JP2010042326A - Optical cereal grain sorting apparatus - Google Patents

Optical cereal grain sorting apparatus Download PDF

Info

Publication number
JP2010042326A
JP2010042326A JP2008206278A JP2008206278A JP2010042326A JP 2010042326 A JP2010042326 A JP 2010042326A JP 2008206278 A JP2008206278 A JP 2008206278A JP 2008206278 A JP2008206278 A JP 2008206278A JP 2010042326 A JP2010042326 A JP 2010042326A
Authority
JP
Japan
Prior art keywords
region
grains
grain
blue
rice
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP2008206278A
Other languages
Japanese (ja)
Inventor
Takahiro Doi
貴広 土井
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Satake Engineering Co Ltd
Satake Corp
Original Assignee
Satake Engineering Co Ltd
Satake Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Satake Engineering Co Ltd, Satake Corp filed Critical Satake Engineering Co Ltd
Priority to JP2008206278A priority Critical patent/JP2010042326A/en
Publication of JP2010042326A publication Critical patent/JP2010042326A/en
Pending legal-status Critical Current

Links

Images

Abstract

<P>PROBLEM TO BE SOLVED: To provide an optical cereal grain sorting apparatus which is improved in sorting accuracy of colored grains when sorting and removing refined rice from colored grains at the same time, and simplified in signal processing. <P>SOLUTION: The optical cereal grain sorting apparatus includes: an illumination means irradiating grains from one side with light having three wavelengths, consisting of red, green and blue regions of the visible light region and irradiating grains from the other side with light having two wavelengths, consisting of green and blue regions of the visible light region; an optical detection means simultaneously monitoring the grains illuminated by the illumination means from one side and the other side for every wavelength of the red, green and blue regions; a defective matter discriminating means determining refined rice or not based on the detection signals of the red region of the one side and the other side of the optical detection means, and determining colored grains or foreign matter based on detection signals of the green and blue regions of the one side and the other side of the optical detection means; and a sorting means. <P>COPYRIGHT: (C)2010,JPO&INPIT

Description

本発明は、光学式穀粒選別装置に関する。 The present invention relates to an optical grain sorting device.

従来、着色粒、透明な異物及びしらた米(乳白色粒)の選別・除去を可能とする穀粒の光学式選別装置として、受光センサの出力信号と任意のしきい値との比較により除去信号を出力する制御回路に、可視光域の光源をしらた米選別用に点灯切換を行うしらた米設定回路を設けるとともに、特定の可視光域の光源に、前記バックグラウンドへの照射のみを許容し、前記流下軌跡を流下する穀粒への照射を遮蔽する遮蔽手段を設けたものがある(特許文献1参照)。 Conventionally, as an optical sorting device for grains that enables sorting and removal of colored grains, transparent foreign matter, and crushed rice (milky white grains), the removal signal is compared by comparing the output signal of the light receiving sensor with an arbitrary threshold value. A control circuit that outputs light is provided with a rice setting circuit that switches the lighting for sorting rice that uses a light source in the visible light range, and the light source in a specific visible light range is only allowed to irradiate the background. However, there is one provided with shielding means for shielding irradiation to the grains flowing down the flow locus (see Patent Document 1).

また、米粒判別処理速度を高める米粒判別検査装置として、シュート下端から流下する米粒を光学的に検定する検査装置と、該検査装置からの検知信号に基づいて、落下する米粒の各々を、米粒の焼け、しらた、うるち、異物等を判別できるように、各々に対する複数のしきい値を設けて判別する判別装置とを備えたものがある(特許文献2参照)。   Further, as a rice grain discrimination inspection device for increasing the rice grain discrimination processing speed, an inspection device for optically examining the rice grain flowing down from the lower end of the chute, and each falling rice grain based on a detection signal from the inspection device, Some have a discriminating device that discriminates by providing a plurality of threshold values for each so that burns, shirata, nourishment, foreign matter and the like can be discriminated (see Patent Document 2).

特許第3506312号公報Japanese Patent No. 3506312 特開2006−170750号公報JP 2006-170750 A

上記特許文献1記載の光学式選別装置にあっては、しらた米設定回路を作動させると、可視光域の光源がしらた米選別用へ点灯切換されるとともに、遮蔽手段により流下軌跡Lよりも上方の可視光域の光源が遮蔽される。この状態でしらた米と着色粒とを同時に選別・除去しようとすると、しらた米は乳白色であるために精白米よりも透過率が低く反射率が高いので、精白米と同じ光量に調節されたバックグラウンドでは、反射光量の差が明瞭となり、しらた米が良好に選別・除去することができる。一方で、着色粒では、流下軌跡Lよりも上方の光源と流下軌跡Lよりも下方の光源とで照明条件が異なるために、選別精度に問題が生じることがある。すなわち、流下軌跡L下方側からの検出には問題がなくても、流下軌跡L上方からの検出において、穀粒に部分着色粒(例えば、虫食い(カメムシ被害粒)など微小な着色粒)が存在していると、その側の検出精度が劣ってしまい、選別・除去信号が出力されない場合があった。 In the optical sorting device described in Patent Document 1, when the shirata rice setting circuit is operated, the light source in the visible light range is switched to the slab for rice sorting, and the flow path L is lowered by the shielding means. The upper visible light source is also shielded. When trying to select and remove rice grains and colored grains in this state at the same time, since rice grains are milky white, the transmittance is lower and the reflectance is higher than polished rice. On the other hand, the difference in the amount of reflected light becomes clear, and the slag rice can be selected and removed well. On the other hand, in the colored particles, since the illumination conditions are different between the light source above the flow track L and the light source below the flow track L, there may be a problem in sorting accuracy. That is, even if there is no problem in the detection from the lower side of the flow track L, there is a partial colored particle (for example, a minute colored particle such as a worm bite (stink bug damage particle)) in the detection from the upper side of the flow track L. If so, the detection accuracy on that side is inferior, and the selection / removal signal may not be output.

一方、特許文献2記載の米粒判別検査装置にあっては、良品とされる米粒(うるち米)と一般的に不良品とされる米粒(欠け、焼け等の変色、しらた、虫食い等の生じた米粒)とを類別検査することができるものであるが、米粒一粒ずつに対する可視光カメラからの出力信号が、比較回路において4つのしきい値1〜4と比較されて各々比較器出力1〜4として出力され、比較器に続いて各別に設けられたカウンタにおいては比較回路出力が「1」信号である時間をカウントし、2つの大きさ判断基準値及び色の濃さが比較されて、良品とされるうるち米と、不良品とされる欠け、焼け等の変色、しらた、及び虫食いなどに種別される。すなわち、その判別アルゴリズムとしては、色濃度の基準となるしきい値を4個設定して、細かな濃度判定を行い、かつ、比較器の「1」信号である時間をカウントするカウンタを比較器ごと各別に設ける必要があり、判断回路においては、多数のカウンタから出力される信号処理を複数組み合わせて行っており、判断回路における信号処理が複雑化する問題があった。また、特許文献1と同様、流下軌跡Lよりも上方の光源と流下軌跡Lよりも下方の光源とで照明条件が異なると、着色粒の選別精度に問題が生じることがあった。 On the other hand, in the rice grain discrimination inspection apparatus described in Patent Document 2, rice grains considered to be non-defective products (glutinous rice) and rice grains generally regarded as defective products (discoloration such as chipping and burning, rusting, insect eating, etc.) occurred. Rice grains), the output signal from the visible light camera for each grain of rice is compared with four threshold values 1 to 4 in the comparator circuit, and each comparator output 1 to 1 is compared. 4, the counter provided separately after the comparator counts the time when the comparison circuit output is a “1” signal, and the two magnitude judgment reference values and the color density are compared, It is classified into non-defective glutinous rice, chipping as defective, discoloration such as burning, shirata, and worm-eaten. That is, as a discrimination algorithm, four threshold values serving as color density references are set, fine density determination is performed, and a counter that counts the time that is the “1” signal of the comparator is used as a comparator. In the determination circuit, a plurality of signal processes output from a large number of counters are combined and there is a problem that the signal processing in the determination circuit becomes complicated. Similarly to Patent Document 1, if the illumination conditions are different between the light source above the flow track L and the light source below the flow track L, there may be a problem in the color particle selection accuracy.

本発明は上記問題点にかんがみ、しらた米と着色粒とを同時に選別・除去しようとする場合に、着色粒の選別精度を向上させ、かつ、信号処理が簡易化される光学式穀粒選別装置を提供することを技術的課題とする。 In view of the above problems, the present invention improves the accuracy of selecting colored grains and simplifies the signal processing when selecting and removing shira rice and colored grains simultaneously. It is a technical problem to provide a device.

上記課題を解決するため請求項1記載の発明は、良品となる穀粒から不良品となる着色粒、しらた米及び異物を選別・除去する光学式穀粒選別装置であって、被選別物となる穀粒を搬送する搬送手段と、該搬送手段から放出される穀粒の一方の側から可視光域の赤色域、緑色域及び青色域からなる3波長の光を照射するとともに、穀粒の他方の側から可視光域の緑色域及び青色域からなる2波長の光を照射する照明手段と、該照明手段にて照明された穀粒を、一方の側と他方の側からそれぞれ赤色域、緑色域及び青色域の各波長別に同時に監視する光学検出手段と、該光学検出手段の一方の側と他方の側の赤色域の検出信号に基づき、しらた米であるか否かを判定するとともに、前記光学検出手段の一方の側と他方の側の緑色域及び青色域の検出信号に基づき、着色粒又は異物であるか否かを判定する不良品判別手段と、該不良品判別手段によって不良品と判別された着色粒、しらた米及び異物を、良品が落下する落下軌跡とは異なる軌跡に落下させて排除する選別手段とを有する、という技術的手段を講じた。 In order to solve the above-mentioned problem, the invention described in claim 1 is an optical grain sorting device for sorting and removing colored grains, scoured rice and foreign matters which are defective from good quality grains, A conveying means for conveying the grains to be used, and irradiating light of three wavelengths consisting of a red area, a green area and a blue area in the visible light range from one side of the grains emitted from the conveying means; Illuminating means for irradiating light of two wavelengths consisting of a green region and a blue region of the visible light region from the other side of the light source, and the grains illuminated by the illuminating unit from the one side and the other side, respectively, The optical detection means for simultaneously monitoring each wavelength of the green color region and the blue color region, and determining whether the rice is white or not based on the detection signal of the red color region on one side and the other side of the optical detection device And one of the optical detection means and the other of the green and blue regions on the other side. Defective product discriminating means for judging whether or not it is a colored particle or foreign matter based on the output signal, and a drop in which the non-defective product drops the colored grain, crushed rice and foreign matter discriminated as defective by the defective product discriminating means. The technical means of having a selection means for dropping and removing it in a different locus from the locus was taken.

請求項2記載の発明は、良品となる穀粒から不良品となる着色粒、しらた米及び異物を選別・除去する光学式穀粒選別装置であって、被選別物となる穀粒を搬送する搬送手段と、該搬送手段から放出される穀粒の一方の側から可視光域の赤色域、緑色域及び青色域からなる3波長の光を照射するとともに、穀粒の他方の側から可視光域の緑色域及び青色域からなる2波長の光を照射する照明手段と、該照明手段にて照明された穀粒を、一方の側と他方の側からそれぞれ赤色域、緑色域及び青色域の各波長別に同時に監視する光学検出手段と、 該光学検出手段の一方の側と他方の側の赤色域検出信号と緑色域検出信号との比を算出して、被選別物が玄米である場合に、良品である整粒と良品である青未熟粒とに判別する整粒・青未熟粒判別手段と、前記整粒・青未熟判別手段によって青未熟と判別された粒を、整粒が落下する落下軌跡とは異なる軌跡に落下させて区分する玄米選別手段と、該玄米選別手段により青未熟に区分された粒を、前記光学検出手段の一方の側と他方の側の赤色域の検出信号に基づき、しらた米であるか否かを判定するとともに、前記光学検出手段の一方の側と他方の側の緑色域及び青色域の検出信号に基づき、着色粒又は異物であるか否かを判定する第1不良品判別手段と、該第1不良品判別手段によって不良品と判別された着色粒、しらた米及び異物を、良品が落下する落下軌跡とは異なる軌跡に落下させて排除する第1選別手段と、前記玄米選別手段により整粒に区分された粒を、前記光学検出手段の一方の側と他方の側の赤色域の検出信号に基づき、しらた米であるか否かを判定するとともに、前記光学検出手段の一方の側と他方の側の緑色域及び青色域の検出信号に基づき、着色粒又は異物であるか否かを判定する第2不良品判別手段と、該第2不良品判別手段によって不良品と判別された着色粒、しらた米及び異物を、良品が落下する落下軌跡とは異なる軌跡に落下させて排除する第2選別手段とを有することを特徴とする。   The invention according to claim 2 is an optical grain sorting device that sorts and removes colored grains that become defective from cereals that are good, scoured rice, and foreign substances, and conveys grains that are to be sorted. And irradiating light of three wavelengths consisting of a red region, a green region and a blue region of the visible light region from one side of the grain emitted from the conveying unit and visible from the other side of the grain Illumination means for irradiating light of two wavelengths consisting of a green area and a blue area of the light area, and grains illuminated by the illumination means, the red area, the green area and the blue area from one side and the other side, respectively. An optical detection means for simultaneously monitoring each wavelength of the optical detection means, and calculating the ratio of the red area detection signal and the green area detection signal on one side and the other side of the optical detection means, and the sorting object is brown rice In addition, sized and blue immature grains can be discriminated between non-defective sized granules and non-defective blue immature grains. And the unpolished rice screening means for separating the grains determined to be blue immature by the sizing / blue immature discrimination means by dropping them into a trajectory different from the falling trajectory where the sized grains fall, and the unpolished rice by the brown rice sorting means. Based on the detection signal of the red region on one side and the other side of the optical detection means, it is determined whether or not the divided grain is rice, and one side and the other of the optical detection means First defective product discriminating means for judging whether or not it is a colored particle or a foreign substance based on the detection signal of the green area and the blue color area on the side, and the colored grain discriminated as a defective product by the first defective product discriminating means The first sorting means for removing shirata rice and foreign matters by dropping them on a trajectory different from the fall trajectory where good products fall, and the grains classified into sized particles by the brown rice sorting means are one of the optical detection means. Based on the detection signal of the red region on the other side and And determining whether or not it is a colored grain or foreign matter based on the detection signals of the green and blue areas on one side and the other side of the optical detection means. 2 Defective product discriminating means, and second sorting that eliminates colored grains, crushed rice and foreign matters discriminated as inferior products by the second defective product discriminating means by dropping them on a trajectory different from the fall trajectory from which good products fall Means.

請求項3記載の発明は、前記光学検出手段の青色域の検出信号を、被選別物が精白米である場合に不良品となる着色粒又は異物の判定に利用することを特徴とする。   The invention according to claim 3 is characterized in that the detection signal in the blue region of the optical detection means is used for determining colored grains or foreign matters that are defective when the object to be sorted is polished rice.

請求項4記載の発明は、前記光学検出手段が、穀粒を透過した透過光と穀粒の表面からの反射光とを監視することができるようにされていることを特徴とする。   The invention described in claim 4 is characterized in that the optical detection means can monitor transmitted light transmitted through the grain and reflected light from the surface of the grain.

請求項5記載の発明は、前記光学検出手段が、監視領域を赤色域、緑色域及び青色域の各波長別に独立して検知することが可能なCCDカメラと、該CCDカメラに対向して配置されるバックグラウンドとから構成されていることを特徴とする。 According to a fifth aspect of the present invention, the optical detection means is disposed so as to face the CCD camera, and a CCD camera capable of independently detecting the monitoring region for each wavelength of the red region, the green region, and the blue region. It is characterized by being comprised from the background made.

請求項6記載の発明は、前記CCDカメラが、入射される光を赤色域、緑色域及び青色域に分光し、それぞれの光の波長に高い感度を有するセンサが列状に配設される3CCD方式としたことを特徴とする。   According to a sixth aspect of the present invention, in the CCD camera, the CCD camera divides incident light into a red region, a green region, and a blue region, and sensors having high sensitivity to the wavelength of each light are arranged in a line. It is characterized by the system.

請求項7記載の発明は、前記CCDカメラが、赤色域、緑色域、青色域の各センサの3ラインが一つのパッケージに内蔵され、各センサの1ラインに数千個のフォトダイオードが直線状に配設されるカラーラインセンサ方式としたことを特徴とする。 According to a seventh aspect of the present invention, the CCD camera has three lines for each of the red, green, and blue color sensors contained in one package, and several thousand photodiodes are linearly formed on each sensor line. The color line sensor system is arranged in the above.

請求項8記載の発明は、前記光学検出手段には、前記バックグラウンドへの照射を専用とする専用光源を配設し、前記バックグラウンドの明るさが被選別物に応じて変更されるように構成されていることを特徴とする。 In the invention according to claim 8, the optical detection means is provided with a dedicated light source dedicated to irradiating the background, and the brightness of the background is changed according to the object to be sorted. It is configured.

請求項1記載の発明によれば、穀粒の一方の側から可視光域の赤色域、緑色域及び青色域からなる3波長の光を照射する一方、穀粒の他方の側から可視光域の緑色域及び青色域からなる2波長の光が照射されるので、2方向からの照明によって穀粒への照明ムラが生じることがなく、また、着色粒又は異物が検査領域を通過したときは、光学検出手段によって、一方の側と他方の側の2方向、かつ、緑色域及び青色域の合計4つの検出信号に基づいて、着色粒又は異物であるか否かが判定されるので、常に着色粒又は異物の表裏両面を監視しており、穀粒に部分着色粒(カメムシ被害粒など微小な着色粒)が存在していた場合であっても、高精度で選別・除去信号を出力し、複雑な信号処理回路を設けることなく、選別精度を向上させることができる。そして、しらた米が検査領域を通過したときも、2方向の赤色域の検出信号に基づき、しらた米であるか否かが判定されるので、見逃しがなく、しらた米の選別精度も向上する。 According to invention of Claim 1, while irradiating the light of 3 wavelengths which consists of the red region of a visible region, a green region, and a blue region from one side of a grain, it is visible region from the other side of a grain. As the two-wavelength light consisting of the green and blue regions is irradiated, illumination from two directions will not cause uneven illumination of the grain, and when colored grains or foreign matter pass through the inspection area Since the optical detection means determines whether it is a colored particle or a foreign substance based on a total of four detection signals of one side and the other side, and a total of four green and blue areas. Both the front and back sides of colored grains or foreign substances are monitored, and even if partially colored grains (fine colored grains such as stink bug damage grains) exist in the grains, sorting / removal signals are output with high accuracy. Improve sorting accuracy without the need for complex signal processing circuits It can be. Even when shirata rice has passed through the inspection area, it is determined whether or not it is shiro rice based on the detection signal in the red direction in two directions, so there is no oversight, and the sorting accuracy of shira rice is also high. improves.

請求項2記載の発明によれば、被選別物が玄米である場合は、あらかじめ整粒と青未熟粒とを区別し、青未熟粒を精査して不良品判別を行うため、青未熟粒を良品として回収する回収率が向上するようになる。 According to the invention described in claim 2, when the material to be sorted is brown rice, in order to distinguish between sized grains and blue immature grains in advance, and inspecting the blue immature grains to determine defective products, The recovery rate for recovering non-defective products is improved.

請求項3記載の発明によれば、被選別物が精白米である場合、波長が約400〜500nmの青色域の光を検出することによって、精白米の反射光量(又は透過光量)と、不良品となる着色粒又は異物の反射光量(又は透過光量)との差を大きくすることができ、良品である精白米と、不良品となる着色粒又は異物とを確実に選別・除去することができる。 According to the third aspect of the present invention, when the object to be sorted is polished rice, the reflected light amount (or transmitted light amount) of the polished rice is detected by detecting light in a blue region having a wavelength of about 400 to 500 nm. The difference between the amount of reflected light (or the amount of transmitted light) of the colored particles or foreign matters that are non-defective can be increased, and the polished rice that is non-defective and the colored particles or foreign matters that are defective can be reliably selected and removed. it can.

請求項4記載の発明によれば、光学検出手段が、穀粒を透過した透過光と穀粒の表面からの反射光とを監視することができるようにされているため、穀粒を透過した透過光量の差により、良品と不良品となる着色粒、しらた米及び異物とを識別する機能と、穀粒表面の反射光量の差により、良品と不良品となる着色粒、しらた米及び異物とを識別する機能とを兼ね備えており、不良品となる着色粒、しらた米及び異物を確実に選別除去することができる。 According to invention of Claim 4, since the optical detection means was made to be able to monitor the transmitted light which permeate | transmitted the grain, and the reflected light from the surface of a grain, it permeate | transmitted the grain Due to the difference in the amount of transmitted light, the function of discriminating between the non-defective and defective colored grains, white rice and foreign matter, and the difference in the amount of reflected light on the surface of the grain, the non-defective and colored grains, white rice and It also has a function of discriminating foreign substances, and it is possible to reliably select and remove colored grains, crushed rice and foreign substances that are defective.

請求項5、6及び7記載の発明によれば、光学検出手段としてCCDカメラを採用し、例えば、CCDカメラが3CCD方式であれば、入射される光を赤色域、緑色域及び青色域に分光して色ごとに信号が取り出され、高画質・高感度の要求性能が満たされる。また、CCDカメラがカラーラインセンサ方式であれば、CCD転送効率が向上しているので、撮像スピードが高速であり、画像ボケを意識することなく、均一な画像を得ることができる。 According to the fifth, sixth and seventh aspects of the present invention, a CCD camera is employed as the optical detection means. For example, if the CCD camera is a 3CCD system, the incident light is split into the red, green and blue regions. Thus, a signal is extracted for each color, and the required performance of high image quality and high sensitivity is satisfied. If the CCD camera is a color line sensor system, the CCD transfer efficiency is improved, so the imaging speed is high, and a uniform image can be obtained without being conscious of image blur.

請求項8記載の発明によれば、前記光学検出手段には、前記バックグラウンドへの照射を専用とする専用光源を配設し、前記バックグラウンドの明るさが被選別物に応じて変更されるように構成されているので、バックグラウンドの明るさが選別原料に応じて適切な調節ができる。 According to an eighth aspect of the present invention, a dedicated light source dedicated to irradiating the background is disposed in the optical detection means, and the brightness of the background is changed according to the object to be sorted. Thus, the brightness of the background can be appropriately adjusted according to the selected raw material.

本発明を実施するための最良の形態を図面を参照して説明する。図1は本発明による穀粒選別装置の概略側断面図であり、図2は光学検出部をより詳細に示した拡大断面図である。 The best mode for carrying out the present invention will be described with reference to the drawings. FIG. 1 is a schematic side sectional view of a grain sorting apparatus according to the present invention, and FIG. 2 is an enlarged sectional view showing an optical detection unit in more detail.

図1に示すように、選別装置1は、穀粒を傾斜下方に流下移動させるために、約60度の角度で傾斜して配置したシュート2と、穀粒を貯留するための貯留タンク3と、貯留タンク3からの穀粒をシュート2に搬送する手段としての振動フィーダ4と、前記シュート2の下端から流下する穀粒の一方の側と他方の側となる流下軌跡Lの上下を挟んで設けられる一対の光学検出部5a,5b(流下軌跡の上側をフロント側5aとし、流下軌跡の下側をリア側5bとする。)と、さらに下方に設けた選別手段としてのエジェクターノズル6と、エジェクターノズル6下方で前記シュート2と同傾斜線上にあり、エジェクターノズル6からの噴風を受けずにそのまま流下軌跡Lの穀粒を受ける良品排出樋7と、該良品排出樋7の周囲を囲むようなホッパー状に形成され、エジェクターノズル6からの噴風を受けて正常な穀粒から不良品を回収するための不良品排出樋8と、が備えられている。 As shown in FIG. 1, the sorting device 1 includes a chute 2 disposed at an angle of approximately 60 degrees and a storage tank 3 for storing the grain, in order to move the grain downward and inclined. The vibration feeder 4 as means for conveying the grain from the storage tank 3 to the chute 2 and the lower and lower sides of the flow path L which is one side and the other side of the grain flowing down from the lower end of the chute 2 are sandwiched. A pair of optical detectors 5a and 5b provided (the upper side of the flow path is the front side 5a and the lower side of the flow path is the rear side 5b), and an ejector nozzle 6 as a sorting means provided further below; A non-defective product discharge basket 7 that is on the same inclination line as the chute 2 below the ejector nozzle 6 and receives the grains of the flow path L as it is without receiving a jet from the ejector nozzle 6, and surrounds the periphery of the good product discharge basket 7 Relieved A defective product discharge basket 8 is provided which is formed in a par shape and receives a blast from the ejector nozzle 6 to recover defective products from normal grains.

前記シュート2は穀粒を広幅で滑走させるため溝部のない平板形状であり、その表面には、シュート2の底面9から所定間隔をあけてシュートカバー10が設けられる。該シュートカバー10は、硬質なプラスチック板状からなり、選別対象の穀粒がシュート2を滑走中に底面9から浮き上がるのを防止するとともに、シュートカバー10の上端に設けた垂直な立ち上がり部11により、振動フィーダ4から飛び跳ねる穀粒を抑制して円滑にシュート2に供給する役目を果たすものである。 The chute 2 has a flat plate shape without a groove for sliding the grain with a wide width, and a chute cover 10 is provided on the surface of the chute 2 at a predetermined interval from the bottom surface 9 of the chute 2. The chute cover 10 is made of a hard plastic plate and prevents the grains to be selected from floating from the bottom surface 9 while sliding the chute 2, and the vertical rising portion 11 provided at the upper end of the chute cover 10. The grain that jumps from the vibration feeder 4 is suppressed and smoothly supplied to the chute 2.

振動フィーダ4は、コイルバネ12を介して機枠Fを構成する横枠F1上に設置され、支持部4Aを斜め上下に振動駆動するための電磁駆動コイル13等が備えられている。 The vibration feeder 4 is installed on a horizontal frame F1 constituting the machine frame F via a coil spring 12, and is provided with an electromagnetic drive coil 13 and the like for driving the support portion 4A to oscillate diagonally up and down.

光学検出部5a,5bは、それぞれ共通の箱体14a,14b内に形成され、フロント側の箱体14aには、可視光用のCCDカメラ15aと、可視光用の光源16a,16b,16cと、光学検出部5bの対向用バックグラウンド17aが装設されている。一方、リア側の箱体14bには、可視光用のCCDカメラ15bと、可視光用の光源18a,18b,18cと、光学検出部5aの対向用バックグラウンド17bが装設されている。
そして、穀粒の流下軌跡Lを挟んで対向する側に、透明ガラスからなる窓部材19a,19bが嵌め込まれている。また、箱体14a,14bには、エアシリンダにより開閉可能な点検扉20a,20bが設けられており、光学検出部5a,5bのメンテナンスを容易に行うことができる設計となっている。
The optical detectors 5a and 5b are respectively formed in a common box 14a and 14b. The front box 14a includes a visible light CCD camera 15a, a visible light source 16a, 16b, and 16c. The background 17a for opposition of the optical detection part 5b is installed. On the other hand, the rear box 14b is provided with a visible light CCD camera 15b, visible light sources 18a, 18b, and 18c, and an opposing background 17b for the optical detector 5a.
And the window members 19a and 19b which consist of transparent glass are engage | inserted by the side which opposes across the flow path L of the grain. The box bodies 14a and 14b are provided with inspection doors 20a and 20b that can be opened and closed by an air cylinder, so that the optical detectors 5a and 5b can be easily maintained.

エジェクターノズル6には、図外のエアコンプレッサからの空気がサブタンク21、エア管22、エジェクターバルブ23を介してチューブ24から供給される。前記サブタンク21はエアコンプレッサからの空気を一時貯留するものであり、該サブタンク21を設けることでエジェクターノズル6から噴出されるエア量の消費が多い場合であっても、エア不足に陥るおそれがない。 Air from an air compressor (not shown) is supplied to the ejector nozzle 6 from a tube 24 via a sub tank 21, an air pipe 22, and an ejector valve 23. The sub-tank 21 temporarily stores air from the air compressor, and even if the sub-tank 21 is provided to consume a large amount of air ejected from the ejector nozzle 6, there is no risk of air shortage. .

符号25は横枠F2に支持される制御ボックスであり、該制御ボックス25内には、電源系統の基板26と選別に関する制御系統の基板27が並設されている。前記横枠F2は、図示しないエアシリンダにより下方に回動可能に設けられ、制御ボックス25の底面が開放される構成となっている。これにより、電源系統の基板26や選別に関する制御系統の基板27の点検・交換時のメンテナンス性が向上し、機種変更も容易に行えるようになっている。 Reference numeral 25 denotes a control box supported by the horizontal frame F <b> 2. In the control box 25, a power supply system board 26 and a control system board 27 for sorting are arranged in parallel. The horizontal frame F2 is provided so as to be rotatable downward by an air cylinder (not shown), and the bottom surface of the control box 25 is opened. As a result, the maintainability at the time of inspection and replacement of the power supply system board 26 and the control system board 27 related to sorting is improved, and the model can be easily changed.

機枠Fの前方側に設けられる傾斜壁には、エアシリンダ28によって上方側に回動可能な前面ドア29が設けられるとともに、該前面ドア29下方には操作盤30が埋設されている。一方、機枠Fの後方側の垂直状の後面壁には、上段後面壁31、中段後面壁32及び下段後面壁33が機枠Fから取り外し可能に設けられ、メンテナンス性を向上させる設計となっている。 A front door 29 that can be rotated upward by an air cylinder 28 is provided on an inclined wall provided on the front side of the machine frame F, and an operation panel 30 is embedded below the front door 29. On the other hand, the upper rear wall 31, the middle rear wall 32, and the lower rear wall 33 are provided on the vertical rear wall on the rear side of the machine frame F so as to be detachable from the machine frame F, thereby improving maintenance. ing.

次に、光学検出部5a,5bの詳細構造について図3を参照しながら説明する。図3に示す光学検出部5a内に配置されるCCDカメラ15a、及び光学検出部5b内に配置されるCCDカメラ15bは、受光素子からの出力を電荷結合素子 (CCD: Charge Coupled Device)を用いて時系列信号として取り出す周知のライン(一次元)センサ、エリア(二次元)イメージセンサなどを用いることができる。 Next, the detailed structure of the optical detectors 5a and 5b will be described with reference to FIG. The CCD camera 15a arranged in the optical detection unit 5a and the CCD camera 15b arranged in the optical detection unit 5b shown in FIG. 3 use a charge coupled device (CCD) as an output from the light receiving element. For example, a well-known line (one-dimensional) sensor or area (two-dimensional) image sensor that is extracted as a time-series signal can be used.

CCDカメラ15a,15bのセンサとして、好ましくは、図3に示すように色の識別能力に優れた3CCD方式のイメージセンサを採用するのがよい。3CCD方式では、カメラ15aのレンズ34に入射される光が、第1のハーフミラー35、第2のハーフミラー36を介して赤色(R),緑色(G),青色(B)に分光され、それぞれの光(R,G,B)の波長にそれぞれ高い感度を有し、かつ、列状に配設された第1赤色センサ37,第1緑色センサ38,第1青色センサ39にそれぞれ受光されるように構成される。カメラ15bも同様に、レンズ40、第1のハーフミラー41,第2のハーフミラー42、及び第2赤色センサ43,第2緑色センサ44,第2青色センサ45を備え、カメラ15bのレンズ40に入射される光が、ハーフミラー41,42を介して赤色(R),緑色(G),青色(B)に分光され、それぞれの光の波長が各センサ43,44,45に受光されるように構成されている。この3CCD方式にあっては、入射される光を赤色域、緑色域及び青色域に分光して色ごとに信号が取り出され、高画質・高感度の要求性能が満たされる。 As the sensors of the CCD cameras 15a and 15b, it is preferable to employ a 3CCD image sensor having excellent color discrimination ability as shown in FIG. In the 3CCD system, light incident on the lens 34 of the camera 15a is split into red (R), green (G), and blue (B) via the first half mirror 35 and the second half mirror 36, The first red sensor 37, the first green sensor 38, and the first blue sensor 39, which have high sensitivity to the wavelengths of the respective lights (R, G, B) and are arranged in rows, are received respectively. Configured to be Similarly, the camera 15 b includes a lens 40, a first half mirror 41, a second half mirror 42, a second red sensor 43, a second green sensor 44, and a second blue sensor 45. Incident light is split into red (R), green (G), and blue (B) through the half mirrors 41 and 42, and the wavelengths of the respective lights are received by the sensors 43, 44, and 45, respectively. It is configured. In this 3CCD system, incident light is divided into a red region, a green region, and a blue region, and a signal is extracted for each color, thereby satisfying the required performance of high image quality and high sensitivity.

また、CCDカメラ15a,15bのセンサの別の実施形態としては、図4に示すように、赤色,緑色,青色の各センサの3ラインが一つのパッケージに内蔵され、各センサの1ラインに数千個のフォトダイオード49,50,51が直線状に配設されたカラーラインセンサを採用することもできる。このカラーラインセンサにあっては、例えば、フォトダイオード49,50,51の走査速度が1個当たり20〜50MHzであって、CCD転送効率が向上しており、撮像スピードが高速であり、画像ボケを意識することなく、均一な画像を得ることができるという利点がある。 Further, as another embodiment of the sensors of the CCD cameras 15a and 15b, as shown in FIG. 4, three lines of red, green and blue sensors are built in one package, and several lines per sensor. A color line sensor in which a thousand photodiodes 49, 50, 51 are arranged in a straight line may be employed. In this color line sensor, for example, the scanning speed of the photodiodes 49, 50, 51 is 20 to 50 MHz per one, the CCD transfer efficiency is improved, the imaging speed is high, and the image blurring is performed. There is an advantage that a uniform image can be obtained without being conscious of.

さらに、CCDカメラ15a,15bのセンサの形態としては、赤色(R)センサ,緑色(G)センサ,及び青色(B)センサが順次繰り返して一列に配列されるリニアラインセンサ(図示せず)としてもよく、センサの形態として赤色(R),緑色(G),青色(B)の各受光データを高速で取り出せる形態であればいずれのものでもよい。   Furthermore, as a form of the sensors of the CCD cameras 15a and 15b, a linear line sensor (not shown) in which a red (R) sensor, a green (G) sensor, and a blue (B) sensor are sequentially arranged in a line. Any sensor may be used as long as it can extract red (R), green (G), and blue (B) received light data at high speed.

次に、図3を参照して光学検出部5aの可視光用の光源16a,16b,16c、及び光学検出部15bの可視光用の光源18a,18b,18cについて説明する。光学検出部5aの可視光用の光源16a,16c、及び光学検出部5bの可視光用の光源18a,18cは、各光源が検査位置Pを囲むよう検査位置Pからの距離がほぼ等間隔となるように配置してある。一方で、光学検出部5aの可視光用の光源16bはバックグラウンド17aへの照射を専用とするためにバックグラウンド17a近傍に配置してあり、同様に光学検出部5bの可視光用の光源18bについても、バックグラウンド17bへの照射を専用とするためにバックグラウンド17b近傍に配置してある。 Next, the visible light sources 16a, 16b, and 16c of the optical detector 5a and the visible light sources 18a, 18b, and 18c of the optical detector 15b will be described with reference to FIG. The visible light sources 16a and 16c of the optical detection unit 5a and the visible light sources 18a and 18c of the optical detection unit 5b are approximately equidistant from the inspection position P so that each light source surrounds the inspection position P. It is arranged to become. On the other hand, the visible light source 16b of the optical detection unit 5a is disposed in the vicinity of the background 17a in order to dedicate irradiation to the background 17a, and similarly, the visible light source 18b of the optical detection unit 5b. Is also disposed in the vicinity of the background 17b in order to dedicate irradiation to the background 17b.

さらに、落下軌跡Lの上方側(フロント側)から穀粒に向けて照射する光源16は、赤色域、緑色域及び青色域からなる3色の光、すなわち、赤色域の約600〜700nmの第1波長域、緑色域の約450〜600nmの第2波長域、及び青色域の約400〜500nmの第3波長域の3波長域を含んでおり、落下軌跡Lの下方側(リア側)から穀粒に向けて照射する光源18が、緑色域の450〜600nmの第2波長域及び青色域の400〜500nmの第3波長域の2波長域を含んでいる。これに限らず、フロント側に2波長域を含む光源を設置し、リア側に3波長域を含む光源を設置することもできる。
3波長域を含む光源16としては、例えば、蛍光灯、白色LED、又はフルカラーLEDなどを採用可能とする一方、2波長域を含む光源18としては、例えば、2波長型の蛍光灯、2波長型のLEDなどが採用可能である。
Further, the light source 16 that irradiates the grain from the upper side (front side) of the fall locus L is light of three colors consisting of a red region, a green region, and a blue region, that is, a red light region of about 600 to 700 nm. It includes three wavelength ranges, one wavelength range, a second wavelength range of about 450 to 600 nm in the green range, and a third wavelength range of about 400 to 500 nm in the blue range, from the lower side (rear side) of the fall locus L The light source 18 that irradiates the grain includes two wavelength regions of a second wavelength region of 450 to 600 nm in the green region and a third wavelength region of 400 to 500 nm in the blue region. However, the present invention is not limited to this, and a light source including two wavelength regions can be installed on the front side, and a light source including three wavelength regions can be installed on the rear side.
As the light source 16 including three wavelength regions, for example, a fluorescent lamp, a white LED, or a full color LED can be adopted. As the light source 18 including two wavelength regions, for example, a two-wavelength type fluorescent lamp, two wavelengths A type of LED can be used.

次に、制御構成について図5を参照して説明する。図5は穀粒選別装置の制御ブロック図であり、制御装置52は内部に光量調節回路53と選別・除去判別回路54とを備えている。光量調節回路53には、入力側に入力インターフェース55を介してタッチ操作で操作可能な品種設定手段56が連絡され、出力側に出力インターフェース57を介してバックグラウンド17aの照明用光源16b及びバックグラウンド17bの照明用光源18bを連絡している。また、選別・除去判別回路54には、入力側にA/D変換器58を介してCCDカメラ15a,15bが連絡されており、出力側にエジェクター駆動回路59を介してエジェクターバルブ23に連絡している。さらに、選別・除去判別回路54には任意のしきい値などを格納した記憶手段60を連絡している。 Next, the control configuration will be described with reference to FIG. FIG. 5 is a control block diagram of the grain sorting device, and the control device 52 includes a light amount adjusting circuit 53 and a sorting / removing discrimination circuit 54 inside. The light quantity adjusting circuit 53 is connected to the input side via the input interface 55 via the input interface 55 and the kind setting means 56 that can be operated by touch operation. The output side is connected to the output side 57 via the output interface 57 and the illumination light source 16b and the background. The light source 18b for illumination of 17b is connected. The sorting / removal discrimination circuit 54 is connected to the CCD camera 15a, 15b via the A / D converter 58 on the input side, and to the ejector valve 23 via the ejector drive circuit 59 on the output side. ing. In addition, the selection / removal determination circuit 54 is in communication with a storage means 60 that stores an arbitrary threshold value and the like.

上記光量調節回路53の構成により、オペレータが品種設定手段56を操作し、玄米、精白米(うるち米)又はもち米などの被選別物となる選別原料を選択すると、被選別物の選別原料ごとに対応する選別基準値となるデータが記憶手段60から読み出され、このデータに従ってバックグラウンド17aの照明用光源16b及びバックグラウンド17bの照明用光源18bの明るさが調節される。これにより、バックグラウンド17a,17bの明るさが選別原料に応じて自動的な調節が行われるようになる。 With the configuration of the light amount adjustment circuit 53, when the operator operates the variety setting means 56 and selects a sorting raw material to be sorted such as brown rice, polished rice (glutinous rice), or glutinous rice, for each sorted raw material of the sorting target Data corresponding to the selection reference value is read from the storage unit 60, and the brightness of the illumination light source 16b in the background 17a and the illumination light source 18b in the background 17b is adjusted according to this data. Thereby, the brightness of the backgrounds 17a and 17b is automatically adjusted according to the selected raw material.

次に、上記実施形態における作用について説明する。まず、被選別物となる選別原料として玄米を用いた場合を説明する。玄米の場合、オペレータが品種設定手段56を操作し、バックグラウンド17a,17bの明るさを、良品の玄米と同じ明るさに設定しておく。そして、玄米を貯留タンク3に投入し、振動フィーダ4を作動させてシュート2に順次供給していくと、玄米はシュート2上を滑走し、該シュート2下端からは落下軌跡Lに沿って落下する。検査位置Pでは、光源16a,16c、光源18a,18cから可視光域の光が照射されており、CCDカメラ15a,15bが着色粒、しらた米又は異物が混入しているか否かを監視している。 Next, the effect | action in the said embodiment is demonstrated. First, the case where brown rice is used as a sorting raw material to be sorted will be described. In the case of brown rice, the operator operates the variety setting means 56 to set the brightness of the backgrounds 17a and 17b to the same brightness as that of the good brown rice. Then, when brown rice is put into the storage tank 3 and the vibratory feeder 4 is operated to supply the chute 2 sequentially, the brown rice slides on the chute 2 and falls along the fall locus L from the lower end of the chute 2. To do. At the inspection position P, light in the visible light range is emitted from the light sources 16a and 16c and the light sources 18a and 18c, and the CCD cameras 15a and 15b monitor whether or not colored grains, white rice or foreign matters are mixed. ing.

すなわち、良品が検査位置Pを通過するときは、バックグラウンド17a,17bの明るさと同じであり、受光量が変化しないために、CCDカメラ15a,15b内の各センサの電圧レベルは変化しない。 That is, when the non-defective product passes the inspection position P, it is the same as the brightness of the backgrounds 17a and 17b, and the received light amount does not change. Therefore, the voltage levels of the sensors in the CCD cameras 15a and 15b do not change.

しらた米が検査位置Pを通過したときは、CCDカメラ15a内の第1赤色センサ37が穀粒表面の反射光量を検知し、電圧レベルに変化が生じる(このとき、良品の玄米の反射光量よりも明るい「しらた米」であると検知される。)。または、CCDカメラ15bの第2赤色センサ43が、光源16a,16cによって照明された赤色光による穀粒の透過光量を検知し、電圧レベルに変化を生じる(このとき、良品の玄米よりも透過光が暗い「しらた米」であると検知される。)。 When the shirata rice passes the inspection position P, the first red sensor 37 in the CCD camera 15a detects the amount of reflected light on the surface of the grain, and the voltage level changes (at this time, the amount of reflected light of non-defective brown rice) It is detected to be brighter "Shirata rice".) Or the 2nd red sensor 43 of CCD camera 15b detects the transmitted light quantity of the grain by the red light illuminated by light source 16a, 16c, and produces a change in a voltage level (At this time, transmitted light rather than good brown rice) Is detected as dark "Shirata rice".)

また、着色粒又は異物が検査位置Pを通過したときは、CCDカメラ15aの第1緑色センサ38が流下軌跡Lの一方側(上方側)で反射光量又は透過光量を検知する一方、CCDカメラ15bの第2緑色センサ44が流下軌跡Lの他方側(下方側)で反射光量又は透過光量を検知し、電圧レベルに変化が生じる(このとき、粒の表裏両面について反射光量及び透過光量を検知し、「着色粒」又は「異物」を検査する。)。 When the colored particles or foreign matter pass through the inspection position P, the first green sensor 38 of the CCD camera 15a detects the reflected light amount or the transmitted light amount on one side (upper side) of the flow path L, while the CCD camera 15b. The second green sensor 44 detects the reflected light amount or transmitted light amount on the other side (lower side) of the flow path L, and changes in the voltage level (at this time, the reflected light amount and transmitted light amount are detected on both the front and back surfaces of the grain. Inspect for "colored particles" or "foreign matter").

上記しらた米、着色粒又は異物が検査位置Pを通過し、各受光センサの電圧レベルに変化が生じたときは、選別・除去判別回路54において任意のしきい値と比較され、エジェクター駆動回路59に排除信号を出力する。エジェクター駆動回路59からは、任意の遅延時間をおいてエジェクターバルブ23への駆動信号が送信され、これにより、エジェクターノズル6からの高圧の噴風を受けて流下軌跡Lからしらた米、着色粒又は異物が排除されることになる。流下軌跡Lから排除されたしらた米、着色粒又は異物は、不良品排出樋8に収容され、エジェクターノズル6からの噴風を受けない良品は、そのまま流下軌跡Lから良品排出樋7に受け入れられる。 When the above-mentioned rice, colored grains or foreign matter passes through the inspection position P and changes in the voltage level of each light receiving sensor, it is compared with an arbitrary threshold value in the sorting / removal discriminating circuit 54, and the ejector driving circuit An exclusion signal is output to 59. A drive signal to the ejector valve 23 is transmitted from the ejector drive circuit 59 with an arbitrary delay time, and as a result, the rice and colored grains that have received the high-pressure blast from the ejector nozzle 6 and crushed from the flow path L. Or a foreign material will be excluded. The rice, colored grains, or foreign matters removed from the flow path L are accommodated in the defective product discharge basket 8, and the non-defective product that does not receive the blast from the ejector nozzle 6 is directly accepted by the good product discharge basket 7 from the flow pattern L. It is done.

次に、被選別物となる選別原料として精白米を用いた場合は、着色粒又は異物の検査の際に、青色センサを使用するほかは、玄米とほぼ同様の操作内容となる。 Next, when polished rice is used as a sorting raw material to be sorted, the operation contents are almost the same as those of brown rice except that a blue sensor is used when inspecting colored grains or foreign matters.

すなわち、着色粒又は異物が検査位置Pを通過したときは、CCDカメラ15aの第1青色センサ39が流下軌跡Lの一方側(上方側)で反射光量又は透過光量を検知する一方、CCDカメラ15bの第2青色センサ45が流下軌跡Lの他方側(下方側)で反射光量又は透過光量を検知し、電圧レベルに変化を生じるのである(このとき、粒の表裏両面について反射光量及び透過光量を検知し、「着色粒」又は「異物」を検査する。)。 That is, when the colored particles or foreign matter pass through the inspection position P, the first blue sensor 39 of the CCD camera 15a detects the reflected light amount or transmitted light amount on one side (upper side) of the flow path L, while the CCD camera 15b. The second blue sensor 45 detects the amount of reflected light or the amount of transmitted light on the other side (downward side) of the flow path L, and changes the voltage level (at this time, the amount of reflected light and the amount of transmitted light are measured on both the front and back surfaces of the grain. Detect and inspect for "colored particles" or "foreign matter").

以上のように、本実施形態によれば、検査位置Pにおいて光源16a,16c及び光源18a,18cから可視光域の光が照射されており、流下軌跡Lに対して2方向から照明することによって穀粒への照明ムラが生じることがなく、また、着色粒又は異物が検査位置Pを通過したときは、CCDカメラ15aの第1緑色センサ38又は第1青色センサ39が流下軌跡Lの一方側(上方側)で反射光量又は透過光量を検知する一方、CCDカメラ15bの第2緑色センサ44又は第2青色センサ45が流下軌跡Lの他方側(下方側)で反射光量又は透過光量を検知して、一方の側と他方の側の2方向、かつ、緑色域及び青色域の合計4つの検出信号に基づいて、着色粒又は異物であるか否かが判定されるので、常に着色粒又は異物の表裏両面を監視しており、穀粒に部分着色粒(カメムシ被害粒など微小な着色粒)が存在していた場合であっても、複雑な信号処理回路を設けることなく、高精度で選別・除去信号を出力し、選別精度を向上させることができる。そして、しらた米が検査領域を通過したときも、2方向の赤色域の検出信号に基づき、しらた米であるか否かが判定されるので、見逃しがなく、しらた米の選別精度も向上する。 As described above, according to the present embodiment, light in the visible light range is irradiated from the light sources 16a and 16c and the light sources 18a and 18c at the inspection position P, and the flow path L is illuminated from two directions. When there is no illumination unevenness on the grain, and when the colored grain or foreign matter passes the inspection position P, the first green sensor 38 or the first blue sensor 39 of the CCD camera 15a is on one side of the flow path L. While the reflected light amount or transmitted light amount is detected on the upper side, the second green sensor 44 or the second blue sensor 45 of the CCD camera 15b detects the reflected light amount or transmitted light amount on the other side (lower side) of the flow path L. Therefore, since it is determined whether or not it is a colored particle or a foreign substance based on a total of four detection signals in one direction and the other side, and in the green and blue areas, it is always a colored particle or a foreign substance. Supervising both front and back Even if partially colored grains (fine colored grains such as stink bug damage grains) exist in the grain, the sorting / removal signal is output with high accuracy without providing a complicated signal processing circuit. In addition, the sorting accuracy can be improved. Even when shirata rice has passed through the inspection area, it is determined whether or not it is shiro rice based on the detection signal in the red direction in two directions, so there is no oversight, and the sorting accuracy of shira rice is also high. improves.

図6は被選別物が玄米である場合に、良品である整粒と良品である青未熟粒とに判別する整粒・青未熟粒判別手段を加えた制御ブロック図である。図5に示すブロック図の選別・除去判別回路54によれば、着色粒又は異物が検査位置Pを通過したときに、各受光センサの電圧レベルに変化が生じるので、任意のしきい値と比較して除去信号を出力するものであるが、着色粒のしきい値を上げると(感度を上げると)、青系統の色である青未熟粒が着色粒と判別され、玄米のうち良品とされる青未熟粒であっても着色不良として不良品排出樋8に回収されてしまう。そこで、本実施形態では、着色粒又は異物であるか否かを判定する不良品判別手段(選別・除去判別回路54)の前工程に、良品である整粒と良品である青未熟粒とに判別する整粒・青未熟粒判別手段(整粒・青未熟判別回路61)を設け、整粒と青未熟粒とを区分し、青未熟粒を精査して不良品判別を行うので、青未熟粒を良品として回収する回収率が向上するようになる。 FIG. 6 is a control block diagram to which sized / blue immature grain discriminating means for discriminating between good sized particles and non-defective blue immature particles is added when the material to be sorted is brown rice. According to the selection / removal determination circuit 54 of the block diagram shown in FIG. 5, when the colored particles or foreign matter pass through the inspection position P, the voltage level of each light receiving sensor changes, so it is compared with an arbitrary threshold value. The removal signal is output, but when the threshold of the colored grains is increased (sensitivity is increased), the blue immature grains, which are blue color, are identified as colored grains, and are regarded as good products of brown rice. Even blue immature grains are recovered as defective coloring in the defective product discharge basket 8. Therefore, in the present embodiment, before the defective product discriminating means (selection / removal discriminating circuit 54) for determining whether or not it is a colored particle or a foreign substance, the sized particle which is a good product and the blue immature particle which is a good product are used. Because it is equipped with a sizing / blue immature grain discrimination means (sized grain / blue immature discrimination circuit 61), the sizing and blue immature grains are classified, and the blue immature grains are scrutinized to determine defective products. The recovery rate for recovering the grains as good products is improved.

図7を参照すれば、玄米の整粒と玄米の青未熟粒とに光を照射し、その反射光を比較すると、約550nmの緑色域(G)の波長では反射光量差が小さいが、約660nmの赤色域(R)の波長では青未熟粒の反射光量が小さく窪んだ状態となり、整粒と青未熟粒との反射光量差が大きくなっていることが分かる。この約550nmの緑色域(G)の波長と、約660nmの赤色域(R)の波長とを、青未熟粒が混入する玄米に照射して、その反射光の強さの比を算出し、その値が所定のしきい値を超えたとき、青未熟粒であると判別することが可能である。 Referring to FIG. 7, when light is irradiated to the sized grain of brown rice and the blue immature grain of brown rice and the reflected light is compared, the difference in reflected light amount is small at a wavelength of about 550 nm in the green region (G). It can be seen that at the wavelength of 660 nm in the red region (R), the amount of reflected light of the blue immature grains is small and recessed, and the difference in amount of reflected light between the sized particles and the blue immature grains is large. Irradiate the green area (G) wavelength of about 550 nm and the red area (R) wavelength of about 660 nm to brown rice mixed with blue immature grains, and calculate the ratio of the intensity of the reflected light, When the value exceeds a predetermined threshold value, it can be determined that the grain is a blue immature grain.

再度、図6を参照すれば、制御装置52には整粒・青未熟判別回路61と選別・除去判別回路54とを備えている。そして、入力側にCCDカメラ15aのセンサ35,36,37、及びCCDカメラ15bのセンサ43,44,45が連絡されており、出力側には、整粒が落下する落下軌跡とは異なる軌跡に青未熟粒を落下させて区分する玄米選別手段62、青未熟に区分された粒から着色粒、しらた米及び異物を排除する第1選別手段63、及び整粒に区分された粒から着色粒、しらた米及び異物を排除する第2選別手段64が連絡されている。符号65は青未熟粒の流れから除去された死米等の着色粒、しらた米及び異物を回収する不良品回収箱であり、符号66は青未熟粒回収箱であり、符号67は整粒回収箱であり、符号68は整粒の流れから除去された死米等の着色粒、しらた米及び異物を回収する不良品回収箱である。 Referring again to FIG. 6, the control device 52 includes a sizing / blue immature discrimination circuit 61 and a sorting / removal discrimination circuit 54. The sensors 35, 36, and 37 of the CCD camera 15a and the sensors 43, 44, and 45 of the CCD camera 15b are connected to the input side, and the output side has a different trajectory from the fall trajectory where the sized particles fall. Brown rice sorting means 62 that drops and classifies the green immature grains, colored grains from the grains classified as blue immature, first sorting means 63 that eliminates the crushed rice and foreign matters, and colored grains from the grains classified into the sized grains The second sorting means 64 for removing the slag rice and foreign matters is communicated. Reference numeral 65 is a defective product collection box for collecting colored grains such as dead rice removed from the flow of blue immature grains, scoured rice and foreign matters, reference numeral 66 is a blue immature grain collection box, and reference numeral 67 is sized particles. A collection box 68 is a defective product collection box for collecting colored grains such as dead rice removed from the sized flow, crushed rice and foreign matter.

以上のように、被選別物が玄米である場合は、あらかじめ整粒と青未熟粒とを区別し、青未熟粒を精査して不良品判別を行うので、青未熟粒を良品として回収する回収率が向上するようになる。 As described above, when the material to be sorted is brown rice, the sized grains and blue immature grains are distinguished in advance, and the blue immature grains are scrutinized to determine defective products. The rate will increase.

本発明による穀粒選別装置の概略側断面図である。It is a schematic sectional side view of the grain sorting apparatus by this invention. 光学検出部をより詳細に示した拡大断面図である。It is the expanded sectional view which showed the optical detection part in detail. 光学検出部の詳細構造図である。It is a detailed structure figure of an optical detection part. 光学検出部の別実施形態を示す詳細構造図である。It is a detailed structure figure showing another embodiment of an optical detection part. 穀粒選別装置の制御ブロック図である。It is a control block diagram of a grain sorter. 玄米の整粒と玄米の青未熟粒とに判別する整粒・青未熟粒判別手段を加えた制御ブロック図である。It is the control block diagram which added the sizing / blue immature grain discrimination means for discriminating between the grain size of brown rice and the green immature grain of brown rice. 玄米の整粒と玄米の青未熟粒とに光を照射したときの明るさとその波長との関係を示す図である。It is a figure which shows the relationship between the brightness when light is irradiated to the sized grain of brown rice, and the blue immature grain of brown rice, and its wavelength.

符号の説明Explanation of symbols

1 選別装置
2 シュート
3 貯留タンク
4 振動フィーダ
5 光学検出部
6 エジェクターノズル
7 良品排出樋
8 不良品排出樋
9 底面
10 シュートカバー
11 立ち上がり部
12 コイルバネ
13 電磁駆動コイル
14 箱体
15 CCDカメラ
16 光源
17 バックグラウンド
18 光源
19 窓部材
20 点検扉
21 サブタンク
22 エア管
23 エジェクターバルブ
24 チューブ
25 制御ボックス
26 基板
27 基板
28 エアシリンダ
29 前面ドア
30 操作盤
31 上段後面壁
32 中段後面壁
33 下段後面壁
34 レンズ
35 第1ハーフミラー
36 第2ハーフミラー
37 第1赤色センサ
38 第1緑色センサ
39 第1青色センサ
40 レンズ
41 第1ハーフミラー
42 第2ハーフミラー
43 第2赤色センサ
44 第2緑色センサ
45 第2青色センサ
49 フォトダイオード
50 フォトダイオード
51 フォトダイオード
52 制御装置
53 光量調節回路
54 選別・除去判別回路
55 入力インターフェース
56 品種設定手段
57 出力インターフェース
58 A/D変換器
59 エジェクター駆動回路
60 記憶手段
61 整粒・青未熟判別回路
62 玄米選別手段
63 第1選別手段
64 第2選別手段
65 不良品回収箱
66 青未熟粒回収箱
67 整粒回収箱
68 不良品回収箱
DESCRIPTION OF SYMBOLS 1 Sorting device 2 Chute 3 Storage tank 4 Vibrating feeder 5 Optical detector 6 Ejector nozzle 7 Non-defective product discharge rod 8 Defective product discharge rod 9 Bottom surface 10 Shoot cover 11 Standing portion 12 Coil spring 13 Electromagnetic drive coil 14 Box 15 CCD camera 16 Light source 17 Background 18 Light source 19 Window member 20 Inspection door 21 Sub tank 22 Air pipe 23 Ejector valve 24 Tube 25 Control box 26 Substrate 27 Substrate 28 Air cylinder 29 Front door 30 Operation panel 31 Upper rear wall 32 Middle rear wall 33 Lower rear wall 34 Lens 35 first half mirror 36 second half mirror 37 first red sensor 38 first green sensor 39 first blue sensor 40 lens 41 first half mirror 42 second half mirror 43 second red sensor 44 second green sensor 45 second Blue sensor 4 Photodiode 50 Photodiode 51 Photodiode 52 Control device 53 Light amount adjustment circuit 54 Sorting / removal discrimination circuit 55 Input interface 56 Product setting means 57 Output interface 58 A / D converter 59 Ejector drive circuit 60 Storage means 61 Grain size / blue immature Discrimination circuit 62 Brown rice sorting means 63 First sorting means 64 Second sorting means 65 Defective product collection box 66 Blue immature grain collection box 67 Sized collection box 68 Defective product collection box

Claims (8)

良品となる穀粒から不良品となる着色粒、しらた米及び異物を選別・除去する光学式穀粒選別装置であって、
被選別物となる穀粒を搬送する搬送手段と、
該搬送手段から放出される穀粒の一方の側から可視光域の赤色域、緑色域及び青色域からなる3波長の光を照射するとともに、穀粒の他方の側から可視光域の緑色域及び青色域からなる2波長の光を照射する照明手段と、
該照明手段にて照明された穀粒を、一方の側と他方の側からそれぞれ赤色域、緑色域及び青色域の各波長別に同時に監視する光学検出手段と、
該光学検出手段の一方の側と他方の側の赤色域の検出信号に基づき、しらた米であるか否かを判定するとともに、前記光学検出手段の一方の側と他方の側の緑色域及び青色域の検出信号に基づき、着色粒又は異物であるか否かを判定する不良品判別手段と、
該不良品判別手段によって不良品と判別された着色粒、しらた米及び異物を、良品が落下する落下軌跡とは異なる軌跡に落下させて排除する選別手段とを有することを特徴とする光学式穀粒選別装置。
An optical grain sorting device that sorts and removes colored grains that become defective products, white rice and foreign substances that are defective from good quality grains,
Conveying means for conveying the grains to be sorted;
The light emitted from the one side of the grain emitted from the conveying means is irradiated with light of three wavelengths consisting of a red region, a green region and a blue region of the visible light region, and the green region of the visible light region from the other side of the grain. And illumination means for irradiating light of two wavelengths consisting of a blue region,
Optical detection means for simultaneously monitoring the grains illuminated by the illumination means for each wavelength of the red region, the green region and the blue region from one side and the other side,
Based on the detection signal of the red area on one side and the other side of the optical detection means, it is determined whether the rice is white rice, and the green area on one side and the other side of the optical detection means, Defective product discriminating means for judging whether it is a colored particle or a foreign substance based on the detection signal in the blue region,
An optical system characterized by having a sorting means for dropping colored grains, scoured rice, and foreign matter, which have been determined as defective by the defective product determining means, by dropping them on a trajectory different from a falling trajectory from which good products are dropped. Kernel sorting device.
良品となる穀粒から不良品となる着色粒、しらた米及び異物を選別・除去する光学式穀粒選別装置であって、
被選別物となる穀粒を搬送する搬送手段と、
該搬送手段から放出される穀粒の一方の側から可視光域の赤色域、緑色域及び青色域からなる3波長の光を照射するとともに、穀粒の他方の側から可視光域の緑色域及び青色域からなる2波長の光を照射する照明手段と、
該照明手段にて照明された穀粒を、一方の側と他方の側からそれぞれ赤色域、緑色域及び青色域の各波長別に同時に監視する光学検出手段と、
該光学検出手段の一方の側と他方の側の赤色域検出信号と緑色域検出信号との比を算出して、被選別物が玄米である場合に、良品である整粒と良品である青未熟粒とに判別する整粒・青未熟粒判別手段と、
前記整粒・青未熟判別手段によって青未熟と判別された粒を、整粒が落下する落下軌跡とは異なる軌跡に落下させて区分する玄米選別手段と、
該玄米選別手段により青未熟に区分された粒を、前記光学検出手段の一方の側と他方の側の赤色域の検出信号に基づき、しらた米であるか否かを判定するとともに、前記光学検出手段の一方の側と他方の側の緑色域及び青色域の検出信号に基づき、着色粒又は異物であるか否かを判定する第1不良品判別手段と、
該第1不良品判別手段によって不良品と判別された着色粒、しらた米及び異物を、良品が落下する落下軌跡とは異なる軌跡に落下させて排除する第1選別手段と、
前記玄米選別手段により整粒に区分された粒を、前記光学検出手段の一方の側と他方の側の赤色域の検出信号に基づき、しらた米であるか否かを判定するとともに、前記光学検出手段の一方の側と他方の側の緑色域及び青色域の検出信号に基づき、着色粒又は異物であるか否かを判定する第2不良品判別手段と、
該第2不良品判別手段によって不良品と判別された着色粒、しらた米及び異物を、良品が落下する落下軌跡とは異なる軌跡に落下させて排除する第2選別手段とを有することを特徴とする光学式穀粒選別装置。
An optical grain sorting device that sorts and removes colored grains that become defective products, white rice and foreign substances that are defective from good quality grains,
Conveying means for conveying the grains to be sorted;
The light emitted from the one side of the grain emitted from the conveying means is irradiated with light of three wavelengths consisting of a red region, a green region and a blue region of the visible light region, and the green region of the visible light region from the other side of the grain. And illumination means for irradiating light of two wavelengths consisting of a blue region,
Optical detection means for simultaneously monitoring the grains illuminated by the illumination means for each wavelength of the red region, the green region and the blue region from one side and the other side,
When the ratio of the red area detection signal and the green area detection signal on one side and the other side of the optical detection means is calculated, and the sorting object is brown rice, the quality sized particle and the quality blue Sizing / blue immature grain discrimination means to discriminate into immature grains,
Brown rice sorting means for sorting the grains that have been determined to be blue immature by the sizing / blue immature discrimination means by dropping them into a trajectory different from the fall trajectory where the sized grains fall,
The grain classified as unripe by the brown rice sorting means is determined based on the detection signals of the red region on one side and the other side of the optical detection means, and whether or not the rice is crushed. A first defective product judging means for judging whether or not it is a colored particle or a foreign substance based on the detection signals of the green region and the blue region on one side and the other side of the detecting means;
A first sorting means for dropping colored grains, crushed rice, and foreign matter, which have been determined as defective by the first defective product determining means, by dropping them on a trajectory different from a falling trajectory from which good products are dropped;
The grains classified into sized particles by the brown rice sorting means are determined based on the detection signals of the red area on one side and the other side of the optical detection means, and whether or not the rice is white. A second defective product discriminating means for judging whether it is a colored particle or a foreign substance based on the detection signals of the green and blue areas on one side and the other side of the detecting means;
And a second sorting means for removing colored grains, crushed rice, and foreign matters, which have been judged as defective by the second defective product discriminating means, by dropping them on a trajectory different from the falling trajectory from which good products are dropped. Optical grain sorting device.
前記光学検出手段の青色域の検出信号は、被選別物が精白米である場合に不良品となる着色粒又は異物の判定に利用される請求項1記載の光学式穀粒選別装置。   2. The optical grain sorting apparatus according to claim 1, wherein the detection signal of the blue region of the optical detection means is used for determining a colored grain or a foreign substance that becomes a defective product when the sorting object is polished rice. 前記光学検出手段は、穀粒を透過した透過光と穀粒の表面からの反射光とを監視することができるようにされている請求項1乃至3のいずれかに記載の光学式穀粒選別装置。   The optical grain sorting according to any one of claims 1 to 3, wherein the optical detection means is capable of monitoring transmitted light transmitted through the grain and reflected light from the surface of the grain. apparatus. 前記光学検出手段は、監視領域を赤色域、緑色域及び青色域の各波長別に独立して検知することが可能なCCDカメラと、該CCDカメラに対向して配置されるバックグラウンドとから構成されている請求項1乃至4のいずれかに記載の光学式穀粒選別装置。 The optical detection means is composed of a CCD camera that can independently detect the monitoring region for each wavelength of the red region, the green region, and the blue region, and a background arranged opposite to the CCD camera. The optical grain sorting device according to any one of claims 1 to 4. 前記CCDカメラは、入射される光を赤色域、緑色域及び青色域に分光し、それぞれの光の波長に高い感度を有するセンサが列状に配設される3CCD方式とされている請求項5記載の光学式穀粒選別装置。   6. The CCD camera is of a 3CCD system in which incident light is split into red, green and blue regions, and sensors having high sensitivity to the wavelength of each light are arranged in a line. The optical grain sorting apparatus as described. 前記CCDカメラは、赤色域、緑色域、青色域の各センサの3ラインが一つのパッケージに内蔵され、各センサの1ラインに数千個のフォトダイオードが直線状に配設されるカラーラインセンサ方式とされている請求項5記載の光学式穀粒選別装置。 The CCD camera is a color line sensor in which three lines of red, green and blue sensors are incorporated in one package, and thousands of photodiodes are arranged in a straight line in each sensor line. The optical grain sorting device according to claim 5, which is a method. 前記光学検出手段には、前記バックグラウンドへの照射を専用とする専用光源を配設し、前記バックグラウンドの明るさが被選別物に応じて変更されるように構成されている請求項5乃至7のいずれかに記載の光学式穀粒選別装置。 6. The optical detection means is provided with a dedicated light source dedicated to irradiating the background, and is configured such that the brightness of the background is changed according to the object to be sorted. The optical grain sorting device according to any one of 7.
JP2008206278A 2008-08-08 2008-08-08 Optical cereal grain sorting apparatus Pending JP2010042326A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2008206278A JP2010042326A (en) 2008-08-08 2008-08-08 Optical cereal grain sorting apparatus

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2008206278A JP2010042326A (en) 2008-08-08 2008-08-08 Optical cereal grain sorting apparatus

Publications (1)

Publication Number Publication Date
JP2010042326A true JP2010042326A (en) 2010-02-25

Family

ID=42014154

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2008206278A Pending JP2010042326A (en) 2008-08-08 2008-08-08 Optical cereal grain sorting apparatus

Country Status (1)

Country Link
JP (1) JP2010042326A (en)

Cited By (18)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR101108275B1 (en) * 2011-08-12 2012-02-29 주식회사에이멕스 Camera unit for grain sorter, grain sorter comprising the same and method of sorting grain
KR101249468B1 (en) * 2011-07-12 2013-04-01 주식회사 아이디알시스템 Grain color sorting apparatus for using full color led
KR101249472B1 (en) * 2011-07-12 2013-04-01 주식회사 아이디알시스템 Grain color sorting apparatus for using full color led
JP2013527017A (en) * 2009-07-15 2013-06-27 スパーク システムズ リミテッド Tablet container filling apparatus and method
CN103658053A (en) * 2013-11-29 2014-03-26 安徽捷迅光电技术有限公司 Feeding mechanism arranged at back part of color sorter slide
CN103691680A (en) * 2013-11-29 2014-04-02 安徽捷迅光电技术有限公司 Color sorter
CN104941926A (en) * 2015-07-09 2015-09-30 合肥美亚光电技术股份有限公司 Detection sorting device and method for rice material
CN106362962A (en) * 2016-09-30 2017-02-01 安徽唯嵩光电科技有限公司 Two-layer track color sorter for vibration source isolation
CN107234074A (en) * 2017-07-19 2017-10-10 合肥泰禾光电科技股份有限公司 A kind of timesharing LED double infrared online material sorting devices and method for separating
KR20180072195A (en) * 2016-12-21 2018-06-29 주식회사 아이지에스피 A quality determining apparatus using images of grains falling after horizontal movement
CN110201911A (en) * 2019-07-03 2019-09-06 合肥泰禾光电科技股份有限公司 Paddy sorting unit and equipment
CN110523658A (en) * 2019-09-05 2019-12-03 合肥泰禾光电科技股份有限公司 A kind of mini screening installation
DE102018133387A1 (en) 2018-12-21 2020-06-25 Leibniz-Institut für Photonische Technologien e. V. SPECIFIC NANOPARTICLE SORTER AND METHOD FOR SORTING NANOPARTICLES
WO2021060465A1 (en) * 2019-09-27 2021-04-01 株式会社サタケ Hulling apparatus and hulling control system
WO2021125133A1 (en) 2019-12-18 2021-06-24 株式会社サタケ Optical sorting machine
JPWO2021177173A1 (en) * 2020-03-05 2021-09-10
JP2021133296A (en) * 2020-02-26 2021-09-13 株式会社サタケ Color sorter
JP2022098183A (en) * 2020-12-21 2022-07-01 株式会社クボタ Color sorting apparatus

Cited By (27)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US8984844B2 (en) 2009-07-15 2015-03-24 Sparc Systems Limited Tablet container filling apparatus and method
JP2013527017A (en) * 2009-07-15 2013-06-27 スパーク システムズ リミテッド Tablet container filling apparatus and method
KR101249472B1 (en) * 2011-07-12 2013-04-01 주식회사 아이디알시스템 Grain color sorting apparatus for using full color led
KR101249468B1 (en) * 2011-07-12 2013-04-01 주식회사 아이디알시스템 Grain color sorting apparatus for using full color led
KR101108275B1 (en) * 2011-08-12 2012-02-29 주식회사에이멕스 Camera unit for grain sorter, grain sorter comprising the same and method of sorting grain
CN103658053A (en) * 2013-11-29 2014-03-26 安徽捷迅光电技术有限公司 Feeding mechanism arranged at back part of color sorter slide
CN103691680A (en) * 2013-11-29 2014-04-02 安徽捷迅光电技术有限公司 Color sorter
CN104941926B (en) * 2015-07-09 2017-05-31 合肥美亚光电技术股份有限公司 A kind of grouping system apparatus and method of rice material
CN104941926A (en) * 2015-07-09 2015-09-30 合肥美亚光电技术股份有限公司 Detection sorting device and method for rice material
CN106362962A (en) * 2016-09-30 2017-02-01 安徽唯嵩光电科技有限公司 Two-layer track color sorter for vibration source isolation
KR20180072195A (en) * 2016-12-21 2018-06-29 주식회사 아이지에스피 A quality determining apparatus using images of grains falling after horizontal movement
KR102403639B1 (en) 2016-12-21 2022-06-02 주식회사 아이지에스피 A quality determining apparatus using images of grains falling after horizontal movement
CN107234074A (en) * 2017-07-19 2017-10-10 合肥泰禾光电科技股份有限公司 A kind of timesharing LED double infrared online material sorting devices and method for separating
DE102018133387B4 (en) 2018-12-21 2024-04-11 Leibniz-Institut für Photonische Technologien e. V. SPECIFIC NANOPARTICLE SORTER AND METHOD FOR SORTING NANOPARTICLES
DE102018133387A1 (en) 2018-12-21 2020-06-25 Leibniz-Institut für Photonische Technologien e. V. SPECIFIC NANOPARTICLE SORTER AND METHOD FOR SORTING NANOPARTICLES
CN110201911A (en) * 2019-07-03 2019-09-06 合肥泰禾光电科技股份有限公司 Paddy sorting unit and equipment
CN110523658A (en) * 2019-09-05 2019-12-03 合肥泰禾光电科技股份有限公司 A kind of mini screening installation
WO2021060465A1 (en) * 2019-09-27 2021-04-01 株式会社サタケ Hulling apparatus and hulling control system
WO2021125133A1 (en) 2019-12-18 2021-06-24 株式会社サタケ Optical sorting machine
JP2021133296A (en) * 2020-02-26 2021-09-13 株式会社サタケ Color sorter
JP7428966B2 (en) 2020-02-26 2024-02-07 株式会社サタケ color sorter
JPWO2021177173A1 (en) * 2020-03-05 2021-09-10
WO2021177173A1 (en) * 2020-03-05 2021-09-10 株式会社サタケ Optical sorting machine
JP7111275B2 (en) 2020-03-05 2022-08-02 株式会社サタケ optical sorter
US20230067478A1 (en) * 2020-03-05 2023-03-02 Satake Corporation Optical sorter
US11883854B2 (en) * 2020-03-05 2024-01-30 Satake Corporation Optical sorter
JP2022098183A (en) * 2020-12-21 2022-07-01 株式会社クボタ Color sorting apparatus

Similar Documents

Publication Publication Date Title
JP2010042326A (en) Optical cereal grain sorting apparatus
KR101998910B1 (en) Optical type granule sorting machine
JP6037125B2 (en) Optical granular material sorter
AU683969B2 (en) Cereal grain color sorting apparatus
JP4915129B2 (en) Color sorter
KR100293582B1 (en) Grain color sorting device
JP4063885B2 (en) Classification device
US7968814B2 (en) Optical grain sorter
JP2008302314A (en) Optical rice grain sorter
JP5332268B2 (en) Optical rice grain sorter
US20110317001A1 (en) Multisensor array for the optical inspection and sorting of bulk materials
JP2016503895A (en) System and method for sorting seeds
US20100230327A1 (en) Device and method for the classification of transparent component in a material flow
JP6084214B2 (en) Alternating side illumination type inspection system
JP2001145855A (en) Method and apparatus for sorting particle
RU2403100C2 (en) Sorter to grade grain to colour
RU83436U1 (en) DEVICE FOR SORTING GRAIN BY COLOR
JP2020089847A (en) Optical sorter
JP2005180958A (en) Sorter
JP5673109B2 (en) Optical sorter and sorting method using optical sorter
JPH11621A (en) Method for selecting/sorting grain by color and selecting/ sorting device
KR101830891B1 (en) Color-based sorting apparatus
JP2009154084A (en) Optical grain grader
JP2005186053A (en) Particulate matter color sorting machine
JP4674390B2 (en) Brown rice color sorting method and brown rice color sorting device