WO2021106233A1 - Metal component and method for producing same - Google Patents

Metal component and method for producing same Download PDF

Info

Publication number
WO2021106233A1
WO2021106233A1 PCT/JP2020/005455 JP2020005455W WO2021106233A1 WO 2021106233 A1 WO2021106233 A1 WO 2021106233A1 JP 2020005455 W JP2020005455 W JP 2020005455W WO 2021106233 A1 WO2021106233 A1 WO 2021106233A1
Authority
WO
WIPO (PCT)
Prior art keywords
layer
metal
chromium compound
base material
chromium
Prior art date
Application number
PCT/JP2020/005455
Other languages
French (fr)
Japanese (ja)
Inventor
尚男 冨士川
渡辺 崇則
宏之 渡邊
博貴 宮下
Original Assignee
エア・ウォーターNv株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Priority claimed from JP2020013197A external-priority patent/JP7370263B2/en
Application filed by エア・ウォーターNv株式会社 filed Critical エア・ウォーターNv株式会社
Priority to CN202080071298.9A priority Critical patent/CN114585768A/en
Publication of WO2021106233A1 publication Critical patent/WO2021106233A1/en

Links

Images

Classifications

    • CCHEMISTRY; METALLURGY
    • C23COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
    • C23CCOATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
    • C23C10/00Solid state diffusion of only metal elements or silicon into metallic material surfaces
    • C23C10/28Solid state diffusion of only metal elements or silicon into metallic material surfaces using solids, e.g. powders, pastes
    • C23C10/34Embedding in a powder mixture, i.e. pack cementation
    • C23C10/36Embedding in a powder mixture, i.e. pack cementation only one element being diffused
    • C23C10/38Chromising
    • CCHEMISTRY; METALLURGY
    • C23COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
    • C23CCOATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
    • C23C28/00Coating for obtaining at least two superposed coatings either by methods not provided for in a single one of groups C23C2/00 - C23C26/00 or by combinations of methods provided for in subclasses C23C and C25C or C25D
    • CCHEMISTRY; METALLURGY
    • C23COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
    • C23CCOATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
    • C23C8/00Solid state diffusion of only non-metal elements into metallic material surfaces; Chemical surface treatment of metallic material by reaction of the surface with a reactive gas, leaving reaction products of surface material in the coating, e.g. conversion coatings, passivation of metals
    • C23C8/06Solid state diffusion of only non-metal elements into metallic material surfaces; Chemical surface treatment of metallic material by reaction of the surface with a reactive gas, leaving reaction products of surface material in the coating, e.g. conversion coatings, passivation of metals using gases
    • C23C8/08Solid state diffusion of only non-metal elements into metallic material surfaces; Chemical surface treatment of metallic material by reaction of the surface with a reactive gas, leaving reaction products of surface material in the coating, e.g. conversion coatings, passivation of metals using gases only one element being applied
    • C23C8/24Nitriding

Definitions

  • the present invention relates to a metal product and a method for manufacturing the same.
  • Patent Document 1 a technique shown in Patent Document 1 below.
  • Patent Document 2 the applicant has grasped the following Patent Document 2 as prior art related to the related technology.
  • Patent Document 1 is intended to form a surface layer made of chromium carbonitride by subjecting an iron alloy material to a nitriding treatment in advance and then a chromasing treatment.
  • the above-mentioned Patent Document 1 has the following description.
  • the metal surface modification method according to claim 1 prepares a base material which is an iron-based metal or a nickel-based metal.
  • the surface of iron-based metals and nickel-based metals is covered with an oxide film or a passivation film.
  • the presence of an oxide film or a passivation film on the surface generally tends to hinder the diffusion and permeation of nitrogen atoms.
  • the nitriding treatment is performed in which the base material is heated and held in an atmosphere containing a nitriding source gas. By this nitriding treatment, nitrogen atoms are diffused and permeated on the surface of the base material activated by the halogenation treatment.
  • the nitrided base material is subjected to a chromaze treatment in which the nitrided base material is present in a powder containing metallic chromium powder and is heated and held at a temperature of 850 to 1200 ° C.
  • a chromaze treatment in which the nitrided base material is present in a powder containing metallic chromium powder and is heated and held at a temperature of 850 to 1200 ° C.
  • chromium treatment chromium atoms are diffused and permeated into the surface layer portion where nitrogen atoms are diffused and permeated, and a surface modification layer is formed.
  • 5 (a) and 5 (b) show the elemental distribution of the surface modification layer formed in the examples. The measurement was carried out by measuring the concentration distribution of the material cross section by EPMA (X-ray microanalyzer).
  • FIG. 5A is a surface modification layer formed by subjecting the SUS304 base material to a fluorine treatment, a soft nitriding treatment, and a chromaze treatment. The soft nitriding treatment was performed at 570 ° C. for 2 hours.
  • FIG. 5B is a surface modification layer formed by subjecting the SUS304 base material to a fluorine treatment, a nitriding treatment, and a chromaze treatment. The nitriding treatment was performed at 570 ° C. for 30 minutes. In each case, a layer having a high concentration of Cr and N and a low concentration of Fe is formed at a thickness of about 50 ⁇ m on the surface side. This can be regarded as a chromium nitride layer.
  • the chromium nitride layer is chromium about 82 wt%, nitrogen about 11% by weight, can be identified as a Cr 2 N. Further, at a thickness of about 60 ⁇ m on the lower side thereof, a layer having a low nitrogen concentration and a high Fe and Cr concentration is formed. This can be seen as a chromium-enriched layer in which chromium is diffused and permeated into the base material.
  • Patent Document 2 when a carbide coating layer is formed on an iron-based base material, an intermediate layer composed of a composite carbide of an element to be coated and iron of the base material is formed, and thermal expansion of the base material and the coating layer is performed. This is an attempt to prevent cracking of the coating layer due to a coefficient difference.
  • the sliding member of the present invention is characterized in that the steel member is coated with a chromium carbide layer via an intermediate layer composed of a composite carbide (Fe, Cr) C of iron and chromium. And. This layer structure is shown in FIG. 1 (a). As shown in FIG. 1A, cracking of the coating film can be prevented.
  • the present invention is a method for manufacturing a sliding member in which a chromium carbide layer is coated on a steel material portion via an intermediate layer composed of a composite carbide (Fe, Cr) C of iron and chromium by diffusion permeation treatment, and the steel material structure is It is characterized by containing cementite in advance and performing diffusion permeation treatment in the austenite + cementite region on the Fe—C system state diagram.
  • Fe 3 C is stably present in the austenite + cementite region. Therefore, Cr is supplied from the outside to react with Fe 3 C, as shown in FIG.
  • An intermediate layer made of (Fe, Cr) C can be reliably formed on the surface of the steel member.
  • an austenitic metal is subjected to a nitriding treatment and then a chromaze treatment.
  • This forms a surface layer of Cr 2 N layer, a chromium-concentrated layer of the inside.
  • the Cr 2 N layer is ceramic, the thermal expansion coefficient of 9 ⁇ 10 -6 / °C and small.
  • Thermal expansion coefficient of austenitic base material for most present inside is 17 ⁇ 10 -6 / °C, becomes about twice as compared with the Cr 2 N layer. Further, nitrogen is substantially not present in the chromium-enriched layer.
  • the coefficient of thermal expansion of the chromium-enriched layer is not significantly different from the coefficient of thermal expansion of the austenitic base metal.
  • the Cr 2 N layer is the outermost layer, in between the chromium-concentrated layer and the base material which exists as a lower layer, the thermal expansion coefficient is largely different divergence.
  • a thermal stress caused by repeated heating and cooling which may cause peeling or cracking of the Cr 2 N layer.
  • conventional metal products have restrictions on the environment in which they can be used and their uses.
  • the iron-based sliding member obtained by the technique of Patent Document 2 is subjected to diffusion permeation treatment of Cr or the like using an iron-based material containing cementite as a steel material structure in advance as a base material.
  • an iron-based material containing cementite as a steel material structure in advance
  • a carbide layer on the surface layer and an intermediate layer made of a composite carbide of iron and Cr or the like are formed inside the carbide layer.
  • the base material needs to be an iron-based material containing cementite in advance, that is, containing 0.6% by weight or more of carbon. Therefore, the intermediate layer cannot be formed with a material having high corrosion resistance, for example, stainless steel or heat-resistant steel, which has a low carbon content.
  • the compound precipitated in the intermediate layer is a carbide such as a Cr-based carbide, and is more easily decomposed when heated to a high temperature as compared with a Cr-based nitride or the like. Therefore, there is also a problem that the performance tends to deteriorate when used in a high temperature environment.
  • the present invention has been made to solve the above problems, and provides a metal product having the following object and a method for producing the same.
  • a metal product having a heat-resistant / corrosion-resistant and wear-resistant surface layer having high resistance to repeated thermal stress and a method for producing the same.
  • the metal product according to claim 1 adopts the following configuration in order to achieve the above object.
  • a base material which is an iron-based metal or a nickel-based metal and a surface modification layer formed on the surface of the base material are provided.
  • the surface modification layer is The chromium compound layer existing on the surface side and It is formed between the chromium compound layer and the base metal, and includes a precipitation layer in which the chromium compound is precipitated in the base metal constituting the base metal.
  • the metal product according to claim 2 adopts the following configuration in addition to the configuration according to claim 1. The closer the precipitation layer is to the chromium compound layer on the surface side, the larger the precipitation amount of the chromium compound.
  • the metal product according to claim 3 adopts the following configuration in addition to the configuration according to claim 1 or 2.
  • the base material is any one of stainless steel, heat-resistant steel, and nickel-based alloy having a carbon concentration of 0.6% by weight or less, and the chromium compound is a chromium nitride.
  • the method for producing a metal product according to claim 4 employs the following configuration in order to achieve the above object.
  • base metal that is iron-based metal or nickel-based metal Nitriding treatment is performed to heat and hold the base metal in an atmosphere containing a nitriding source gas.
  • a chromaze treatment in which the above-mentioned nitriding base material is present in a powder containing metallic chromium powder and heat-held.
  • the chromium compound layer existing on the surface side and A surface-modified layer exists between the chromium compound layer and the base metal, and is formed by including a precipitation layer in which the chromium compound is precipitated in the base metal constituting the base metal.
  • the nitriding treatment produces a nitriding layer having a thickness of at least 1.5 times or more the thickness of the chromium compound layer contained in the finally formed surface modification layer.
  • the method for producing a metal product according to claim 6 in addition to the configuration according to claim 5, the following configuration is adopted.
  • the nitriding layer produced by the nitriding treatment is subjected to a time to reach a predetermined thickness.
  • the metal product according to claim 1 includes a base material which is an iron-based metal or a nickel-based metal, and a surface modification layer formed on the surface of the base material.
  • the surface modification layer includes a chromium compound layer existing on the surface side and a precipitation layer existing between the chromium compound layer and the base material. That is, a precipitation layer exists between the chromium compound layer, which is a hard ceramic layer, and the base material, which is an iron-based or nickel-based metal.
  • the precipitation layer is formed by precipitating a chromium compound in the base metal constituting the base material. Therefore, the coefficient of thermal expansion of each layer gradually increases from the surface to the deep part, with the chromium compound layer ⁇ precipitation layer ⁇ base material.
  • the difference in the coefficient of thermal expansion between the layers is smaller than that in the prior art in which the coefficient of thermal expansion greatly deviates between the chromium compound layer on the surface, the chromium-concentrated layer, and the base material.
  • the surface layer has higher resistance to repeated thermal stress than before, and the heat resistance, corrosion resistance, and wear resistance of the surface layer can be maintained.
  • the environment and applications that can be used are wider than before.
  • the coefficient of thermal expansion of the precipitation layer gradually increases from the surface to the deep part. Therefore, the coefficient of thermal expansion changes continuously rather than stepwise from the chromium compound layer on the surface side to the base material.
  • the surface layer has higher resistance to repeated thermal stress than before, and the heat resistance, corrosion resistance, and wear resistance of the surface layer can be maintained.
  • the environment and applications that can be used are wider than before.
  • the metal product according to claim 3 is any one of stainless steel, heat-resistant steel, and nickel-based alloy having a carbon concentration of 0.6% by weight or less as the base material.
  • a surface modification layer containing two layers, a chromium compound layer and a precipitation layer, on such a base material a metal product having excellent properties can be obtained.
  • Stainless steels, heat-resistant steels, and nickel-based alloys having a carbon concentration of 0.6% by weight or less do not contain high concentrations of carbon such that cementite is present in the base material. Therefore, it is not possible to form an intermediate layer made of a carbide layer on the surface layer and a composite carbide of iron and Cr or the like inside the carbide layer only by performing the diffusion permeation treatment of chromium.
  • a chromium nitride layer is formed as a chromium compound layer on the surface, and the difference in coefficient of thermal expansion between the base material and the like is formed. It is possible to form a precipitation layer in which chromium nitride is precipitated in the base metal in order to alleviate the above.
  • This metal product has extremely high hardness, excellent heat resistance and corrosion resistance, and exhibits excellent performance in environments such as high-temperature oxidation, high-temperature corrosion, erosion, and cavitation.
  • the above metal products exhibit excellent performance in an acid / alkali environment, a neutral environment, and a corrosive environment such as chloride such as seawater.
  • the metal product can be applied to parts that require heat resistance and wear resistance in a turbocharger, for example, in the case of automobile parts.
  • a turbocharger for example, in the case of automobile parts.
  • it prevents melting damage to the alloy and maintains excellent performance.
  • it can be applied to many parts such as blade materials, valve materials, pump materials, etc. in the environment such as chemical industry, thermal power generation, and alternative energy.
  • it can be applied to materials and parts used in an acid / alkali environment, a neutral environment, and a corrosive environment such as chloride such as seawater.
  • the method for producing a metal product according to claim 4 is to perform a nitriding treatment on a base material which is an iron-based metal or a nickel-based metal by heating and holding the base material in an atmosphere containing a nitride source gas, and containing metallic chromium powder. Chromize treatment is performed in which the above-mentioned nitriding base material is present in the powder and is heated and held. As a result, a surface modification layer is formed on the surface of the base material.
  • the surface modification layer is made to include a chromium compound layer existing on the surface side and a precipitation layer existing between the chromium compound layer and the base material.
  • the precipitation layer has a structure in which a chromium compound is precipitated in the base metal metal constituting the base material. Therefore, the coefficient of thermal expansion of each layer gradually increases from the surface to the deep part, with the chromium compound layer ⁇ precipitation layer ⁇ base material. Therefore, the difference in the coefficient of thermal expansion between the layers is smaller than that in the prior art in which the coefficient of thermal expansion greatly deviates between the chromium compound layer on the surface, the chromium-concentrated layer, and the base material. As a result, the surface layer has higher resistance to repeated thermal stress than before, and the heat resistance, corrosion resistance, and wear resistance of the surface layer can be maintained. The environment and applications that can be used are wider than before.
  • the method for producing a metal product according to claim 5 is a nitride layer having a thickness of at least 1.5 times or more the thickness of the chromium compound layer contained in the surface-modified layer finally formed by the nitriding treatment. To generate. Thereby, the precipitation layer as described above can be surely formed.
  • the chromaze treatment is carried out for a period of time during which the nitriding layer produced by the nitriding treatment has a predetermined thickness. Thereby, the precipitation layer as described above can be surely formed.
  • FIG. 1 It is a schematic diagram explaining the difference between a conventional product and this invention. It is a diagram which shows the element distribution state of the surface modification layer, (A) is Comparative Example 1, and (B) is Example 1. It is a cross-sectional photomicrograph of a surface layer portion, (A) is Comparative Example 1, and (B) is Example 1. It is a diagram which shows the cross-sectional hardness distribution of Comparative Example 1 and Example 1. FIG. It is an appearance observation photograph after a shot blast test, (A) is Comparative Example 1, and (B) is Example 1. It is an appearance observation photograph after the heating and cooling repeated test, (A) is Comparative Example 1, and (B) is Example 1. It is a cross-sectional micrograph of the surface layer part of Example 2.
  • is a ceramic layer Cr 2 N layer Background of development surface, chromium-concentrated layer of the inside and a base material alloy layer at the interface of the ceramic layer and the alloy layer, the thermal expansion coefficient is deviated Is the root of the problem. That is, the chromium rich layer of the alloy layer present between the Cr 2 N layer and the base material, there is no nitrogen. For this reason, the coefficient of thermal expansion at the above-mentioned layer interface deviates, and the resistance to repeated thermal stress is not sufficient.
  • the alloy layer interposed between the Cr 2 N layer and the base material was recalled that precipitating chromium compound is a ceramic. That is, between the Cr 2 N layer and the base material, to form a layer of the thermal expansion coefficient of the medium between the ceramic layer and the alloy layer. As a result, the dissociation of the coefficient of thermal expansion at the layer interface described above is alleviated, and the problem is solved.
  • the chromium compound it is preferable to precipitate a chromium nitride instead of a carbide such as a chromium carbide.
  • Nitride has a higher decomposition temperature than carbide and is hard to decompose even at high temperature when heated, so the performance to alleviate the deviation of the coefficient of thermal expansion of the precipitated layer does not deteriorate when used in a high temperature environment. Because it is effective.
  • FIG. 1 is a schematic view illustrating the difference between the above-mentioned conventional product and the present invention.
  • (A) is a conventional product
  • (B) is an invention of the present application.
  • FIG. 1 (A) conventional products, thermal expansion coefficient of the Cr 2 N layer and chromium-concentrated layer (high-chrome alloy layer) is greatly different. Nitrogen does not exist in the chromium-enriched layer of the alloy layer, and the coefficient of thermal expansion deviates at the layer interface.
  • the present invention is, in the deposition layer is present nitrogen, toward the base material via deposition layer from Cr 2 N layer (Cr 2 N deposition layer), thermal expansion coefficient gradually Has changed to. The deviation of the coefficient of thermal expansion at the layer interface is alleviated.
  • the coefficient of thermal expansion increases toward the bottom of the vertical axis.
  • the metal product of the present embodiment includes a base material which is an iron-based metal or a nickel-based metal, and a surface modification layer formed on the surface of the base material.
  • Base material An iron-based metal or a nickel-based metal is used as the base metal metal constituting the base metal.
  • iron-based metal various steel materials and iron-based alloys can be used.
  • steel materials and iron-based alloys include carbon steel, alloy steel, nickel chrome steel, nickel chrome molybdenum steel, chrome steel, chrome molybdenum steel, manganese steel, tool steel, stainless steel, heat resistant steel, nitrided steel, and skin.
  • Various steel types such as hardened steel can be applied.
  • a nickel-based alloy can be used as the nickel-based metal.
  • the nickel-based alloy for example, an alloy having a nickel content of 50% by weight or more can be used.
  • nickel-copper type Monel
  • nickel-chromium type Inconel
  • nickel-molybdenum type Hastelloy
  • any one of stainless steel, heat-resistant steel, and nickel-based alloy having a carbon concentration of 0.6% by weight or less for example, ferritic stainless steels such as SUS410L and SUS430, martensitic stainless steels such as SUS410 and SUS420J2, two-phase stainless steels such as SUS821L1, SUS323L and SUS329J31, SUS329J3L, SUS329J4L and SUS327L1, SUS304, SUS316 and SUS310.
  • Ferritic stainless steels such as SUH21 and SUH409, martensitic heat resistant steels such as SUH3 and SUH11, austenitic heat resistant steels such as SUH35 and SUH660, heat resistant cast steels such as SCH21 and SCH22, and nickel groups such as ALLOY625 and ALLOY800H.
  • An alloy or the like can be preferably used.
  • Such a stainless steel, heat-resistant steel, and nickel-based alloy having high corrosion resistance that does not contain cementite in the base material are subjected to, for example, nitriding treatment to diffuse and permeate nitrogen atoms, and then chromium diffusion and permeation treatment.
  • nitriding treatment to diffuse and permeate nitrogen atoms
  • chromium diffusion and permeation treatment In order to form a chromium nitride layer as a chromium compound layer on the surface and alleviate the difference in thermal expansion coefficient between the base metal and the base metal, it is possible to form a precipitation layer in which chromium nitride is precipitated in the base metal. ..
  • the surface modification layer is composed of a chromium compound layer existing on the surface side and a precipitation layer existing between the chromium compound layer and the base material.
  • the surface modification layer can be formed on the surface of the base material by subjecting the base material to a nitriding treatment and a chromaze treatment. At this time, if necessary, a halogenation treatment is performed before the nitriding treatment.
  • the chromium compound layer is formed by combining the nitrogen atoms of the nitride layer formed on the surface of the base metal by the above-mentioned nitriding treatment and the chromium atoms that have penetrated into the above-mentioned nitride layer by the above-mentioned chromizing treatment.
  • the nitrided layer is an iron nitride layer on the surface and a nitrogen diffusion layer in the deep part thereof. The iron nitride layer on the surface may not be formed depending on conditions such as nitriding treatment.
  • Chromium compound constituting the chromium compound layer is preferably a Cr 2 N.
  • the chromium compound layer can be formed to a thickness of about 5 to 50 ⁇ m from the viewpoint of performance and economy.
  • the precipitation layer is formed by precipitating a chromium compound in the base metal metal constituting the base material.
  • the precipitation layer is formed by invading the nitrogen diffusion layer in which nitrogen atoms are diffused in the base metal by the above-mentioned nitriding treatment by the above-mentioned chromium treatment. That is, the chromium atom that has penetrated deeper than the chromium compound layer forms a chromium compound with the nitrogen atom existing in the nitrogen diffusion layer and precipitates. Since it is on the deeper side than the surface, the nitrogen atom concentration in the nitrogen diffusion layer is low, and the chromium compound does not form a layer as in the above-mentioned chromium compound layer, but the particulate chromium compound is precipitated.
  • the coefficient of thermal expansion of each layer increases sequentially from the surface to the deep part with the chromium compound layer ⁇ precipitation layer ⁇ base material. Therefore, the difference in the coefficient of thermal expansion between the layers becomes small. This increases the resistance of the surface layer to repeated thermal stresses.
  • the closer the precipitation layer is to the chromium compound layer on the surface side the larger the precipitation amount of the chromium compound.
  • the closer the precipitation layer is to the base material in the deep part the smaller the precipitation amount of the chromium compound is.
  • the chromium compound is preferably a chromium nitride, not a carbide such as a chromium carbide.
  • Nitride has a higher decomposition temperature than carbide and is less likely to decompose even at high temperatures when heated, so the performance of mitigating the deviation of the coefficient of thermal expansion of the precipitated layer is less likely to deteriorate when used in a high temperature environment. Because.
  • the nitrogen concentration of the precipitation layer is higher as it is closer to the chromium compound layer on the surface side, and is lower as it is closer to the base material in the deep part.
  • the coefficient of thermal expansion of the precipitation layer gradually increases from the surface toward the deep part. Therefore, the coefficient of thermal expansion between each layer gradually increases from the surface chromium compound layer toward the deep base material. This makes the surface layer more resistant to repeated thermal stresses. That is, peeling and cracking can be prevented by absorbing the strain generated by the thermal stress.
  • the precipitation layer can be formed to have a thickness of about 5 to 100 ⁇ m at a portion where the nitrogen concentration is 5 atomic% or more. A more preferable range of the thickness of the precipitation layer is 8 to 50 ⁇ m.
  • nitrogen is combined with Cr whose concentration decreases toward the inside, Cr 2 N whose precipitation amount decreases toward the inside is formed, and the precipitation layer of the present invention is formed. In such a precipitation layer, the hardness gradually decreases toward the inside.
  • the metal product of the present embodiment includes a base material which is an iron-based metal or a nickel-based metal, and a surface modification layer formed on the surface of the base material.
  • the surface modification layer includes a chromium compound layer existing on the surface side and a precipitation layer existing between the chromium compound layer and the base material. That is, a precipitation layer exists between the chromium compound layer, which is a hard ceramic layer, and the base material, which is an iron-based or nickel-based metal.
  • the precipitation layer is formed by precipitating a chromium compound in the base metal constituting the base material. Therefore, the coefficient of thermal expansion of each layer gradually increases from the surface to the deep part, with the chromium compound layer ⁇ precipitation layer ⁇ base material.
  • the difference in the coefficient of thermal expansion between the layers is smaller than that in the prior art in which the coefficient of thermal expansion greatly deviates between the chromium compound layer on the surface, the chromium-concentrated layer, and the base material.
  • the surface layer has higher resistance to repeated thermal stress than before, and the heat resistance, corrosion resistance, and wear resistance of the surface layer can be maintained.
  • the environment and applications that can be used are wider than before.
  • the coefficient of thermal expansion of the precipitation layer gradually increases from the surface to the deep part. Therefore, the coefficient of thermal expansion changes continuously rather than stepwise from the chromium compound layer on the surface side to the base material.
  • the surface layer has higher resistance to repeated thermal stress than before, and the heat resistance, corrosion resistance, and wear resistance of the surface layer can be maintained.
  • the environment and applications that can be used are wider than before.
  • the base material is any one of stainless steel, heat-resistant steel, and nickel-based alloy having a carbon concentration of 0.6% by weight or less.
  • a surface modification layer containing two layers, a chromium compound layer and a precipitation layer By forming a surface modification layer containing two layers, a chromium compound layer and a precipitation layer, on such a base material, a metal product having excellent properties can be obtained.
  • Stainless steels, heat-resistant steels, and nickel-based alloys having a carbon concentration of 0.6% by weight or less do not contain high concentrations of carbon such that cementite is present in the base material. Therefore, it is not possible to form an intermediate layer made of a carbide layer on the surface layer and a composite carbide of iron and Cr or the like inside the carbide layer only by performing the diffusion permeation treatment of chromium.
  • a chromium nitride layer is formed as a chromium compound layer on the surface, and the difference in coefficient of thermal expansion between the base material and the like is formed. It is possible to form a precipitation layer in which chromium nitride is precipitated in the base metal in order to alleviate the above.
  • This metal product has extremely high hardness, excellent heat resistance and corrosion resistance, and exhibits excellent performance in environments such as high-temperature oxidation, high-temperature corrosion, erosion, and cavitation.
  • the above metal products exhibit excellent performance in an acid / alkali environment, a neutral environment, and a corrosive environment such as chloride such as seawater.
  • the metal product can be applied to parts that require heat resistance and wear resistance in a turbocharger, for example, in the case of automobile parts.
  • a turbocharger for example, in the case of automobile parts.
  • it prevents melting damage to the alloy and maintains excellent performance.
  • it can be applied to many parts such as blade materials, valve materials, pump materials, etc. in the environment such as chemical industry, thermal power generation, and alternative energy.
  • it can be applied to materials and parts used in an acid / alkali environment, a neutral environment, and a corrosive environment such as chloride such as seawater.
  • the base metal which is an iron-based metal or a nickel-based metal
  • nitriding treatment the base metal is heated and held in an atmosphere containing a nitriding source gas.
  • chromaze treatment the nitrided base material is present in a powder containing metallic chromium powder and is heated and held.
  • a halogenation treatment can be performed prior to the nitriding treatment.
  • the halogenation treatment is performed by heating and holding the base metal in an atmosphere gas containing halogen using a heating furnace capable of controlling the atmosphere.
  • halogen gas such as F 2 , Cl 2 , HCl, NF 3 or a halide gas can be used.
  • a mixed gas containing 0.5 to 20% by volume of halogen and the balance being nitrogen gas, hydrogen gas, an inert gas or the like can be used.
  • the halogenation treatment activates the surface by heating and holding the base material at 200 to 550 ° C. for about 10 minutes to 3 hours in the atmospheric gas.
  • nitriding treatment In the nitriding treatment, if necessary, the halogenated base material is heated and held in an atmosphere containing a nitriding source gas.
  • any method of gas nitriding treatment, gas nitrocarburizing treatment, salt bath nitriding treatment, vacuum nitriding treatment, and ion nitriding (plasma nitriding) treatment can be applied.
  • the gas nitriding / gas nitrocarburizing is performed in an atmosphere of nitriding or soft nitriding, that is, in an atmosphere in which NH 3 is used as a nitrogen source and N 2 , CO, CO 2 , H 2 and the like are mixed as necessary. This can be done by heating and holding the base metal that has been halogenated.
  • the salt bath nitriding can be performed by heating and holding the base metal in a salt bath containing cyanide or cyanic acid as a main component.
  • ion nitriding In ion nitriding (plasma nitriding), a glow discharge is generated by applying a DC voltage of several hundred volts with the furnace body as the anode and the object to be treated as the cathode in a nitrogen mixed gas atmosphere of 0.1 to 10 Pa.
  • the ionized gas component is accelerated at high speed to collide with the surface of the object to be treated, which is heated and nitriding is promoted by a sputtering action or the like.
  • the heating temperature and holding time can be appropriately determined according to the nitriding method to be adopted and the characteristics of the target surface modification layer. For example, it can be heated and held at a predetermined temperature within the range of 350 to 900 ° C. (preferably 350 to 650 ° C.) for a predetermined time.
  • a nitrogen diffusion layer having a high nitrogen concentration is formed on the surface layer portion of the base material.
  • the chromium atom that diffuses and permeates by the chromium treatment and the nitrogen atom existing in the nitrogen diffusion layer are bonded to form a chromium nitride layer as a chromium compound layer.
  • the soft nitriding treatment is performed as the above nitriding treatment, a carbon dioxide diffusion layer having a high nitrogen concentration and a high carbon concentration is formed on the surface layer portion of the base material.
  • the chromium atom that diffuses and permeates by the chromium treatment is bonded to the nitrogen atom and the carbon atom existing in the carbon dioxide diffusion layer, and a chromium nitride layer is formed as a chromium compound layer.
  • a diffusion layer in which nitrogen is diffused at a nitrogen concentration of 10 atomic% or more and a thickness of 5 ⁇ m or more by the above nitriding treatment.
  • a treatment for normalizing the surface can be performed if necessary.
  • a process such as shot peening or a barrel can be adopted.
  • the nitrided base material is present in a powder containing metallic chromium powder and is heated and held.
  • chromium treatment chromium atoms are diffused and permeated from the surface of the base metal after the nitriding treatment.
  • the chromaze treatment is performed only for a time when the nitriding layer (compound layer + diffusion layer) generated by the nitriding treatment has a predetermined thickness.
  • the nitriding layer compound layer + diffusion layer
  • the chromaze treatment can be performed by the powder packing method.
  • the powder pack method is This is performed by burying the base metal that has been subjected to the nitriding treatment in the treatment agent powder filled in the heat-resistant case, placing the heat-resistant case in an atmosphere furnace, and heating and holding the heat-resistant case while flowing a gas for promoting the reaction. By doing so, the chromium atoms are treated so as to diffuse and permeate from the surface of the base metal after the nitriding treatment.
  • a metal chromium powder or an iron-chromium alloy powder, an Al 2 O 3 powder for preventing sintering, and a powder agent to which a small amount of NH 4 Cl or NH 4 F for promoting a reaction is added are used. Can be done.
  • H 2 or Ar As the gas for promoting the reaction, H 2 or Ar can be used.
  • Heat holding is held at a predetermined temperature within the range of 850 to 1200 ° C. (preferably 900 to 1200 ° C.) for a predetermined time. By doing so, chromium atoms are diffused and permeated from the surface of the base metal after the nitriding treatment to form a surface modification layer.
  • a surface modification layer is formed on the surface of the base material by subjecting the above-mentioned base material to a nitriding treatment and a chromaze treatment.
  • the surface modification layer includes a chromium compound layer existing on the surface side and a precipitation layer existing between the chromium compound layer and the base material.
  • the precipitation layer is formed by precipitating a chromium compound in the base metal constituting the base material.
  • Chromium compounds to form the chromium compound layer is preferably a Cr 2 N.
  • the precipitation layer inside the Cr 2 N layer can be rephrased as the inclined structure layer of Cr 2 N.
  • Such a precipitated layer is thermodynamically not high enough to form Cr 2 N in layers.
  • amount of precipitation of Cr 2 N decreases as the nitrogen concentration decreases.
  • the nitrogen concentration becomes such that Cr 2 N cannot be precipitated. In this manner, the deposition layer is than an inclined deposition layer of Cr 2 N.
  • the Cr 2 N is higher decomposition temperature than carbides, for difficult to decompose at high temperatures when heated, deterioration in performance to mitigate the divergence of the thermal expansion coefficient of the deposited layer when used in a high temperature environment This is because it is difficult to do.
  • a base material which is an iron-based metal or a nickel-based metal is subjected to a nitriding treatment in which the base material is heated and held in an atmosphere containing a nitride source gas, and a powder containing metal chromium powder is performed. Chromize treatment is performed in which the above-mentioned nitriding base material is present and held by heating. As a result, a surface modification layer is formed on the surface of the base material.
  • the surface modification layer is made to include a chromium compound layer existing on the surface side and a precipitation layer existing between the chromium compound layer and the base material.
  • the precipitation layer has a structure in which a chromium compound is precipitated in the base metal metal constituting the base material. Therefore, the coefficient of thermal expansion of each layer gradually increases from the surface to the deep part, with the chromium compound layer ⁇ precipitation layer ⁇ base material. Therefore, the difference in the coefficient of thermal expansion between the layers is smaller than that in the prior art in which the coefficient of thermal expansion greatly deviates between the chromium compound layer on the surface, the chromium-concentrated layer, and the base material. As a result, the surface layer has higher resistance to repeated thermal stress than before, and the heat resistance, corrosion resistance, and wear resistance of the surface layer can be maintained. The environment and applications that can be used are wider than before.
  • FIG. 2A shows the elemental distribution of the surface modified layer formed by subjecting the SUS304 base material to fluorine treatment, nitriding treatment and chromaze treatment under the following conditions.
  • Fluorine treatment Atmosphere: Fluorine-based gas (NF 3 : 10 vol% + N 2 : 90 vol%) Temperature: 300 ° C Time: 15 minutes ⁇ Nitriding treatment Atmosphere: NH 3 : 50 vol% + N 2 : 50 vol% Temperature: 570 ° C Time: 30 minutes ⁇ Chromize treatment
  • Treatment agent Powdered Cr or Fe-Cr alloy to which a required amount of Al 2 O 3 for preventing sintering is added and a small amount of NH 4 Cl for reaction promotion is added.
  • Air flow Hydrogen Or argon airflow Temperature: 1050 ° C Time: 10 hours
  • FIG. 2B shows the elemental distribution of the surface modified layer formed by subjecting the SUS310S base material to a fluorine treatment, a nitriding treatment, and a chromaze treatment under the following conditions.
  • Treatment agent Metal Cr grains or Fe-Cr alloy grains + Al 2 O 3 for anti-sintering + Small amount NH 4 Cl for reaction promotion
  • Airflow Hydrogen or Argon Temperature: 1050 ° C Time: 2 hours
  • a layer having a high concentration of Cr and N and a low concentration of Fe is formed at a thickness of about 10 to 20 ⁇ m on the surface side.
  • This can be regarded as a chromium nitride layer.
  • the chromium nitride layer contains about 80% by weight of chromium and about 10% by weight of nitrogen as measured by the weight concentration ratio shown in FIG. 2 (A).
  • chromium is about 60 atomic% and nitrogen is about 30 atomic%. This allows identified as Cr 2 N.
  • a layer having a high concentration of Fe and Cr is formed at a thickness of about 10 to 60 ⁇ m on the lower side thereof. This is a chromium-enriched layer in which chromium is diffused and permeated into the base material.
  • the surface in FIG. 2A is the position where Cr and N rise.
  • Comparative Example 1 is nitrogen in the high Cr concentration layer underlying the Cr 2 N layer has not been detected, are not substantially nitrogen present.
  • the layer having this inclined composition is the precipitation layer of the present invention.
  • FIG. 3A is a cross-sectional micrograph of the surface layer portion of Comparative Example 1.
  • FIG. 3B is a cross-sectional micrograph of the surface layer portion of Example 1 above. Comparative Example 1, Cr 2 N layer on the surface, the interface of the high-Cr diffusion layer and the base material are clearly observed. Example 1, the interface of the deposited layer and the base material with Cr 2 N layer and under it, not clearly observed as compared to Comparative Example 1.
  • FIG. 4 shows the results of measuring the cross-sectional hardness of Comparative Example 1 and Example 1.
  • the hardness is as high as MHv1500 or more at about 10 ⁇ m from the surface, but the hardness is sharply lowered to about MHv500 or less at a depth of 20 ⁇ m or more from the surface. Nitrogen is not substantially present in this portion, substantially free even precipitation of Cr 2 N.
  • Example 1 a layer having a high hardness of about 20 ⁇ m is present from the surface, and a hardness gradient layer is formed in which the hardness gradually decreases from about MHv1400 to about MHv500 or less toward the base material side. That is, about 20 ⁇ m from the surface is a chromium compound layer having the hardness of the chromium compound layer, and a portion having a depth of about 50 ⁇ m or more from the surface is the base material layer having the hardness of the base material. It is a hardness gradient layer between the material layers, but the hardness gradually decreases.
  • the chromium concentration and the nitrogen concentration are gradually decreased. At least 5 atomic% or more nitrogen atoms is combine with chromium Cr 2 N by Kuromaizu process performed at 850 ° C. or higher. Therefore, under the Cr 2 N layer, a layer of chromium concentration and the nitrogen concentration decreases gradually is formed.
  • This layer is a deposition layer of the present invention that Cr 2 N is the precipitation amount toward the base material side dispersed precipitates is gradually reduced.
  • FIG. 5A is an appearance observation photograph of Comparative Example 1 after shot blasting was performed for 10 seconds.
  • FIG. 5B is an appearance observation photograph of Example 1 after shot blasting was performed for 30 seconds.
  • a large number of peelings caused by the impact of shot blasting occurred in the portions indicated by some arrows as an example. No such peeling or cracking occurred on the surface of Example 1.
  • FIG. 6A is an appearance observation photograph of Comparative Example 1.
  • FIG. 6B is an appearance observation photograph of Example 1.
  • Example 2 SUS329J4L, which is a duplex stainless steel, was used as a base material and subjected to fluorine treatment, nitriding treatment and chromaze treatment under the following conditions.
  • FIG. 7 is a cross-sectional micrograph of the surface layer portion of Example 2.
  • Example 2 also, on the inner side of the Cr 2 N layer have increases and N concentration, the austenite phase is stabilized, precipitation of the ⁇ layer is not observed.
  • FIG. 8 is a diagram showing the element distribution state of the surface modification layer of Example 2.
  • Example 2 also, be graded composition region is formed as going inside the Cr 2 N layer clearly seen.
  • Example 2 it can be seen that the SUS329J4L ferritic stainless steel has a structure in which precipitation of the ⁇ phase is suppressed and peeling is difficult.
  • FIG. 9 is an appearance observation photograph after performing a shot blast test (glass powder: 0.4 MPa ⁇ 30 seconds) in Example 2 above.
  • FIG. 10 is an appearance observation photograph after performing a test in which heating and cooling from 1000 ° C. to room temperature is repeated 100 times in Example 2. In this case as well, no peeling or cracking occurred.
  • Table 1 below shows the treatment conditions, the thickness of each treatment layer, and the presence or absence of peeling or cracking in Examples 1 to 8 and Comparative Examples 1 to 4.
  • the hardness of Cr 2 N layer becomes MHv1400 or more, MHv1400 since following MHv500 more regions of Cr 2 N is in the dispersed precipitated hardness is increased hardness gradient layer, to identify the thickness of MHv500 ⁇ 1400 from a cross-sectional hardness measurement results, expressed as the deposition layer thickness It was done.
  • the thickness of MHv500 to 1400 is similarly specified and described from the cross-sectional hardness measurement result.
  • the thickness of the nitrided layer (compound layer + diffusion layer) formed by the nitriding treatment is the surface modified layer finally formed. It is at least 1.5 times the thickness of the thickness of the chromium compound layer (Cr 2 N layer) contained.
  • nitride layer thickness formed by the nitriding treatment is 1.5 times or less the thickness of the finally formed by the chromium compound layer (Cr 2 N layer).

Abstract

Provided is a metal component having a surface layer that is resistant to heat/corrosion and wear, the surface layer having high durability with respect to repeated thermal stress. The present invention comprises a parent material that is an iron-based metal or a nickel-based metal, and a surface improvement layer formed on the surface of the parent material. The surface improvement layer is configured so as to include a chromium compound layer that is present on the surface side, and a deposition layer that is present between the chromium compound layer and the parent material, the deposition layer being such that the chromium compound is deposited in a parent-material metal constituting the parent material. The thermal expansion coefficients of these layers increases sequentially from the surface toward a deep section such that the thermal expansion coefficient of the chromium compound layer is less than that of the deposition layer, which in turn is less than that of the parent material. Specifically, the difference in thermal expansion coefficient between each of the layers is low. This makes it possible to raise the durability of the surface layer with respect to repeated thermal stress and to maintain the characteristics of heat/corrosion resistance and wear resistance of the surface layer. There are many environments and applications in which the present invention can be used.

Description

金属製品およびその製造方法Metal products and their manufacturing methods
 本発明は、金属製品およびその製造方法に関するものである。 The present invention relates to a metal product and a method for manufacturing the same.
 鉄系金属の表面にクロムの窒化物からなる表面層を形成し、その鉄系金属の耐摩耗性・耐酸化性・耐食性などを改善する技術がしられている。このような技術について、本出願人は、つぎの特許文献1に示す技術を開発した。また、本出願人は、関連する技術に関する先行技術として、下記の特許文献2を把握している。 Technology is being made to form a surface layer made of chromium nitride on the surface of the iron-based metal and improve the wear resistance, oxidation resistance, corrosion resistance, etc. of the iron-based metal. Regarding such a technique, the applicant has developed the technique shown in Patent Document 1 below. In addition, the applicant has grasped the following Patent Document 2 as prior art related to the related technology.
特開2016-74948号公報Japanese Unexamined Patent Publication No. 2016-74948 特開2011-122190号公報Japanese Unexamined Patent Publication No. 2011-122190
 上記特許文献1は、鉄合金材料にあらかじめ窒化処理を施した後にクロマイジング処理を施して、クロムの炭窒化物からなる表面層を形成しようとするものである。 The above-mentioned Patent Document 1 is intended to form a surface layer made of chromium carbonitride by subjecting an iron alloy material to a nitriding treatment in advance and then a chromasing treatment.
 上記特許文献1には、つぎの記載がある。
〔0020〕
 請求項1記載の金属の表面改質方法は、鉄系金属またはニッケル系金属である母材を準備する。鉄系金属やニッケル系金属は、酸化皮膜や不動態皮膜で表面が覆われている。表面に酸化皮膜や不動態皮膜が存在すると、一般に窒素原子の拡散浸透の妨げになりやすい。上記母材を、窒化源ガスを含む雰囲気で加熱保持する窒化処理を行う。この窒化処理により、ハロゲン化処理で活性化した母材の表面に窒素原子を拡散浸透させる。その後、上記窒化した母材を、金属クロム粉末を含む粉末中に存在させて850~1200℃の温度に加熱保持するクロマイズ処理を行う。このクロマイズ処理により、窒素原子が拡散浸透した表層部にクロム原子が拡散浸透し、表面改質層が形成される。
〔0087〕
 図5(a)図5(b)は、実施例で形成された表面改質層の元素分布状況である。測定は、EPMA(X線マイクロアナライザー)により、材料断面の濃度分布を測定した。
 図5(a)はSUS304母材に、フッ化処理、軟窒化処理およびクロマイズ処理を施して形成された表面改質層である。軟窒化処理は570℃×2時間行った。
 図5(b)はSUS304母材に、フッ化処理、窒化処理およびクロマイズ処理を施して形成された表面改質層である。窒化処理は570℃×30分行った。
 いずれも、表面側の50μm程度の厚みにおいてCrとNの濃度が高く、Feの濃度が低い層が形成されている。これが窒化クロム層とみることができる。この窒化クロム層は、クロムが約82重量%、窒素が約11重量%であり、CrNであると同定することができる。また、その下側の60μm程度の厚みにおいて、窒素の濃度が低く、FeとCrの濃度が高い層が形成されている。これは、母材にクロムが拡散浸透したクロム濃化層とみることができる。
The above-mentioned Patent Document 1 has the following description.
[0020]
The metal surface modification method according to claim 1 prepares a base material which is an iron-based metal or a nickel-based metal. The surface of iron-based metals and nickel-based metals is covered with an oxide film or a passivation film. The presence of an oxide film or a passivation film on the surface generally tends to hinder the diffusion and permeation of nitrogen atoms. The nitriding treatment is performed in which the base material is heated and held in an atmosphere containing a nitriding source gas. By this nitriding treatment, nitrogen atoms are diffused and permeated on the surface of the base material activated by the halogenation treatment. Then, the nitrided base material is subjected to a chromaze treatment in which the nitrided base material is present in a powder containing metallic chromium powder and is heated and held at a temperature of 850 to 1200 ° C. By this chromium treatment, chromium atoms are diffused and permeated into the surface layer portion where nitrogen atoms are diffused and permeated, and a surface modification layer is formed.
[0087]
5 (a) and 5 (b) show the elemental distribution of the surface modification layer formed in the examples. The measurement was carried out by measuring the concentration distribution of the material cross section by EPMA (X-ray microanalyzer).
FIG. 5A is a surface modification layer formed by subjecting the SUS304 base material to a fluorine treatment, a soft nitriding treatment, and a chromaze treatment. The soft nitriding treatment was performed at 570 ° C. for 2 hours.
FIG. 5B is a surface modification layer formed by subjecting the SUS304 base material to a fluorine treatment, a nitriding treatment, and a chromaze treatment. The nitriding treatment was performed at 570 ° C. for 30 minutes.
In each case, a layer having a high concentration of Cr and N and a low concentration of Fe is formed at a thickness of about 50 μm on the surface side. This can be regarded as a chromium nitride layer. The chromium nitride layer is chromium about 82 wt%, nitrogen about 11% by weight, can be identified as a Cr 2 N. Further, at a thickness of about 60 μm on the lower side thereof, a layer having a low nitrogen concentration and a high Fe and Cr concentration is formed. This can be seen as a chromium-enriched layer in which chromium is diffused and permeated into the base material.
 上記特許文献2は、鉄系母材に炭化物被覆層を形成させる際に、被覆を行う元素と母材の鉄との複合炭化物からなる中間層を形成させ、母材と被覆層との熱膨張係数差に起因する被覆層の割れを防止しようとするものである。 In Patent Document 2, when a carbide coating layer is formed on an iron-based base material, an intermediate layer composed of a composite carbide of an element to be coated and iron of the base material is formed, and thermal expansion of the base material and the coating layer is performed. This is an attempt to prevent cracking of the coating layer due to a coefficient difference.
 上記特許文献2には、つぎの記載がある。
〔0007〕
 Cr皮膜を例に取ると、本発明の摺動部材は、鋼部材に、鉄とクロムの複合炭化物(Fe,Cr)Cからなる中間層を介してクロム炭化物層が被覆されていることを特徴とする。この層構造を図1(a)に示す。図1(a)に示すように・・・被膜割れを防止することができる。
〔0009〕
 また、本発明は、拡散浸透処理によって鉄とクロムの複合炭化物(Fe,Cr)Cからなる中間層を介してクロム炭化物層を鋼材部に被覆する摺動部材の製造方法であり、鋼材組織はセメンタイトをあらかじめ含み、Fe-C系状態図上のオーステナイト+セメンタイト領域で拡散浸透処理を行うことを特徴とする。鋼部材表面の組織がオーステナイト+セメンタイトの状態であると、オーステナイト+セメンタイト領域ではFeCが安定に存在するため、外部からCrを供給してFeCと反応させることにより、図1に示すような(Fe,Cr)Cからなる中間層を鋼部材表面に確実に生成することができる。
The above-mentioned Patent Document 2 has the following description.
[0007]
Taking the Cr film as an example, the sliding member of the present invention is characterized in that the steel member is coated with a chromium carbide layer via an intermediate layer composed of a composite carbide (Fe, Cr) C of iron and chromium. And. This layer structure is shown in FIG. 1 (a). As shown in FIG. 1A, cracking of the coating film can be prevented.
[0009]
Further, the present invention is a method for manufacturing a sliding member in which a chromium carbide layer is coated on a steel material portion via an intermediate layer composed of a composite carbide (Fe, Cr) C of iron and chromium by diffusion permeation treatment, and the steel material structure is It is characterized by containing cementite in advance and performing diffusion permeation treatment in the austenite + cementite region on the Fe—C system state diagram. When the structure of the surface of the steel member is in the state of austenite + cementite, Fe 3 C is stably present in the austenite + cementite region. Therefore, Cr is supplied from the outside to react with Fe 3 C, as shown in FIG. An intermediate layer made of (Fe, Cr) C can be reliably formed on the surface of the steel member.
 上記特許文献1の技術で得られる金属製品は、オーステナイト系の金属に窒化処理を行い、その後にクロマイズ処理を行う。これにより、表層のCrN層と、その内側のクロム濃化層を形成する。さらにその内側に母材が存在する。
 上記CrN層はセラミックスであり、その熱膨張係数は9×10-6/℃と小さい。最も内側に存在するオーステナイト系母材の熱膨張係数は、17×10-6/℃であり、上記CrN層と比べると約2倍になる。また、上記クロム濃化層には、実質的に窒素が存在していない。このため、上記クロム濃化層の熱膨張係数も、上記オーステナイト系母材の熱膨張係数と大きく変わらない。したがって、最表層であるCrN層と、その下層として存在するクロム濃化層および母材とのあいだで、熱膨張係数が大きく異なり乖離している。このような層構造では、たとえば1000℃以上の高温で使用される場合、加熱と冷却の繰り返しによる熱応力で、CrN層の剥離や割れを生じるおそれがある。このため、従来の金属製品は、使用できる環境や用途に制約があった。
In the metal product obtained by the technique of Patent Document 1, an austenitic metal is subjected to a nitriding treatment and then a chromaze treatment. This forms a surface layer of Cr 2 N layer, a chromium-concentrated layer of the inside. Furthermore, there is a base material inside it.
The Cr 2 N layer is ceramic, the thermal expansion coefficient of 9 × 10 -6 / ℃ and small. Thermal expansion coefficient of austenitic base material for most present inside is 17 × 10 -6 / ℃, becomes about twice as compared with the Cr 2 N layer. Further, nitrogen is substantially not present in the chromium-enriched layer. Therefore, the coefficient of thermal expansion of the chromium-enriched layer is not significantly different from the coefficient of thermal expansion of the austenitic base metal. Thus, the Cr 2 N layer is the outermost layer, in between the chromium-concentrated layer and the base material which exists as a lower layer, the thermal expansion coefficient is largely different divergence. In such a layer structure, for example when used at a high temperature of at least 1000 ° C., a thermal stress caused by repeated heating and cooling, which may cause peeling or cracking of the Cr 2 N layer. For this reason, conventional metal products have restrictions on the environment in which they can be used and their uses.
 上記特許文献2の技術で得られる鉄系摺動部材は、鋼材組織としてセメンタイトをあらかじめ含む鉄系材料を母材としてCr等の拡散浸透処理を行う。これにより、表層の炭化物層と、その内側に鉄とCr等との複合炭化物からなる中間層を形成する。さらにその内側に母材が存在する。
 この方法では、母材があらかじめセメンタイトを含む、すなわち炭素を0.6重量%以上含む鉄系材料である必要がある。このため、耐食性の高い、例えばステンレス鋼や耐熱鋼など炭素含有量の少ない材料では上記中間層を形成させることができない。このため、耐食性も必要とされる環境や用途には適用できないという問題があった。
 また、中間層に析出させる化合物が、Cr系炭化物等の炭化物であり、Cr系窒化物等と比較して高温に加熱された場合に分解しやすい。したがって、高温環境で使用される場合に性能が劣化しやすいという問題もある。
The iron-based sliding member obtained by the technique of Patent Document 2 is subjected to diffusion permeation treatment of Cr or the like using an iron-based material containing cementite as a steel material structure in advance as a base material. As a result, a carbide layer on the surface layer and an intermediate layer made of a composite carbide of iron and Cr or the like are formed inside the carbide layer. Furthermore, there is a base material inside it.
In this method, the base material needs to be an iron-based material containing cementite in advance, that is, containing 0.6% by weight or more of carbon. Therefore, the intermediate layer cannot be formed with a material having high corrosion resistance, for example, stainless steel or heat-resistant steel, which has a low carbon content. Therefore, there is a problem that it cannot be applied to an environment or an application in which corrosion resistance is also required.
Further, the compound precipitated in the intermediate layer is a carbide such as a Cr-based carbide, and is more easily decomposed when heated to a high temperature as compared with a Cr-based nitride or the like. Therefore, there is also a problem that the performance tends to deteriorate when used in a high temperature environment.
 本発明は、上記課題を解決するためになされたもので、つぎの目的をもった金属製品およびその製造方法を提供する。
 繰り返し熱応力への耐性が高い耐熱・耐食および耐摩耗性の表面層を有する金属製品およびその製造方法を提供する。
The present invention has been made to solve the above problems, and provides a metal product having the following object and a method for producing the same.
Provided are a metal product having a heat-resistant / corrosion-resistant and wear-resistant surface layer having high resistance to repeated thermal stress, and a method for producing the same.
 請求項1記載の金属製品は、上記目的を達成するため、つぎの構成を採用した。
 鉄系金属またはニッケル系金属である母材と、上記母材の表面に形成された表面改質層とを備え、
 上記表面改質層は、
 表面側に存在するクロム化合物層と、
 上記クロム化合物層と上記母材との間に存在し、上記母材を構成する母材金属中にクロム化合物が析出した析出層とを含んで構成されている。
The metal product according to claim 1 adopts the following configuration in order to achieve the above object.
A base material which is an iron-based metal or a nickel-based metal and a surface modification layer formed on the surface of the base material are provided.
The surface modification layer is
The chromium compound layer existing on the surface side and
It is formed between the chromium compound layer and the base metal, and includes a precipitation layer in which the chromium compound is precipitated in the base metal constituting the base metal.
 請求項2記載の金属製品は、請求項1記載の構成に加え、つぎの構成を採用した。
 上記析出層は、表面側のクロム化合物層に近いほど、クロム化合物の析出量が多くなっている。
The metal product according to claim 2 adopts the following configuration in addition to the configuration according to claim 1.
The closer the precipitation layer is to the chromium compound layer on the surface side, the larger the precipitation amount of the chromium compound.
 請求項3記載の金属製品は、請求項1または2記載の構成に加え、つぎの構成を採用した。
 上記母材が、炭素濃度が0.6重量%以下であるステンレス鋼,耐熱鋼,ニッケル基合金のうちいずれかであり、上記クロム化合物がクロム窒化物である。
The metal product according to claim 3 adopts the following configuration in addition to the configuration according to claim 1 or 2.
The base material is any one of stainless steel, heat-resistant steel, and nickel-based alloy having a carbon concentration of 0.6% by weight or less, and the chromium compound is a chromium nitride.
 請求項4記載の金属製品の製造方法は、上記目的を達成するため、つぎの構成を採用した。
 鉄系金属またはニッケル系金属である母材に対し、
 窒化源ガスを含む雰囲気で上記母材を加熱保持する窒化処理を行い、
 金属クロム粉末を含む粉末中に上記窒化処理した母材を存在させて加熱保持するクロマイズ処理を行うことにより、
 上記母材の表面に、
 表面側に存在するクロム化合物層と、
 上記クロム化合物層と上記母材との間に存在し、上記母材を構成する母材金属中にクロム化合物が析出した析出層とを含んで構成される
 表面改質層を形成する。
The method for producing a metal product according to claim 4 employs the following configuration in order to achieve the above object.
For base metal that is iron-based metal or nickel-based metal
Nitriding treatment is performed to heat and hold the base metal in an atmosphere containing a nitriding source gas.
By performing a chromaze treatment in which the above-mentioned nitriding base material is present in a powder containing metallic chromium powder and heat-held.
On the surface of the above base material,
The chromium compound layer existing on the surface side and
A surface-modified layer exists between the chromium compound layer and the base metal, and is formed by including a precipitation layer in which the chromium compound is precipitated in the base metal constituting the base metal.
 請求項5記載の金属製品の製造方法は、請求項4記載の構成に加え、つぎの構成を採用した。
 上記窒化処理は、最終的に形成される上記表面改質層に含まれる上記クロム化合物層の厚みの、少なくとも1.5倍以上の厚みの窒化層を生成する。
As the method for producing a metal product according to claim 5, in addition to the configuration according to claim 4, the following configuration is adopted.
The nitriding treatment produces a nitriding layer having a thickness of at least 1.5 times or more the thickness of the chromium compound layer contained in the finally formed surface modification layer.
 請求項6記載の金属製品の製造方法は、請求項5記載の構成に加え、つぎの構成を採用した。
 上記クロマイズ処理は、上記窒化処理で生成した上記窒化層が、所定の厚みになる時間を行う。
As the method for producing a metal product according to claim 6, in addition to the configuration according to claim 5, the following configuration is adopted.
In the chromaze treatment, the nitriding layer produced by the nitriding treatment is subjected to a time to reach a predetermined thickness.
 請求項1記載の金属製品は、鉄系金属またはニッケル系金属である母材と、上記母材の表面に形成された表面改質層とを備えている。上記表面改質層は、表面側に存在するクロム化合物層と、上記クロム化合物層と上記母材との間に存在する析出層とを含む。つまり、硬質のセラミック層である上記クロム化合物層と、鉄系またはニッケル系の金属である母材のあいだに、析出層が存在する。上記析出層は、上記母材を構成する母材金属中にクロム化合物が析出して構成される。
 したがって、各層の熱膨張係数は、クロム化合物層<析出層<母材と、表面から深部に向かって順次大きくなる。このため、表面のクロム化合物層とクロム濃化層および母材とのあいだで熱膨張係数が大きく乖離する従来技術にくらべ、各層間の熱膨張係数の差が小さくなる。これにより、従来よりも、表面層の繰り返し熱応力への耐性が高く、上記表面層が有する耐熱・耐食および耐摩耗性の特性を維持できる。使用できる環境や用途が従来よりも広がる。
The metal product according to claim 1 includes a base material which is an iron-based metal or a nickel-based metal, and a surface modification layer formed on the surface of the base material. The surface modification layer includes a chromium compound layer existing on the surface side and a precipitation layer existing between the chromium compound layer and the base material. That is, a precipitation layer exists between the chromium compound layer, which is a hard ceramic layer, and the base material, which is an iron-based or nickel-based metal. The precipitation layer is formed by precipitating a chromium compound in the base metal constituting the base material.
Therefore, the coefficient of thermal expansion of each layer gradually increases from the surface to the deep part, with the chromium compound layer <precipitation layer <base material. Therefore, the difference in the coefficient of thermal expansion between the layers is smaller than that in the prior art in which the coefficient of thermal expansion greatly deviates between the chromium compound layer on the surface, the chromium-concentrated layer, and the base material. As a result, the surface layer has higher resistance to repeated thermal stress than before, and the heat resistance, corrosion resistance, and wear resistance of the surface layer can be maintained. The environment and applications that can be used are wider than before.
 請求項2記載の金属製品は、上記析出層は、表面側のクロム化合物層に近いほど、クロム化合物の析出量が多くなっている。
 これにより、上記析出層の熱膨張係数は、表面から深部に向かって順次大きくなる。このため、表面側のクロム化合物層から母材にかけて、熱膨張係数が段階的ではなく連続的に変化する。これにより、従来よりも、表面層の繰り返し熱応力への耐性が高く、上記表面層が有する耐熱・耐食および耐摩耗性の特性を維持できる。使用できる環境や用途が従来よりも広がる。
In the metal product according to claim 2, the closer the precipitation layer is to the chromium compound layer on the surface side, the larger the precipitation amount of the chromium compound.
As a result, the coefficient of thermal expansion of the precipitation layer gradually increases from the surface to the deep part. Therefore, the coefficient of thermal expansion changes continuously rather than stepwise from the chromium compound layer on the surface side to the base material. As a result, the surface layer has higher resistance to repeated thermal stress than before, and the heat resistance, corrosion resistance, and wear resistance of the surface layer can be maintained. The environment and applications that can be used are wider than before.
 請求項3記載の金属製品は、上記母材が、炭素濃度が0.6重量%以下であるステンレス鋼,耐熱鋼,ニッケル基合金のうちいずれかである。
 このような母材に対し、クロム化合物層と析出層の2層を含む表面改質層を形成することにより、優れた特性をもった金属製品が得られる。炭素濃度が0.6重量%以下であるステンレス鋼,耐熱鋼,ニッケル基合金は、母材中にセメンタイトが存在するような高濃度の炭素を含まない。したがって、クロムの拡散浸透処理を行うだけでは、表層の炭化物層と、その内側に鉄とCr等との複合炭化物からなる中間層を形成することができない。たとえば窒化処理を行って窒素原子を拡散浸透させたのち、クロムの拡散浸透処理を行うことにより、表面にクロム化合物層としてクロム窒化物層を形成し、母材との間に熱膨張係数差等を緩和するため、母材金属中にクロム窒化物が析出した析出層を形成させることができる。
 この金属製品は、極めて硬度が高く耐熱性および耐食性にも優れ、高温酸化・高温腐食・エロージョン・キャビテーションなどの環境に優れた性能を発揮する。また、上記金属製品は、酸・アルカリの環境や中性環境や、海水等の塩化物等の腐食環境においても優れた性能を発揮する。そして、上記金属製品は、たとえば自動車部品であれば、ターボチャージャーにおける耐熱性および耐摩耗性を必要とする部品に適用することができる。また、たとえばアルミニウム・マグネシウム・亜鉛などのダイカストに用いる金型において、合金への溶損を防止し、優れた性能を維持する。また、化学工業・火力発電・代替エネルギーなどの環境における翼材・バルブ材・ポンプ材等をはじめとする多くの部品に適用することができる。また、酸・アルカリの環境や中性環境、海水等の塩化物等の腐食環境において使用される材料や部品に適用することができる。
The metal product according to claim 3 is any one of stainless steel, heat-resistant steel, and nickel-based alloy having a carbon concentration of 0.6% by weight or less as the base material.
By forming a surface modification layer containing two layers, a chromium compound layer and a precipitation layer, on such a base material, a metal product having excellent properties can be obtained. Stainless steels, heat-resistant steels, and nickel-based alloys having a carbon concentration of 0.6% by weight or less do not contain high concentrations of carbon such that cementite is present in the base material. Therefore, it is not possible to form an intermediate layer made of a carbide layer on the surface layer and a composite carbide of iron and Cr or the like inside the carbide layer only by performing the diffusion permeation treatment of chromium. For example, by performing nitriding treatment to diffuse and permeate nitrogen atoms, and then performing diffusion permeation treatment of chromium, a chromium nitride layer is formed as a chromium compound layer on the surface, and the difference in coefficient of thermal expansion between the base material and the like is formed. It is possible to form a precipitation layer in which chromium nitride is precipitated in the base metal in order to alleviate the above.
This metal product has extremely high hardness, excellent heat resistance and corrosion resistance, and exhibits excellent performance in environments such as high-temperature oxidation, high-temperature corrosion, erosion, and cavitation. In addition, the above metal products exhibit excellent performance in an acid / alkali environment, a neutral environment, and a corrosive environment such as chloride such as seawater. Then, the metal product can be applied to parts that require heat resistance and wear resistance in a turbocharger, for example, in the case of automobile parts. Further, for example, in a mold used for die casting of aluminum, magnesium, zinc, etc., it prevents melting damage to the alloy and maintains excellent performance. In addition, it can be applied to many parts such as blade materials, valve materials, pump materials, etc. in the environment such as chemical industry, thermal power generation, and alternative energy. Further, it can be applied to materials and parts used in an acid / alkali environment, a neutral environment, and a corrosive environment such as chloride such as seawater.
 請求項4記載の金属製品の製造方法は、鉄系金属またはニッケル系金属である母材に対し、窒化源ガスを含む雰囲気で上記母材を加熱保持する窒化処理を行い、金属クロム粉末を含む粉末中に上記窒化処理した母材を存在させて加熱保持するクロマイズ処理を行う。これにより、上記母材の表面に表面改質層を形成する。上記表面改質層を、表面側に存在するクロム化合物層と、上記クロム化合物層と上記母材との間に存在する析出層とを含むようにする。上記析出層が、上記母材を構成する母材金属中にクロム化合物が析出した構成とする。
 したがって、各層の熱膨張係数は、クロム化合物層<析出層<母材と、表面から深部に向かって順次大きくなる。このため、表面のクロム化合物層とクロム濃化層および母材とのあいだで熱膨張係数が大きく乖離する従来技術にくらべ、各層間の熱膨張係数の差が小さくなる。これにより、従来よりも、表面層の繰り返し熱応力への耐性が高く、上記表面層が有する耐熱・耐食および耐摩耗性の特性を維持できる。使用できる環境や用途が従来よりも広がる。
The method for producing a metal product according to claim 4 is to perform a nitriding treatment on a base material which is an iron-based metal or a nickel-based metal by heating and holding the base material in an atmosphere containing a nitride source gas, and containing metallic chromium powder. Chromize treatment is performed in which the above-mentioned nitriding base material is present in the powder and is heated and held. As a result, a surface modification layer is formed on the surface of the base material. The surface modification layer is made to include a chromium compound layer existing on the surface side and a precipitation layer existing between the chromium compound layer and the base material. The precipitation layer has a structure in which a chromium compound is precipitated in the base metal metal constituting the base material.
Therefore, the coefficient of thermal expansion of each layer gradually increases from the surface to the deep part, with the chromium compound layer <precipitation layer <base material. Therefore, the difference in the coefficient of thermal expansion between the layers is smaller than that in the prior art in which the coefficient of thermal expansion greatly deviates between the chromium compound layer on the surface, the chromium-concentrated layer, and the base material. As a result, the surface layer has higher resistance to repeated thermal stress than before, and the heat resistance, corrosion resistance, and wear resistance of the surface layer can be maintained. The environment and applications that can be used are wider than before.
 請求項5記載の金属製品の製造方法は、上記窒化処理により、最終的に形成される上記表面改質層に含まれる上記クロム化合物層の厚みの、少なくとも1.5倍以上の厚みの窒化層を生成する。
 これにより、上述したような析出層を確実に形成することができる。
The method for producing a metal product according to claim 5 is a nitride layer having a thickness of at least 1.5 times or more the thickness of the chromium compound layer contained in the surface-modified layer finally formed by the nitriding treatment. To generate.
Thereby, the precipitation layer as described above can be surely formed.
 請求項6記載の金属製品の製造方法は、上記クロマイズ処理は、上記窒化処理で生成した上記窒化層が、所定の厚みになる時間を行う。
 これにより、上述したような析出層を確実に形成することができる。
In the method for producing a metal product according to claim 6, the chromaze treatment is carried out for a period of time during which the nitriding layer produced by the nitriding treatment has a predetermined thickness.
Thereby, the precipitation layer as described above can be surely formed.
従来品と本発明との相違を説明する模式図である。It is a schematic diagram explaining the difference between a conventional product and this invention. 表面改質層の元素分布状況を示す線図であり、(A)は比較例1、(B)は実施例1である。It is a diagram which shows the element distribution state of the surface modification layer, (A) is Comparative Example 1, and (B) is Example 1. 表層部の断面顕微鏡写真であり、(A)は比較例1、(B)は実施例1である。It is a cross-sectional photomicrograph of a surface layer portion, (A) is Comparative Example 1, and (B) is Example 1. 比較例1および実施例1の断面硬度分布を示す線図である。It is a diagram which shows the cross-sectional hardness distribution of Comparative Example 1 and Example 1. FIG. ショットブラスト試験後の外観観察写真であり、(A)は比較例1、(B)は実施例1である。It is an appearance observation photograph after a shot blast test, (A) is Comparative Example 1, and (B) is Example 1. 加熱冷却繰り返し試験後の外観観察写真であり、(A)は比較例1、(B)は実施例1である。It is an appearance observation photograph after the heating and cooling repeated test, (A) is Comparative Example 1, and (B) is Example 1. 実施例2の表層部の断面顕微鏡写真である。It is a cross-sectional micrograph of the surface layer part of Example 2. 実施例2の表面改質層の元素分布状況を示す線図である。It is a diagram which shows the element distribution state of the surface modification layer of Example 2. 二相系ステンレス鋼であるSUS329J4Lを母材としたショットブラスト試験後の外観観察写真である。It is an appearance observation photograph after a shot blast test using SUS329J4L which is a duplex stainless steel as a base material. 二相系ステンレス鋼であるSUS329J4Lを母材とした加熱冷却繰り返し試験後の外観観察写真である。It is an appearance observation photograph after repeated heating and cooling test using SUS329J4L which is a duplex stainless steel as a base material.
 つぎに、本発明を実施するための形態を説明する。 Next, a mode for carrying out the present invention will be described.
◆開発の経緯
 表面のCrN層がセラミックス層で、その内側のクロム濃化層および母材が合金層であり、上記セラミックス層と合金層の界面で、熱膨張係数が乖離していることが問題の根幹である。つまり、CrN層と母材のあいだに存在する合金層のクロム濃化層に、窒素が存在しない。このため、上述した層界面における熱膨張係数の乖離が生じ、繰り返し熱応力に対する耐性が十分でなかった。
◆ is a ceramic layer Cr 2 N layer Background of development surface, chromium-concentrated layer of the inside and a base material alloy layer at the interface of the ceramic layer and the alloy layer, the thermal expansion coefficient is deviated Is the root of the problem. That is, the chromium rich layer of the alloy layer present between the Cr 2 N layer and the base material, there is no nitrogen. For this reason, the coefficient of thermal expansion at the above-mentioned layer interface deviates, and the resistance to repeated thermal stress is not sufficient.
 そこで、CrN層と母材のあいだに介在する合金層に、セラミックスであるクロム化合物を析出させることを想起した。つまり、CrN層と母材のあいだに、セラミックス層と合金層との中程度の熱膨張係数となる層を形成する。これにより、上述した層界面における熱膨張係数の乖離を緩和し、問題を解決しようとしたものである。 Therefore, the alloy layer interposed between the Cr 2 N layer and the base material, was recalled that precipitating chromium compound is a ceramic. That is, between the Cr 2 N layer and the base material, to form a layer of the thermal expansion coefficient of the medium between the ceramic layer and the alloy layer. As a result, the dissociation of the coefficient of thermal expansion at the layer interface described above is alleviated, and the problem is solved.
 また、上記クロム化合物として、クロム炭化物等の炭化物ではなく、クロム窒化物を析出させるのが好ましい。炭化物よりも窒化物の方が、分解温度が高く、加熱された際に高温でも分解しづらいため、高温環境で使用された場合に析出層の熱膨張係数の乖離を緩和する性能が劣化せず、効果的だからである。 Further, as the chromium compound, it is preferable to precipitate a chromium nitride instead of a carbide such as a chromium carbide. Nitride has a higher decomposition temperature than carbide and is hard to decompose even at high temperature when heated, so the performance to alleviate the deviation of the coefficient of thermal expansion of the precipitated layer does not deteriorate when used in a high temperature environment. Because it is effective.
 図1は、上述した従来品と本発明との相違を説明する模式図である。(A)は従来品であり、(B)は本願発明である。
 図1(A)に示すように、従来品は、CrN層とクロム濃化層(高クロム合金層)の熱膨張係数が大きく違う。合金層のクロム濃化層には窒素が存在せず、層界面で熱膨張係数の乖離が生じている。
 図1(B)に示すように、本発明は、上記析出層には窒素が存在し、CrN層から析出層(CrN析出層)を介して母材にかけて、熱膨張係数が徐々に変化している。層界面での熱膨張係数の乖離が緩和されている。
 なお、図1の熱膨張係数の線図では、縦軸の下にいくほど熱膨張係数が大きい。
FIG. 1 is a schematic view illustrating the difference between the above-mentioned conventional product and the present invention. (A) is a conventional product, and (B) is an invention of the present application.
As shown in FIG. 1 (A), conventional products, thermal expansion coefficient of the Cr 2 N layer and chromium-concentrated layer (high-chrome alloy layer) is greatly different. Nitrogen does not exist in the chromium-enriched layer of the alloy layer, and the coefficient of thermal expansion deviates at the layer interface.
As shown in FIG. 1 (B), the present invention is, in the deposition layer is present nitrogen, toward the base material via deposition layer from Cr 2 N layer (Cr 2 N deposition layer), thermal expansion coefficient gradually Has changed to. The deviation of the coefficient of thermal expansion at the layer interface is alleviated.
In the diagram of the coefficient of thermal expansion in FIG. 1, the coefficient of thermal expansion increases toward the bottom of the vertical axis.
◆金属製品
 本実施形態の金属製品は、鉄系金属またはニッケル系金属である母材と、上記母材の表面に形成された表面改質層とを備えている。
◆ Metal Product The metal product of the present embodiment includes a base material which is an iron-based metal or a nickel-based metal, and a surface modification layer formed on the surface of the base material.
〔母材〕
 上記母材を構成する母材金属には、鉄系金属またはニッケル系金属を使用する。
[Base material]
An iron-based metal or a nickel-based metal is used as the base metal metal constituting the base metal.
 上記鉄系金属としては、各種の鉄鋼材料および鉄基合金を用いることができる。上記鉄鋼材料および鉄基合金としては、たとえば、炭素鋼、合金鋼、ニッケルクロム鋼、ニッケルクロムモリブデン鋼、クロム鋼、クロムモリブデン鋼、マンガン鋼、工具鋼、ステンレス鋼、耐熱鋼、窒化鋼、肌焼鋼など、各種の鋼種を適用することができる。 As the iron-based metal, various steel materials and iron-based alloys can be used. Examples of the steel materials and iron-based alloys include carbon steel, alloy steel, nickel chrome steel, nickel chrome molybdenum steel, chrome steel, chrome molybdenum steel, manganese steel, tool steel, stainless steel, heat resistant steel, nitrided steel, and skin. Various steel types such as hardened steel can be applied.
 上記ニッケル系金属としては、ニッケル基合金を用いることができる。上記ニッケル基合金としては、たとえば、ニッケル含有量が50重量%以上の合金を使用することができる。具体的には、ニッケル-銅系(モネル)、ニッケル-クロム系(インコネル)、ニッケル-モリブデン系(ハステロイ)などを用いることができる。 A nickel-based alloy can be used as the nickel-based metal. As the nickel-based alloy, for example, an alloy having a nickel content of 50% by weight or more can be used. Specifically, nickel-copper type (Monel), nickel-chromium type (Inconel), nickel-molybdenum type (Hastelloy) and the like can be used.
 上記母材金属としては特に、炭素濃度が0.6重量%以下であるステンレス鋼,耐熱鋼,ニッケル基合金のうちいずれかを使用するのが好ましい。たとえば、SUS410L、SUS430等のフェライト系ステンレス鋼、SUS410、SUS420J2等のマルテンサイト系ステンレス鋼、SUS821L1、SUS323L、SUS329J31、SUS329J3L、SUS329J4L、SUS327L1等の二相系ステンレス鋼、SUS304、SUS316、SUS310S等のオーステナイト系ステンレス鋼およびSUH21、SUH409等のフェライト系耐熱鋼、SUH3、SUH11等のマルテンサイト系耐熱鋼、SUH35、SUH660等のオーステナイト系耐熱鋼、SCH21、SCH22等の耐熱鋳鋼、ALLOY625、ALLOY800H等のニッケル基合金等を好適に用いることができる。 As the base metal, it is particularly preferable to use any one of stainless steel, heat-resistant steel, and nickel-based alloy having a carbon concentration of 0.6% by weight or less. For example, ferritic stainless steels such as SUS410L and SUS430, martensitic stainless steels such as SUS410 and SUS420J2, two-phase stainless steels such as SUS821L1, SUS323L and SUS329J31, SUS329J3L, SUS329J4L and SUS327L1, SUS304, SUS316 and SUS310. Ferritic stainless steels such as SUH21 and SUH409, martensitic heat resistant steels such as SUH3 and SUH11, austenitic heat resistant steels such as SUH35 and SUH660, heat resistant cast steels such as SCH21 and SCH22, and nickel groups such as ALLOY625 and ALLOY800H. An alloy or the like can be preferably used.
 このような、母材中にセメンタイトを含まない耐食性の高いステンレス鋼、耐熱鋼、ニッケル基合金に、たとえば窒化処理を行って窒素原子を拡散浸透させたのち、クロムの拡散浸透処理を行うことにより、表面にクロム化合物層としてクロム窒化物層を形成し、母材との間に熱膨張係数差等を緩和するため、母材金属中にクロム窒化物が析出した析出層を形成させることができる。 Such a stainless steel, heat-resistant steel, and nickel-based alloy having high corrosion resistance that does not contain cementite in the base material are subjected to, for example, nitriding treatment to diffuse and permeate nitrogen atoms, and then chromium diffusion and permeation treatment. In order to form a chromium nitride layer as a chromium compound layer on the surface and alleviate the difference in thermal expansion coefficient between the base metal and the base metal, it is possible to form a precipitation layer in which chromium nitride is precipitated in the base metal. ..
〔表面改質層〕
 上記表面改質層は、表面側に存在するクロム化合物層と、上記クロム化合物層と上記母材との間に存在する析出層とを含んで構成されている。
[Surface modified layer]
The surface modification layer is composed of a chromium compound layer existing on the surface side and a precipitation layer existing between the chromium compound layer and the base material.
 上記表面改質層は、後述するように、上記母材に対し、窒化処理とクロマイズ処理を行うことにより、上記母材の表面に形成することができる。このとき、必要に応じて上記窒化処理の前にハロゲン化処理を行う。 As will be described later, the surface modification layer can be formed on the surface of the base material by subjecting the base material to a nitriding treatment and a chromaze treatment. At this time, if necessary, a halogenation treatment is performed before the nitriding treatment.
〔クロム化合物層〕
 上記クロム化合物層は、上述した窒化処理により上記母材金属表面に形成された窒化層の窒素原子と、上記クロマイズ処理により上記窒化層に侵入したクロム原子とが化合することによって形成される。上記窒化層は、表面の窒化鉄層とその深部の窒素拡散層である。表面の窒化鉄層は窒化処理等の条件によっては形成されない場合もある。
[Chromium compound layer]
The chromium compound layer is formed by combining the nitrogen atoms of the nitride layer formed on the surface of the base metal by the above-mentioned nitriding treatment and the chromium atoms that have penetrated into the above-mentioned nitride layer by the above-mentioned chromizing treatment. The nitrided layer is an iron nitride layer on the surface and a nitrogen diffusion layer in the deep part thereof. The iron nitride layer on the surface may not be formed depending on conditions such as nitriding treatment.
 上記クロム化合物層を構成するクロム化合物は、好ましくはCrNである。上記クロム化合物層は、性能と経済性の観点より5~50μm程度の厚みに形成することができる。 Chromium compound constituting the chromium compound layer is preferably a Cr 2 N. The chromium compound layer can be formed to a thickness of about 5 to 50 μm from the viewpoint of performance and economy.
〔析出層〕
 上記析出層は、上記母材を構成する母材金属中にクロム化合物が析出して構成されている。
[Precipitation layer]
The precipitation layer is formed by precipitating a chromium compound in the base metal metal constituting the base material.
 上記析出層は、上述した窒化処理により上記母材金属に窒素原子が拡散した窒素拡散層に、上記クロマイズ処理によってクロム原子が侵入することによって形成される。つまり、上記クロム化合物層よりも深部まで侵入したクロム原子が、窒素拡散層中に存在する窒素原子とクロム化合物を形成して析出する。表面よりも深部側であることから、窒素拡散層中の窒素原子濃度が低く、上述したクロム化合物層のようにクロム化合物が層を形成するのではなく、粒子状のクロム化合物が析出する。 The precipitation layer is formed by invading the nitrogen diffusion layer in which nitrogen atoms are diffused in the base metal by the above-mentioned nitriding treatment by the above-mentioned chromium treatment. That is, the chromium atom that has penetrated deeper than the chromium compound layer forms a chromium compound with the nitrogen atom existing in the nitrogen diffusion layer and precipitates. Since it is on the deeper side than the surface, the nitrogen atom concentration in the nitrogen diffusion layer is low, and the chromium compound does not form a layer as in the above-mentioned chromium compound layer, but the particulate chromium compound is precipitated.
 上記クロム化合物層と上記母材との間に上記析出層を存在させることにより、各層の熱膨張係数は、クロム化合物層<析出層<母材と、表面から深部に向かって順次大きくなる。このため、各層間の熱膨張係数の差が小さくなる。これにより、表面層の繰り返し熱応力への耐性が高くなる。 By allowing the precipitation layer to exist between the chromium compound layer and the base material, the coefficient of thermal expansion of each layer increases sequentially from the surface to the deep part with the chromium compound layer <precipitation layer <base material. Therefore, the difference in the coefficient of thermal expansion between the layers becomes small. This increases the resistance of the surface layer to repeated thermal stresses.
 上記析出層は、表面側のクロム化合物層に近いほど、クロム化合物の析出量が多くなっていることが好ましい。言い換えれば、上記析出層は、深部の母材に近いほど、クロム化合物の析出量が少ないことが好ましい。 It is preferable that the closer the precipitation layer is to the chromium compound layer on the surface side, the larger the precipitation amount of the chromium compound. In other words, it is preferable that the closer the precipitation layer is to the base material in the deep part, the smaller the precipitation amount of the chromium compound is.
 また、上記クロム化合物は、クロム炭化物等の炭化物ではなく、クロム窒化物であることが好ましい。炭化物よりも窒化物の方が、分解温度が高く、加熱された際に高温でも分解しづらいため、高温環境で使用された場合に析出層の熱膨張係数の乖離を緩和する性能が劣化しにくいからである。 Further, the chromium compound is preferably a chromium nitride, not a carbide such as a chromium carbide. Nitride has a higher decomposition temperature than carbide and is less likely to decompose even at high temperatures when heated, so the performance of mitigating the deviation of the coefficient of thermal expansion of the precipitated layer is less likely to deteriorate when used in a high temperature environment. Because.
 つまり、上記析出層は、表面側のクロム化合物層に近いほど窒素濃度が高く、深部の母材に近いほど窒素濃度が低い。このようにすることにより、上記析出層の熱膨張係数が、表面から深部に向かって次第に大きくなる。このため、各層間の熱膨張係数が表面のクロム化合物層から深部の母材に向かって傾斜的に徐々に大きくなる。これにより、表面層の繰り返し熱応力への耐性がより高くなる。つまり、熱応力により発生する歪みを吸収させることによって剥離や割れを防止できる。 That is, the nitrogen concentration of the precipitation layer is higher as it is closer to the chromium compound layer on the surface side, and is lower as it is closer to the base material in the deep part. By doing so, the coefficient of thermal expansion of the precipitation layer gradually increases from the surface toward the deep part. Therefore, the coefficient of thermal expansion between each layer gradually increases from the surface chromium compound layer toward the deep base material. This makes the surface layer more resistant to repeated thermal stresses. That is, peeling and cracking can be prevented by absorbing the strain generated by the thermal stress.
 上記析出層は、性能と経済性の観点より、窒素濃度が5原子%以上となる部分の厚みを5~100μm程度の厚みに形成することができる。上記析出層の厚みのより好ましい範囲は8~50μmである。窒化処理で浸透させた窒素を、表面のクロム化合物層(CrN層)を形成するために全て消費させるのではなく、上記析出層となる部分に窒素濃度が5原子%以上となる窒素を残す趣旨である。これにより、内部へ向かって濃度が減少するCrに対して窒素が化合し、内部へ向かって析出量が少なくなるCrNが形成され、本発明の析出層が形成される。このような析出層では、硬度も内部へ向かって漸次低下したものとなる。 From the viewpoint of performance and economy, the precipitation layer can be formed to have a thickness of about 5 to 100 μm at a portion where the nitrogen concentration is 5 atomic% or more. A more preferable range of the thickness of the precipitation layer is 8 to 50 μm. Nitrogen infiltrated by nitriding treatment, not all is consumed to form the chromium compound layer surface (Cr 2 N layer), a nitrogen concentration of nitrogen in the portion to be the deposition layer is 5 atom% or more The purpose is to leave it. As a result, nitrogen is combined with Cr whose concentration decreases toward the inside, Cr 2 N whose precipitation amount decreases toward the inside is formed, and the precipitation layer of the present invention is formed. In such a precipitation layer, the hardness gradually decreases toward the inside.
〔実施形態の効果〕
 上記実施形態の金属製品は、つぎの効果を奏する。
[Effect of Embodiment]
The metal product of the above embodiment has the following effects.
 本実施形態の金属製品は、鉄系金属またはニッケル系金属である母材と、上記母材の表面に形成された表面改質層とを備えている。上記表面改質層は、表面側に存在するクロム化合物層と、上記クロム化合物層と上記母材との間に存在する析出層とを含む。つまり、硬質のセラミック層である上記クロム化合物層と、鉄系またはニッケル系の金属である母材のあいだに、析出層が存在する。上記析出層は、上記母材を構成する母材金属中にクロム化合物が析出して構成される。
 したがって、各層の熱膨張係数は、クロム化合物層<析出層<母材と、表面から深部に向かって順次大きくなる。このため、表面のクロム化合物層とクロム濃化層および母材とのあいだで熱膨張係数が大きく乖離する従来技術にくらべ、各層間の熱膨張係数の差が小さくなる。これにより、従来よりも、表面層の繰り返し熱応力への耐性が高く、上記表面層が有する耐熱・耐食および耐摩耗性の特性を維持できる。使用できる環境や用途が従来よりも広がる。
The metal product of the present embodiment includes a base material which is an iron-based metal or a nickel-based metal, and a surface modification layer formed on the surface of the base material. The surface modification layer includes a chromium compound layer existing on the surface side and a precipitation layer existing between the chromium compound layer and the base material. That is, a precipitation layer exists between the chromium compound layer, which is a hard ceramic layer, and the base material, which is an iron-based or nickel-based metal. The precipitation layer is formed by precipitating a chromium compound in the base metal constituting the base material.
Therefore, the coefficient of thermal expansion of each layer gradually increases from the surface to the deep part, with the chromium compound layer <precipitation layer <base material. Therefore, the difference in the coefficient of thermal expansion between the layers is smaller than that in the prior art in which the coefficient of thermal expansion greatly deviates between the chromium compound layer on the surface, the chromium-concentrated layer, and the base material. As a result, the surface layer has higher resistance to repeated thermal stress than before, and the heat resistance, corrosion resistance, and wear resistance of the surface layer can be maintained. The environment and applications that can be used are wider than before.
 本実施形態の金属製品は、上記析出層は、表面側のクロム化合物層に近いほど、クロム化合物の析出量が多くなっている。
 これにより、上記析出層の熱膨張係数は、表面から深部に向かって順次大きくなる。このため、表面側のクロム化合物層から母材にかけて、熱膨張係数が段階的ではなく連続的に変化する。これにより、従来よりも、表面層の繰り返し熱応力への耐性が高く、上記表面層が有する耐熱・耐食および耐摩耗性の特性を維持できる。使用できる環境や用途が従来よりも広がる。
In the metal product of the present embodiment, the closer the precipitation layer is to the chromium compound layer on the surface side, the larger the precipitation amount of the chromium compound.
As a result, the coefficient of thermal expansion of the precipitation layer gradually increases from the surface to the deep part. Therefore, the coefficient of thermal expansion changes continuously rather than stepwise from the chromium compound layer on the surface side to the base material. As a result, the surface layer has higher resistance to repeated thermal stress than before, and the heat resistance, corrosion resistance, and wear resistance of the surface layer can be maintained. The environment and applications that can be used are wider than before.
 本実施形態の金属製品は、上記母材が、炭素濃度が0.6重量%以下であるステンレス鋼,耐熱鋼,ニッケル基合金のうちいずれかである。
 このような母材に対し、クロム化合物層と析出層の2層を含む表面改質層を形成することにより、優れた特性をもった金属製品が得られる。炭素濃度が0.6重量%以下であるステンレス鋼,耐熱鋼,ニッケル基合金は、母材中にセメンタイトが存在するような高濃度の炭素を含まない。したがって、クロムの拡散浸透処理を行うだけでは、表層の炭化物層と、その内側に鉄とCr等との複合炭化物からなる中間層を形成することができない。たとえば窒化処理を行って窒素原子を拡散浸透させたのち、クロムの拡散浸透処理を行うことにより、表面にクロム化合物層としてクロム窒化物層を形成し、母材との間に熱膨張係数差等を緩和するため、母材金属中にクロム窒化物が析出した析出層を形成させることができる。
 この金属製品は、極めて硬度が高く耐熱性および耐食性にも優れ、高温酸化・高温腐食・エロージョン・キャビテーションなどの環境に優れた性能を発揮する。また、上記金属製品は、酸・アルカリの環境や中性環境や、海水等の塩化物等の腐食環境においても優れた性能を発揮する。そして、上記金属製品は、たとえば自動車部品であれば、ターボチャージャーにおける耐熱性および耐摩耗性を必要とする部品に適用することができる。また、たとえばアルミニウム・マグネシウム・亜鉛などのダイカストに用いる金型において、合金への溶損を防止し、優れた性能を維持する。また、化学工業・火力発電・代替エネルギーなどの環境における翼材・バルブ材・ポンプ材等をはじめとする多くの部品に適用することができる。また、酸・アルカリの環境や中性環境、海水等の塩化物等の腐食環境において使用される材料や部品に適用することができる。
In the metal product of the present embodiment, the base material is any one of stainless steel, heat-resistant steel, and nickel-based alloy having a carbon concentration of 0.6% by weight or less.
By forming a surface modification layer containing two layers, a chromium compound layer and a precipitation layer, on such a base material, a metal product having excellent properties can be obtained. Stainless steels, heat-resistant steels, and nickel-based alloys having a carbon concentration of 0.6% by weight or less do not contain high concentrations of carbon such that cementite is present in the base material. Therefore, it is not possible to form an intermediate layer made of a carbide layer on the surface layer and a composite carbide of iron and Cr or the like inside the carbide layer only by performing the diffusion permeation treatment of chromium. For example, by performing nitriding treatment to diffuse and permeate nitrogen atoms, and then performing diffusion permeation treatment of chromium, a chromium nitride layer is formed as a chromium compound layer on the surface, and the difference in coefficient of thermal expansion between the base material and the like is formed. It is possible to form a precipitation layer in which chromium nitride is precipitated in the base metal in order to alleviate the above.
This metal product has extremely high hardness, excellent heat resistance and corrosion resistance, and exhibits excellent performance in environments such as high-temperature oxidation, high-temperature corrosion, erosion, and cavitation. In addition, the above metal products exhibit excellent performance in an acid / alkali environment, a neutral environment, and a corrosive environment such as chloride such as seawater. Then, the metal product can be applied to parts that require heat resistance and wear resistance in a turbocharger, for example, in the case of automobile parts. Further, for example, in a mold used for die casting of aluminum, magnesium, zinc, etc., it prevents melting damage to the alloy and maintains excellent performance. In addition, it can be applied to many parts such as blade materials, valve materials, pump materials, etc. in the environment such as chemical industry, thermal power generation, and alternative energy. Further, it can be applied to materials and parts used in an acid / alkali environment, a neutral environment, and a corrosive environment such as chloride such as seawater.
◆金属製品の製造方法
 本実施形態の金属製品の製造方法は、鉄系金属またはニッケル系金属である母材に対し、窒化処理を行い、クロマイズ処理を行う。
 上記窒化処理は、窒化源ガスを含む雰囲気で上記母材を加熱保持する。
 上記クロマイズ処理は、金属クロム粉末を含む粉末中に上記窒化処理した母材を存在させて加熱保持する。
◆ Manufacturing Method of Metal Product In the manufacturing method of the metal product of the present embodiment, the base metal, which is an iron-based metal or a nickel-based metal, is subjected to nitriding treatment and chromaze treatment.
In the nitriding treatment, the base metal is heated and held in an atmosphere containing a nitriding source gas.
In the chromaze treatment, the nitrided base material is present in a powder containing metallic chromium powder and is heated and held.
 また、本実施形態の金属製品の製造方法では、上記窒化処理に先立って、ハロゲン化処理を行うことができる。 Further, in the method for producing a metal product of the present embodiment, a halogenation treatment can be performed prior to the nitriding treatment.
〔ハロゲン化処理〕
 上記ハロゲン化処理は、雰囲気を制御できる加熱炉を用い、ハロゲンを含む雰囲気ガス中において上記母材を加熱保持することにより行う。
[Halogenation treatment]
The halogenation treatment is performed by heating and holding the base metal in an atmosphere gas containing halogen using a heating furnace capable of controlling the atmosphere.
 上記雰囲気ガスに用いるハロゲンとしては、たとえば、F、Cl、HCl、NFなどのハロゲンガスまたはハロゲン化物ガスを用いることができる。 As the halogen used for the atmosphere gas, for example, a halogen gas such as F 2 , Cl 2 , HCl, NF 3 or a halide gas can be used.
 上記雰囲気ガスは、ハロゲンを0.5~20容積%含み、残部を窒素ガス、水素ガスあるいは不活性ガスなどとした混合ガスを用いることができる。 As the atmospheric gas, a mixed gas containing 0.5 to 20% by volume of halogen and the balance being nitrogen gas, hydrogen gas, an inert gas or the like can be used.
 上記ハロゲン化処理は、上記雰囲気ガス中で、母材を200~550℃にて10分~3時間程度、加熱保持することにより、表面を活性化させる。 The halogenation treatment activates the surface by heating and holding the base material at 200 to 550 ° C. for about 10 minutes to 3 hours in the atmospheric gas.
〔窒化処理〕
 上記窒化処理は、必要に応じて上記ハロゲン化した母材を、窒化源ガスを含む雰囲気で加熱保持する。
〔Nitriding treatment〕
In the nitriding treatment, if necessary, the halogenated base material is heated and held in an atmosphere containing a nitriding source gas.
 上記窒化処理としては、ガス窒化処理、ガス軟窒化処理、塩浴軟窒化処理、真空窒化処理、イオン窒化(プラズマ窒化)処理のいずれの方法でも適用することができる。 As the nitriding treatment, any method of gas nitriding treatment, gas nitrocarburizing treatment, salt bath nitriding treatment, vacuum nitriding treatment, and ion nitriding (plasma nitriding) treatment can be applied.
 上記ガス窒化・ガス軟窒化は、窒化あるいは軟窒化する雰囲気、すなわち、NHを窒素源とし、N、CO、CO、Hなどを必要に応じて混合させた雰囲気の中に、上記ハロゲン化処理を終えた母材を加熱保持することにより行うことができる。 The gas nitriding / gas nitrocarburizing is performed in an atmosphere of nitriding or soft nitriding, that is, in an atmosphere in which NH 3 is used as a nitrogen source and N 2 , CO, CO 2 , H 2 and the like are mixed as necessary. This can be done by heating and holding the base metal that has been halogenated.
 上記塩浴窒化は、シアンないしはシアン酸を主成分とする塩浴中に、母材を加熱保持することにより行うことができる。 The salt bath nitriding can be performed by heating and holding the base metal in a salt bath containing cyanide or cyanic acid as a main component.
 イオン窒化(プラズマ窒化)は、0.1~10Paの窒素混合ガス雰囲気中で、炉体を陽極に、被処理物を陰極とし、数百ボルトの直流電圧を印加してグロー放電を生じさせ、イオン化されたガス成分を高速に加速して、被処理物表面に衝突させ、これを加熱するとともにスパッタリング作用等により窒化を進行させるものである。 In ion nitriding (plasma nitriding), a glow discharge is generated by applying a DC voltage of several hundred volts with the furnace body as the anode and the object to be treated as the cathode in a nitrogen mixed gas atmosphere of 0.1 to 10 Pa. The ionized gas component is accelerated at high speed to collide with the surface of the object to be treated, which is heated and nitriding is promoted by a sputtering action or the like.
 加熱温度と保持時間は、採用する窒化処理の手法や、目的とする表面改質層の特性に応じて適宜決定することができる。例えば、350~900℃(好ましくは350~650℃)の範囲内の所定の温度で所定時間、加熱保持することができる。 The heating temperature and holding time can be appropriately determined according to the nitriding method to be adopted and the characteristics of the target surface modification layer. For example, it can be heated and held at a predetermined temperature within the range of 350 to 900 ° C. (preferably 350 to 650 ° C.) for a predetermined time.
 上記窒化処理により、母材の表層部に窒素濃度の高い窒素拡散層を形成する。その後クロマイズ処理を行うことにより、クロマイズ処理によって拡散浸透するクロム原子と、窒素拡散層に存在する窒素原子が結合し、クロム化合物層として窒化クロム層が生成する。
 上記窒化処理として軟窒化処理を行った場合は、母材の表層部に窒素濃度と炭素濃度の高い炭窒素拡散層を形成する。その後クロマイズ処理を行うことにより、クロマイズ処理によって拡散浸透するクロム原子と、炭窒素拡散層に存在する窒素原子および炭素原子が結合し、クロム化合物層として炭窒化クロム層が生成する。
By the above nitriding treatment, a nitrogen diffusion layer having a high nitrogen concentration is formed on the surface layer portion of the base material. After that, by performing the chromium treatment, the chromium atom that diffuses and permeates by the chromium treatment and the nitrogen atom existing in the nitrogen diffusion layer are bonded to form a chromium nitride layer as a chromium compound layer.
When the soft nitriding treatment is performed as the above nitriding treatment, a carbon dioxide diffusion layer having a high nitrogen concentration and a high carbon concentration is formed on the surface layer portion of the base material. After that, by performing the chromium treatment, the chromium atom that diffuses and permeates by the chromium treatment is bonded to the nitrogen atom and the carbon atom existing in the carbon dioxide diffusion layer, and a chromium nitride layer is formed as a chromium compound layer.
 本実施形態の金属の表面改質方法では、上記窒化処理により、窒素濃度が10原子%以上で厚み5μm以上で窒素が拡散された拡散層を形成することが好ましい。 In the metal surface modification method of the present embodiment, it is preferable to form a diffusion layer in which nitrogen is diffused at a nitrogen concentration of 10 atomic% or more and a thickness of 5 μm or more by the above nitriding treatment.
 上記窒化処理の後、クロマイズ処理の前に、必要に応じて表面を正常化する処理を行うことができる。正常化する処理としては、例えば、ショットピーニング、バレルなどの処理を採用することができる。 After the above nitriding treatment and before the chromaizing treatment, a treatment for normalizing the surface can be performed if necessary. As the normalization process, for example, a process such as shot peening or a barrel can be adopted.
 上記窒化処理は、最終的に形成される上記表面改質層に含まれる上記クロム化合物層(CrN層)の厚みの少なくとも1.5倍以上の厚みの窒化層(化合物層+拡散層である)を生成するように行う。 The nitriding treatment, the chromium compound layer (Cr 2 N layer) of at least 1.5 times or more the nitride layer having a thickness in the thickness of which is contained in the surface-modified layer which is finally formed (compound layer + diffusion layer There is) to generate.
〔クロマイズ処理〕
 上記クロマイズ処理は、金属クロム粉末を含む粉末中に上記窒化した母材を存在させて加熱保持する。上記クロマイズ処理により、上記窒化処理を終えた母材の表面からクロム原子を拡散浸透させる。
[Chromaize processing]
In the chromaze treatment, the nitrided base material is present in a powder containing metallic chromium powder and is heated and held. By the chromium treatment, chromium atoms are diffused and permeated from the surface of the base metal after the nitriding treatment.
 上記クロマイズ処理は、上記窒化処理で生成した窒化層(化合物層+拡散層である)が所定の厚みになる時間だけ処理を行う。
 これにより、CrN層の内側にNおよびCrの傾斜濃度勾配を有する析出層を形成できる。
The chromaze treatment is performed only for a time when the nitriding layer (compound layer + diffusion layer) generated by the nitriding treatment has a predetermined thickness.
Thus, it is possible to form a deposition layer having a slope gradient of N and Cr in the inner side of the Cr 2 N layer.
 上記クロマイズ処理は、粉末パック法によって行うことができる。粉末パック法は、
耐熱ケースに充填した処理剤粉末のなかに窒化処理を終えた母材を埋設し、上記耐熱ケースを雰囲気炉内に入れて反応促進のためのガスを流しながら加熱保持することによって行う。このようにすることにより、上記窒化処理を終えた母材の表面からクロム原子が拡散浸透するよう処理する。
The chromaze treatment can be performed by the powder packing method. The powder pack method is
This is performed by burying the base metal that has been subjected to the nitriding treatment in the treatment agent powder filled in the heat-resistant case, placing the heat-resistant case in an atmosphere furnace, and heating and holding the heat-resistant case while flowing a gas for promoting the reaction. By doing so, the chromium atoms are treated so as to diffuse and permeate from the surface of the base metal after the nitriding treatment.
 上記処理剤粉末としては、金属クロム粉末または鉄-クロム合金粉末と、焼結防止用のAl粉末と、反応促進用のNHClまたはNHFを微量添加した粉末剤を用いることができる。 As the treatment agent powder, a metal chromium powder or an iron-chromium alloy powder, an Al 2 O 3 powder for preventing sintering, and a powder agent to which a small amount of NH 4 Cl or NH 4 F for promoting a reaction is added are used. Can be done.
 上記反応促進のためのガスとしては、HまたはArを用いることができる。 As the gas for promoting the reaction, H 2 or Ar can be used.
 加熱保持は、850~1200℃(好ましくは900~1200℃)の範囲内の所定温度において所定時間保持する。このようにすることにより、窒化処理を終えた母材の表面からクロム原子を拡散浸透させ、表面改質層を形成する。 Heat holding is held at a predetermined temperature within the range of 850 to 1200 ° C. (preferably 900 to 1200 ° C.) for a predetermined time. By doing so, chromium atoms are diffused and permeated from the surface of the base metal after the nitriding treatment to form a surface modification layer.
〔表面改質層〕
 本実施形態の金属製品の製造方法は、上述した母材に窒化処理とクロマイズ処理を行うことにより、上記母材の表面に表面改質層を形成する。
 上記表面改質層は、上述したとおり、表面側に存在するクロム化合物層と、上記クロム化合物層と上記母材との間に存在する析出層を含む。上記析出層は、上記母材を構成する母材金属中にクロム化合物が析出して構成される。
[Surface modified layer]
In the method for producing a metal product of the present embodiment, a surface modification layer is formed on the surface of the base material by subjecting the above-mentioned base material to a nitriding treatment and a chromaze treatment.
As described above, the surface modification layer includes a chromium compound layer existing on the surface side and a precipitation layer existing between the chromium compound layer and the base material. The precipitation layer is formed by precipitating a chromium compound in the base metal constituting the base material.
 上記クロム化合物層を形成するクロム化合物は、好ましくはCrNである。ここで、CrN層の内側の析出層は、CrNの傾斜組織層と言い換えることができる。このような析出層は、熱力学的に、窒素濃度がCrNを層状に形成できる程度にない。しかし、部分的にCrNを析出させる程度の窒素濃度がある。また、さらに内側に行くと、窒素濃度が低下するにつれてCrNの析出量が低下する。そして、最終的にはCrNを析出できないほどの窒素濃度となる。このようにして、上記析出層が、CrNの傾斜析出層となるのである。また、上記CrNは、炭化物よりも分解温度が高く、加熱された際に高温でも分解しづらいため、高温環境で使用された場合に析出層の熱膨張係数の乖離を緩和する性能が劣化しにくいからである。 Chromium compounds to form the chromium compound layer is preferably a Cr 2 N. Here, the precipitation layer inside the Cr 2 N layer can be rephrased as the inclined structure layer of Cr 2 N. Such a precipitated layer is thermodynamically not high enough to form Cr 2 N in layers. However, there is a nitrogen concentration enough to precipitate partially Cr 2 N. Also, if go further inward, amount of precipitation of Cr 2 N decreases as the nitrogen concentration decreases. Finally, the nitrogen concentration becomes such that Cr 2 N cannot be precipitated. In this manner, the deposition layer is than an inclined deposition layer of Cr 2 N. Moreover, the Cr 2 N is higher decomposition temperature than carbides, for difficult to decompose at high temperatures when heated, deterioration in performance to mitigate the divergence of the thermal expansion coefficient of the deposited layer when used in a high temperature environment This is because it is difficult to do.
〔実施形態の効果〕
 上記実施形態の金属製品の製造方法は、つぎの効果を奏する。
[Effect of Embodiment]
The method for producing a metal product of the above embodiment has the following effects.
 本実施形態の金属製品の製造方法は、鉄系金属またはニッケル系金属である母材に対し、窒化源ガスを含む雰囲気で上記母材を加熱保持する窒化処理を行い、金属クロム粉末を含む粉末中に上記窒化処理した母材を存在させて加熱保持するクロマイズ処理を行う。これにより、上記母材の表面に表面改質層を形成する。上記表面改質層を、表面側に存在するクロム化合物層と、上記クロム化合物層と上記母材との間に存在する析出層とを含むようにする。上記析出層が、上記母材を構成する母材金属中にクロム化合物が析出した構成とする。
 したがって、各層の熱膨張係数は、クロム化合物層<析出層<母材と、表面から深部に向かって順次大きくなる。このため、表面のクロム化合物層とクロム濃化層および母材とのあいだで熱膨張係数が大きく乖離する従来技術にくらべ、各層間の熱膨張係数の差が小さくなる。これにより、従来よりも、表面層の繰り返し熱応力への耐性が高く、上記表面層が有する耐熱・耐食および耐摩耗性の特性を維持できる。使用できる環境や用途が従来よりも広がる。
In the method for producing a metal product of the present embodiment, a base material which is an iron-based metal or a nickel-based metal is subjected to a nitriding treatment in which the base material is heated and held in an atmosphere containing a nitride source gas, and a powder containing metal chromium powder is performed. Chromize treatment is performed in which the above-mentioned nitriding base material is present and held by heating. As a result, a surface modification layer is formed on the surface of the base material. The surface modification layer is made to include a chromium compound layer existing on the surface side and a precipitation layer existing between the chromium compound layer and the base material. The precipitation layer has a structure in which a chromium compound is precipitated in the base metal metal constituting the base material.
Therefore, the coefficient of thermal expansion of each layer gradually increases from the surface to the deep part, with the chromium compound layer <precipitation layer <base material. Therefore, the difference in the coefficient of thermal expansion between the layers is smaller than that in the prior art in which the coefficient of thermal expansion greatly deviates between the chromium compound layer on the surface, the chromium-concentrated layer, and the base material. As a result, the surface layer has higher resistance to repeated thermal stress than before, and the heat resistance, corrosion resistance, and wear resistance of the surface layer can be maintained. The environment and applications that can be used are wider than before.
 つぎに、実施例について比較例と併せて説明する Next, the examples will be described together with the comparative examples.
〔比較例1〕
 図2(A)はSUS304母材に、下記の条件でフッ化処理、窒化処理およびクロマイズ処理を施して形成された表面改質層の元素分布状況である。
◎フッ化処理
 雰囲気:フッ素系ガス(NF:10vol%+N:90vol%)
 温度:300℃
 時間:15分
◎窒化処理
 雰囲気:NH:50vol%+N:50vol%
 温度:570℃
 時間:30分
◎クロマイズ処理
 処理剤:粉末状のCrないしはFe-Cr合金に焼結防止用のAlを必要量添加し、反応促進用のNHClを少量添加した粉末
 気流:水素ないしはアルゴン気流
 温度:1050℃
 時間:10時間
[Comparative Example 1]
FIG. 2A shows the elemental distribution of the surface modified layer formed by subjecting the SUS304 base material to fluorine treatment, nitriding treatment and chromaze treatment under the following conditions.
◎ Fluorine treatment Atmosphere: Fluorine-based gas (NF 3 : 10 vol% + N 2 : 90 vol%)
Temperature: 300 ° C
Time: 15 minutes ◎ Nitriding treatment Atmosphere: NH 3 : 50 vol% + N 2 : 50 vol%
Temperature: 570 ° C
Time: 30 minutes ◎ Chromize treatment Treatment agent: Powdered Cr or Fe-Cr alloy to which a required amount of Al 2 O 3 for preventing sintering is added and a small amount of NH 4 Cl for reaction promotion is added. Air flow: Hydrogen Or argon airflow Temperature: 1050 ° C
Time: 10 hours
〔実施例1〕
 図2(B)はSUS310S母材に、下記の条件でフッ化処理、窒化処理およびクロマイズ処理を施して形成された表面改質層の元素分布状況である。
◎フッ化処理
 雰囲気:フッ素系ガス(NF:10vol%+N:90vol%)
 温度:400℃
 時間:60分
◎窒化処理
 雰囲気:NH:H:N=30:20:50
 温度:590℃
 時間:20時間
◎クロマイズ処理
 処理剤:金属Cr粒ないしFe-Cr合金粒+焼結防止用Al+反応促進用の少量NHCl
 気流:水素ないしアルゴン
 温度:1050℃
 時間:2時間
[Example 1]
FIG. 2B shows the elemental distribution of the surface modified layer formed by subjecting the SUS310S base material to a fluorine treatment, a nitriding treatment, and a chromaze treatment under the following conditions.
◎ Fluorine treatment Atmosphere: Fluorine-based gas (NF 3 : 10 vol% + N 2 : 90 vol%)
Temperature: 400 ° C
Time: 60 minutes ◎ Nitriding treatment Atmosphere: NH 3 : H 2 : N 2 = 30:20:50
Temperature: 590 ° C
Time: 20 hours ◎ Chromize treatment Treatment agent: Metal Cr grains or Fe-Cr alloy grains + Al 2 O 3 for anti-sintering + Small amount NH 4 Cl for reaction promotion
Airflow: Hydrogen or Argon Temperature: 1050 ° C
Time: 2 hours
 いずれも、表面側の10~20μm程度の厚みにおいてCrとNの濃度が高く、Feの濃度が低い層が形成されている。これが窒化クロム層とみることができる。この窒化クロム層は、図2(A)の重量濃度比の測定でクロムが約80重量%、窒素が約10重量%である。また図2(B)の原子数濃度比の測定でクロムが約60原子%、窒素が約30原子%である。これにより、CrNであると同定できる。また、その下側の10~60μm程度の厚みにおいて、FeとCrの濃度が高い層が形成されている。これは、母材にクロムが拡散浸透したクロム濃化層である。なお、図2(A)における表面は、CrとNが立ち上がる位置である。 In each case, a layer having a high concentration of Cr and N and a low concentration of Fe is formed at a thickness of about 10 to 20 μm on the surface side. This can be regarded as a chromium nitride layer. The chromium nitride layer contains about 80% by weight of chromium and about 10% by weight of nitrogen as measured by the weight concentration ratio shown in FIG. 2 (A). Further, in the measurement of the atomic number concentration ratio in FIG. 2B, chromium is about 60 atomic% and nitrogen is about 30 atomic%. This allows identified as Cr 2 N. Further, a layer having a high concentration of Fe and Cr is formed at a thickness of about 10 to 60 μm on the lower side thereof. This is a chromium-enriched layer in which chromium is diffused and permeated into the base material. The surface in FIG. 2A is the position where Cr and N rise.
 上記比較例1は、CrN層の下にある高Cr濃度層に窒素は検出されておらず、実質的に窒素は存在しない。
 上記実施例1は、CrN層の下に、Cr濃度とN濃度が漸次減少する傾斜組成の層が存在する。この傾斜組成の層が本発明の析出層である。
Comparative Example 1 is nitrogen in the high Cr concentration layer underlying the Cr 2 N layer has not been detected, are not substantially nitrogen present.
Example 1 above, under the Cr 2 N layer, a layer of graded composition of Cr concentration and N concentration decreases gradually exists. The layer having this inclined composition is the precipitation layer of the present invention.
 図3(A)は、上記比較例1の表層部の断面顕微鏡写真である。
 図3(B)は、上記実施例1の表層部の断面顕微鏡写真である。
 比較例1は、表面のCrN層、高Cr拡散層および母材の界面が明瞭に観察される。
 実施例1は、CrN層とその下にある析出層および母材の界面が、比較例1に比べると明瞭に観察されない。
FIG. 3A is a cross-sectional micrograph of the surface layer portion of Comparative Example 1.
FIG. 3B is a cross-sectional micrograph of the surface layer portion of Example 1 above.
Comparative Example 1, Cr 2 N layer on the surface, the interface of the high-Cr diffusion layer and the base material are clearly observed.
Example 1, the interface of the deposited layer and the base material with Cr 2 N layer and under it, not clearly observed as compared to Comparative Example 1.
 図4は、比較例1と実施例1の断面硬度を測定した結果である。 FIG. 4 shows the results of measuring the cross-sectional hardness of Comparative Example 1 and Example 1.
 比較例1では、表面から10μm程度はMHv1500以上の高硬度となっているが、表面から20μm以降の深さではMHv500程度以下まで急激に硬度が低下している。この部分には窒素が実質的に存在せず、CrNの析出も実質的に無い。 In Comparative Example 1, the hardness is as high as MHv1500 or more at about 10 μm from the surface, but the hardness is sharply lowered to about MHv500 or less at a depth of 20 μm or more from the surface. Nitrogen is not substantially present in this portion, substantially free even precipitation of Cr 2 N.
 実施例1では、表面から20μm程度の高硬度の層が存在し、その母材側に向かってMHv1400程度からMHv500程度以下へ硬度が漸次減少する硬度傾斜層が形成されている。つまり、表面から20μm程度がクロム化合物層の硬度を有するクロム化合物層であり、表面から50μm程度以上の深さの部分が、母材の硬度を有する母材層であり、上記クロム化合物層と母材層のあいだが、しだいに硬度が減少する硬度傾斜層である。 In Example 1, a layer having a high hardness of about 20 μm is present from the surface, and a hardness gradient layer is formed in which the hardness gradually decreases from about MHv1400 to about MHv500 or less toward the base material side. That is, about 20 μm from the surface is a chromium compound layer having the hardness of the chromium compound layer, and a portion having a depth of about 50 μm or more from the surface is the base material layer having the hardness of the base material. It is a hardness gradient layer between the material layers, but the hardness gradually decreases.
 上記硬度傾斜層は、クロム濃度と窒素濃度が漸次減少している。少なくとも5原子%以上の窒素原子は、850℃以上で行うクロマイズ処理によってクロムと化合してCrNとなる。このため、CrN層の下には、クロム濃度と窒素濃度が漸次減少する層が形成される。この層が、CrNが分散析出し母材側に向かってその析出量が漸次減少する本発明の析出層である。 In the hardness gradient layer, the chromium concentration and the nitrogen concentration are gradually decreased. At least 5 atomic% or more nitrogen atoms is combine with chromium Cr 2 N by Kuromaizu process performed at 850 ° C. or higher. Therefore, under the Cr 2 N layer, a layer of chromium concentration and the nitrogen concentration decreases gradually is formed. This layer is a deposition layer of the present invention that Cr 2 N is the precipitation amount toward the base material side dispersed precipitates is gradually reduced.
 つぎに、比較例1および実施例1の表面にショットブラスト(ガラスパウダ:0.4MPa)による衝撃力を付与する試験を実施した。 Next, a test was conducted in which an impact force by shot blasting (glass powder: 0.4 MPa) was applied to the surfaces of Comparative Example 1 and Example 1.
 図5(A)は、ショットブラストを10秒実施した後の比較例1の外観観察写真である。
 図5(B)は、ショットブラストを30秒実施した後の実施例1の外観観察写真である。
 比較例1の表面には、例としていくつかの矢印で示した部分に、ショットブラストの衝撃によって生じた剥離が多数発生していた。
 実施例1の表面にはそのような剥離や割れ等は発生していなかった。
FIG. 5A is an appearance observation photograph of Comparative Example 1 after shot blasting was performed for 10 seconds.
FIG. 5B is an appearance observation photograph of Example 1 after shot blasting was performed for 30 seconds.
On the surface of Comparative Example 1, a large number of peelings caused by the impact of shot blasting occurred in the portions indicated by some arrows as an example.
No such peeling or cracking occurred on the surface of Example 1.
 さらに、1000℃から常温までの加熱冷却の繰り返しを100回行う試験を実施した。
 図6(A)は、比較例1の外観観察写真である。
 図6(B)は、実施例1の外観観察写真である。
 比較例1の表面には、例としていくつかの矢印で示した部分に剥離が多数発生していたのに加え、丸で囲んだ部分のような割れも発生していた。
 実施例1の表面にはそのような剥離や割れ等は発生していなかった。
Further, a test was carried out in which heating and cooling from 1000 ° C. to room temperature were repeated 100 times.
FIG. 6A is an appearance observation photograph of Comparative Example 1.
FIG. 6B is an appearance observation photograph of Example 1.
On the surface of Comparative Example 1, in addition to a large number of peelings occurring in the portions indicated by some arrows as an example, cracks such as the circled portions also occurred.
No such peeling or cracking occurred on the surface of Example 1.
〔実施例2〕
 実施例2として、二相系ステンレス鋼であるSUS329J4Lを母材として、下記の条件でフッ化処理、窒化処理およびクロマイズ処理を施した。
◎フッ化処理
 雰囲気:フッ素系ガス(NF:10vol%+N:90vol%)
 温度:400℃
 時間:60分
◎窒化処理
 雰囲気:NH:H:N=30:20:50
 温度:590℃
 時間:20時間
◎クロマイズ処理
 処理剤:金属Cr粒ないしFe-Cr合金粒+焼結防止用Al+反応促進用の少量NHCl
 気流:水素ないしアルゴン
 温度:1050℃
 時間:5時間
[Example 2]
As Example 2, SUS329J4L, which is a duplex stainless steel, was used as a base material and subjected to fluorine treatment, nitriding treatment and chromaze treatment under the following conditions.
◎ Fluorine treatment Atmosphere: Fluorine-based gas (NF 3 : 10 vol% + N 2 : 90 vol%)
Temperature: 400 ° C
Time: 60 minutes ◎ Nitriding treatment Atmosphere: NH 3 : H 2 : N 2 = 30:20:50
Temperature: 590 ° C
Time: 20 hours ◎ Chromize treatment Treatment agent: Metal Cr grains or Fe-Cr alloy grains + Al 2 O 3 for anti-sintering + Small amount NH 4 Cl for reaction promotion
Airflow: Hydrogen or Argon Temperature: 1050 ° C
Time: 5 hours
 図7は、実施例2の表層部の断面顕微鏡写真である。
 実施例2も、CrN層の内側にはN濃度が上昇していて、オーステナイト相が安定化し、σ層の析出は認められない。
FIG. 7 is a cross-sectional micrograph of the surface layer portion of Example 2.
Example 2 also, on the inner side of the Cr 2 N layer have increases and N concentration, the austenite phase is stabilized, precipitation of the σ layer is not observed.
 図8は、実施例2の表面改質層の元素分布状況を示す線図である。
 実施例2も、CrN層の内側に行くにつれて傾斜組成領域が形成されていることが明らかに認められる。
FIG. 8 is a diagram showing the element distribution state of the surface modification layer of Example 2.
Example 2 also, be graded composition region is formed as going inside the Cr 2 N layer clearly seen.
 SUS329J4Lなどの二相系ステンレス鋼の場合、従来の処理技術では、表層のCrN層の内側の高Cr合金層にσ層が析出する。このため、CrN層に剥離などが起きた際の耐食性が劣化する危険性が懸念される。 If the two-phase stainless steel such as SUS329J4L, in the conventional processing techniques, sigma layer is deposited on the high-Cr alloy layer of the inner surface layer of Cr 2 N layer. Therefore, the corrosion resistance when the has occurred peeling the Cr 2 N layer is a danger of degradation is concerned.
 実施例2では、SUS329J4Lの二相系ステンレス鋼において、σ相の析出を抑制し、剥離しにくい構造となることがわかる。
 図9は、上記実施例2にショットブラスト試験(ガラスパウダ:0.4MPa×30秒)を実施した後の外観観察写真である。
 図10は、上記実施例2に1000℃から常温までの加熱冷却の繰り返しを100回行う試験を実施した後の外観観察写真である。
 この場合も、剥離や割れ等は発生していなかった。
In Example 2, it can be seen that the SUS329J4L ferritic stainless steel has a structure in which precipitation of the σ phase is suppressed and peeling is difficult.
FIG. 9 is an appearance observation photograph after performing a shot blast test (glass powder: 0.4 MPa × 30 seconds) in Example 2 above.
FIG. 10 is an appearance observation photograph after performing a test in which heating and cooling from 1000 ° C. to room temperature is repeated 100 times in Example 2.
In this case as well, no peeling or cracking occurred.
 実施例1~8および比較例1~4の、処理条件、各処理層の厚さ、剥離や割れの有無を下記の表1に示す。なお、フッ化処理の雰囲気は、フッ素系ガス(NF:10vol%+N:90vol%)であり、窒化処理の雰囲気は、実施例は、NH:H:N=30:20:50であり、比較例は、NH:N=50:50である。 Table 1 below shows the treatment conditions, the thickness of each treatment layer, and the presence or absence of peeling or cracking in Examples 1 to 8 and Comparative Examples 1 to 4. The atmosphere of the fluorinated treatment is a fluorine-based gas (NF 3 : 10 vol% + N 2 : 90 vol%), and the atmosphere of the nitriding treatment is NH 3 : H 2 : N 2 = 30:20: It is 50, and the comparative example is NH 3 : N 2 = 50:50.
Figure JPOXMLDOC01-appb-T000001
Figure JPOXMLDOC01-appb-T000001
 表1に示した析出層厚さについては、本発明ではCrN層とその下にある析出層および母材の界面が明瞭ではないが、CrN層の硬度はMHv1400以上となり、またMHv1400以下でMHv500以上の領域はCrNが分散析出して硬度が上昇し硬度傾斜層となっていることから、MHv500~1400の厚さを断面硬度測定結果から特定し、析出層厚さとして表記したものである。なお、比較例については、本発明の析出層は存在しないが、同様にMHv500~1400の厚さを断面硬度測定結果から特定し表記した。 For deposit thickness shown in Table 1, although the interface of the deposited layer and the base material in the underlying Cr 2 N layer is not clear in the present invention, the hardness of Cr 2 N layer becomes MHv1400 or more, MHv1400 since following MHv500 more regions of Cr 2 N is in the dispersed precipitated hardness is increased hardness gradient layer, to identify the thickness of MHv500 ~ 1400 from a cross-sectional hardness measurement results, expressed as the deposition layer thickness It was done. In the comparative example, although the precipitation layer of the present invention does not exist, the thickness of MHv500 to 1400 is similarly specified and described from the cross-sectional hardness measurement result.
 また、表1に示したように、実施例1~8では、上記窒化処理によって形成される窒化層厚さ(化合物層+拡散層である)は、最終的に形成される上記表面改質層に含まれる上記クロム化合物層(CrN層)の厚みの少なくとも1.5倍以上の厚みである。一方、比較例1~4では、上記窒化処理によって形成される窒化層厚さが、最終的に形成される上記クロム化合物層(CrN層)の厚みの1.5倍以下である。 Further, as shown in Table 1, in Examples 1 to 8, the thickness of the nitrided layer (compound layer + diffusion layer) formed by the nitriding treatment is the surface modified layer finally formed. it is at least 1.5 times the thickness of the thickness of the chromium compound layer (Cr 2 N layer) contained. On the other hand, in Comparative Examples 1-4, nitride layer thickness formed by the nitriding treatment, is 1.5 times or less the thickness of the finally formed by the chromium compound layer (Cr 2 N layer).
◆まとめ
 CrNの傾斜組成をCrN層と母材との間に設けることによって、第1図に示したように、CrN層と母材の界面の熱膨張係数の違いを吸収し、発生する熱応力を低減させている。
 以上のことから、本願の処理により、熱応力および衝撃力による剥離や割れへの耐性が著しく改善されていることが明らかである。
By providing a graded composition of summary Cr 2 N between the Cr 2 N layer and the base material ◆, as shown in FIG. 1, absorbing the difference in thermal expansion coefficients of the interface between the Cr 2 N layer and the base material However, the generated thermal stress is reduced.
From the above, it is clear that the treatment of the present application has significantly improved resistance to peeling and cracking due to thermal stress and impact force.
◆変形例
 以上は本発明の特に好ましい実施形態について説明したが、本発明は示した実施形態に限定する趣旨ではなく、各種の態様に変形して実施することができ、本発明は各種の変形例を包含する趣旨である。
Modification Examples Although the particularly preferable embodiments of the present invention have been described above, the present invention is not limited to the embodiments shown, and can be modified into various embodiments, and the present invention is various modifications. The purpose is to include an example.

Claims (6)

  1.  鉄系金属またはニッケル系金属である母材と、上記母材の表面に形成された表面改質層とを備え、
     上記表面改質層は、
     表面側に存在するクロム化合物層と、
     上記クロム化合物層と上記母材との間に存在し、上記母材を構成する母材金属中にクロム化合物が析出した析出層とを含んで構成されている
     ことを特徴とする金属製品。
    A base material which is an iron-based metal or a nickel-based metal and a surface modification layer formed on the surface of the base material are provided.
    The surface modification layer is
    The chromium compound layer existing on the surface side and
    A metal product that exists between the chromium compound layer and the base metal, and is composed of a precipitation layer in which a chromium compound is precipitated in the base metal constituting the base metal.
  2.  上記析出層は、表面側のクロム化合物層に近いほど、クロム化合物の析出量が多くなっている
     請求項1記載の金属製品。
    The metal product according to claim 1, wherein the deposition amount of the chromium compound increases as the precipitation layer is closer to the chromium compound layer on the surface side.
  3.  上記母材が、炭素濃度が0.6重量%以下であるステンレス鋼,耐熱鋼,ニッケル基合金のうちいずれかであり、上記クロム化合物がクロム窒化物である
     請求項1または2記載の金属製品。
    The metal product according to claim 1 or 2, wherein the base material is any of stainless steel, heat-resistant steel, and nickel-based alloy having a carbon concentration of 0.6% by weight or less, and the chromium compound is a chromium nitride. ..
  4.  鉄系金属またはニッケル系金属である母材に対し、
     窒化源ガスを含む雰囲気で上記母材を加熱保持する窒化処理を行い、
     金属クロム粉末を含む粉末中に上記窒化処理した母材を存在させて加熱保持するクロマイズ処理を行うことにより、
     上記母材の表面に、
     表面側に存在するクロム化合物層と、
     上記クロム化合物層と上記母材との間に存在し、上記母材を構成する母材金属中にクロム化合物が析出した析出層とを含んで構成される
     表面改質層を形成する
     ことを特徴とする金属製品の製造方法。
    For base metal that is iron-based metal or nickel-based metal
    Nitriding treatment is performed to heat and hold the base metal in an atmosphere containing a nitriding source gas.
    By performing a chromaze treatment in which the above-mentioned nitriding base material is present in a powder containing metallic chromium powder and heat-held.
    On the surface of the above base material,
    The chromium compound layer existing on the surface side and
    It is characterized by forming a surface modification layer that exists between the chromium compound layer and the base metal and is composed of a precipitation layer in which a chromium compound is precipitated in the base metal constituting the base metal. The manufacturing method of metal products.
  5.  上記窒化処理は、最終的に形成される上記表面改質層に含まれる上記クロム化合物層の厚みの、少なくとも1.5倍以上の厚みの窒化層を生成する
     請求項4記載の金属製品の製造方法。
    The production of the metal product according to claim 4, wherein the nitriding treatment produces a nitriding layer having a thickness of at least 1.5 times or more the thickness of the chromium compound layer contained in the finally formed surface modification layer. Method.
  6.  上記クロマイズ処理は、上記窒化処理で生成した上記窒化層が、所定の厚みになる時間を行う
     請求項5記載の金属製品の製造方法。
    The method for producing a metal product according to claim 5, wherein the chromaze treatment is performed for a time during which the nitriding layer produced by the nitriding treatment reaches a predetermined thickness.
PCT/JP2020/005455 2019-11-26 2020-02-13 Metal component and method for producing same WO2021106233A1 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
CN202080071298.9A CN114585768A (en) 2019-11-26 2020-02-13 Metal product and method for manufacturing same

Applications Claiming Priority (4)

Application Number Priority Date Filing Date Title
JP2019-212791 2019-11-26
JP2019212791 2019-11-26
JP2020-013197 2020-01-30
JP2020013197A JP7370263B2 (en) 2019-11-26 2020-01-30 Metal products and their manufacturing methods

Publications (1)

Publication Number Publication Date
WO2021106233A1 true WO2021106233A1 (en) 2021-06-03

Family

ID=76129288

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2020/005455 WO2021106233A1 (en) 2019-11-26 2020-02-13 Metal component and method for producing same

Country Status (2)

Country Link
CN (1) CN114585768A (en)
WO (1) WO2021106233A1 (en)

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS57134551A (en) * 1981-02-14 1982-08-19 Sumitomo Metal Ind Ltd Manufacture of corrosion resistant steel pipe with superior workability and high temperature strength
JP2000178711A (en) * 1997-11-28 2000-06-27 Maizuru:Kk Surface treating method for ferrous material and salt bath furnace used therefor
JP2008144654A (en) * 2006-12-08 2008-06-26 Honda Motor Co Ltd Sliding component for valve gear
JP2010007134A (en) * 2008-06-27 2010-01-14 Air Water Inc Surface treatment method for steel material, surface treatment device, and steel obtained thereby
JP2017043837A (en) * 2015-08-28 2017-03-02 株式会社椿本チエイン Chain component, and chain

Family Cites Families (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US3282746A (en) * 1963-11-18 1966-11-01 Formsprag Co Method of hardening wear surfaces and product
JP2001025843A (en) * 1999-07-13 2001-01-30 Maizuru:Kk Manufacture of forged part and die for forging using the same
JP2012246524A (en) * 2011-05-26 2012-12-13 Toyota Motor Corp Method for nitriding stainless material, and nitrided material
JP6637231B2 (en) * 2014-10-07 2020-01-29 エア・ウォーターNv株式会社 Metal surface modification method and metal product

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS57134551A (en) * 1981-02-14 1982-08-19 Sumitomo Metal Ind Ltd Manufacture of corrosion resistant steel pipe with superior workability and high temperature strength
JP2000178711A (en) * 1997-11-28 2000-06-27 Maizuru:Kk Surface treating method for ferrous material and salt bath furnace used therefor
JP2008144654A (en) * 2006-12-08 2008-06-26 Honda Motor Co Ltd Sliding component for valve gear
JP2010007134A (en) * 2008-06-27 2010-01-14 Air Water Inc Surface treatment method for steel material, surface treatment device, and steel obtained thereby
JP2017043837A (en) * 2015-08-28 2017-03-02 株式会社椿本チエイン Chain component, and chain

Also Published As

Publication number Publication date
CN114585768A (en) 2022-06-03

Similar Documents

Publication Publication Date Title
CN106687615B (en) Method for modifying surface of metal and metal product
JP2005531694A (en) Surface modified stainless steel
US20050244668A1 (en) Heat-resistant ti alloy material excellent in resistance to corrosion at high temperature and to oxidation
JP3029546B2 (en) Chromium diffusion-penetration heat-resistant alloy and its manufacturing method
JPS6035989B2 (en) Improvements in the method of chromizing steel with gas
WO2020053443A1 (en) Stainless steel object having a surface modified with chromium
JP2008231563A (en) Method for manufacturing carburized parts
WO2021106233A1 (en) Metal component and method for producing same
JP7370263B2 (en) Metal products and their manufacturing methods
JP4598499B2 (en) Manufacturing method of composite layer covering member
CN105803385B (en) Valve and its surface treatment method for steam ambient
JP2014105363A (en) Ferritic surface-modified metal member and method of producing ferritic surface-modified metal member
JPH0971854A (en) Carbohardened watch member or ornament and production thereof
Taczała-Warga et al. Low-pressure ferritic nitrocarburizing: a review
Ratayski et al. Influence of elevated temperature and reduced pressure on the degradation of iron nitride compound layer formed by plasma nitriding in AISI D2 tool steels
JPH10330906A (en) Production of austenitic stainless steel product
JP2014070269A (en) Austenitic surface-modified metal member and method of manufacturing austenitic surface-modified metal member
JPH0971855A (en) Carbohardened table ware and production thereof
Kianicová Cyclic Oxidation of Diffusion Aluminide Coatings
Tarelnyk et al. Energy Dispersive X-Ray Microanalysis of Part Surface Layer Carburized by Electric Spark Alloying
Naeem et al. Improved surface properties of AISI-420 steel by TiC based coating using graphite cathodic cage with titanium lid in plasma deposition
Fonovic Nitriding behavior of Ni and Ni-based binary alloys
JP2004190560A (en) Piston ring
Nowak Control of kinetics of plasma assisted nitriding process of Ni-base alloys by substrate roughness
Mikołajczak et al. Laser alloying of 316L steel with boron and nickel

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 20894659

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 20894659

Country of ref document: EP

Kind code of ref document: A1