WO2021106964A1 - Optical sorting machine - Google Patents

Optical sorting machine Download PDF

Info

Publication number
WO2021106964A1
WO2021106964A1 PCT/JP2020/043910 JP2020043910W WO2021106964A1 WO 2021106964 A1 WO2021106964 A1 WO 2021106964A1 JP 2020043910 W JP2020043910 W JP 2020043910W WO 2021106964 A1 WO2021106964 A1 WO 2021106964A1
Authority
WO
WIPO (PCT)
Prior art keywords
light
optical
wavelength region
wavelength
optical sensor
Prior art date
Application number
PCT/JP2020/043910
Other languages
French (fr)
Japanese (ja)
Inventor
卓矢 西田
Original Assignee
株式会社サタケ
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 株式会社サタケ filed Critical 株式会社サタケ
Priority to CN202080081194.6A priority Critical patent/CN114729901A/en
Publication of WO2021106964A1 publication Critical patent/WO2021106964A1/en

Links

Images

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B07SEPARATING SOLIDS FROM SOLIDS; SORTING
    • B07CPOSTAL SORTING; SORTING INDIVIDUAL ARTICLES, OR BULK MATERIAL FIT TO BE SORTED PIECE-MEAL, e.g. BY PICKING
    • B07C5/00Sorting according to a characteristic or feature of the articles or material being sorted, e.g. by control effected by devices which detect or measure such characteristic or feature; Sorting by manually actuated devices, e.g. switches
    • B07C5/34Sorting according to other particular properties
    • B07C5/342Sorting according to other particular properties according to optical properties, e.g. colour
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01NINVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
    • G01N21/00Investigating or analysing materials by the use of optical means, i.e. using sub-millimetre waves, infrared, visible or ultraviolet light
    • G01N21/84Systems specially adapted for particular applications
    • G01N21/85Investigating moving fluids or granular solids

Definitions

  • the present invention relates to an optical sorter, and more particularly to an optical sorter having a light source that emits light having a wavelength in the invisible wavelength region toward an object to be sorted.
  • an optical sorting device uses optical information obtained by an optical sensor when a sorting target is irradiated with near-infrared light to discriminate and remove foreign substances and defective products contained in the sorting target.
  • the optical sensor has a peak of spectral sensitivity in the near-infrared wavelength region in order to receive reflected light and / or transmitted light obtained by irradiating the sorting object with near-infrared rays. It is equipped with an optical element.
  • the present invention has been made to solve the above-mentioned problems, and can be realized as the following forms, for example.
  • an optical sorter has an R element, which is an optical element for detecting light having a wavelength corresponding to red, a G element, which is an optical element for detecting light having a wavelength corresponding to green, and blue. It is provided with a first optical sensor having a B element, which is an optical element for detecting light having a wavelength corresponding to the above.
  • Each of the R element, the G element and the B element has a peak of spectral sensitivity in the visible wavelength region. At least two of the R element, the G element and the B element have a non-zero spectral sensitivity in a predetermined wavelength region of the invisible wavelength region.
  • the optical sorter further comprises a first light source that emits first light having a wavelength within a predetermined wavelength region toward the object to be sorted, and when the first light is emitted from the first light source.
  • a first light source that emits first light having a wavelength within a predetermined wavelength region toward the object to be sorted, and when the first light is emitted from the first light source.
  • Based on an integrating unit that integrates at least a part of the signal acquired through at least two elements, or at least a part of the gradation value corresponding to the signal, and the signal or the gradation value integrated by the integrating unit. It is provided with a first determination unit for determining foreign matter and / or defective products.
  • the first light having a wavelength in the invisible wavelength region can be detected by an optical sensor including an R element, a G element and a B element having a peak of spectral sensitivity in the visible wavelength region.
  • the first light having a wavelength in the invisible wavelength region can be detected without using an optical sensor including an optical element having a peak of spectral sensitivity in the invisible wavelength region.
  • an optical sensor having an R element, a G element, and a B element having a peak of spectral sensitivity in the visible wavelength region is much cheaper than an optical sensor having an optical element having a peak of spectral sensitivity in the invisible wavelength region. Is.
  • At least a part of the signal acquired through at least two elements that is, the R signal acquired by the R element, the G signal acquired by the G element, and the B signal acquired by the B element.
  • At least two signals of or at least a part of the gradation value that is, the R gradation value corresponding to the R signal, the G gradation value corresponding to the G signal, and the B gradation value corresponding to the B signal.
  • at least two gradation values are integrated, so that the signal is amplified or the gradation value is increased.
  • the "signal" means an analog signal representing the intensity of the detected light.
  • all the elements of the R element, the G element and the B element have a non-zero spectral sensitivity in a predetermined wavelength region.
  • the integrating unit integrates the signal or gradation value acquired through the R element, the G element, and the B element when the first light is emitted from the first light source. According to such a form, the signal can be further amplified or the gradation value can be further increased. Therefore, it is possible to further suppress a decrease in the determination accuracy of foreign matter and / or defective products.
  • the integrating unit integrates the signal or the gradation value using the weighting coefficient.
  • the sensitivity characteristics of the first optical sensor used are determined according to the spectral sensitivities of the R element, the G element and the B element in the predetermined wavelength region. Accordingly, the intensity of the signal used in the first determination unit or the magnitude of the gradation value can be adjusted.
  • the weighting factor can be any positive number greater than zero.
  • the weighting coefficient is a value of 1 or more. According to this embodiment, when the spectral sensitivities of the R element, G element, and B element in the predetermined wavelength region are insufficient, the signal used in the first determination unit is amplified in order to obtain the required determination accuracy. Or the gradation value can be increased.
  • the optical sorter emits a second light having a wavelength in the visible wavelength region toward the sorting object. It has a second light source.
  • the optical sorter further includes an R element, which is an optical element for detecting light having a wavelength corresponding to red, and a G element, which is an optical element for detecting light having a wavelength corresponding to green.
  • It includes a second optical sensor having a B element, which is an optical element for detecting light having a wavelength corresponding to blue.
  • the optical sorter further determines foreign matter and / or defective products based on the signal acquired through the second optical sensor when the second light is emitted from the second light source. It is equipped with a judgment unit.
  • the first light source and the second light source are one that emits a first light having a wavelength in the invisible wavelength region and a second light having a wavelength in the visible wavelength region toward the object to be sorted. It may be an integrated light source.
  • the optical sorter is further arranged on the optical path of light incident on the first optical sensor and has a wavelength in the visible wavelength region.
  • a first optical filter that cuts light and a second optical filter that is arranged on the optical path of light incident on the second optical sensor and cuts light having a wavelength in the invisible wavelength region are provided.
  • the first optical sensor can detect only light having a wavelength within the invisible wavelength region, and the second light source can be detected.
  • the optical sensor can detect only light having a wavelength within the visible region. That is, it is efficient because the detection of visible light and the detection of invisible light can be performed at the same time.
  • the optical sorter is a chute type, it is possible to detect visible light and detect invisible light while dropping the sorting object from the chute once.
  • the second optical sensor has the same specifications as the first optical sensor. According to this form, since the first optical sensor and the second optical sensor have the same specifications, it is possible to simplify the procurement of parts at the manufacturing stage of the optical sorter. As a result, the manufacturing cost can be reduced.
  • the optical sorter emits a second light having a wavelength in the visible wavelength region toward the sorting object.
  • a second light source and a second determination unit that determines foreign matter and / or defective products based on the signal acquired by the first optical sensor when the second light is emitted from the second light source.
  • both the determination based on visible light and the determination based on invisible light can be performed.
  • the first optical sensor can be shared for both the detection of visible light and the detection of invisible light, an optical sensor for visible light and an optical sensor for invisible light are provided separately. Compared with the case, the number of optical sensors can be reduced. As a result, the manufacturing cost can be reduced.
  • the first optical sensor refers to one sorting object by alternately lighting the first light source and the second light source. , Both the signal when the first light is emitted and the second light is not emitted, and the signal when the first light is not emitted and the second light is emitted. Configured to be retrievable. According to such a form, the detection of visible light and the detection of invisible light can be performed at the same time, which is efficient.
  • FIG. 1 is a schematic diagram showing a schematic configuration of an optical sorter (hereinafter, simply referred to as a sorter) 10 as the first embodiment of the present invention.
  • the sorter 10 is used to sort foreign substances (for example, pebbles, mud, glass pieces, etc.) and defective products (for example, immature grains, colored grains, etc.) from rice as a sorting target. ..
  • the object to be sorted is not limited to rice, and may be any granular material (for example, grains other than rice, plastic, etc.).
  • the sorting machine 10 includes an optical detection unit 20, a storage tank 71, a feeder 72, a chute 73, a non-defective product discharge gutter 74, a defective product discharge gutter 75, an ejector 76, and a control device. It has 80 and.
  • the control device 80 controls the overall operation of the sorter 10.
  • the control device 80 also functions as an integrating unit 81, a first determination unit 82, and a second determination unit 83.
  • the function of the control device 80 may be realized by the CPU executing a predetermined program, or may be realized by a dedicated circuit. At least a part of the integrating unit 81, the first determination unit 82, and the second determination unit 83 may be realized by one integrated device.
  • the first determination unit 82 and the second determination unit 83 may have two functions realized by one CPU.
  • the integrating unit 81, the first determination unit 82, and the second determination unit 83 may be realized as individual devices. The details of the function of the control device 80 will be described later.
  • the storage tank 71 temporarily stores the sorting object (hereinafter, simply referred to as an object) 90.
  • the feeder 72 supplies the object 90 stored in the storage tank 71 onto the chute 73.
  • the optical detection unit 20 irradiates the object 90 that has slipped off the chute 73 with light, and the light associated with the object 90 (specifically, the transmitted light transmitted through the object 90 and / or). The reflected light reflected by the object 90) is detected.
  • This detection result is input to the control device 80. Based on this detection result, the control device 80 determines whether the object 90 is a good product (that is, rice grains with relatively high quality), or a foreign substance (that is, a non-rice grain) or a defective product (that is, quality). Is a relatively low grain of rice). This determination is made for each of the objects 90.
  • the ejector 76 injects air 77 toward the object 90. As a result, the object 90 is blown off, deviates from the drop trajectory from the chute 73, and is guided to the defective product discharge gutter 75. On the other hand, when the object 90 is determined to be a non-defective product, the air 77 is not injected. Therefore, the object 90 determined to be a non-defective product is guided to the non-defective product discharge gutter 74 without changing the fall trajectory.
  • the optical detection unit 20 includes a first light source 30, second light sources 40a and 40b, a first optical sensor 50, a second optical sensor 60a and 60b, and a first It includes an optical filter 51 and second optical filters 61a and 61b.
  • the first optical sensor 50 is a general-purpose color CCD sensor in this embodiment.
  • the first optical sensor 50 is a line sensor in this embodiment, but may be an area sensor.
  • the first optical sensor 50 includes an optical element for detecting light having a wavelength corresponding to red (hereinafter referred to as R element) and an optical element for detecting light having a wavelength corresponding to green (hereinafter referred to as R element). , G element) and an optical element (hereinafter, referred to as B element) for detecting light having a wavelength corresponding to blue.
  • R, G, and B mean R, G, and B in the RGB color space, respectively.
  • Each of these optical elements includes a condenser lens, a color filter, and a photoelectric conversion element.
  • Each of the color filters has a property of transmitting light having a wavelength corresponding to the color of light to be detected (for example, red in the case of an R element) and not transmitting light of other wavelengths.
  • a spectroscope such as a dichroic prism may be used instead of the color filter.
  • FIG. 2 shows an example of the spectral sensitivity characteristics of the R element, G element, and B element of the first optical sensor 50.
  • each of the three types of devices has a peak of spectral sensitivity in the visible wavelength region.
  • the visible wavelength region is, for example, a region having a wavelength of 400 nm or more and 760 nm or less.
  • the R element has a peak of spectral sensitivity near 620 nm.
  • the G element has a peak of spectral sensitivity near 520 nm.
  • the B element has a peak of spectral sensitivity near 470 nm.
  • Each of these elements has a non-zero spectral sensitivity even in a predetermined wavelength range in the invisible wavelength region (that is, a wavelength region other than the visible wavelength region).
  • a predetermined wavelength range in the invisible wavelength region that is, a wavelength region other than the visible wavelength region.
  • each of the R element, the G element, and the B element has a relative sensitivity of about 0.35 with respect to light having a wavelength of 850 nm (more specifically, near infrared light). doing.
  • the second optical sensors 60a and 60b have the same specifications as the first optical sensor 50 in this embodiment. Therefore, the second optical sensors 60a and 60b include R elements, G elements, and B elements having the same specifications as the first optical sensor 50, and these elements have the spectral sensitivity characteristics illustrated in FIG. Have.
  • the first light source 30 emits the first light 31 toward the object 90.
  • the first light 31 has a wavelength within the above-mentioned predetermined wavelength range (that is, a wavelength range in the invisible wavelength region in which the R element, G element, and B element of the first optical sensor 50 have non-zero spectral sensitivity). have.
  • the first light source 30 is a near infrared light source. Therefore, the first light 31 is also referred to as near infrared light 31.
  • the output peak of the first light source 30 is in the invisible wavelength region (in this embodiment, at a wavelength of 850 nm).
  • the first light source 30 is an LED in this embodiment, but any other light emitting element (for example, a halogen lamp) may be used.
  • the first light 31 may include light having a wavelength in the visible wavelength region in addition to light having a wavelength in the invisible wavelength region.
  • the second light source 40a emits the second light 41a toward the object 90.
  • the second light 41a has a wavelength within the visible wavelength region. Therefore, the second light 41a is also referred to as visible light 41a.
  • the output peak of the second light source 40a is in the visible wavelength region.
  • the second light source 40a is a so-called color LED capable of emitting red, green, and blue light, respectively.
  • the second light source 40a may be any other light emitting element (for example, a halogen lamp).
  • the second light source 40b has the same specifications as the second light source 40a, and emits a second light 41b (also referred to as visible light 41b) having a wavelength within the visible wavelength region toward the object 90. To do.
  • the second light 41a and 41b may include light having a wavelength in the invisible wavelength region in addition to light having a wavelength in the visible wavelength region.
  • the first optical filter 51 is arranged on the optical path of the light incident on the first optical sensor 50.
  • the first optical filter 51 cuts light having a wavelength within the visible wavelength region. That is, light having a wavelength in the invisible wavelength region (near infrared wavelength region in this embodiment) passes through the first optical filter 51, but light having a wavelength in the visible wavelength region is transmitted through the first optical filter. It does not pass through 51. Therefore, the first optical sensor 50 can detect only near-infrared light.
  • the second optical filters 61a and 61b are arranged on the optical path of the light incident on the second optical sensors 60a and 60b, respectively.
  • the second optical filters 61a and 61b cut light having a wavelength within the invisible wavelength region. That is, the light having a wavelength within the visible wavelength region passes through the second optical filters 61a and 61b, but the light having a wavelength in the invisible wavelength region (in the present embodiment, the near infrared wavelength region) is the second optical filter. It does not pass through the optical filters 61a and 61b. Therefore, the second optical sensors 60a and 60b can detect only visible light.
  • the first light source 30, the second light source 40a, and the second optical sensor 60a are unilateral with respect to the transfer path of the object 90 (in other words, the fall locus from the chute 73). It is located on the front side (also called the front side).
  • the second light source 40b, the first optical sensor 50, and the second optical sensor 60b are arranged on the other side (also referred to as the rear side) with respect to the transfer path of the object 90.
  • the first optical sensor 50 on the rear side detects near-infrared light 31 emitted from the first light source 30 on the front side, transmitted through the object 90, and further transmitted through the first optical filter 51.
  • the second optical sensor 60a on the front side is the visible light 41a emitted from the second light source 40a on the front side, reflected by the object 90, and transmitted through the second optical filter 61a, and the second light source on the rear side. Visible light 41b emitted from the light source 40b, transmitted through the object 90, and further transmitted through the second optical filter 61a is detected.
  • the second optical sensor 60b on the rear side is the visible light 41b emitted from the second light source 40b on the rear side, reflected by the object 90, and transmitted through the second optical filter 61b, and the second light source on the front side. Visible light 41a emitted from the light source 40a, transmitted through the object 90, and further transmitted through the second optical filter 61b is detected.
  • the first optical sensor 50 and the second optical sensors 60a and 60b perform a plurality of scans on one object 90. By synthesizing the images obtained in each scan, the entire image of the one object 90 is acquired.
  • the first light source 30 and the second light sources 40a and 40b are constantly lit over the entire scanning period of the first optical sensor 50 and the second optical sensors 60a and 60b.
  • the method of lighting the first light source 30 and the second light sources 40a and 40b is not particularly limited.
  • the outputs of the first optical sensor 50 and the second optical sensors 60a and 60b, that is, analog signals representing the detected light intensity are converted into digital signals by an AC / DC converter (not shown).
  • This digital signal (in other words, the gradation value corresponding to the analog signal) is input to the control device 80.
  • the control device 80 foreign matter and / or defective products are determined based on the visible light 41a and 41b associated with the object 90, and the foreign matter is determined based on the near-infrared light 31 associated with the object 90. And / or a defective product is determined.
  • the second determination unit 83 determines that the object 90 is based on the analog signal obtained via the second optical sensors 60a, 60b (in other words, using the gradation value represented by the digital signal). Determine whether it is a good product, a foreign substance, or a defective product.
  • the second determination unit 83 determines the R gradation value, the G gradation value, and the B gradation obtained via the R element, the G element, and the B element of the second optical sensors 60a and 60b. Foreign matter and / or defective products are determined by comparing the value with a predetermined threshold value. Any known determination method can be adopted as this determination method.
  • the integrating unit 81 integrates the R gradation value, the G gradation value, and the B gradation value obtained via the R element, the G element, and the B element of the first optical sensor 50.
  • the integrated value IV is calculated according to the following equation (1).
  • R, G, and B represent R gradation value, G gradation value, and B gradation value, respectively.
  • a, b, and c are weighting coefficients, and are set to values larger than 0, respectively.
  • This integration is performed in pixel units of the image data obtained by the first optical sensor 50.
  • IV aR + bG + cB ... (1)
  • the integrated value IV is a value obtained by simply adding the R gradation value, the G gradation value, and the B gradation value obtained via the R element, the G element, and the B element of the first optical sensor 50. is there.
  • each of the R element, G element, and B element of the first optical sensor 50 with respect to the light having a wavelength of 850 nm (near infrared light 31) emitted from the first light source 30. It has a relative sensitivity of about 0.35. The sum of these relative sensitivities is 1.05 ( 0.35 + 0.35 + 0.35). Therefore, the integrated value IV is a large gradation value obtained when each of the R element, G element, and B element of the second optical sensors 60a and 60b detects light having a wavelength that matches the peak sensitivity. It has the same size as.
  • the first determination unit 82 determines whether the object 90 is a non-defective product, a foreign substance, or a defective product based on the integrated value IV. More specifically, the first determination unit 82 determines a foreign substance and / or a defective product by comparing the integrated value IV with a predetermined threshold value. Any known determination method can be adopted as this determination method.
  • the near-infrared light 31 associated with the object 90 is generated by the first optical sensor 50 including the R element, the G element, and the B element having the peak of the spectral sensitivity in the visible wavelength region. Detected.
  • the near-infrared light 31 can be detected without using an optical sensor including an optical element having a peak of spectral sensitivity in the invisible wavelength region.
  • an optical sensor having an R element, a G element, and a B element having a peak of spectral sensitivity in the visible wavelength region is much cheaper than an optical sensor having an element having a peak of spectral sensitivity in the invisible wavelength region. is there.
  • the first optical sensor 50 including the R element, the G element, and the B element having the peak of the spectral sensitivity in the visible wavelength region is used for detecting the near infrared light 31.
  • the manufacturing cost of the sorter 10 can be reduced.
  • the spectral sensitivity of the first optical sensor 50 in the near-infrared wavelength region is smaller than the spectral sensitivity in the visible wavelength region
  • the R gradation value, the G gradation value, and B are used to determine foreign matter and / or defective products.
  • the integrated value IV obtained by integrating the gradation values is used. That is, the gradation value used for the determination is increased by integration. Therefore, it is possible to suppress a decrease in determination accuracy due to insufficient sensitivity.
  • the output signals from the R element, G element, and B element may contain random noise, an event occurs in which the noise cancels each other out by integrating the R gradation value, the G gradation value, and the B gradation value. Therefore, the noise is less likely to be amplified as compared with the case where only one of the R gradation value, the G gradation value and the B gradation value is simply increased by multiplying by a predetermined coefficient. Therefore, it is possible to suppress a decrease in determination accuracy due to noise amplification.
  • the sorter 10 since the sorter 10 includes the first optical filter 51 and the second optical filters 61a and 61b, even if the first light source 30 and the second light sources 40a and 40b are turned on at the same time, the first light source 30 and the second light sources 40a and 40b are turned on at the same time.
  • the optical sensor 50 of 1 can detect only the near-infrared light 31 associated with the object 90, and the second optical sensors 60a and 60b can detect only the visible light 41a and 41b associated with the object 90. Can be detected. Therefore, it is possible to detect visible light and detect invisible light while the object 90 is dropped from the chute 73 once.
  • the first optical sensor 50 has the same specifications as the second optical sensors 60a and 60b. Therefore, it is possible to simplify the procurement of parts at the manufacturing stage of the sorter 10. As a result, the manufacturing cost can be reduced.
  • the weighting coefficients a, b, and c may be set to a value other than 1.
  • the weighting coefficients a, b, and c may be set to a value larger than 1, and the integrated value IV may be increased. In this case, if the weighting coefficients a, b, and c are set to the same value larger than 1, the effect of canceling the noise can be preferably obtained as in the above-described embodiment.
  • the weighting coefficient a, b, and c may be set to a value smaller than 1.
  • the weighting coefficients a, b, and c may be set to the same value.
  • a, b, and c may be set to a value of 0 or more, provided that two or more of a, b, and c are not 0.
  • any one of a, b, and c may be 0.
  • the analog signals output from the R element, the G element, and the B element may be integrated and amplified by the addition circuit.
  • the integrated value IV only two gradation values of the R gradation value, the G gradation value and the B gradation value may be integrated.
  • the first optical sensor 50 may be arranged only on the front side, or may be arranged on both the front side and the rear side.
  • the first light source 30 may be arranged only on the rear side, or may be arranged on both the front side and the rear side.
  • one light source for example, a halogen lamp
  • a halogen lamp that emits light having a wavelength in the invisible wavelength region and light having a wavelength in the visible wavelength region
  • FIG. 3 is a schematic diagram showing a schematic configuration of a sorter 100 as a second embodiment of the present invention.
  • the sorter 100 differs from the first embodiment only in that it does not include the first optical filter 51 and the second optical filters 61a and 61b and that it includes a control device 180 instead of the control device 80. There is.
  • the sorting machine 100 will be described only with respect to the differences from the first embodiment.
  • the control device 180 is different from the control device 80 in that the first light source 30 and the second light sources 40a and 40b are controlled so as to be turned on intermittently.
  • FIG. 4 is a timing chart showing the lighting timings of the first light source 30 and the second light sources 40a and 40b.
  • FIG. 5 is an explanatory diagram showing the relationship between one object 90 and the scan numbers (numbers indicating the number of scans) of the first optical sensor 50 and the second optical sensors 60a and 60b. is there.
  • image data is acquired by scanning one object 90 eight times (illustrated as a smaller number than the actual number for simplification of explanation). Will be done.
  • the numbers 1 to 8 shown in FIG. 5 indicate the scanning numbers from which the image data of the corresponding area is acquired. For example, the area marked with "1" indicates that the image data is acquired by the first scan.
  • the first light source 30 is turned on only during the scanning period having an odd number of scan numbers (indicated as ON in the figure) and turned off during the scanning period having an even number of scan numbers. (Indicated as OFF in the figure).
  • the second light sources 40a and 40b are turned on only during the scanning period having an even scanning number, and turned off during the scanning period having an odd scanning number.
  • the second light sources 40a and 40b are turned on or off at the same time. That is, the first light source 30 and the second light sources 40a and 40b are turned on alternately. In other words, the first light source 30 and the second light sources 40a and 40b are turned on exclusively with respect to each other.
  • the first optical sensor 50 detects the near-infrared light 31 emitted from the first light source 30 only during the scanning period having an odd scanning number
  • the second optical sensor 60a At 60b, visible light 41a, 41b emitted from the second light sources 40a, 40b is detected only during the scanning period having an even number of scan numbers. Therefore, the integration unit 81 and the first determination unit 82 hatch the signal acquired by the first optical sensor 50 during the scanning period having an odd number of scan numbers (the region of the image obtained by this signal is hatched in FIG. 5). The integration process and the determination process described in the first embodiment are performed using only (shown). Similarly, the second determination unit 83 performs the determination process described in the first embodiment using only the signals acquired by the second optical sensors 60a and 60b during the scanning period having an even number of scan numbers.
  • the resolutions of the first optical sensor 50 and the second optical sensors 60a and 60b are reduced to half as compared with the first embodiment, the near infrared light 31 and the visible light 41a and 41b Does not interfere with. Therefore, while the object 90 is dropped from the chute 73 once, the first optical sensor 50 can detect only the near-infrared light 31 associated with the object 90, and the second optical sensor 60a , 60b can detect only visible light 41a, 41b associated with the object 90. Moreover, since the first optical filter 51 and the second optical filters 61a and 61b are not required, the manufacturing cost can be further reduced.
  • FIG. 6 is a schematic diagram showing a schematic configuration of a sorter 200 as a third embodiment of the present invention.
  • the sorter 200 is different from the second embodiment only in that the second optical sensor 60b is not provided and that the control device 280 is provided instead of the control device 180.
  • the sorting machine 200 will be described only in terms of differences from the second embodiment.
  • the control device 280 controls the first light source 30 and the second light sources 40a and 40b so as to be intermittently lit in the same manner as the control device 180 (that is, in the manner shown in FIG. 4).
  • the first optical sensor 50 arranged on the rear side also plays the role of the second optical sensor 60b. That is, the first optical sensor 50 detects the near-infrared light 31 emitted from the first light source 30 during the scanning period having an odd number of scan numbers, and the second optical sensor 50 detects the near infrared light 31 emitted from the first light source 30 during the scanning period having an even number of scan numbers.
  • the visible light 41a, 41b emitted from the light sources 40a, 40b of the above is detected.
  • the integrating unit 81 and the first determination unit 82 use only the signals acquired by the first optical sensor 50 during the scanning period having an odd number of scanning numbers, and the first determination unit 82 is used.
  • the integration process and the determination process described in the embodiment are performed.
  • the second determination unit 83 is acquired by the signal acquired by the second optical sensor 60a in the scanning period having an even scanning number and by the first optical sensor 50 in the scanning period having an odd scanning number.
  • the determination process described in the first embodiment is performed using the signal.
  • the first optical sensor 50 can be shared for both the detection of the near-infrared light 31 and the detection of the visible lights 41a and 41b, so that the first optical sensor 50 can be shared as compared with the second embodiment.
  • the manufacturing cost can be reduced by the cost of the second optical sensor 60b.
  • the object 90 may be dropped twice to detect visible light and detect invisible light. For example, at the time of the first fall, only the first light source 30 is continuously lit, the near infrared light 31 is detected by the first optical sensor 50, and at the time of the second fall, only the second light sources 40a and 40b are turned on. Is continuously lit, and visible light 41a and 41b may be detected by the first optical sensor 50.
  • the first optical sensor 50 instead of using the first optical sensor 50 in which each of the R element, the G element and the B element has a non-zero spectral sensitivity in the near infrared wavelength region, two types of the R element, the G element and the B element are used.
  • a first optical sensor may be used in which only one of the elements has a non-zero spectral sensitivity in the near infrared wavelength region. Even in this case, by integrating the signals or gradation values acquired through the two types of elements, it is possible to suppress a decrease in determination accuracy due to insufficient sensitivity.
  • each of the R element, the G element and the B element has a non-zero spectral sensitivity in the near infrared wavelength region
  • each of the R element, the G element and the B element has a spectral sensitivity.
  • a first light source having a wavelength in the far-infrared wavelength region or the ultraviolet wavelength region is used.
  • the filtering characteristics of the first optical filter 51 can be appropriately changed according to the wavelength range of the light emitted from the first light source used. Even with such a configuration, the far-infrared wavelength region or the ultraviolet wavelength region can be detected by using an inexpensive optical sensor while ensuring the necessary determination accuracy.
  • first optical sensor 50 and / or the second optical sensors 60a and 60b other types of optical sensors such as a color CMOS sensor may be used instead of the color CCD sensor.
  • First light source 31 ... First light (near infrared light) 40a, 40b ... Second light source 41a, 41b ... Second light (visible light) 50 ... 1st optical sensor 51 ... 1st optical filter 60a, 60b ... 2nd optical sensor 61a, 61b ... 2nd optical filter 71 ... Storage tank 72 ... Feeder 73 ... Shoot 74 ... Good product discharge trough 75 ... Defective product discharge trough 76 ... Ejector 77 ... Air 80, 180, 280 ... Control device 81 ... Integration unit 82 .. .First judgment unit 83 ... Second judgment unit 90 ... Object

Landscapes

  • Physics & Mathematics (AREA)
  • Health & Medical Sciences (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Chemical & Material Sciences (AREA)
  • Analytical Chemistry (AREA)
  • Biochemistry (AREA)
  • General Health & Medical Sciences (AREA)
  • General Physics & Mathematics (AREA)
  • Immunology (AREA)
  • Pathology (AREA)
  • Investigating Materials By The Use Of Optical Means Adapted For Particular Applications (AREA)
  • Sorting Of Articles (AREA)

Abstract

This optical sorting machine is provided with a first optical sensor including an R element, a G element, and a B element. The R element, the G element, and the B element each have a spectral sensitivity peak in the visible wavelength region. At least two elements among the R element, the G element, and the B element have a non-zero spectral sensitivity in a prescribed wavelength region within the invisible wavelength regions. The optical sorting machine is additionally provided with: a first light source which emits first light having a wavelength in a prescribed wavelength region toward an object being selected; an integrating unit which integrates at least a portion of a signal acquired by means of at two elements, or at least a portion of a gradation value corresponding to said signal, when the first light is emitted by the first light source; and a first assessing unit which assesses a foreign body and/or a defective product on the basis of the signal or the gradation value integrated by the integrating unit.

Description

光学式選別機Optical sorter
 本発明は、光学式選別機に関し、より詳細には、不可視波長領域内の波長を有する光を選別対象物に向けて放出する光源を有する光学式選別機に関する。 The present invention relates to an optical sorter, and more particularly to an optical sorter having a light source that emits light having a wavelength in the invisible wavelength region toward an object to be sorted.
 選別対象物に近赤外光を照射した際に光学センサによって得られる光情報を使用して、選別対象物に含まれる異物や不良品を判別して除去する光学式選別装置が従来から知られている(例えば、下記の特許文献1)。この種の選別装置では、光学センサは、選別対象物に近赤外光線を照射することによって得られる反射光および/または透過光を受光するために、分光感度のピークを近赤外線波長領域に有する光学素子を備えている。 Conventionally, an optical sorting device has been known that uses optical information obtained by an optical sensor when a sorting target is irradiated with near-infrared light to discriminate and remove foreign substances and defective products contained in the sorting target. (For example, Patent Document 1 below). In this type of sorting device, the optical sensor has a peak of spectral sensitivity in the near-infrared wavelength region in order to receive reflected light and / or transmitted light obtained by irradiating the sorting object with near-infrared rays. It is equipped with an optical element.
特開2000-157936号JP 2000-157936
 しかしながら、そのような光学素子は高価であり、そのことは選別機の高価格化を招いていた。かかる問題は、近赤外光を使用する選別機に限らず、不可視波長領域の波長を有する光を利用する光学式選別機に共通する。このようなことから、不可視波長領域の波長を有する光を利用する光学式選別機の製造コストを低減することが求められる。 However, such optical elements are expensive, which has led to higher prices for sorters. This problem is common not only to the sorter that uses near-infrared light but also to the optical sorter that uses light having a wavelength in the invisible wavelength region. Therefore, it is required to reduce the manufacturing cost of an optical sorter that uses light having a wavelength in the invisible wavelength region.
 本発明は、上述の課題を解決するためになされたものであり、例えば、以下の形態として実現することが可能である。 The present invention has been made to solve the above-mentioned problems, and can be realized as the following forms, for example.
 本発明の第1の形態によれば、光学式選別機が提供される。この光学式選別機は、赤色に対応する波長を有する光を検出するための光学素子であるR素子と、緑色に対応する波長を有する光を検出するための光学素子であるG素子と、青色に対応する波長を有する光を検出するための光学素子であるB素子と、を有する第1の光学センサを備えている。R素子、G素子およびB素子の各々は、分光感度のピークを可視波長領域に有している。R素子、G素子およびB素子のうちの少なくとも二つの素子は、不可視波長領域のうちの所定の波長領域においてゼロではない分光感度を有している。光学式選別機は、さらに、所定の波長領域内の波長を有する第1の光を選別対象物に向けて放出する第1の光源と、第1の光源から第1の光が放出されたときに少なくとも二つの素子を介して取得された信号の少なくとも一部、または、信号に対応する階調値の少なくとも一部を積算する積算部と、積算部によって積算された信号または階調値に基づいて異物および/または不良品の判定を行う第1の判定部と、を備えている。 According to the first aspect of the present invention, an optical sorter is provided. This optical sorter has an R element, which is an optical element for detecting light having a wavelength corresponding to red, a G element, which is an optical element for detecting light having a wavelength corresponding to green, and blue. It is provided with a first optical sensor having a B element, which is an optical element for detecting light having a wavelength corresponding to the above. Each of the R element, the G element and the B element has a peak of spectral sensitivity in the visible wavelength region. At least two of the R element, the G element and the B element have a non-zero spectral sensitivity in a predetermined wavelength region of the invisible wavelength region. The optical sorter further comprises a first light source that emits first light having a wavelength within a predetermined wavelength region toward the object to be sorted, and when the first light is emitted from the first light source. Based on an integrating unit that integrates at least a part of the signal acquired through at least two elements, or at least a part of the gradation value corresponding to the signal, and the signal or the gradation value integrated by the integrating unit. It is provided with a first determination unit for determining foreign matter and / or defective products.
 かかる光学式選別機によれば、分光感度のピークを可視波長領域に有するR素子、G素子およびB素子を備える光学センサによって、不可視波長領域の波長を有する第1の光を検出できる。換言すれば、分光感度のピークを不可視波長領域に有する光学素子を備える光学センサを使用することなく、不可視波長領域の波長を有する第1の光を検出できる。一般的に、分光感度のピークを可視波長領域に有するR素子、G素子およびB素子を備える光学センサは、分光感度のピークを不可視波長領域に有する光学素子を備える光学センサに比べて非常に安価である。したがって、不可視波長領域の波長を有する光を利用する光学式選別機の製造コストを低減することができる。しかも、少なくとも二つの素子を介して取得された信号の少なくとも一部(つまり、R素子によって取得されるR信号、G素子によって取得されるG信号、および、B素子によって取得されるB信号のうちの少なくとも二つの信号)、または、階調値の少なくとも一部(つまり、R信号に対応するR階調値、G信号に対応するG階調値、および、B信号に対応するB階調値のうちの少なくとも二つの階調値)が積算されるので、信号が増幅されるか、または、階調値が増大される。このため、上記所定の波長領域における素子の各々の相対感度が低くても、感度不足に起因する異物および/または不良品の判定精度の低下を抑制できる。つまり、本形態の光学式選別機によれば、製造コストの低減と、必要な判定精度の確保と、を両立することができる。なお、「信号」とは、検出された光の強度を表すアナログ信号を意味している。 According to such an optical sorter, the first light having a wavelength in the invisible wavelength region can be detected by an optical sensor including an R element, a G element and a B element having a peak of spectral sensitivity in the visible wavelength region. In other words, the first light having a wavelength in the invisible wavelength region can be detected without using an optical sensor including an optical element having a peak of spectral sensitivity in the invisible wavelength region. In general, an optical sensor having an R element, a G element, and a B element having a peak of spectral sensitivity in the visible wavelength region is much cheaper than an optical sensor having an optical element having a peak of spectral sensitivity in the invisible wavelength region. Is. Therefore, it is possible to reduce the manufacturing cost of an optical sorter that uses light having a wavelength in the invisible wavelength region. Moreover, of at least a part of the signal acquired through at least two elements (that is, the R signal acquired by the R element, the G signal acquired by the G element, and the B signal acquired by the B element). (At least two signals of) or at least a part of the gradation value (that is, the R gradation value corresponding to the R signal, the G gradation value corresponding to the G signal, and the B gradation value corresponding to the B signal). Of these, at least two gradation values) are integrated, so that the signal is amplified or the gradation value is increased. Therefore, even if the relative sensitivity of each of the elements in the predetermined wavelength region is low, it is possible to suppress a decrease in the determination accuracy of foreign matter and / or defective products due to insufficient sensitivity. That is, according to the optical sorter of this embodiment, it is possible to reduce the manufacturing cost and secure the necessary determination accuracy at the same time. The "signal" means an analog signal representing the intensity of the detected light.
 本発明の第2の形態によれば、第1の形態において、R素子、G素子およびB素子のうちの全ての素子は、所定の波長領域においてゼロではない分光感度を有している。積算部は、第1の光源から第1の光が放出されたときにR素子、G素子およびB素子を介して取得された信号または階調値を積算する。かかる形態によれば、信号をいっそう増幅させるか、または、階調値をいっそう増大させることができる。このため、異物および/または不良品の判定精度の低下をいっそう抑制できる。 According to the second embodiment of the present invention, in the first embodiment, all the elements of the R element, the G element and the B element have a non-zero spectral sensitivity in a predetermined wavelength region. The integrating unit integrates the signal or gradation value acquired through the R element, the G element, and the B element when the first light is emitted from the first light source. According to such a form, the signal can be further amplified or the gradation value can be further increased. Therefore, it is possible to further suppress a decrease in the determination accuracy of foreign matter and / or defective products.
 本発明の第3の形態によれば、第1または第2の形態において、積算部は、重み付け係数を用いて信号または階調値を積算する。かかる形態によれば、必要な判定精度を得るために、上記所定の波長領域におけるR素子、G素子およびB素子の分光感度に応じて、つまり、使用される第1の光学センサの感度特性に応じて、第1の判定部で使用される信号の強度または階調値の大きさを調節することができる。重み付け係数は、ゼロよりも大きい任意の正の数とすることができる。 According to the third embodiment of the present invention, in the first or second embodiment, the integrating unit integrates the signal or the gradation value using the weighting coefficient. According to this embodiment, in order to obtain the required determination accuracy, the sensitivity characteristics of the first optical sensor used are determined according to the spectral sensitivities of the R element, the G element and the B element in the predetermined wavelength region. Accordingly, the intensity of the signal used in the first determination unit or the magnitude of the gradation value can be adjusted. The weighting factor can be any positive number greater than zero.
 本発明の第4の形態によれば、第3の形態において、重み付け係数は1以上の値である。かかる形態によれば、上記所定の波長領域におけるR素子、G素子およびB素子の分光感度が不足する場合に、必要な判定精度を得るために、第1の判定部で使用される信号を増幅するか、または、階調値を増大させることができる。 According to the fourth embodiment of the present invention, in the third embodiment, the weighting coefficient is a value of 1 or more. According to this embodiment, when the spectral sensitivities of the R element, G element, and B element in the predetermined wavelength region are insufficient, the signal used in the first determination unit is amplified in order to obtain the required determination accuracy. Or the gradation value can be increased.
 本発明の第5の形態によれば、第1ないし第4のいずれかの形態において、光学式選別機は、可視波長領域内の波長を有する第2の光を選別対象物に向けて放出する第2の光源を備えている。光学式選別機は、さらに、赤色に対応する波長を有する光を検出するための光学素子であるR素子と、緑色に対応する波長を有する光を検出するための光学素子であるG素子と、青色に対応する波長を有する光を検出するための光学素子であるB素子と、を有する第2の光学センサを備えている。光学式選別機は、さらに、第2の光源から第2の光が放出されたときに第2の光学センサを介して取得された信号に基づいて異物および/または不良品の判定を行う第2の判定部を備えている。かかる形態によれば、可視光に基づいた判定と、不可視光に基づいた判定と、の両方を行うことができる。第1の光源および第2の光源は、不可視波長領域内の波長を有する第1の光と、可視波長領域内の波長を有する第2の光と、を選別対象物に向けて放出する一つの一体的な光源であってもよい。 According to the fifth aspect of the present invention, in any one of the first to fourth forms, the optical sorter emits a second light having a wavelength in the visible wavelength region toward the sorting object. It has a second light source. The optical sorter further includes an R element, which is an optical element for detecting light having a wavelength corresponding to red, and a G element, which is an optical element for detecting light having a wavelength corresponding to green. It includes a second optical sensor having a B element, which is an optical element for detecting light having a wavelength corresponding to blue. The optical sorter further determines foreign matter and / or defective products based on the signal acquired through the second optical sensor when the second light is emitted from the second light source. It is equipped with a judgment unit. According to such a form, both the determination based on visible light and the determination based on invisible light can be performed. The first light source and the second light source are one that emits a first light having a wavelength in the invisible wavelength region and a second light having a wavelength in the visible wavelength region toward the object to be sorted. It may be an integrated light source.
 本発明の第6の形態によれば、第5の形態において、光学式選別機は、さらに、第1の光学センサに入射される光の光路上に配置され、可視波長領域内の波長を有する光をカットする第1の光学フィルタと、第2の光学センサに入射される光の光路上に配置され、不可視波長領域内の波長を有する光をカットする第2の光学フィルタと、を備えている。かかる形態によれば、第1の光源と第2の光源とが同時に点灯したとしても、第1の光学センサは、不可視波長領域内の波長を有する光のみを検出することができ、第2の光学センサは、可視領域内の波長を有する光のみを検出することができる。つまり、可視光の検出と、不可視光の検出と、を一緒に行うことができるので、効率的である。例えば、光学式選別機がシュート式である場合、シュートから選別対象物を1回落下させる間に、可視光の検出と、不可視光の検出と、を行うことができる。 According to a sixth embodiment of the present invention, in the fifth embodiment, the optical sorter is further arranged on the optical path of light incident on the first optical sensor and has a wavelength in the visible wavelength region. A first optical filter that cuts light and a second optical filter that is arranged on the optical path of light incident on the second optical sensor and cuts light having a wavelength in the invisible wavelength region are provided. There is. According to this embodiment, even if the first light source and the second light source are turned on at the same time, the first optical sensor can detect only light having a wavelength within the invisible wavelength region, and the second light source can be detected. The optical sensor can detect only light having a wavelength within the visible region. That is, it is efficient because the detection of visible light and the detection of invisible light can be performed at the same time. For example, when the optical sorter is a chute type, it is possible to detect visible light and detect invisible light while dropping the sorting object from the chute once.
 本発明の第7の形態によれば、第6の形態において、第2の光学センサは、第1の光学センサと同一の仕様を有している。かかる形態によれば、第1の光学センサおよび第2の光学センサが同一の仕様であるから、光学式選別機の製造段階における部品調達を簡素化できる。その結果、製造コストを低減することができる。 According to the seventh aspect of the present invention, in the sixth embodiment, the second optical sensor has the same specifications as the first optical sensor. According to this form, since the first optical sensor and the second optical sensor have the same specifications, it is possible to simplify the procurement of parts at the manufacturing stage of the optical sorter. As a result, the manufacturing cost can be reduced.
 本発明の第8の形態によれば、第1ないし第4のいずれかの形態において、光学式選別機は、可視波長領域内の波長を有する第2の光を選別対象物に向けて放出する第2の光源と、第2の光源から第2の光が放出されたときに第1の光学センサによって取得された信号に基づいて異物および/または不良品の判定を行う第2の判定部と、を備えている。かかる形態によれば、可視光に基づいた判定と、不可視光に基づいた判定と、の両方を行うことができる。しかも、可視光の検出と、不可視光の検出と、の両方に第1の光学センサを共用することができるので、可視光用の光学センサと、不可視光用の光学センサと、を個別に設ける場合と比べて、光学センサの数を低減することができる。その結果、製造コストを低減することができる。 According to the eighth aspect of the present invention, in any one of the first to fourth forms, the optical sorter emits a second light having a wavelength in the visible wavelength region toward the sorting object. A second light source and a second determination unit that determines foreign matter and / or defective products based on the signal acquired by the first optical sensor when the second light is emitted from the second light source. , Is equipped. According to such a form, both the determination based on visible light and the determination based on invisible light can be performed. Moreover, since the first optical sensor can be shared for both the detection of visible light and the detection of invisible light, an optical sensor for visible light and an optical sensor for invisible light are provided separately. Compared with the case, the number of optical sensors can be reduced. As a result, the manufacturing cost can be reduced.
 本発明の第9の形態によれば、第8の形態において、第1の光学センサは、第1の光源と第2の光源とが交互に点灯することによって、一つの選別対象物に対して、第1の光が放出され、かつ、第2の光が放出されないときの信号と、第1の光が放出されず、かつ、第2の光が放出されるときの信号と、の両方を取得可能に構成される。かかる形態によれば、可視光の検出と、不可視光の検出と、を一緒に行うことができるので、効率的である。 According to the ninth aspect of the present invention, in the eighth aspect, the first optical sensor refers to one sorting object by alternately lighting the first light source and the second light source. , Both the signal when the first light is emitted and the second light is not emitted, and the signal when the first light is not emitted and the second light is emitted. Configured to be retrievable. According to such a form, the detection of visible light and the detection of invisible light can be performed at the same time, which is efficient.
本発明の第1実施形態による光学式選別機の概略構成を示す模式図である。It is a schematic diagram which shows the schematic structure of the optical sorter according to 1st Embodiment of this invention. 第1の光学センサおよび第2の光学センサの各々のR素子、G素子およびB素子の分光感度特性の一例を示すグラフである。It is a graph which shows an example of the spectral sensitivity characteristic of each R element, G element and B element of a 1st optical sensor and a 2nd optical sensor. 第2実施形態による光学式選別機の概略構成を示す模式図である。It is a schematic diagram which shows the schematic structure of the optical sorter according to 2nd Embodiment. 第1の光源および第2の光源の点灯タイミングを示すタイミングチャートである。It is a timing chart which shows the lighting timing of a 1st light source and a 2nd light source. 一つの選別対象物と、走査ナンバーと、の関係を示す説明図である。It is explanatory drawing which shows the relationship between one sorting object and a scan number. 第3実施形態による光学式選別機の概略構成を示す模式図である。It is a schematic diagram which shows the schematic structure of the optical sorter according to 3rd Embodiment.
 図1は、本発明の第1実施形態としての光学式選別機(以下、単に選別機と呼ぶ)10の概略構成を示す模式図である。本実施形態では、選別機10は、選別対象物としての米から異物(例えば、小石、泥、ガラス片など)および不良品(例えば、未熟粒、着色粒など)を選別するために使用される。ただし、選別対象物は、米に限られるものではなく、任意の粒状物(例えば、米以外の穀物、プラスチックなど)であってもよい。 FIG. 1 is a schematic diagram showing a schematic configuration of an optical sorter (hereinafter, simply referred to as a sorter) 10 as the first embodiment of the present invention. In the present embodiment, the sorter 10 is used to sort foreign substances (for example, pebbles, mud, glass pieces, etc.) and defective products (for example, immature grains, colored grains, etc.) from rice as a sorting target. .. However, the object to be sorted is not limited to rice, and may be any granular material (for example, grains other than rice, plastic, etc.).
 図1に示すように、選別機10は、光学検出部20と、貯留タンク71と、フィーダ72と、シュート73と、良品排出樋74と、不良品排出樋75と、エジェクタ76と、制御装置80と、を備えている。制御装置80は、選別機10の動作全般を制御する。制御装置80は、積算部81、第1の判定部82、第2の判定部83としても機能する。制御装置80の機能は、所定のプログラムをCPUが実行することによって実現されてもよいし、専用回路によって実現されてもよい。積算部81、第1の判定部82および第2の判定部83の少なくとも一部は、一体的な一つの装置によって実現されてもよい。例えば、第1の判定部82および第2の判定部83は、一つのCPUによって実現される二つの機能であってもよい。あるいは、積算部81、第1の判定部82および第2の判定部83は、それぞれ個別の装置として実現されてもよい。制御装置80の機能の詳細については後述する。 As shown in FIG. 1, the sorting machine 10 includes an optical detection unit 20, a storage tank 71, a feeder 72, a chute 73, a non-defective product discharge gutter 74, a defective product discharge gutter 75, an ejector 76, and a control device. It has 80 and. The control device 80 controls the overall operation of the sorter 10. The control device 80 also functions as an integrating unit 81, a first determination unit 82, and a second determination unit 83. The function of the control device 80 may be realized by the CPU executing a predetermined program, or may be realized by a dedicated circuit. At least a part of the integrating unit 81, the first determination unit 82, and the second determination unit 83 may be realized by one integrated device. For example, the first determination unit 82 and the second determination unit 83 may have two functions realized by one CPU. Alternatively, the integrating unit 81, the first determination unit 82, and the second determination unit 83 may be realized as individual devices. The details of the function of the control device 80 will be described later.
 貯留タンク71は、選別対象物(以下、単に対象物と呼ぶ)90を一時的に貯留する。フィーダ72は、貯留タンク71に貯留された対象物90をシュート73上に供給する。光学検出部20は、シュート73から滑り落ちた対象物90に対して光を照射し、対象物90に関連付けられた光(具体的には、対象物90を透過した透過光、および/または、対象物90によって反射された反射光)を検出する。この検出結果は制御装置80に入力される。制御装置80は、この検出結果に基づいて、対象物90が良品(つまり、品質が相対的に高い米粒)であるか、それとも、異物(つまり、米粒ではないもの)ないし不良品(つまり、品質が相対的に低い米粒)であるかを判定する。この判定は、対象物90の各々について行われる。 The storage tank 71 temporarily stores the sorting object (hereinafter, simply referred to as an object) 90. The feeder 72 supplies the object 90 stored in the storage tank 71 onto the chute 73. The optical detection unit 20 irradiates the object 90 that has slipped off the chute 73 with light, and the light associated with the object 90 (specifically, the transmitted light transmitted through the object 90 and / or). The reflected light reflected by the object 90) is detected. This detection result is input to the control device 80. Based on this detection result, the control device 80 determines whether the object 90 is a good product (that is, rice grains with relatively high quality), or a foreign substance (that is, a non-rice grain) or a defective product (that is, quality). Is a relatively low grain of rice). This determination is made for each of the objects 90.
 対象物90が異物または不良品であると判定された場合、エジェクタ76は、当該対象物90に向けてエア77を噴射する。これによって、対象物90は、吹き飛ばされ、シュート73からの落下軌道から逸脱して不良品排出樋75に導かれる。一方、対象物90が良品であると判定された場合、エア77は噴射されない。このため、良品であると判定された対象物90は、落下軌道を変えることなく、良品排出樋74に導かれる。 When it is determined that the object 90 is a foreign substance or a defective product, the ejector 76 injects air 77 toward the object 90. As a result, the object 90 is blown off, deviates from the drop trajectory from the chute 73, and is guided to the defective product discharge gutter 75. On the other hand, when the object 90 is determined to be a non-defective product, the air 77 is not injected. Therefore, the object 90 determined to be a non-defective product is guided to the non-defective product discharge gutter 74 without changing the fall trajectory.
 以下、光学検出部20および制御装置80の詳細について説明する。図1に示すように、光学検出部20は、第1の光源30と、第2の光源40a,40bと、第1の光学センサ50と、第2の光学センサ60a,60bと、第1の光学フィルタ51と、第2の光学フィルタ61a,61bと、を備えている。第1の光学センサ50は、本実施形態では、汎用のカラーCCDセンサである。第1の光学センサ50は、本実施形態ではラインセンサであるが、エリアセンサであってもよい。 The details of the optical detection unit 20 and the control device 80 will be described below. As shown in FIG. 1, the optical detection unit 20 includes a first light source 30, second light sources 40a and 40b, a first optical sensor 50, a second optical sensor 60a and 60b, and a first It includes an optical filter 51 and second optical filters 61a and 61b. The first optical sensor 50 is a general-purpose color CCD sensor in this embodiment. The first optical sensor 50 is a line sensor in this embodiment, but may be an area sensor.
 第1の光学センサ50は、赤色に対応する波長を有する光を検出するための光学素子(以下、R素子と呼ぶ)と、緑色に対応する波長を有する光を検出するための光学素子(以下、G素子と呼ぶ)と、青色に対応する波長を有する光を検出するための光学素子(以下、B素子と呼ぶ)と、を有している。R,G,Bとは、RGB色空間のR,G,Bをそれぞれ意味している。これらの光学素子の各々は、集光レンズと、カラーフィルタと、光電変換素子と、を備えている。カラーフィルタの各々は、検出すべき光の色(例えば、R素子であれば、赤色)に対応する波長の光を透過させ、その他の波長の光を透過させない特性を有している。カラーフィルタに変えて、ダイクロイックプリズムなどの分光器が使用されてもよい。 The first optical sensor 50 includes an optical element for detecting light having a wavelength corresponding to red (hereinafter referred to as R element) and an optical element for detecting light having a wavelength corresponding to green (hereinafter referred to as R element). , G element) and an optical element (hereinafter, referred to as B element) for detecting light having a wavelength corresponding to blue. R, G, and B mean R, G, and B in the RGB color space, respectively. Each of these optical elements includes a condenser lens, a color filter, and a photoelectric conversion element. Each of the color filters has a property of transmitting light having a wavelength corresponding to the color of light to be detected (for example, red in the case of an R element) and not transmitting light of other wavelengths. A spectroscope such as a dichroic prism may be used instead of the color filter.
 図2は、第1の光学センサ50のR素子、G素子およびB素子の分光感度特性の一例を示している。図示するように、3種類の素子の各々は、分光感度のピークを可視波長領域に有している。可視波長領域とは、例えば、400nm以上、760nm以下の波長の領域である。より具体的には、R素子は、620nm付近に分光感度のピークを有している。G素子は、520nm付近に分光感度のピークを有している。B素子は、470nm付近に分光感度のピークを有している。 FIG. 2 shows an example of the spectral sensitivity characteristics of the R element, G element, and B element of the first optical sensor 50. As shown, each of the three types of devices has a peak of spectral sensitivity in the visible wavelength region. The visible wavelength region is, for example, a region having a wavelength of 400 nm or more and 760 nm or less. More specifically, the R element has a peak of spectral sensitivity near 620 nm. The G element has a peak of spectral sensitivity near 520 nm. The B element has a peak of spectral sensitivity near 470 nm.
 これらの素子の各々は、不可視波長領域(つまり、可視波長領域以外の波長領域)のうちの所定の波長範囲においてもゼロではない分光感度を有している。例えば、図2に示す例では、R素子、G素子およびB素子の各々は、850nmの波長の光(より具体的には、近赤外光)に対して0.35程度の相対感度を有している。 Each of these elements has a non-zero spectral sensitivity even in a predetermined wavelength range in the invisible wavelength region (that is, a wavelength region other than the visible wavelength region). For example, in the example shown in FIG. 2, each of the R element, the G element, and the B element has a relative sensitivity of about 0.35 with respect to light having a wavelength of 850 nm (more specifically, near infrared light). doing.
 第2の光学センサ60a,60bは、本実施形態では、第1の光学センサ50と同一の仕様を有している。このため、第2の光学センサ60a,60bは、第1の光学センサ50と同一仕様のR素子、G素子およびB素子を備えており、それらの素子は、図2に例示した分光感度特性を有している。 The second optical sensors 60a and 60b have the same specifications as the first optical sensor 50 in this embodiment. Therefore, the second optical sensors 60a and 60b include R elements, G elements, and B elements having the same specifications as the first optical sensor 50, and these elements have the spectral sensitivity characteristics illustrated in FIG. Have.
 第1の光源30は、第1の光31を対象物90に向けて放出する。第1の光31は、上述の所定の波長範囲(つまり、第1の光学センサ50のR素子,G素子およびB素子がゼロではない分光感度を有する、不可視波長領域の波長範囲)内の波長を有している。本実施形態では、第1の光源30は近赤外光源である。このため、第1の光31を近赤外光31とも呼ぶ。第1の光源30の出力ピークは不可視波長領域内(本実施形態では、850nmの波長のところ)にある。第1の光源30は、本実施形態ではLEDであるが、他の任意の発光素子(例えば、ハロゲンランプ)が使用されてもよい。第1の光31は、不可視波長領域の波長を有する光に加えて、可視波長領域の波長を有する光も含んでいてもよい。 The first light source 30 emits the first light 31 toward the object 90. The first light 31 has a wavelength within the above-mentioned predetermined wavelength range (that is, a wavelength range in the invisible wavelength region in which the R element, G element, and B element of the first optical sensor 50 have non-zero spectral sensitivity). have. In the present embodiment, the first light source 30 is a near infrared light source. Therefore, the first light 31 is also referred to as near infrared light 31. The output peak of the first light source 30 is in the invisible wavelength region (in this embodiment, at a wavelength of 850 nm). The first light source 30 is an LED in this embodiment, but any other light emitting element (for example, a halogen lamp) may be used. The first light 31 may include light having a wavelength in the visible wavelength region in addition to light having a wavelength in the invisible wavelength region.
 第2の光源40aは、第2の光41aを対象物90に向けて放出する。第2の光41aは、可視波長領域内の波長を有している。このため、第2の光41aを可視光41aとも呼ぶ。第2の光源40aの出力ピークは可視波長領域内にある。本実施形態では、第2の光源40aは、赤色、緑色および青色の光をそれぞれ放出可能な、いわゆるカラーLEDである。ただし、第2の光源40aは、他の任意の発光素子(例えば、ハロゲンランプ)であってもよい。第2の光源40bは、第2の光源40aと同一の仕様を有しており、可視波長領域内の波長を有する第2の光41b(可視光41bとも呼ぶ)を対象物90に向けて放出する。第2の光41a,41bは、可視波長領域の波長を有する光に加えて、不可視波長領域の波長を有する光も含んでいてもよい。 The second light source 40a emits the second light 41a toward the object 90. The second light 41a has a wavelength within the visible wavelength region. Therefore, the second light 41a is also referred to as visible light 41a. The output peak of the second light source 40a is in the visible wavelength region. In the present embodiment, the second light source 40a is a so-called color LED capable of emitting red, green, and blue light, respectively. However, the second light source 40a may be any other light emitting element (for example, a halogen lamp). The second light source 40b has the same specifications as the second light source 40a, and emits a second light 41b (also referred to as visible light 41b) having a wavelength within the visible wavelength region toward the object 90. To do. The second light 41a and 41b may include light having a wavelength in the invisible wavelength region in addition to light having a wavelength in the visible wavelength region.
 第1の光学フィルタ51は、第1の光学センサ50に入射される光の光路上に配置されている。第1の光学フィルタ51は、可視波長領域内の波長を有する光をカットする。つまり、不可視波長領域(本実施形態では、近赤外線波長領域)の波長を有する光は、第1の光学フィルタ51を透過するが、可視波長領域内の波長を有する光は、第1の光学フィルタ51を透過しない。このため、第1の光学センサ50は、近赤外光のみを検出することができる。 The first optical filter 51 is arranged on the optical path of the light incident on the first optical sensor 50. The first optical filter 51 cuts light having a wavelength within the visible wavelength region. That is, light having a wavelength in the invisible wavelength region (near infrared wavelength region in this embodiment) passes through the first optical filter 51, but light having a wavelength in the visible wavelength region is transmitted through the first optical filter. It does not pass through 51. Therefore, the first optical sensor 50 can detect only near-infrared light.
 第2の光学フィルタ61a,61bは、第2の光学センサ60a,60bに入射される光の光路上にそれぞれ配置されている。第2の光学フィルタ61a,61bは、不可視波長領域内の波長を有する光をカットする。つまり、可視波長領域内の波長を有する光は、第2の光学フィルタ61a,61bを透過するが、不可視波長領域(本実施形態では、近赤外線波長領域)の波長を有する光は、第2の光学フィルタ61a,61bを透過しない。このため、第2の光学センサ60a,60bは、可視光のみを検出することができる。 The second optical filters 61a and 61b are arranged on the optical path of the light incident on the second optical sensors 60a and 60b, respectively. The second optical filters 61a and 61b cut light having a wavelength within the invisible wavelength region. That is, the light having a wavelength within the visible wavelength region passes through the second optical filters 61a and 61b, but the light having a wavelength in the invisible wavelength region (in the present embodiment, the near infrared wavelength region) is the second optical filter. It does not pass through the optical filters 61a and 61b. Therefore, the second optical sensors 60a and 60b can detect only visible light.
 図1に示すように、第1の光源30、第2の光源40aおよび第2の光学センサ60aは、対象物90の移送経路(換言すれば、シュート73からの落下軌跡)に対して一方側(フロント側とも呼ぶ)に配置されている。一方、第2の光源40b、第1の光学センサ50および第2の光学センサ60bは、対象物90の移送経路に対して他方側(リア側とも呼ぶ)に配置されている。 As shown in FIG. 1, the first light source 30, the second light source 40a, and the second optical sensor 60a are unilateral with respect to the transfer path of the object 90 (in other words, the fall locus from the chute 73). It is located on the front side (also called the front side). On the other hand, the second light source 40b, the first optical sensor 50, and the second optical sensor 60b are arranged on the other side (also referred to as the rear side) with respect to the transfer path of the object 90.
 リア側の第1の光学センサ50は、フロント側の第1の光源30から放出され、対象物90を透過し、さらに第1の光学フィルタ51を透過した近赤外光31を検出する。フロント側の第2の光学センサ60aは、フロント側の第2の光源40aから放出され、対象物90で反射され、第2の光学フィルタ61aを透過した可視光41aと、リア側の第2の光源40bから放出され、対象物90を透過し、さらに第2の光学フィルタ61aを透過した可視光41bと、を検出する。リア側の第2の光学センサ60bは、リア側の第2の光源40bから放出され、対象物90で反射され、第2の光学フィルタ61bを透過した可視光41bと、フロント側の第2の光源40aから放出され、対象物90を透過し、さらに第2の光学フィルタ61bを透過した可視光41aと、を検出する。 The first optical sensor 50 on the rear side detects near-infrared light 31 emitted from the first light source 30 on the front side, transmitted through the object 90, and further transmitted through the first optical filter 51. The second optical sensor 60a on the front side is the visible light 41a emitted from the second light source 40a on the front side, reflected by the object 90, and transmitted through the second optical filter 61a, and the second light source on the rear side. Visible light 41b emitted from the light source 40b, transmitted through the object 90, and further transmitted through the second optical filter 61a is detected. The second optical sensor 60b on the rear side is the visible light 41b emitted from the second light source 40b on the rear side, reflected by the object 90, and transmitted through the second optical filter 61b, and the second light source on the front side. Visible light 41a emitted from the light source 40a, transmitted through the object 90, and further transmitted through the second optical filter 61b is detected.
 周知のように、第1の光学センサ50および第2の光学センサ60a,60bは、一つの対象物90について複数の走査を行う。各走査で得られた画像を合成することにより、当該一つの対象物90の全体画像が取得される。本実施形態では、第1の光源30および第2の光源40a,40bは、第1の光学センサ50および第2の光学センサ60a,60bの全ての走査期間に亘って常時点灯される。ただし、第1の光源30および第2の光源40a,40bの点灯の仕方は、特に限定されるものではない。 As is well known, the first optical sensor 50 and the second optical sensors 60a and 60b perform a plurality of scans on one object 90. By synthesizing the images obtained in each scan, the entire image of the one object 90 is acquired. In the present embodiment, the first light source 30 and the second light sources 40a and 40b are constantly lit over the entire scanning period of the first optical sensor 50 and the second optical sensors 60a and 60b. However, the method of lighting the first light source 30 and the second light sources 40a and 40b is not particularly limited.
 第1の光学センサ50および第2の光学センサ60a,60bの出力、すなわち、検出された光の強度を表すアナログ信号は、AC/DCコンバータ(図示省略)によってデジタル信号に変換される。このデジタル信号(換言すれば、アナログ信号に対応する階調値)は、制御装置80に入力される。 The outputs of the first optical sensor 50 and the second optical sensors 60a and 60b, that is, analog signals representing the detected light intensity are converted into digital signals by an AC / DC converter (not shown). This digital signal (in other words, the gradation value corresponding to the analog signal) is input to the control device 80.
 制御装置80では、対象物90に関連付けられた可視光41a,41bに基づいて異物および/または不良品の判定が行われるとともに、対象物90に関連付けられた近赤外光31に基づいて、異物および/または不良品の判定が行われる。まず、対象物90に関連付けられた可視光41a,41bに基づいた判定について説明する。第2の判定部83は、第2の光学センサ60a,60bを介して得られたアナログ信号に基づいて(換言すれば、デジタル信号が表す階調値を使用して)、対象物90が、良品であるか、それとも、異物もしくは不良品であるかを判定する。より具体的には、第2の判定部83は、第2の光学センサ60a,60bのR素子、G素子およびB素子を介して得られたR階調値、G階調値およびB階調値と、予め定められた閾値と、を比較することによって、異物および/または不良品の判定を行う。この判定手法には、公知の任意の判定手法を採用可能である。 In the control device 80, foreign matter and / or defective products are determined based on the visible light 41a and 41b associated with the object 90, and the foreign matter is determined based on the near-infrared light 31 associated with the object 90. And / or a defective product is determined. First, the determination based on the visible light 41a and 41b associated with the object 90 will be described. The second determination unit 83 determines that the object 90 is based on the analog signal obtained via the second optical sensors 60a, 60b (in other words, using the gradation value represented by the digital signal). Determine whether it is a good product, a foreign substance, or a defective product. More specifically, the second determination unit 83 determines the R gradation value, the G gradation value, and the B gradation obtained via the R element, the G element, and the B element of the second optical sensors 60a and 60b. Foreign matter and / or defective products are determined by comparing the value with a predetermined threshold value. Any known determination method can be adopted as this determination method.
 次いで、対象物90に関連付けられた近赤外光31に基づいた判定について説明する。この判定では、まず、積算部81が、第1の光学センサ50のR素子、G素子およびB素子を介して得られたR階調値、G階調値およびB階調値を積算して、次式(1)にしたがって積算値IVを算出する。次式(1)において、R,G,Bは、R階調値、G階調値およびB階調値をそれぞれ表している。また、a,b,cは、重み付け係数であり、0よりも大きい値にそれぞれ設定される。この積算は、第1の光学センサ50によって得られる画像データの画素単位で行われる。
 IV=aR+bG+cB ・・・(1)
Next, the determination based on the near-infrared light 31 associated with the object 90 will be described. In this determination, first, the integrating unit 81 integrates the R gradation value, the G gradation value, and the B gradation value obtained via the R element, the G element, and the B element of the first optical sensor 50. , The integrated value IV is calculated according to the following equation (1). In the following equation (1), R, G, and B represent R gradation value, G gradation value, and B gradation value, respectively. Further, a, b, and c are weighting coefficients, and are set to values larger than 0, respectively. This integration is performed in pixel units of the image data obtained by the first optical sensor 50.
IV = aR + bG + cB ... (1)
 本実施形態では、a=b=c=1に設定される。つまり、積算値IVは、第1の光学センサ50のR素子、G素子およびB素子を介して得られたR階調値、G階調値およびB階調値を単純に足し合わせた値である。図2に示したとおり、第1の光学センサ50のR素子、G素子およびB素子の各々は、第1の光源30から放出される850nmの波長の光(近赤外光31)に対して0.35程度の相対感度を有している。これらの相対感度を足し合わせると、1.05(=0.35+0.35+0.35)になる。このため、積算値IVは、第2の光学センサ60a,60bのR素子、G素子およびB素子の各々が、そのピーク感度と一致する波長の光を検出したときに得られる階調値の大きさと同程度の大きさを有している。 In this embodiment, a = b = c = 1 is set. That is, the integrated value IV is a value obtained by simply adding the R gradation value, the G gradation value, and the B gradation value obtained via the R element, the G element, and the B element of the first optical sensor 50. is there. As shown in FIG. 2, each of the R element, G element, and B element of the first optical sensor 50 with respect to the light having a wavelength of 850 nm (near infrared light 31) emitted from the first light source 30. It has a relative sensitivity of about 0.35. The sum of these relative sensitivities is 1.05 (= 0.35 + 0.35 + 0.35). Therefore, the integrated value IV is a large gradation value obtained when each of the R element, G element, and B element of the second optical sensors 60a and 60b detects light having a wavelength that matches the peak sensitivity. It has the same size as.
 こうして積算値IVを算出すると、第1の判定部82は、積算値IVに基づいて、対象物90が、良品であるか、それとも、異物もしくは不良品であるかを判定する。より具体的には、第1の判定部82は、積算値IVと、予め定められた閾値と、を比較することによって、異物および/または不良品の判定を行う。この判定手法には、公知の任意の判定手法を採用可能である。 When the integrated value IV is calculated in this way, the first determination unit 82 determines whether the object 90 is a non-defective product, a foreign substance, or a defective product based on the integrated value IV. More specifically, the first determination unit 82 determines a foreign substance and / or a defective product by comparing the integrated value IV with a predetermined threshold value. Any known determination method can be adopted as this determination method.
 上述した選別機10によれば、分光感度のピークを可視波長領域に有するR素子、G素子およびB素子を備える第1の光学センサ50によって、対象物90に関連付けられた近赤外光31が検出される。換言すれば、分光感度のピークを不可視波長領域に有する光学素子を備える光学センサを使用することなく、近赤外光31を検出できる。一般的に、分光感度のピークを可視波長領域に有するR素子、G素子およびB素子を備える光学センサは、分光感度のピークを不可視波長領域に有する素子を備える光学センサに比べて非常に安価である。したがって、選別機10のように、分光感度のピークを可視波長領域に有するR素子、G素子およびB素子を備える第1の光学センサ50を近赤外光31の検出のために使用することにより、選別機10の製造コストを低減することができる。第1の光学センサ50の近赤外線波長領域における分光感度は、その可視波長領域における分光感度よりも小さいものの、異物および/または不良品の判定には、R階調値、G階調値およびB階調値を積算して得られる積算値IVが使用される。つまり、判定に使用される階調値は、積算によって増大される。このため、感度不足に起因する判定精度の低下も抑制できる。 According to the sorter 10 described above, the near-infrared light 31 associated with the object 90 is generated by the first optical sensor 50 including the R element, the G element, and the B element having the peak of the spectral sensitivity in the visible wavelength region. Detected. In other words, the near-infrared light 31 can be detected without using an optical sensor including an optical element having a peak of spectral sensitivity in the invisible wavelength region. In general, an optical sensor having an R element, a G element, and a B element having a peak of spectral sensitivity in the visible wavelength region is much cheaper than an optical sensor having an element having a peak of spectral sensitivity in the invisible wavelength region. is there. Therefore, like the sorter 10, the first optical sensor 50 including the R element, the G element, and the B element having the peak of the spectral sensitivity in the visible wavelength region is used for detecting the near infrared light 31. , The manufacturing cost of the sorter 10 can be reduced. Although the spectral sensitivity of the first optical sensor 50 in the near-infrared wavelength region is smaller than the spectral sensitivity in the visible wavelength region, the R gradation value, the G gradation value, and B are used to determine foreign matter and / or defective products. The integrated value IV obtained by integrating the gradation values is used. That is, the gradation value used for the determination is increased by integration. Therefore, it is possible to suppress a decrease in determination accuracy due to insufficient sensitivity.
 しかも、R素子、G素子およびB素子からの出力信号はランダムなノイズを含み得るが、R階調値、G階調値およびB階調値を積算することによってノイズ同士が打ち消し合う事象が生じ得るので、R階調値、G階調値およびB階調値のうちのいずれか一つのみを、所定の係数を乗じることによって単純に増大させる場合と比べて、ノイズが増幅されにくい。このため、ノイズの増幅に起因する判定精度の低下も抑制できる。 Moreover, although the output signals from the R element, G element, and B element may contain random noise, an event occurs in which the noise cancels each other out by integrating the R gradation value, the G gradation value, and the B gradation value. Therefore, the noise is less likely to be amplified as compared with the case where only one of the R gradation value, the G gradation value and the B gradation value is simply increased by multiplying by a predetermined coefficient. Therefore, it is possible to suppress a decrease in determination accuracy due to noise amplification.
 さらに、選別機10は、第1の光学フィルタ51および第2の光学フィルタ61a,61bを備えているので、第1の光源30と第2の光源40a,40bとを同時に点灯したとしても、第1の光学センサ50は、対象物90に関連付けられた近赤外光31のみを検出することができ、第2の光学センサ60a,60bは、対象物90に関連付けられた可視光41a,41bのみを検出することができる。このため、シュート73から対象物90を1回落下させる間に、可視光の検出と、不可視光の検出と、を行うことができる。 Further, since the sorter 10 includes the first optical filter 51 and the second optical filters 61a and 61b, even if the first light source 30 and the second light sources 40a and 40b are turned on at the same time, the first light source 30 and the second light sources 40a and 40b are turned on at the same time. The optical sensor 50 of 1 can detect only the near-infrared light 31 associated with the object 90, and the second optical sensors 60a and 60b can detect only the visible light 41a and 41b associated with the object 90. Can be detected. Therefore, it is possible to detect visible light and detect invisible light while the object 90 is dropped from the chute 73 once.
 さらに、選別機10では、第1の光学センサ50は、第2の光学センサ60a,60bと同一の仕様を有している。このため、選別機10の製造段階における部品調達を簡素化できる。その結果、製造コストを低減することができる。 Further, in the sorter 10, the first optical sensor 50 has the same specifications as the second optical sensors 60a and 60b. Therefore, it is possible to simplify the procurement of parts at the manufacturing stage of the sorter 10. As a result, the manufacturing cost can be reduced.
 上述した実施形態には、種々の形態に変形され得る。例えば、式(1)において、重み付け係数a,b,cが1以外の値に設定されてもよい。重み付け係数a,b,cは、必要な判定精度を得るために、近赤外光31の波長領域と一致する波長領域におけるR素子、G素子およびB素子の分光感度に応じて、つまり、第1の光学センサ50の感度特性に応じて、ゼロよりも大きい任意の値に設定され得る。例えば、近赤外光31に対する第1の光学センサ50の感度が不足する場合には、a=b=c=1に設定すると、必要な判定精度を得るのに十分に大きい積算値IVが得られないことがある。このような場合には、重み付け係数a,b,cを1よりも大きい値に設定して、積算値IVを増大させてもよい。この場合、重み付け係数a,b,cを、1よりも大きい同一の値に設定すれば、上述の実施形態と同様に、ノイズを打ち消す効果が好適に得られる。あるいは、近赤外光31に対する第1の光学センサ50の感度が過剰に得られる場合(換言すれば、積算値IVが階調値の最大値を超える場合(いわゆる飽和状態))では、重み付け係数a,b,cを1よりも小さい値に設定してもよい。この場合も、重み付け係数a,b,cは、同一の値に設定されてもよい。あるいは、a,b,cは、a,b,cのうちの2つ以上が0ではないことを条件として、0以上の値にそれぞれ設定されてもよい。換言すれば、a,b,cのうちのいずれか一つは0であってもよい。例えば、R素子およびG素子が、判定に十分な感度を有している場合には、a=1,b=1,c=0としてもよい。 The above-described embodiment can be transformed into various forms. For example, in the equation (1), the weighting coefficients a, b, and c may be set to a value other than 1. The weighting coefficients a, b, and c are set according to the spectral sensitivities of the R element, the G element, and the B element in the wavelength region corresponding to the wavelength region of the near infrared light 31, that is, in order to obtain the required determination accuracy. It can be set to any value greater than zero, depending on the sensitivity characteristics of the optical sensor 50 of 1. For example, when the sensitivity of the first optical sensor 50 to the near-infrared light 31 is insufficient, setting a = b = c = 1 gives an integrated value IV sufficiently large to obtain the required determination accuracy. It may not be possible. In such a case, the weighting coefficients a, b, and c may be set to a value larger than 1, and the integrated value IV may be increased. In this case, if the weighting coefficients a, b, and c are set to the same value larger than 1, the effect of canceling the noise can be preferably obtained as in the above-described embodiment. Alternatively, when the sensitivity of the first optical sensor 50 to the near-infrared light 31 is excessively obtained (in other words, when the integrated value IV exceeds the maximum value of the gradation value (so-called saturation state)), the weighting coefficient a, b, and c may be set to a value smaller than 1. In this case as well, the weighting coefficients a, b, and c may be set to the same value. Alternatively, a, b, and c may be set to a value of 0 or more, provided that two or more of a, b, and c are not 0. In other words, any one of a, b, and c may be 0. For example, when the R element and the G element have sufficient sensitivity for determination, a = 1, b = 1, c = 0 may be set.
 あるいは、R階調値、G階調値およびB階調値を積算する代わりに、R素子、G素子およびB素子から出力されるアナログ信号を加算回路で積算して増幅させてもよい。あるいは、積算値IVを算出するために、R階調値、G階調値およびB階調値のうちの二つの階調値のみが積算されてもよい。 Alternatively, instead of integrating the R gradation value, the G gradation value, and the B gradation value, the analog signals output from the R element, the G element, and the B element may be integrated and amplified by the addition circuit. Alternatively, in order to calculate the integrated value IV, only two gradation values of the R gradation value, the G gradation value and the B gradation value may be integrated.
 あるいは、第1の光学センサ50は、フロント側のみに配置されてもよいし、フロント側とリア側との両方に配置されてもよい。同様に、第1の光源30は、リア側のみに配置されてもよいし、フロント側とリア側との両方に配置されてもよい。 Alternatively, the first optical sensor 50 may be arranged only on the front side, or may be arranged on both the front side and the rear side. Similarly, the first light source 30 may be arranged only on the rear side, or may be arranged on both the front side and the rear side.
 あるいは、第1の光源30および第2の光源40aに代えて、不可視波長領域の波長を有する光と、可視波長領域の波長を有する光と、を放出する一つの光源(例えば、ハロゲンランプ)が使用されてもよい。 Alternatively, instead of the first light source 30 and the second light source 40a, one light source (for example, a halogen lamp) that emits light having a wavelength in the invisible wavelength region and light having a wavelength in the visible wavelength region May be used.
 図3は、本発明の第2実施形態としての選別機100の概略構成を示す模式図である。選別機100は、第1の光学フィルタ51および第2の光学フィルタ61a,61bを備えていない点と、制御装置80に代えて制御装置180を備えている点のみが第1実施形態と異なっている。以下、選別機100について、第1実施形態と異なる点についてのみ説明する。 FIG. 3 is a schematic diagram showing a schematic configuration of a sorter 100 as a second embodiment of the present invention. The sorter 100 differs from the first embodiment only in that it does not include the first optical filter 51 and the second optical filters 61a and 61b and that it includes a control device 180 instead of the control device 80. There is. Hereinafter, the sorting machine 100 will be described only with respect to the differences from the first embodiment.
 制御装置180は、間欠的に点灯するように第1の光源30および第2の光源40a,40bを制御する点が制御装置80と異なっている。図4は、第1の光源30および第2の光源40a,40bの点灯タイミングを示すタイミングチャートである。図5は、一つの対象物90と、第1の光学センサ50および第2の光学センサ60a,60bの走査ナンバー(何回目の走査であるかを表す数字)と、の関係を示す説明図である。図5に示すように、本実施形態では、一つの対象物90について8回(説明を簡素化するために、実際よりも少ない回数であるものとして例示している)の走査によって画像データが取得される。図5に示される1~8の数字は、該当する領域の画像データが取得される走査のナンバーを示している。例えば、「1」が付された領域は、1回目の走査によって画像データが取得されることを示している。 The control device 180 is different from the control device 80 in that the first light source 30 and the second light sources 40a and 40b are controlled so as to be turned on intermittently. FIG. 4 is a timing chart showing the lighting timings of the first light source 30 and the second light sources 40a and 40b. FIG. 5 is an explanatory diagram showing the relationship between one object 90 and the scan numbers (numbers indicating the number of scans) of the first optical sensor 50 and the second optical sensors 60a and 60b. is there. As shown in FIG. 5, in the present embodiment, image data is acquired by scanning one object 90 eight times (illustrated as a smaller number than the actual number for simplification of explanation). Will be done. The numbers 1 to 8 shown in FIG. 5 indicate the scanning numbers from which the image data of the corresponding area is acquired. For example, the area marked with "1" indicates that the image data is acquired by the first scan.
 図4に示すように、第1の光源30は、奇数の走査ナンバーを有する走査期間においてのみ点灯され(図中にONと示されている)、偶数の走査ナンバーを有する走査期間においては消灯される(図中にOFFと示されている)。一方、第2の光源40a,40bは、偶数の走査ナンバーを有する走査期間においてのみ点灯され、奇数の走査ナンバーを有する走査期間においては消灯される。このとき、第2の光源40a,40bは、同時に点灯または消灯する。つまり、第1の光源30と第2の光源40a,40bとは、交互に点灯される。換言すれば、第1の光源30と第2の光源40a,40bとは、互いに対して排他的に点灯される。 As shown in FIG. 4, the first light source 30 is turned on only during the scanning period having an odd number of scan numbers (indicated as ON in the figure) and turned off during the scanning period having an even number of scan numbers. (Indicated as OFF in the figure). On the other hand, the second light sources 40a and 40b are turned on only during the scanning period having an even scanning number, and turned off during the scanning period having an odd scanning number. At this time, the second light sources 40a and 40b are turned on or off at the same time. That is, the first light source 30 and the second light sources 40a and 40b are turned on alternately. In other words, the first light source 30 and the second light sources 40a and 40b are turned on exclusively with respect to each other.
 このような構成によって、第1の光学センサ50では、奇数の走査ナンバーを有する走査期間においてのみ、第1の光源30から放出された近赤外光31が検出され、第2の光学センサ60a,60bでは、偶数の走査ナンバーを有する走査期間においてのみ、第2の光源40a,40bから放出された可視光41a,41bが検出される。このため、積算部81および第1の判定部82は、奇数の走査ナンバーを有する走査期間において第1の光学センサ50によって取得された信号(この信号によって得られる画像の領域を図5ではハッチングで示している)のみを用いて、第1実施形態で説明した積算処理および判定処理を行う。同様に、第2の判定部83は、偶数の走査ナンバーを有する走査期間において第2の光学センサ60a,60bによって取得された信号のみを用いて、第1実施形態で説明した判定処理を行う。 With such a configuration, the first optical sensor 50 detects the near-infrared light 31 emitted from the first light source 30 only during the scanning period having an odd scanning number, and the second optical sensor 60a, At 60b, visible light 41a, 41b emitted from the second light sources 40a, 40b is detected only during the scanning period having an even number of scan numbers. Therefore, the integration unit 81 and the first determination unit 82 hatch the signal acquired by the first optical sensor 50 during the scanning period having an odd number of scan numbers (the region of the image obtained by this signal is hatched in FIG. 5). The integration process and the determination process described in the first embodiment are performed using only (shown). Similarly, the second determination unit 83 performs the determination process described in the first embodiment using only the signals acquired by the second optical sensors 60a and 60b during the scanning period having an even number of scan numbers.
 かかる選別機100によれば、第1の光学センサ50および第2の光学センサ60a,60bの分解能が第1実施形態に比べて半分に低下するものの、近赤外光31と可視光41a,41bとが干渉することがない。したがって、シュート73から対象物90を1回落下させる間に、第1の光学センサ50は、対象物90に関連付けられた近赤外光31のみを検出することができ、第2の光学センサ60a,60bは、対象物90に関連付けられた可視光41a,41bのみを検出することができる。しかも、第1の光学フィルタ51および第2の光学フィルタ61a,61bが不要になるので、製造コストをさらに低減できる。 According to the sorter 100, although the resolutions of the first optical sensor 50 and the second optical sensors 60a and 60b are reduced to half as compared with the first embodiment, the near infrared light 31 and the visible light 41a and 41b Does not interfere with. Therefore, while the object 90 is dropped from the chute 73 once, the first optical sensor 50 can detect only the near-infrared light 31 associated with the object 90, and the second optical sensor 60a , 60b can detect only visible light 41a, 41b associated with the object 90. Moreover, since the first optical filter 51 and the second optical filters 61a and 61b are not required, the manufacturing cost can be further reduced.
 図6は、本発明の第3実施形態としての選別機200の概略構成を示す模式図である。選別機200は、第2の光学センサ60bを備えていない点と、制御装置180に代えて制御装置280を備えている点のみが第2実施形態と異なっている。以下、選別機200について、第2実施形態と異なる点についてのみ説明する。 FIG. 6 is a schematic diagram showing a schematic configuration of a sorter 200 as a third embodiment of the present invention. The sorter 200 is different from the second embodiment only in that the second optical sensor 60b is not provided and that the control device 280 is provided instead of the control device 180. Hereinafter, the sorting machine 200 will be described only in terms of differences from the second embodiment.
 制御装置280は、制御装置180と同様の態様で(つまり、図4に示した態様で)、間欠的に点灯するように第1の光源30および第2の光源40a,40bを制御する。本実施形態では、リア側には第2の光学センサ60bが設置されていないので、リア側に配置された第1の光学センサ50が第2の光学センサ60bの役割も担う。つまり、第1の光学センサ50は、奇数の走査ナンバーを有する走査期間では、第1の光源30から放出された近赤外光31を検出し、偶数の走査ナンバーを有する走査期間では、第2の光源40a,40bから放出された可視光41a,41bを検出する。 The control device 280 controls the first light source 30 and the second light sources 40a and 40b so as to be intermittently lit in the same manner as the control device 180 (that is, in the manner shown in FIG. 4). In the present embodiment, since the second optical sensor 60b is not installed on the rear side, the first optical sensor 50 arranged on the rear side also plays the role of the second optical sensor 60b. That is, the first optical sensor 50 detects the near-infrared light 31 emitted from the first light source 30 during the scanning period having an odd number of scan numbers, and the second optical sensor 50 detects the near infrared light 31 emitted from the first light source 30 during the scanning period having an even number of scan numbers. The visible light 41a, 41b emitted from the light sources 40a, 40b of the above is detected.
 このため、積算部81および第1の判定部82は、第2実施形態と同様に、奇数の走査ナンバーを有する走査期間において第1の光学センサ50によって取得された信号のみを用いて、第1実施形態で説明した積算処理および判定処理を行う。一方、第2の判定部83は、偶数の走査ナンバーを有する走査期間において第2の光学センサ60aによって取得された信号と、奇数の走査ナンバーを有する走査期間において第1の光学センサ50によって取得された信号と、用いて、第1実施形態で説明した判定処理を行う。 Therefore, as in the second embodiment, the integrating unit 81 and the first determination unit 82 use only the signals acquired by the first optical sensor 50 during the scanning period having an odd number of scanning numbers, and the first determination unit 82 is used. The integration process and the determination process described in the embodiment are performed. On the other hand, the second determination unit 83 is acquired by the signal acquired by the second optical sensor 60a in the scanning period having an even scanning number and by the first optical sensor 50 in the scanning period having an odd scanning number. The determination process described in the first embodiment is performed using the signal.
 かかる選別機200によれば、近赤外光31の検出と、可視光41a,41bの検出と、の両方に第1の光学センサ50を共用することができるので、第2実施形態と比べて、第2の光学センサ60bの費用分だけ製造コストを低減することができる。しかも、第2実施形態と同様に、シュート73から対象物90を1回落下させる間に、可視光の検出と、不可視光の検出と、を行うことができる。ただし、対象物90を2回落下させて、可視光の検出と、不可視光の検出と、が行われてもよい。例えば、1回目の落下時には第1の光源30のみが連続的に点灯し、第1の光学センサ50によって近赤外光31が検出され、2回目の落下時には、第2の光源40a,40bのみが連続的に点灯し、第1の光学センサ50によって可視光41a,41bが検出されてもよい。 According to the sorter 200, the first optical sensor 50 can be shared for both the detection of the near-infrared light 31 and the detection of the visible lights 41a and 41b, so that the first optical sensor 50 can be shared as compared with the second embodiment. , The manufacturing cost can be reduced by the cost of the second optical sensor 60b. Moreover, as in the second embodiment, it is possible to detect visible light and detect invisible light while the object 90 is dropped from the chute 73 once. However, the object 90 may be dropped twice to detect visible light and detect invisible light. For example, at the time of the first fall, only the first light source 30 is continuously lit, the near infrared light 31 is detected by the first optical sensor 50, and at the time of the second fall, only the second light sources 40a and 40b are turned on. Is continuously lit, and visible light 41a and 41b may be detected by the first optical sensor 50.
 以上、本発明のいくつかの実施形態について説明してきたが、上記した発明の実施形態は、本発明の理解を容易にするためのものであり、本発明を限定するものではない。本発明は、その趣旨を逸脱することなく、変更、改良され得るとともに、本発明にはその均等物が含まれる。また、上述した課題の少なくとも一部を解決できる範囲、または、効果の少なくとも一部を奏する範囲において、特許請求の範囲および明細書に記載された各構成要素の組み合わせ、または、省略が可能である。 Although some embodiments of the present invention have been described above, the above-described embodiments of the present invention are for facilitating the understanding of the present invention and do not limit the present invention. The present invention can be modified and improved without departing from the spirit of the present invention, and the present invention includes equivalents thereof. Further, in the range where at least a part of the above-mentioned problems can be solved, or in the range where at least a part of the effect is exhibited, the scope of claims and the combination of each component described in the specification can be combined or omitted. ..
 例えば、R素子、G素子およびB素子の各々が近赤外線波長領域にゼロではない分光感度を有する第1の光学センサ50を使用する代わりに、R素子、G素子およびB素子のうちの二種類の素子のみが近赤外線波長領域にゼロではない分光感度を有する第1の光学センサが使用されてもよい。この場合でも、当該二種類の素子を介して取得された信号または階調値を積算することにより、感度不足に起因する判定精度の低下を抑制できる。 For example, instead of using the first optical sensor 50 in which each of the R element, the G element and the B element has a non-zero spectral sensitivity in the near infrared wavelength region, two types of the R element, the G element and the B element are used. A first optical sensor may be used in which only one of the elements has a non-zero spectral sensitivity in the near infrared wavelength region. Even in this case, by integrating the signals or gradation values acquired through the two types of elements, it is possible to suppress a decrease in determination accuracy due to insufficient sensitivity.
 さらに、R素子、G素子およびB素子の各々が近赤外線波長領域にゼロではない分光感度を有する第1の光学センサ50を使用する代わりに、R素子、G素子およびB素子の各々が分光感度のピークを可視波長領域に有し、かつ、R素子、G素子およびB素子のうちの少なくとも二つが、近赤外線波長領域以外の不可視波長領域(具体的には、遠赤外線波長領域または紫外線波長領域)にゼロではない分光感度を有する第1の光学センサが使用されてもよい。この場合、第1の光源30に代えて、遠赤外線波長領域または紫外線波長領域の波長を有する第1の光源が使用される。また、使用される第1の光源から放出される光の波長範囲に応じて、第1の光学フィルタ51のフィルタリング特性も適宜、変更され得る。このような構成によっても、必要な判定精度を確保しつつ、安価な光学センサを用いて遠赤外線波長領域または紫外線波長領域を検出できる。 Further, instead of using the first optical sensor 50 in which each of the R element, the G element and the B element has a non-zero spectral sensitivity in the near infrared wavelength region, each of the R element, the G element and the B element has a spectral sensitivity. Has a peak in the visible wavelength region, and at least two of the R element, G element, and B element are invisible wavelength regions other than the near infrared wavelength region (specifically, the far infrared wavelength region or the ultraviolet wavelength region). ) May be a first optical sensor having a non-zero spectral sensitivity. In this case, instead of the first light source 30, a first light source having a wavelength in the far-infrared wavelength region or the ultraviolet wavelength region is used. Further, the filtering characteristics of the first optical filter 51 can be appropriately changed according to the wavelength range of the light emitted from the first light source used. Even with such a configuration, the far-infrared wavelength region or the ultraviolet wavelength region can be detected by using an inexpensive optical sensor while ensuring the necessary determination accuracy.
 さらに、第1の光学センサ50および/または第2の光学センサ60a,60bとして、カラーCCDセンサに変えて、カラーCMOSセンサなどの他の形式の光学センサが使用されてもよい。 Further, as the first optical sensor 50 and / or the second optical sensors 60a and 60b, other types of optical sensors such as a color CMOS sensor may be used instead of the color CCD sensor.
  10,100,200...選別機
  20...光学検出部
  30...第1の光源
  31...第1の光(近赤外光)
  40a,40b...第2の光源
  41a,41b...第2の光(可視光)
  50...第1の光学センサ
  51...第1の光学フィルタ
  60a,60b...第2の光学センサ
  61a,61b...第2の光学フィルタ
  71...貯留タンク
  72...フィーダ
  73...シュート
  74...良品排出樋
  75...不良品排出樋
  76...エジェクタ
  77...エア
  80,180,280...制御装置
  81...積算部
  82...第1の判定部
  83...第2の判定部
  90...対象物
10, 100, 200 ... Sorter 20 ... Optical detector 30 ... First light source 31 ... First light (near infrared light)
40a, 40b ... Second light source 41a, 41b ... Second light (visible light)
50 ... 1st optical sensor 51 ... 1st optical filter 60a, 60b ... 2nd optical sensor 61a, 61b ... 2nd optical filter 71 ... Storage tank 72 ... Feeder 73 ... Shoot 74 ... Good product discharge trough 75 ... Defective product discharge trough 76 ... Ejector 77 ... Air 80, 180, 280 ... Control device 81 ... Integration unit 82 .. .First judgment unit 83 ... Second judgment unit 90 ... Object

Claims (7)

  1.  光学式選別機であって、
     赤色に対応する波長を有する光を検出するための光学素子であるR素子と、緑色に対応する波長を有する光を検出するための光学素子であるG素子と、青色に対応する波長を有する光を検出するための光学素子であるB素子と、を有する第1の光学センサを備え、
     前記R素子、前記G素子および前記B素子の各々は、分光感度のピークを可視波長領域に有し、
     前記R素子、前記G素子および前記B素子のうちの少なくとも二つの素子は、不可視波長領域のうちの所定の波長領域においてゼロではない分光感度を有し、
     前記光学式選別機は、さらに、
     前記所定の波長領域内の波長を有する第1の光を選別対象物に向けて放出する第1の光源と、
     前記第1の光源から前記第1の光が放出されたときに前記少なくとも二つの素子を介して取得された信号の少なくとも一部、または、該信号に対応する階調値の少なくとも一部を積算する積算部と、
     前記積算部によって積算された前記信号または前記階調値に基づいて異物および/または不良品の判定を行う第1の判定部と
     を備える光学式選別機。
    It ’s an optical sorter,
    The R element, which is an optical element for detecting light having a wavelength corresponding to red, the G element, which is an optical element for detecting light having a wavelength corresponding to green, and light having a wavelength corresponding to blue. A first optical sensor comprising a B element, which is an optical element for detecting
    Each of the R element, the G element, and the B element has a peak of spectral sensitivity in the visible wavelength region.
    At least two of the R element, the G element and the B element have a non-zero spectral sensitivity in a predetermined wavelength region of the invisible wavelength region.
    The optical sorter further
    A first light source that emits a first light having a wavelength within a predetermined wavelength region toward an object to be sorted, and a first light source.
    At least a part of the signal acquired through the at least two elements when the first light is emitted from the first light source, or at least a part of the gradation value corresponding to the signal is integrated. Integrator and
    An optical sorter including a first determination unit that determines foreign matter and / or defective products based on the signal or gradation value integrated by the integration unit.
  2.  請求項1に記載の光学式選別機であって、
     前記R素子、前記G素子および前記B素子のうちの全ての素子は、前記所定の波長領域において前記ゼロではない分光感度を有し、
     前記積算部は、前記第1の光源から前記第1の光が放出されたときに前記R素子、前記G素子および前記B素子を介して取得された前記信号または前記階調値を積算する
     光学式選別機。
    The optical sorter according to claim 1.
    All of the R element, the G element and the B element have the non-zero spectral sensitivity in the predetermined wavelength region.
    The integrating unit integrates the signal or the gradation value acquired via the R element, the G element, and the B element when the first light is emitted from the first light source. Type sorter.
  3.  請求項1または請求項2に記載の光学式選別機であって、
     前記積算部は、重み付け係数を用いて前記信号または前記階調値を積算する
     光学式選別機。
    The optical sorter according to claim 1 or 2.
    The integrating unit is an optical sorter that integrates the signal or the gradation value using a weighting coefficient.
  4.  請求項3に記載の光学式選別機であって
     前記重み付け係数は1以上の値である
     光学式選別機。
    The optical sorter according to claim 3, wherein the weighting coefficient is a value of 1 or more.
  5.  請求項1ないし請求項4のいずれか一項に記載の光学式選別機であって、
     前記可視波長領域内の波長を有する第2の光を選別対象物に向けて放出する第2の光源と、
     赤色に対応する波長を有する光を検出するための光学素子であるR素子と、緑色に対応する波長を有する光を検出するための光学素子であるG素子と、青色に対応する波長を有する光を検出するための光学素子であるB素子と、を有する第2の光学センサと、
     前記第2の光源から前記第2の光が放出されたときに前記第2の光学センサを介して取得された信号に基づいて前記異物および/または前記不良品の判定を行う第2の判定部と
     を備える光学式選別機。
    The optical sorter according to any one of claims 1 to 4.
    A second light source that emits a second light having a wavelength within the visible wavelength region toward the object to be sorted, and a second light source.
    The R element, which is an optical element for detecting light having a wavelength corresponding to red, the G element, which is an optical element for detecting light having a wavelength corresponding to green, and light having a wavelength corresponding to blue. A second optical sensor having a B element, which is an optical element for detecting
    A second determination unit that determines the foreign matter and / or the defective product based on the signal acquired through the second optical sensor when the second light is emitted from the second light source. Optical sorter equipped with.
  6.  請求項5に記載の光学式選別機であって、
     前記第1の光学センサに入射される光の光路上に配置され、前記可視波長領域内の波長を有する光をカットする第1の光学フィルタと、
     前記第2の光学センサに入射される光の光路上に配置され、前記不可視波長領域内の波長を有する光をカットする第2の光学フィルタと
     を備える光学式選別機。
    The optical sorter according to claim 5.
    A first optical filter that is arranged on the optical path of light incident on the first optical sensor and cuts light having a wavelength within the visible wavelength region.
    An optical sorter including a second optical filter arranged on an optical path of light incident on the second optical sensor and cutting light having a wavelength within the invisible wavelength region.
  7.  請求項5または請求項6に記載の光学式選別機であって、
     前記第2の光学センサは、前記第1の光学センサと同一の仕様を有している
     光学式選別機。
    The optical sorter according to claim 5 or 6.
    The second optical sensor is an optical sorter having the same specifications as the first optical sensor.
PCT/JP2020/043910 2019-11-29 2020-11-25 Optical sorting machine WO2021106964A1 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
CN202080081194.6A CN114729901A (en) 2019-11-29 2020-11-25 Optical sorting machine

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2019-217135 2019-11-29
JP2019217135A JP7354802B2 (en) 2019-11-29 2019-11-29 optical sorter

Publications (1)

Publication Number Publication Date
WO2021106964A1 true WO2021106964A1 (en) 2021-06-03

Family

ID=76087415

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2020/043910 WO2021106964A1 (en) 2019-11-29 2020-11-25 Optical sorting machine

Country Status (3)

Country Link
JP (1) JP7354802B2 (en)
CN (1) CN114729901A (en)
WO (1) WO2021106964A1 (en)

Families Citing this family (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2023000672A (en) * 2021-06-18 2023-01-04 株式会社サタケ Sorting machine, method for discriminating defective article, and sorting method
JP2023136102A (en) * 2022-03-16 2023-09-29 株式会社サタケ Measuring device and sorting device

Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH11298800A (en) * 1998-04-10 1999-10-29 Nikon Corp Image-pickup element and image-pickup device using the same
JP2006109120A (en) * 2004-10-06 2006-04-20 Funai Electric Co Ltd Infrared imaging device
JP2007333464A (en) * 2006-06-13 2007-12-27 Mitsubishi Electric Corp Two-wavelength image sensor
JP2011507353A (en) * 2007-12-05 2011-03-03 エレクトロ サイエンティフィック インダストリーズ インコーポレーテッド Method and apparatus for achieving a full color response from a color mosaic imager
JP2014157119A (en) * 2013-02-18 2014-08-28 Satake Corp Optical granular material classifier
WO2016080003A1 (en) * 2014-11-20 2016-05-26 シャープ株式会社 Solid-state imaging element
JP2019103004A (en) * 2017-12-04 2019-06-24 キヤノン株式会社 Imaging apparatus, control method of imaging apparatus, and program

Patent Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH11298800A (en) * 1998-04-10 1999-10-29 Nikon Corp Image-pickup element and image-pickup device using the same
JP2006109120A (en) * 2004-10-06 2006-04-20 Funai Electric Co Ltd Infrared imaging device
JP2007333464A (en) * 2006-06-13 2007-12-27 Mitsubishi Electric Corp Two-wavelength image sensor
JP2011507353A (en) * 2007-12-05 2011-03-03 エレクトロ サイエンティフィック インダストリーズ インコーポレーテッド Method and apparatus for achieving a full color response from a color mosaic imager
JP2014157119A (en) * 2013-02-18 2014-08-28 Satake Corp Optical granular material classifier
WO2016080003A1 (en) * 2014-11-20 2016-05-26 シャープ株式会社 Solid-state imaging element
JP2019103004A (en) * 2017-12-04 2019-06-24 キヤノン株式会社 Imaging apparatus, control method of imaging apparatus, and program

Also Published As

Publication number Publication date
JP2021085846A (en) 2021-06-03
CN114729901A (en) 2022-07-08
JP7354802B2 (en) 2023-10-03

Similar Documents

Publication Publication Date Title
US6784996B2 (en) Color sorting apparatus for granular object with optical detection device consisting of CCD linear sensor
WO2021106964A1 (en) Optical sorting machine
JP2008302314A (en) Optical rice grain sorter
JP2009018310A (en) Optical cracked-grain selection method
JP2010042326A (en) Optical cereal grain sorting apparatus
KR20010067172A (en) Method and apparatus for sorting granular objects with at least two different threshold levels
JP2009115613A (en) Foreign matter inspecting apparatus
JPH0796253A (en) Bean color classifier
JP7333771B2 (en) Region extraction device and method and object detection device and method
WO2021117544A1 (en) Optical sorting machine
JPS6058813B2 (en) How to detect defects in rice grains
JP7544358B2 (en) Imaging device, inspection device, and imaging method
JP7521570B2 (en) Optical sorting machine
JP2021094553A (en) Optical sorting machine
WO2021125133A1 (en) Optical sorting machine
JP2005186053A (en) Particulate matter color sorting machine
JP7434889B2 (en) optical sorter
WO2023100805A1 (en) Imaging device, inspection device, and imaging method
WO2023176751A1 (en) Measuring device and selection device
WO2023210619A1 (en) Imaging device, inspection device, imaging condition determination method, and imaging method
CN118871774A (en) Measuring device and sorting device
CN112620160A (en) Rice material detection system and method and color sorter
JP2001012928A (en) Inspection apparatus for planer article

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 20893931

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 20893931

Country of ref document: EP

Kind code of ref document: A1