread by using linear interpolation.
  • 6 is a graph showing the pitch error correction amount of the present invention.
  • the apparatus 100 of the present invention transfers a transfer table using an encoder 120, a servomotor 130, a ball screw 140, and a nut 150 on which a transfer table is seated. And a numerical controller (110) for processing the workpiece by controlling the movement of the shaft and the feed shaft.
  • the encoder 120 of the feed shaft detects a rotation change amount (position) of the feed shaft.
  • the rotation change amount of the feed shaft is used as data for extracting the center position of the ball screw nut.
  • the encoder 120 is connected to the servo motor 130 and mounted to detect the rotational motion of the servo motor 130 to measure the rotational change amount of the feed shaft.
  • the servo motor 130 is driven according to a control signal applied from the servo controller 117 of the numerical controller 110, and generates a torque corresponding to the force applied to the feed shaft and transmits it to the feed shaft.
  • the torque generated from the servo motor 130 may be defined as in Equation 3 below.
  • the ball screw 140 causes an elastic deformation in proportion to the torque generated from the servo motor 130 to thereby transfer the transfer table.
  • the ball screw 140 is provided with an end bearing on one side and a motor side bearing for transmitting power supplied from the servo motor 130 to the other side, and a nut for transferring a transfer table between the end bearing and the motor side bearing. 150 is coupled.
  • the numerical controller 110 includes a correction function selection input unit 111, a storage unit 112, an algorithm processing unit 113, a servo controller 117, and a servo amplifier 118.
  • the servo amplifier 118 receives the rotational change amount of the servo motor from the encoder 120 and transmits it to the servo controller 117, and a control signal (PWM signal) for controlling the driving of the servo motor 130 from the servo controller 117.
  • PWM signal a control signal for controlling the driving of the servo motor 130 from the servo controller 117.
  • the servo controller 117 controls the driving of the servo motor 130 through the servo amplifier 118 and performs position control on the servo motor 130 based on the rotation change amount of the servo motor fed back from the servo amplifier 118. do.
  • the servo controller 117 transmits the rotation change amount fed back from the servo amplifier 118 to the feed shaft nut position calculation unit 115 of the algorithm processing unit 113.
  • the correction function selection input unit 111 selectively receives on and off whether to perform the correction function according to the type of work and the arbitrary setting of the operator. If the correction function is set to on, the algorithm processing unit 113 requests setting to perform the real-time position correction of the present invention, and if off is selected, the algorithm processing unit 113 does not perform the real-time position correction. Ask for configuration.
  • the storage unit 112 stores various data necessary for real-time position correction, such as a correction section, a thread pitch interval of the ball screws, a pitch change amount of the ball screw according to the torque of the servomotor, a command position, a pitch error table, and the like.
  • the pitch change amount lookup table 112a of the storage unit 112 records the thread pitch change amount of the ball screw, which changes according to the force applied to the ball screw, based on the torque of the servomotor. For example, as shown in FIG. 4, the thread pitch change amount of the ball screw can be mapped to the table according to the torque of the servomotor.
  • the pitch change amount lookup table 112a may be constructed in advance through a pre-test. For example, in the case of a machine tool using the same servomotor and the feed shaft, the lookup table is the same according to the rigidity of the feed shaft, so it is possible to construct the pitch change amount lookup table 112a in one test.
  • the pitch error correction table 112b records the correction value according to the pitch error.
  • the correction value is a value calculated by the pitch error correction unit 116 of the algorithm processing unit 113.
  • the correction value is updated. .
  • the algorithm processing unit 113 operates to perform a correction function according to the selection received from the correction function selection input unit 111, and receives torque data and position data corresponding to elastic deformation of the ball screw from the servo controller 117.
  • the correction value according to the pitch change amount and pitch change amount of the ball screw is calculated, and the calculated correction value is corrected to the pitch error table to correct the drive of the servomotor based on the corrected pitch error table.
  • the algorithm processing unit 113 may be specifically divided into a pitch change detector 114, a feed shaft nut position calculator 115, and a pitch error corrector 116. This division has been illustrated to be configured independently for each function for convenience of description, it may be provided with one or more functions integrated.
  • the pitch change amount detecting unit 114 receives torque data corresponding to the elastic deformation of the ball screw from the servo controller 117, and the pitch change amount per thread of the ball screw on the basis of the pitch change amount lookup table previously stored in the storage unit 112 ( ⁇ ). ).
  • the pitch change detection unit 114 may calculate the pitch change amount ⁇ per thread corresponding to the torque of the servo motor in real time by using the pre-stored pitch change lookup table and linear interpolation of FIG. 5. .
  • the feed shaft nut position calculator 115 calculates a center position at which the feed shaft nut 150 is located from the rotation change amount (position) of the servo motor received from the servo controller 117.
  • the pitch error correction unit 116 uses the pitch change amount ⁇ per thread of the ball screw detected by the pitch change amount detection unit 114 and the center position of the nut calculated by the feed shaft nut position calculation unit 115. The correction value according to the pitch error is calculated.
  • the pitch error correction unit 116 transmits the calculated correction value to the pitch error correction table 112b to correct the correction value according to the pitch error with the latest information, and the latest stored in the pitch error correction table for each preset correction section.
  • the correction value is extracted and the control signal corresponding to the correction value is transmitted to the servo controller 117. Therefore, the pitch error correction unit 116 corrects the drive of the servomotor by the latest correction value for each correction section.
  • the correction value according to the pitch error may be calculated through an algorithm using the following equation.
  • is the pitch change amount per thread of the ball screw
  • p is the pitch interval per thread of the ball screw.
  • the gap between the nut center position and the motor side bearing position corresponds to the feed shaft position or may be a correction section (correction interval).
  • the graph 1 shows the compensation value according to the position of the feed shaft when the torque of the servomotor is a.
  • 2 shows the correction value when the torque of the servo motor is a and the position of the feed shaft is transferred from m1 to m2
  • 3 shows the correction value according to the position of the feed shaft when the torque of the servo motor is larger than a.
  • the center position of the nut is about 160 mm away from the position of the motor side bearing
  • the pitch error is corrected at an interval of 30 mm from the position of the motor side bearing
  • the pitch per thread of the ball screw is 15 mm. If the transfer table is moved to the servomotor, the ball screw between the motor side bearing and the nut is increased in proportion to the force required to pull the transfer table, and the servomotor feels the force to pull the transfer table as torque.
  • the correction value per pitch error correction interval (30 mm interval) becomes 4.6 microns (2.3 * 30/15) by equation (4).
  • the pitch error correction table is modified as follows.
  • the pitch error correction unit 116 serves to further convey or less convey the servomotor by a correction value set in the pitch error correction table according to the position of the feed shaft nut. That is, the correction value is calculated according to the pitch change per thread of the ball screw and the center position of the nut. If the pitch error correction table is modified according to the calculated correction value, the error about the center position of the nut is determined by the corrected pitch error correction table. Move in the direction of compensation.
  • the present invention through the algorithm processing unit 113 calculates the pitch error due to the elastic deformation of the ball screw from the torque of the thermovotor and through this to modify the pitch error correction table through which the feed error of the feed shaft and the inversion of the servo motor It is possible to correct the backlash error in real time.
  • FIG. 7 is a flowchart illustrating a real-time position correction method by the ball screw deformation in the machine tool of the present invention
  • Figure 8 is a detailed flowchart of FIG.
  • the machine tool sets the correction interval of the point to be corrected from the bearing on the motor side, and in advance, the data about the pitch change per thread of the ball screw and the amount of pitch change per thread of the screw according to the torque of the servo motor Build.
  • the numerical control apparatus of the machine tool determines whether to perform pitch correction according to the on / off of the correction function set through the correction function selection input unit (S100).
  • the correction function is turned on or off is checked (S102), if it is set to off, the pitch correction function is terminated, and if it is set to on, the preset function is set to on.
  • the correction function is performed according to the correction section (correction point) or according to the real-time correction command that occurs directly at the request of the operator.
  • the numerical control apparatus of the machine tool detects torque data of the current servomotor from the servo controller in real time for real-time correction (S110).
  • the numerical control apparatus of the machine tool uses the relationship between the torque of the servomotor and the pitch change per thread of the ball screw in the pitch change amount detecting unit to calculate the pitch change per thread of the ball screw from the torque of the servomotor detected in step S110. It is detected (S120).
  • a ball screw corresponding to the torque of the detected servomotor is detected by using a pitch change amount look-up table in which the relationship between the torque of the servomotor described in the above configuration and the pitch change per thread of the ball screw is tabled as a data value.
  • a method of detecting the amount of pitch change per thread can be used.
  • a method of detecting through a mathematical equation and algorithm defining a relationship between the torque of the servomotor and the pitch change per thread of the ball screw may be used.
  • the numerical control apparatus of the machine tool calculates the center position of the feed shaft nut from the rotation change amount of the servomotor in the feed shaft nut position calculation unit to detect the position data where the nut is located (S130).
  • the numerical control apparatus of the machine tool calculates a correction value according to the pitch error using the pitch change per thread of the ball screw and the center position of the nut in the pitch error correcting unit (S140).
  • the correction value is calculated as the amount of change in pitch per thread of the ball screw at the interval (moving distance) between the motor side bearing and the nut or in the correction section as mentioned in Equation 4 above.
  • the numerical control apparatus of the machine tool modifies and updates the pitch error correction table based on the calculated correction value (S150).
  • the numerical control apparatus of the machine tool corrects the transfer position by the corrected correction value based on the pitch error correction table (S160).
  • the correction method of the transfer position in the present invention is to compensate the transfer position by adjusting the drive of the servomotor by the corrected correction value. Accordingly, the position of the feed shaft according to the elastic deformation of the ball screw is compensated by the error compensation for the center position of the nut by reflecting the correction value calculated according to the pitch error for each correction section while transferring to the command position during the feeding and processing. Thereby, it is possible to compensate the position error of the feed shaft by the ball screw elastic deformation in real time.

Landscapes

  • Engineering & Computer Science (AREA)
  • Mechanical Engineering (AREA)
  • Human Computer Interaction (AREA)
  • Manufacturing & Machinery (AREA)
  • Physics & Mathematics (AREA)
  • General Physics & Mathematics (AREA)
  • Automation & Control Theory (AREA)
  • Numerical Control (AREA)
  • Automatic Control Of Machine Tools (AREA)

Abstract

본 발명은 공작기계의 이송 및 가공시 이송축의 서보모터에 작용하는 토크데이터를 이용하여 볼스크류에 가해지는 힘을 검출하고 검출된 힘과 볼스크류를 포함하는 이송축의 기계적 강성을 고려하여 볼스크류가 변형하는 피치의 오차를 계산하며 계산한 피치의 오차를 기 저장된 피치 오차 테이블에 수정하여 수정된 데이터만큼 보정함으로써 이송 및 가공의 정밀도를 향상시킨 공작기계의 볼스크류 변형에 의한 실시간 위치 보정 방법 및 장치를 제공한다. 이러한 본 발명에 따르면 이송 및 가공시 발생하는 이송축의 위치 오차를 실시간으로 보정하는 것이 가능하다.

Description

공작기계의 볼스크류 변형에 의한 실시간 위치 보정 방법 및 장치
본 발명은 공작기계의 볼스크류 변형에 의한 위치 보정에 관한 것으로, 더욱 상세하게는 공작기계의 이송 및 가공시 이송축의 서보모터에 작용하는 토크데이터를 이용하여 이송축의 볼스크류에 가해지는 힘을 검출하고 검출된 힘에 의해 발생하는 볼스크류 변형 및 이로 인한 피치의 오차를 계산하여 피치 오차에 따라 이송 위치를 실시간으로 보정함으로써 이송 및 가공의 정밀도를 향상시킨 공작기계의 볼스크류 변형에 의한 실시간 위치 보정 방법 및 장치에 관한 것이다.
일반적인 공작기계의 이송축에 사용되는 볼스크류 및 커플링(coupling)은 고유의 축(thrust) 방향 및 비틀림(radial 방향)에 대한 강성 값을 가지고 있어서, 이송 및 가공시 마찰력(이송하고자 하는 반대 방향으로 작용하는 마찰력), 가공 절삭력, 가감속 관성력 등에 의해 상기의 강성에 반비례한 축 방향 및 비틀림 변형이 일어나게 된다.
이러한 현상에 기인한 볼스크류의 변형으로 인해 볼스크류 피치간의 간격이 변하게 되고, 이송 위치가 지령 위치로부터 벗어나 오차가 발생한다. 따라서, 오차를 실시간으로 적절히 보상하지 못하면 이송 시 위치 정확도가 떨어지고 가공 후 공작물의 치수 오차가 발생하는 문제점이 있다.
이로 인해 종래에는 이송축에 리니어 스케일(linear scale)이나 로터리 엔코더(rotary encoder)와 같이 부가적인 위치 피드백 장치를 장착하여 이송 위치를 파악하고 파악한 이송 위치에 따라 보정을 수행하였다. 그러나, 상기한 위치 피드백 장치는 장비의 단가가 비교적 고가인 문제점이 있다.
이의 대안으로서, 위치 피드백 장치를 장착하지 않은 공작 기계는 공작기계를 제어하는 수치제어기(NC) 내부에 피치오차 보정기능을 포함한 프로그램을 탑재하여 볼스크류의 피치에 대한 오차를 보상하는 방법을 적용하고 있다. 그런데, 종래 보정 방법은 단순히 볼스크류 나사산 각각의 피치에 존재하는 길이 오차를 보상하는 기능이므로 실시간으로 해당 피치오차 테이블을 수정할 필요도 없으며 수정하지도 않는다. 따라서, 이송 및 가공시 볼스크류에 가해지는 힘에 의해 발생하는 볼스크류 변형 및 이로 인한 피치오차의 변동에 대하여 대응이 불가능한 문제점이 있다. 이러한 문제점은 이송 및 가공의 정밀도를 저하하는 주 원인이 되고 있다.
또한, 이송 반전 시 발생하는 백래쉬(backlash)에 대해서도 정확한 보정이 불가능하다.
종래 백래쉬 오차는 무부하 조건에서 측정된 백래쉬 량을 보정 파라미터에 기입하여 대응하고 있는데, 실제 백래쉬에 작용하는 소재 무게 및 윤활조건, 이송면 마찰계수 등에 대해서는 보정이 이루어지지 않으므로 백래쉬의 오차를 보상하지 못하는 문제점이 있다.
본 발명은 상기한 문제점을 해결하기 위해 창안된 것으로서, 공작기계의 이송 및 가공시 이송축의 서보모터에 작용하는 토크데이터를 이용하여 볼스크류에 가해지는 힘을 검출하고, 검출된 힘과 볼스크류를 포함하는 이송축의 기계적 강성을 고려하여 볼스크류가 변형되어 발생하는 피치의 오차를 계산하며, 계산한 피치의 오차를 이용하여 기 저장된 피치 오차 테이블에 수정하고 수정된 데이터만큼 보정함으로써 이송 및 가공의 정밀도를 향상시킨 공작기계의 볼스크류 변형에 의한 실시간 위치 보정 방법 및 장치를 제공하는 데 그 목적이 있다.
이를 위하여 본 발명의 제1 측면에 따르면, 본 발명의 공작기계의 볼스크류 탄성 변형에 의한 실시간 위치 보정 장치는, 서보모터의 구동에 의해 볼스크류가 회전하고 상기 볼스크류가 회전함에 따라 이송 테이블을 이송시키는 이송축; 상기 이송축의 서보모터로부터 발생하는 토크를 감지하여 상기 볼스크류의 탄성 변형으로 인한 나사산당 피치 변화량을 검출하는 피치 변화량 검출부; 상기 이송축의 서보모터로부터 감지한 회전 변화량에 따라 상기 이송 테이블을 이송시키는 너트의 중심 위치를 계산하는 이송축 너트 위치 계산부; 및 상기 피치 변화량 검출부를 통해 검출한 볼스크류의 나사산 당 피치 변화량과 상기 이송축 너트 위치 계산부를 통해 계산한 너트의 중심 위치를 이용하여 상기 볼스크류의 나사산 피치 오차에 따른 보정값을 계산하고, 계산한 보정값만큼 상기 서보모터의 구동을 보정하여 상기 이송축의 위치를 실시간 보상하는 피치 오차 보정부를 포함하는 것을 특징으로 한다.
본 발명의 제2 측면에 따르면, 본 발명의 공작기계의 볼스크류 탄성 변형에 의한 실시간 위치 보정 방법은, 이송축의 서보모터에 대하여 회전 변화량을 감지하여 상기 서보모터의 토크를 검출하는 단계; 상기 검출한 서보모터의 토크를 이용하여 상기 서보모터의 구동에 의해 회전하는 볼스크류의 나사산 당 피치 변화량을 검출하는 단계; 상기 서보모터의 회전 변화량으로부터 상기 이송축의 위치를 계산하는 단계; 상기 볼스크류의 나사산 당 피치 변화량과 상기 이송축의 위치를 이용하여 상기 볼스크류의 나사산 피치 오차에 따른 보정값을 계산하는 단계; 계산한 보정값만큼 상기 서보모터의 구동을 보정하여 상기 이송축의 위치를 실시간 보상하는 단계를 포함하는 것을 특징으로 한다.
본 발명에 따르면, 볼스크류의 탄성 변형에 비례하는 모터의 토크데이터를 이용하여 나사산 당 피치 변화량을 계산하고, 계산된 결과를 바탕으로 피치오차 보정 테이블을 수정함으로써 수정된 피치오차 보정 테이블에 따라 이송 및 가공시 발생하는 이송축의 위치 오차를 실시간으로 보정하는 것이 가능하다. 따라서, 이송 및 가공의 정밀도를 향상시키는 효과를 제공한다.
또한, 현재의 수치제어기는 내부의 특정 메모리 영역에 각종 내부 정보를 실시간으로 기록하기 때문에 이송 오차 및 이송계 탄성 변형량과 비례하는 이송축의 토크 데이터도 메모리의 해당 주소를 참조하여 실시간으로 획득하는 것이 가능하다. 따라서 고가의 장비 추가 없이도 구현이 가능한 효과가 있다.
도 1은 본 발명의 이송축에서 볼스크류 변형 및 이로 인해 피치 오차가 발생하는 개념을 설명하기 위한 이송축 블록도이다.
도 2는 공작기계의 이송축에 대한 속도 및 토크 관계를 나타낸 그래프이다.
도 3은 본 발명의 공작 기계에서 볼스크류 탄성 변형에 의한 실시간 위치 보정을 위한 장치를 나타낸 구성도이다.
도 4는 이송축의 서보모터에 대한 토크와 나사산 당 피치 변화량 간의 관계를 정의하는 룩업 테이블을 나타낸 도면이다.
도 5는 선형 보간을 이용하여 서보모터의 토크와 나사산 당 피치 변화량 간의 관계를 나타낸 도면이다.
도 6은 본 발명의 피치오차 보정량을 나타낸 그래프이다.
도 7은 본 발명의 공작기계에서 볼스크류 변형에 의한 실시간 위치 보정 방법을 설명하는 흐름도이다.
도 8은 도 7의 상세 흐름도이다.
< 도면의 주요 부분에 대한 부호의 설명 >
100: 공작 기계 110: 수치제어장치
111: 보정기능 선택입력부 112: 저장부
112a: 피치 변화량 룩업테이블 112b: 피치 오차 보정 테이블
113: 알고리즘 처리부 114: 피치 변화량 검출부
115: 이송축 너트 위치 계산부 116: 피치 오차 보정부
117: 서보 제어기 118: 서보 앰프
120: 엔코더 130: 서보모터
140: 볼스크류 150: 너트
이하, 첨부된 도면을 참조하여 본 발명에 따른 실시 예를 상세하게 설명한다. 본 발명의 구성 및 그에 따른 작용 효과는 이하의 상세한 설명을 통해 명확하게 이해될 것이다.
본 발명의 상세한 설명에 앞서, 동일한 구성요소에 대해서는 다른 도면 상에 표시되더라도 가능한 동일한 부호로 표시하며, 공지된 구성에 대해서는 본 발명의 요지를 흐릴 수 있다고 판단되는 경우 구체적인 설명은 생략하기로 함에 유의한다. 또한, 어떤 부분이 어떤 구성요소를 포함한다고 할 때, 이는 특별히 반대되는 기재가 없는 한 다른 구성요소를 제외하는 것이 아니라 다른 구성요소를 더 포함할 수 있는 것을 의미한다.
도 1은 본 발명의 이송축에서 볼스크류 변형 및 이로 인해 피치 오차가 발생하는 개념을 설명하기 위한 이송축 블록도이고, 도 2는 공작기계의 이송축에 대한 속도 및 토크 관계를 나타낸 그래프이다.
본 발명의 공작기계에서 이송축은 가공 소재를 가공하기 위해 이송 테이블(17)을 X축, Y축 및 Z축으로 이송시키는 볼스크류(14)와, 볼스크류(14)의 일측을 지지하는 엔드 베어링(15)과, 엔드 베어링(15)과 대향되고 볼스크큐(14)의 타측에 연결되어 서보모터(10)로부터 공급되는 동력을 전달하는 모터측 베어링(13), 이송 테이블(17)을 설치하기 위한 너트(16)를 포함하고 있다.
이러한 이송축을 이용하여 가공 소재를 a 방향으로 이송시키려면, 서보모터(10)는 볼스크류(14)에 가해지는 가공 소재의 무게 및 가속도에 비례한 관성력, 이송 테이블의 마찰력, 그리고 절삭력 등을 포함한 힘만큼 토크를 발생하여 모터측 베어링(13)을 통해 볼스크류(14)로 전달한다. 그러면, 이송 테이블(17)이 서보모터(10) 쪽으로 이동하게 되면서 모터측 베어링(13)과 너트(16) 사이의 볼스크류(14)는 이송 테이블(17)을 끌어오는 데 필요한 힘에 비례하여 ΔL1만큼 늘어나게 되고, 너트(16)와 엔드 베어링(15) 사이의 볼스크류(14)는 ΔL2만큼 줄어든다. 이때, ΔL1, ΔL2는 볼스크류 탄성 변형에 의한 피치 변화를 의미한다.
이처럼, 볼스크류(14)에 가해지는 힘은 가공 절삭력(F1), 가감속 관성력(F2), 이송 마찰력(F3) 등을 포함할 수 있지만, 본 발명에서는 이 세 가지 힘(F1, F2, F3)에 의해 발생하는 볼스크류 탄성 변형에 대해서만 고려한다.
볼스크류(14)에 가해지는 힘(F1, F2, F3)은 볼스크류(14)를 통해 서보모터(10)에 전달되고, 서보모터(10)는 볼스크류(14)에 가해지는 힘에 대응하는 토크를 생성함으로써, 생성된 토크가 볼스크류(14) 및 너트(16)를 통해 이송 테이블(17)에 전달되면 토크에 비례하여 볼스크류(14)가 탄성 변형을 일으킨다.
일 예로, 이송축의 볼스크류에 가해지는 힘에 대응하여 5,000kg 정도의 부하를 걸고, 이송축을 +, - 방향으로 왕복 이송시키면서 속도에 따른 서보모터의 토크를 측정하였다. 측정한 결과는 도 2의 그래프와 같다.
그래프에서 표기된 G1은 시간에 따라 +, - 방향으로 이송한 속도를 나타낸 그래프이고, G2는 부하에 따른 서보모터의 토크를 나타낸 그래프이다.
상기의 그래프에서, 속도가 0인 구간 즉, 이송축이 정지한 구간에서 서보모터의 토크는 0이 아닌 -5 정도인 것을 확인할 수 있다. 이는 볼스크류가 이송 중 마찰력에 의해 강성에 반비례하는 탄성 변형을 일으키는데 이송축이 정지하더라도 이송 중에 발생하는 운동 마찰력에 비해 상대적으로 큰 정지 마찰력이 발생하여 이로 인해 볼스크류의 탄성 변형이 유지되거나 혹은 더 커지기 때문이다.
그런데, 이러한 탄성 변형은 이송축을 지령 위치(이송하고자 하는 위치)로부터 벗어나게 하고 이로부터 오차를 발생한다. 따라서, 볼스크류의 탄성 변형으로 인한 이송 오차는 서보모터의 토크 및 이로 인한 볼스크류의 탄성 변형량에 비례한다고 볼 수 있다.
볼스크류의 탄성 변형량은 이송축에 가해지는 토크에 비례하고 이송축의 강성에 반비례하며, 서보모터의 출력 토크는 서보모터를 가속하는데 필요한 초기 토크를 제외하고는 거의 모두 이송축인 볼스크류에 가해지므로 아래의 수학식 1 및 2와 같이 서로 간의 관계를 가진다.
[규칙 제26조에 의한 보정 15.10.2012] 
수학식 1
Figure WO-DOC-MATHS-1
[규칙 제26조에 의한 보정 15.10.2012] 
수학식 2
Figure WO-DOC-MATHS-2
따라서, 본 발명은 볼스크류의 탄성 변형에 비례하는 서보모터의 토크를 이용하여 볼스크류의 나사산 당 피치변화량을 계산하고, 피치 변화량에 따른 이송 오차를 계산하여 보상하고자 한다.
이를 위한 공작기계의 실시간 위치 보정 장치는 하기의 도 3 내지 도 6과 같다.
도 3은 본 발명의 공작 기계에서 볼스크류 탄성 변형에 의한 실시간 위치 보정을 위한 장치를 나타낸 구성도이고, 도 4는 이송축의 서보모터에 대한 토크와 나사산 당 피치 변화량 간의 관계를 정의하는 룩업 테이블을 나타낸 도면이며, 도 5는 선형 보간을 이용하여 서보모터의 토크와 나사산 당 피치 변화량 간의 관계를 나타낸 도면이다. 그리고, 도 6은 본 발명의 피치오차 보정량을 나타낸 그래프이다.
먼저 도 3을 참조하면, 본 발명의 장치(100)는 엔코더(120), 서보모터(130), 볼스크류(140), 이송 테이블이 안착된 너트(150)를 이용하여 이송 테이블을 이송시키는 이송축과, 이송축의 동작을 제어하여 가공 소재를 가공하는 수치제어장치(110)를 포함하여 구성된다.
이송축의 엔코더(120)는 이송축의 회전 변화량(위치)을 감지한다. 이송축의 회전 변화량은 볼스크류 너트의 중심 위치를 추출하기 위한 데이터로 이용한다. 이러한 엔코더(120)는 서보모터(130)와 연결하여 장착함으로써 서보모터(130)의 회전 동작을 감지하여 이송축의 회전 변화량을 측정한다.
서보모터(130)는 수치제어장치(110)의 서보 제어기(117)로부터 인가되는 제어 신호에 따라 구동하며, 이송축에 가해지는 힘에 대하여 대응할 수 있는 토크를 발생하여 이송축으로 전달한다.
이때, 서보모터(130)로부터 발생하는 토크는 하기의 수학식 3과 같이 정의할 수 있다.
수학식 3
Figure PCTKR2012007535-appb-M000003
볼스크류(140)는 서보모터(130)로부터 발생한 토크에 비례하여 탄성 변형을 일으키며 이를 통해 이송 테이블을 이송시킨다.
이러한 볼스크류(140)는 일측에 엔드 베어링이 구비되고, 타측에 서보모터(130)로부터 공급되는 동력을 전달하는 모터측 베어링이 구비되며, 엔드 베어링과 모터측 베어링 사이에서 이송 테이블을 이송시키는 너트(150)가 결합되어 있다.
수치제어장치(110)는 보정 기능 선택입력부(111), 저장부(112), 알고리즘 처리부(113), 서보 제어기(117), 서보 앰프(118)로 구성된다.
서보 앰프(118)는 엔코더(120)로부터 서보모터의 회전 변화량을 피드백받아 서보 제어기(117)로 전달하고, 서보 제어기(117)로부터 서보 모터(130)의 구동을 제어하는 제어 신호(PWM 신호)를 전달받으면 제어 신호를 서보 모터(130)로 전달한다.
서보 제어기(117)는 서보 앰프(118)를 통해 서보모터(130)의 구동을 제어하며 서보 앰프(118)로부터 피드백받은 서보모터의 회전 변화량을 근거로 서보모터(130)에 대한 위치 제어를 수행한다.
또한, 서보 제어기(117)는 서보 앰프(118)로부터 피드백받은 회전 변화량을 알고리즘 처리부(113)의 이송축 너트 위치 계산부(115)로 전달한다.
보정 기능 선택입력부(111)는 작업의 형태 및 작업자의 임의 설정에 따라 보정 기능을 수행할 것인지에 대한 온(on), 오프(off)를 선택적으로 입력 받는다. 보정 기능을 온(on)으로 선택하면 본 발명의 실시간 위치 보정을 수행하는 것으로 알고리즘 처리부(113)에 설정 요청하고, 오프(off)를 선택하면 실시간 위치 보정을 수행하지 않는 것으로 알고리즘 처리부(113)에 설정 요청한다.
저장부(112)는 보정 구간, 볼스크류의 나사산 피치 간격, 서보모터의 토크에 따른 볼스크류의 피치 변화량, 지령 위치, 피치 오차 테이블 등 실시간 위치 보정에 필요한 각종 데이터를 저장한다.
특히, 저장부(112)의 피치 변화량 룩업 테이블(112a)은 볼스크류에 가해지는 힘에 따라 변하는 볼스크류의 나사산 피치 변화량을 서보모터의 토크에 근거하여 기록한다. 예를 들면 도 4에 나타낸 바와 같이 서보모터의 토크에 따라 볼스크류의 나사산 피치 변화량을 각각 매핑하여 테이블화할 수 있다.
이러한 피치 변화량 룩업 테이블(112a)은 사전 테스트를 통해 미리 구축할 수 있다. 예를 들어, 동일한 서보모터 및 이송축을 사용하는 공작기계의 경우 이송축의 강성에 따라 룩업 테이블이 동일하므로 한 번의 테스트으로 피치 변화량 룩업 테이블(112a)을 구축하는 것이 가능하다.
피치 오차 보정 테이블(112b)은 피치 오차에 따른 보정값을 기록한다. 보정값은 알고리즘 처리부(113)의 피치 오차 보정부(116)를 통해 계산된 값으로, 피치 오차에 따라 계산된 보정값이 기 저장된 피치 오차 보정 테이블(112b)과 다른 경우 최신 보정값으로 갱신한다.
알고리즘 처리부(113)는 보정 기능 선택입력부(111)로부터 입력받은 선택 여부에 따라 보정 기능을 수행하도록 동작하며, 서보 제어기(117)로부터 볼스크류의 탄성 변형에 대응하는 토크 데이터 및 위치 데이터를 인가받아 볼스크류의 피치 변화량 및 피치 변화량에 따른 보정값을 계산하고, 계산한 보정값을 피치 오차 테이블에 수정하여 수정한 피치 오차 테이블을 근거로 서보모터의 구동을 보정한다.
이를 위해 구체적으로 알고리즘 처리부(113)는 피치 변화량 검출부(114), 이송축 너트 위치 계산부(115), 피치 오차 보정부(116)로 구분할 수 있다. 이러한 구분은 설명의 편의상 각 기능별로 독립적으로 구성된 것을 예시하였으나, 하나 또는 그 이상의 기능들이 통합되어 구비될 수도 있을 것이다.
피치 변화량 검출부(114)는 서보 제어기(117)로부터 볼스크류의 탄성 변형에 대응하는 토크 데이터를 인가받아 저장부(112)에 기 저장된 피치 변화량 룩업 테이블을 근거로 볼스크류의 나사산 당 피치 변화량(δ)을 검출한다.
이때, 피치 변화량 검출부(114)는 기 저장된 피치 변화량 룩업 테이블과 도 5의 선형 보간(linear interpolation)을 이용하면 서보모터의 토크에 대응하는 나사산 당 피치 변화량(δ)을 실시간으로 계산하는 것이 가능하다.
이송축 너트 위치 계산부(115)는 서보 제어기(117)로부터 전달받은 서보모터의 회전 변화량(위치)로부터 이송축 너트(150)가 위치한 중심 위치를 계산한다.
피치 오차 보정부(116)는 피치 변화량 검출부(114)를 통해 검출한 볼스크류의 나사산 당 피치 변화량(δ)과, 이송축 너트 위치 계산부(115)를 통해 계산한 너트의 중심 위치를 이용하여 피치 오차에 따른 보정값을 산출한다.
그리고, 피치 오차 보정부(116)는 산출한 보정값을 피치 오차 보정 테이블(112b)에 전달하여 피치 오차에 따른 보정값을 최신 정보로 수정하고 기설정한 보정 구간마다 피치 오차 보정 테이블에 저장된 최신 보정값을 추출하여 서보 제어기(117)로 보정값에 대응하는 제어 신호를 전달한다. 따라서, 피치 오차 보정부(116)는 보정 구간마다 최신 보정값만큼 서보모터의 구동을 보정한다.
피치 오차에 따른 보정값은 하기의 수학식을 이용한 알고리즘을 통해 산출할 수 있다.
[규칙 제26조에 의한 보정 15.10.2012] 
수학식 4
Figure WO-DOC-MATHS-4
여기서, δ는 볼스크류의 나사산 당 피치 변화량, p는 볼스크류의 나사산 당 피치 간격이다. 그리고, 너트 중심 위치와 모터측 베어링 위치간 간격은 이송축 위치에 해당되며 또는 보정 구간(보정 간격)이 될 수 있다.
상기의 수학식에 의한 보정값을 이송축의 위치에 따라 검출하면 도 6에 도시한 바와 같은 그래프의 기울기에 대응된다.
그래프 ①은 서보모터의 토크가 a일 때 이송축의 위치에 따른 보정값을 나타낸 것이다. ②는 서보모터의 토크가 a이고 이송축의 위치가 m1에서 m2로 이송할 경우의 보정값을 나타낸 것이고, ③은 서보모터의 토크가 a보다 큰 경우 이송축의 위치에 따른 보정값을 나타낸 것이다.
예를 들어, 너트의 중심위치가 모터측 베어링의 위치로부터 160mm 정도 떨어져 있고 모터측 베어링 위치로부터 30mm 간격으로 피치 오차를 보정하며 볼스크류의 나사산 당 피치가 15mm라고 가정한다. 만일 이송 테이블을 서보모터 쪽으로 이송하면 모터측 베어링과 너트 사이의 볼스크류는 이송 테이블을 끌어오는 데 필요한 힘에 비례하여 늘어나게 되고, 서보모터는 이송 테이블을 끌어오는 데 드는 힘을 토크로 느끼게 된다. 이때의 서보모터의 토크 데이터를 검출하고 계산된 나사산 당 피치 변화량 δ이 2.3미크론 이라면, 피치오차 보정구간(30mm 간격) 당 보정값은 수학식 4에 의해 4.6미크론(2.3*30/15)이 되므로 피치 오차 보정 테이블은 아래와 같이 수정된다.
- 모터측 베어링에서 30mm 떨어진 피치오차 첫번째 보정점에서의 보정값 = 기존값 + 1*4.6
- 모터측 베어링에서 60mm 떨어진 피치오차 두번째 보정점에서의 보정값 = 기존값 + 2*4.6
- 모터측 베어링에서 90mm 떨어진 피치오차 세번째 보정점에서의 보정값 = 기존값 + 3*4.6
- 모터측 베어링에서 120mm 떨어진 피치오차 네번째 보정점에서의 보정값 = 기존값 + 4*4.6
- 모터측 베어링에서 150mm 떨어진 피치오차 다섯번째 보정점에서의 보정값 = 기존값 + 5*4.6
따라서, 피치 오차 보정부(116)는 이송축 너트의 위치에 따라 피치 오차 보정 테이블에 설정된 보정값만큼 서보모터를 더 이송시키거나 덜 이송시키는 역할을 한다. 즉, 볼스크류의 나사산 당 피치 변화량과 너트의 중심 위치에 따라 보정값을 계산하고 계산된 보정값에 따라 피치 오차 보정 테이블을 수정하면 수정된 피치 오차 보정 테이블에 의해 너트의 중심 위치에 대한 오차를 보상하는 방향으로 이동시킨다.
따라서, 알고리즘 처리부(113)를 통한 본 발명은 서모보터의 토크로부터 볼스크류 탄성 변형에 의한 피치 오차를 계산하고 이를 통해 피치 오차 보정 테이블을 수정함으로써 이송축의 이송 오차 및 서보모터의 반전시 발생하는 백래쉬 오차를 실시간으로 보정하는 것이 가능하다.
그러면, 이와 같이 구성되는 공작기계에서 볼스크류 탄성 변형에 의한 이송 오차를 보정하는 과정을 구체적으로 설명한다.
도 7은 본 발명의 공작기계에서 볼스크류 변형에 의한 실시간 위치 보정 방법을 설명하는 흐름도이고, 도 8은 도 7의 상세 흐름도이다.
먼저, 실시간 보정을 위해 공작 기계는 모터측 베어링으로부터 보정할 지점의 보정 구간을 설정하고, 볼스크류의 나사산 당 피치 간격, 서보모터의 토크에 따른 볼스크류의 나사산 당 피치 변화량에 대한 데이터를 사전에 구축한다.
이후, 공작 기계의 수치제어장치는 보정 기능 선택입력부를 통해 설정된 보정 기능의 온, 오프에 따라 피치 보정을 수행할 것인지를 확인한다(S100).
예를 들어, 도 8에 도시한 바와 같이 보정 기능에 대한 온, 오프 여부를 확인하고(S102), 오프(off)로 설정되어 있으면 피치 보정 기능을 종료하고 온(on)으로 설정되어 있으면 기설정된 보정 구간(보정점)에 따라 또는 작업자의 요청에 따라 직접 발생하는 실시간 보정 지령에 따라 보정 기능을 수행한다.
이후, 공작 기계의 수치제어장치는 실시간 보정을 위해 서보제어기로부터 현재 서보모터의 토크 데이터를 실시간으로 검출한다(S110).
이후, 공작 기계의 수치제어장치는 피치 변화량 검출부에서 서보모터의 토크와 볼스크류의 나사산 당 피치 변화량간 관계를 이용하여 상기의 S110단계에서 검출한 서보모터의 토크로부터 볼스크류의 나사산 당 피치 변화량을 검출한다(S120).
검출 방법으로는 상기의 구성에서 설명한 서보모터의 토크와 볼스크류의 나사산 당 피치 변화량간 관계를 데이터 값으로 테이블화한 피치 변화량 룩업 테이블을 이용하여, 검출한 서보모터의 토크에 대응되는 볼스크류의 나사산 당 피치 변화량을 검출하는 방식을 이용할 수 있다.
또는, 서보모터의 토크와 볼스크류의 나사산 당 피치 변화량간 관계를 정의한 수학식 및 알고리즘을 통해 검출하는 방식을 이용할 수도 있다.
이후, 공작 기계의 수치제어장치는 이송축 너트 위치 계산부에서 서보모터의 회전 변화량으로부터 이송축 너트의 중심 위치를 계산하여 너트가 위치한 위치 데이터를 검출한다(S130).
이후, 공작 기계의 수치제어장치는 피치 오차 보정부에서 볼스크류의 나사산 당 피치 변화량과 너트의 중심 위치를 이용하여 피치 오차에 따른 보정값을 계산한다(S140).
보정값은 상기의 수학식 4에서 언급한 바와 같이 모터측 베어링과 너트간 간격(이동 거리)에서 또는 보정 구간에서의 볼스크류의 나사산 당 피치에 대한 변화량을 산출한 것이다.
이후, 공작 기계의 수치제어장치는 계산한 보정값을 토대로 피치오차 보정 테이블에 수정하여 갱신한다(S150).
이후, 공작 기계의 수치제어장치는 피치 오차 보정 테이블에 근거하여 수정된 보정값만큼 이송 위치를 보정한다(S160).
본 발명에서의 이송 위치의 보정 방법은 수정된 보정값만큼 서보모터의 구동을 조절하여 이송 위치를 보상하는 것이다. 따라서, 이송 및 가공시 지령 위치로 이송하면서 보정 구간마다 피치 오차에 따라 계산한 보정값을 반영하여 볼스크류의 탄성 변형에 따른 이송축의 위치를 너트의 중심 위치에 대한 오차 보상을 통해 보상한다. 이로써, 볼스크류 탄성 변형에 의한 이송축의 위치 오차를 실시간으로 보상하는 것이 가능하다.
이상의 설명은 본 발명을 예시적으로 설명한 것에 불과하며, 본 발명이 속하는 기술 분야에서 통상의 지식을 가진 자에 의해 본 발명의 기술적 사상에서 벗어나지 않는 범위에서 다양한 변형이 가능할 것이다. 따라서 본 발명의 명세서에 개시된 실시 예들은 본 발명을 한정하는 것이 아니다. 본 발명의 범위는 아래의 특허청구범위에 의해 해석되어야 하며, 그와 균등한 범위 내에 있는 모든 기술도 본 발명의 범위에 포함되는 것으로 해석해야 할 것이다.

Claims (6)

  1. 서보모터의 구동에 의해 볼스크류가 회전하고 상기 볼스크류가 회전함에 따라 이송 테이블을 이송시키는 이송축;
    상기 이송축의 서보모터로부터 발생하는 토크를 감지하여 상기 볼스크류의 탄성 변형으로 인한 나사산 당 피치 변화량을 검출하는 피치 변화량 검출부;
    상기 이송축의 서보모터로부터 감지한 회전 변화량에 따라 상기 이송 테이블을 이송시키는 너트의 중심 위치를 계산하는 이송축 너트 위치 계산부;
    상기 피치 변화량 검출부를 통해 검출한 볼스크류의 나사산 당 피치 변화량과 상기 이송축 너트 위치 계산부를 통해 계산한 너트의 중심 위치를 이용하여 상기 볼스크류의 나사산 피치 오차에 따른 보정값을 계산하고, 계산한 보정값만큼 상기 서보모터의 구동을 보정하여 상기 이송축의 위치를 실시간 보상하는 피치 오차 보정부
    를 포함하는 것을 특징으로 하는 공작기계의 볼스크류 탄성 변형에 의한 실시간 위치 보정 장치.
  2. 제 1 항에 있어서,
    상기 피치 변화량 검출부는
    상기 서보모터의 토크에 대응하는 볼스크류의 나사산 당 피치 변화량의 관계를 정의한 룩업 테이블 또는 수학식 알고리즘을 이용하여 상기 서보모터의 토크에 따른 볼스크류의 나사산 당 피치 변화량을 검출하는 것을 특징으로 하는 공작기계의 볼스크류 탄성 변형에 의한 실시간 위치 보정 장치.
  3. 제 1 항에 있어서,
    상기 피치 오차 보정부는
    상기 계산한 보정값을 피치 오차 보정 테이블에 수정하여 최신 보정값으로 갱신하고, 기설정한 보정 구간마다 상기 피치 오차 보정 테이블에 저장된 최신 보정값을 추출하여 보상하는 것을 특징으로 하는 공작기계의 볼스크류 탄성 변형에 의한 실시간 위치 보정 장치.
  4. 이송축의 서보모터에 대하여 회전 변화량을 감지하여 상기 서보모터의 토크를 검출하는 단계;
    상기 검출한 서보모터의 토크를 이용하여 상기 서보모터의 구동에 의해 회전하는 볼스크류의 나사산 당 피치 변화량을 검출하는 단계;
    상기 서보모터의 회전 변화량으로부터 상기 이송축의 위치를 계산하는 단계;
    상기 볼스크류의 나사산 당 피치 변화량과 상기 이송축의 위치를 이용하여 상기 볼스크류의 나사산 피치 오차에 따른 보정값을 계산하는 단계;
    계산한 보정값만큼 상기 서보모터의 구동을 보정하여 상기 이송축의 위치를 실시간 보상하는 단계
    를 포함하는 것을 특징으로 하는 공작기계의 볼스크류 탄성 변형으로 인한 실시간 위치 보정 장치.
  5. 제 4 항에 있어서,
    상기 볼스크류의 나사산 당 피치 변화량을 검출하는 단계는,
    상기 서보모터의 토크에 대응하는 볼스크류의 나사산 당 피치 변화량의 관계를 정의한 룩업 테이블 또는 수학식 알고리즘을 이용하여 상기 서보모터의 토크에 따른 볼스크류의 나사산 당 피치 변화량을 검출하는 것을 특징으로 하는 공작기계의 볼스크류 탄성 변형에 의한 실시간 위치 보정 방법.
  6. 제 4 항에 있어서,
    상기 이송축의 위치를 실시간 보상하는 단계는,
    상기 계산한 보정값을 피치 오차 보정 테이블에 수정하여 최신 보정값으로 갱신하고, 기설정한 보정 구간마다 상기 피치 오차 보정 테이블에 저장된 최신 보정값을 추출하여 보상하는 것을 특징으로 하는 공작기계의 볼스크류 탄성 변형에 의한 실시간 위치 보정 방법.
PCT/KR2012/007535 2011-10-18 2012-09-20 공작기계의 볼스크류 변형에 의한 실시간 위치 보정 방법 및 장치 WO2013058481A1 (ko)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
KR1020110106270A KR101847214B1 (ko) 2011-10-18 2011-10-18 공작기계의 볼스크류 변형에 의한 실시간 위치 보정 방법 및 장치
KR10-2011-0106270 2011-10-18

Publications (1)

Publication Number Publication Date
WO2013058481A1 true WO2013058481A1 (ko) 2013-04-25

Family

ID=48141094

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/KR2012/007535 WO2013058481A1 (ko) 2011-10-18 2012-09-20 공작기계의 볼스크류 변형에 의한 실시간 위치 보정 방법 및 장치

Country Status (2)

Country Link
KR (1) KR101847214B1 (ko)
WO (1) WO2013058481A1 (ko)

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN103358182A (zh) * 2013-07-02 2013-10-23 国家电网公司 一种深孔钻床刀杆应力状态监测系统
CN107091630A (zh) * 2017-01-18 2017-08-25 浙江精久轴承工业有限公司 一种滚珠丝杆螺距检测与均匀判定装置及方法
CN107515117A (zh) * 2017-09-25 2017-12-26 山东博特精工股份有限公司 丝杠副传动效率精密测量装置及测量方法
CN111215965A (zh) * 2019-11-28 2020-06-02 华中科技大学 机床进给系统交流永磁同步电机动态扭矩测量装置及方法

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE102017206931A1 (de) 2017-04-25 2018-10-25 Dr. Johannes Heidenhain Gmbh Verfahren zur Kompensation der Fräserabdrängung

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR970061439A (ko) * 1996-02-27 1997-09-12 김광호 공작기계의 피치 오차 보정 방법
JPH10100043A (ja) * 1996-09-26 1998-04-21 Mitsubishi Heavy Ind Ltd ピッチ誤差補正制御装置
KR19990037075A (ko) * 1997-10-14 1999-05-25 이꾸마 다께히꼬 공급 구동 시스템용 서보 제어 방법 및 서보 제어 시스템
WO2007098917A1 (en) * 2006-03-02 2007-09-07 Mikron Agie Charmilles Ag Method and apparatus for a displacement correction for a machine tool

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR970061439A (ko) * 1996-02-27 1997-09-12 김광호 공작기계의 피치 오차 보정 방법
JPH10100043A (ja) * 1996-09-26 1998-04-21 Mitsubishi Heavy Ind Ltd ピッチ誤差補正制御装置
KR19990037075A (ko) * 1997-10-14 1999-05-25 이꾸마 다께히꼬 공급 구동 시스템용 서보 제어 방법 및 서보 제어 시스템
WO2007098917A1 (en) * 2006-03-02 2007-09-07 Mikron Agie Charmilles Ag Method and apparatus for a displacement correction for a machine tool

Cited By (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN103358182A (zh) * 2013-07-02 2013-10-23 国家电网公司 一种深孔钻床刀杆应力状态监测系统
CN107091630A (zh) * 2017-01-18 2017-08-25 浙江精久轴承工业有限公司 一种滚珠丝杆螺距检测与均匀判定装置及方法
CN107515117A (zh) * 2017-09-25 2017-12-26 山东博特精工股份有限公司 丝杠副传动效率精密测量装置及测量方法
CN107515117B (zh) * 2017-09-25 2023-12-08 山东博特精工股份有限公司 丝杠副传动效率精密测量装置及测量方法
CN111215965A (zh) * 2019-11-28 2020-06-02 华中科技大学 机床进给系统交流永磁同步电机动态扭矩测量装置及方法

Also Published As

Publication number Publication date
KR101847214B1 (ko) 2018-04-09
KR20130042140A (ko) 2013-04-26

Similar Documents

Publication Publication Date Title
WO2013058481A1 (ko) 공작기계의 볼스크류 변형에 의한 실시간 위치 보정 방법 및 장치
WO2012077996A2 (ko) 부하 무게에 따른 실시간 서보 모터 제어기
US20100231158A1 (en) Server controller and a method for controlling a plurality of motors
JP4684330B2 (ja) ねじ締め装置
JP2012088827A (ja) 負荷イナーシャ推定方法及び制御パラメータ調整方法
KR0136268B1 (ko) 공작기계의 위치 보정방법 및 그 장치
EP2299237A2 (en) Gantry stage orthogonality error measurement method and error compensation method
JPWO2007105257A1 (ja) 同期制御システム
US9434075B2 (en) Method for operating a multi-limb manipulator
EP1803530A2 (en) Tool displacement controlling and correcting device for machine tool
CN109632305B (zh) 一种低速轴承真空跑合测试控制系统
JP2003005838A (ja) サーボ制御方法
CN113664869A (zh) 机械臂、机械臂控制方法及系统
CN112504527B (zh) 一种基于力平衡的小型稳定平台摩擦力矩测试方法
CN111624940B (zh) 信息处理装置以及信息处理方法
WO2023149765A1 (ko) 공작기계의 열변위 보정 장치 및 보정 방법
WO2018135788A1 (ko) 공작기계의 제어 장치, 이를 포함하는 공작기계, 및 이를 이용한 공작기계의 제어 방법
WO2013094852A1 (ko) 공작기계의 공구 휨 현상 보정 방법
JP4602278B2 (ja) 複数軸同期システム及びその制御方法
WO2020105983A1 (ko) 로봇팔을 이용한 정밀 가공장치 및 이의 작동방법
WO2020138705A1 (ko) 편차 제어부를 구비한 갠트리 스테이지의 제어 장치
WO2023054749A1 (ko) 로봇 강성 유지 자세를 구현하는 가공 장치 및 이를 이용한 로봇 강성 유지 자세를 구현하는 가공 방법
JP6553906B2 (ja) 工作機械及びその工具回転装置
KR20010081999A (ko) 반송 구동 장치의 위치 제어 방법 및 위치 제어 시스템
CN113050712A (zh) 一种确定机械旋转设备运行角度的方法及装置

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 12841734

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 12841734

Country of ref document: EP

Kind code of ref document: A1