WO2021106087A1 - 香りの経時的な変化を表わす立体物の生成方法、プログラム、装置、および立体物 - Google Patents

香りの経時的な変化を表わす立体物の生成方法、プログラム、装置、および立体物 Download PDF

Info

Publication number
WO2021106087A1
WO2021106087A1 PCT/JP2019/046232 JP2019046232W WO2021106087A1 WO 2021106087 A1 WO2021106087 A1 WO 2021106087A1 JP 2019046232 W JP2019046232 W JP 2019046232W WO 2021106087 A1 WO2021106087 A1 WO 2021106087A1
Authority
WO
WIPO (PCT)
Prior art keywords
scent
index
time series
dimensional object
over time
Prior art date
Application number
PCT/JP2019/046232
Other languages
English (en)
French (fr)
Inventor
庄司 健
薫 森下
琢矢 横山
Original Assignee
株式会社資生堂
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 株式会社資生堂 filed Critical 株式会社資生堂
Priority to PCT/JP2019/046232 priority Critical patent/WO2021106087A1/ja
Priority to JP2021560811A priority patent/JP7354284B2/ja
Publication of WO2021106087A1 publication Critical patent/WO2021106087A1/ja

Links

Images

Classifications

    • GPHYSICS
    • G01MEASURING; TESTING
    • G01NINVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
    • G01N27/00Investigating or analysing materials by the use of electric, electrochemical, or magnetic means
    • G01N27/62Investigating or analysing materials by the use of electric, electrochemical, or magnetic means by investigating the ionisation of gases, e.g. aerosols; by investigating electric discharges, e.g. emission of cathode

Definitions

  • the present invention relates to a method, a program, an apparatus, and a three-dimensional object for generating a three-dimensional object showing a change in fragrance over time.
  • fragrant substances such as perfumes are made by mixing multiple fragrances.
  • the fragrance is emitted in order from the fragrance with high volatility to the fragrance with low volatility, so that the scent of perfume or the like changes with the passage of time.
  • a change in scent is also called a scent standing, and the changing scent is also called a top note, a middle note, or a last note in the order of passage of time.
  • Patent Document 1 the first moving image showing the change over time in the appearance of the object and the second moving image showing the change over time in the amount or ratio of the aroma component corresponding to the object are shown in time series. It is disclosed that a display that is associated and reproduced is output (paragraph [0014] of Patent Document 1).
  • the change in scent felt by a person such as a perfumer when actually smelling the scent is not necessarily linked to the change in the amount or ratio of the aroma component of Patent Document 1.
  • One aspect of the present invention includes a step of acquiring a time series of a first index of the scent that a person feels when smelling a scent and a time series of a second index of the scent measured by a measuring device.
  • a step of generating three-dimensional shape information of a three-dimensional object representing a change with time between the first index and the second index based on each acquired time series is included.
  • scent of perfume will be mainly described, but in the present invention, any scent emitted by any object (for example, scent emitted by a product, scent emitted by animals and plants, scent in a space or place, etc.) ) Can be applied.
  • any scent emitted by any object for example, scent emitted by a product, scent emitted by animals and plants, scent in a space or place, etc.
  • the "scent" used in the present specification may be any one that floats in the air and stimulates the sense of smell, and includes not only a preferable odor such as perfume but also an odor that causes discomfort such as a foul odor.
  • FIG. 1 is an overall configuration diagram according to an embodiment of the present invention.
  • the generation device 10 can transmit and receive data to and from the first index input terminal 20 and the second index input terminal 30 via an arbitrary network or storage medium.
  • the second index input terminal 30 can acquire the data measured by the measuring device 40 via an arbitrary network or storage medium.
  • the first index input terminal 20 is a terminal into which the first index of fragrance is input.
  • the first index of scent is an index of scent that a person feels when he / she smells the scent.
  • the first index of scent is the intensity of scent and the quality of scent that a person perceives when smelling the scent.
  • the first index input terminal 20 is a time series of scent indexes that a person feels when he / she smells a scent, which is input to the first index input terminal 20 (for example, input by a person such as a perfumer).
  • the data is passed to the generator 10 via a network or a storage medium.
  • the first index input terminal 20 may be any terminal such as a personal computer.
  • the second index input terminal 30 is a terminal into which a second index of fragrance is input.
  • the second index of scent is an index of scent measured by the measuring device 40.
  • the second index of the scent is the component contained in the scent and the amount of the component measured by the measuring device 40.
  • the second index input terminal 30 networks or stores time-series data of the fragrance index input to the second index input terminal 30 (for example, acquired from the measuring device 40) and measured by the measuring device 40. It is passed to the generator 10 via the medium.
  • the second index input terminal 30 may be any terminal such as a personal computer.
  • the measuring device 40 is a device that measures the second index of fragrance.
  • the measuring device 40 can measure the components contained in the scent and the amount of the components.
  • the measuring instrument 40 is a proton transfer reaction mass spectrometer (PTR-MS).
  • PTR-MS proton transfer reaction mass spectrometer
  • the measuring device 40 is not limited to PTR-MS, and may be any measuring device such as DART-MS, gas chromatography, or a sensor.
  • PTR-MS is the online chemical ionization mass spectrometer utilizing a proton transfer reaction with hydronium ions H 3 O +.
  • the appearance of the fragrance vaporizing in the air can be qualitatively and quantitatively quantified for each fragrance component in real time with time change. ..
  • the generator 10 is a three-dimensional object representing a change over time between the first index and the second index based on the time series of the first index of the scent and the time series of the second index of the scent. Generate shape information.
  • the generator 10 comprises one or more computers.
  • the generation device 10 can acquire data from the first index input terminal 20 and the second index input terminal 30 via an arbitrary network or storage medium. In the latter part, the generator 10 will be described in detail with reference to FIG.
  • first index input terminal 20 and the second index input terminal 30 have been described as separate devices in FIG. 1, they may be mounted on one device. Further, the generation device 10 may have at least a part of the functions of the first index input terminal 20 and the second index input terminal 30.
  • FIG. 2 is a functional block diagram of the generator 10 according to the embodiment of the present invention.
  • the generation device 10 includes an acquisition unit 101 and a generation unit 102. Further, the generation device 10 functions as the acquisition unit 101 and the generation unit 102 by executing the program.
  • the acquisition unit 101 acquires the time series of the first index of the scent and the time series of the second index of the scent.
  • the first index and the second index will be described separately.
  • the acquisition unit 101 acquires time-series data of the first index of the scent from the first index input terminal 20 via an arbitrary network or storage medium.
  • the first index of scent is an index of scent that a person feels when he / she smells the scent.
  • the first index of scent is an arbitrary index such as the intensity of scent, the quality of scent, and the mood felt by smelling scent, as long as the content can be felt when a person smells the scent. It's okay. That is, the first index of the scent indicates the actual feeling of the scent evaluated by a person (that is, what is felt when the scent is smelled). Further, as the first index of fragrance, one index may be used, or a plurality of indexes may be used in combination.
  • the first index of scent is the intensity of scent and the quality of scent that a person feels when he / she smells the scent.
  • the time series of scent intensity and the time series of scent quality will be described with reference to FIGS. 3 and 4.
  • FIG. 3 is an example of a time series of scent intensity according to an embodiment of the present invention.
  • the intensity of the scent indicates the intensity of the scent.
  • the intensity of the scent can be evaluated using the criteria of the following 6-step odor intensity display method. 5: Strong odor 4: Strong odor 3: Easily perceptible odor 2: Weak odor that tells what the odor is (cognitive threshold) 1: Smell that can be finally detected (detection threshold) 0: Odorless
  • a person such as a perfumer is required to perform a predetermined time (in the example of FIG. 3, 5 minutes, 30 minutes, 60 minutes, 120 minutes, 240 minutes from the predetermined start time). After 360 minutes), the intensity of the scent (eg, which of the above 6 steps) is evaluated.
  • FIG. 4 is an example of a time series of scent quality according to an embodiment of the present invention.
  • the quality of the scent indicates the type of scent.
  • the scent quality is the type of scent such as perfume such as musky, amber, woody, floral, fruity, green and citrus.
  • a person such as a perfumer is required to perform a predetermined time (in the example of FIG. 4, 5 minutes, 30 minutes, 60 minutes, 120 minutes, 240 minutes from the predetermined start time). After 360 minutes), the type of scent and the ratio of each type of scent to the whole (that is, which type of scent is strong and which type of scent is weak) are evaluated.
  • a person such as a perfumer may not smell the scent except at a predetermined time.
  • the acquisition unit 101 acquires time-series data of the second index of the scent from the second index input terminal 30 via an arbitrary network or storage medium.
  • the second index of scent is the index of scent measured by the measuring device.
  • the second index of fragrance may be any index as long as the content can be measured by the measuring device. That is, the second index of the scent indicates the actual state of the scent (that is, the behavior of the scent component) evaluated by the measuring device. Further, as the second index of fragrance, one index may be used, or a plurality of indexes may be used in combination.
  • the second index of scent is one or more components contained in the scent and the amount of each component measured by a measuring device (for example, PTR-MS).
  • a measuring device for example, PTR-MS.
  • FIG. 5 is an example of actually measured values of PTR-MS according to an embodiment of the present invention. As shown in FIG. 5, PTR-MS measures the components contained in the scent and the amount of each component.
  • the generation unit 102 is a three-dimensional object representing a change over time between the first index and the second index based on the time series of the first index of the scent and the time series of the second index of the scent. Generate shape information.
  • the generation unit 102 creates a graph of the first index and a graph of the second index, and generates three-dimensional shape information based on the graph of the first index and the graph of the second index.
  • the generation of the three-dimensional shape information will be described in detail with reference to FIGS. 6 to 10.
  • the generation unit 102 creates a stacked area graph as shown in FIG. 6 based on the intensity of the scent (for example, the graph of FIG. 3) and the quality of the scent (for example, the graph of FIG. 4).
  • the generation unit 102 multiplies the "scent intensity” by the "ratio of each quality (that is, each type) to the total scent” to obtain the intensity of each type of scent. calculate.
  • the generation unit 102 displays the time series of the intensity of each type of scent as a surface, and stacks the surfaces of the intensity of each type of scent to create a stacked area graph.
  • the generation unit 102 makes it easy to distinguish by displaying the surface of each type of scent intensity with different colors, patterns, and the like.
  • FIG. 6 is an example (stacked area graph) of a time series in which the strength of the scent and the quality of the scent according to the embodiment of the present invention are multiplied. As shown in FIG. 6, the time course of the scent intensity of each quality (that is, each type) is shown.
  • the generation unit 102 may be configured to create a bar graph as shown in FIG. 7 instead of the area graph as shown in the stacked area graph of FIG.
  • the generation unit 102 smoothes the measured values of each component measured by the measuring device (for example, PTR-MS). Specifically, the generation unit 102 creates an approximate curve of the measured value of each component measured by the measuring device (for example, PTR-MS).
  • FIG. 8 is a diagram for explaining smoothing of measured values of PTR-MS according to an embodiment of the present invention. For example, on the left side of FIG. 8, an approximate curve of the measured value of PTR-MS of "MUSCENONE”, which is a musk-like component contained in the scent, is shown. Further, on the right side of FIG. 8, an approximate curve of the measured value of PTR-MS of "LIMONENE”, which is a citrus scent component contained in the scent, is shown.
  • the generation unit 102 stacks the approximate curves of the smoothed components described with reference to FIG. 8 to create a stacked area graph as shown in FIG.
  • the generation unit 102 may be configured to create a stacked area chart by stacking the actually measured values of each component that has not been smoothed.
  • the generation unit 102 displays the time series of the amount of each component contained in the scent as a surface, and stacks the surfaces of the amount of each component to create a stacked area graph.
  • the generation unit 102 makes it easy to distinguish by displaying the surface of the amount of each component in a different color, pattern, or the like.
  • FIG. 9 is an example (stacked area graph) of an approximate curve based on the measured value of PTR-MS according to the embodiment of the present invention. As shown in FIG. 9, the change in the amount of each component over time is shown.
  • the generation unit 102 may display a surface of the intensity of a certain type of scent and a surface of the amount of components corresponding to the type (for example, emitting the scent of the type) in the same color or pattern. it can.
  • FIG. 10 is an example of three-dimensional shape information according to an embodiment of the present invention.
  • the generation unit 102 generates the three-dimensional shape information as shown in FIG. 10 based on the stacked graph of the first index of the scent and the stacked graph of the second index of the scent.
  • the generation unit 102 has an axis indicating time as an x-axis, an axis indicating a first index of scent (that is, the intensity of each type of scent) as a y-axis, and a second index of scent (that is, that is).
  • Three-dimensional shape information (that is, x-axis coordinates, y-axis coordinates, z-axis coordinates) is generated with the axis indicating the amount of each component contained in the scent) as the z-axis.
  • the generation unit 102 can interpolate (or interpolate) the values of coordinates other than the surface where the x-axis and the y-axis intersect and the surface where the x-axis and the z-axis intersect.
  • the generation unit 102 outputs three-dimensional shape information.
  • the generation unit 102 can make a 3D printer output a three-dimensional object based on the generated three-dimensional shape information.
  • the generation unit 102 may be configured to display 3DCG (3D computer graphics) of a three-dimensional object on a display device such as a display.
  • FIG. 11 is a flowchart of a generation process according to an embodiment of the present invention.
  • step 11 (S11) the acquisition unit 101 acquires time-series data of the first index of the scent from the first index input terminal 20.
  • the first index of scent is an index of scent that a person feels when he / she smells the scent.
  • step 12 (S12) the acquisition unit 101 acquires time-series data of the second index of the scent from the second index input terminal 30.
  • the second index of scent is the index of scent measured by the measuring device.
  • S11 and S12 may be reversed.
  • step 13 (S13) the generation unit 102 uses the first index and the second index based on the time series of the first index of the scent and the time series of the second index of the scent acquired in S11 and S12. Generates three-dimensional shape information of a three-dimensional object that represents a change over time with an index.
  • the generation unit 102 multiplies the "scent intensity” by the “ratio of each quality (that is, each type) to the total scent” to obtain the intensity of each type of scent. calculate.
  • the generation unit 102 displays the time series of the intensity of each type of scent as a surface, and stacks the surfaces of the intensity of each type of scent to create a stacked area graph.
  • the generation unit 102 displays the time series of the amount of each component contained in the scent as a surface, and stacks the surfaces of the amount of each component to create a stacked area graph.
  • the order of creating the stacked graph of the first index and creating the stacked graph of the second index may be reversed.
  • the generation unit 102 generates three-dimensional shape information based on the stacked area graph of the first index of the scent and the stacked area graph of the second index of the scent.
  • step 14 the generation unit 102 outputs the three-dimensional shape information generated in S13.
  • the generation unit 102 can make the 3D printer output a three-dimensional object based on the three-dimensional shape information generated in S13.
  • the generation unit 102 may be configured to display 3DCG (3D computer graphics) of a three-dimensional object on a display device such as a display.
  • a subjective index of scent that is, a first index of scent that a person perceives when smelling a scent
  • an objective index of scent that is, measurement
  • the change in scent is visualized by quantifying the two indexes (the second index of scent measured by the device) and making it a three-dimensional object that represents the change in scent over time. Therefore, the real image of the change in scent, which cannot be seen with the eyes, can be confirmed by seeing or touching while simultaneously comparing from two viewpoints, a subjective index and an objective index.
  • a person who intends to purchase a perfume can see the difference between the subjective index change and the objective index change of the perfume scent before the purchase. You can check it by looking at it or touching it.
  • the present invention can also be applied when both the first index and the second index are scent indexes (subjective indexes) that a person feels when he / she smells a scent.
  • the present invention can also be applied when both the first index and the second index are scent indexes (objective indexes) measured by the measuring device.
  • the generator 10 has, for example, an index of the scent that a person feels when a certain scent is smelled, based on a time series of the scent index that a person such as a different perfumer feels when the same scent is smelled. , It is possible to generate three-dimensional shape information of a three-dimensional object showing a change over time with an index of the scent felt when another person smells the same scent. Therefore, it is possible to compare different scent perceptions depending on the person (for example, age group, gender).
  • the generation device 10 is based on a time series of scent indexes that a person such as the same perfumer feels when they smell different scents, and the scent that a person feels when he / she smells a certain scent. It is possible to generate three-dimensional shape information of a three-dimensional object representing a change over time between the index and the scent index that the same person feels when smelling another scent. Therefore, it is possible to compare how different scents are perceived depending on the scent.
  • the generation device 10 is, for example, based on a time series of scent indexes when different measuring devices measure the same scent, a scent index when one measuring device measures a certain scent, and another measuring device. Can generate a three-dimensional shape of a three-dimensional object that represents a change over time with an index of the scent when the same scent is measured. Therefore, it is possible to compare the results of different measurements depending on the measuring device.
  • the generator 10 has the same measurement as the scent index when a certain scent is measured by a certain measuring device, for example, based on the time series of the scent index when the same measuring device measures different scents. It is possible to generate three-dimensional shape information of a three-dimensional object showing a change over time with an index of the scent of the scent that the device measures another scent. Therefore, it is possible to compare the measurement results that differ depending on the scent.
  • FIG. 12 is a block diagram showing an example of the hardware configuration of the generator 10 according to the embodiment of the present invention.
  • the generation device 10 includes a CPU (Central Processing Unit) 1, a ROM (Read Only Memory) 2, and a RAM (Random Access Memory) 3.
  • the CPU 1, ROM 2, and RAM 3 form a so-called computer.
  • the generation device 10 can include an auxiliary storage device 4, a display device 5, an operation device 6, an I / F (Interface) device 7, and a drive device 8.
  • the hardware of the generation device 10 is connected to each other via the bus B.
  • the CPU 1 is an arithmetic device that executes various programs installed in the auxiliary storage device 4.
  • ROM2 is a non-volatile memory.
  • the ROM 2 functions as a main storage device for storing various programs, data, and the like necessary for the CPU 1 to execute various programs installed in the auxiliary storage device 4.
  • the ROM 2 functions as a main memory device that stores boot programs such as BIOS (Basic Input / Output System) and EFI (Extensible Firmware Interface).
  • BIOS Basic Input / Output System
  • EFI Extensible Firmware Interface
  • RAM 3 is a volatile memory such as DRAM (Dynamic Random Access Memory) or SRAM (Static Random Access Memory).
  • the RAM 3 functions as a main storage device that provides a work area that is expanded when various programs installed in the auxiliary storage device 4 are executed by the CPU 1.
  • the auxiliary storage device 4 is an auxiliary storage device that stores various programs and information used when various programs are executed.
  • the display device 5 is a display device that displays the internal state and the like of the generation device 10.
  • the operation device 6 is an input device in which the administrator of the generation device 10 inputs various instructions to the generation device 10.
  • the I / F device 7 is a communication device for connecting to a network and communicating with the first index input terminal 20 and the second index input terminal 30.
  • the drive device 8 is a device for setting the storage medium 9.
  • the storage medium 9 referred to here includes a medium such as a CD-ROM, a flexible disk, a magneto-optical disk, or the like that optically, electrically, or magnetically records information. Further, the storage medium 9 may include a semiconductor memory for electrically recording information such as an EPROM (Erasable Programmable Read Only Memory) and a flash memory.
  • EPROM Erasable Programmable Read Only Memory
  • the various programs installed in the auxiliary storage device 4 are installed, for example, by setting the distributed storage medium 9 in the drive device 8 and reading the various programs recorded in the storage medium 9 by the drive device 8. Will be done.
  • the various programs installed in the auxiliary storage device 4 may be installed by being downloaded from the network via the I / F device 7.

Landscapes

  • Chemical & Material Sciences (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Electrochemistry (AREA)
  • Physics & Mathematics (AREA)
  • Health & Medical Sciences (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Analytical Chemistry (AREA)
  • Biochemistry (AREA)
  • General Health & Medical Sciences (AREA)
  • General Physics & Mathematics (AREA)
  • Immunology (AREA)
  • Pathology (AREA)
  • Fats And Perfumes (AREA)

Abstract

【課題】香りの2つの経時的な変化の違いを提示する。 【解決手段】人が香りを嗅いだときに感じる前記香りの第1の指標の時系列、および、測定機器が測定する前記香りの第2の指標の時系列を取得するステップと、前記取得したそれぞれの時系列に基づいて、前記第1の指標と前記第2の指標との経時的な変化を表わす立体物の3次元形状情報を生成するステップと、を含む。

Description

香りの経時的な変化を表わす立体物の生成方法、プログラム、装置、および立体物
 本発明は、香りの経時的な変化を表わす立体物の生成方法、プログラム、装置、および立体物に関する。
 従来、香水等の香りを発する物は、複数の香料を混ぜ合わせて作られている。複数の香料のうち揮発性の高い香料から低い香料へと順に香りを発するので、香水等の香りは、時間の経過に伴って変化していく。このような香りの変化は、香り立ちとも呼ばれており、また、変化していく香りは、時間の経過順に、トップノート、ミドルノート、ラストノートとも呼ばれている。
 香りの変化に関して、特許文献1では、対象物の外観の経時変化を示す第一動画と対象物に対応する香気成分の量または比率の経時変化をグラフ形式で示す第二動画とが時系列が対応付けられて再生される表示を出力する、ことが開示されている(特許文献1の段落[0014])。
特許第6532847号公報
 しかしながら、例えば、調香師等の人が実際に香りを嗅いだときに感じる香りの変化は、特許文献1の香気成分の量または比率の変化に必ずしも連動しない。
 そこで、本発明の一実施形態では、香りの2つの経時的な変化の違いを提示することを目的とする。
 本発明の一態様は、人が香りを嗅いだときに感じる前記香りの第1の指標の時系列、および、測定機器が測定する前記香りの第2の指標の時系列を取得するステップと、前記取得したそれぞれの時系列に基づいて、前記第1の指標と前記第2の指標との経時的な変化を表わす立体物の3次元形状情報を生成するステップと、を含む。
 本発明の一実施形態によれば、香りの2つの経時的な変化の違いを提示することができる。
本発明の一実施形態に係る全体の構成図である。 本発明の一実施形態に係る生成装置の機能ブロック図である。 本発明の一実施形態に係る香りの強さの時系列の一例である。 本発明の一実施形態に係る香りの質の時系列の一例である。 本発明の一実施形態に係るPTR-MSの実測値の一例である。 本発明の一実施形態に係る香りの強さと香りの質とを掛け合わせた時系列の一例(積み上げ面グラフ)である。 本発明の一実施形態に係る香りの強さと香りの質とを掛け合わせた時系列の一例(棒グラフ)である。 本発明の一実施形態に係るPTR-MSの実測値のスムージングを説明するための図である。 本発明の一実施形態に係るPTR-MSの実測値に基づく近似曲線の一例(積み上げ面グラフ)である。 本発明の一実施形態に係る3次元形状情報の一例である。 本発明の一実施形態に係る生成処理のフローチャートである。 本発明の一実施形態に係る生成装置のハードウェア構成の一例を示すブロック図である。
 以下、図面に基づいて本発明の実施の形態を説明する。
 なお、本明細書では、主に、香水の香りについて説明するが、本発明は、任意の物が発する任意の香り(例えば、製品が発する香り、動植物が発する香り、空間や場所等における香り等)に適用することができる。
 また、本明細書で用いられる「香り」は、空気中を漂ってきて嗅覚を刺激するものであればよく、香水等の好ましいにおいに限らず、悪臭等の不快感をもたらすにおいも含まれる。
<全体の構成>
 図1は、本発明の一実施形態に係る全体の構成図である。図1に示されるように、生成装置10は、任意のネットワークまたは記憶媒体を介して、第1の指標入力端末20および第2の指標入力端末30とデータを送受信することができる。また、第2の指標入力端末30は、任意のネットワークまたは記憶媒体を介して、測定機器40が測定したデータを取得することができる。以下、それぞれについて説明する。
 第1の指標入力端末20は、香りの第1の指標が入力される端末である。香りの第1の指標は、人が香りを嗅いだときに感じる香りの指標である。例えば、香りの第1の指標は、人が香りを嗅いだときに感じる、香りの強さおよび香りの質である。第1の指標入力端末20は、第1の指標入力端末20に入力された(例えば、調香師等の人が入力した)、人が香りを嗅いだときに感じる香りの指標の時系列のデータを、ネットワークまたは記憶媒体を介して、生成装置10へ渡す。第1の指標入力端末20は、パーソナルコンピュータ等の任意の端末であってよい。
 第2の指標入力端末30は、香りの第2の指標が入力される端末である。香りの第2の指標は、測定機器40が測定する香りの指標である。例えば、香りの第2の指標は、測定機器40が測定する、香りに含まれる成分および成分の量である。第2の指標入力端末30は、第2の指標入力端末30に入力された(例えば、測定機器40から取得した)、測定機器40が測定する香りの指標の時系列のデータを、ネットワークまたは記憶媒体を介して、生成装置10へ渡す。第2の指標入力端末30は、パーソナルコンピュータ等の任意の端末であってよい。
 測定機器40は、香りの第2の指標を測定する機器である。測定機器40は、香りに含まれる成分および成分の量を測定することができる。例えば、測定機器40は、プロトン移動反応質量分析計(PTR-MS)である。なお、測定機器40は、PTR-MSに限らず、DART-MS、ガスクロマトグラフィー、センサー等の任意の測定機器であってよい。
 ここで、PTR-MSについて説明する。PTR-MSは、ヒドロニウムイオンHによるプロトン移動反応を利用したオンラインの化学イオン化質量分析計である。本発明の一実施形態では、PTR-MSを用いることによって、香料が空中に気化する様子を、時間変化と共に、リアルタイムで定性・定量的に各香料成分ごとに数値化することができるようになる。
 生成装置10は、香りの第1の指標の時系列および香りの第2の指標の時系列に基づいて、第1の指標と第2の指標との経時的な変化を表わす立体物の3次元形状情報を生成する。生成装置10は、1つまたは複数のコンピュータからなる。また、生成装置10は、任意のネットワークまたは記憶媒体を介して、第1の指標入力端末20および第2の指標入力端末30からデータを取得することができる。後段で、図2を参照しながら、生成装置10について詳細に説明する。
 なお、図1では、第1の指標入力端末20と第2の指標入力端末30とを別々の装置として説明したが、1つの装置で実装するようにしてもよい。また、生成装置10が、第1の指標入力端末20と第2の指標入力端末30との機能の少なくとも一部を有するようにしてもよい。
<機能ブロック>
 図2は、本発明の一実施形態に係る生成装置10の機能ブロック図である。図2に示されるように、生成装置10は、取得部101と、生成部102と、を備える。また、生成装置10は、プログラムを実行することで、取得部101、生成部102として機能する。
 取得部101は、香りの第1の指標の時系列および香りの第2の指標の時系列を取得する。以下、第1の指標と第2の指標とに分けて説明する。
<第1の指標>
 取得部101は、任意のネットワークまたは記憶媒体を介して、第1の指標入力端末20から、香りの第1の指標の時系列のデータを取得する。上述したように、香りの第1の指標は、人が香りを嗅いだときに感じる香りの指標である。なお、香りの第1の指標は、人が香りを嗅いだときに感じることができる内容であれば、香りの強さ、香りの質、香りを嗅いで感じられる気分等の任意の指標であってよい。すなわち、香りの第1の指標は、人により評価される香りの実感(つまり、香りを嗅いだときに感じられるもの)を示す。また、香りの第1の指標として、1つの指標が用いられてもよいし、複数の指標が組み合わされて用いられてもよい。
 例えば、香りの第1の指標は、人が香りを嗅いだときに感じる、香りの強さおよび香りの質である。以下、図3および図4を参照しながら、香りの強さの時系列と香りの質の時系列について説明する。
<<香りの強さ>>
 図3は、本発明の一実施形態に係る香りの強さの時系列の一例である。香りの強さは、香りの強度を示す。例えば、香りの強さは、下記の6段階臭気強度表示法の基準を用いて評価されうる。
5:強烈なにおい
4:強いにおい
3:楽に感知できるにおい
2:何のにおいであるか分かる弱いにおい(認知閾値)
1:やっと感知できるにおい(検知閾値)
0:無臭
 図3に示されるように、調香師等の人は、所定の時(図3の例では、所定の開始時から、5分後、30分後、60分後、120分後、240分後、360分後)に、香りの強さ(例えば、上記の6段階のうちのいずれであるか)を評価する。
<<香りの質>>
 図4は、本発明の一実施形態に係る香りの質の時系列の一例である。香りの質は、香りの種類を示す。例えば、香りの質は、ムスキー、アンバー、ウッディ、フローラル、フルーティ、グリーン、シトラス等の香水等の香りの種類である。
 図4に示されるように、調香師等の人は、所定の時(図4の例では、所定の開始時から、5分後、30分後、60分後、120分後、240分後、360分後)に、香りの種類、および、各種類の香りの全体に対する割合(つまり、どの種類の香りが強く、どの種類の香りが弱いか)を評価する。
 なお、嗅覚の順応を防ぐために、調香師等の人は、所定の時以外には香りを嗅がないようにしてもよい。
<第2の指標>
 取得部101は、任意のネットワークまたは記憶媒体を介して、第2の指標入力端末30から、香りの第2の指標の時系列のデータを取得する。上述したように、香りの第2の指標は、測定機器が測定する香りの指標である。なお、香りの第2の指標は、測定機器が測定することができる内容であれば、任意の指標であってよい。すなわち、香りの第2の指標は、測定機器により評価される香りの実態(つまり、香りの成分の挙動)を示す。また、香りの第2の指標として、1つの指標が用いられてもよいし、複数の指標が組み合わされて用いられてもよい。
 例えば、香りの第2の指標は、測定機器(例えば、PTR-MS)が測定する、香りに含まれる1つまたは複数の成分および各成分の量である。以下、図5を参照しながら、香りに含まれる成分および成分の量の時系列について説明する。
<<香りに含まれる成分および成分の量>>
 図5は、本発明の一実施形態に係るPTR-MSの実測値の一例である。図5に示されるように、PTR-MSは、香りに含まれる成分、および、各成分の量を測定する。
 生成部102は、香りの第1の指標の時系列および香りの第2の指標の時系列に基づいて、第1の指標と第2の指標との経時的な変化を表わす立体物の3次元形状情報を生成する。生成部102は、第1の指標のグラフおよび第2の指標のグラフを作成して、第1の指標のグラフおよび第2の指標のグラフに基づいて3次元形状情報を生成する。以下、図6~図10を参照しながら、3次元形状情報の生成について詳細に説明する。
<第1の指標のグラフの作成>
 生成部102は、香りの強さ(例えば、図3のグラフ)と、香りの質(例えば、図4のグラフ)と、に基づいて、図6のような積み上げ面グラフを作成する。
 具体的には、生成部102は、各時点において、"香りの強さ"と"各質(つまり、各種類)の香りの全体に対する割合"を乗算して、各種類の香りの強さを算出する。また、生成部102は、各種類の香りの強さの時系列を面で表示し、各種類の香りの強さの面を積み上げて積み上げ面グラフを作成する。なお、生成部102は、各種類の香りの強さの面を異なる色や模様等で表示することによって、区別しやすいようにする。
 図6は、本発明の一実施形態に係る香りの強さと香りの質とを掛け合わせた時系列の一例(積み上げ面グラフ)である。図6に示されるように、各質(つまり、各種類)の香りの強さの経時的な変化が表わされる。
 なお、生成部102は、図6の積み上げ面グラフのような面グラフの代わりに、図7のような棒グラフを作成する構成とすることもできる。
<第2の指標のグラフの作成>
 生成部102は、測定機器(例えば、PTR-MS)が測定した各成分の実測値についてスムージングを行う。具体的には、生成部102は、測定機器(例えば、PTR-MS)が測定した各成分の実測値の近似曲線を作成する。
 図8は、本発明の一実施形態に係るPTR-MSの実測値のスムージングを説明するための図である。例えば、図8の左側では、香りに含まれるムスク香調の成分である"MUSCENONE"のPTR-MSの実測値の近似曲線が示されている。また、図8の右側では、香りに含まれるシトラス香調の成分である"LIMONENE"のPTR-MSの実測値の近似曲線が示されている。
 生成部102は、図8を参照しながら説明したスムージングが行われた各成分の近似曲線を積み上げて、図9のような積み上げ面グラフを作成する。なお、生成部102は、スムージングが行われていない各成分の実測値を積み上げて、積み上げ面グラフを作成する構成とすることもできる。
 具体的には、生成部102は、香りに含まれる各成分の量の時系列を面で表示し、各成分の量の面を積み上げて積み上げ面グラフを作成する。なお、生成部102は、各成分の量の面を異なる色や模様等で表示することによって、区別しやすいようにする。
 図9は、本発明の一実施形態に係るPTR-MSの実測値に基づく近似曲線の一例(積み上げ面グラフ)である。図9に示されるように、各成分の量の経時的な変化が表わされる。
 ここで、積み上げ面グラフの、香りの第1の指標の面(つまり、各種類の香りの強さの面)と、香りの第2の指標の面(つまり、香りに含まれる各成分の量の面)と、の対応関係について説明する。生成部102は、ある種類の香りの強さの面と、その種類に対応する(例えば、その種類の香りを発する)成分の量の面と、を同一の色や模様等で表示することができる。
<3次元形状情報の生成>
 図10は、本発明の一実施形態に係る3次元形状情報の一例である。生成部102は、香りの第1の指標の積み上げグラフと、香りの第2の指標の積み上げグラフと、に基づいて、図10のような3次元形状情報を生成する。
 生成部102は、例えば、時間を示す軸をx軸とし、香りの第1の指標(つまり、各種類の香りの強さ)を示す軸をy軸とし、香りの第2の指標(つまり、香りに含まれる各成分の量)を示す軸をz軸とする3次元形状情報(つまり、x軸の座標、y軸の座標、z軸の座標)を生成する。なお、生成部102は、x軸とy軸とが交差する面およびx軸とz軸とが交差する面以外の座標の値を内挿(または補間)することができる。
 生成部102は、3次元形状情報を出力する。例えば、生成部102は、生成した3次元形状情報に基づいて、3Dプリンタに立体物を出力させることができる。なお、生成部102は、ディスプレイ等の表示装置上で、立体物の3DCG(3次元コンピュータグラフィックス)を表示させる構成とすることもできる。
<処理方法>
 図11は、本発明の一実施形態に係る生成処理のフローチャートである。
 ステップ11(S11)において、取得部101は、第1の指標入力端末20から、香りの第1の指標の時系列のデータを取得する。上述したように、香りの第1の指標は、人が香りを嗅いだときに感じる香りの指標である。
 ステップ12(S12)において、取得部101は、第2の指標入力端末30から、香りの第2の指標の時系列のデータを取得する。上述したように、香りの第2の指標は、測定機器が測定する香りの指標である。
 なお、S11とS12とは順序が逆であってもよい。
 ステップ13(S13)において、生成部102は、S11およびS12で取得された香りの第1の指標の時系列および香りの第2の指標の時系列に基づいて、第1の指標と第2の指標との経時的な変化を表わす立体物の3次元形状情報を生成する。
 具体的には、生成部102は、各時点において、"香りの強さ"と"各質(つまり、各種類)の香りの全体に対する割合"を乗算して、各種類の香りの強さを算出する。また、生成部102は、各種類の香りの強さの時系列を面で表示し、各種類の香りの強さの面を積み上げて積み上げ面グラフを作成する。
 次に、生成部102は、香りに含まれる各成分の量の時系列を面で表示し、各成分の量の面を積み上げて積み上げ面グラフを作成する。なお、第1の指標の積み上げグラフの作成と第2の指標の積み上げグラフの作成とは順序が逆であってもよい。
 次に、生成部102は、香りの第1の指標の積み上げ面グラフと、香りの第2の指標の積み上げ面グラフと、に基づいて、3次元形状情報を生成する。
 ステップ14(S14)において、生成部102は、S13で生成した3次元形状情報を出力する。例えば、生成部102は、S13で生成した3次元形状情報に基づいて、3Dプリンタに立体物を出力させることができる。なお、生成部102は、ディスプレイ等の表示装置上で、立体物の3DCG(3次元コンピュータグラフィックス)を表示させる構成とすることもできる。
<効果>
 このように、本発明の一実施形態では、香りの主観的な指標(つまり、人が香りを嗅いだときに感じる香りの第1の指標)、および、香りの客観的な指標(つまり、測定機器が測定する香りの第2の指標)、という2つの指標を数値化して、香りの経時的な変化を表わす立体物にすることによって、香りの変化を可視化する。そのため、目で見ることができない香りの変化の実像を、主観的な指標と客観的な指標という2つの観点から同時に比較しながら見たり触れたりして確認することができる。
 本発明の一実施形態に係る立体物を用いることによって、例えば、香水を購入しようとする者は、購入前に、香水の香りの主観的な指標の変化および客観的な指標の変化の違いを見たり触れたりして確認することができる。
<別の実施形態>
 なお、本発明は、第1の指標と第2の指標との両方が、人が香りを嗅いだときに感じる香りの指標(主観的な指標)である場合にも適用することができる。また、本発明は、第1の指標と第2の指標との両方が、測定機器が測定する香りの指標(客観的な指標)である場合にも適用することができる。以下、それぞれについて説明する。
<主観的な指標と主観的な指標との場合>
 生成装置10は、例えば、別々の調香師等の人が同一の香りを嗅いだときに感じる香りの指標の時系列に基づいて、ある人がある香りを嗅いだときに感じる香りの指標と、別の人が同じ香りを嗅いだときに感じる香りの指標と、の経時的な変化を表わす立体物の3次元形状情報を生成することができる。そのため、人(例えば、年齢層、性別)によって異なる香りの感じ方を比較することができる。
 また、生成装置10は、例えば、同一の調香師等の人が別々の香りを嗅いだときに感じる香りの指標の時系列に基づいて、ある人がある香りを嗅いだときに感じる香りの指標と、同じ人が別の香りを嗅いだときに感じる香りの指標と、の経時的な変化を表わす立体物の3次元形状情報を生成することができる。そのため、香りよって異なる香りの感じ方を比較することができる。
<客観的な指標と客観的な指標との場合>
 生成装置10は、例えば、別々の測定機器が同一の香りを測定したときの香りの指標の時系列に基づいて、ある測定機器がある香りを測定したときの香りの指標と、別の測定機器が同じ香りを測定したときの香りの指標と、の経時的な変化を表わす立体物の3次元形状を生成することができる。そのため、測定機器によって異なる測定の結果を比較することができる。
 また、生成装置10は、例えば、同一の測定機器が別々の香りを測定したときの香りの指標の時系列に基づいて、ある測定機器がある香りを測定したときの香りの指標と、同じ測定機器が別の香りを測定したきの香りの指標と、の経時的な変化を表わす立体物の3次元形状情報を生成することができる。そのため、香りによって異なる測定の結果を比較することができる。
<ハードウェア構成>
 図12は、本発明の一実施形態に係る生成装置10のハードウェア構成の一例を示すブロック図である。生成装置10は、CPU(Central Processing Unit)1、ROM(Read Only Memory)2、RAM(Random Access Memory)3を有する。CPU1、ROM2、RAM3は、いわゆるコンピュータを形成する。
 また、生成装置10は、補助記憶装置4、表示装置5、操作装置6、I/F(Interface)装置7、ドライブ装置8を有することができる。なお、生成装置10の各ハードウェアは、バスBを介して相互に接続されている。
 CPU1は、補助記憶装置4にインストールされている各種プログラムを実行する演算デバイスである。
 ROM2は、不揮発性メモリである。ROM2は、補助記憶装置4にインストールされている各種プログラムをCPU1が実行するために必要な各種プログラム、データ等を格納する主記憶デバイスとして機能する。具体的には、ROM2はBIOS(Basic Input/Output System)やEFI(Extensible Firmware Interface)等のブートプログラム等を格納する、主記憶デバイスとして機能する。
 RAM3は、DRAM(Dynamic Random Access Memory)やSRAM(Static Random Access Memory)等の揮発性メモリである。RAM3は、補助記憶装置4にインストールされている各種プログラムがCPU1によって実行される際に展開される作業領域を提供する、主記憶デバイスとして機能する。
 補助記憶装置4は、各種プログラムや、各種プログラムが実行される際に用いられる情報を格納する補助記憶デバイスである。
 表示装置5は、生成装置10の内部状態等を表示する表示デバイスである。
 操作装置6は、生成装置10の管理者が生成装置10に対して各種指示を入力する入力デバイスである。
 I/F装置7は、ネットワークに接続し、第1の指標入力端末20および第2の指標入力端末30と通信を行うための通信デバイスである。
 ドライブ装置8は記憶媒体9をセットするためのデバイスである。ここでいう記憶媒体9には、CD-ROM、フレキシブルディスク、光磁気ディスク等のように情報を光学的、電気的あるいは磁気的に記録する媒体が含まれる。また、記憶媒体9には、EPROM (Erasable Programmable Read Only Memory)、フラッシュメモリ等のように情報を電気的に記録する半導体メモリ等が含まれていてもよい。
 なお、補助記憶装置4にインストールされる各種プログラムは、例えば、配布された記憶媒体9がドライブ装置8にセットされ、該記憶媒体9に記録された各種プログラムがドライブ装置8により読み出されることでインストールされる。あるいは、補助記憶装置4にインストールされる各種プログラムは、I/F装置7を介して、ネットワークよりダウンロードされることでインストールされてもよい。
 以上、本発明の実施例について詳述したが、本発明は上述した特定の実施形態に限定されるものではなく、特許請求の範囲に記載された本発明の要旨の範囲内において、種々の変形・変更が可能である。
10 生成装置
20 第1の指標入力端末
30 第2の指標入力端末
40 測定機器
101 取得部
102 生成部

Claims (6)

  1.  人が香りを嗅いだときに感じる前記香りの第1の指標の時系列、および、測定機器が測定する前記香りの第2の指標の時系列を取得するステップと、
     前記取得したそれぞれの時系列に基づいて、前記第1の指標と前記第2の指標との経時的な変化を表わす立体物の3次元形状情報を生成するステップと
     を含む方法。
  2.  前記第1の指標は、前記香りの強さおよび前記香りの質であり、
     前記第2の指標は、前記香りに含まれる成分および前記成分の量である、請求項1に記載の方法。
  3.  前記測定機器は、プロトン移動反応質量分析計(PTR-MS)である、請求項1または2に記載の方法。
  4.  コンピュータを
     人が香りを嗅いだときに感じる前記香りの第1の指標の時系列、および、測定機器が測定する前記香りの第2の指標の時系列を取得する取得部、
     前記取得したそれぞれの時系列に基づいて、前記第1の指標と前記第2の指標との経時的な変化を表わす立体物の3次元形状情報を生成する生成部
     として機能させるためのプログラム。
  5.  人が香りを嗅いだときに感じる前記香りの第1の指標の時系列、および、測定機器が測定する前記香りの第2の指標の時系列を取得する取得部と、
     前記取得したそれぞれの時系列に基づいて、前記第1の指標と前記第2の指標との経時的な変化を表わす立体物の3次元形状情報を生成する生成部と
     を備えた装置。
  6.  人が香りを嗅いだときに感じる前記香りの第1の指標を示す軸と、測定機器が測定する前記香りの第2の指標を示す軸と、時間を示す軸と、を座標軸とする、前記第1の指標と前記第2の指標との経時的な変化を表わす立体物。
PCT/JP2019/046232 2019-11-26 2019-11-26 香りの経時的な変化を表わす立体物の生成方法、プログラム、装置、および立体物 WO2021106087A1 (ja)

Priority Applications (2)

Application Number Priority Date Filing Date Title
PCT/JP2019/046232 WO2021106087A1 (ja) 2019-11-26 2019-11-26 香りの経時的な変化を表わす立体物の生成方法、プログラム、装置、および立体物
JP2021560811A JP7354284B2 (ja) 2019-11-26 2019-11-26 香りの経時的な変化を表わす立体物の生成方法、プログラム、装置、および立体物

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
PCT/JP2019/046232 WO2021106087A1 (ja) 2019-11-26 2019-11-26 香りの経時的な変化を表わす立体物の生成方法、プログラム、装置、および立体物

Publications (1)

Publication Number Publication Date
WO2021106087A1 true WO2021106087A1 (ja) 2021-06-03

Family

ID=76129256

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2019/046232 WO2021106087A1 (ja) 2019-11-26 2019-11-26 香りの経時的な変化を表わす立体物の生成方法、プログラム、装置、および立体物

Country Status (2)

Country Link
JP (1) JP7354284B2 (ja)
WO (1) WO2021106087A1 (ja)

Citations (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US5162652A (en) * 1991-08-07 1992-11-10 Pcp, Inc. Method and apparatus for rapid detection of contraband and toxic materials by trace vapor detection using ion mobility spectrometry
JP2001028252A (ja) * 1999-07-14 2001-01-30 Jeol Ltd 質量分析方法
JP2008170333A (ja) * 2007-01-12 2008-07-24 Jeol Ltd スニッフィング−クロマトグラフ質量分析装置
JP2009229139A (ja) * 2008-03-19 2009-10-08 Horiba Stec Co Ltd ガス分析計
JP2014134554A (ja) * 2014-04-24 2014-07-24 Shimadzu Corp におい嗅ぎ−ガスクロマトグラフ質量分析装置
JP2015532975A (ja) * 2012-09-21 2015-11-16 スミスズ ディテクション−ワトフォード リミテッド サンプルプローブの入口フローシステム
JP2016061670A (ja) * 2014-09-18 2016-04-25 株式会社島津製作所 時系列データ解析装置及び方法
JP2017190982A (ja) * 2016-04-12 2017-10-19 日本電子株式会社 質量分析装置および画像生成方法

Family Cites Families (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US6212938B1 (en) * 1998-06-17 2001-04-10 Electronic Sensor Technology Llp Method of detecting smell of a vapor and producing a unique visual representation thereof
JP4562983B2 (ja) 2002-12-24 2010-10-13 佐 藤 由 紀 匂い測定方法及びその装置
JP4669456B2 (ja) 2006-09-01 2011-04-13 花王株式会社 揮散性物質採取装置および方法
JP5062590B2 (ja) 2008-01-10 2012-10-31 学校法人日本医科大学 咀嚼模擬装置
KR20110043605A (ko) 2008-06-23 2011-04-27 아토나프 가부시키가이샤 화학 물질에 관련한 정보를 취급하기 위한 시스템

Patent Citations (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US5162652A (en) * 1991-08-07 1992-11-10 Pcp, Inc. Method and apparatus for rapid detection of contraband and toxic materials by trace vapor detection using ion mobility spectrometry
JP2001028252A (ja) * 1999-07-14 2001-01-30 Jeol Ltd 質量分析方法
JP2008170333A (ja) * 2007-01-12 2008-07-24 Jeol Ltd スニッフィング−クロマトグラフ質量分析装置
JP2009229139A (ja) * 2008-03-19 2009-10-08 Horiba Stec Co Ltd ガス分析計
JP2015532975A (ja) * 2012-09-21 2015-11-16 スミスズ ディテクション−ワトフォード リミテッド サンプルプローブの入口フローシステム
JP2014134554A (ja) * 2014-04-24 2014-07-24 Shimadzu Corp におい嗅ぎ−ガスクロマトグラフ質量分析装置
JP2016061670A (ja) * 2014-09-18 2016-04-25 株式会社島津製作所 時系列データ解析装置及び方法
JP2017190982A (ja) * 2016-04-12 2017-10-19 日本電子株式会社 質量分析装置および画像生成方法

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
AKIO SHIMONO: "PTR-MS, the Realtime or High Time Resolution Instrument for Analyzing the Characteristics and Behaviors of Foods", JAPAN JOURNAL OF FOOD ENGINEERING, vol. 16, no. 4, 15 December 2015 (2015-12-15), JP, pages 307 - 311, XP009529356, ISSN: 1345-7942, DOI: 10.11301/jsfe.16.307 *

Also Published As

Publication number Publication date
JPWO2021106087A1 (ja) 2021-06-03
JP7354284B2 (ja) 2023-10-02

Similar Documents

Publication Publication Date Title
CN111954812B (zh) 基于电子鼻的气味剂分析的利用
JP6933464B2 (ja) 香料組成構築システム
Teixeira et al. Perfume engineering: design, performance and classification
Teixeira et al. The diffusion of perfume mixtures and the odor performance
US20220180027A1 (en) Method and apparatus for generating a design for a technical system of product
Harel et al. Towards an odor communication system
Teixeira et al. The perception of fragrance mixtures: A comparison of odor intensity models
JP2022551220A (ja) フレグランス組成物香調の決定方法、フレグランス組成物の決定方法および対応するシステム
WO2021106087A1 (ja) 香りの経時的な変化を表わす立体物の生成方法、プログラム、装置、および立体物
Suzianti et al. An analysis of cognitive˗ based design of yogurt product packaging
Teixeira et al. Prediction model for the odor intensity of fragrance mixtures: A valuable tool for perfumed product design
Van der Burg et al. Sequential effects in odor perception
Wakayama et al. Method for predicting odor intensity of perfumery raw materials using dose–response curve database
KR20060090974A (ko) 온도 감각 조정용 향료 조성물, 감각 조정용 물품 및 감각조정 방법과 향료 맵
JP6637370B2 (ja) 質量分析装置および画像生成方法
CN118401949A (zh) 来自目标时间气味配置文件的香料配方/组合物
JP2008308649A (ja) 匂いコーディングシステム及び方法、匂い合成システム、並びに、プログラム
KR20220074052A (ko) 향기 예측 시스템 및 이를 이용한 향기 예측 방법
Su Odor in the Courts-Extending Copyright Protection to Perfumes May Not Be So Nonscentsical: An Investigation of the Legal Bulwarks Available for Fine Fragrances amid Advancing Reverse Engineering Technology
CN115398551A (zh) 挥发性液体化学化合物物理参数数据库的构建方法及预测模型
CA2684181A1 (en) Improving the value of volatile materials
Teixeira et al. Perfumery quaternary diagrams for engineering perfumes
JP2022028370A (ja) 疑似標本作成装置、疑似標本作成方法、およびプログラム
US20110015965A1 (en) Products having a scent name selected by consumers
KR20210083951A (ko) 에센셜오일의 향 분류방법

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 19953791

Country of ref document: EP

Kind code of ref document: A1

ENP Entry into the national phase

Ref document number: 2021560811

Country of ref document: JP

Kind code of ref document: A

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 19953791

Country of ref document: EP

Kind code of ref document: A1