WO2021104417A1 - 一种碳钢奥氏体不锈钢轧制复合板及其制造方法 - Google Patents

一种碳钢奥氏体不锈钢轧制复合板及其制造方法 Download PDF

Info

Publication number
WO2021104417A1
WO2021104417A1 PCT/CN2020/132056 CN2020132056W WO2021104417A1 WO 2021104417 A1 WO2021104417 A1 WO 2021104417A1 CN 2020132056 W CN2020132056 W CN 2020132056W WO 2021104417 A1 WO2021104417 A1 WO 2021104417A1
Authority
WO
WIPO (PCT)
Prior art keywords
stainless steel
austenitic stainless
carbon steel
temperature
clad plate
Prior art date
Application number
PCT/CN2020/132056
Other languages
English (en)
French (fr)
Inventor
薛鹏
朱晓东
闫博
焦四海
Original Assignee
宝山钢铁股份有限公司
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 宝山钢铁股份有限公司 filed Critical 宝山钢铁股份有限公司
Priority to EP20894434.8A priority Critical patent/EP4067525A4/en
Priority to US17/780,598 priority patent/US20230001504A1/en
Priority to KR1020227020166A priority patent/KR20220106149A/ko
Priority to JP2022529742A priority patent/JP2023503912A/ja
Publication of WO2021104417A1 publication Critical patent/WO2021104417A1/zh

Links

Classifications

    • CCHEMISTRY; METALLURGY
    • C21METALLURGY OF IRON
    • C21DMODIFYING THE PHYSICAL STRUCTURE OF FERROUS METALS; GENERAL DEVICES FOR HEAT TREATMENT OF FERROUS OR NON-FERROUS METALS OR ALLOYS; MAKING METAL MALLEABLE, e.g. BY DECARBURISATION OR TEMPERING
    • C21D9/00Heat treatment, e.g. annealing, hardening, quenching or tempering, adapted for particular articles; Furnaces therefor
    • C21D9/46Heat treatment, e.g. annealing, hardening, quenching or tempering, adapted for particular articles; Furnaces therefor for sheet metals
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B23MACHINE TOOLS; METAL-WORKING NOT OTHERWISE PROVIDED FOR
    • B23KSOLDERING OR UNSOLDERING; WELDING; CLADDING OR PLATING BY SOLDERING OR WELDING; CUTTING BY APPLYING HEAT LOCALLY, e.g. FLAME CUTTING; WORKING BY LASER BEAM
    • B23K20/00Non-electric welding by applying impact or other pressure, with or without the application of heat, e.g. cladding or plating
    • B23K20/04Non-electric welding by applying impact or other pressure, with or without the application of heat, e.g. cladding or plating by means of a rolling mill
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B21MECHANICAL METAL-WORKING WITHOUT ESSENTIALLY REMOVING MATERIAL; PUNCHING METAL
    • B21BROLLING OF METAL
    • B21B1/00Metal-rolling methods or mills for making semi-finished products of solid or profiled cross-section; Sequence of operations in milling trains; Layout of rolling-mill plant, e.g. grouping of stands; Succession of passes or of sectional pass alternations
    • B21B1/38Metal-rolling methods or mills for making semi-finished products of solid or profiled cross-section; Sequence of operations in milling trains; Layout of rolling-mill plant, e.g. grouping of stands; Succession of passes or of sectional pass alternations for rolling sheets of limited length, e.g. folded sheets, superimposed sheets, pack rolling
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B23MACHINE TOOLS; METAL-WORKING NOT OTHERWISE PROVIDED FOR
    • B23KSOLDERING OR UNSOLDERING; WELDING; CLADDING OR PLATING BY SOLDERING OR WELDING; CUTTING BY APPLYING HEAT LOCALLY, e.g. FLAME CUTTING; WORKING BY LASER BEAM
    • B23K20/00Non-electric welding by applying impact or other pressure, with or without the application of heat, e.g. cladding or plating
    • B23K20/22Non-electric welding by applying impact or other pressure, with or without the application of heat, e.g. cladding or plating taking account of the properties of the materials to be welded
    • B23K20/227Non-electric welding by applying impact or other pressure, with or without the application of heat, e.g. cladding or plating taking account of the properties of the materials to be welded with ferrous layer
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B32LAYERED PRODUCTS
    • B32BLAYERED PRODUCTS, i.e. PRODUCTS BUILT-UP OF STRATA OF FLAT OR NON-FLAT, e.g. CELLULAR OR HONEYCOMB, FORM
    • B32B15/00Layered products comprising a layer of metal
    • B32B15/01Layered products comprising a layer of metal all layers being exclusively metallic
    • B32B15/011Layered products comprising a layer of metal all layers being exclusively metallic all layers being formed of iron alloys or steels
    • CCHEMISTRY; METALLURGY
    • C21METALLURGY OF IRON
    • C21DMODIFYING THE PHYSICAL STRUCTURE OF FERROUS METALS; GENERAL DEVICES FOR HEAT TREATMENT OF FERROUS OR NON-FERROUS METALS OR ALLOYS; MAKING METAL MALLEABLE, e.g. BY DECARBURISATION OR TEMPERING
    • C21D1/00General methods or devices for heat treatment, e.g. annealing, hardening, quenching or tempering
    • C21D1/18Hardening; Quenching with or without subsequent tempering
    • C21D1/19Hardening; Quenching with or without subsequent tempering by interrupted quenching
    • CCHEMISTRY; METALLURGY
    • C21METALLURGY OF IRON
    • C21DMODIFYING THE PHYSICAL STRUCTURE OF FERROUS METALS; GENERAL DEVICES FOR HEAT TREATMENT OF FERROUS OR NON-FERROUS METALS OR ALLOYS; MAKING METAL MALLEABLE, e.g. BY DECARBURISATION OR TEMPERING
    • C21D1/00General methods or devices for heat treatment, e.g. annealing, hardening, quenching or tempering
    • C21D1/18Hardening; Quenching with or without subsequent tempering
    • C21D1/19Hardening; Quenching with or without subsequent tempering by interrupted quenching
    • C21D1/20Isothermal quenching, e.g. bainitic hardening
    • CCHEMISTRY; METALLURGY
    • C21METALLURGY OF IRON
    • C21DMODIFYING THE PHYSICAL STRUCTURE OF FERROUS METALS; GENERAL DEVICES FOR HEAT TREATMENT OF FERROUS OR NON-FERROUS METALS OR ALLOYS; MAKING METAL MALLEABLE, e.g. BY DECARBURISATION OR TEMPERING
    • C21D1/00General methods or devices for heat treatment, e.g. annealing, hardening, quenching or tempering
    • C21D1/18Hardening; Quenching with or without subsequent tempering
    • C21D1/25Hardening, combined with annealing between 300 degrees Celsius and 600 degrees Celsius, i.e. heat refining ("Vergüten")
    • CCHEMISTRY; METALLURGY
    • C21METALLURGY OF IRON
    • C21DMODIFYING THE PHYSICAL STRUCTURE OF FERROUS METALS; GENERAL DEVICES FOR HEAT TREATMENT OF FERROUS OR NON-FERROUS METALS OR ALLOYS; MAKING METAL MALLEABLE, e.g. BY DECARBURISATION OR TEMPERING
    • C21D1/00General methods or devices for heat treatment, e.g. annealing, hardening, quenching or tempering
    • C21D1/26Methods of annealing
    • CCHEMISTRY; METALLURGY
    • C21METALLURGY OF IRON
    • C21DMODIFYING THE PHYSICAL STRUCTURE OF FERROUS METALS; GENERAL DEVICES FOR HEAT TREATMENT OF FERROUS OR NON-FERROUS METALS OR ALLOYS; MAKING METAL MALLEABLE, e.g. BY DECARBURISATION OR TEMPERING
    • C21D1/00General methods or devices for heat treatment, e.g. annealing, hardening, quenching or tempering
    • C21D1/78Combined heat-treatments not provided for above
    • CCHEMISTRY; METALLURGY
    • C21METALLURGY OF IRON
    • C21DMODIFYING THE PHYSICAL STRUCTURE OF FERROUS METALS; GENERAL DEVICES FOR HEAT TREATMENT OF FERROUS OR NON-FERROUS METALS OR ALLOYS; MAKING METAL MALLEABLE, e.g. BY DECARBURISATION OR TEMPERING
    • C21D6/00Heat treatment of ferrous alloys
    • C21D6/002Heat treatment of ferrous alloys containing Cr
    • CCHEMISTRY; METALLURGY
    • C21METALLURGY OF IRON
    • C21DMODIFYING THE PHYSICAL STRUCTURE OF FERROUS METALS; GENERAL DEVICES FOR HEAT TREATMENT OF FERROUS OR NON-FERROUS METALS OR ALLOYS; MAKING METAL MALLEABLE, e.g. BY DECARBURISATION OR TEMPERING
    • C21D6/00Heat treatment of ferrous alloys
    • C21D6/004Heat treatment of ferrous alloys containing Cr and Ni
    • CCHEMISTRY; METALLURGY
    • C21METALLURGY OF IRON
    • C21DMODIFYING THE PHYSICAL STRUCTURE OF FERROUS METALS; GENERAL DEVICES FOR HEAT TREATMENT OF FERROUS OR NON-FERROUS METALS OR ALLOYS; MAKING METAL MALLEABLE, e.g. BY DECARBURISATION OR TEMPERING
    • C21D6/00Heat treatment of ferrous alloys
    • C21D6/005Heat treatment of ferrous alloys containing Mn
    • CCHEMISTRY; METALLURGY
    • C21METALLURGY OF IRON
    • C21DMODIFYING THE PHYSICAL STRUCTURE OF FERROUS METALS; GENERAL DEVICES FOR HEAT TREATMENT OF FERROUS OR NON-FERROUS METALS OR ALLOYS; MAKING METAL MALLEABLE, e.g. BY DECARBURISATION OR TEMPERING
    • C21D8/00Modifying the physical properties by deformation combined with, or followed by, heat treatment
    • C21D8/02Modifying the physical properties by deformation combined with, or followed by, heat treatment during manufacturing of plates or strips
    • C21D8/0205Modifying the physical properties by deformation combined with, or followed by, heat treatment during manufacturing of plates or strips of ferrous alloys
    • CCHEMISTRY; METALLURGY
    • C21METALLURGY OF IRON
    • C21DMODIFYING THE PHYSICAL STRUCTURE OF FERROUS METALS; GENERAL DEVICES FOR HEAT TREATMENT OF FERROUS OR NON-FERROUS METALS OR ALLOYS; MAKING METAL MALLEABLE, e.g. BY DECARBURISATION OR TEMPERING
    • C21D8/00Modifying the physical properties by deformation combined with, or followed by, heat treatment
    • C21D8/02Modifying the physical properties by deformation combined with, or followed by, heat treatment during manufacturing of plates or strips
    • C21D8/021Modifying the physical properties by deformation combined with, or followed by, heat treatment during manufacturing of plates or strips involving a particular fabrication or treatment of ingot or slab
    • CCHEMISTRY; METALLURGY
    • C21METALLURGY OF IRON
    • C21DMODIFYING THE PHYSICAL STRUCTURE OF FERROUS METALS; GENERAL DEVICES FOR HEAT TREATMENT OF FERROUS OR NON-FERROUS METALS OR ALLOYS; MAKING METAL MALLEABLE, e.g. BY DECARBURISATION OR TEMPERING
    • C21D8/00Modifying the physical properties by deformation combined with, or followed by, heat treatment
    • C21D8/02Modifying the physical properties by deformation combined with, or followed by, heat treatment during manufacturing of plates or strips
    • C21D8/0221Modifying the physical properties by deformation combined with, or followed by, heat treatment during manufacturing of plates or strips characterised by the working steps
    • C21D8/0226Hot rolling
    • CCHEMISTRY; METALLURGY
    • C21METALLURGY OF IRON
    • C21DMODIFYING THE PHYSICAL STRUCTURE OF FERROUS METALS; GENERAL DEVICES FOR HEAT TREATMENT OF FERROUS OR NON-FERROUS METALS OR ALLOYS; MAKING METAL MALLEABLE, e.g. BY DECARBURISATION OR TEMPERING
    • C21D8/00Modifying the physical properties by deformation combined with, or followed by, heat treatment
    • C21D8/02Modifying the physical properties by deformation combined with, or followed by, heat treatment during manufacturing of plates or strips
    • C21D8/0221Modifying the physical properties by deformation combined with, or followed by, heat treatment during manufacturing of plates or strips characterised by the working steps
    • C21D8/0236Cold rolling
    • CCHEMISTRY; METALLURGY
    • C21METALLURGY OF IRON
    • C21DMODIFYING THE PHYSICAL STRUCTURE OF FERROUS METALS; GENERAL DEVICES FOR HEAT TREATMENT OF FERROUS OR NON-FERROUS METALS OR ALLOYS; MAKING METAL MALLEABLE, e.g. BY DECARBURISATION OR TEMPERING
    • C21D8/00Modifying the physical properties by deformation combined with, or followed by, heat treatment
    • C21D8/02Modifying the physical properties by deformation combined with, or followed by, heat treatment during manufacturing of plates or strips
    • C21D8/0247Modifying the physical properties by deformation combined with, or followed by, heat treatment during manufacturing of plates or strips characterised by the heat treatment
    • CCHEMISTRY; METALLURGY
    • C21METALLURGY OF IRON
    • C21DMODIFYING THE PHYSICAL STRUCTURE OF FERROUS METALS; GENERAL DEVICES FOR HEAT TREATMENT OF FERROUS OR NON-FERROUS METALS OR ALLOYS; MAKING METAL MALLEABLE, e.g. BY DECARBURISATION OR TEMPERING
    • C21D8/00Modifying the physical properties by deformation combined with, or followed by, heat treatment
    • C21D8/02Modifying the physical properties by deformation combined with, or followed by, heat treatment during manufacturing of plates or strips
    • C21D8/0247Modifying the physical properties by deformation combined with, or followed by, heat treatment during manufacturing of plates or strips characterised by the heat treatment
    • C21D8/0263Modifying the physical properties by deformation combined with, or followed by, heat treatment during manufacturing of plates or strips characterised by the heat treatment following hot rolling
    • CCHEMISTRY; METALLURGY
    • C21METALLURGY OF IRON
    • C21DMODIFYING THE PHYSICAL STRUCTURE OF FERROUS METALS; GENERAL DEVICES FOR HEAT TREATMENT OF FERROUS OR NON-FERROUS METALS OR ALLOYS; MAKING METAL MALLEABLE, e.g. BY DECARBURISATION OR TEMPERING
    • C21D8/00Modifying the physical properties by deformation combined with, or followed by, heat treatment
    • C21D8/02Modifying the physical properties by deformation combined with, or followed by, heat treatment during manufacturing of plates or strips
    • C21D8/0247Modifying the physical properties by deformation combined with, or followed by, heat treatment during manufacturing of plates or strips characterised by the heat treatment
    • C21D8/0273Final recrystallisation annealing
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C38/00Ferrous alloys, e.g. steel alloys
    • C22C38/001Ferrous alloys, e.g. steel alloys containing N
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C38/00Ferrous alloys, e.g. steel alloys
    • C22C38/002Ferrous alloys, e.g. steel alloys containing In, Mg, or other elements not provided for in one single group C22C38/001 - C22C38/60
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C38/00Ferrous alloys, e.g. steel alloys
    • C22C38/02Ferrous alloys, e.g. steel alloys containing silicon
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C38/00Ferrous alloys, e.g. steel alloys
    • C22C38/04Ferrous alloys, e.g. steel alloys containing manganese
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C38/00Ferrous alloys, e.g. steel alloys
    • C22C38/06Ferrous alloys, e.g. steel alloys containing aluminium
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C38/00Ferrous alloys, e.g. steel alloys
    • C22C38/12Ferrous alloys, e.g. steel alloys containing tungsten, tantalum, molybdenum, vanadium, or niobium
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C38/00Ferrous alloys, e.g. steel alloys
    • C22C38/14Ferrous alloys, e.g. steel alloys containing titanium or zirconium
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C38/00Ferrous alloys, e.g. steel alloys
    • C22C38/18Ferrous alloys, e.g. steel alloys containing chromium
    • C22C38/22Ferrous alloys, e.g. steel alloys containing chromium with molybdenum or tungsten
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C38/00Ferrous alloys, e.g. steel alloys
    • C22C38/18Ferrous alloys, e.g. steel alloys containing chromium
    • C22C38/28Ferrous alloys, e.g. steel alloys containing chromium with titanium or zirconium
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C38/00Ferrous alloys, e.g. steel alloys
    • C22C38/18Ferrous alloys, e.g. steel alloys containing chromium
    • C22C38/38Ferrous alloys, e.g. steel alloys containing chromium with more than 1.5% by weight of manganese
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C38/00Ferrous alloys, e.g. steel alloys
    • C22C38/18Ferrous alloys, e.g. steel alloys containing chromium
    • C22C38/40Ferrous alloys, e.g. steel alloys containing chromium with nickel
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C38/00Ferrous alloys, e.g. steel alloys
    • C22C38/18Ferrous alloys, e.g. steel alloys containing chromium
    • C22C38/40Ferrous alloys, e.g. steel alloys containing chromium with nickel
    • C22C38/42Ferrous alloys, e.g. steel alloys containing chromium with nickel with copper
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C38/00Ferrous alloys, e.g. steel alloys
    • C22C38/18Ferrous alloys, e.g. steel alloys containing chromium
    • C22C38/40Ferrous alloys, e.g. steel alloys containing chromium with nickel
    • C22C38/44Ferrous alloys, e.g. steel alloys containing chromium with nickel with molybdenum or tungsten
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C38/00Ferrous alloys, e.g. steel alloys
    • C22C38/18Ferrous alloys, e.g. steel alloys containing chromium
    • C22C38/40Ferrous alloys, e.g. steel alloys containing chromium with nickel
    • C22C38/58Ferrous alloys, e.g. steel alloys containing chromium with nickel with more than 1.5% by weight of manganese
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B21MECHANICAL METAL-WORKING WITHOUT ESSENTIALLY REMOVING MATERIAL; PUNCHING METAL
    • B21BROLLING OF METAL
    • B21B1/00Metal-rolling methods or mills for making semi-finished products of solid or profiled cross-section; Sequence of operations in milling trains; Layout of rolling-mill plant, e.g. grouping of stands; Succession of passes or of sectional pass alternations
    • B21B1/38Metal-rolling methods or mills for making semi-finished products of solid or profiled cross-section; Sequence of operations in milling trains; Layout of rolling-mill plant, e.g. grouping of stands; Succession of passes or of sectional pass alternations for rolling sheets of limited length, e.g. folded sheets, superimposed sheets, pack rolling
    • B21B2001/386Plates
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B23MACHINE TOOLS; METAL-WORKING NOT OTHERWISE PROVIDED FOR
    • B23KSOLDERING OR UNSOLDERING; WELDING; CLADDING OR PLATING BY SOLDERING OR WELDING; CUTTING BY APPLYING HEAT LOCALLY, e.g. FLAME CUTTING; WORKING BY LASER BEAM
    • B23K2103/00Materials to be soldered, welded or cut
    • B23K2103/02Iron or ferrous alloys
    • B23K2103/04Steel or steel alloys
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B23MACHINE TOOLS; METAL-WORKING NOT OTHERWISE PROVIDED FOR
    • B23KSOLDERING OR UNSOLDERING; WELDING; CLADDING OR PLATING BY SOLDERING OR WELDING; CUTTING BY APPLYING HEAT LOCALLY, e.g. FLAME CUTTING; WORKING BY LASER BEAM
    • B23K2103/00Materials to be soldered, welded or cut
    • B23K2103/02Iron or ferrous alloys
    • B23K2103/04Steel or steel alloys
    • B23K2103/05Stainless steel
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B23MACHINE TOOLS; METAL-WORKING NOT OTHERWISE PROVIDED FOR
    • B23KSOLDERING OR UNSOLDERING; WELDING; CLADDING OR PLATING BY SOLDERING OR WELDING; CUTTING BY APPLYING HEAT LOCALLY, e.g. FLAME CUTTING; WORKING BY LASER BEAM
    • B23K2103/00Materials to be soldered, welded or cut
    • B23K2103/18Dissimilar materials
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B32LAYERED PRODUCTS
    • B32BLAYERED PRODUCTS, i.e. PRODUCTS BUILT-UP OF STRATA OF FLAT OR NON-FLAT, e.g. CELLULAR OR HONEYCOMB, FORM
    • B32B2250/00Layers arrangement
    • B32B2250/022 layers
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B32LAYERED PRODUCTS
    • B32BLAYERED PRODUCTS, i.e. PRODUCTS BUILT-UP OF STRATA OF FLAT OR NON-FLAT, e.g. CELLULAR OR HONEYCOMB, FORM
    • B32B2250/00Layers arrangement
    • B32B2250/033 layers
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B32LAYERED PRODUCTS
    • B32BLAYERED PRODUCTS, i.e. PRODUCTS BUILT-UP OF STRATA OF FLAT OR NON-FLAT, e.g. CELLULAR OR HONEYCOMB, FORM
    • B32B2250/00Layers arrangement
    • B32B2250/40Symmetrical or sandwich layers, e.g. ABA, ABCBA, ABCCBA
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B32LAYERED PRODUCTS
    • B32BLAYERED PRODUCTS, i.e. PRODUCTS BUILT-UP OF STRATA OF FLAT OR NON-FLAT, e.g. CELLULAR OR HONEYCOMB, FORM
    • B32B2311/00Metals, their alloys or their compounds
    • B32B2311/30Iron, e.g. steel
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B32LAYERED PRODUCTS
    • B32BLAYERED PRODUCTS, i.e. PRODUCTS BUILT-UP OF STRATA OF FLAT OR NON-FLAT, e.g. CELLULAR OR HONEYCOMB, FORM
    • B32B37/00Methods or apparatus for laminating, e.g. by curing or by ultrasonic bonding
    • B32B37/06Methods or apparatus for laminating, e.g. by curing or by ultrasonic bonding characterised by the heating method
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B32LAYERED PRODUCTS
    • B32BLAYERED PRODUCTS, i.e. PRODUCTS BUILT-UP OF STRATA OF FLAT OR NON-FLAT, e.g. CELLULAR OR HONEYCOMB, FORM
    • B32B37/00Methods or apparatus for laminating, e.g. by curing or by ultrasonic bonding
    • B32B37/08Methods or apparatus for laminating, e.g. by curing or by ultrasonic bonding characterised by the cooling method
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B32LAYERED PRODUCTS
    • B32BLAYERED PRODUCTS, i.e. PRODUCTS BUILT-UP OF STRATA OF FLAT OR NON-FLAT, e.g. CELLULAR OR HONEYCOMB, FORM
    • B32B37/00Methods or apparatus for laminating, e.g. by curing or by ultrasonic bonding
    • B32B37/10Methods or apparatus for laminating, e.g. by curing or by ultrasonic bonding characterised by the pressing technique, e.g. using action of vacuum or fluid pressure
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B32LAYERED PRODUCTS
    • B32BLAYERED PRODUCTS, i.e. PRODUCTS BUILT-UP OF STRATA OF FLAT OR NON-FLAT, e.g. CELLULAR OR HONEYCOMB, FORM
    • B32B37/00Methods or apparatus for laminating, e.g. by curing or by ultrasonic bonding
    • B32B37/14Methods or apparatus for laminating, e.g. by curing or by ultrasonic bonding characterised by the properties of the layers
    • B32B37/144Methods or apparatus for laminating, e.g. by curing or by ultrasonic bonding characterised by the properties of the layers using layers with different mechanical or chemical conditions or properties, e.g. layers with different thermal shrinkage, layers under tension during bonding
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B32LAYERED PRODUCTS
    • B32BLAYERED PRODUCTS, i.e. PRODUCTS BUILT-UP OF STRATA OF FLAT OR NON-FLAT, e.g. CELLULAR OR HONEYCOMB, FORM
    • B32B37/00Methods or apparatus for laminating, e.g. by curing or by ultrasonic bonding
    • B32B37/14Methods or apparatus for laminating, e.g. by curing or by ultrasonic bonding characterised by the properties of the layers
    • B32B37/16Methods or apparatus for laminating, e.g. by curing or by ultrasonic bonding characterised by the properties of the layers with all layers existing as coherent layers before laminating
    • B32B37/18Methods or apparatus for laminating, e.g. by curing or by ultrasonic bonding characterised by the properties of the layers with all layers existing as coherent layers before laminating involving the assembly of discrete sheets or panels only
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B32LAYERED PRODUCTS
    • B32BLAYERED PRODUCTS, i.e. PRODUCTS BUILT-UP OF STRATA OF FLAT OR NON-FLAT, e.g. CELLULAR OR HONEYCOMB, FORM
    • B32B37/00Methods or apparatus for laminating, e.g. by curing or by ultrasonic bonding
    • B32B37/14Methods or apparatus for laminating, e.g. by curing or by ultrasonic bonding characterised by the properties of the layers
    • B32B37/16Methods or apparatus for laminating, e.g. by curing or by ultrasonic bonding characterised by the properties of the layers with all layers existing as coherent layers before laminating
    • B32B37/20Methods or apparatus for laminating, e.g. by curing or by ultrasonic bonding characterised by the properties of the layers with all layers existing as coherent layers before laminating involving the assembly of continuous webs only
    • CCHEMISTRY; METALLURGY
    • C21METALLURGY OF IRON
    • C21DMODIFYING THE PHYSICAL STRUCTURE OF FERROUS METALS; GENERAL DEVICES FOR HEAT TREATMENT OF FERROUS OR NON-FERROUS METALS OR ALLOYS; MAKING METAL MALLEABLE, e.g. BY DECARBURISATION OR TEMPERING
    • C21D2211/00Microstructure comprising significant phases
    • C21D2211/001Austenite
    • CCHEMISTRY; METALLURGY
    • C21METALLURGY OF IRON
    • C21DMODIFYING THE PHYSICAL STRUCTURE OF FERROUS METALS; GENERAL DEVICES FOR HEAT TREATMENT OF FERROUS OR NON-FERROUS METALS OR ALLOYS; MAKING METAL MALLEABLE, e.g. BY DECARBURISATION OR TEMPERING
    • C21D2251/00Treating composite or clad material
    • C21D2251/02Clad material

Definitions

  • the invention relates to a steel plate and a manufacturing method thereof, in particular to a steel plate with an austenitic stainless steel layer and a manufacturing method thereof.
  • Structural steel is mainly controlled by different production processes to obtain different structures and properties.
  • the varieties mainly include precipitation strengthened steel, martensitic steel, dual-phase steel, TRIP steel (QP steel) and complex phase steel, etc.
  • the strength covers 780MPa- Different strength levels of 1700MPa, of which cold-rolled high-strength structural steels of 780MPa-1180MPa level have already achieved considerable application results, but there are still some shortcomings in use performance that need to be resolved in the process of use.
  • ultra-high strength steel has lower surface corrosion resistance than stainless steel. Need a special phosphating coating process or add a coating before leaving the factory to increase the corrosion resistance. These increased processes will increase costs. Moreover, as the strength of high-strength steel increases, the amount of alloying elements added continues to increase. The surface enrichment of alloying elements during the manufacturing process will affect the performance of phosphating coating and plating, which is not conducive to the production of high-strength steel plates with corrosion resistance. . Therefore, the present invention provides a carbon steel + austenitic stainless steel rolled composite plate, which has an austenitic stainless steel layer and a high-strength carbon steel layer that provides the basis of different specific mechanical properties for the overall steel plate.
  • Austenitic stainless steel has very good performance in terms of corrosion resistance, heat resistance, low temperature strength and mechanical properties. At the same time, it has good workability such as stamping and bending without heat treatment hardening.
  • austenitic stainless steel is a metastable stainless steel, which is prone to work hardening and precipitation phase transformation during production and processing, resulting in increased material strength, reduced plasticity, reduced formability, and reduced corrosion resistance.
  • the commonly used annealing method is: annealing temperature is 1050-1150°C, holding time is more than 30s; then cooling to room temperature.
  • the annealing curve of structural high-strength carbon steel is diverse, and the composition can achieve different strength levels from 780MPa-1700MPa.
  • the austenitizing temperature of structural carbon steel is low.
  • the use of the same annealing soaking temperature for stainless steel will result in coarse grains.
  • the annealing curve of structural carbon steel contains a variety of controlled cooling requirements, which is different from the rapid cooling production process of austenitic stainless steel after soaking. This makes it difficult for the rolled clad steel plate containing carbon steel layer and austenitic stainless steel layer to achieve mechanical properties and corrosion resistance at the same time through one annealing.
  • One of the objectives of the present invention is to provide a method for manufacturing a carbon steel austenitic stainless steel rolled clad plate.
  • the carbon steel austenitic stainless steel rolled clad plate has an austenitic stainless steel layer, and at the same time has the ability to provide different specific properties for the overall steel plate.
  • a carbon steel layer based on mechanical properties.
  • the carbon steel austenitic stainless steel rolled clad plate can have different strength levels and have excellent corrosion resistance.
  • the present invention proposes the above-mentioned manufacturing method of the carbon steel austenitic stainless steel rolled clad plate, which includes the steps:
  • the first annealing is 1050-1150°C, and the holding time is greater than or equal to 30s; then it is cooled to room temperature. During this cooling process, rapid cooling is performed in the temperature range of 900-500°C, and the cooling rate is controlled as 20-200°C/s;
  • the annealing temperature is set at 1050-1150°C because the solid solution annealing of the austenitic stainless steel between 1050-1150°C can make the precipitated carbides be Re-solubilize, and then quickly cool to room temperature. Due to the faster cooling rate in the rapid cooling process, the solid solution carbon is too late to combine and precipitate with other alloying elements, thereby improving its resistance to intergranular corrosion. In addition, if the annealing temperature of austenitic stainless steel is higher than 1150°C, the grains will become coarse and the grain size grade will be reduced, which will reduce the corrosion resistance of the strip steel.
  • the process parameters of step (5) are set as follows: the annealing temperature is 1050-1150°C, the holding time is greater than or equal to 30s; then it is cooled to room temperature. During the cooling process, the temperature range is 900-500°C. Fast cooling is carried out inside, and the cooling rate is controlled to be 20-200°C/s. In some embodiments, the holding time of step (5) is 30-80s. In some embodiments, the cooling rate in the temperature range of 900-500°C is 20-180°C/s. In step (6), the soaking temperature during the second annealing is less than the austenitizing temperature and greater than the upper limit of the chromatographic sensitivity temperature of stainless steel.
  • the slow cooling rate v 1 is set to 3-20°C/s to prevent the precipitation of carbides and ⁇ phase, and then set to cool to 150-450°C at a rate of 20-1000°C/s; then perform over-aging treatment
  • the over-aging treatment time is 100-400s to avoid the precipitation of carbides and ⁇ phases that have been solid-dissolved.
  • the heating rate in step (6) is controlled to be 5-20°C/s.
  • step (3) the billet is heated to 1100-1260°C, kept for more than 0.6 hours, and the final rolling temperature is controlled to be greater than or equal to 850°C.
  • the temperature is 30-100°C. /s cooling rate, control the coiling temperature to 450-600°C.
  • the holding time is 0.6 hours to 3 hours.
  • the final rolling temperature of step (3) is 850-920°C.
  • the inventor of the present case found through research that the lower the finishing temperature, the higher the coiling temperature, and the more carbides and ⁇ phases precipitated in the grain boundaries.
  • the lower final rolling temperature and higher coiling temperature are easier to precipitate carbides and ⁇ phase, which is more likely to cause intergranular corrosion. Therefore, it is necessary to control the finishing temperature to be higher and the coiling temperature to be lower.
  • the finishing method can be controlled in the manufacturing method of the present invention.
  • the rolling temperature is greater than or equal to 850°C, and after rolling, it is rapidly cooled at a rate of 30-100°C/s, and the coiling temperature is controlled to be 450-600°C.
  • step (4) the cold rolling reduction rate is controlled to be 40-70%.
  • step (7) leveling in the manufacturing method of the present invention, it also includes step (7) leveling.
  • the chemical element mass percentage content of the austenitic stainless steel layer blank used for the blank assembly is: C: 0.02% to 0.15%, Si: 0.3% to 1.0%, Mn: 1.0% to 10.5%, Cr: 14.0 ⁇ 20.0%, Ni: 0.2 ⁇ 14.0%, N ⁇ 0.25%, Cu ⁇ 0.6%, Mo ⁇ 3.0%, the balance is Fe and other unavoidable impurities.
  • the chemical element mass percentage content of the carbon steel layer blank used for the blank assembly is: C: 0.05% to 0.35%, Si: 0.1% to 2.0%, Mn: 0.5% to 3.0%, Al: 0.01% to 0.08%, the balance is Fe and other unavoidable impurities.
  • the carbon steel layer blank also contains one or more elements of B, Nb, Ti, V, Cr and Mo; preferably, the mass percentage of each chemical element is: B ⁇ 0.005%, Nb ⁇ 0.1% , Ti ⁇ 0.15%, V ⁇ 0.15%, Cr ⁇ 0.6%, Mo ⁇ 0.3%. In some embodiments, the mass percentage of Ti is 0.01-0.15%.
  • the thickness ratio of the carbon steel layer to each austenitic stainless steel layer is 5-30:1, preferably 7-10:1.
  • the present invention also provides a carbon steel austenitic stainless steel rolled clad plate prepared by the above-mentioned manufacturing method.
  • the carbon steel layer is the base layer
  • the austenitic stainless steel is the coating
  • the carbon steel layer can be composited with the austenitic stainless steel coating on one side or on both sides.
  • the mass percentage of chemical elements in the austenitic stainless steel layer is:
  • C Carbon is an element that strongly forms, stabilizes, and expands the austenite phase region.
  • C plays a key role in the structure and strength of austenite at room temperature. Especially when the content of Ni is relatively low, C can stabilize austenite
  • the structure plays an important role; however, if the C content is too high, it will affect the plasticity and corrosion resistance of the steel. Therefore, the quality of C is controlled in the austenitic stainless steel layer of the carbon steel austenitic stainless steel rolled composite plate of the present invention The percentage is between 0.02 and 0.15%.
  • Si is a ferrite forming element. At the same time, excessive Si content will reduce the corrosion resistance of chromium-nickel austenitic stainless steel and increase the intergranular corrosion sensitivity of the steel in the solid solution state. Therefore, to ensure that the steel is austenitic at room temperature It is necessary to control the Si content in the steel for the structure and corrosion resistance of the austenitic stainless steel; however, in the smelting process of austenitic stainless steel, Si is used as a deoxidizer, and the steel must contain a certain amount of Si. Therefore, the present invention The mass percentage of Si in the austenitic stainless steel layer of the carbon steel austenitic stainless steel rolled clad plate is controlled to be 0.3-1.0%.
  • Mn is a weak austenite forming element, but it is a strong austenite stabilizing element in stainless steel, and Mn can significantly improve the solubility of N in steel.
  • N content is higher and the Ni content is lower, a certain amount of Mn element replaces part of Ni through the compound action of Mn, N and C to stabilize the austenite structure; but Mn has a negative impact on the corrosion resistance of stainless steel. Too high Mn content will reduce the pitting and crevice corrosion resistance of the steel. Therefore, the austenitic stainless steel layer of the carbon steel austenitic stainless steel rolled clad plate of the present invention controls the mass percentage of Mn to be 1.0 to 10.5%.
  • Cr is the most important alloying element in stainless steel and the most basic element to ensure the corrosion resistance of stainless steel. As the content of Cr in steel increases, the intergranular corrosion sensitivity of stainless steel decreases and the strength increases, but the plasticity and cold forming properties will At the same time, the excessively high Cr will require a correspondingly high Ni equivalent to cooperate with it to ensure that the room temperature austenite structure is obtained. Therefore, in comprehensive consideration, the austenitic stainless steel layer of the carbon steel austenitic stainless steel rolled clad plate of the present invention controls the mass percentage of Cr to be 14.0-20.0%.
  • Ni is an important austenite forming and stabilizing element, which can promote the stability of the passive film of stainless steel, reduce the ductile-brittle transition temperature, and improve the cold formability and weldability. At the same time, Ni is also an expensive element. Therefore, the austenitic stainless steel layer of the carbon steel austenitic stainless steel rolled clad plate of the present invention controls the mass percentage of Ni to be 0.2-14.0%.
  • N is an element that forms, stabilizes and expands the austenite phase region very strongly in austenitic stainless steel. Through solid solution strengthening, N can significantly increase the room temperature and high temperature strength of austenitic stainless steel without significantly reducing the steel At the same time, N can improve the acid corrosion resistance and local corrosion resistance of austenitic stainless steel. Due to the limited solubility of N in stainless steel, in order to avoid subcutaneous pores during solidification, N must coordinate with other elements to ensure solidification. The dissolved state exists. Considering the mass percentages of alloying elements such as Mn and C in the present invention, the austenitic stainless steel layer of the carbon steel austenitic stainless steel rolled clad plate of the present invention is controlled to N ⁇ 0.25%.
  • Cu can improve the rust resistance and corrosion resistance of austenitic stainless steel, especially in reducing media such as sulfuric acid. Cu can significantly reduce the strength and cold work hardening tendency of stainless steel;
  • the addition of Cu to chromium-manganese austenitic stainless steel with N instead of Ni is much lower in delayed fracture sensitivity than that of chromium-nickel austenitic stainless steel, and with the increase of Cu content in the steel, the thermoplasticity of austenitic stainless steel decreases. Therefore, The mass percentage of Cu of the austenitic stainless steel layer of the carbon steel austenitic stainless steel rolled composite plate of the present invention is controlled to be less than or equal to 0.6%.
  • Mo The addition of Mo can greatly improve the corrosion resistance and high temperature strength of austenitic stainless steel, especially the high temperature resistance can reach 1200-1300 degrees, which can be used under harsh conditions. Therefore, the mass percentage of Mo of the austenitic stainless steel layer of the carbon steel austenitic stainless steel rolled clad plate of the present invention is controlled to be ⁇ 3.0%.
  • the unavoidable impurity elements should be controlled as low as possible.
  • the inevitable elements such as The mass percentages of P and S are in the range of P ⁇ 0.035% and S ⁇ 0.015%.
  • P is an impurity element in steel, which has adverse effects on the plasticity, toughness and corrosion resistance of stainless steel. Its content should be reduced as much as possible during production.
  • the carbon steel austenitic stainless steel rolled clad plate of the present invention Control P ⁇ 0.035% in the austenitic stainless steel layer, and S is an impurity element in steel, which has harmful effects on the high-temperature plasticity, toughness and corrosion resistance of steel, and its content should be reduced as much as possible during production. Therefore, the present invention
  • the control S in the austenitic stainless steel layer of the carbon steel austenitic stainless steel rolled clad plate is less than or equal to 0.015%.
  • the mass percentage of chemical elements in the carbon steel layer is:
  • C The addition of C element plays a key role in increasing the strength of steel, ensuring that bainite or martensite transformation occurs to produce transformation strengthening. C and alloying elements precipitate fine and dispersed metal carbides to produce fine-grain strengthening and precipitation strengthening.
  • the carbon steel described in the present invention The mass percentage of C in the control carbon steel layer in the austenitic stainless steel rolled clad plate is 0.05% to 0.35%.
  • Si is an element that strengthens ferrite, and it can effectively increase the strength of ferrite.
  • Si is a non-carbide forming element.
  • Si can strongly inhibit the formation of Fe 3 C, enrich the untransformed austenite with carbon, thereby greatly improving the stability of the austenite and enabling it to be kept at room temperature. Retained to produce the TRIP effect.
  • the mass percentage of Si in the carbon steel austenitic stainless steel rolled clad plate of the present invention is controlled at 0.1% to 2.0%.
  • Mn is a carbide forming element, which will drag carbon in solid solution, thereby delaying the pearlite transformation, lowering the Bs point, inhibiting the bainite transformation, and playing an important role in the martensite formation window interval. Adding force Mn reduces the martensite transformation temperature and increases the content of retained austenite. At the same time, Mn has little effect on the toughness of the steel plate. When the steel contains 1.5% to 2.5% of Mn by mass, it can effectively increase the retained austenite. The resistance to decomposition of the stabilization. However, since Mn reduces the Ms point more and has an adverse effect on weldability, the amount should be appropriate. Therefore, the quality of Mn in the carbon steel layer is controlled in the carbon steel austenitic stainless steel rolled clad plate according to the present invention The percentage is between 0.5% and 3.0%.
  • Al plays the role of deoxidation and grain refinement. Like Si, Al is also a non-carbide forming element, which can strongly inhibit the formation of Fe 3 C and enrich the untransformed austenite with carbon. Although the solid solution strengthening effect of Al is weaker than that of Si, in the technical solution of the present invention, Al element can be added to reduce the side effects of silicon. Therefore, in the carbon steel austenitic stainless steel rolled composite plate of the present invention The mass percentage of Al in the carbon steel layer is controlled between 0.01% and 0.08%.
  • the carbon steel layer further contains at least one of the following chemical elements: B ⁇ 0.005%, Nb ⁇ 0.1%, Ti ⁇ 0.15 %, V ⁇ 0.15%, Cr ⁇ 0.6%, Mo ⁇ 0.3%.
  • B Boron can improve the hardenability of steel.
  • the reason for improving the hardenability of steel is that in the austenite transformation process, the nucleation of new phases (referring to ferrite) is most likely to occur at the grain boundaries.
  • hot embrittlement will occur in steels containing boron higher than 0.005%. Therefore, in the carbon steel austenitic stainless steel rolled clad plate of the present invention, the mass percentage of B in the carbon steel layer is controlled to be B ⁇ 0.005%.
  • Nb In the process of controlled rolling, the strain-induced precipitates of Nb can significantly reduce the recrystallization temperature of deformed austenite through the effects of particle pinning and sub-grain boundaries, provide nucleation particles, and have an effect on grain refinement. obvious. Therefore, in the carbon steel austenitic stainless steel rolled clad plate of the present invention, the mass percentage of Nb in the carbon steel layer is controlled to be Nb ⁇ 0.1%.
  • Ti is the main compound element of Ti-Mo-C nano-precipitates. At the same time, Ti also shows a strong effect of inhibiting the growth of austenite grains at high temperatures to refine the grains. Therefore, in the carbon steel austenitic stainless steel rolled clad plate of the present invention, the mass percentage of Ti in the carbon steel layer is controlled to be Ti ⁇ 0.15%. In some embodiments, the mass percentage of Ti is 0.01-0.15%.
  • V After the controlled rolling transformation occurs, V remaining in the austenite is further precipitated in the ferrite, resulting in a significant precipitation strengthening effect. Therefore, in the carbon steel austenitic stainless steel rolled clad plate of the present invention, the mass percentage of V in the carbon steel layer is controlled to be V ⁇ 0.15%.
  • Both Mn and Cr are carbide-forming elements. When considering hardenability, they can be replaced with each other to ensure strength. However, adding Cr can better delay the pearlite transformation, shift the bainite transformation zone to the left, and reduce the Ms point less than Mn. However, in low carbon steel, too much carbonitride generating elements such as Nb, Ti, V will affect the subsequent phase transformation, so the content of alloying elements needs to be controlled at the upper limit. When the elements that improve the hardenability such as Cr and Mo reach a certain amount, the weldability will decrease, so the upper limit of control is also required. Therefore, in the carbon steel austenitic stainless steel rolled clad plate of the present invention, the mass percentage of Cr in the carbon steel layer is controlled to be Cr ⁇ 0.6%.
  • Mo can significantly improve hardenability. Mo significantly delays the pearlite transformation by dragging carbon in solid solution, but has a smaller effect on delaying the precipitation of pro-eutectoid ferrite. Mo reduces the Bs point more than Cr and less than Mn, so its effect on the metastability of austenite is also greater than Cr. In addition, Mo is the most important compound element that affects the production of nano-precipitates. Mo can increase the solid solubility of Ti (C, N) in austenite, keeping a large amount of Ti in solid solution, so as to disperse and precipitate during low-temperature transformation, thereby producing a higher strengthening effect.
  • the tensile strength of the carbon steel austenitic stainless steel rolled clad plate is 780-1710 MPa, such as 780-1700 MPa.
  • the yield strength of the carbon steel austenitic stainless steel rolled clad plate of the present invention is 500-1400 MPa.
  • the pitting corrosion potential of the carbon steel austenitic stainless steel rolled clad plate of the present invention is 0.25-0.45V, such as 0.29-0.42V, and the intergranular corrosion is 0.25-0.40Ra.
  • the manufacturing method of the carbon steel austenitic stainless steel rolled clad plate according to the present invention has the following advantages and beneficial effects:
  • the carbon steel austenitic stainless steel rolled clad plate of the present invention has an austenitic stainless steel layer and a carbon steel layer that provides the basis of different specific mechanical properties for the overall steel plate, so that the final steel plate has different strengths from 780MPa to 1700MPa Grade, and has excellent corrosion resistance.
  • the carbon steel austenitic stainless steel rolled clad plate of Examples 1-6 was prepared by the following steps:
  • the first annealing is 1050-1150°C, and the holding time is greater than or equal to 30s; then it is cooled to room temperature. During this cooling process, rapid cooling is performed in the temperature range of 900-500°C, and the cooling rate is controlled as 20-200°C/s;
  • the step (7) leveling is also included.
  • Table 1 lists the mass percentage ratio of each chemical element of the 1-6 carbon steel austenitic stainless steel rolled clad plate.
  • Table 2-1 and Table 2-2 list the specific process parameters of the carbon steel austenitic stainless steel rolled clad plate of Example 1-6.
  • composition of the blank layers of Examples 7 and 8 are the same as those of Examples 1 and 2, respectively; in each example, the thickness of each layer is measured in mm.
  • this case tested the carbon steel austenitic stainless steel rolled clad plates of Examples 1-6. The test results are listed in Table 3.
  • the tensile strength of the carbon steel austenitic stainless steel rolled clad plate of each embodiment of this case is 802-1710 MPa, the yield strength is 514-1390 MPa, and the elongation is 7.3-15.4%.
  • the pitting corrosion test was carried out in accordance with the GB/T 17899-1999 stainless steel pitting corrosion potential measurement method, and the intergranular corrosion performance test was carried out in accordance with ASTM G108-94. It can be seen from Table 3 that the pitting corrosion potential of each example in this case is 0.29 ⁇ 0.42V , The intergranular corrosion is between 0.26 and 0.4 Ra, which shows that the corrosion resistance of each embodiment of this case is excellent.
  • the carbon steel austenitic stainless steel rolled clad plate produced by the method of the present invention has an austenitic stainless steel layer that guarantees anti-corrosion energy, and at the same time has carbon steel that provides different specific mechanical properties for the overall steel plate. Steel layer, so that the final steel plate has different strength levels from 780MPa-1700MPa, and has excellent corrosion resistance.

Landscapes

  • Chemical & Material Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Mechanical Engineering (AREA)
  • Materials Engineering (AREA)
  • Metallurgy (AREA)
  • Organic Chemistry (AREA)
  • Physics & Mathematics (AREA)
  • Thermal Sciences (AREA)
  • Crystallography & Structural Chemistry (AREA)
  • Heat Treatment Of Sheet Steel (AREA)
  • Pressure Welding/Diffusion-Bonding (AREA)
  • Heat Treatment Of Articles (AREA)
  • Heat Treatment Of Steel (AREA)

Abstract

本发明公开了一种碳钢奥氏体不锈钢轧制复合板的制造方法,其包括步骤:(1)制得碳钢层坯料和不锈钢层坯料;(2)组坯;(3)复合轧制;(4)冷轧;(5)第一次退火;(6)第二次退火。该碳钢奥氏体不锈钢轧制复合板通过独特的两次退火工艺,使得该复合板兼具奥氏体不锈钢以及碳钢的各性能优点。此外,本发明还公开了一种采用该方法制造的碳钢奥氏体不锈钢轧制复合板。

Description

一种碳钢奥氏体不锈钢轧制复合板及其制造方法 技术领域
本发明涉及一种钢板及其制造方法,尤其涉及一种具有奥氏体不锈钢层的钢板及其制造方法。
背景技术
过去的十年结构用钢尤其是汽车结构用钢获得了广泛的应用,其中高强度汽车结构用钢已经成为汽车减重及结构件强度升级的主力产品。结构用钢主要通过控制不同的生产工艺以获得不同的组织和性能,品种主要包括析出强化钢、马氏体钢、双相钢、TRIP钢(QP钢)和复相钢等,强度涵盖780MPa-1700MPa的不同强度级别,其中780MPa-1180MPa级别的冷轧高强结构钢已经有了相当可观的应用实绩,但在使用过程中仍然还有部分使用性能的不足亟待解决。
超高强钢作为一种碳钢,其表面耐蚀性能低于不锈钢。需要特殊的磷化涂装工艺或者在出厂时添加镀层来增加耐蚀性能。这些增加的工序会造成成本的增加。而且随着高强钢强度的提高,合金元素的添加量不断增加,制造过程中合金元素的表面富集会影响磷化涂装性能和可镀性,不利于生产出具有耐蚀性能的高强度钢板。所以,本发明提供一种碳钢+奥氏体不锈钢轧制复合板,该复合板具有奥氏体不锈钢层,同时具有为整体钢板提供不同特定力学性能基础的高强碳钢层。
奥氏体不锈钢在耐蚀性、耐热性、低温强度和力学性能方面有非常好的表现,同时冲压弯曲等加工性好,无热处理硬化现象。但是奥氏体不锈钢是一种亚稳态不锈钢,在生产加工过程中容易产生加工硬化和析出相变,导致材料强度升高,塑性降低,成形性能降低、耐蚀性降低。要得到具有较好的耐蚀性、较强的塑性恢复能力的奥氏体不锈钢,并且消除因压力加工引起的硬化应力,目前现有技术主要通过在冷卷后进行退火处理来实现软化。常用的退火方式为:退火温度为1050-1150℃,保温时间大于30s;然后冷却至室温。
而结构用高强度碳钢的退火曲线多种多样,和成分配合可以实现从 780MPa-1700MPa的不同强度级别,但是结构用碳钢由于合金含量的限制,奥氏体化温度低,与奥氏体不锈钢使用相同的退火均热温度会导致晶粒粗大。同时,结构用碳钢的退火曲线包含多种控制冷却要求,与奥氏体不锈钢均热后快速冷却的生产过程不同。这导致了含碳钢层和奥氏体不锈钢层的轧制复合钢板很难通过一次退火实现机械性能和耐蚀性能的同时获得。
基于此,期望获得一种碳钢奥氏体不锈钢轧制复合板的制造方法,其可以在不改变奥氏体不锈钢层组织性能的情况下,调节碳钢层组织性能,从而实现高强度碳钢+奥氏体不锈钢轧制复合板的性能。
发明内容
本发明的目的之一在于提供一种碳钢奥氏体不锈钢轧制复合板的制造方法,该碳钢奥氏体不锈钢轧制复合板具有奥氏体不锈钢层,同时具有为整体钢板提供不同特定力学性能基础的碳钢层,该碳钢奥氏体不锈钢轧制复合板可以具有不同的强度级别,并且兼具优秀的抗腐蚀能力。
为了实现上述目的,本发明提出了上述的碳钢奥氏体不锈钢轧制复合板的制造方法,其包括步骤:
(1)制得碳钢层坯料和不锈钢层坯料;
(2)组坯;
(3)复合轧制;
(4)冷轧;
(5)第一次退火:退火温度为1050-1150℃,保温时间大于等于30s;然后冷却至室温,在该冷却过程中,在900-500℃的温度范围内进行快速冷却,控制冷却速度为20-200℃/s;
(6)第二次退火:以大于等于5℃/s的加热速度加热至均热温度800-950℃,保温10-100s,然后以v1=3-20℃/s、优选5-20℃/s的速度冷却到快冷开始温度T,快冷开始温度T≥800-10×v1,然后再以20-1000℃/s的速度冷却到150-450℃;然后进行过时效处理,过时效温度为150-450℃,过时效处理时间为100-400s。
在本发明所述的制造方法中,在步骤(5)中,设置退火温度在1050-1150℃是因为在1050-1150℃之间对奥氏体不锈钢进行固溶退火可以使得析出的碳化物被重 新固溶,然后快速冷却到室温,由于快速冷却过程中的冷却速度较快,固溶的碳来不及与其它合金元素结合析出,从而以此提高其耐晶间腐蚀性能。此外,若奥氏体不锈钢的退火温度高于1150℃时,晶粒会变得粗大,晶粒度等级降低,这样会降低带钢的耐腐蚀性能。因此,基于上述考虑,设置步骤(5)的工艺参数为:将退火温度为1050-1150℃,保温时间大于等于30s;然后冷却至室温,在该冷却过程中,在900-500℃的温度范围内进行快速冷却,控制冷却速度为20-200℃/s。在一些实施方案中,步骤(5)的保温时间为30-80s。在一些实施方案中,在900-500℃的温度范围内的冷却速度为20-180℃/s。而在步骤(6)中,第二次退火时的均热温度小于奥氏体化温度,且大于不锈钢层析出敏感温度的上限,因此,将其设置在800-950℃。且,设置缓冷速度v 1为3-20℃/s,是为了防止碳化物、σ相析出,而随后设置以20-1000℃/s的速度冷却到150-450℃;然后进行过时效处理,过时效处理时间为100-400s,是为了避免已经固溶的碳化物、σ相重新析出。在一些实施方案中,步骤(6)中的加热速度控制为5-20℃/s。
进一步地,在本发明所述的制造方法中,在步骤(3)中,将坯料加热至1100-1260℃,保温0.6小时以上,控制终轧温度大于等于850℃,轧后以30-100℃/s的速度冷却,控制卷取温度为450-600℃。在一些实施方案中,步骤(3)中,保温时间为0.6小时到3小时。在一些实施方案中,步骤(3)的终轧温度为850-920℃。
本案发明人通过研究发现终轧温度越低,卷取温度越高,晶界有更多的析出碳化物、σ相析出。在其它轧制工艺参数相同时,较低的终轧温度以及较高的卷取温度更易析出碳化物、σ相析出,从而更容易导致晶间腐蚀的发生。因此,需要控制终轧温度较高,卷取温度较低,但是考虑到太高的终轧温度和太低的卷取温度无法稳定控制,因此,在本发明所述的制造方法中可以控制终轧温度大于等于850℃,轧后以30-100℃/s的速度快速冷却,控制卷取温度为450~600℃。
进一步地,在本发明所述的制造方法中,在步骤(4)中,控制冷轧压下率为40-70%。
进一步地,在本发明所述的制造方法中,还包括步骤(7)平整。
进一步地,用于组坯的奥氏体不锈钢层坯料的化学元素质量百分含量为:C:0.02%~0.15%,Si:0.3%~1.0%,Mn:1.0%~10.5%,Cr:14.0~20.0%,Ni:0.2~14.0%,N≤0.25%,Cu≤0.6%,Mo≤3.0%,余量为Fe和其他不可避免的杂质。
进一步地,用于组坯的碳钢层坯料的化学元素质量百分含量为:C:0.05%~0.35%,Si:0.1%~2.0%,Mn:0.5%~3.0%,Al:0.01%~0.08%,余量为Fe和其他不可避免的杂质。进一步地,该碳钢层坯料还含有B、Nb、Ti、V、Cr和Mo中的一种或多种元素;优选地,各化学元素的质量百分比为:B≤0.005%,Nb≤0.1%,Ti≤0.15%,V≤0.15%,Cr≤0.6%,Mo≤0.3%。在一些实施方案中,Ti的质量百分比为0.01-0.15%。
进一步地,组坯时,所述碳钢层与每一层奥氏体不锈钢层的厚度比为5-30:1,优选7-10:1。
此外,本发明还提供了采用上述制造方法制得的一种碳钢奥氏体不锈钢轧制复合板。
需要说明的是,在本技术方案中,碳钢层为基层,奥氏体不锈钢为覆层,碳钢层可以单面地或双面地复合奥氏体不锈钢覆层。
进一步地,在本发明所述的碳钢奥氏体不锈钢轧制复合板中,奥氏体不锈钢层的化学元素质量百分含量为:
C:0.02%~0.15%,Si:0.3%~1.0%,Mn:1.0%~10.5%,Cr:14.0~20.0%,Ni:0.2~14.0%,N≤0.25%,Cu≤0.6%,Mo≤3.0%,余量为Fe和其他不可避免的杂质。
在本发明所述的碳钢奥氏体不锈钢轧制复合板中,奥氏体不锈钢层的各化学元素的设计原理如下所述:
C:碳是强烈形成、稳定、扩大奥氏体相区的元素,C对室温下的奥氏体组织和强度起到关键作用,特别是当Ni含量相对较低时,C在稳定奥氏体组织方面作用重大;但是C含量过高,会影响钢的塑性和耐腐蚀性能,因此,在本发明所述的碳钢奥氏体不锈钢轧制复合板的奥氏体不锈钢层中控制C的质量百分比在0.02~0.15%。
Si:Si是铁素体形成元素,同时Si含量过高会降低铬镍奥氏体不锈钢的耐蚀性并提高钢在固溶态的晶间腐蚀敏感性,因此为保证钢在室温下为奥氏体组织及其耐腐蚀性能,需要控制钢中的Si含量;但是在奥氏体不锈钢冶炼过程中,Si作为脱氧剂使用,钢中又必须含有一定含量的Si,因此,本发明所述的碳钢奥氏体不锈钢轧制复合板的奥氏体不锈钢层中控制Si的质量百分比控制在0.3~1.0%。
Mn:Mn是弱奥氏体形成元素,但在不锈钢中是强奥氏体稳定元素,并且Mn 能够显著提高N在钢中的溶解度,当N含量较高Ni含量较低时,需要一定量的Mn元素,通过Mn、N、C的复合作用代替部分Ni,稳定奥氏体组织;但是Mn对不锈钢的耐腐蚀性能有负面影响,Mn含量太高会降低钢的耐点蚀、耐缝隙腐蚀性能,因此,本发明所述的碳钢奥氏体不锈钢轧制复合板的奥氏体不锈钢层控制Mn的质量百分比在1.0~10.5%。
Cr:Cr是不锈钢中最重要的合金元素,是保证不锈钢耐蚀性的最基本元素,随着钢中Cr含量增加,不锈钢的晶间腐蚀敏感性降低,强度提高,但塑性和冷成型性能会降低,同时过高的Cr将需要相应高的Ni当量与之配合,以保证获得室温奥氏体组织。因此,综合考虑,本发明所述的碳钢奥氏体不锈钢轧制复合板的奥氏体不锈钢层控制Cr的质量百分比在14.0~20.0%。
Ni:Ni是重要的奥氏体形成和稳定元素,能促进不锈钢钝化膜的稳定性,降低韧脆转变温度,提高冷成型性和焊接性,同时Ni也是昂贵的元素,对奥氏体不锈钢的成本有重要影响,因此,本发明所述的碳钢奥氏体不锈钢轧制复合板的奥氏体不锈钢层控制Ni的质量百分比在0.2~14.0%。
N:N在奥氏体不锈钢中非常强烈的形成、稳定和扩大奥氏体相区的元素,通过固溶强化作用,N可以显著提高奥氏体不锈钢的室温和高温强度,并且不显著降低钢的塑韧性,同时N能提高奥氏体不锈钢的耐酸腐蚀性和耐局部腐蚀性能;由于N在不锈钢中的溶解度有限,为避免凝固过程中产生皮下气孔,N必须与其他元素协调作用保证以固溶态存在,综合考虑本发明中的Mn、C等合金元素的质量百分比,在本发明所述的碳钢奥氏体不锈钢轧制复合板的奥氏体不锈钢层控制N≤0.25%。
Cu:Cu能提高奥氏体不锈钢的不锈性和耐蚀性,特别是在硫酸等还原性介质中的作用更为明显,Cu能显著降低不锈钢的强度和冷加工硬化倾向;但是向以Mn、N代替Ni的铬锰奥氏体不锈钢中加入Cu,其延迟断裂敏感性要远低于铬镍奥氏体不锈钢,并且随着钢中Cu含量的增加,奥氏体不锈钢的热塑性降低,因此,本发明所述的碳钢奥氏体不锈钢轧制复合板的奥氏体不锈钢层控制Cu的质量百分比控制在≤0.6%。
Mo:添加Mo元素,可使奥氏体不锈钢其耐蚀性和高温强度有较大的提高,尤其是耐高温可达到1200-1300度,可在苛酷的条件下使用。因此,本发明所述的碳钢奥氏体不锈钢轧制复合板的奥氏体不锈钢层控制Mo的质量百分比控制在≤3.0%。
在本发明所述的碳钢奥氏体不锈钢轧制复合板中,不可避免的杂质元素应当控制得越低越好,但考虑到工艺水平以及制造成本的限制,因此,控制不可避免的元素例如P、S的质量百分比范围在P≤0.035%,S≤0.015%。P是钢中的杂质元素,对不锈钢的塑、韧性及耐蚀性都有不利影响,生产中要尽可能降低其含量,因此,本发明所述的碳钢奥氏体不锈钢轧制复合板的奥氏体不锈钢层中控制P≤0.035%,而S是钢中的杂质元素,对钢的高温塑、韧性及耐蚀性均有有害作用,生产中要尽可能降低其含量,因此,本发明所述的碳钢奥氏体不锈钢轧制复合板的奥氏体不锈钢层中控制S≤0.015%。
进一步地,在本发明所述的碳钢奥氏体不锈钢轧制复合板中,碳钢层的化学元素质量百分含量为:
C:0.05%~0.35%,Si:0.1%~2.0%,Mn:0.5%~3.0%,Al:0.01%~0.08%,余量为Fe和其他不可避免的杂质。
C:C元素的添加对提高钢的强度起关键作用,保证发生贝氏体或者马氏体相变以产生相变强化。C与合金元素析出细小弥散的金属碳化物以产生细晶强化和析出强化,但考虑到本案的碳钢奥氏体不锈钢轧制复合板的可焊接性,因此,在本发明所述的碳钢奥氏体不锈钢轧制复合板中控制碳钢层的C的质量百分比在0.05%~0.35%。
Si:Si是强化铁素体的元素,其可以有效地提高铁素体的强度。另外Si为非碳化物形成元素,在等温过程中,Si能够强烈抑制Fe 3C的形成,使未转变的奥氏体富碳,从而大大提高奥氏体的稳定性,使其能够在室温下保留下来产生TRIP效应。基于此,在本发明所述的碳钢奥氏体不锈钢轧制复合板中将Si的质量百分比控制在0.1%~2.0%。
Mn:Mn是碳化物形成元素,其会固溶拖拽碳,进而推迟珠光体转变,降低Bs点,抑制贝氏体相变,对马氏体形成窗口区间有重要作用。添力Mn降低马氏体转变温度,增加残余奥氏体的含量,同时Mn对钢板的韧性影响不大,当钢中包括质量百分比为1.5%~2.5%的Mn时,可以有效地提高残余奥氏体分解的抗力。但由于Mn对Ms点的降低较多,对焊接性有不利影响,故用量要适当,因此,在本发明所述的碳钢奥氏体不锈钢轧制复合板中控制碳钢层的Mn的质量百分比在0.5%~3.0%。
Al:添加Al起到了脱氧作用和细化晶粒的作用,Al和Si一样,也是非碳化物形成元素,能够强烈抑制Fe 3C的形成,使未转变的奥氏体富碳。虽然Al的固溶强化效果弱于Si,但是在本发明所述的技术方案中,可以添加Al元素以降低硅的副作用,因此,在本发明所述的碳钢奥氏体不锈钢轧制复合板中控制碳钢层的Al的质量百分比在0.01%~0.08%。
进一步地,在本发明所述的碳钢奥氏体不锈钢轧制复合板中,碳钢层还含有下述各化学元素的至少其中之一:B≤0.005%,Nb≤0.1%,Ti≤0.15%,V≤0.15%,Cr≤0.6%,Mo≤0.3%。
B:硼能提高钢的淬透性,提高钢的淬透性的原因是在奥氏体转化过程中,新相(指铁素体)成核最容易在晶界处发生。但高于0.005%含硼钢就要出现热脆现象。因此,在本发明所述的碳钢奥氏体不锈钢轧制复合板中控制碳钢层的B的质量百分比在B≤0.005%。
Nb:在控制轧制过程中,Nb的应变诱导析出相通过质点钉扎和亚晶界的作用而相当显著的降低变形奥氏体的再结晶温度,提供形核质点,对细化晶粒作用明显。因此,在本发明所述的碳钢奥氏体不锈钢轧制复合板中控制碳钢层的Nb的质量百分比在Nb≤0.1%。
Ti:Ti是Ti-Mo-C系纳米析出物的主要化合元素,同时Ti在高温下也显示出一种强烈的抑制奥氏体晶粒长大从而细化晶粒的效果。因此,在本发明所述的碳钢奥氏体不锈钢轧制复合板中控制碳钢层的Ti的质量百分比在Ti≤0.15%。在一些实施方案中,Ti的质量百分比为0.01-0.15%。
V:V在控制轧制相变发生后,残留在奥氏体中的进一步在铁素体中析出,产生显著的析出强化效果。因此,在本发明所述的碳钢奥氏体不锈钢轧制复合板中控制碳钢层的V的质量百分比在V≤0.15%。
Cr:Mn和Cr都是碳化物形成元素,在考虑淬透性时,可以相互替换以保证强度。但添加Cr可以更好的推迟珠光体转变,使贝氏体相变区域左移,且对Ms点的降低作用小于Mn。但在低碳钢中Nb、Ti、V等碳氮化物生成元素太多会影响后续的相变,所以合金元素含量需要控制上限。Cr、Mo等提高淬透性的元素达到一定的量后会导致可焊接性能下降,因此也需要控制上限。因此,在本发明所述的碳钢奥氏体不锈钢轧制复合板中控制碳钢层的Cr的质量百分比在Cr≤0.6%。
Mo:Mo能显著提高淬透性。Mo通过固溶拖拽碳显著地推迟珠光体转变,而对先析铁素体析出的推迟作用较小。Mo对Bs点的降低作用大于Cr,小于Mn,故对奥氏体亚稳定的作用也大于Cr。另外,Mo是影响纳米析出物产生的最重要化合元素。Mo能提高Ti(C,N)在奥氏体中的固溶度,使大量的Ti保持在固溶体中,以便在低温转变中弥散析出,从而产生较高的强化效果。
在低碳钢中Nb、Ti、V等碳氮化物生成元素太多会影响后续的相变,所以合金元素含量需要控制上限。Cr、Mo等提高淬透性的元素达到一定的量后会导致可焊接性能下降,因此也需要控制上限。因此,在本发明所述的碳钢奥氏体不锈钢轧制复合板中控制碳钢层的Mo的质量百分比在Mo≤0.3%。
进一步地,在本发明所述的碳钢奥氏体不锈钢轧制复合板中,碳钢奥氏体不锈钢轧制复合板的抗拉强度为780-1710MPa,如780-1700MPa。进一步地,本发明的碳钢奥氏体不锈钢轧制复合板的屈服强度为500-1400MPa。进一步地,本发明的碳钢奥氏体不锈钢轧制复合板的点腐蚀电位为0.25-0.45V,如0.29-0.42V,晶间腐蚀为0.25-0.40Ra。
本发明所述的碳钢奥氏体不锈钢轧制复合板的制造方法相较于现有技术具有如下所述的优点以及有益效果:
本发明所述的碳钢奥氏体不锈钢轧制复合板具有奥氏体不锈钢层,同时具有为整体钢板提供不同特定力学性能基础的碳钢层,从而使得最终钢板具有从780MPa-1700MPa的不同强度级别,并且具有优秀的抗腐蚀能力。
具体实施方式
下面将结合具体的实施例对本发明所述的碳钢奥氏体不锈钢轧制复合板及其制造方法做进一步的解释和说明,然而该解释和说明并不对本发明的技术方案构成不当限定。
实施例1-6
实施例1-6的碳钢奥氏体不锈钢轧制复合板采用以下步骤制得:
(1)按照表1所示的化学成分制得碳钢层坯料和奥氏体不锈钢层坯料;
(2)组坯;
(3)复合轧制:将坯料加热至1150-1260℃,保温0.6小时以上,控制终轧温度 大于等于850℃,轧后以30-100℃/s的速度冷却,控制卷取温度为450-600℃;
(4)冷轧:控制冷轧压下率为40-70%;
(5)第一次退火:退火温度为1050-1150℃,保温时间大于等于30s;然后冷却至室温,在该冷却过程中,在900-500℃的温度范围内进行快速冷却,控制冷却速度为20-200℃/s;
(6)第二次退火:以大于等于5℃/s的加热速度加热至均热温度800-950℃,保温10-100s,然后以v1=3-20℃/s的速度冷却到快冷开始温度T,快冷开始温度T≥800-10×v1,然后再以20-1000℃/s的速度冷却到150-450℃;然后进行过时效处理,过时效温度为150-450℃,过时效处理时间为100-400s。
而在一些其他的实施方式中,还包括步骤(7)平整。
表1列出了1-6的碳钢奥氏体不锈钢轧制复合板的各化学元素的质量百分配比。
表1(wt%,余量为Fe和其他不可避免的杂质)
Figure PCTCN2020132056-appb-000001
表2-1以及表2-2列出了实施例1-6的碳钢奥氏体不锈钢轧制复合板的具体工艺参数。
表2-1
Figure PCTCN2020132056-appb-000002
注:实施例7和8的坯层成分分别与实施例1和2相同;各实施例中,每一层的厚度以mm计。
表2-2
Figure PCTCN2020132056-appb-000003
Figure PCTCN2020132056-appb-000004
为了验证本案的实施效果,同时证明本案较之现有技术的优异效果,本案将实施例1-6的碳钢奥氏体不锈钢轧制复合板进行测试,测试结果列于表3。
表3
Figure PCTCN2020132056-appb-000005
由表3可以看出,本案各实施例的碳钢奥氏体不锈钢轧制复合板的抗拉强度在802-1710MPa,屈服强度在514-1390MPa,延伸率在7.3-15.4%。点腐蚀测试按照GB/T 17899-1999不锈钢点蚀电位测量方法进行,晶间腐蚀性能测试按照ASTM G108-94进行,由表3可以看出,本案各实施例的点腐蚀电位在0.29~0.42V,晶间腐蚀在0.26~0.4Ra,由此说明本案各实施例的耐蚀性能优异。
综上所述,采用本发明所述的方法制得的碳钢奥氏体不锈钢轧制复合板具有保 证抗腐蚀能量的奥氏体不锈钢层,同时具有为整体钢板提供不同特定力学性能基础的碳钢层,从而使得最终钢板具有从780MPa-1700MPa的不同强度级别,并且具有优秀的抗腐蚀能力。
需要说明的是,本发明的保护范围中现有技术部分并不局限于本申请文件所给出的实施例,所有不与本发明的方案相矛盾的现有技术,包括但不局限于在先专利文献、在先公开出版物,在先公开使用等等,都可纳入本发明的保护范围。
此外,本案中各技术特征的组合方式并不限本案权利要求中所记载的组合方式或是具体实施例所记载的组合方式,本案记载的所有技术特征可以以任何方式进行自由组合或结合,除非相互之间产生矛盾。
还需要注意的是,以上所列举的实施例仅为本发明的具体实施例。显然本发明不局限于以上实施例,随之做出的类似变化或变形是本领域技术人员能从本发明公开的内容直接得出或者很容易便联想到的,均应属于本发明的保护范围。

Claims (15)

  1. 一种碳钢奥氏体不锈钢轧制复合板的制造方法,其特征在于,其包括步骤:
    (1)制得碳钢层坯料和奥氏体不锈钢层坯料;
    (2)组坯;
    (3)复合轧制;
    (4)冷轧;
    (5)第一次退火:退火温度为1050-1150℃,保温时间大于等于30s;然后冷却至室温,在该冷却过程中,在900-500℃的温度范围内进行快速冷却,控制冷却速度为20-200℃/s;
    (6)第二次退火:以大于等于5℃/s的加热速度加热至均热温度800-950℃,保温10-100s,然后以v1=3-20℃/s的速度冷却到快冷开始温度T,所述快冷开始温度T≥800-10×v1,然后再以20-1000℃/s的速度冷却到150-450℃;然后进行过时效处理,过时效温度为150-450℃,过时效处理时间为100-400s。
  2. 如权利要求1所述的制造方法,其特征在于,在步骤(3)中,将坯料加热至1150-1260℃,保温0.6小时以上,控制终轧温度大于等于850℃,轧后以30-100℃/s的速度冷却,控制卷取温度为450-600℃。
  3. 如权利要求1所述的制造方法,其特征在于,在步骤(4)中,控制冷轧压下率为40-70%。
  4. 如权利要求1所述的制造方法,其特征在于,还包括步骤(7)平整。
  5. 如权利要求1所述的制造方法,其特征在于,步骤(5)中,保温时间为30-80s,在900-500℃的温度范围内的冷却速度为20-180℃/s。
  6. 如权利要求1所述的制造方法,其特征在于,步骤(6)中,加热速度为5-20℃/s,v1=5-20℃/s。
  7. 如权利要求2所述的制造方法,其特征在于,步骤(3)中,保温时间为0.6-3小时,终轧温度为850-920℃。
  8. 如权利要求1所述的制造方法,其特征在于,所述碳钢层为基层,奥氏体不锈钢为覆层,所述碳钢层单面地或双面复合有所述奥氏体不锈钢覆层。
  9. 如权利要求1所述的制造方法,其特征在于,组坯时,所述碳钢层与每一 层奥氏体不锈钢层的厚度比为5-30:1,优选7-10:1。
  10. 一种碳钢奥氏体不锈钢轧制复合板,其采用如权利要求1-9中任意一项所述的制造方法制得。
  11. 如权利要求10所述的碳钢奥氏体不锈钢轧制复合板,其特征在于,其中奥氏体不锈钢层的化学元素质量百分含量为:C:0.02%~0.15%,Si:0.3%~1.0%,Mn:1.0%~10.5%,Cr:14.0~20.0%,Ni:0.2~14.0%,N≤0.25%,Cu≤0.6%,Mo≤3.0%,余量为Fe和其他不可避免的杂质。
  12. 如权利要求11所述的碳钢奥氏体不锈钢轧制复合板,其特征在于,所述碳钢层的化学元素质量百分含量为:
    C:0.05%~0.35%,Si:0.1%~2.0%,Mn:0.5%~3.0%,Al:0.01%~0.08%,余量为Fe和其他不可避免的杂质。
  13. 如权利要求12所述的碳钢奥氏体不锈钢轧制复合板,其特征在于,所述碳钢层还含有下述各化学元素的至少其中之一:B≤0.005%,Nb≤0.1%,Ti≤0.15%,V≤0.15%,Cr≤0.6%,Mo≤0.3%。
  14. 如权利要求10-13中任意一项所述的碳钢奥氏体不锈钢轧制复合板,其特征在于,所述碳钢奥氏体不锈钢轧制复合板的抗拉强度为780-1700MPa。
  15. 如权利要求14所述的碳钢奥氏体不锈钢轧制复合板,其特征在于,所述碳钢奥氏体不锈钢轧制复合板的屈服强度为500-1400MPa,点腐蚀电位为0.25-0.45V,晶间腐蚀为0.25-0.40Ra。
PCT/CN2020/132056 2019-11-29 2020-11-27 一种碳钢奥氏体不锈钢轧制复合板及其制造方法 WO2021104417A1 (zh)

Priority Applications (4)

Application Number Priority Date Filing Date Title
EP20894434.8A EP4067525A4 (en) 2019-11-29 2020-11-27 CARBON STEEL AND AUSTENITIC STAINLESS STEEL ROLLING CLAD SHEET AND METHOD OF MANUFACTURING THEREOF
US17/780,598 US20230001504A1 (en) 2019-11-29 2020-11-27 Carbon steel and austenitic stainless steel rolling clad plate manufacturing method therefor
KR1020227020166A KR20220106149A (ko) 2019-11-29 2020-11-27 탄소강 오스테나이트 스테인리스강 압연 복합판 및 이의 제조 방법
JP2022529742A JP2023503912A (ja) 2019-11-29 2020-11-27 炭素鋼オーステナイト系ステンレス鋼圧延複合板及びその製造方法

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
CN201911196554.2A CN112877589B (zh) 2019-11-29 2019-11-29 一种碳钢奥氏体不锈钢轧制复合板及其制造方法
CN201911196554.2 2019-11-29

Publications (1)

Publication Number Publication Date
WO2021104417A1 true WO2021104417A1 (zh) 2021-06-03

Family

ID=76038427

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2020/132056 WO2021104417A1 (zh) 2019-11-29 2020-11-27 一种碳钢奥氏体不锈钢轧制复合板及其制造方法

Country Status (6)

Country Link
US (1) US20230001504A1 (zh)
EP (1) EP4067525A4 (zh)
JP (1) JP2023503912A (zh)
KR (1) KR20220106149A (zh)
CN (1) CN112877589B (zh)
WO (1) WO2021104417A1 (zh)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN114082982A (zh) * 2021-11-09 2022-02-25 南京理工大学 一种高强韧叠层异构钢板的制备方法
CN115011773A (zh) * 2022-06-13 2022-09-06 北京科技大学 一种表面改性不锈钢/碳钢层状复合板材及其制备方法

Families Citing this family (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN113843284B (zh) * 2021-08-30 2024-04-05 湖南华菱湘潭钢铁有限公司 一种低屈强比型316L+Q500qE不锈钢复合板的生产方法
CN113832412B (zh) * 2021-09-09 2023-12-05 中车戚墅堰机车车辆工艺研究所有限公司 一种含Nb的Cr-Ni系铸造奥氏体耐热不锈钢的热处理方法
CN116200650A (zh) * 2021-12-01 2023-06-02 江苏新华合金有限公司 一种高温合金板材及其制备工艺
CN116516244A (zh) * 2022-01-21 2023-08-01 宝山钢铁股份有限公司 一种耐氢氧化钠腐蚀高强度管道及其制造方法
CN116536573A (zh) * 2022-01-26 2023-08-04 宝山钢铁股份有限公司 一种耐硫酸铝腐蚀高强度管道及其制造方法
KR20240050060A (ko) * 2022-10-11 2024-04-18 주식회사 포스코 저온 충격인성이 우수한 오스테나이트계 스테인리스강 및 그 제조 방법
CN116445811A (zh) * 2023-02-28 2023-07-18 张家港宏昌钢板有限公司 420MPa级不锈钢复合板及其制备方法
CN116159861B (zh) * 2023-04-25 2023-07-04 江苏省沙钢钢铁研究院有限公司 界面结合优异的不锈钢复合板及其制备方法

Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS62110879A (ja) * 1985-11-11 1987-05-21 Japan Steel Works Ltd:The ロ−ル成形用薄板クラツド鋼の製造方法
EP0355046A2 (en) * 1988-08-18 1990-02-21 Allegheny Ludlum Corporation Composite material and method of making
CN1095989A (zh) * 1993-03-31 1994-12-07 阿利金尼·勒德卢姆公司 不锈钢和碳素钢复合材料以及其制备方法
CN105296854A (zh) * 2015-09-25 2016-02-03 宝钢不锈钢有限公司 一种具有优良综合性能的冷轧双面不锈钢复合板及制造方法
CN107419066A (zh) * 2017-07-14 2017-12-01 北钢联(北京)重工科技有限公司 多层冷轧复合板扩散退火工艺
CN108504956A (zh) * 2017-02-27 2018-09-07 宝山钢铁股份有限公司 高成型性冷轧超高强度复合钢板及其制造方法
CN109203604A (zh) * 2018-11-09 2019-01-15 瓯锟科技温州有限公司 一种宽幅不锈钢复合板及其加工方法

Family Cites Families (18)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US3862484A (en) * 1970-01-02 1975-01-28 Allegheny Ludlum Ind Inc Production of composite material
JPS5785959A (en) * 1980-11-17 1982-05-28 Sumitomo Metal Ind Ltd Composite roll for continuous casting
JPH01136931A (ja) * 1987-11-24 1989-05-30 Sumitomo Metal Ind Ltd ステンレスクラッド鋼板の焼入れ方法
JP2781285B2 (ja) * 1991-03-18 1998-07-30 川崎製鉄株式会社 ステンレスクラッド鋼板の製造方法
PL2050532T3 (pl) * 2006-07-27 2016-11-30 Stal wielowarstwowa oraz sposób wytwarzania stali wielowarstwowej
JP5352766B2 (ja) * 2008-03-27 2013-11-27 国立大学法人 東京大学 複層鋼およびその製造方法
CN104988414A (zh) * 2015-06-20 2015-10-21 秦皇岛首秦金属材料有限公司 一种强韧性能的碳钢与不锈钢复合钢板及生产方法
CN107661900B (zh) * 2016-07-29 2019-03-29 宝山钢铁股份有限公司 一种热连轧机组生产双面不锈钢复合板的制造方法
CN108116006A (zh) * 2016-11-30 2018-06-05 宝山钢铁股份有限公司 一种超级奥氏体不锈钢轧制复合钢板及其制造方法
CN108239725B (zh) * 2016-12-27 2020-08-25 宝山钢铁股份有限公司 一种高剪切强度轧制复合钢板及其制造方法
CN106957996B (zh) * 2017-04-27 2018-11-06 东北大学 一种含Sn超级奥氏体不锈钢冷轧板的制备方法
JP6648736B2 (ja) * 2017-06-27 2020-02-14 Jfeスチール株式会社 母材低温靱性とhaz靱性に優れたクラッド鋼板およびその製造方法
CN109306436A (zh) * 2017-07-28 2019-02-05 宝山钢铁股份有限公司 一种具有耐腐蚀性的抗酸管线用复合钢板及其制造方法
KR20190060699A (ko) * 2017-11-24 2019-06-03 한국기계연구원 고강도 금속 박판제조 열간압연공정 및 이에 의해 제조되는 판재
WO2019132039A1 (ja) * 2017-12-28 2019-07-04 日本製鉄株式会社 クラッド鋼板
CN110499453B (zh) * 2018-05-16 2021-09-17 宝山钢铁股份有限公司 一种高强双面不锈钢复合板及其制造方法
CN109290372A (zh) * 2018-11-09 2019-02-01 瓯锟科技温州有限公司 一种不锈钢复合板的温轧制造方法
CN110079735A (zh) * 2019-05-17 2019-08-02 武汉钢铁有限公司 屈服强度460MPa级的冷轧低合金高强度钢及生产方法

Patent Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS62110879A (ja) * 1985-11-11 1987-05-21 Japan Steel Works Ltd:The ロ−ル成形用薄板クラツド鋼の製造方法
EP0355046A2 (en) * 1988-08-18 1990-02-21 Allegheny Ludlum Corporation Composite material and method of making
CN1095989A (zh) * 1993-03-31 1994-12-07 阿利金尼·勒德卢姆公司 不锈钢和碳素钢复合材料以及其制备方法
CN105296854A (zh) * 2015-09-25 2016-02-03 宝钢不锈钢有限公司 一种具有优良综合性能的冷轧双面不锈钢复合板及制造方法
CN108504956A (zh) * 2017-02-27 2018-09-07 宝山钢铁股份有限公司 高成型性冷轧超高强度复合钢板及其制造方法
CN107419066A (zh) * 2017-07-14 2017-12-01 北钢联(北京)重工科技有限公司 多层冷轧复合板扩散退火工艺
CN109203604A (zh) * 2018-11-09 2019-01-15 瓯锟科技温州有限公司 一种宽幅不锈钢复合板及其加工方法

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
See also references of EP4067525A4 *

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN114082982A (zh) * 2021-11-09 2022-02-25 南京理工大学 一种高强韧叠层异构钢板的制备方法
CN114082982B (zh) * 2021-11-09 2024-04-30 南京理工大学 一种高强韧叠层异构钢板的制备方法
CN115011773A (zh) * 2022-06-13 2022-09-06 北京科技大学 一种表面改性不锈钢/碳钢层状复合板材及其制备方法
CN115011773B (zh) * 2022-06-13 2023-09-12 北京科技大学 一种表面改性不锈钢/碳钢层状复合板材及其制备方法

Also Published As

Publication number Publication date
CN112877589B (zh) 2022-03-18
EP4067525A4 (en) 2023-05-10
US20230001504A1 (en) 2023-01-05
CN112877589A (zh) 2021-06-01
EP4067525A1 (en) 2022-10-05
JP2023503912A (ja) 2023-02-01
KR20220106149A (ko) 2022-07-28

Similar Documents

Publication Publication Date Title
WO2021104417A1 (zh) 一种碳钢奥氏体不锈钢轧制复合板及其制造方法
JP6661537B2 (ja) 高硬度熱間圧延鋼材製品及びその製造方法
EP3889287B1 (en) 980mpa grade cold-roll steel sheets with high hole expansion rate and higher percentage elongation and manufacturing method therefor
CN108018484B (zh) 抗拉强度1500MPa以上成形性优良的冷轧高强钢及其制造方法
JP4956998B2 (ja) 成形性に優れた高強度溶融亜鉛めっき鋼板およびその製造方法
TWI412605B (zh) 高強度鋼板及其製造方法
JP6685244B2 (ja) 強度、延性および成形性が改善された高強度鋼板を製造する方法
KR102466821B1 (ko) 냉간 압연되고 열처리된 강 시트 및 그 제조 방법
CN111315908A (zh) 冷轧钢板及其制造方法
CN108699660B (zh) 高强度钢板及其制造方法
JP2023011852A (ja) 冷間圧延熱処理鋼板及びその製造方法
KR20150110723A (ko) 780 MPa급 냉간 압연 2상 스트립 강 및 그의 제조방법
WO2011061812A1 (ja) 高靱性耐摩耗鋼およびその製造方法
CN114891961A (zh) 冷轧热处理钢板
KR20200012953A (ko) 저비용 및 고성형성 1180 MPa 등급 냉간 압연 어닐링된 이중상 강판 및 이의 제조 방법
JP5786317B2 (ja) 材質安定性と加工性に優れた高強度溶融亜鉛めっき鋼板およびその製造方法
CN106133173A (zh) 材质均匀性优异的高强度冷轧钢板及其制造方法
CN106011644A (zh) 高伸长率冷轧高强度钢板及其制备方法
CN105925905B (zh) Nb-Ti系780MPa级热轧双相钢及其生产方法
WO2023087833A1 (zh) 一种具有优良耐候性能的高强度钢材及其制造方法
CN111218620A (zh) 一种高屈强比冷轧双相钢及其制造方法
KR20220005572A (ko) 냉간압연된 마르텐사이트계 강 시트 및 그 제조 방법
CN114015951A (zh) 热轧轻质高强钢及其制备方法
JP2011168861A (ja) 高強度熱延鋼板およびその製造方法
KR102544854B1 (ko) 구멍 확장비가 높은 냉연 어닐링된 강판 및 그 제조 방법

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 20894434

Country of ref document: EP

Kind code of ref document: A1

ENP Entry into the national phase

Ref document number: 2022529742

Country of ref document: JP

Kind code of ref document: A

ENP Entry into the national phase

Ref document number: 20227020166

Country of ref document: KR

Kind code of ref document: A

NENP Non-entry into the national phase

Ref country code: DE

ENP Entry into the national phase

Ref document number: 2020894434

Country of ref document: EP

Effective date: 20220629