WO2021106753A1 - Probe sheet and production method for probe sheet - Google Patents

Probe sheet and production method for probe sheet Download PDF

Info

Publication number
WO2021106753A1
WO2021106753A1 PCT/JP2020/043284 JP2020043284W WO2021106753A1 WO 2021106753 A1 WO2021106753 A1 WO 2021106753A1 JP 2020043284 W JP2020043284 W JP 2020043284W WO 2021106753 A1 WO2021106753 A1 WO 2021106753A1
Authority
WO
WIPO (PCT)
Prior art keywords
conductive particles
sheet
flexible sheet
elastomer
resin layer
Prior art date
Application number
PCT/JP2020/043284
Other languages
French (fr)
Japanese (ja)
Inventor
朋之 石松
Original Assignee
デクセリアルズ株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by デクセリアルズ株式会社 filed Critical デクセリアルズ株式会社
Priority to KR1020227017606A priority Critical patent/KR20220074994A/en
Priority to CN202080081996.7A priority patent/CN114787640A/en
Publication of WO2021106753A1 publication Critical patent/WO2021106753A1/en

Links

Images

Classifications

    • GPHYSICS
    • G01MEASURING; TESTING
    • G01RMEASURING ELECTRIC VARIABLES; MEASURING MAGNETIC VARIABLES
    • G01R1/00Details of instruments or arrangements of the types included in groups G01R5/00 - G01R13/00 and G01R31/00
    • G01R1/02General constructional details
    • G01R1/06Measuring leads; Measuring probes
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01RMEASURING ELECTRIC VARIABLES; MEASURING MAGNETIC VARIABLES
    • G01R1/00Details of instruments or arrangements of the types included in groups G01R5/00 - G01R13/00 and G01R31/00
    • G01R1/02General constructional details
    • G01R1/04Housings; Supporting members; Arrangements of terminals
    • G01R1/0408Test fixtures or contact fields; Connectors or connecting adaptors; Test clips; Test sockets
    • G01R1/0416Connectors, terminals
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01RMEASURING ELECTRIC VARIABLES; MEASURING MAGNETIC VARIABLES
    • G01R3/00Apparatus or processes specially adapted for the manufacture or maintenance of measuring instruments, e.g. of probe tips
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01RELECTRICALLY-CONDUCTIVE CONNECTIONS; STRUCTURAL ASSOCIATIONS OF A PLURALITY OF MUTUALLY-INSULATED ELECTRICAL CONNECTING ELEMENTS; COUPLING DEVICES; CURRENT COLLECTORS
    • H01R11/00Individual connecting elements providing two or more spaced connecting locations for conductive members which are, or may be, thereby interconnected, e.g. end pieces for wires or cables supported by the wire or cable and having means for facilitating electrical connection to some other wire, terminal, or conductive member, blocks of binding posts
    • H01R11/01Individual connecting elements providing two or more spaced connecting locations for conductive members which are, or may be, thereby interconnected, e.g. end pieces for wires or cables supported by the wire or cable and having means for facilitating electrical connection to some other wire, terminal, or conductive member, blocks of binding posts characterised by the form or arrangement of the conductive interconnection between the connecting locations
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01RELECTRICALLY-CONDUCTIVE CONNECTIONS; STRUCTURAL ASSOCIATIONS OF A PLURALITY OF MUTUALLY-INSULATED ELECTRICAL CONNECTING ELEMENTS; COUPLING DEVICES; CURRENT COLLECTORS
    • H01R43/00Apparatus or processes specially adapted for manufacturing, assembling, maintaining, or repairing of line connectors or current collectors or for joining electric conductors
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01RMEASURING ELECTRIC VARIABLES; MEASURING MAGNETIC VARIABLES
    • G01R31/00Arrangements for testing electric properties; Arrangements for locating electric faults; Arrangements for electrical testing characterised by what is being tested not provided for elsewhere
    • G01R31/28Testing of electronic circuits, e.g. by signal tracer
    • G01R31/2851Testing of integrated circuits [IC]
    • G01R31/2896Testing of IC packages; Test features related to IC packages

Definitions

  • This technology relates to probe sheets and methods for manufacturing probe sheets for inspecting electrical characteristics of wafers, chips, packages, etc.
  • This application claims priority on the basis of Japanese Patent Application No. Japanese Patent Application No. 2019-213601 filed on November 26, 2019 in Japan, and this application can be referred to in this application. It will be used.
  • the stroke of the probe sheet needs to be about 80 ⁇ m in order to cope with the height variation of the solder electrode, and the anisotropic conductive sheet having one elastomer layer requires.
  • the thickness of the inspection sheet needs to be 400 ⁇ m or more, and the pitch of arrangement of the conductive particles is limited to 300 ⁇ m.
  • the conductive particles are oriented by a magnetic field, the conductive particles need to be oriented while maintaining a certain interval due to the overlapping magnetic flux densities. Was difficult.
  • an anisotropic conductive elastomer sheet in which conductive particles exhibiting magnetism are chained in the thickness direction is laminated on both sides of a plurality of contact membranes in which patterns are formed so as to correspond to the pattern of electrodes to be connected.
  • a probe sheet has been proposed (see, for example, Patent Document 3).
  • the probe sheet described in Patent Document 3 has a problem in durability because the peripheral portion of the contact membrane as the intermediate layer is hollow.
  • Japanese Unexamined Patent Publication No. 2005-056860 Japanese Unexamined Patent Publication No. 2010-009911 Japanese Unexamined Patent Publication No. 2007-275705
  • This technology has been proposed in view of such circumstances, and provides a probe sheet and a method for manufacturing a probe sheet that can obtain excellent anisotropy and durability even in fine pitch terminals.
  • the probe sheet according to the present technology is arranged on one surface of the flexible sheet having a plurality of through electrodes and the flexible sheet, and the conductive particles are arranged in the thickness direction from the through electrodes to the surface.
  • a first uncured resin layer made of an elastomer uncured composition containing conductive particles is arranged on one surface of a flexible sheet having a plurality of through electrodes.
  • a magnetic field or electric field is applied from the outside of the uncured resin layer 2 to orient the conductive particles in the thickness direction from the through electrode to the surfaces of the first uncured resin layer and the second uncured resin layer.
  • FIG. 1 is a cross-sectional view showing a configuration example of a probe sheet.
  • FIG. 2 is a plan view showing a configuration example of the probe sheet.
  • FIG. 3 is a cross-sectional view showing a configuration example of a mold for chaining conductive particles using a magnetic field.
  • FIG. 4 is a cross-sectional view schematically showing the orientation process.
  • the probe sheet according to the present embodiment is a flexible sheet having a plurality of through electrodes and a first difference in which conductive particles are arranged on one surface of the flexible sheet and conductive particles are chained from the through electrodes to the surface in the thickness direction. It includes a anisotropic conductive elastomer layer and a second anisotropic conductive elastomer layer which is arranged on the other surface of the flexible sheet and in which conductive particles are chained in the thickness direction from the through electrode to the surface. Since the flexible sheet has a plurality of through electrodes, conductive particles can be chained from the through electrodes to the surface in the thickness direction to obtain anisotropy, and it is possible to cope with fine pitching of the semiconductor chip. Further, by dividing the elastomer layer into two layers by the flexible sheet, it is possible to obtain excellent durability as compared with the probe sheet in which the elastomer layer is one layer.
  • FIG. 1 is a cross-sectional view showing a configuration example of a probe sheet
  • FIG. 2 is a plan view showing a configuration example of a probe sheet.
  • this probe sheet includes a flexible sheet 10, a first anisotropic conductive elastomer layer 20, and a second anisotropic conductive elastomer layer 30.
  • the flexible sheet 10 has through electrodes 12 at predetermined positions of the insulating resin sheet 11 in a plan view.
  • the positions of the through electrodes 12 may be arranged according to the terminal positions of the PKG or the semiconductor chip to be inspected, and are formed at regular fine pitches at predetermined intervals smaller than the terminals to be inspected so that the inspection can be performed without alignment. You may.
  • the insulating resin sheet 11 it is preferable to use one selected from the group of polyimide, polyamide, polyethylene naphthalate, and biaxially oriented polyethylene terephthalate. Since these resins have a low coefficient of thermal expansion and excellent heat resistance, it is possible to suppress expansion and contraction due to thermal history and realize inspection stability by improving pitch dimensional stability.
  • the lower limit of the thickness of the flexible sheet 10 is preferably 5 ⁇ m, more preferably 10 ⁇ m, and even more preferably 20 ⁇ m.
  • the upper limit of the thickness of the flexible sheet 10 is preferably 100 ⁇ m, more preferably 80 ⁇ m, and even more preferably 60 ⁇ m. If the thickness of the flexible sheet 10 is too thin, the durability will decrease, and if it is too thick, it will be difficult to form the through electrode 12.
  • the through electrode 12 is formed in the thickness direction of the insulating resin sheet 11 and is in contact with the conductive particles 22 of the first anisotropic conductive elastomer layer 20 and the conductive particles 32 of the second anisotropic conductive elastomer layer 30. ing. Then, the through electrode 12 electrically connects the conductive particles 22 on the surface of the first anisotropic conductive elastomer layer 20 to the conductive particles 32 on the surface of the second anisotropic conductive elastomer layer 30.
  • the size of the through electrode 12 is set according to the PKG to be inspected and the terminal of the semiconductor chip.
  • the lower limit of the diameter of the through electrode 12 is preferably 5 ⁇ m, more preferably 10 ⁇ m, still more preferably 15 ⁇ m, and penetrate.
  • the upper limit of the diameter of the electrode 12 is preferably 50 ⁇ m, more preferably 35 ⁇ m, and even more preferably 25 ⁇ m.
  • the pitch is preferably twice or more the average particle size of the conductive particles, more preferably five times or more the average particle size of the conductive particles, and even more preferably conductive. It is 8 times or more the average particle size of the particles. As a result, the distance from the adjacent chain portion becomes appropriate, and excellent anisotropy can be obtained.
  • the lower limit of the thickness of the through electrode 12 is preferably 90%, more preferably 95%, and even more preferably 98% with respect to the thickness of the insulating resin sheet 11.
  • the upper limit of the thickness of the through electrode 12 is preferably 110%, more preferably 105%, and even more preferably 102% with respect to the thickness of the insulating resin sheet 11.
  • the through electrode 12 is made of a conductive metal or alloy, and more preferably made of a magnetic metal or alloy such as Fe, Ni, or Co.
  • the through electrode 12 may be formed by electroless plating or the like after forming the through hole, or may be filled with a conductive material such as conductive particles.
  • the flexible sheet 10 may have a metal layer on one side or both sides of the outer peripheral portion.
  • the base material can be reinforced and thermal expansion can be reduced. Further, the strength can be further increased by contacting a part of the metal layer with the first anisotropic conductive elastomer layer or the second anisotropic conductive elastomer layer.
  • the first anisotropic conductive elastomer layer 20 is arranged on one surface of the flexible sheet 10, the elastic resin 21 is arranged at the position of the insulating resin sheet 11 in a plan view, and the through electrode 12 is arranged at the position of the through electrode 12.
  • a chain portion formed by chaining the conductive particles 22 in the thickness direction is arranged from the surface to the surface.
  • the elastic resin 21 only needs to have rubber elasticity, and preferably has heat resistance.
  • the elastic resin include silicone resin, polyurethane resin, and acrylic resin. Among these, it is preferable to use a silicone resin that does not easily leave a residue on the PKG or the semiconductor chip after the inspection.
  • the lower limit of the thickness of the first anisotropic conductive elastomer layer 20 is preferably 5 ⁇ m, more preferably 20 ⁇ m, and even more preferably 35 ⁇ m.
  • the upper limit of the thickness of the first anisotropic conductive elastomer layer 20 is preferably 150 ⁇ m, more preferably 100 ⁇ m, and even more preferably 75 ⁇ m. If the thickness of the first anisotropic conductive elastomer layer 20 is too thin, the durability as a film decreases, and if it is too thick, the number of chained particles of the conductive particles 22 increases, and the contact resistance between the particles increases. It ends up.
  • the chained portion was chained with the conductive particles 22 in contact with the through electrode 12 of the flexible sheet 10, and the conductive particles 22 at the end of the chain were exposed from the surface of the first anisotropic conductive elastomer layer 20. It is preferably in a state.
  • the number of chains of the conductive particles 22 varies depending on the thickness of the first anisotropic conductive elastomer layer 20 and the particle diameter of the conductive particles 22, and the number of chains in the thickness direction of the first anisotropic conductive elastomer layer 20 is different. The smaller the number, the smaller the contact resistance between the conductive particles 22, so the number is preferably 20 or less.
  • the conductive particles may be a single layer (one) chain, it is preferable to form a plurality of chains with respect to one through electrode 12 in order to reduce the resistance value.
  • the conductive particles 22 may be any as long as they have conductivity, and the metal particles such as Ni and Cu, or the metal particles, the resin core, and the inorganic core particles are plated with metals such as Au, Pd, Co, and Ag. Particles can be used.
  • conductive particles are chained by a magnetic field, it is preferable to use a magnetic metal or alloy such as Fe, Co, or Ni. Among these, from the viewpoint of low resistance, it is preferable to use conductive particles in which the surface of Ni particles or Ni alloy particles is coated with an Au plating layer.
  • the upper limit of the average particle size of the conductive particles 22 is preferably smaller than the size of the through electrode 12, preferably 50 ⁇ m or less, more preferably 20 ⁇ m or less, and further preferably 10 ⁇ m or less.
  • the conductive particles are preferably spherical, polygonal, or spike-shaped, and more preferably have protrusions on the surface for the purpose of reducing contact resistance.
  • the second anisotropic conductive elastomer layer 30 is arranged on the other surface of the flexible sheet 10, the elastic resin 31 is arranged at the position of the insulating resin sheet 11 of the flexible sheet 10 in a plan view, and the elastic resin 31 is arranged at the position of the through electrode 12.
  • a chain portion in which the conductive particles 32 are chained in the thickness direction is arranged from the through electrode 12 to the surface. Since the elastic resin 31, the conductive particles 32, and the chain portion are the same as the elastic resin 21, the conductive particles 22, and the chain portion of the first anisotropic conductive elastomer layer 20, respectively, description thereof will be omitted here.
  • the probe sheet having such a configuration highly reliable conductivity can be realized in the thickness direction, and insulation can be realized in the surface direction of the adjacent terminal. Further, by dividing the elastomer layer into two layers by the flexible sheet 10, the chain portion can be formed at a finer pitch and excellent durability can be obtained as compared with the probe sheet in which the elastomer layer has one layer.
  • Probe sheet manufacturing method In the method for producing a probe sheet according to the present embodiment, a first uncured resin layer made of an elastomer uncured composition containing conductive particles is arranged on one surface of a flexible sheet having a plurality of through electrodes. At the same time, an arrangement step of arranging a second uncured resin layer made of an elastomer uncured composition containing conductive particles on the other surface of the flexible sheet, and a first uncured resin layer and a second uncured resin layer. An orientation step in which a magnetic field or an electric field is applied from the outside of the resin layer to orient the conductive particles in the thickness direction from the through electrode to the surfaces of the first uncured resin layer and the second uncured resin layer, and the conductive particles.
  • a first uncured resin layer made of an elastomer uncured composition containing conductive particles is arranged on one surface of the flexible sheet having a plurality of through electrodes, and the other surface of the flexible sheet is arranged.
  • a second uncured resin layer made of an elastomer uncured composition containing conductive particles is arranged.
  • the mold is arranged on both sides of the flexible sheet having a plurality of through electrodes via the elastomer uncured composition containing the conductive particles, and the first uncured resin layer and the second uncured resin layer are arranged.
  • An uncured resin layer may be arranged.
  • FIG. 3 is a cross-sectional view showing a configuration example of a mold for chaining conductive particles using a magnetic field.
  • a magnetic material 42 is arranged on a substrate 41 made of a magnetic material at a position facing the through electrode 12 of the flexible sheet 10, and a non-magnetic material is arranged at a position facing the insulating sheet 11 of the flexible sheet 10.
  • Place 43 is arranged on the outer peripheral portion on the substrate 41 to control the thickness of the first anisotropic conductive elastomer layer 20 and the second anisotropic conductive elastomer layer 30.
  • the magnetic material a metal or alloy such as Fe, Co, or Ni can be used. Further, the non-magnetic material is not particularly limited, but for example, a resist used in a photolithography step can be used.
  • the flexible sheet 10 is sandwiched between the upper and lower molds, the magnetic material of the mold and the through electrode are aligned, and then the elastomer uncured composition is distributed, and the elastomer uncured composition is delivered.
  • the first uncured resin layer and the second uncured resin layer can be arranged by pressing. Further, after applying the elastomer uncured composition to both surfaces of the flexible sheet 10, the upper and lower dies are sandwiched by aligning the magnetic material of the die and the through electrode, and the elastomer uncured composition is pressed. A first uncured resin layer and a second uncured resin layer can be arranged. Further, the thickness of the first uncured resin layer and the second uncured resin layer may be controlled by arranging the gap spacer 44.
  • the elastomer uncured composition is composed of conductive particles dispersed in an uncured resin.
  • an uncured product such as a silicone resin, a polyurethane resin, or an acrylic resin can be used.
  • a two-component liquid silicone it is preferable to use a two-component liquid silicone. Since the conductive particles are the same as the conductive particles described in the probe sheet, the description thereof will be omitted here.
  • Orientation process In the alignment step, a magnetic field or an electric field is applied from the outside of the first uncured resin layer and the second uncured resin layer, and from the through electrode to the surfaces of the first uncured resin layer and the second uncured resin layer. , Orient the conductive particles in the thickness direction.
  • FIG. 4 is a cross-sectional view schematically showing the orientation process.
  • the first electromagnet 61 and the second electromagnet 62 from the outside of the mold are arranged on both sides of the flexible sheet 10 via the elastomer uncured compositions 51 and 52 containing conductive particles. Apply a magnetic field.
  • the conductive particles can be oriented in the thickness direction from the through electrode to the surfaces of the first uncured resin layer and the second uncured resin layer.
  • the first uncured resin layer and the second uncured resin layer are cured in a state where the conductive particles are oriented, and elastomer layers are formed on both sides of the flexible sheet 10.
  • the curing conditions are preferably, for example, a temperature of 50 to 150 ° C. and a time of 0.5 to 2 hours.
  • conductive particles are chained in the thickness direction from the through electrode which is a part of the intermediate layer to the surface, so that anisotropy can be obtained. Further, by dividing the elastomer layer into two layers by the flexible sheet 10, it is possible to obtain a probe sheet having a fine pitch of the semiconductor chip and excellent durability as compared with the probe sheet having one layer of the elastomer layer. it can.
  • a magnetic field is used in the orientation step, but an electric field may be used.
  • an electrode may be arranged instead of an electromagnet and an AC voltage may be applied.
  • Example> Hereinafter, examples of the present technology will be described.
  • a probe sheet A as an example and a probe sheet B as a conventional example are produced, the electrical characteristics of the evaluation base material are measured using the probe sheets A and B, and the insulation evaluation and reliability are performed. Evaluation was performed.
  • the present technology is not limited to these examples.
  • a mold for magnetically orienting the conductive particles was prepared. Nickel terminals were formed on the mold at a position facing the through electrode pattern of the flexible sheet, and a resist was formed at a position facing the insulating sheet of the flexible sheet.
  • Conductive particles were prepared by subjecting a gold-plated layer to the surface of nickel particles (Type123, manufactured by Vale) having an average particle diameter of 5 ⁇ m by substitution plating. Conductive particles were mixed with a 1: 1 mixture of agent A and agent B of a two-component liquid silicone (KE-1204A / B, manufactured by Shinetsu Silicone Co., Ltd.) as an elastomer to prepare an elastomer uncured composition. ..
  • ⁇ Preparation of probe sheet A> As shown in FIG. 4, a flexible sheet having through electrodes is sandwiched between upper and lower molds, the nickel terminals of the mold and the through electrodes are aligned, and then a vacuum-defoamed elastomer uncured composition is placed in the gap. I poured it in. Subsequently, the molds were pressed against each other, and the silicone was cured in an oven under the conditions of a temperature of 100 ° C. and a time of 1 hour in a state where a magnetic field was applied by an electromagnet to prepare a probe sheet A. The thickness of the anisotropic conductive elastomer layer was 50 ⁇ m for each of the upper and lower layers, and the total thickness of the flow sheet A was 130 ⁇ m.
  • a probe sheet B was produced in the same manner as the probe sheet A, except that a nickel frame plate was used instead of the flexible sheet having a through electrode. That is, a nickel frame plate was sandwiched between the upper and lower molds, and the vacuum-defoamed conductive elastomer composition was poured into the gap. Subsequently, the silicone was cured in an oven at a temperature of 100 ° C. and a time of 60 min in a state where the dies were pressed against each other and a magnetic field was applied by an electromagnet to prepare a probe sheet B. The thickness of the probe sheet B was 130 ⁇ m.
  • evaluation PKG (package) 1) having a pitch of 200 ⁇ mP, a solder ball size of 110 ⁇ m ⁇ , and a number of pins of 484 was prepared. Further, a 6 mm square evaluation base material (hereinafter referred to as evaluation PKG (package) 2) having a pitch of 500 ⁇ mP, a solder ball size of 300 ⁇ m ⁇ , and a number of pins of 64 was prepared.
  • a socket having an electrode pad facing the solder ball of the evaluation PKG1 was prepared, a probe sheet A or a probe sheet B was set in the socket, and the evaluation PKG1 was placed on the socket. Then, with the evaluation PKG1 pushed in by 30 ⁇ m from above with a pressure jig, the insulation resistance value when a voltage of 30 V was applied to the adjacent electrode pad was measured. Further, as for the evaluation PKG2, the insulation resistance value was measured in the same manner as the evaluation PKG1.

Abstract

Provided are a probe sheet and a production method for the probe sheet that make it possible to achieve excellent anisotropy and durability, even for fine-pitch terminals. The present invention comprises: a flexible sheet (10) that has a plurality of through electrodes (12); a first anisotropic conductive elastomer layer (20) that is disposed on one side of the flexible sheet (10) and comprises conductive particles (22) that are connected in chains in the thickness direction from the through electrodes 12 to the surface; and a second anisotropic conductive elastomer layer (30) that is disposed on the other side of the flexible sheet (10) and comprises conductive particles (32) that are connected in chains in the thickness direction from the through electrodes (12) to the surface.

Description

プローブシート及びプローブシートの製造方法Probe sheet and manufacturing method of probe sheet
 本技術は、ウェハ、チップ、パッケージ等の電気特性の検査のためのプローブシート及びプローブシートの製造方法に関する。本出願は、日本国において2019年11月26日に出願された日本特許出願番号特願2019-213061を基礎として優先権を主張するものであり、この出願は参照されることにより、本出願に援用される。 This technology relates to probe sheets and methods for manufacturing probe sheets for inspecting electrical characteristics of wafers, chips, packages, etc. This application claims priority on the basis of Japanese Patent Application No. Japanese Patent Application No. 2019-213601 filed on November 26, 2019 in Japan, and this application can be referred to in this application. It will be used.
 現在、ベアチップやパッケージ(PKG)の半導体装置の電気特性評価は、ラバーコネクターを用いたハンドラーテストが行われている。プローブシートとなるラバーコネクターとしては、例えば、磁場配向させた導電性粒子を、エラストマーシートの厚み方向に貫通するよう配置した異方導電性シートが提案されている(例えば、特許文献1参照。)。 Currently, handler tests using rubber connectors are being conducted to evaluate the electrical characteristics of bare chip and package (PKG) semiconductor devices. As a rubber connector to be a probe sheet, for example, an anisotropic conductive sheet in which conductive particles oriented in a magnetic field are arranged so as to penetrate in the thickness direction of the elastomer sheet has been proposed (see, for example, Patent Document 1). ..
 しかしながら、例えば、BGA(ball grid array)パッケージを検査する場合、半田電極の高さばらつきに対応するため、プローブシートのストロークが約80μm程度必要となり、エラストマー層が1層の異方導電性シートでは、このストロークを出すために、検査シートの厚みを400μm以上とする必要があり、導電性粒子の配置のピッチは300μmが限界であった。また、導電性粒子を磁場により配向させる場合には、磁束密度が重なり合う関係で、導電性粒子をある程度の間隔を保持して配向させる必要があるため、近年の半導体チップのファインピッチ化への対応が困難であった。 However, for example, when inspecting a BGA (ball grid array) package, the stroke of the probe sheet needs to be about 80 μm in order to cope with the height variation of the solder electrode, and the anisotropic conductive sheet having one elastomer layer requires. In order to obtain this stroke, the thickness of the inspection sheet needs to be 400 μm or more, and the pitch of arrangement of the conductive particles is limited to 300 μm. In addition, when the conductive particles are oriented by a magnetic field, the conductive particles need to be oriented while maintaining a certain interval due to the overlapping magnetic flux densities. Was difficult.
 一方、磁場配向によらず、厚み方向に伸びる複数の導電部が絶縁部によって相互に絶縁されてなるシートを積層したプローブシートも提案されている(例えば、特許文献2参照。)。 On the other hand, a probe sheet in which a plurality of conductive portions extending in the thickness direction are mutually insulated by an insulating portion regardless of the magnetic field orientation has also been proposed (see, for example, Patent Document 2).
 しかしながら、特許文献2に記載のプローブシートは、中間層もエラストマーで構成されていることから、熱履歴によって膨張や収縮が発生し、PKGや半導体チップ等との接点が歪んでしまい、正確な検査が行えない場合がある。特に、車載向けのPKGは、150~200℃もの高温環境下での検査を実施する場合があり、熱膨張によるアライメントずれにより、検査が実施できない場合がある。 However, in the probe sheet described in Patent Document 2, since the intermediate layer is also made of an elastomer, expansion and contraction occur due to thermal history, and the contact points with PKG, semiconductor chips, etc. are distorted, resulting in accurate inspection. May not be possible. In particular, PKG for automobiles may be inspected in a high temperature environment of 150 to 200 ° C., and may not be inspected due to misalignment due to thermal expansion.
 これに対して、接続すべき電極のパターンに対応するようパターン形成された複数の接点膜の両面に、磁性を示す導電性粒子を厚み方向に連鎖させた異方導電性エラストマーシートが積層されたプローブシートが提案されている(例えば、特許文献3参照。)。 On the other hand, an anisotropic conductive elastomer sheet in which conductive particles exhibiting magnetism are chained in the thickness direction is laminated on both sides of a plurality of contact membranes in which patterns are formed so as to correspond to the pattern of electrodes to be connected. A probe sheet has been proposed (see, for example, Patent Document 3).
 しかしながら、特許文献3に記載のプローブシートは、中間層となる接点膜の周辺部が空洞であるため、耐久性に問題があった。 However, the probe sheet described in Patent Document 3 has a problem in durability because the peripheral portion of the contact membrane as the intermediate layer is hollow.
 また、近年、PKGや半導体チップは、ますますファインピッチ化が進んでおり、従来のプローブシートでは限界を迎えている。さらに、一部の半導体チップでは検査を行わず、組立て後のPKGにて検査を実施し、選別を行っているのが実情であり、結果として極端に歩留まりが悪化して価格が下がらない状況となっている。このため現在は、さらなるファインピッチに対応できるプローブシートが強く求められている。 In recent years, PKGs and semiconductor chips have become increasingly fine pitched, and conventional probe sheets have reached their limits. Furthermore, some semiconductor chips are not inspected, but are inspected and sorted by PKG after assembly, and as a result, the yield is extremely deteriorated and the price does not decrease. It has become. Therefore, at present, there is a strong demand for a probe sheet capable of supporting a finer pitch.
特開2005-056860号公報Japanese Unexamined Patent Publication No. 2005-056860 特開2010-009911号公報Japanese Unexamined Patent Publication No. 2010-009911 特開2007-275705号公報Japanese Unexamined Patent Publication No. 2007-275705
 本技術は、このような実情に鑑みて提案されたものであり、ファインピッチの端子においても、優れた異方性及び耐久性を得ることができるプローブシート及びプローブシートの製造方法を提供する。 This technology has been proposed in view of such circumstances, and provides a probe sheet and a method for manufacturing a probe sheet that can obtain excellent anisotropy and durability even in fine pitch terminals.
 前述した課題を解決するために、本技術に係るプローブシートは、複数の貫通電極を有するフレキシブルシートと、前記フレキシブルシートの一方の面に配置され、前記貫通電極から表面まで導電性粒子が厚み方向に連鎖されてなる第1の異方導電性エラストマー層と、前記フレキシブルシートの他方の面に配置され、前記貫通電極から表面まで導電性粒子が厚み方向に連鎖されてなる第2の異方導電性エラストマー層とを備える。 In order to solve the above-mentioned problems, the probe sheet according to the present technology is arranged on one surface of the flexible sheet having a plurality of through electrodes and the flexible sheet, and the conductive particles are arranged in the thickness direction from the through electrodes to the surface. A first anisotropic conductive elastomer layer linked to the flexible sheet and a second anisotropic conductive particle arranged on the other surface of the flexible sheet and having conductive particles chained in the thickness direction from the through electrode to the surface. It is provided with a sex elastomer layer.
 また、本技術に係る検査プローブシートの製造方法は、複数の貫通電極を有するフレキシブルシートの一方の面に、導電性粒子を含有するエラストマー未硬化組成物からなる第1の未硬化樹脂層を配置するとともに、前記フレキシブルシートの他方の面に、導電性粒子を含有するエラストマー未硬化組成物からなる第2の未硬化樹脂層を配置する配置工程と、前記第1の未硬化樹脂層及び前記第2の未硬化樹脂層の外側から磁界又は電界を付与し、前記貫通電極から前記第1の未硬化樹脂層及び前記第2の未硬化樹脂層の表面まで、厚み方向に導電性粒子を配向させる配向工程と、前記導電性粒子を配向させた状態で前記第1の未硬化樹脂層及び前記第2の未硬化樹脂層を硬化させ、前記フレキシブルシートの両面にエラストマー層を形成する硬化工程とを有する。 Further, in the method for producing an inspection probe sheet according to the present technology, a first uncured resin layer made of an elastomer uncured composition containing conductive particles is arranged on one surface of a flexible sheet having a plurality of through electrodes. In addition, an arrangement step of arranging a second uncured resin layer made of an elastomer uncured composition containing conductive particles on the other surface of the flexible sheet, the first uncured resin layer, and the first. A magnetic field or electric field is applied from the outside of the uncured resin layer 2 to orient the conductive particles in the thickness direction from the through electrode to the surfaces of the first uncured resin layer and the second uncured resin layer. The alignment step and the curing step of curing the first uncured resin layer and the second uncured resin layer in a state where the conductive particles are oriented to form an elastomer layer on both sides of the flexible sheet. Have.
 本技術によれば、ファインピッチの端子においても、優れた異方性及び耐久性を得ることができる。 According to this technology, excellent anisotropy and durability can be obtained even with fine pitch terminals.
図1は、プローブシートの構成例を示す断面図である。FIG. 1 is a cross-sectional view showing a configuration example of a probe sheet. 図2は、プローブシートの構成例を示す平面図である。FIG. 2 is a plan view showing a configuration example of the probe sheet. 図3は、磁場を用いて導電性粒子を連鎖させる金型の構成例を示す断面図である。FIG. 3 is a cross-sectional view showing a configuration example of a mold for chaining conductive particles using a magnetic field. 図4は、配向工程を模式的に示す断面図である。FIG. 4 is a cross-sectional view schematically showing the orientation process.
 以下、本技術の実施の形態について、図面を参照しながら下記順序にて詳細に説明する。
1.プローブシート
2.プローブシートの製造方法
3.実施例
Hereinafter, embodiments of the present technology will be described in detail in the following order with reference to the drawings.
1. 1. Probe sheet 2. Method of manufacturing probe sheet 3. Example
 <1.プローブシート>
 本実施の形態に係るプローブシートは、複数の貫通電極を有するフレキシブルシートと、フレキシブルシートの一方の面に配置され、貫通電極から表面まで導電性粒子が厚み方向に連鎖されてなる第1の異方導電性エラストマー層と、フレキシブルシートの他方の面に配置され、貫通電極から表面まで導電性粒子が厚み方向に連鎖されてなる第2の異方導電性エラストマー層とを備える。フレキシブルシートが複数の貫通電極を有することにより、貫通電極から表面まで導電性粒子が厚み方向に連鎖させて異方性を得ることができ、半導体チップのファインピッチ化にも対応することができる。また、フレキシブルシートによってエラストマー層を2層に分けることにより、エラストマー層が1層のプローブシートに比べ、優れた耐久性を得ることができる。
<1. Probe sheet>
The probe sheet according to the present embodiment is a flexible sheet having a plurality of through electrodes and a first difference in which conductive particles are arranged on one surface of the flexible sheet and conductive particles are chained from the through electrodes to the surface in the thickness direction. It includes a anisotropic conductive elastomer layer and a second anisotropic conductive elastomer layer which is arranged on the other surface of the flexible sheet and in which conductive particles are chained in the thickness direction from the through electrode to the surface. Since the flexible sheet has a plurality of through electrodes, conductive particles can be chained from the through electrodes to the surface in the thickness direction to obtain anisotropy, and it is possible to cope with fine pitching of the semiconductor chip. Further, by dividing the elastomer layer into two layers by the flexible sheet, it is possible to obtain excellent durability as compared with the probe sheet in which the elastomer layer is one layer.
 図1は、プローブシートの構成例を示す断面図であり、図2は、プローブシートの構成例を示す平面図である。図1及び図2に示すように、このプローブシートは、フレキシブルシート10と、第1の異方導電性エラストマー層20と、第2の異方導電性エラストマー層30とを備える。 FIG. 1 is a cross-sectional view showing a configuration example of a probe sheet, and FIG. 2 is a plan view showing a configuration example of a probe sheet. As shown in FIGS. 1 and 2, this probe sheet includes a flexible sheet 10, a first anisotropic conductive elastomer layer 20, and a second anisotropic conductive elastomer layer 30.
 フレキシブルシート10は、平面視において絶縁性樹脂シート11の所定位置に貫通電極12を有する。貫通電極12の位置は、検査されるPKGや半導体チップの端子位置に合わせて配置してもよく、検査する端子よりも小さい所定の間隔で規則正しいファインピッチで形成し、アライメントフリーで検査できるようにしてもよい。 The flexible sheet 10 has through electrodes 12 at predetermined positions of the insulating resin sheet 11 in a plan view. The positions of the through electrodes 12 may be arranged according to the terminal positions of the PKG or the semiconductor chip to be inspected, and are formed at regular fine pitches at predetermined intervals smaller than the terminals to be inspected so that the inspection can be performed without alignment. You may.
 絶縁性樹脂シート11としては、ポリイミド、ポリアミド、ポリエチレンナフタレート、二軸配向型ポリエチレンテレフタレートの群から選択される1種を用いることが好ましい。これらの樹脂は、熱膨張係数が低く、耐熱性に優れるため、熱履歴によって膨張や収縮が発生するのを抑制し、ピッチ寸法安定性向上による検査の安定性を実現することができる。 As the insulating resin sheet 11, it is preferable to use one selected from the group of polyimide, polyamide, polyethylene naphthalate, and biaxially oriented polyethylene terephthalate. Since these resins have a low coefficient of thermal expansion and excellent heat resistance, it is possible to suppress expansion and contraction due to thermal history and realize inspection stability by improving pitch dimensional stability.
 フレキシブルシート10の厚みの下限は、好ましくは5μm、より好ましくは10μm、さらに好ましくは20μmである。また、フレキシブルシート10の厚みの上限は、好ましくは100μm、より好ましくは80μm、さらに好ましくは60μmである。フレキシブルシート10の厚みは、薄すぎると耐久性が低下し、厚すぎると貫通電極12の形成が困難となる。 The lower limit of the thickness of the flexible sheet 10 is preferably 5 μm, more preferably 10 μm, and even more preferably 20 μm. The upper limit of the thickness of the flexible sheet 10 is preferably 100 μm, more preferably 80 μm, and even more preferably 60 μm. If the thickness of the flexible sheet 10 is too thin, the durability will decrease, and if it is too thick, it will be difficult to form the through electrode 12.
 貫通電極12は、絶縁性樹脂シート11の厚み方向に形成され、第1の異方導電性エラストマー層20の導電性粒子22及び第2の異方導電性エラストマー層30の導電性粒子32と接している。そして、貫通電極12は、第1の異方導電性エラストマー層20の表面の導電性粒子22から第2の異方導電性エラストマー層30の表面の導電性粒子32まで電気的に接続させる。 The through electrode 12 is formed in the thickness direction of the insulating resin sheet 11 and is in contact with the conductive particles 22 of the first anisotropic conductive elastomer layer 20 and the conductive particles 32 of the second anisotropic conductive elastomer layer 30. ing. Then, the through electrode 12 electrically connects the conductive particles 22 on the surface of the first anisotropic conductive elastomer layer 20 to the conductive particles 32 on the surface of the second anisotropic conductive elastomer layer 30.
 貫通電極12の大きさは、検査されるPKGや半導体チップの端子に応じて設定され、例えば貫通電極12の直径の下限は、好ましくは5μm、より好ましくは10μm、さらに好ましくは15μmであり、貫通電極12の直径の上限は、好ましくは50μm、より好ましくは35μm、さらに好ましくは25μmである。 The size of the through electrode 12 is set according to the PKG to be inspected and the terminal of the semiconductor chip. For example, the lower limit of the diameter of the through electrode 12 is preferably 5 μm, more preferably 10 μm, still more preferably 15 μm, and penetrate. The upper limit of the diameter of the electrode 12 is preferably 50 μm, more preferably 35 μm, and even more preferably 25 μm.
 また、貫通電極12を格子状に形成する場合、ピッチは、好ましくは導電性粒子の平均粒子径の2倍以上、より好ましくは導電性粒子の平均粒子径の5倍以上、さらに好ましくは導電性粒子の平均粒子径の8倍以上である。これにより、隣接する連鎖部との距離が適度となり、優れた異方性を得ることができる。 When the penetrating electrodes 12 are formed in a grid pattern, the pitch is preferably twice or more the average particle size of the conductive particles, more preferably five times or more the average particle size of the conductive particles, and even more preferably conductive. It is 8 times or more the average particle size of the particles. As a result, the distance from the adjacent chain portion becomes appropriate, and excellent anisotropy can be obtained.
 貫通電極12の厚みの下限は、絶縁性樹脂シート11の厚みに対して好ましくは90%、より好ましくは95%、さらに好ましくは98%である。貫通電極12の厚みの上限は、絶縁性樹脂シート11の厚みに対して好ましくは110%、より好ましくは105%、さらに好ましくは102%である。これにより、第1の異方導電性エラストマー層20の導電性粒子22及び第2の異方導電性エラストマー層30の導電性粒子32と接触させることができる。 The lower limit of the thickness of the through electrode 12 is preferably 90%, more preferably 95%, and even more preferably 98% with respect to the thickness of the insulating resin sheet 11. The upper limit of the thickness of the through electrode 12 is preferably 110%, more preferably 105%, and even more preferably 102% with respect to the thickness of the insulating resin sheet 11. As a result, the conductive particles 22 of the first anisotropic conductive elastomer layer 20 and the conductive particles 32 of the second anisotropic conductive elastomer layer 30 can be brought into contact with each other.
 貫通電極12は、導電性を有する金属又は合金で構成され、中でも、磁性を有するFe、Ni、Coなどの金属又は合金で構成されることが好ましい。貫通電極12は、貫通孔を形成後、無電解メッキなどにより形成しても、導電性粒子などの導電性材料を充填させてもよい。 The through electrode 12 is made of a conductive metal or alloy, and more preferably made of a magnetic metal or alloy such as Fe, Ni, or Co. The through electrode 12 may be formed by electroless plating or the like after forming the through hole, or may be filled with a conductive material such as conductive particles.
 また、フレキシブルシート10は、外周部の片面又は両面に金属層を有していてもよい。外周部に金属層を有することにより、基材を補強することができ、熱膨張を低減させることができる。また、金属層の一部に第1の異方導電性エラストマー層又は第2の異方導電性エラストマー層が接することで強度をさらに増すことができる。 Further, the flexible sheet 10 may have a metal layer on one side or both sides of the outer peripheral portion. By having the metal layer on the outer peripheral portion, the base material can be reinforced and thermal expansion can be reduced. Further, the strength can be further increased by contacting a part of the metal layer with the first anisotropic conductive elastomer layer or the second anisotropic conductive elastomer layer.
 第1の異方導電性エラストマー層20は、フレキシブルシート10の一方の面に配置され、平面視において絶縁性樹脂シート11の位置に弾性樹脂21を配置し、貫通電極12の位置に貫通電極12から表面まで導電性粒子22が厚み方向に連鎖されてなる連鎖部を配置する。 The first anisotropic conductive elastomer layer 20 is arranged on one surface of the flexible sheet 10, the elastic resin 21 is arranged at the position of the insulating resin sheet 11 in a plan view, and the through electrode 12 is arranged at the position of the through electrode 12. A chain portion formed by chaining the conductive particles 22 in the thickness direction is arranged from the surface to the surface.
 弾性樹脂21は、ゴム弾性を有すればよく、耐熱性を有することが好ましい。弾性樹脂としては、シリコーン樹脂、ポリウレタン樹脂、アクリル樹脂などが挙げられる。これらの中でも、検査後にPKGや半導体チップに残渣が付き難いシリコーン樹脂を用いることが好ましい。 The elastic resin 21 only needs to have rubber elasticity, and preferably has heat resistance. Examples of the elastic resin include silicone resin, polyurethane resin, and acrylic resin. Among these, it is preferable to use a silicone resin that does not easily leave a residue on the PKG or the semiconductor chip after the inspection.
 第1の異方導電性エラストマー層20の厚みの下限は、好ましくは5μm、より好ましくは20μm、さらに好ましくは35μmである。また、第1の異方導電性エラストマー層20の厚みの上限は、好ましくは150μm、より好ましくは100μm、さらに好ましくは75μmである。第1の異方導電性エラストマー層20の厚みは、薄すぎると膜としての耐久性が低下し、厚すぎると導電性粒子22の連鎖粒子数が増加し、粒子同士の接触抵抗が増加してしまう。 The lower limit of the thickness of the first anisotropic conductive elastomer layer 20 is preferably 5 μm, more preferably 20 μm, and even more preferably 35 μm. The upper limit of the thickness of the first anisotropic conductive elastomer layer 20 is preferably 150 μm, more preferably 100 μm, and even more preferably 75 μm. If the thickness of the first anisotropic conductive elastomer layer 20 is too thin, the durability as a film decreases, and if it is too thick, the number of chained particles of the conductive particles 22 increases, and the contact resistance between the particles increases. It ends up.
 連鎖部は、導電性粒子22がフレキシブルシート10の貫通電極12に接した状態で連鎖され、連鎖の最端部の導電性粒子22が第1の異方導電性エラストマー層20の表面から露出した状態であることが好ましい。導電性粒子22の連鎖数は、第1の異方導電性エラストマー層20の厚みや導電性粒子22の粒子径によって異なり、第1の異方導電性エラストマー層20の厚み方向への連鎖数が少ないほど導電性粒子22同士の接触抵抗が減るため、20個以下にすることが好ましい。また、導電性粒子が単層(1個)の連鎖でもよいが、抵抗値を減少させるため、1つの貫通電極12に対し、複数の連鎖を形成することが好ましい。 The chained portion was chained with the conductive particles 22 in contact with the through electrode 12 of the flexible sheet 10, and the conductive particles 22 at the end of the chain were exposed from the surface of the first anisotropic conductive elastomer layer 20. It is preferably in a state. The number of chains of the conductive particles 22 varies depending on the thickness of the first anisotropic conductive elastomer layer 20 and the particle diameter of the conductive particles 22, and the number of chains in the thickness direction of the first anisotropic conductive elastomer layer 20 is different. The smaller the number, the smaller the contact resistance between the conductive particles 22, so the number is preferably 20 or less. Further, although the conductive particles may be a single layer (one) chain, it is preferable to form a plurality of chains with respect to one through electrode 12 in order to reduce the resistance value.
 導電性粒子22は、導電性を有するものであればよく、Ni、Cuなどの金属粒子、或いはそれら金属粒子や樹脂コア、無機コア粒子にAu、Pd、Co、Agなどの金属メッキを施した粒子を用いることができる。また、磁場により導電性粒子を連鎖させる場合、磁性を有するFe、Co、Niなどの金属又は合金を用いることが好ましい。これらの中でも、低抵抗の観点から、Ni粒子又はNi合金粒子の表面にAuメッキ層を施した導電性粒子を用いることが好ましい。 The conductive particles 22 may be any as long as they have conductivity, and the metal particles such as Ni and Cu, or the metal particles, the resin core, and the inorganic core particles are plated with metals such as Au, Pd, Co, and Ag. Particles can be used. When conductive particles are chained by a magnetic field, it is preferable to use a magnetic metal or alloy such as Fe, Co, or Ni. Among these, from the viewpoint of low resistance, it is preferable to use conductive particles in which the surface of Ni particles or Ni alloy particles is coated with an Au plating layer.
 導電性粒子22の平均粒子径の上限は、貫通電極12の大きさよりも小さいことが好ましく、好ましくは50μm以下、より好ましくは20μm以下、さらに好ましくは10μm以下である。また、導電性粒子は、球形、多角形、スパイク状であることが好ましく、接触抵抗を下げる目的で、表面に突起物があるものがより好ましい。 The upper limit of the average particle size of the conductive particles 22 is preferably smaller than the size of the through electrode 12, preferably 50 μm or less, more preferably 20 μm or less, and further preferably 10 μm or less. Further, the conductive particles are preferably spherical, polygonal, or spike-shaped, and more preferably have protrusions on the surface for the purpose of reducing contact resistance.
 第2の異方導電性エラストマー層30は、フレキシブルシート10の他方の面に配置され、平面視においてフレキシブルシート10の絶縁性樹脂シート11の位置に弾性樹脂31を配置し、貫通電極12位置に貫通電極12から表面まで導電性粒子32が厚み方向に連鎖されてなる連鎖部を配置する。弾性樹脂31、導電性粒子32及び連鎖部は、それぞれ第1の異方導電性エラストマー層20の弾性樹脂21、導電性粒子22及び連鎖部と同様であるため、ここでは説明を省略する。 The second anisotropic conductive elastomer layer 30 is arranged on the other surface of the flexible sheet 10, the elastic resin 31 is arranged at the position of the insulating resin sheet 11 of the flexible sheet 10 in a plan view, and the elastic resin 31 is arranged at the position of the through electrode 12. A chain portion in which the conductive particles 32 are chained in the thickness direction is arranged from the through electrode 12 to the surface. Since the elastic resin 31, the conductive particles 32, and the chain portion are the same as the elastic resin 21, the conductive particles 22, and the chain portion of the first anisotropic conductive elastomer layer 20, respectively, description thereof will be omitted here.
 このような構成を有するプローブシートによれば、厚み方向に高信頼性の導電性を実現することができ、隣接端子聞の面方向に絶縁性を実現することができる。また、フレキシブルシート10によってエラストマー層を2層に分けることにより、エラストマー層が1層のプローブシートに比べ、連鎖部をファインピッチに形成することができるとともに、優れた耐久性を得ることができる。 According to the probe sheet having such a configuration, highly reliable conductivity can be realized in the thickness direction, and insulation can be realized in the surface direction of the adjacent terminal. Further, by dividing the elastomer layer into two layers by the flexible sheet 10, the chain portion can be formed at a finer pitch and excellent durability can be obtained as compared with the probe sheet in which the elastomer layer has one layer.
 <2.プローブシートの製造方法>
 本実施の形態に係るプローブシートの製造方法は、複数の貫通電極を有するフレキシブルシートの一方の面に、導電性粒子を含有するエラストマー未硬化組成物からなる第1の未硬化樹脂層を配置するとともに、フレキシブルシートの他方の面に、導電性粒子を含有するエラストマー未硬化組成物からなる第2の未硬化樹脂層を配置する配置工程と、第1の未硬化樹脂層及び第2の未硬化樹脂層の外側から磁界又は電界を付与し、貫通電極から第1の未硬化樹脂層及び第2の未硬化樹脂層の表面まで、厚み方向に導電性粒子を配向させる配向工程と、導電性粒子を配向させた状態で第1の未硬化樹脂層及び第2の未硬化樹脂層を硬化させ、フレキシブルシートの両面にエラストマー層を形成する硬化工程とを有する。これにより、ファインピッチの端子においても、優れた異方性及び耐久性を有するプローブシートを得ることができる。
<2. Probe sheet manufacturing method>
In the method for producing a probe sheet according to the present embodiment, a first uncured resin layer made of an elastomer uncured composition containing conductive particles is arranged on one surface of a flexible sheet having a plurality of through electrodes. At the same time, an arrangement step of arranging a second uncured resin layer made of an elastomer uncured composition containing conductive particles on the other surface of the flexible sheet, and a first uncured resin layer and a second uncured resin layer. An orientation step in which a magnetic field or an electric field is applied from the outside of the resin layer to orient the conductive particles in the thickness direction from the through electrode to the surfaces of the first uncured resin layer and the second uncured resin layer, and the conductive particles. It has a curing step of curing the first uncured resin layer and the second uncured resin layer in a state of being oriented to form an elastomer layer on both sides of the flexible sheet. As a result, a probe sheet having excellent anisotropy and durability can be obtained even at fine pitch terminals.
 以下、前述の配置工程、配向工程、及び硬化工程について説明する。 Hereinafter, the above-mentioned arrangement step, orientation step, and curing step will be described.
 [配置工程]
 配置工程では、複数の貫通電極を有するフレキシブルシートの一方の面に、導電性粒子を含有するエラストマー未硬化組成物からなる第1の未硬化樹脂層を配置するとともに、フレキシブルシートの他方の面に、導電性粒子を含有するエラストマー未硬化組成物からなる第2の未硬化樹脂層を配置する。
[Placement process]
In the arranging step, a first uncured resin layer made of an elastomer uncured composition containing conductive particles is arranged on one surface of the flexible sheet having a plurality of through electrodes, and the other surface of the flexible sheet is arranged. A second uncured resin layer made of an elastomer uncured composition containing conductive particles is arranged.
 また、配置工程では、複数の貫通電極を有するフレキシブルシートの両面に、導電性粒子を含有するエラストマー未硬化組成物を介して金型を配置して、第1の未硬化樹脂層及び第2の未硬化樹脂層を配置してもよい。 Further, in the arranging step, the mold is arranged on both sides of the flexible sheet having a plurality of through electrodes via the elastomer uncured composition containing the conductive particles, and the first uncured resin layer and the second uncured resin layer are arranged. An uncured resin layer may be arranged.
 図3は、磁場を用いて導電性粒子を連鎖させる金型の構成例を示す断面図である。この金型40は、磁性体からなる基板41上に、フレキシブルシート10の貫通電極12に対峙する位置に磁性体42を配置し、フレキシブルシート10の絶縁性シート11に対峙する位置に非磁性体43を配置する。また、金型40は、基板41上の外周部にスペーサー44を配置し、第1の異方導電性エラストマー層20及び第2の異方導電性エラストマー層30の厚みを制御する。 FIG. 3 is a cross-sectional view showing a configuration example of a mold for chaining conductive particles using a magnetic field. In this mold 40, a magnetic material 42 is arranged on a substrate 41 made of a magnetic material at a position facing the through electrode 12 of the flexible sheet 10, and a non-magnetic material is arranged at a position facing the insulating sheet 11 of the flexible sheet 10. Place 43. Further, in the mold 40, a spacer 44 is arranged on the outer peripheral portion on the substrate 41 to control the thickness of the first anisotropic conductive elastomer layer 20 and the second anisotropic conductive elastomer layer 30.
 磁性体としては、Fe、Co、Niなどの金属又は合金を用いることができる。また、非磁性体としては、特に限定されるものではないが、例えばフォトリソグラフィ工程で使用されるレジストを用いることができる。 As the magnetic material, a metal or alloy such as Fe, Co, or Ni can be used. Further, the non-magnetic material is not particularly limited, but for example, a resist used in a photolithography step can be used.
 この金型を上下の2つ用い、上下の金型の間にフレキシブルシート10を挟み込み、金型の磁性体と貫通電極とを位置合わせした後、エラストマー未硬化組成物流し込み、エラストマー未硬化組成物をプレスすることにより、第1の未硬化樹脂層及び第2の未硬化樹脂層を配置することができる。また、フレキシブルシート10の両面にエラストマー未硬化組成物を塗布した後、上下の金型を金型の磁性体と貫通電極とを位置合わせして挟み込み、エラストマー未硬化組成物をプレスすることにより、第1の未硬化樹脂層及び第2の未硬化樹脂層を配置することができる。また、ギャップスペーサー44を配置することにより、第1の未硬化樹脂層及び第2の未硬化樹脂層の厚みを制御してもよい。 Using two upper and lower molds, the flexible sheet 10 is sandwiched between the upper and lower molds, the magnetic material of the mold and the through electrode are aligned, and then the elastomer uncured composition is distributed, and the elastomer uncured composition is delivered. The first uncured resin layer and the second uncured resin layer can be arranged by pressing. Further, after applying the elastomer uncured composition to both surfaces of the flexible sheet 10, the upper and lower dies are sandwiched by aligning the magnetic material of the die and the through electrode, and the elastomer uncured composition is pressed. A first uncured resin layer and a second uncured resin layer can be arranged. Further, the thickness of the first uncured resin layer and the second uncured resin layer may be controlled by arranging the gap spacer 44.
 エラストマー未硬化組成物は、未硬化樹脂中に導電性粒子を分散して構成されている。未硬化樹脂としては、例えば、シリコーン樹脂、ポリウレタン樹脂、アクリル樹脂などの未硬化物を用いることができる。これらの中でも、耐熱性の観点から、2液型液状シリコーンを用いることが好ましい。なお、導電性粒子は、プローブシートで説明した導電性粒子と同様であるため、ここでは説明を省略する。 The elastomer uncured composition is composed of conductive particles dispersed in an uncured resin. As the uncured resin, for example, an uncured product such as a silicone resin, a polyurethane resin, or an acrylic resin can be used. Among these, from the viewpoint of heat resistance, it is preferable to use a two-component liquid silicone. Since the conductive particles are the same as the conductive particles described in the probe sheet, the description thereof will be omitted here.
 [配向工程]
 配向工程では、第1の未硬化樹脂層及び第2の未硬化樹脂層の外側から磁界又は電界を付与し、貫通電極から第1の未硬化樹脂層及び第2の未硬化樹脂層の表面まで、厚み方向に導電性粒子を配向させる。
[Orientation process]
In the alignment step, a magnetic field or an electric field is applied from the outside of the first uncured resin layer and the second uncured resin layer, and from the through electrode to the surfaces of the first uncured resin layer and the second uncured resin layer. , Orient the conductive particles in the thickness direction.
 図4は、配向工程を模式的に示す断面図である。図4に示すように、フレキシブルシート10の両面に、導電性粒子を含有するエラストマー未硬化組成物51、52を介して配置された金型の外側から第1の電磁石61及び第2の電磁石62により磁場を印加する。これにより、貫通電極から第1の未硬化樹脂層及び第2の未硬化樹脂層の表面まで、厚み方向に導電性粒子を配向させることができる。 FIG. 4 is a cross-sectional view schematically showing the orientation process. As shown in FIG. 4, the first electromagnet 61 and the second electromagnet 62 from the outside of the mold are arranged on both sides of the flexible sheet 10 via the elastomer uncured compositions 51 and 52 containing conductive particles. Apply a magnetic field. Thereby, the conductive particles can be oriented in the thickness direction from the through electrode to the surfaces of the first uncured resin layer and the second uncured resin layer.
 [硬化工程]
 硬化工程では、導電性粒子を配向させた状態で第1の未硬化樹脂層及び第2の未硬化樹脂層を硬化させ、フレキシブルシート10の両面にエラストマー層を形成する。エラストマー未硬化組成物51、52に2液型液状シリコーンを用いた場合の硬化条件としては、例えば、温度が50~150℃、時間が0.5~2hourであることが好ましい。
[Curing process]
In the curing step, the first uncured resin layer and the second uncured resin layer are cured in a state where the conductive particles are oriented, and elastomer layers are formed on both sides of the flexible sheet 10. When the two-component liquid silicone is used for the elastomer uncured compositions 51 and 52, the curing conditions are preferably, for example, a temperature of 50 to 150 ° C. and a time of 0.5 to 2 hours.
 このようなプローブシートの製造方法によれば、中間層の一部である貫通電極から表面まで導電性粒子が厚み方向に連鎖されるため、異方性を得ることができる。また、フレキシブルシート10によってエラストマー層を2層に分けることにより、エラストマー層が1層のプローブシートに比べ、半導体チップのファインピッチ化に対応するとともに、優れた耐久性を有するプローブシートを得ることができる。 According to such a method for manufacturing a probe sheet, conductive particles are chained in the thickness direction from the through electrode which is a part of the intermediate layer to the surface, so that anisotropy can be obtained. Further, by dividing the elastomer layer into two layers by the flexible sheet 10, it is possible to obtain a probe sheet having a fine pitch of the semiconductor chip and excellent durability as compared with the probe sheet having one layer of the elastomer layer. it can.
 なお、上述したプローブシートの製造方法では、配向工程において、磁場を用いたが、電場を用いてもよい。電場で配向させる場合は、電磁石の変わりに電極を配置し、交流電圧を印加すればよい。 In the above-mentioned method for manufacturing a probe sheet, a magnetic field is used in the orientation step, but an electric field may be used. In the case of orientation by an electric field, an electrode may be arranged instead of an electromagnet and an AC voltage may be applied.
 <3.実施例>
 以下、本技術の実施例について説明する。本実施例では、実施例としてのプローブシートA、及び従来例としてのプローブシートBを作製し、プローブシートA、Bを用いて評価基材の電気特性を測定し、絶縁性評価、及び信頼性評価を行った。なお、本技術は、これらの実施例に限定されるものではない。
<3. Example>
Hereinafter, examples of the present technology will be described. In this example, a probe sheet A as an example and a probe sheet B as a conventional example are produced, the electrical characteristics of the evaluation base material are measured using the probe sheets A and B, and the insulation evaluation and reliability are performed. Evaluation was performed. The present technology is not limited to these examples.
 [フレキシブルシートの作製]
 ポリイミドフィルム25μm厚、銅箔厚18μmの両面銅張積層板(ニカフレックスF-30VC2、ニッカン工業社製)に、レーザー加工にて直径20μmの貫通孔を60μmPの格子状の間隔で形成し、貫通孔に無電解ニッケルメッキを施して、貫通電極を形成した。続いて、外周部以外の銅箔をエッチングすることで、ポリイミドからなる絶縁性樹脂シートに貫通電極を格子状に有するフレキシブルシートを作製した。
[Manufacturing of flexible sheet]
Through laser processing, through holes with a diameter of 20 μm are formed at intervals of 60 μmP in a double-sided copper-clad laminate (Nikaflex F-30VC2, manufactured by Nikkan Industries, Ltd.) with a polyimide film thickness of 25 μm and a copper foil thickness of 18 μm. Electroless nickel plating was applied to the holes to form a through electrode. Subsequently, by etching a copper foil other than the outer peripheral portion, a flexible sheet having through electrodes in a grid pattern on an insulating resin sheet made of polyimide was produced.
 [金型の作製]
 図3に示すように、導電性粒子を磁場配向させるための金型を作成した。金型には、フレキシブルシートの貫通電極パターンに対峙する位置にニッケル端子を形成し、フレキシブルシートの絶縁性シートに対峙する位置にレジストを形成した。
[Making a mold]
As shown in FIG. 3, a mold for magnetically orienting the conductive particles was prepared. Nickel terminals were formed on the mold at a position facing the through electrode pattern of the flexible sheet, and a resist was formed at a position facing the insulating sheet of the flexible sheet.
 [エラストマー未硬化組成物の調製]
 平均粒子径5μmのニッケル粒子(Type123、Vale社製)の表面に、置換メッキによって金メッキ層を施した導電性粒子を作製した。エラストマーとして2液型液状シリコーン(KE-1204A/B、信越シリコーン社製)のA剤とB剤とを1:1で配合したものに導電性粒子を混合し、エラストマー未硬化組成物を調製した。
[Preparation of uncured elastomer composition]
Conductive particles were prepared by subjecting a gold-plated layer to the surface of nickel particles (Type123, manufactured by Vale) having an average particle diameter of 5 μm by substitution plating. Conductive particles were mixed with a 1: 1 mixture of agent A and agent B of a two-component liquid silicone (KE-1204A / B, manufactured by Shinetsu Silicone Co., Ltd.) as an elastomer to prepare an elastomer uncured composition. ..
 <プローブシートAの作製>
 図4に示すように、上下の金型の間に貫通電極を有するフレキシブルシートを挟み込み、金型のニッケル端子と貫通電極とを位置合わせした後、隙間に真空脱泡したエラストマー未硬化組成物を流し込んだ。続いて、金型同士でプレスし、電磁石により磁場を作用させた状態で、オーブンにて、温度100℃、時間1hourの条件でシリコーンを硬化処理し、プローブシートAを作成した。異方導電性エラストマー層の厚みは、上下層で各々50μmであり、フロープシートAの厚みの合計は130μmであった。
<Preparation of probe sheet A>
As shown in FIG. 4, a flexible sheet having through electrodes is sandwiched between upper and lower molds, the nickel terminals of the mold and the through electrodes are aligned, and then a vacuum-defoamed elastomer uncured composition is placed in the gap. I poured it in. Subsequently, the molds were pressed against each other, and the silicone was cured in an oven under the conditions of a temperature of 100 ° C. and a time of 1 hour in a state where a magnetic field was applied by an electromagnet to prepare a probe sheet A. The thickness of the anisotropic conductive elastomer layer was 50 μm for each of the upper and lower layers, and the total thickness of the flow sheet A was 130 μm.
 <プローブシートBの作製>
 貫通電極を有するフレキシブルシートの代わりにニッケル枠板を使用した以外は、プローブシートAと同様に、プローブシートBを作製した。すなわち、上下の金型の間にニッケル枠板を挟み込み、隙間に真空脱泡した導電性エラストマー組成物を流し込んだ。続いて、金型同士でプレスした状態で電磁石により磁場を作用させた状態で、オーブン中で、温度100℃、時間60minの条件でシリコーンを硬化処理し、プローブシートBを作成した。プローブシートBの厚みは、130μmであった。
<Preparation of probe sheet B>
A probe sheet B was produced in the same manner as the probe sheet A, except that a nickel frame plate was used instead of the flexible sheet having a through electrode. That is, a nickel frame plate was sandwiched between the upper and lower molds, and the vacuum-defoamed conductive elastomer composition was poured into the gap. Subsequently, the silicone was cured in an oven at a temperature of 100 ° C. and a time of 60 min in a state where the dies were pressed against each other and a magnetic field was applied by an electromagnet to prepare a probe sheet B. The thickness of the probe sheet B was 130 μm.
 <絶縁性(異方性)評価>
 ピッチが200μmP、半田ボールサイズが110μmφ、ピン数が484である5mm角の評価基材(以下、評価PKG(package)1と呼ぶ。)を準備した。また、ピッチが500μmP、半田ボールサイズが300μmφ、ピン数が64である6mm角の評価基材(以下、評価PKG(package)2と呼ぶ。)を準備した。
<Insulation (anisotropic) evaluation>
A 5 mm square evaluation base material (hereinafter referred to as evaluation PKG (package) 1) having a pitch of 200 μmP, a solder ball size of 110 μmφ, and a number of pins of 484 was prepared. Further, a 6 mm square evaluation base material (hereinafter referred to as evaluation PKG (package) 2) having a pitch of 500 μmP, a solder ball size of 300 μmφ, and a number of pins of 64 was prepared.
 評価PKG1の半田ボールに対峙する電極パッドを有するソケットを準備し、当該ソケットに、プローブシートA又はプローブシートBをセッ卜して、その上に評価PKG1を配置した。そして、加圧冶具によって上部から評価PKG1を30μm押込んだ状態で、隣接電極パッドに電圧30Vを印加したときの絶縁抵抗値を測定した。また、評価PKG2についても、評価PKG1と同様に、絶縁抵抗値を測定した。 A socket having an electrode pad facing the solder ball of the evaluation PKG1 was prepared, a probe sheet A or a probe sheet B was set in the socket, and the evaluation PKG1 was placed on the socket. Then, with the evaluation PKG1 pushed in by 30 μm from above with a pressure jig, the insulation resistance value when a voltage of 30 V was applied to the adjacent electrode pad was measured. Further, as for the evaluation PKG2, the insulation resistance value was measured in the same manner as the evaluation PKG1.
 隣接電極間の絶縁抵抗値が1×10E-6Ω以上である場合をショート(NG)とし、ショート数をカウントした。表1に、絶縁性の評価結果を示す。 The case where the insulation resistance value between adjacent electrodes was 1 × 10E-6Ω or more was regarded as short (NG), and the number of shorts was counted. Table 1 shows the evaluation results of the insulating property.
 <耐久性評価>
 上記評価PKG2を用いて、温度100℃環境下における電圧測定を行った。加圧冶具によって評価PKG2を30μm、5秒間押し込んだ状態を1回として加圧を繰り返し行い、直流電流10mAを常時印加したときの電圧Vをモニタリングした。
<Durability evaluation>
Using the above evaluation PKG2, voltage measurement was performed in an environment of a temperature of 100 ° C. The evaluation PKG2 was pushed 30 μm for 5 seconds by a pressure jig, and the pressure was repeated once, and the voltage V when a direct current of 10 mA was constantly applied was monitored.
 下記(1)式で抵抗値を求め、抵抗値Rが1Ω以上になった場合をNGと判定し、NG判定時の加圧回数を測定した。表1に、耐久性の評価結果を示す。
 R=V/I  (1)
The resistance value was obtained by the following equation (1), and the case where the resistance value R became 1Ω or more was determined to be NG, and the number of pressurizations at the time of NG determination was measured. Table 1 shows the evaluation results of durability.
R = V / I (1)
Figure JPOXMLDOC01-appb-T000001
Figure JPOXMLDOC01-appb-T000001
 表1に示すように、プローブシートBでは、絶縁性評価の200Pの評価PKG1において隣接電極間でショートが発生し、耐久性評価では加圧回数が2万回で抵抗値が上昇した。一方、プローブシートAでは、絶縁性評価の200Pの評価PKG1でも隣接電極間でショートが発生せず、耐久性評価でも抵抗値が上昇する加圧回数が10万回以上であり、優れた異方性及び耐久性を得ることができた。 As shown in Table 1, in the probe sheet B, a short circuit occurred between the adjacent electrodes in the evaluation PKG1 of 200P for the insulation evaluation, and the resistance value increased when the number of pressurizations was 20,000 times in the durability evaluation. On the other hand, in the probe sheet A, a short circuit does not occur between the adjacent electrodes even in the evaluation PKG1 of 200P for the insulation evaluation, and the resistance value increases in the durability evaluation as the number of pressurizations is 100,000 times or more. The property and durability could be obtained.
 10 フレキシブルシート、11 絶縁性樹脂シート、12 貫通電極、20 第1の異方導電性エラストマー層、21 弾性樹脂、22 導電性粒子、30 第2の異方導電性エラストマー層、31 弾性樹脂、32 導電性粒子、40 金型、41 基板、42 磁性体、43 非磁性体、44 ギャップスペーサー、51,52 エラストマー未硬化組成物、61,62 電磁石
 
10 Flexible sheet, 11 Insulating resin sheet, 12 Penetrating electrode, 20 First anisotropic conductive elastomer layer, 21 Elastic resin, 22 Conductive particles, 30 Second anisotropic conductive elastomer layer, 31 Elastic resin, 32 Conductive particles, 40 molds, 41 substrates, 42 magnetic materials, 43 non-magnetic materials, 44 gap spacers, 51, 52 elastomer uncured compositions, 61, 62 electromagnets

Claims (6)

  1.  複数の貫通電極を有するフレキシブルシートと、
     前記フレキシブルシートの一方の面に配置され、前記貫通電極から表面まで導電性粒子が厚み方向に連鎖されてなる第1の異方導電性エラストマー層と、
     前記フレキシブルシートの他方の面に配置され、前記貫通電極から表面まで導電性粒子が厚み方向に連鎖されてなる第2の異方導電性エラストマー層と
     を備えるプローブシート。
    A flexible sheet with multiple through electrodes and
    A first anisotropic conductive elastomer layer arranged on one surface of the flexible sheet and in which conductive particles are chained in the thickness direction from the through electrode to the surface.
    A probe sheet provided on the other surface of the flexible sheet and provided with a second anisotropic conductive elastomer layer in which conductive particles are chained in the thickness direction from the through electrode to the surface.
  2.  前記フレキシブルシートが、ポリイミド、ポリアミド、ポリエチレンナフタレート、二軸配向型ポリエチレンテレフタレートの群から選択される1種である請求項1記載のプローブシート。 The probe sheet according to claim 1, wherein the flexible sheet is one selected from the group of polyimide, polyamide, polyethylene naphthalate, and biaxially oriented polyethylene terephthalate.
  3.  前記フレキシブルシートが、前記貫通電極を格子状に有する請求項2記載のプローブシート。 The probe sheet according to claim 2, wherein the flexible sheet has the through electrodes in a grid pattern.
  4.  前記貫通電極が、Ni又はNi合金であり、
     前記導電性粒子が、Ni粒子又はNi合金粒子である請求項1乃至3のいずれか1項に記載のプローブシート。
    The through electrode is Ni or a Ni alloy.
    The probe sheet according to any one of claims 1 to 3, wherein the conductive particles are Ni particles or Ni alloy particles.
  5.  前記第1のエラストマー層及び前記第2のエラストマー層の各厚みが、5μm以上150μm以下である請求項1乃至4のいずれか1項に記載のプローブシート。 The probe sheet according to any one of claims 1 to 4, wherein the thickness of each of the first elastomer layer and the second elastomer layer is 5 μm or more and 150 μm or less.
  6.  複数の貫通電極を有するフレキシブルシートの一方の面に、導電性粒子を含有するエラストマー未硬化組成物からなる第1の未硬化樹脂層を配置するとともに、前記フレキシブルシートの他方の面に、導電性粒子を含有するエラストマー未硬化組成物からなる第2の未硬化樹脂層を配置する配置工程と、
     前記第1の未硬化樹脂層及び前記第2の未硬化樹脂層の外側から磁界又は電界を付与し、前記貫通電極から前記第1の未硬化樹脂層及び前記第2の未硬化樹脂層の表面まで、厚み方向に導電性粒子を配向させる配向工程と、
     前記導電性粒子を配向させた状態で前記第1の未硬化樹脂層及び前記第2の未硬化樹脂層を硬化させ、前記フレキシブルシートの両面にエラストマー層を形成する硬化工程と
     を有するプローブシートの製造方法。
     
    A first uncured resin layer made of an elastomer uncured composition containing conductive particles is arranged on one surface of a flexible sheet having a plurality of through electrodes, and conductivity is provided on the other surface of the flexible sheet. An arrangement step of arranging a second uncured resin layer made of an elastomer uncured composition containing particles, and an arrangement step.
    A magnetic field or an electric field is applied from the outside of the first uncured resin layer and the second uncured resin layer, and the surfaces of the first uncured resin layer and the second uncured resin layer are applied from the through electrode. And the alignment process to orient the conductive particles in the thickness direction,
    A probe sheet having a curing step of curing the first uncured resin layer and the second uncured resin layer in a state where the conductive particles are oriented to form elastomer layers on both sides of the flexible sheet. Production method.
PCT/JP2020/043284 2019-11-26 2020-11-19 Probe sheet and production method for probe sheet WO2021106753A1 (en)

Priority Applications (2)

Application Number Priority Date Filing Date Title
KR1020227017606A KR20220074994A (en) 2019-11-26 2020-11-19 Probe sheet and method for manufacturing the probe sheet
CN202080081996.7A CN114787640A (en) 2019-11-26 2020-11-19 Probe sheet and method for manufacturing probe sheet

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2019213061A JP2021085701A (en) 2019-11-26 2019-11-26 Probe sheet and method for manufacturing probe sheet
JP2019-213061 2019-11-26

Publications (1)

Publication Number Publication Date
WO2021106753A1 true WO2021106753A1 (en) 2021-06-03

Family

ID=76087331

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2020/043284 WO2021106753A1 (en) 2019-11-26 2020-11-19 Probe sheet and production method for probe sheet

Country Status (5)

Country Link
JP (1) JP2021085701A (en)
KR (1) KR20220074994A (en)
CN (1) CN114787640A (en)
TW (1) TW202139526A (en)
WO (1) WO2021106753A1 (en)

Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2005050782A (en) * 2003-06-12 2005-02-24 Jsr Corp Anisotropic connector device and its manufacturing method, and inspection device of circuit device
JP2005235509A (en) * 2004-02-18 2005-09-02 Jsr Corp Anisotropic conductive sheet, inspection device and inspection method for circuit device
JP2009193710A (en) * 2008-02-12 2009-08-27 Jsr Corp Anisotropic connector, and apparatus for inspecting circuit device using the same
WO2013100560A1 (en) * 2011-12-26 2013-07-04 주식회사 아이에스시 Electrical contactor and method for manufacturing electrical contactor
WO2015182996A1 (en) * 2014-05-29 2015-12-03 주식회사 아이에스시 Connection connector and connection connector manufacturing method
WO2018066540A1 (en) * 2016-10-06 2018-04-12 日東電工株式会社 Anisotropic conductive sheet

Family Cites Families (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US6969622B1 (en) 2001-02-09 2005-11-29 Jsr Corporation Anisotropically conductive connector, its manufacture method and probe member
JP5004493B2 (en) 2006-04-03 2012-08-22 三井造船株式会社 Denitration method of exhaust gas
JP2010009911A (en) 2008-06-26 2010-01-14 Jsr Corp Anisotropic conductive sheet

Patent Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2005050782A (en) * 2003-06-12 2005-02-24 Jsr Corp Anisotropic connector device and its manufacturing method, and inspection device of circuit device
JP2005235509A (en) * 2004-02-18 2005-09-02 Jsr Corp Anisotropic conductive sheet, inspection device and inspection method for circuit device
JP2009193710A (en) * 2008-02-12 2009-08-27 Jsr Corp Anisotropic connector, and apparatus for inspecting circuit device using the same
WO2013100560A1 (en) * 2011-12-26 2013-07-04 주식회사 아이에스시 Electrical contactor and method for manufacturing electrical contactor
WO2015182996A1 (en) * 2014-05-29 2015-12-03 주식회사 아이에스시 Connection connector and connection connector manufacturing method
WO2018066540A1 (en) * 2016-10-06 2018-04-12 日東電工株式会社 Anisotropic conductive sheet

Also Published As

Publication number Publication date
TW202139526A (en) 2021-10-16
CN114787640A (en) 2022-07-22
JP2021085701A (en) 2021-06-03
KR20220074994A (en) 2022-06-03

Similar Documents

Publication Publication Date Title
JP4930574B2 (en) Anisotropic conductive connector device, manufacturing method thereof, and circuit device inspection device
EP1768214B1 (en) Inspection equipment for circuit device with anisotropic conductive connector
TWI411781B (en) And an inspection device for the electrically conductive connector device and the circuit device
EP1585197B1 (en) Anisotropic conductive connector and production method therefor and inspection unit for circuit device
KR102184019B1 (en) Electric characteristic inspection jig
JP3753145B2 (en) Anisotropic conductive sheet and method for manufacturing the same, adapter device and method for manufacturing the same, and electrical inspection device for circuit device
US8410808B2 (en) Anisotropic conductive connector, probe member and wafer inspection system
US20060176064A1 (en) Connector for measurement of electric resistance, connector device for measurement of electric resistance and production process thereof, and measuring apparatus and measuring method of electric resistance for circuit board
WO2006009144A1 (en) Anisotropic conductive connector and production method therefor, adaptor device and electric inspection device for circuit device
JP5018612B2 (en) Anisotropic conductive sheet and method for producing anisotropic conductive sheet
JP2006318923A (en) Conductive rubber sheet, connector using it, electrical inspection jig for circuit board, and manufacturing method of conductive rubber sheet
JP4507644B2 (en) Anisotropic conductive connector device, manufacturing method thereof, and circuit device inspection device
WO2021106754A1 (en) Probe sheet and probe sheet production method
WO2021106753A1 (en) Probe sheet and production method for probe sheet
JP4380373B2 (en) Electrical resistance measurement connector, electrical resistance measurement connector device and manufacturing method thereof, and circuit board electrical resistance measurement device and measurement method
JPH11204176A (en) Conductive rubber sheet
JP2012174417A (en) Anisotropic conductive sheet, method for connecting electronic member, and electronic part
JP2008164476A (en) Anisotropic conductive connector apparatus and manufacturing method of the same, and inspection apparatus for circuit apparatus
JP2019036394A (en) Anisotropically conductive sheet and method of producing anisotropically conductive sheet
JP2008122240A (en) Connector device for measuring electric resistance, and electric resistance measuring device of circuit board
JP2004227828A (en) Testing device of anisotropic conductive connector device and circuit device
JP2005317214A (en) Anisotropic conductive connector and inspecting device of circuit device
JP2007263635A (en) Wafer-inspecting probe card, and wafer inspection device
JP2010112849A (en) Electric resistance measuring sheet, electric resistance measuring connector device, and electric resistance measuring device for circuit board

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 20892988

Country of ref document: EP

Kind code of ref document: A1

ENP Entry into the national phase

Ref document number: 20227017606

Country of ref document: KR

Kind code of ref document: A

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 20892988

Country of ref document: EP

Kind code of ref document: A1