WO2021105619A1 - Hydrogel à base d'eau, et du produit de réaction d'époxyde d'isosorbide et d'amines - Google Patents

Hydrogel à base d'eau, et du produit de réaction d'époxyde d'isosorbide et d'amines Download PDF

Info

Publication number
WO2021105619A1
WO2021105619A1 PCT/FR2020/052182 FR2020052182W WO2021105619A1 WO 2021105619 A1 WO2021105619 A1 WO 2021105619A1 FR 2020052182 W FR2020052182 W FR 2020052182W WO 2021105619 A1 WO2021105619 A1 WO 2021105619A1
Authority
WO
WIPO (PCT)
Prior art keywords
water
hydrogel
soluble
isosorbide
epoxide
Prior art date
Application number
PCT/FR2020/052182
Other languages
English (en)
Inventor
René SAINT-LOUP
Audrey SAHUT
Original Assignee
Roquette Freres
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Roquette Freres filed Critical Roquette Freres
Priority to KR1020227017831A priority Critical patent/KR20220108774A/ko
Priority to JP2022531071A priority patent/JP2023503358A/ja
Priority to EP20824305.5A priority patent/EP4065624A1/fr
Priority to US17/756,396 priority patent/US20220403118A1/en
Publication of WO2021105619A1 publication Critical patent/WO2021105619A1/fr

Links

Classifications

    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08JWORKING-UP; GENERAL PROCESSES OF COMPOUNDING; AFTER-TREATMENT NOT COVERED BY SUBCLASSES C08B, C08C, C08F, C08G or C08H
    • C08J3/00Processes of treating or compounding macromolecular substances
    • C08J3/02Making solutions, dispersions, lattices or gels by other methods than by solution, emulsion or suspension polymerisation techniques
    • C08J3/03Making solutions, dispersions, lattices or gels by other methods than by solution, emulsion or suspension polymerisation techniques in aqueous media
    • C08J3/075Macromolecular gels
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61KPREPARATIONS FOR MEDICAL, DENTAL OR TOILETRY PURPOSES
    • A61K31/00Medicinal preparations containing organic active ingredients
    • A61K31/74Synthetic polymeric materials
    • A61K31/765Polymers containing oxygen
    • A61K31/77Polymers containing oxygen of oxiranes
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61KPREPARATIONS FOR MEDICAL, DENTAL OR TOILETRY PURPOSES
    • A61K8/00Cosmetics or similar toiletry preparations
    • A61K8/02Cosmetics or similar toiletry preparations characterised by special physical form
    • A61K8/04Dispersions; Emulsions
    • A61K8/042Gels
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61KPREPARATIONS FOR MEDICAL, DENTAL OR TOILETRY PURPOSES
    • A61K8/00Cosmetics or similar toiletry preparations
    • A61K8/18Cosmetics or similar toiletry preparations characterised by the composition
    • A61K8/72Cosmetics or similar toiletry preparations characterised by the composition containing organic macromolecular compounds
    • A61K8/84Cosmetics or similar toiletry preparations characterised by the composition containing organic macromolecular compounds obtained by reactions otherwise than those involving only carbon-carbon unsaturated bonds
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61KPREPARATIONS FOR MEDICAL, DENTAL OR TOILETRY PURPOSES
    • A61K8/00Cosmetics or similar toiletry preparations
    • A61K8/18Cosmetics or similar toiletry preparations characterised by the composition
    • A61K8/72Cosmetics or similar toiletry preparations characterised by the composition containing organic macromolecular compounds
    • A61K8/84Cosmetics or similar toiletry preparations characterised by the composition containing organic macromolecular compounds obtained by reactions otherwise than those involving only carbon-carbon unsaturated bonds
    • A61K8/86Polyethers
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61KPREPARATIONS FOR MEDICAL, DENTAL OR TOILETRY PURPOSES
    • A61K9/00Medicinal preparations characterised by special physical form
    • A61K9/0012Galenical forms characterised by the site of application
    • A61K9/0014Skin, i.e. galenical aspects of topical compositions
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61KPREPARATIONS FOR MEDICAL, DENTAL OR TOILETRY PURPOSES
    • A61K9/00Medicinal preparations characterised by special physical form
    • A61K9/06Ointments; Bases therefor; Other semi-solid forms, e.g. creams, sticks, gels
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61QSPECIFIC USE OF COSMETICS OR SIMILAR TOILETRY PREPARATIONS
    • A61Q19/00Preparations for care of the skin
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08GMACROMOLECULAR COMPOUNDS OBTAINED OTHERWISE THAN BY REACTIONS ONLY INVOLVING UNSATURATED CARBON-TO-CARBON BONDS
    • C08G59/00Polycondensates containing more than one epoxy group per molecule; Macromolecules obtained by polymerising compounds containing more than one epoxy group per molecule using curing agents or catalysts which react with the epoxy groups
    • C08G59/18Macromolecules obtained by polymerising compounds containing more than one epoxy group per molecule using curing agents or catalysts which react with the epoxy groups ; e.g. general methods of curing
    • C08G59/20Macromolecules obtained by polymerising compounds containing more than one epoxy group per molecule using curing agents or catalysts which react with the epoxy groups ; e.g. general methods of curing characterised by the epoxy compounds used
    • C08G59/22Di-epoxy compounds
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08GMACROMOLECULAR COMPOUNDS OBTAINED OTHERWISE THAN BY REACTIONS ONLY INVOLVING UNSATURATED CARBON-TO-CARBON BONDS
    • C08G59/00Polycondensates containing more than one epoxy group per molecule; Macromolecules obtained by polymerising compounds containing more than one epoxy group per molecule using curing agents or catalysts which react with the epoxy groups
    • C08G59/18Macromolecules obtained by polymerising compounds containing more than one epoxy group per molecule using curing agents or catalysts which react with the epoxy groups ; e.g. general methods of curing
    • C08G59/20Macromolecules obtained by polymerising compounds containing more than one epoxy group per molecule using curing agents or catalysts which react with the epoxy groups ; e.g. general methods of curing characterised by the epoxy compounds used
    • C08G59/22Di-epoxy compounds
    • C08G59/26Di-epoxy compounds heterocyclic
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08GMACROMOLECULAR COMPOUNDS OBTAINED OTHERWISE THAN BY REACTIONS ONLY INVOLVING UNSATURATED CARBON-TO-CARBON BONDS
    • C08G59/00Polycondensates containing more than one epoxy group per molecule; Macromolecules obtained by polymerising compounds containing more than one epoxy group per molecule using curing agents or catalysts which react with the epoxy groups
    • C08G59/18Macromolecules obtained by polymerising compounds containing more than one epoxy group per molecule using curing agents or catalysts which react with the epoxy groups ; e.g. general methods of curing
    • C08G59/20Macromolecules obtained by polymerising compounds containing more than one epoxy group per molecule using curing agents or catalysts which react with the epoxy groups ; e.g. general methods of curing characterised by the epoxy compounds used
    • C08G59/32Epoxy compounds containing three or more epoxy groups
    • C08G59/3236Heterocylic compounds
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08GMACROMOLECULAR COMPOUNDS OBTAINED OTHERWISE THAN BY REACTIONS ONLY INVOLVING UNSATURATED CARBON-TO-CARBON BONDS
    • C08G59/00Polycondensates containing more than one epoxy group per molecule; Macromolecules obtained by polymerising compounds containing more than one epoxy group per molecule using curing agents or catalysts which react with the epoxy groups
    • C08G59/18Macromolecules obtained by polymerising compounds containing more than one epoxy group per molecule using curing agents or catalysts which react with the epoxy groups ; e.g. general methods of curing
    • C08G59/40Macromolecules obtained by polymerising compounds containing more than one epoxy group per molecule using curing agents or catalysts which react with the epoxy groups ; e.g. general methods of curing characterised by the curing agents used
    • C08G59/50Amines
    • C08G59/504Amines containing an atom other than nitrogen belonging to the amine group, carbon and hydrogen
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08LCOMPOSITIONS OF MACROMOLECULAR COMPOUNDS
    • C08L63/00Compositions of epoxy resins; Compositions of derivatives of epoxy resins
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61KPREPARATIONS FOR MEDICAL, DENTAL OR TOILETRY PURPOSES
    • A61K2800/00Properties of cosmetic compositions or active ingredients thereof or formulation aids used therein and process related aspects
    • A61K2800/10General cosmetic use
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08JWORKING-UP; GENERAL PROCESSES OF COMPOUNDING; AFTER-TREATMENT NOT COVERED BY SUBCLASSES C08B, C08C, C08F, C08G or C08H
    • C08J2363/00Characterised by the use of epoxy resins; Derivatives of epoxy resins

Definitions

  • the present invention relates to a hydrogel and more particularly to a water-based hydrogel, and to the reaction product of water-soluble monomeric or polymeric isosorbide epoxide and water-soluble amine, its method of preparation and its use.
  • Hydrogels are a class of products which consist of a reversible physical or irreversible chemical network in which water can be trapped. These hydrogels are insoluble in water. Hydrogels are highly absorbent polymeric materials and are used in a variety of applications.
  • polymer hydrogels in the literature contain polyester, polyurethane or silicone groups.
  • Epoxies have been little studied in the manufacture of gels and even less in the manufacture of hydrogels. However, this involves simple and quantitative reactions at low temperatures. In addition, it is very insensitive to the presence of water, oxygen or impurities. Epoxies also exhibit excellent mechanical and thermal properties. Many epoxies and amines are available, but very few are soluble in water.
  • WO2008079440A2 describes a process for preparing a superelastic epoxy-based hydrogel by reaction between polyetheramine and a polyglycidyl ether.
  • hydrogels are their poor mechanical properties.
  • the proportion of rigid monomer or the degree of crosslinking can be increased.
  • the material becomes more fragile and has a reduced absorption capacity.
  • hydrogels prepared from epoxy polymer of natural and non-fossil origin having improved mechanical properties while being easy to obtain and retaining facilitated water absorption.
  • hydrogel based on polymers of natural and non-fossil origin such as isosorbide epoxide polymers or monomers, exhibited such characteristics.
  • the rigid bicyclic structure of the isosorbide epoxide makes it possible to improve the mechanical properties of the hydrogels which are prepared with these polymers or monomers of isosorbide epoxide, while keeping very good characteristics. absorption of water thanks to the hydrophilic nature of these compounds.
  • thermoset epoxy polymers and, more specifically, thermoset polymers obtained from renewable resources.
  • a first object of the present invention relates to a water-based hydrogel, and to the reaction product of isosorbide epoxide monomer or water-soluble polymer and water-soluble amine chosen from a di-, tri-, or polyamine water soluble.
  • a second object of the present invention relates to a process for preparing a hydrogel according to the invention comprising the following steps:
  • a final object of the present invention relates to the use of the hydrogel according to the invention in the medical, cosmetic, agricultural, optical field, in the field of water treatment, hygiene products, in separation technology or in energy.
  • water-based hydrogel and the reaction product of water-soluble monomeric or polymeric isosorbide epoxide and water-soluble amine selected from a water-soluble di-, tri-, or polyamine.
  • water-based hydrogel is meant a material consisting of a three-dimensional network obtained by crosslinking of polymer chains in which water or an oil-in-water emulsion can be trapped.
  • the three-dimensional cross-linked network, which is insoluble, is referred to in the following as the matrix of the hydrogel.
  • the hydrogel matrix is composed of monomeric or polymeric isosorbide epoxide having the following formula (I): formula (I) [0022] where n is an integer from 0 to 300, in particular from 0 to 10, and more particularly from 0 to 5.
  • the epoxide according to formula (I) can be manufactured according to the process described in application WO 2015/110758 A1.
  • Isosorbide epoxide can be a mixture of different isosorbide epoxides which differ from each other by the R substituent and / or the n index.
  • the index n can range from 0 to 300, in particular be equal to 290, 280, 270, 260, 250, 240, 230, 220, 210, 200, 190, 180, 170, 160, 150, 140 , 130, 120, 110, 100, 90, 80, 70, 60, 50, 40, 30, 20, 10, 9, 8, 7, 6, 5, 4, 3, 2, 1.
  • the index n can be between 0 and 290, 0 and 280, 0 and 270, 0 and 260, 0 and 250, 0 and 240, 0 and 230, 0 and 220, 0 and 210, 0 and 200, 0 and 190, 0 and 180, 0 and 170, 0 and 160, 0 and 150, 0 and 140, 0 and 130, 0 and 120, 0 and 110, 0 and 100, 0 and 90, 0 and 80, 0 and 70, 0 and 60, 0 and 50, 0 and 40, 0 and 30, 0 and 20, 0 and 10, 0 and 9, 0 and 8, 0 and 7, 0 and 6, 0 and 5.
  • the index n can be between 1 and 290, 1 and 280, 1 and 270, 1 and 260, 1 and 250, 1 and 240, 1 and 230, 1 and 220, 1 and 210, 1 and 200,
  • the index n can be between 2 and 290, 2 and 280, 2 and 270, 2 and 260, 2 and 250, 2 and 240, 2 and 230, 2 and 220, 2 and 210, 2 and 200,
  • the index n can be between 3 and 290, 3 and 280, 3 and 270, 3 and 260, 3 and 250, 3 and 240, 3 and 230, 3 and 220, 3 and 210, 3 and 200,
  • the index n can be between 4 and 290, 4 and 280, 4 and 270, 4 and 260, 4 and 250, 4 and 240, 4 and 230, 4 and 220, 4 and 210, 4 and 200,
  • the index n can be between 5 and 290, 5 and 280, 5 and 270, 5 and 260, 5 and 250, 5 and 240, 5 and 230, 5 and 220, 5 and 210, 5 and 200,
  • the index n can be between 10 and 290, 10 and 280, 10 and 270, 10 and 260, 10 and 250, 10 and 240, 10 and 230, 10 and 220, 10 and 210, 10 and 200, 10 and 190, 10 and 180, 10 and 170, 10 and 160, 10 and 150, 10 and 140, 10 and 130, 10 and 120, 10 and 110, 10 and 100, 10 and 90, 10 and 80, 10 and 70, 10 and 60, 10 and 50, 10 and 40, 10 and 30, 10 and 20.
  • the monomeric or polymeric isosorbide epoxide of formula (I) is crosslinked using a crosslinking agent.
  • the crosslinking agent is a water soluble amine selected from a water soluble di-, tri-, or polyamine.
  • the water-soluble amine is chosen from amino acids such as lysine, arginine, asparagine, glutamine, isophorone diamine, diaminodiphenylsulfone, hexamethylene diamine, m-xylendiamine and polyetheramines such as diaminopolypropylene glycol (Jeffamine® D-230) and trimethylolpropane poly (oxypropylene) triamine (Jeffamine® T-403) as well as mixtures thereof.
  • amino acids such as lysine, arginine, asparagine, glutamine, isophorone diamine, diaminodiphenylsulfone, hexamethylene diamine, m-xylendiamine and polyetheramines such as diaminopolypropylene glycol (Jeffamine® D-230) and trimethylolpropane poly (oxypropylene) triamine (Jeffamine® T-403) as well as mixtures thereof.
  • the ratio of epoxide equivalent of isosorbide monomer or water-soluble polymer to the number of NH functions of the water-soluble amine is between 1: 5 and 5: 1, preferably between 1: 2 and 2: 1 and more preferably 1: 1, the optimum ratio lying between 2: 1 and 1: 2 with a maximum density for a ratio of 1: 1.
  • water demineralized water.
  • the hydrogel has a degree of hydration of 50 to 99%.
  • the hydration level is measured using the TGA: TG209F1 iris device from NETZSCH, according to the following method:
  • a few mg of product are placed in an alumina crucible.
  • a heating ramp is carried out from 25 ° C. to 300 ° C. at 10 ° C./min under inert gas (nitrogen with a flow rate of 40 ml / min).
  • the hydrogel When the hydrogel is in the presence of a stimulus to which it is sensitive, it swells or contracts. Mention may be made, as type of stimulus, of pH, temperature, enzymes or other biochemical agents. It can also swell or shrink over time, depending on the environment in which it is found.
  • the hydrogel according to the invention has the following properties:
  • the mechanical properties and the crosslinking density of the hydrogel can be adjusted during the preparation process of the hydrogel.
  • the hydrogels can have different physical forms, such as for example:
  • the hydrogel is biocompatible.
  • the hydrogel further comprises an active. All the characteristics of the hydrogel described above also apply to the hydrogel comprising an active.
  • active is meant any body, material, or substance, pure or as a mixture, of a chemical, biochemical or living nature, having a technical effect or function, in a field of industry, in particular medical, cosmetic, agricultural, optical, in the field of water treatment, hygiene products, in separation technology or in energy etc.
  • the active ingredient can be a pharmaceutical active principle which would be released under certain conditions.
  • the active ingredient can be a skin tightening molecule.
  • the active agent can be a molecule released on the surface of the eye when wearing a contact lens.
  • the active ingredient can be a decontaminant.
  • the active ingredient can be a decontaminant.
  • the active ingredient When the hydrogel is water-based, the active ingredient is dissolved in water. The solution is then captured by the meshes of the network and is finally released by syneresis.
  • the hydrogel When the hydrogel is based on an oil-in-water emulsion, the active ingredient is dissolved in the oily, discontinuous phase, emulsion. The emulsion is then captured by the meshes of the network and is finally released by syneresis.
  • the active agent is a water-soluble active agent, preferably an odorous molecule, a cosmetic active agent or a water-soluble pharmaceutical active agent. This active agent can for example be isosorbide which is known for these healing properties.
  • the hydrogel does not include an active ingredient, it makes it possible to subtract solid or particulate elements from a liquid medium containing this hydrogel.
  • This hydrogel has utility in the medical, cosmetic, agricultural, optical fields, in the field of water treatment, hygiene products, in separation technology or in energy.
  • the hydrogel can remove toxic molecules present in the human body.
  • the hydrogel can remove unwanted molecules present on the surface of the skin.
  • hydrogel can remove active ingredients from wastewater.
  • the hydrogel can subtract the surfaces of an unwanted molecule.
  • the hydrogel can subtract the molecule from a solution that one wishes to purify.
  • measuring solid or particulate elements from a liquid medium containing this hydrogel means the act of trapping, or capturing, elements present in a liquid medium and then removing them from said medium.
  • hydrogel in the medical, cosmetic, agricultural, optical field, in the field of water treatment, hygiene products, in separation technology or in energy.
  • the process for preparing a hydrogel according to the invention comprises the following steps:
  • an active is included in the hydrogel then it is prepared as above but adding the active during step 2) described above.
  • steps 1) and 2) of the process for preparing the hydrogel according to the invention can be carried out successively in this order or vice versa or simultaneously.
  • FIG. 1 is a diagram showing the kinetics of the concentration of isosorbide released into water from the preparation of Example 2.
  • Isosorbide epoxide Arugula.
  • Lysine Ajinomoto.
  • Isosorbide as an active ingredient Arugula.
  • Example 1 preparation of a hvdroael at 50% by mass of water
  • Example 2 preparation of a hvdroael at 50% by mass of water further comprising isosorbide as active ingredient
  • Example 3 relaraaae test of the preparation of Example 2
  • the hydrogel containing the isosorbide obtained according to Example 2 is then immersed in a given volume of water.
  • the released isosorbide content is determined by gas chromatography in the form of trimethylsilyl derivatives and quantified by the internal calibration method as described below
  • the hydrogel according to the invention obtained by a simple preparation process, is a good alternative to hydrogels based on a polymer of fossil origin.
  • the latter exhibits good water absorption, allowing the active ingredient it contains to be advantageously released. Because of these properties, the hydrogel according to the invention can therefore be used in various applications, in particular in the medical, cosmetic, agricultural, optical fields, water treatment, hygiene products, in technology. of separation or in energy.

Landscapes

  • Health & Medical Sciences (AREA)
  • Chemical & Material Sciences (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Medicinal Chemistry (AREA)
  • Veterinary Medicine (AREA)
  • Animal Behavior & Ethology (AREA)
  • General Health & Medical Sciences (AREA)
  • Public Health (AREA)
  • Epidemiology (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Polymers & Plastics (AREA)
  • Organic Chemistry (AREA)
  • Pharmacology & Pharmacy (AREA)
  • Dispersion Chemistry (AREA)
  • Birds (AREA)
  • Dermatology (AREA)
  • Medicinal Preparation (AREA)
  • Cosmetics (AREA)
  • Heterocyclic Carbon Compounds Containing A Hetero Ring Having Oxygen Or Sulfur (AREA)
  • Solid-Sorbent Or Filter-Aiding Compositions (AREA)
  • Epoxy Resins (AREA)
  • Processes Of Treating Macromolecular Substances (AREA)

Abstract

L´invention concerne un hydrogel à base d´eau, d´époxyde d´isosorbide monomère ou polymère hydrosoluble et d´amine hydrosoluble, son procédé de préparation et son utilisation.

Description

Description
Titre : Hydrogel à base d’eau, et du produit de réaction d’époxyde d’isosorbide et d’amines
[0001] La présente invention concerne un hydrogel et plus particulièrement, un hydrogel à base d’eau, et du produit de réaction d’époxyde d’isosorbide monomère ou polymère hydrosoluble et d’amine hydrosoluble, son procédé de préparation et son utilisation.
Introduction
[0002] Les hydrogels sont une classe de produits qui sont constitués d’un réseau physique réversible ou chimique irréversible dans lequel de l’eau peut être piégée. Ces hydrogels sont insolubles dans l’eau. Les hydrogels sont des matériaux polymères hautement absorbants et sont utilisés dans diverses applications.
[0003] Pour préparer des hydrogels chimiques irréversibles, plusieurs méthodes existent, par exemple la réticulation de polymères solubles dans l’eau ou le gonflement dans l’eau de réseaux polymères hydrophiles secs.
[0004] La majorité des hydrogels polymères dans la littérature contiennent des groupements polyesters, polyuréthanes ou silicones.
[0005] La chimie des époxydes a été peu étudiée dans la fabrication de gels et encore moins dans la fabrication d’hydrogels. Or celle-ci met en jeu des réactions simples et quantitatives à basses températures. De plus elle est très peu sensible à la présence d’eau, d’oxygène ou d’impuretés. Les époxydes présentent également d’excellentes propriétés mécaniques et thermiques. Un grand nombre d’époxydes et d’amines sont disponibles cependant très peu sont solubles dans l’eau.
[0006] W02008079440A2 décrit un procédé de préparation d’un hydrogel super élastique à base d’époxyde par réaction entre la polyétheramine et un éther polyglycidyl.
[0007] La publication « Paul Calvert, Prabir Patra, and Deepak Duggal "Epoxy hydrogels as sensors and actuators", Proc. SPIE 6524, Electroactive Polymer Actuators and Devices (EAPAD) 2007, 65240M (4 April 2007) » décrit des hydrogels à base de diépoxydes et d'amines polyfonctionnelles hydrosolubles. Ce document décrit la préparation d’hydrogel à partir de polyamines aliphatiques et polyétheramines ayant réagi avec une solution aqueuse de polyéthylèneglycol diglycidyléther (PEGDGE).
[0008] Dans le contexte actuel de la diminution progressive des ressources fossiles, il est de plus en plus intéressant de remplacer les produits d’origine fossile par d’autres produits économiquement viables et acceptables d’un point de vue environnemental.
[0009] De plus, l’un des inconvénients des hydrogels est leurs faibles propriétés mécaniques. Pour améliorer ces dernières, plusieurs solutions sont envisageables. La proportion de monomère rigide ou le taux de réticulation peuvent être augmentées. Cependant avec un réseau plus dense, le matériau devient plus fragile et présente une capacité d’absorption réduite.
[0010] Il est donc nécessaire de pouvoir disposer d’hydrogels préparés à partir de polymère d’époxyde d’origine naturelle et non fossile, ayant des propriétés mécaniques améliorées tout en étant faciles d’obtention et conservant une absorption d’eau facilitée.
[0011] Poursuivant ses recherches par de très nombreux travaux, la société Demanderesse a trouvé qu’un hydrogel à base de polymères d’origine naturelle et non fossile, tels que les polymères ou monomères d’époxyde d’isosorbide, présentait de telles caractéristiques.
[0012] En effet, la structure bi-cyclique rigide de l’époxyde d’isosorbide permet d’améliorer les propriétés mécaniques des hydrogels qui sont préparés avec ces polymères ou monomères d’époxyde d’isosorbide, tout en gardant de très bonnes caractéristiques d’absorption de l’eau grâce au caractère hydrophile de ces composés.
[0013] D'autres caractéristiques et avantages de la présente invention apparaîtront à la lecture de la description détaillée suivante, lue conjointement avec la figure annexée. [0014] US2015/307650 A1 décrit des matériaux thermodurcissables et époxydiques d'origine végétale.
[0015] US2008/009599 A1 décrit des polymères époxy thermodurcis et, plus précisément, les polymères thermodurcis issus de ressources renouvelables.
Résumé de l’invention
[0016] Un premier objet de la présente invention concerne un hydrogel à base d’eau, et du produit de réaction d’époxyde d’isosorbide monomère ou polymère hydrosoluble et d’amine hydrosoluble choisie parmi une di-, tri-, ou polyamine hydrosoluble.
[0017] Un second objet de la présente invention concerne un procédé de préparation d’un hydrogel selon l’invention comprenant les étapes suivantes :
1) Mélanger l’époxyde d’isosorbide monomère ou polymère hydrosoluble avec une amine hydrosoluble,
2) Ajouter au précédent mélange de l’eau,
3) Mélanger jusqu’à obtenir un liquide translucide, et
4) Laisser réagir.
[0018] Un dernier objet de la présente invention concerne l’utilisation de l’hydrogel selon l’invention dans le domaine médical, cosmétique, agricole, optique, dans le domaine du traitement de l’eau, des produits d’hygiène, dans la technologie de séparation ou dans l’énergie.
Description détaillée
[0019] Il est proposé un hydrogel à base d’eau, et du produit de réaction d’époxyde d’isosorbide monomère ou polymère hydrosoluble et d’amine hydrosoluble choisie parmi une di-, tri-, ou polyamine hydrosoluble.
[0020] Par « hydrogel à base d’eau», on entend un matériau constitué d’un réseau tridimensionnel obtenu par réticulation de chaînes polymères dans lequel de l’eau ou une émulsion huile dans eau peut être piégée. Le réseau tridimensionnel réticulé, qui est insoluble, est appelé dans ce qui suit matrice de l’hydrogel. [0021] Selon la présente invention la matrice de l’hydrogel est composée d’époxyde d’isosorbide monomère ou polymère présentant la formule (I) suivante :
Figure imgf000005_0001
formule (I) [0022] où n est un entier de 0 à 300, en particulier de 0 à 10, et plus particulièrement de 0 à 5.
[0023] L’époxyde selon la formule (I) peut être fabriqué selon le procédé décrit dans la demande WO 2015/110758 A1.
[0024] Il présente l’avantage d’être biosourcé et n’est pas un perturbateur endocrinien contrairement au bisphénol A.
[0025] L’époxyde d’isosorbide peut être un mélange de différents époxydes d’isosorbide qui diffèrent entre eux par le substituant R et/ou l’indice n.
[0026] L’indice n peut aller de 0 à 300, en particulier être égal à 290, 280, 270, 260, 250, 240, 230, 220, 210, 200, 190, 180, 170, 160, 150, 140, 130, 120, 110, 100, 90, 80, 70, 60, 50, 40, 30, 20, 10, 9, 8, 7, 6, 5, 4, 3, 2, 1.
[0027] Selon un mode de réalisation, l’indice n peut être compris entre 0 et 290, 0 et 280, 0 et 270, 0 et 260, 0 et 250, 0 et 240, 0 et 230, 0 et 220, 0 et 210, 0 et 200, 0 et 190, 0 et 180, 0 et 170, 0 et 160, 0 et 150, 0 et 140, 0 et 130, 0 et 120, 0 et 110, 0 et 100, 0 et 90, 0 et 80, 0 et 70, 0 et 60, 0 et 50, 0 et 40, 0 et 30, 0 et 20, 0 et 10, 0 et 9, 0 et 8, 0 et 7, 0 et 6, 0 et 5.
[0028] Selon un mode de réalisation, l’indice n peut être compris entre 1 et 290, 1 et 280, 1 et 270, 1 et 260, 1 et 250, 1 et 240, 1 et 230, 1 et 220, 1 et 210, 1 et 200,
1 et 190, 1 et 180, 1 et 170, 1 et 160, 1 et 150, 1 et 140, 1 et 130, 1 et 120, 1 et 110, 1 et 100, 1 et 90, 1 et 80, 1 et 70, 1 et 60, 1 et 50, 1 et 40, 1 et 30, 1 et 20, 1 et 10, 1 et 9, 1 et 8, 1 et 7, 1 et 6, 1 et 5.
[0029] Selon un mode de réalisation, l’indice n peut être compris entre 2 et 290, 2 et 280, 2 et 270, 2 et 260, 2 et 250, 2 et 240, 2 et 230, 2 et 220, 2 et 210, 2 et 200,
2 et 190, 2 et 180, 2 et 170, 2 et 160, 2 et 150, 2 et 140, 2 et 130, 2 et 120, 2 et 110, 2 et 100, 2 et 90, 2 et 80, 2 et 70, 2 et 60, 2 et 50, 2 et 40, 2 et 30, 2 et 20, 2 et 10, 2 et 9, 2 et 8, 2 et 7, 2 et 6, 2 et 5.
[0030] Selon un mode de réalisation, l’indice n peut être compris entre 3 et 290, 3 et 280, 3 et 270, 3 et 260, 3 et 250, 3 et 240, 3 et 230, 3 et 220, 3 et 210, 3 et 200,
3 et 190, 3 et 180, 3 et 170, 3 et 160, 3 et 150, 3 et 140, 3 et 130, 3 et 120, 3 et 110, 3 et 100, 3 et 90, 3 et 80, 3 et 70, 3 et 60, 3 et 50, 3 et 40, 3 et 30, 3 et 20, 3 et 10, 3 et 9, 3 et 8, 3 et 7, 3 et 6, 3 et 5.
[0031] Selon un mode de réalisation, l’indice n peut être compris entre 4 et 290, 4 et 280, 4 et 270, 4 et 260, 4 et 250, 4 et 240, 4 et 230, 4 et 220, 4 et 210, 4 et 200,
4 et 190, 4 et 180, 4 et 170, 4 et 160, 4 et 150, 4 et 140, 4 et 130, 4 et 120, 4 et 110, 4 et 100, 4 et 90, 4 et 80, 4 et 70, 4 et 60, 4 et 50, 4 et 40, 4 et 30, 4 et 20, 4 et 10, 4 et 9, 4 et 8, 4 et 7, 4 et 6, 4 et 5.
[0032] Selon un mode de réalisation, l’indice n peut être compris entre 5 et 290, 5 et 280, 5 et 270, 5 et 260, 5 et 250, 5 et 240, 5 et 230, 5 et 220, 5 et 210, 5 et 200,
5 et 190, 5 et 180, 5 et 170, 5 et 160, 5 et 150, 5 et 140, 5 et 130, 5 et 120, 5 et 110, 5 et 100, 5 et 90, 5 et 80, 5 et 70, 5 et 60, 5 et 50, 5 et 40, 5 et 30, 5 et 20, 5 et 10, 5 et 9, 5 et 8, 5 et 7, 5 et 6.
[0033] Selon un mode de réalisation, l’indice n peut être compris entre 10 et 290, 10 et 280, 10 et 270, 10 et 260, 10 et 250, 10 et 240, 10 et 230, 10 et 220, 10 et 210, 10 et 200, 10 et 190, 10 et 180, 10 et 170, 10 et 160, 10 et 150, 10 et 140, 10 et 130, 10 et 120, 10 et 110, 10 et 100, 10 et 90, 10 et 80, 10 et 70, 10 et 60, 10 et 50, 10 et 40, 10 et 30, 10 et 20.
[0034] Dans l’hydrogel, l’époxyde d’isosorbide monomère ou polymère de formule (I) est réticulé à l’aide d’un agent réticulant. L’agent réticulant est une amine hydrosoluble choisie parmi une di-, tri-, ou polyamine hydrosoluble. Selon un mode de réalisation, l’amine hydrosoluble est choisie parmi les acides aminés tels que la lysine, l’arginine, l’asparagine, la glutamine, l’isophorone diamine, diaminodiphenylsulfone, l’hexaméthylène diamine, la m-xylendiamine et les polyétheramines telles que le diaminopolypropylene glycol (Jeffamine® D-230) et le trimethylolpropane poly(oxypropylene)triamine (Jeffamine® T-403) ainsi que leurs mélanges.
[0035] Selon un mode de réalisation préféré, le ratio en équivalent époxyde d’isosorbide monomère ou polymère hydrosoluble sur le nombre de fonctions N-H de l’amine hydrosoluble est compris entre 1 :5 et 5 :1, de préférence entre 1 :2 et 2 :1 et plus préférentiellement 1 :1.Le ratio optimum se situant entre 2 :1 et 1 :2 avec un maximum de densité pour un ratio de 1 :1.
[0036] Par « eau » on entend l’eau déminéralisée. Selon un mode de réalisation préféré, l’hydrogel présente un taux d’hydratation de 50 à 99 %. Le taux d’hydratation est mesuré à l’aide de l’appareil TGA : TG209F1 iris de NETZSCH, selon la méthode suivante :
Quelques mg de produit sont déposés dans un creuset alumine. On effectue une rampe de chauffe de 25°C à 300°C à 10°C/min sous gaz inerte (azote avec un débit de 40ml/min).
[0037] Lorsque l’hydrogel se trouve en présence d’un stimulus auquel il est sensible, il se gonfle ou se rétracte. Comme type de stimulus on peut citer le pH, la température, les enzymes ou autres agents biochimiques. Il peut aussi se gonfler ou se rétracter au cours du temps notamment en fonction de l’environnement dans lequel il se trouve.
[0038] En résumé, l’hydrogel selon l’invention présente les propriétés suivantes :
- Biosourcé - Adaptabilité, et
- Synérèse contrôlable.
[0039] Les propriétés mécaniques et la densité de réticulation de l’hydrogel peuvent être ajustées lors du procédé de préparation de l’hydrogel. [0040] Les hydrogels peuvent avoir différentes formes physiques, comme par exemple :
- un solide mou comme une lentille de contact,
- une poudre comprimée comme utilisé dans l’élaboration de certaines pilules et capsule pour l’administration d’actif par voie orale, - des microparticules qui peuvent servir de vecteurs pour des applications médicales, par exemple des vecteurs bio adhésifs lors de traitement de plaies, ou encore
-un revêtement spécial pour des implants.
Selon un mode de réalisation préféré, l’hydrogel est biocompatible. [0041] Selon un autre mode de réalisation préféré, l’hydrogel comprend en outre un actif. Toutes les caractéristiques de l’hydrogel décrites précédemment s’appliquent également à l’hydrogel comprenant un actif.
[0042] Par « actif » on entend tout corps, matériau, ou substance, pur ou en mélange, de nature chimique, biochimique ou vivante, ayant un effet ou fonction technique, dans un domaine de l'industrie, notamment médical, cosmétique, agricole, optique, dans le domaine du traitement de l’eau, des produits d’hygiène, dans la technologie de séparation ou dans l’énergie etc. Dans le domaine médical, l’actif peut être un principe actif pharmaceutique qui serait relargué dans certaines conditions. Dans le domaine cosmétique, l’actif peut être une molécule tenseur de la peau. Dans le domaine optique, l’actif peut être une molécule relarguée à la surface de l’œil lors du port de lentille de contact. Dans le domaine du traitement de l’eau, l’actif peut être un décontaminant. Dans le domaine des produits d’hygiènes, l’actif peut être un décontaminant. Lorsque l’hydrogel est à base d’eau, l’actif est solubilisé dans l’eau. La solution est ensuite capturée par les mailles du réseau et est enfin relargué par synérèse. Lorsque l’hydrogel est à base d’une émulsion huile dans eau, l’actif est solubilisé dans la phase huileuse, discontinue, de l’émulsion. L’émulsion est ensuite capturée par les mailles du réseau et est enfin relargué par synérèse. De préférence l’actif est un actif soluble dans l’eau, de préférence une molécule odorante, un actif cosmétique ou un actif pharmaceutique hydrosoluble. Cet actif peut par exemple être l’isosorbide qui est connu pour ces propriétés cicatrisantes.
[0043] Dans le cas où l’hydrogel ne comprend pas d’actif, il permet de soustraire des éléments solides ou particulaires d’un milieu liquide contenant cet hydrogel. Cet hydrogel a une utilité dans le domaine médical, cosmétique, agricole, optique, dans le domaine du traitement de l’eau, des produits d’hygiène, dans la technologie de séparation ou dans l’énergie. Dans le domaine médical, l’hydrogel peut soustraire des molécules toxiques présentes dans le corps humain. Dans le domaine cosmétique, l’hydrogel peut soustraire des molécules indésirables présentes à la surface de la peau. Dans le domaine du traitement de l’eau, l’hydrogel peut soustraire des principes actifs des eaux usées. Dans le domaine des produits d’hygiènes, l’hydrogel peut soustraire les surfaces d’une molécule indésirable. Dans le domaine de la technologie de séparation, l’hydrogel peut soustraire la molécule d’une solution que l’on souhaite purifier.
[0044] On entend par «soustraire des éléments solides ou particulaires d’un milieu liquide contenant cet hydrogel», le fait de piéger, ou capturer, des éléments présents dans un milieu liquide puis de les retirer dudit milieu.
[0045] Selon un autre aspect de la présente invention, il est proposé l’utilisation d’un hydrogel dans le domaine médical, cosmétique, agricole, optique, dans le domaine du traitement de l’eau, des produits d’hygiène, dans la technologie de séparation ou dans l’énergie.
[0046] Selon un autre aspect, il est proposé un procédé de préparation d’un hydrogel selon l’invention comprenant les étapes suivantes :
1) Mélanger l’époxyde d’isosorbide monomère ou polymère hydrosoluble avec une amine hydrosoluble,
2) Ajouter au précédent mélange de l’eau,
3) Mélanger jusqu’à obtenir un liquide translucide, et 4) Laisser réagir à température ambiante ou à une température pouvant aller jusqu’à 80°C.
[0047] Selon un mode de réalisation particulier, le procédé de préparation d’un hydrogel selon l’invention comprend les étapes suivantes :
1) Mélanger l’époxyde d’isosorbide monomère ou polymère hydrosoluble avec une amine hydrosoluble, de préférence selon un ratio fonction epoxy sur fonction -NH compris entre 1 :5 et 5 :1, plus préférentiellement entre 1 :2 et 2 :1 et encore plus préférentiellement 1 :1,
2) Ajouter au précédent mélange de l’eau,
3) Mélanger jusqu’à obtenir un liquide translucide,
4) Optionnellement, verser le liquide translucide obtenu dans un moule,
5) Laisser réagir, de préférence à température ambiante ou à une température pouvant aller jusqu’à 80°C, et
6) Optionnellement, démouler l’hydrogel ainsi formé.
[0048] Selon un autre mode de réalisation, le procédé de préparation d’un hydrogel selon l’invention comprenant les étapes suivantes :
1) Mélanger l’époxyde d’isosorbide monomère ou polymère hydrosoluble avec une amine hydrosoluble selon un ratio fonction epoxy sur fonction -NH compris entre 1 :5 et 5 :1, de préférence entre 1 :2 et 2 :1 et plus préférentiellement 1 :1,
2) Ajouter au précédent mélange de l’eau,
3) Mélanger jusqu’à obtenir un liquide translucide,
4) Verser le liquide translucide obtenu dans un moule,
5) Laisser réagir à température ambiante ou à une température pouvant aller jusqu’à 80°C, et
6) Démouler l’hydrogel ainsi formé.
[0049] Si un actif est inclus dans l’hydrogel alors, il est préparé comme précédemment mais en ajoutant l’actif lors de l’étape 2) ci-dessus décrite.
[0050] Selon un autre mode de réalisation, les étapes 1) et 2) du procédé de préparation de l’hydrogel selon l’invention peuvent être réalisées successivement dans cet ordre ou inversement ou simultanément.
Brève description des dessins [0051] D’autres caractéristiques, détails et avantages de l’invention apparaîtront à la lecture de la description détaillée ci-après, et à l’analyse des dessins annexés, sur lesquels :
Fig. 1
[0052] [Fig. 1] est un diagramme montrant la cinétique de concentration d’isosorbide relargué dans l’eau à partir de la préparation de l’exemple 2.
Exemples
[0053] Réactifs :
Epoxyde d’isosorbide : Roquette.
Lysine : Ajinomoto.
Isosorbide en tant qu’ingrédient actif : Roquette.
Eau : Eau déminéralisée.
[0054] Exemple 1 : préparation d’un hvdroael à 50% massique en eau
[0055] On mélange 5g d’époxyde d’isosorbide (EEW=180g/eq) (c’est à dire le produit de formule (I) avec R=H et n=0), avec 1,03g de Lysine. Puis on ajoute 6,03g d’eau déminéralisée. On mélange afin d’obtenir une préparation homogène. On verse dans un moule puis on laisse réagir à température ambiante. L’hydrogel est obtenu après 72h. On démoule l’hydrogel ainsi obtenu.
[0056] Exemple 2 : préparation d’un hvdroael à 50% massique en eau comprenant en outre de l’isosorbide comme ingrédient actif
[0057] On mélange 5g d’époxyde d’isosorbide (EEW=180g/eq) avec 1,03g de Lysine. Puis on ajoute 6,03g d’une solution aqueuse d’isosorbide à 20% massique. On mélange afin d’obtenir une préparation homogène. On verse dans un moule puis on laisse réagir à température ambiante. L’hydrogel est obtenu après 72h. On démoule l’hydrogel renfermant l’ingrédient actif ainsi obtenu.
[0058] Exemple 3 : test de relaraaae de la préparation de l’exemple 2
[0059] L’hydrogel renfermant l’isosorbide obtenu selon l’exemple 2 est ensuite immergé dans un volume d’eau donnée. La teneur en isosorbide relargué est déterminée par chromatographie gazeuse sous forme de dérivés triméthylsilylés et quantifiée par la méthode de l’étalonnage interne telle que décrite ci-dessous Nom de l’appareil : CPG type Varian 3800 ou Bruker 450 équipé d’un injecteur split-splitless ; d’un détecteur FID ; d’une colonne capillaire DB1 (J&W scientific réf 123-1033 ; 30m de longueur ; 0,32mm de diamètre interne ; 1 micron d’épaisseur de film.
[0060] Conditions d’analyses :
Température colonne : programmation de température dès l’injection de 140° à 250°C à raison de 3 °C/minute puis jusque 300°C à raison de 10°C/min. Température injecteur : 300°C Température détecteur : 300°C
Pression : 10 psi Gaz Vecteur : Hélium Mode d’injection : split avec « liner split » impératif Débit du split : 80 ml/minute Débit hydrogène : 30 ml/minute Débit d’air : 400 ml/minute Volume injecté : 1 microlitre
Dans un bêcher de 100 ml, on pèse environ précisément 1g de produit et 50 mg d’étalon interne (aMéthyl-D-glucopyranoside). O, ajoute environ 50 ml de pyridine (4-1 ). On laisse sous agitation magnétique jusqu’à dissolution complète.
Dans un godet de 2ml à bouchon vissable, on dépose 1 ml de la solution, 1ml de pyridine et 0,3 ml de BSTFA. On bouche. On agite. On laisse au bain à sec thermostaté à 70°C pendant 30 minutes avant d’injecter 1 microlitre.
[0061] La cinétique de concentration en isosorbide relargué dans l’eau est donnée sur la figure 1 sur laquelle le seuil de 2,5% correspond à la concentration maximale en isosorbide pouvant être mise en œuvre lors de cet essai au vu de la quantité d’isosorbide introduit et du volume d’eau connu utilisé pour l’étape de relargage.
[0062] Ce test montre que l’hydrogel formé a une capacité de relargage de l’isosorbide. Ce dernier est complètement relargué au bout de 4h. [0063] En conséquence les inventeurs ont découvert que l’hydrogel selon l’invention permet de relarguer des ingrédients actifs, ce temps de relargage pouvant être ajusté en fonction de la formulation de l’hydrogel.
[0064] L’hydrogel selon l’invention, obtenu selon un procédé de préparation simple, est une bonne alternative aux hydrogels à base de polymère d’origine fossile. Ce dernier présente une bonne absorption de l’eau permettant de relarguer avantageusement l’ingrédient actif qu’il contient. Du fait de ces propriétés, l’hydrogel selon l’invention peut donc être utilisé dans des applications diverses, notamment dans le domaine médical, cosmétique, agricole, optique, le traitement de l’eau, les produits d’hygiène, dans la technologie de séparation ou dans l’énergie.

Claims

Revendications
[Revendication 1] Hydrogel à base d’eau et du produit de réaction d’époxyde d’isosorbide monomère ou polymère hydrosoluble et d’amine hydrosoluble choisie parmi une di-, tri-, ou polyamine hydrosoluble.
[Revendication 2] Hydrogel selon la revendication 1, dans laquelle l’époxyde d’isosorbide monomère ou polymère hydrosoluble présente la formule (I) suivante :
Figure imgf000014_0001
Où n est un entier de 0 à 300, de préférence de 0 à 10, et plus préférentiellement de 0 à 5.
[Revendication 3] Hydrogel selon les revendications 1 ou 2, dans lequel la di-, tri-, ou polyamine hydrosoluble est choisie parmi la lysine, l’arginine, l’asparagine, la glutamine, l’isophorone diamine, diaminodiphenylsulfone, l’hexaméthylène diamine, la m-xylendiamine et les polyétheramines telles que Jeffamine D-230, Jeffamine T-403 et leurs mélanges.
[Revendication 4] Hydrogel selon l’une des revendications précédentes, dans lequel le ratio en équivalent époxyde d’isosorbide monomère ou polymère hydrosoluble sur le nombre de fonctions N-H de l’amine hydrosoluble est compris entre 1 :5 et 5 :1, de préférence entre 1 :2 et 2 :1 et plus préférentiellement 1 :1.
[Revendication 5] Hydrogel selon l’une des revendications précédentes, présentant un taux d’hydratation de 50 à 99 %.
[Revendication 6] Hydrogel selon l’une des revendications précédentes, comprenant en outre un actif soluble dans l’eau, de préférence une molécule odorante, un actif cosmétique ou un actif pharmaceutique hydrosoluble et plus préférentiellement l’isosorbide..
[Revendication 7] Procédé de préparation d’un hydrogel tel que défini dans les revendications 1 à 6 comprenant les étapes suivantes :
1) Mélanger l’époxyde d’isosorbide monomère ou polymère hydrosoluble avec une amine hydrosoluble,
2) Ajouter au précédent mélange de l’eau,
3) Mélanger jusqu’à obtenir un liquide translucide, et
4) Laisser réagir.
[Revendication 8] Procédé de préparation d’un hydrogel selon la revendication 7, dans lequel l’étape 2) comprend l’ajout d’un actif.
[Revendication 9] Utilisation d’un hydrogel tel que défini dans les revendications 1 à 6 dans le domaine médical, cosmétique, agricole, optique, dans le domaine du traitement de l’eau, des produits d’hygiène, dans la technologie de séparation ou dans l’énergie.
PCT/FR2020/052182 2019-11-27 2020-11-26 Hydrogel à base d'eau, et du produit de réaction d'époxyde d'isosorbide et d'amines WO2021105619A1 (fr)

Priority Applications (4)

Application Number Priority Date Filing Date Title
KR1020227017831A KR20220108774A (ko) 2019-11-27 2020-11-26 물 및 이소소르비드 에폭사이드와 아민의 반응 생성물에 기반한 하이드로겔
JP2022531071A JP2023503358A (ja) 2019-11-27 2020-11-26 水、及びイソソルビドエポキシドとアミンとの反応生成物、をベースとするヒドロゲル
EP20824305.5A EP4065624A1 (fr) 2019-11-27 2020-11-26 Hydrogel à base d'eau, et du produit de réaction d'époxyde d'isosorbide et d'amines
US17/756,396 US20220403118A1 (en) 2019-11-27 2020-11-26 Water-based hydrogel, and reaction product of isosorbide epoxide and amines

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
FRFR1913342 2019-11-27
FR1913342A FR3103380B1 (fr) 2019-11-27 2019-11-27 Hydrogel à base d’eau, et du produit de réaction d’époxyde d’isosorbide et d’amines

Publications (1)

Publication Number Publication Date
WO2021105619A1 true WO2021105619A1 (fr) 2021-06-03

Family

ID=69630500

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/FR2020/052182 WO2021105619A1 (fr) 2019-11-27 2020-11-26 Hydrogel à base d'eau, et du produit de réaction d'époxyde d'isosorbide et d'amines

Country Status (6)

Country Link
US (1) US20220403118A1 (fr)
EP (1) EP4065624A1 (fr)
JP (1) JP2023503358A (fr)
KR (1) KR20220108774A (fr)
FR (1) FR3103380B1 (fr)
WO (1) WO2021105619A1 (fr)

Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20080009599A1 (en) 2006-06-02 2008-01-10 New Jersey Institute Of Technology Thermoset epoxy polymers from renewable resources
WO2008079440A2 (fr) 2006-07-10 2008-07-03 Medipacs, Inc. Hydrogel époxy super-élastique
US20120107369A1 (en) * 2010-11-01 2012-05-03 nanoDERM, LLC Polymers and Hydrogels
US20120244097A1 (en) * 2011-03-21 2012-09-27 Broda Technologies Co., Ltd. Reversely thermo-reversible hydrogel compositions
WO2015110758A1 (fr) 2014-01-21 2015-07-30 Roquette Freres Procede de fabrication de glycidyl ethers d'isohexides, produits ainsi obtenus et leurs utilisations
US20150307650A1 (en) 2014-04-24 2015-10-29 New Jersey Institute Of Technology Isosorbide-derived epoxy resins and methods of making same

Patent Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20080009599A1 (en) 2006-06-02 2008-01-10 New Jersey Institute Of Technology Thermoset epoxy polymers from renewable resources
WO2008079440A2 (fr) 2006-07-10 2008-07-03 Medipacs, Inc. Hydrogel époxy super-élastique
US20120107369A1 (en) * 2010-11-01 2012-05-03 nanoDERM, LLC Polymers and Hydrogels
US20120244097A1 (en) * 2011-03-21 2012-09-27 Broda Technologies Co., Ltd. Reversely thermo-reversible hydrogel compositions
WO2015110758A1 (fr) 2014-01-21 2015-07-30 Roquette Freres Procede de fabrication de glycidyl ethers d'isohexides, produits ainsi obtenus et leurs utilisations
US20150307650A1 (en) 2014-04-24 2015-10-29 New Jersey Institute Of Technology Isosorbide-derived epoxy resins and methods of making same

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
PAUL CALVERTPRABIR PATRADEEPAK DUGGAL: "Epoxy hydrogels as sensors and actuators", PROC. SPIE 6524, ELECTROACTIVE POLYMER ACTUATORS AND DEVICES (EAPAD, 4 April 2007 (2007-04-04)

Also Published As

Publication number Publication date
FR3103380B1 (fr) 2022-08-12
KR20220108774A (ko) 2022-08-03
FR3103380A1 (fr) 2021-05-28
EP4065624A1 (fr) 2022-10-05
JP2023503358A (ja) 2023-01-27
US20220403118A1 (en) 2022-12-22

Similar Documents

Publication Publication Date Title
KR101884772B1 (ko) 팽윤된 실리콘 겔을 포함하는 실리콘 조성물
JP5376543B2 (ja) ポリイオンデンドリマー、及びそれよりなるハイドロゲル
CA2276711C (fr) Polymeres antimicrobiens comportant des groupes ammonium quaternaire, leur utilisation pour la fabrication d'un materiau a proprietes antimicrobiennes et leurs procedes de preparation
CN1426424A (zh) 包含交联聚轮烷的化合物
FR2465235A1 (fr) Lentille de contact produite a partir de polymeres de polysiloxane et d'esters polycycliques d'acide acrylique ou methacrylique
FR2847166A1 (fr) Forme posologique comprenant des pastilles de tamsulosine enrobees, son procede de preparation et son utilisation
EP0377370A1 (fr) Procédé d'encapsulation de particules au moyen d'un copolymère silicone thermoplastique et particules enrobées
FR2653337A1 (fr) Element a liberation prolongee et procede pour le fabriquer.
WO2013113830A1 (fr) Procédé de préparation de capsules rigidifiées
CN106163647A (zh) 膜制造方法
FR3066116A1 (fr) Procede de preparation de capsules biodegradables et capsules obtenues
CA2596147A1 (fr) Copolyhydroxyalkylglutamines fonctionnalises par des groupements hydrophobes et leurs applications notamment therapeutiques
EP2408718A1 (fr) Composition à base de chaux, leur procédé de fabrication et leur utilisation en traitement des eaux et boues
EP3600642A1 (fr) Procédé de préparation de capsules avec des propriétés de rétention améliorées et capsules obtenues
CN106232686B (zh) 聚合物及制造膜的方法
EP4065624A1 (fr) Hydrogel à base d'eau, et du produit de réaction d'époxyde d'isosorbide et d'amines
EP0389386A1 (fr) Copolymère à blocs polyester-silicone dégradable par hydrolyse
FR2940064A1 (fr) Agent anti-transpirant comprenant des composants capables de former entre eux des liaisons covalentes et procede de traitement de la transpiration humaine en deux etapes
FR3059665B1 (fr) Procede de preparation de microcapsules et de microparticules de taille controlee.
Johnson et al. Microfluidics assisted fabrication of microspheres by poly (2–hydroxyethyl methacrylate)-block-poly (l-histidine) hybrid materials and their utilization as potential drug encapsulants
CA2583783C (fr) Complexe comprenant la mequitazine, une cyclodextrine et un agent d'interaction
US9221994B2 (en) Aqueous based process to fabricate nanostructured block copolymer films
FR2837724A1 (fr) Capsules composites biocompatibles
FR2862652A1 (fr) Procede d'obtention d'un gel thermoreversible a structure tridimensionnelle controlee et gel obtenu
EP3697527A1 (fr) Procédé de préparation de capsules sensibles au ph ou au rayonnement uv et capsules obtenues

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 20824305

Country of ref document: EP

Kind code of ref document: A1

ENP Entry into the national phase

Ref document number: 2022531071

Country of ref document: JP

Kind code of ref document: A

NENP Non-entry into the national phase

Ref country code: DE

ENP Entry into the national phase

Ref document number: 2020824305

Country of ref document: EP

Effective date: 20220627