WO2021104386A1 - 电力线通信装置以及发电系统 - Google Patents

电力线通信装置以及发电系统 Download PDF

Info

Publication number
WO2021104386A1
WO2021104386A1 PCT/CN2020/131853 CN2020131853W WO2021104386A1 WO 2021104386 A1 WO2021104386 A1 WO 2021104386A1 CN 2020131853 W CN2020131853 W CN 2020131853W WO 2021104386 A1 WO2021104386 A1 WO 2021104386A1
Authority
WO
WIPO (PCT)
Prior art keywords
power line
communication device
line communication
signal
cable
Prior art date
Application number
PCT/CN2020/131853
Other languages
English (en)
French (fr)
Inventor
水伟
Original Assignee
华为技术有限公司
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 华为技术有限公司 filed Critical 华为技术有限公司
Priority to EP20893259.0A priority Critical patent/EP4057518B1/en
Priority to AU2020390294A priority patent/AU2020390294A1/en
Publication of WO2021104386A1 publication Critical patent/WO2021104386A1/zh
Priority to US17/825,889 priority patent/US11637589B2/en

Links

Images

Classifications

    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04BTRANSMISSION
    • H04B3/00Line transmission systems
    • H04B3/54Systems for transmission via power distribution lines
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04BTRANSMISSION
    • H04B3/00Line transmission systems
    • H04B3/54Systems for transmission via power distribution lines
    • H04B3/546Combination of signalling, telemetering, protection
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04BTRANSMISSION
    • H04B3/00Line transmission systems
    • H04B3/02Details
    • H04B3/20Reducing echo effects or singing; Opening or closing transmitting path; Conditioning for transmission in one direction or the other
    • H04B3/23Reducing echo effects or singing; Opening or closing transmitting path; Conditioning for transmission in one direction or the other using a replica of transmitted signal in the time domain, e.g. echo cancellers
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04BTRANSMISSION
    • H04B3/00Line transmission systems
    • H04B3/02Details
    • H04B3/28Reducing interference caused by currents induced in cable sheathing or armouring
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04BTRANSMISSION
    • H04B3/00Line transmission systems
    • H04B3/54Systems for transmission via power distribution lines
    • H04B3/56Circuits for coupling, blocking, or by-passing of signals

Definitions

  • the embodiments of the present application relate to power line communication technology, and in particular, to a power line communication device and a power generation system including the power line communication device.
  • DC power generation equipment for example, photovoltaic arrays
  • inverters various power equipment for power generation and power conversion.
  • the distance between the power equipment is relatively far apart (for example, the distance between the DC power generation equipment and the inverter is 1 km).
  • PLC power line communication
  • a magnetic ring is usually set on the power line to couple the signal to the power line, or the magnetic ring is used to increase the input and output impedance between the two power lines to reduce signal attenuation.
  • power lines transmit modulated signals, they usually transmit electrical energy.
  • This electrical energy usually has a relatively high current.
  • the magnetic induction intensity of the magnetic ring quickly reaches the maximum value, which leads to the magnetic saturation of the magnetic ring, which causes the inductance of the magnetic ring to attenuate greatly.
  • the PLC signal is attenuated and the signal transmission is reduced. Reliability. Therefore, how to improve the reliability of PLC signal transmission in the power line communication device will become a problem.
  • the power line communication device provided by the present application can effectively reduce the magnetic saturation speed of the magnetic ring by arranging the magnetic ring on the shielding layer or cable that does not transmit electric energy in the power line, so that the magnetic ring maintains a higher inductance and reduces the PLC.
  • the signal attenuation improves the reliability of PLC signal transmission.
  • an embodiment of the present application is a power line communication device.
  • the power line communication device includes a first power line communication device provided at the signal sending end, a second power line communication device provided at the signal receiving end, a power line, and a second power line communication device provided at the signal sending end.
  • the power line includes a wire for transmitting electric energy and a wire wrapped around the wire
  • the wire and the shielding layer respectively extend from the signal sending end to the signal receiving end; the first magnetic ring and the second magnetic ring are respectively coupled to the shield Floor.
  • the first magnetic ring and the second magnetic ring are coupled to the shielding layer of the power line. Since the shielding layer is insulated from the conductor core inside the power line, the shielding layer does not have large current flow, thereby suppressing the magnetic field. The magnetic permeability of the ring is reduced, thereby suppressing the attenuation of the inductance of the magnetic ring, and improving the reliability of the transmitted modulation signal.
  • the output end of the first power line communication device is coupled to the first magnetic ring; the modulation signal is coupled to the wire and the first magnetic ring through the first magnetic ring.
  • the shielding layer is transmitted from the signal sending end to the signal receiving end.
  • the first signal output terminal of the first power line communication device is coupled to the wire through a first capacitor, and the second signal output terminal of the first power line communication device Coupled to the shielding layer through a second capacitor; the modulation signal is coupled to the wire and the shielding layer through the first capacitor and the second capacitor, and is transmitted from the signal sending end to the signal receiving layer end.
  • the output end of the second power line communication device is coupled to the second magnetic ring; And the shielding layer receives the modulated signal.
  • the first signal receiving end of the second power line communication device is coupled to the wire through a third capacitor, and the second signal receiving end of the second power line communication device is It is coupled to the shielding layer through a fourth capacitor; the second power line communication device receives the modulation signal from the wire and the shielding layer through the third capacitor and the fourth capacitor.
  • the shielding layer and the wire are used to transmit the modulation signal. Since the shielding layer has no power current flowing, the influence of the power current on the modulation signal during the transmission of the modulation signal can be reduced, thereby improving The stability of signal transmission.
  • the power line communication device further includes a fifth capacitor and a sixth capacitor; wherein, at the signal sending end, the wire and the shielding layer pass through the first Five capacitive coupling; at the signal receiving end, the wire and the shielding layer are coupled through the sixth capacitive coupling.
  • the fifth capacitor and the sixth capacitor can be used to transmit the modulation signal on the shielding layer side to the wire when the signal is transmitted by means of electromagnetic coupling; at the same time, Reducing the distributed capacitance and distributed inductance of each wire is beneficial to improve the stability of the debugging signal.
  • an embodiment of the present application is a power line communication device.
  • the power line communication device includes a first power line communication device provided at the signal sending end, a second power line communication device provided at the signal receiving end, a power line, and a first power line communication device provided at the signal sending end.
  • the power line includes a first cable for transmitting electrical energy and a non-transmitting electrical energy cable.
  • the second cable; the first magnetic ring and the second magnetic ring are coupled to the second cable.
  • the first magnetic ring and the second magnetic ring are coupled to the cable that does not transmit electrical energy in the power line. Since the cable that does not transmit electrical energy does not have large current flow, the magnetic ring can be suppressed. The magnetic permeability is reduced, thereby suppressing the attenuation of the inductance of the magnetic ring, and improving the reliability of the transmitted modulation signal.
  • the first cable and the second cable respectively extend from the signal sending end to the signal receiving end, and the first cable and the The second cables are insulated from each other.
  • the modulated signal is coupled to the first cable and the second cable, and the first cable and the second cable are used to transmit the modulated signal. Since the second cable has no power current flowing, the influence of the power current on the modulation signal during the transmission of the modulation signal can be reduced, thereby improving the stability of the signal transmission.
  • the first cable includes a first sub-cable and a second sub-cable
  • the second cable includes at least four
  • the power line communication device further includes A first capacitor and a second capacitor
  • the first cable extends from the signal sending end to the signal receiving end; at the signal sending end, two of the second cables connect the first capacitor Coupled between the first sub-cable and the second sub-cable; at the signal receiving end, two of the second cables couple the second capacitor to the first sub-line
  • the first magnetic ring is coupled to one of the second cables located at the signal transmitting end; the second magnetic ring is coupled to one located at the signal receiving end One of the second cables.
  • the first capacitor and the second capacitor are filter capacitors to filter out differential mode signals on the cable.
  • the cable (the second cable) connecting the first capacitor and the second capacitor to the two power cables (that is, the first sub-cable and the second sub-cable) has no power current flowing.
  • the influence of the power current on the modulation signal during the transmission of the modulation signal can be reduced, thereby improving the stability of the signal transmission.
  • the first magnetic ring and the second magnetic ring with small inductance can also be used. Therefore, the volume of the first magnetic ring and the second magnetic ring can be reduced, and the structure of the power line communication device can be simplified to save cost.
  • the output end of the first power line communication device is coupled to the first magnetic ring; the modulation signal is coupled to the first magnetic ring through the first magnetic ring.
  • the sub-cable and the second sub-cable are transmitted from the signal sending end to the signal receiving end.
  • the first signal output terminal of the first power line communication device is coupled to the first cable through a third capacitor
  • the second signal output terminal of the first power line communication device is The signal output terminal is coupled to the second cable through a fourth capacitor
  • the modulation signal is coupled to the first cable and the second cable through the third capacitor and the fourth capacitor
  • the signal sending end is transmitted to the signal receiving end.
  • the output end of the second power line communication device is coupled to the second magnetic ring; the second power line device is connected to the second magnetic ring through the second magnetic ring.
  • a sub-cable and the second sub-cable receive the modulated signal.
  • the first signal receiving end of the second power line communication device is coupled to the first sub-cable through a fifth capacitor, and the first signal receiving end of the second power line communication device is The two signal receiving ends are coupled to the second sub-cable through a sixth capacitor; the second power line communication device is connected to the first sub-cable and the second sub-cable through the fifth capacitor and the sixth capacitor.
  • the sub-cable receives the modulated signal.
  • the electrical energy transmitted by the power line is direct current electrical energy or alternating current electrical energy.
  • an embodiment of the present application is a power generation system.
  • the power generation system includes a plurality of power devices, and the power line communication device as described in the first aspect or the power line communication device as described in the above-mentioned second aspect is arranged between every two of the power devices.
  • the power line communication device wherein, the medium and high frequency signals between every two of the power equipment are transmitted by the power line erected between the two.
  • power equipment includes, but is not limited to: photovoltaic modules, inverter transformers, transformers, combiner boxes, and data detectors.
  • the power line communication device as described in the first or second aspect may be provided between the photovoltaic module and the inverter, and the medium and high frequency signal between the photovoltaic array and the inverter is set up between the two Power line transmission.
  • the power line communication device as described in the first aspect or the second aspect may be provided between the transformer and the inverter; the medium and high frequency signals between the inverter and the transformer are set up between the two Power line transmission.
  • the power line communication device as described in the first or second aspect may be provided between the photovoltaic array and the combiner box, and the medium and high frequency signals between the photovoltaic array and the combiner box are set up between the two Power line transmission.
  • the power line communication device as described in the first aspect or the second aspect may be provided between the combiner box and the inverter, and a power line transmission between the combiner box and the inverter is erected between the two.
  • the above-mentioned data monitor is used to monitor the data of the photovoltaic array and the inverter; the power line communication device as described in the first aspect or the second aspect is arranged between the data monitor and at least one of the photovoltaic array and the inverter.
  • Fig. 1 is a schematic structural diagram of a power generation system provided by an embodiment of the present application
  • Figure 2 is another schematic diagram of the structure of the power generation system provided by an embodiment of the present application.
  • FIG. 3 is a schematic diagram of the internal structure of the power line provided by the embodiment of the present application.
  • Figure 4 is a top view of the power line shown in Figure 3;
  • FIG. 5 is another schematic diagram of the internal structure of the power line provided by the embodiment of the present application.
  • Figure 6 is a top view of the power line shown in Figure 5;
  • FIG. 7 is another schematic diagram of the internal structure of the power line provided by an embodiment of the present application.
  • Figure 8 is a top view of the power line as shown in Figure 7;
  • Fig. 9 is a schematic diagram of a structure of a power line communication device in the prior art.
  • Fig. 10 is a schematic structural diagram of a power line communication device provided by an embodiment of the present application.
  • FIG. 11 is another schematic structural diagram of a power line communication device provided by an embodiment of the present application.
  • FIG. 12 is another schematic structural diagram of a power line communication device provided by an embodiment of the present application.
  • FIG. 13 is another schematic structural diagram of a power line communication device provided by an embodiment of the present application.
  • FIG. 14 is another schematic structural diagram of a power line communication device provided by an embodiment of the present application.
  • 15 is another schematic diagram of the structure of the power line communication device provided by an embodiment of the present application.
  • FIG. 16 is another schematic structural diagram of a power line communication device provided by an embodiment of the present application.
  • FIG. 17 is another schematic structural diagram of a power line communication device provided by an embodiment of the present application.
  • FIG. 18 is another schematic structural diagram of a power line communication device provided by an embodiment of the present application.
  • FIG. 19 is another schematic structural diagram of the power line communication device provided by an embodiment of the present application.
  • FIG. 20 is another schematic diagram of the structure of the power line communication device provided by an embodiment of the present application.
  • FIG. 21 is another schematic diagram of the structure of the power line communication device provided by an embodiment of the present application.
  • words such as “exemplary” or “for example” are used as examples, illustrations, or illustrations. Any embodiment or design solution described as “exemplary” or “for example” in the embodiments of the present application should not be construed as being more preferable or advantageous than other embodiments or design solutions. To be precise, words such as “exemplary” or “for example” are used to present related concepts in a specific manner.
  • multiple cables refer to two or more cables; multiple devices refer to two or more devices.
  • Fig. 1 is a schematic structural diagram of a power generation system provided by an embodiment of the application.
  • the power generation system shown in Figure 1 is a solar power generation system.
  • the power generation system includes a plurality of power equipment, the power equipment includes a photovoltaic module 1, an inverter 2, a transformer 3 and a data collector 4.
  • the photovoltaic module 1 may include a plurality of photovoltaic modules, and the plurality of photovoltaic modules are usually arranged in an array, which is also called a photovoltaic array.
  • Photovoltaic modules are battery modules that are exposed to sunlight and convert light energy into direct current electricity to generate electricity. In specific use, photovoltaic modules are usually grouped to generate the required DC power.
  • the inverter 2 is used to convert the DC power generated by the photovoltaic module into AC power.
  • the transformer 3 is used to boost the AC power generated by the inverter 2 and input it to the grid for power transmission.
  • the data collector 4 is used to collect data such as the working parameters and electric energy output of the photovoltaic module 1 and the inverter 2, and then can monitor the working status of the photovoltaic module 1 and the inverter 2 based on the collected data (such as monitoring Whether the inverter 2 is working abnormally, controlling the inverter 2 to turn on or off, etc.).
  • the inverter 2 may be a string inverter or a centralized inverter.
  • an MPPT (Maximum Power Point Tracking) combiner box 5 is usually set between the photovoltaic module 1 and the inverter 2. as shown in picture 2.
  • the power generation system 100 as shown in FIG. 1 or FIG. 2 further includes a power line for power transmission.
  • a power line 01 for transmitting the DC power generated by the photovoltaic module 1 to the inverter 2 is provided between the photovoltaic module 1 and the inverter 2 as shown in FIG. 1;
  • a power line 03 for transmitting the DC power generated by the photovoltaic module to the MPPT combiner box is provided between the MPPT combiner box 5 and the inverter 2, there is a power line for transmitting the DC power collected by the MPPT combiner box to the MPPT combiner box.
  • a power line for transmitting the alternating current generated by the inverter 2 to the transformer 3 is provided between the inverter 2 and the transformer 3 02;
  • a power line 05 is also provided between the data collector 4 and the photovoltaic module 1, the inverter 2, and the MPPT combiner box 5.
  • the power line 01, the power line 03, and the power line 04 may be DC cables.
  • the power line 02 and the power line 05 may be AC cables.
  • the power line shown in the embodiment of the present application may have a single-core structure, as shown in FIG. 3, which shows a schematic diagram of the internal structure of the power line provided by an embodiment of the present application, and FIG. 4 is a top view of the power line shown in FIG. 3 .
  • the power line includes a wire 431, a shielding layer 432 for electromagnetic shielding, a first insulating layer 433 wrapped around the shielding layer 432, and a second insulating layer that insulates the wire 431 and the shielding layer 432. ⁇ 434.
  • the shielding layer 432 may be formed of a conductive material with electromagnetic insulation properties.
  • the power line 01, the power line 03, and the power line 04 all include at least two, of which at least one power line is a positive cable, and at least one power line is a negative cable;
  • power line 02, power line 05 may include at least three lines, at least one of the power lines is a live line, one of the power lines is a neutral line, and one of the power lines is a ground line.
  • the power line shown in the embodiment of the present application may have a multi-core wire structure, that is, multiple wires share the same shielding layer and the first insulating layer, and the second insulation is passed between the multiple wires and between the wires and the shielding layer.
  • the layers are insulated from each other.
  • FIG. 5 shows a schematic diagram of the power line having a two-core structure
  • FIG. 6 is a top view of the power line shown in FIG. 5.
  • the power line includes a wire 4311, a wire 4312, a shielding layer 432 for electromagnetic shielding, a first insulating layer 433 wrapped outside the shielding layer 432, so that the wires 4311, 4312, and each of the wires
  • the second insulating layer 434 is insulated from the shielding layer 432 from each other.
  • the wire 4311 can be a positive cable, and the wire 4312 can be a negative cable; or, the wire 4311 can also be a cable that transmits electric energy (for example, one of the positive cable, the negative cable, the live wire, and the neutral wire). 4312 can be a cable that does not transmit power.
  • FIG. 7 shows a schematic diagram of the power line having a three-core wire structure
  • FIG. 8 is a top view of the power line shown in FIG. 7.
  • the power line includes a wire 4311, a wire 4312, a wire 4313, a shielding layer 432 for electromagnetic shielding, a first insulating layer 433 wrapped around the shielding layer 432, so that the wire 4311, the wire 4312, and the wire
  • the second insulating layer 434 between the wires 4313 and between the wires and the shielding layer 432 insulates each other.
  • the wire 4311 can be a positive cable, the wire 4312 can be a negative cable, and the wire 4313 can be a cable that does not transmit electric energy; alternatively, the wire 4311 can be a live wire, the wire 4312 can be a neutral wire, and the wire 4313 can be a ground wire. .
  • the power line 01, the power line 03, and the power line 04 may all include at least one power line with the two-core structure shown in FIG. 5, wherein the wire 4311 may be a positive cable or a wire 4312 It can be a negative cable; the power line 01, the power line 03, and the power line 04 can all include at least one power line with a three-core structure as shown in FIG. 7, wherein the wire 4311 can be a positive wire, the wire 4312 can be a negative wire, and a wire 4313 It can be a cable that does not transmit electric energy; both the power line 02 and the power line 05 can include at least one power line with a three-core structure as shown in FIG. 7, wherein the wire 4311 can be a live wire, the wire 4312 can be a neutral wire, and the wire 4313 can be Ground wire.
  • signal transmission that is, data exchange
  • PLC power line communication, power line communication
  • carrier communication is usually used for signal interaction. That is to say, the distance between any two power devices included in the power generation system shown in this application is relatively large, and when long-distance signal transmission is required, the PLC transmission mode can be adopted.
  • the signal to be transmitted after modulating the signal to be transmitted, it is coupled to the above-mentioned power line for transmission (for example, when the power line transmits DC power, the modulated signal is coupled to the positive cable and the negative cable for transmission; when the power line transmits AC power, the modulation signal is coupled to the positive cable and the negative cable for transmission.
  • the signal is coupled to the live wire and the neutral wire for transmission).
  • a signal is transmitted between the MPPT combiner box 5 and the inverter 2
  • the MPPT combiner box modulates the signal and couples it to the power line 04 to transmit the signal Transmission to inverter 2.
  • the inverter 2 After the inverter 2 receives the modulated signal, it can obtain data after demodulating the modulated signal.
  • the magnetic induction intensity of the magnetic ring 10 increases to a certain extent, it will not increase with the increase of the current. At this time, the intensity of the magnetic field around the magnetic ring 10 will continue to increase. Thus, the magnetic permeability of the magnetic ring 10 gradually decreases.
  • the inductance of the magnetic ring 10 is proportional to the magnetic permeability, which causes the inductance of the magnetic ring 10 to gradually decrease until the magnetic ring 10 reaches magnetic saturation. At this time, the inductance of the magnetic ring 10 tends to zero.
  • the current transmitted in the power generation system is usually high, which causes the inductance of the magnetic ring 10 to decay sharply, which in turn causes the attenuation of the transmitted signal and reduces the reliability of the transmitted signal.
  • the power line communication device provided in this application is used for PLC signal transmission between any two power devices of the aforementioned power generation system 100. It should be noted that the power line communication device provided in this application is not limited to the PLC signal transmission between any two devices of the photovoltaic module 1, inverter 2, transformer 3, data collector 4, and MPPT combiner box 5 in the power generation system 100. It can also be applied to PLC signal transmission between other unshown devices included in the power generation system 100.
  • the attenuation of the magnetic permeability of the magnetic ring can be effectively reduced, and the reliability of the transmitted signal can be improved.
  • the power line communication device shown in the present application will be described in detail through the embodiments shown in FIGS. 10-21.
  • it includes a first power line communication device 41, a second power line communication device 42, a power line for PLC signal transmission, and a first magnetic line provided on the side of the first power line communication device 41.
  • the ring L1 and the second magnetic ring L2 provided on the side of the second power line communication device.
  • the power line in the embodiment shown in FIGS. 10-21 may be the power line 04 shown in FIG. 2.
  • the first power line communication device 41 and the second power line communication device 42 are respectively provided in two power devices that perform PLC signal transmission.
  • the first power line communication device 41 may be set in the MPPT combiner box 5, and the second power line communication device 42 may be set in the inverter. ⁇ 2 ⁇ .
  • the MPPT combiner box 5 can send signals to the inverter 2 and can also receive signals from the inverter 2.
  • the MPPT combiner box 5 sends a signal to the inverter 2
  • the MPPT combiner box 5 is the signal sending end
  • the inverter 2 is the signal receiving end.
  • the MPPT combiner box 5 receives a signal from the inverter 2
  • the MPPT combiner box 5 is the signal receiving end
  • the inverter 2 is the signal sending end.
  • the first power line communication device 41 and the second power line communication device 42 both have a PLC signal modulation and demodulation function.
  • the first power line communication device 41 may include a first terminal V411 and a second terminal V412.
  • the second power line communication device 42 may include a first terminal V421 and a second terminal V422.
  • the modulated signal is coupled to the power line through the first terminal V411 and the second terminal V412, and the power line transmits the modulated signal from the signal sending end To the signal receiving end.
  • the second power line communication device 42 may receive the modulated signal from the power line through the first terminal V421 and the second terminal V422, and then demodulate the received modulated signal to obtain the original signal.
  • FIG. 10 shows a schematic structural diagram of a power line communication device provided by an embodiment of the present application.
  • the power line includes a positive cable 041 and a negative cable 042, and the positive cable 041 and the negative cable 042 are used to transmit DC power.
  • the positive cable 041 and the negative cable 042 have the same structure.
  • one of the power lines (either the positive cable 041 shown in Figure 10, or the negative cable 042 shown in Figure 10) of the wire and shielding layer is exposed for external use For coupling components such as magnetic rings.
  • FIG. 10 schematically shows that the wires and the shielding layer in the positive cable 041 are exposed to the outside.
  • the wires and the shielding layer in the negative cable 042 do not need to be coupled with a magnetic ring, etc., so they may not be exposed to the outside.
  • the negative cable 042 is replaced by a straight line in FIG. 10, and the specific structure is not shown.
  • the shielding layer 432 exposed to the outside may be provided with an OT terminal, and a wire can be drawn from the OT terminal.
  • the wire passes through the first magnetic ring L1, that is, the first magnetic ring L1 is coupled to Shield.
  • the shielding layer 432 exposed to the outside can also be provided with an OT terminal, and a wire can be drawn from the OT terminal, and the wire passes through the second magnetic ring L2, that is, the second magnetic ring L2 is coupled by the wire To the shielding layer.
  • the shielding layer does not transmit electric energy, the first magnetic ring L1 and the second magnetic ring L2 will not cause the inductance of the magnetic ring to decrease sharply due to the excessive current transmitted on the power line, which improves the stability of the magnetic ring.
  • the signal sending end couples the modulated signal to the power line through electromagnetic coupling
  • the signal receiving end receives the modulated signal from the power line through electromagnetic coupling
  • the cable drawn from the first end V411 of the first power line communication device 41 is connected to the second end V412 of the first power line communication device 41 through the magnetic loop L1.
  • the cable drawn from the first end V421 of the second power line communication device 42 is connected to the second end V422 of the second power line communication device 42 through the magnetic loop L2.
  • the wire 431 of the positive cable 041 is used to transmit the modulated signal together with the shielding layer 432.
  • the shielding layer 432 and the wire 431 extend from the signal transmitting end to the signal receiving end.
  • the shielding layer 432 and the wire 431 are connected through a capacitor C1; on the side of the signal receiving end, the shielding layer 432 and the wire 431 are connected through a capacitor C2.
  • the modulation signal sent by the first power line communication device 41 is coupled to the shielding layer 432 through the first magnetic ring L1. Since the modulation signal is a medium and high frequency signal, the frequency is usually in the frequency range of KHz ⁇ MHz. Therefore, the modulated signal coupled to the shielding layer 432 is transmitted to the wire 431 through the capacitor C1, and a signal loop is formed between the shielding layer 432 and the wire 431, so that the modulated signal is transmitted to the signal receiving end. At the signal receiving end, the signal coupled to the wire 431 is transmitted to the shielding layer through the capacitor C2.
  • the second power line communication device 42 may receive the modulated signal from the shielding layer through the second magnetic ring L2.
  • the modulation signal loop is formed by using the wire 431 for transmitting electrical energy and the shielding layer 432 that does not transmit electrical energy, and the magnetic ring is arranged on the shielding layer to reduce signal attenuation and improve the reliability of signal transmission.
  • the signal sending end couples the modulated signal to the power line through capacitive coupling, and the signal receiving end receives the modulated signal from the power line through capacitive coupling.
  • FIG. 11 shows a schematic structural diagram of another embodiment of the power line communication device provided by the present application.
  • the first end V411 of the first power line communication device 41 is connected to one end of the capacitor C3, the other end of the capacitor C3 is connected to the shielding layer 432; the second end V412 of the first power line communication device 41 is connected to one end of the capacitor C4, The other end of the capacitor C4 is connected to the wire 431 in the positive cable 041.
  • the first end V421 of the second power line communication device 42 is connected to one end of the capacitor C5, and the other end of the capacitor C5 is connected to the shielding layer 432;
  • the second end V422 of the second power line communication device 42 is connected to one end of the capacitor C6, and the second end V422 of the second power line communication device 42 is connected to one end of the capacitor C6.
  • the other end is connected to the wire 431 in the positive cable 041.
  • the modulation signal sent by the first power line communication device 41 is coupled to the shielding layer 432 and the wire 431 through the capacitor C3 and the capacitor C4, respectively, so as to transmit the modulation signal to the signal receiving end.
  • the second power line communication device 42 may receive the modulated signal from the shielding layer 432 and the wire 431 through the capacitor C5 and the capacitor C6, respectively.
  • the first end V411, the second end V412, the shielding layer 432, the wire 431 of the first power line communication device 41, and the first end V421 and the second end V422 of the second power line communication device 42 Form a signal loop.
  • this signal loop due to the influence of various external factors (such as distributed inductance and distributed capacitance of the signal transmission medium, etc.), a differential mode noise signal is likely to be generated between the shielding layer 432 and the wire 431.
  • a capacitor C1 is connected between the shielding layer 432 and the wire 431 on the side of the signal transmitting end;
  • the capacitor C1 and the capacitor C2 here are filter capacitors.
  • the capacitance of the capacitor C1 and the capacitor C2 is usually at the microfarad level, which can be regarded as a small impedance relative to the medium and high frequency modulation signal. That is, the modulation signal can flow from one side to the other through the capacitor C1 or the capacitor C2. In the process of passing the capacitor C1 or the capacitor C2, there will be signal attenuation, which affects the reliability of the signal received by the receiving end.
  • the first magnetic ring L1 and the second magnetic ring L2 as shown in FIG. 11 are used to provide a large impedance, that is, the shielding layer 432 and the wire 431 are equivalent to a disconnection, thereby suppressing the modulation signal in the capacitor C1 and the capacitor C2.
  • capacitors C1 and C2 can be capacitors with smaller capacitance.
  • the capacitance of the capacitor C1 and the capacitor C2 is so small that the impedance generated by them is completely negligible relative to the modulation signal, the first magnetic ring L1 and the second magnetic ring L2 with small inductance can also be used, or not The first magnetic ring L1 and the second magnetic ring L2 are used. As a result, the structure of the power line communication device can be further simplified, thereby saving costs.
  • the signal transmitting end couples the modulated signal to the power line through electromagnetic coupling, and the signal receiving end receives the modulated signal from the power line through capacitive coupling.
  • the structure of the power line communication device is as shown in FIG. 12.
  • the specific structure and working principle of the signal transmitting end side can refer to the related description of the signal transmitting end side shown in Figure 10, and the specific structure and working principle of the signal receiving end side can refer to the figure. The related description of the signal receiving end side shown in 11 will not be repeated here.
  • the signal sending end couples the modulated signal to the power line through capacitive coupling, and the signal receiving end receives the modulated signal from the power line through electromagnetic coupling.
  • the structure of the power line communication device is as shown in FIG. 13.
  • the specific structure and working principle of the signal sending end side can refer to the related description of the signal sending end side shown in Figure 11, and the specific structure and working principle of the signal receiving end side can refer to the figure.
  • the related description of the signal receiving end side shown in 10 will not be repeated here.
  • FIG. 14 shows a schematic structural diagram of another embodiment of the power line communication device provided by the present application.
  • the power line communication device shown in FIG. 14 includes a first power line communication device 41, a second power line communication device 42, a power line, a first magnetic ring L1 provided on the side of the first power line communication device, and a second power line communication device Side of the second magnetic ring L2.
  • the power line includes a positive cable 041 and a negative cable 042.
  • the positive cable 041 and the negative cable 042 may have the structure shown in FIG. 3.
  • the positive cable 041 and the negative cable 042 are respectively simplified into two line segments, and the specific structure of each power line is not shown. Among them, the positive cable 041 and the negative cable 042 shown in FIG. 14 are used to transmit electric energy.
  • the power line also includes a cable 043, which is not used to transmit belt energy.
  • the cable 043 may have the structure shown in FIG. 3, or may have a structure in which the wire is only wrapped by an insulating layer.
  • Figure 14 simplifies the cable 043 into a line segment.
  • the cable 043 passes through the first magnetic ring L1, that is, the first magnetic ring L1 is coupled to the cable 043 through a wire.
  • the cable 043 passes through the second magnetic ring L2, that is, the second magnetic ring L2 is coupled to the cable 043 through a wire. Since the cable 043 does not transmit electric energy, the first magnetic ring L1 and the second magnetic ring L2 will not cause the inductance of the magnetic ring to decrease sharply due to the excessive current transmitted on the power line, which improves the stability of the magnetic ring. It should be noted here that when the cable 043 adopts the structure shown in FIG.
  • first magnetic ring L1 and the second magnetic ring L2 when the first magnetic ring L1 and the second magnetic ring L2 are coupled to the cable 043, they can be coupled to the wires of the cable 043 or Shield of cable 043. Specifically, at the signal transmitting end and the signal receiving end, the wires or the shielding layer of the cable 043 can be exposed to the outside, and the wires are drawn through the OT terminal to couple the first magnetic ring L1 and the second magnetic ring L2 to the cable 043 Wire or shielding layer.
  • the cable 043 is a structure in which the insulating layer wraps the wire, since there is no shielding layer, the cable 043 can be passed through the first magnetic ring L1 and the second magnetic ring L2 respectively at the signal transmitting end and the signal receiving end, so that The first magnetic ring L1 and the second magnetic ring L2 are coupled to the cable 043.
  • the signal sending end couples the modulated signal to the power line through electromagnetic coupling
  • the signal receiving end receives the modulated signal from the power line through electromagnetic coupling
  • the cable drawn from the first end V411 of the first power line communication device 41 is connected to the second end V412 of the first power line communication device 41 through the magnetic loop L1.
  • the cable drawn from the first end V421 of the second power line communication device 42 is connected to the second end V422 of the second power line communication device 42 through the magnetic loop L2.
  • the positive cable 041 and the cable 043 are used to transmit the modulated signal together.
  • the positive cable 041 and the cable 043 extend from the signal transmitting end to the signal receiving end.
  • the positive cable 041 and the cable 043 are connected through the capacitor C1; on the side of the signal receiving end, the positive cable 041 and the cable 043 are connected through the capacitor C2.
  • the modulation signal sent by the first power line communication device 41 is coupled to the cable 043 through the first magnetic ring L1. Since the modulation signal is a medium and high frequency signal, the frequency is usually in the frequency range of KHz ⁇ MHz. Therefore, the modulated signal coupled to the cable 043 is transmitted to the positive cable 041 through the capacitor C1, and a signal loop is formed between the positive cable 041 and the cable 043, thereby transmitting the modulated signal to the signal receiving end. At the signal receiving end, the signal coupled to the positive cable 041 is transmitted to the cable 043 through the capacitor C2.
  • the second power line communication device 42 may receive the modulated signal from the cable 043 through the second magnetic ring L2.
  • the signal sending end couples the modulated signal to the power line through capacitive coupling, and the signal receiving end receives the modulated signal from the power line through capacitive coupling.
  • FIG. 15 shows a schematic structural diagram of another embodiment of the power line communication device provided by the present application.
  • the first end V411 of the first power line communication device 41 is connected to one end of the capacitor C3, and the other end of the capacitor C3 is connected to the cable 043; the second end V412 of the first power line communication device 41 is connected to one end of the capacitor C4, The other end of the capacitor C4 is connected to the positive cable 041.
  • the first end V421 of the second power line communication device 42 is connected to one end of the capacitor C5, and the other end of the capacitor C5 is connected to the cable 043; the second end V422 of the second power line communication device 42 is connected to one end of the capacitor C6. The other end is connected to the positive cable 041.
  • the modulation signal sent by the first power line communication device 41 is coupled to the positive cable 041 and the cable 043 through the capacitor C3 and the capacitor C4, respectively, so as to transmit the modulation signal to the signal receiving end.
  • the second power line communication device 42 can receive modulated signals from the positive cable 041 and the cable 043 through the capacitor C5 and the capacitor C6, respectively.
  • the signal transmitting end couples the modulated signal to the power line through electromagnetic coupling, and the signal receiving end receives the modulated signal from the power line through capacitive coupling.
  • the structure of the power line communication device is as shown in FIG. 16.
  • the specific structure and working principle of the signal transmitting end side can refer to the related description of the signal transmitting end side shown in Figure 14, and the specific structure and working principle of the signal receiving end side can refer to the figure. The relevant description of the signal receiving end side shown in 15 will not be repeated here.
  • the signal sending end couples the modulated signal to the power line through capacitive coupling, and the signal receiving end receives the modulated signal from the power line through electromagnetic coupling.
  • the structure of the power line communication device is as shown in FIG. 17.
  • the specific structure and working principle of the signal transmitting end side can refer to the related description of the signal transmitting end side shown in Figure 15, and the specific structure and working principle of the signal receiving end side can refer to the figure. The relevant description of the signal receiving end shown in 14 will not be repeated here.
  • FIG. 18 shows a schematic structural diagram of another embodiment of the power line communication device provided by the present application.
  • the power line communication device shown in FIG. 18 includes a first power line communication device 41, a second power line communication device 42, a power line, a first magnetic ring L1 provided on the side of the first power line communication device, and a second power line communication device Side of the second magnetic ring L2.
  • the power line includes a positive cable 041 and a negative cable 042.
  • the positive cable 041 and the negative cable 042 may have the structure shown in FIG. 3.
  • the positive cable 041 and the negative cable 042 are respectively simplified into two line segments, and the specific structure of each cable is not shown. Among them, the positive cable 041 and the negative cable 042 shown in FIG. 18 are used to transmit electric energy.
  • the positive cable 041 and the negative cable 042 are connected through a capacitor C1; at the signal receiving end, the positive cable 041 and the negative cable 042 are connected through a capacitor C2.
  • the capacitor C1 and the capacitor C2 are filter capacitors.
  • a differential mode noise signal is usually generated between the positive cable 041 and the negative cable 042, and the capacitor C1 and the capacitor C2 are used to filter the differential mode noise signal.
  • the power line also includes multiple cables 043 that do not transmit electrical energy.
  • one end of the capacitor C1 is coupled to the positive cable 041 through one of the cables 043, and the other end of the capacitor C1 is coupled to the negative cable 042 through one of the cables 043.
  • one end of the capacitor C2 is coupled to the positive cable 041 through one of the cables 043, and the other end of the capacitor C2 is coupled to the negative cable 042 through one of the cables 043. Since the electric energy transmitted by the MPPT combiner box 5 to the inverter 2 is direct current, and the capacitor C1 and the capacitor C2 have the function of "passing AC and blocking direct current", therefore, there is no electric power flow on the cable 043.
  • one of the cables 043 passes through the first magnetic ring L1, that is, the first magnet ring L1 is coupled to the cable 043 on the signal sending end; at the signal receiving end, one of the cables 043 passes through the second The magnetic ring L2, that is, the second magnetic ring L2 is coupled to the cable 043 on the signal receiving end side.
  • the signal sending end couples the modulated signal to the power line through electromagnetic coupling
  • the signal receiving end receives the modulated signal from the power line through electromagnetic coupling
  • the cable drawn from the first end V411 of the first power line communication device 41 is connected to the second end V412 of the first power line communication device 41 through the magnetic loop L1.
  • the cable drawn from the first end V421 of the second power line communication device 42 is connected to the second end V422 of the second power line communication device 42 through the magnetic loop L2.
  • the positive cable 041 and the negative cable 042 include the signal transmitting end to the signal receiving end.
  • the modulation signal sent by the first power line communication device 41 is coupled to the cable 043 through the first magnetic ring L1.
  • the modulated signal coupled to the cable 043 is transmitted to the positive cable 041, the negative cable 042 through the cable 043, the capacitor C1, and a signal loop is formed between the positive cable 041, the negative cable 042, and the cable 043, so that the modulation The signal is transmitted to the signal receiving end.
  • the modulated signals coupled to the positive cable 041 and the negative cable 042 are transmitted to the cable 043, and the second power line communication device 42 can receive the modulated signal from the second sub-electronic wire through the second magnetic ring L2.
  • this embodiment uses a magnetic ring to couple the capacitance to the cable 043 of the positive cable 041, and the cable 043 connects the capacitor to the cable 043 of the positive cable 041.
  • the modulated signal is coupled to the positive cable and the negative cable to reduce signal attenuation, improve signal transmission reliability, and reduce construction costs.
  • the signal sending end couples the modulated signal to the power line through capacitive coupling, and the signal receiving end receives the modulated signal from the power line through capacitive coupling.
  • FIG. 19 shows another schematic structural diagram of the power line communication device provided by an embodiment of the present application.
  • the first end V411 of the first power line communication device 41 is connected to one end of the capacitor C3, the other end of the capacitor C3 is connected to the positive cable 041; the second end V412 of the first power line communication device 41 is connected to one end of the capacitor C4 , The other end of the capacitor C4 is connected to the negative cable 042.
  • the first end V421 of the second power line communication device 42 is connected to one end of the capacitor C5, and the other end of the capacitor C5 is connected to the positive cable 041; the second end V422 of the second power line communication device 42 is connected to one end of the capacitor C6, and the capacitor C6 The other end of the is connected to the negative cable 042.
  • the modulation signal sent by the first power line communication device 41 is coupled to the positive cable 041 and the negative cable 042 through the capacitor C3 and the capacitor C4, respectively, so as to transmit the modulation signal to the signal receiving end.
  • the second power line communication device 42 can receive modulated signals from the positive cable 041 and the negative cable 042 through the capacitor C5 and the capacitor C6, respectively.
  • the first end V411, the second end V412, the positive cable 041, the negative cable 042, the first end V421, the second end of the second power line communication device 42 of the first power line communication device 41 A signal loop is formed between V422.
  • a capacitor C1 is connected between the positive cable 041 and the negative cable 042 on the side of the signal sending end; and the capacitor C2 is connected between the positive cable 041 and the negative cable 042 on the side of the signal receiving end.
  • the capacitor C1 and the capacitor C2 here are filter capacitors.
  • the function and working principle of the capacitor C1, the capacitor C2, the first magnetic ring L1, and the second magnetic ring L2 in the power line communication device can refer to the capacitor C1, the capacitor C2, the first magnetic ring L1, and the second magnetic ring L1 shown in FIG. The relevant description of the magnetic ring L2 will not be repeated here in detail.
  • the first magnetic ring L1 and the second magnetic ring with small inductance can also be used at this time.
  • the ring L2, or the first magnetic ring L1 and the second magnetic ring L2 are not used.
  • the structure of the power line communication device can be further simplified, thereby saving costs.
  • the signal transmitting end couples the modulated signal to the power line through electromagnetic coupling, and the signal receiving end receives the modulated signal from the power line through capacitive coupling.
  • the structure of the power line communication device is as shown in FIG. 20.
  • the specific structure and working principle of the signal transmitting end side can refer to the related description of the signal transmitting end side shown in Figure 18, and the specific structure and working principle of the signal receiving end side can refer to the figure. The relevant description of the signal receiving end shown in 19 will not be repeated here.
  • the signal sending end couples the modulated signal to the power line through capacitive coupling, and the signal receiving end receives the modulated signal from the power line through electromagnetic coupling.
  • the structure of the power line communication device is as shown in FIG. 21.
  • the specific structure and working principle of the signal transmitting end side can refer to the related description of the signal transmitting end side shown in Figure 19, and the specific structure and working principle of the signal receiving end side can refer to the figure. The relevant description of the signal receiving end shown in 18 will not be repeated here.
  • the first end of the first power line communication device communicates with the second power line
  • the first end of the device is coupled to the same cable or the same part of the power line; the second end of the first power line communication device and the second end of the second power line communication device are coupled to the same cable or the same part of the power line.

Landscapes

  • Engineering & Computer Science (AREA)
  • Computer Networks & Wireless Communication (AREA)
  • Signal Processing (AREA)
  • Power Engineering (AREA)
  • Cable Transmission Systems, Equalization Of Radio And Reduction Of Echo (AREA)

Abstract

本申请实施例提供了一种电力线通信装置和发电系统,该电力线通信装置包括设置于信号发送端的第一电力线通信设备、设置于信号接收端的第二电力线通信设备、电力线、设置于信号发送端的第一磁环和设置于信号接收端的第二磁环;在第一磁环以及第二磁环的作用下,电力线将第一电力线通信设备耦合的调制信号由信号发送端传输至信号接收端,以使第二电力线通信设备从电力线接收调制信号;电力线包括用于传输电能的导线和包裹在导线外部用于进行电磁屏蔽的屏蔽层,导线和屏蔽层分别从信号发送端延伸至信号接收端;第一磁环和第二磁环分别耦合至屏蔽层,可以抑制磁环的电感量的衰减,提高所传输的调制信号的可靠性。

Description

电力线通信装置以及发电系统
本申请要求于2019年11月28日提交中国专利局、申请号为201911195151.6、申请名称为“电力线通信装置以及发电系统”的中国专利申请的优先权,其全部内容通过引用结合在本申请中。
技术领域
本申请实施例涉及电力线通信技术,尤其涉及一种电力线通信装置以及包括电力线通信装置的发电系统。
背景技术
随着电力电子的发展,利用新型能源产生电能以进行发电得到广泛应用。现有的太阳能发电系统中,通常包括直流电能产生设备(例如光伏阵列)、逆变器等电能产生以及电能转换的各种电力设备。通常各电力设备之间的距离间隔较远(例如直流电能产生设备与逆变器之间相距1km)。而对于远距离设备之间的信号交互,通常采用PLC(power line communication,电力线通信)进行信号传输。
相关PLC信号传输中,通常在电力线上设置磁环,以将信号耦合至电力线上,或者利用磁环增大两条电力线之间的输入输出阻抗以降低信号衰减。而电力线在传输调制信号的同时,通常还传输电能。该电能通常具有较高的电流。而磁环在大通流的情况下,磁环的磁感应强度很快达到最大值导致磁环磁饱和,从而使得磁环的电感量衰减较大,这样一来,导致PLC信号衰减,降低了信号传输的可靠性。从而,如何提高电力线通信装置中PLC信号传输的可靠性将成为一个问题。
发明内容
本申请提供的电力线通信装置,通过将磁环设置于电力线中不传输电能的屏蔽层或者线缆,可以有效的降低磁环的磁饱和速度,从而使得磁环保持较高的电感量,降低PLC信号的衰减,提高PLC信号传输的可靠性。
为了解决上述技术问题,本申请采用如下技术方案:
第一方面,本申请实施例一种电力线通信装置,电力线通信装置包括设置于信号发送端的第一电力线通信设备、设置于信号接收端的第二电力线通信设备、电力线、设置于所述信号发送端的第一磁环和设置于所述信号接收端的第二磁环;在所述第一磁环以及所述第二磁环的作用下,所述电力线将所述第一电力线通信设备耦合的调制信号由所述信号发送端传输至所述信号接收端,以使所述第二电力线通信设备从所述电力线接收所述调制信号;所述电力线包括用于传输电能的导线和包裹在所述导线外部用于进行电磁屏蔽的屏蔽层,所述导线和所述屏蔽层分别从所述信号发送端延伸至所述信号接收端;所述第一磁环和所述第二磁环分别耦合至所述屏蔽层。
本申请实施例提供的电力线通信装置,通过将第一磁环、第二磁环耦合至电力 线的屏蔽层,由于屏蔽层与电力线内部的导线芯绝缘,屏蔽层无大电流流通,从而可以抑制磁环的磁导率的减小,进而抑制磁环电感量的衰减,提高所传输的调制信号的可靠性。
结合第一方面,在一种可能的实现方式中,所述第一电力线通信设备的输出端耦合至所述第一磁环;所述调制信号通过所述第一磁环耦合至所述导线和所述屏蔽层,由所述信号发送端传输至所述信号接收端。
结合第一方面,在一种可能的实现方式中,所述第一电力线通信设备的第一信号输出端通过第一电容耦合至所述导线,所述第一电力线通信设备的第二信号输出端通过第二电容耦合至所述屏蔽层;所述调制信号通过所述第一电容和所述第二电容耦合至所述导线和所述屏蔽层,由所述信号发送端传输至所述信号接收端。
结合第一方面,在一种可能的实现方式中,所述第二电力线通信设备的输出端耦合至所述第二磁环;所述第二电力线设备通过所述第二磁环从所述导线和所述屏蔽层接收所述调制信号。
结合第一方面,在一种可能的实现方式中,所述第二电力线通信设备的第一信号接收端通过第三电容耦合至所述导线,所述第二电力线通信设备的第二信号接收端通过第四电容耦合至所述屏蔽层;所述第二电力线通信设备通过所述第三电容和所述第四电容从所述导线和所述屏蔽层接收所述调制信号。
通过将调制信号耦合至电力线的屏蔽层和导线,利用屏蔽层和导线传输调制信号,由于屏蔽层无电力电流流通,因此,可以降低调制信号传输过程中,电力电流对调制信号的影响,从而提高信号传输的稳定性。
结合第一方面,在一种可能的实现方式中,所述电力线通信装置还包括第五电容和第六电容;其中,在所述信号发送端,所述导线和所述屏蔽层通过所述第五电容耦合;在所述信号接收端,所述导线和所述屏蔽层通过所述第六电容耦合。
本申请实施例通过设置第五电容和第六电容,在利用电磁耦合的方式进行信号传输时,可以利用第五电容和第六电容将屏蔽层侧的调制信号传输至导线上;同时,还可以降低各导线的分布电容、分布电感等,有利于提高调试信号的稳定性。
第二方面,本申请实施例一种电力线通信装置,电力线通信装置包括设置于信号发送端的第一电力线通信设备、设置于信号接收端的第二电力线通信设备、电力线、设置于所述信号发送端的第一磁环和设置于所述信号接收端的第二磁环;在所述第一磁环以及所述第二磁环的作用下,所述电力线将所述第一电力线通信设备耦合的调制信号由所述信号发送端传输至所述信号接收端,以使所述第二电力线通信设备从所述电力线接收所述调制信号;所述电力线包括用于传输电能的第一线缆和不传输电能的第二线缆;所述第一磁环和所述第二磁环耦合至所述第二线缆。
本申请实施例提供的电力线通信装置,通过将第一磁环、第二磁环耦合至电力线中不传输电能的线缆,由于不传输电能的线缆无大电流流通,从而可以抑制磁环的磁导率的减小,进而抑制磁环电感量的衰减,提高所传输的调制信号的可靠性。
结合第二方面,在一种可能的实现方式中,所述第一线缆、所述第二线缆分别从所述信号发送端延伸至所述信号接收端,所述第一线缆和所述第二线缆之间相互绝缘。在该实现方式中,将调制信号耦合至第一线缆和第二线缆,利用第一线缆和 第二线缆传输调制信号。由于第二线缆无电力电流流通,因此,可以降低调制信号传输过程中,电力电流对调制信号的影响,从而提高信号传输的稳定性。
结合第二方面,在一种可能的实现方式中,所述第一线缆包括第一子线缆和第二子线缆,所述第二线缆包括至少四条,所述电力线通信装置还包括第一电容和第二电容;所述第一线缆从所述信号发送端延伸至所述信号接收端;在所述信号发送端,其中两条所述第二线缆将所述第一电容耦合在所述第一子线缆和所述第二子线缆之间;在所述信号接收端,其中两条所述第二线缆将所述第二电容耦合在所述第一子线缆和所述第二子线缆之间;所述第一磁环耦合至位于所述信号发送端的其中一条所述第二线缆;所述第二磁环耦合至位于所述信号接收端的其中一条所述第二线缆。该可选的首先方式中,第一电容和第二电容为滤波电容,以滤除线缆上的差模信号等。将第一电容和第二电容连接至两电力线缆(即第一子线缆和第二子线缆)之间的线缆(第二线缆)无电力电流流通。通过将磁环耦合至第二线缆,可以降低调制信号传输过程中,电力电流对调制信号的影响,从而提高信号传输的稳定性。此外,当第一电容和第二电容的容量小到相对于调制信号来说其产生的阻抗完全可以忽略不计时,此时也可以采用电感量很小的第一磁环和第二磁环,从而可以减小第一磁环和第二磁环的体积,进而简化电力线通信装置的结构以节约成本。
结合第二方面,在一种可能的实现方式中,所述第一电力线通信设备的输出端耦合至所述第一磁环;所述调制信号通过所述第一磁环耦合至所述第一子线缆和所述第二子线缆,由所述信号发送端传输至所述信号接收端。
结合第二方面,在一种可能的实现方式中,所述第一电力线通信设备的第一信号输出端通过第三电容耦合至所述第一线缆,所述第一电力线通信设备的第二信号输出端通过第四电容耦合至所述第二线缆;所述调制信号通过所述第三电容和所述第四电容耦合至所述第一线缆和所述第二线缆,由所述信号发送端传输至所述信号接收端。
结合第二方面,在一种可能的实现方式中,所述第二电力线通信设备的输出端耦合至所述第二磁环;所述第二电力线设备通过所述第二磁环从所述第一子线缆和所述第二子线缆接收所述调制信号。
结合第二方面,在一种可能的实现方式中,所述第二电力线通信设备的第一信号接收端通过第五电容耦合至所述第一子线缆,所述第二电力线通信设备的第二信号接收端通过第六电容耦合至所述第二子线缆;所述第二电力线通信设备通过所述第五电容和所述第六电容从所述第一子线缆和所述第二子线缆接收所述调制信号。
结合第二方面,在一种可能的实现方式中,所述电力线所传输的电能为直流电能或交流电能。
第三方面,本申请实施例一种发电系统,该发电系统包括多个电力设备,每两个所述电力设备之间设置有如上述第一方面所述的电力线通信装置或者如上述第二方面所述的电力线通信装置;其中,每两个所述电力设备之间的中高频信号利用架设于二者之间的电力线传输。
具体的,电力设备包括但不限于:光伏组件、逆变器变、变压器、汇流箱、数据检测器。可以在光伏组件和逆变器之间设置有如第一方面或第二方面所述的电力 线通信装置,所述光伏阵列和所述逆变器之间的中高频信号利用架设于二者之间的电力线传输。可以在变压器与所述逆变器之间设置有如第一方面或第二方面所述的电力线通信装置;所述逆变器和所述变压器之间的中高频信号利用架设于二者之间的电力线传输。可以在光伏阵列与所述汇流箱之间设置有如第一方面或第二方面所述的电力线通信装置,所述光伏阵列与所述汇流箱之间的中高频信号利用架设于二者之间的电力线传输。可以在汇流箱与所述逆变器之间设置有如第一方面或第二方面所述的电力线通信装置,汇流箱与所述逆变器之间架设于二者之间的电力线传输。上述数据监测器用于监测光伏阵列、逆变器的数据;在数据监测器与光伏阵列、逆变器中的至少一项之间设置有如第一方面或第二方面所述的电力线通信装置。
附图说明
为了更清楚地说明本申请实施例的技术方案,下面将对本申请实施例的描述中所需要使用的附图作简单地介绍,显而易见地,下面描述中的附图仅仅是本申请的一些实施例,对于本领域普通技术人员来讲,在不付出创造性劳动性的前提下,还可以根据这些附图获得其他的附图。
图1是本申请实施例提供的发电系统的一个结构示意图;
图2是本申请实施例提供的发电系统的又一个结构示意图;
图3是本申请实施例提供的电力线的一个内部结构示意图;
图4是如图3所示的电力线的俯视图;
图5是本申请实施例提供的电力线的又一个内部结构示意图;
图6是如图5所示的电力线的俯视图;
图7是本申请实施例提供的电力线的又一个内部结构示意图;
图8是如图7所示的电力线的俯视图;
图9是现有技术中电力线通信装置的一个结构示意图;
图10是本申请实施例提供的电力线通信装置的一个结构示意图;
图11是本申请实施例提供的电力线通信装置的又一个结构示意图;
图12是本申请实施例提供的电力线通信装置的又一个结构示意图;
图13是本申请实施例提供的电力线通信装置的又一个结构示意图;
图14是本申请实施例提供的电力线通信装置的又一个结构示意图;
图15是本申请实施例提供的电力线通信装置的又一个结构示意图;
图16是本申请实施例提供的电力线通信装置的又一个结构示意图;
图17是本申请实施例提供的电力线通信装置的又一个结构示意图;
图18是本申请实施例提供的电力线通信装置的又一个结构示意图;
图19是本申请实施例提供的电力线通信装置的又一个结构示意图;
图20是本申请实施例提供的电力线通信装置的又一个结构示意图;
图21是本申请实施例提供的电力线通信装置的又一个结构示意图。
具体实施方式
下面将结合本申请实施例中的附图,对本申请实施例中的技术方案进行清楚、完整地描述,显然,所描述的实施例是本申请一部分实施例,而不是全部的实施例。基于本申请中的实施例,本领域普通技术人员在没有做出创造性劳动前提下所获得的所有其他实施例,都属于本申请保护的范围。
本文所提及的"第一"、"第二"以及类似的词语并不表示任何顺序、数量或者重要性,而只是用来区分不同的组成部分。同样,"一个"或者"一"等类似词语也不表示数量限制,而是表示存在至少一个。"连接"或者"相连"等类似的词语并非限定于物理的或者机械的连接,而是可以包括电性的连接,不管是直接的还是间接的。
在本申请实施中,“和/或”描述关联对象的关联关系,表示可以存在三种关系,例如,A和/或B,可以表示:单独存在A,同时存在A和B,单独存在B这三种情况。
在本申请实施例中,“示例性的”或者“例如”等词用于表示作例子、例证或说明。本申请实施例中被描述为“示例性的”或者“例如”的任何实施例或设计方案不应被解释为比其它实施例或设计方案更优选或更具优势。确切而言,使用“示例性的”或者“例如”等词旨在以具体方式呈现相关概念。
在本申请实施例的描述中,除非另有说明,“多个”的含义是指两个或两个以上。例如,多条线缆是指两条或两条以上的线缆;多个装置是指两个或两个以上的装置。
为使本申请的目的、技术方案和优点更加清楚,下面将结合本申请中的附图,对本申请中的技术方案进行清楚、完整地描述,显然,所描述的实施例是本申请一部分实施例,而不是全部的实施例。基于本申请中的实施例,本领域普通技术人员在没有作出创造性劳动前提下所获得的所有其他实施例,都属于本申请保护的范围。
图1为本申请实施例提供的发电系统的结构示意图。图1所示的发电系统为太阳能发电系统。在图1中,发电系统包括多个电力设备,该电力设备包括光伏组件1、逆变器2、变压器3和数据采集器4。
其中,光伏组件1可以包括多个,该多个光伏组件通常设置呈阵列排布,也即称为光伏阵列。光伏组件是暴露在太阳光下将光能转换成直流电能以进行发电的电池组件。在具体使用时,通常将光伏组件进行分组,从而产生所需要的直流电能。逆变器2用于将光伏组件产生的直流电能转换成交流电能。变压器3用于将逆变器2产生的交流电能进行升压后输入至电网进行电能成传输。数据采集器4用于采集光伏组件1和逆变器2的工作参数、电能输出量等数据,然后可以基于所采集到的数据对光伏组件1、逆变器2的工作状态进行监控(例如监控逆变器2工作是否异常、控制逆变器2开启或关闭等)。在本实施例中,逆变器2可以为组串式逆变器,也可以为集中式逆变器。当逆变器2为集中式逆变器时,光伏组件1和逆变器2之间通常还设置有MPPT(具有最大功率点跟踪,Maximum Power Point Tracking)汇流箱5。如图2所示。
在如图1或者如图2所示的发电系统100中,还包括用于进行电能传输的电力线。具体的,在如图1所示的光伏组件1与逆变器2之间设置有用于将光伏组件1产生的直流电能传输至逆变器2的电力线01;在如图2所示的光伏组件1与MPPT汇流箱5之间设置有用于将光伏组件产生的直流电传输至MPPT汇流箱的电力线03、在MPPT汇流箱5与逆变器2之间设置有用于将MPPT汇流箱汇聚的直流电传输至逆变器2的电力线04;在如图1或图2所示的发电系统100中,在逆变器2与变压器3之间设置有用于将逆变器2 产生的交流电传输至变压器3的电力线02;在数据采集器4与光伏组件1、逆变器2、MPPT汇流箱5之间还设置有电力线05。其中,电力线01、电力线03、电力线04可以为直流线缆。电力线02、电力线05可以为交流线缆。
本申请实施例所示的电力线可以为单芯线结构,如图3所示,图3示出了本申请实施例提供的电力线的一个内部结构示意图,图4为图3所示的电力线的俯视图。在图3、图4中,电力线包括导线431、用于进行电磁屏蔽的屏蔽层432、包裹在屏蔽层432外部的第一绝缘层433、使得导线431和屏蔽层432之间绝缘的第二绝缘层434。通常,该屏蔽层432可以由具有电磁绝缘性能的导电材料形成。当图2所示的各电力线为单芯线结构时,电力线01、电力线03、电力线04均包括至少两条,其中至少一条电力线为正线缆,至少一条电力线为负线缆;电力线02、电力线05可以均包括至少三条,其中至少一条电力线为火线、其中一条电力线为零线、其中一条电力线为接地线。
本申请实施例所示的电力线可以为多芯线结构,也即是说,多个导线共用同一层屏蔽层和第一绝缘层,多个导线之间、导线与屏蔽层之间通过第二绝缘层互相绝缘。
图5示出了电力线为双芯线结构的示意图,图6为图5所示的电力线的俯视图。在图5、图6中,电力线包括导线4311、导线4312、用于进行电磁屏蔽的屏蔽层432、包裹在屏蔽层432外部的第一绝缘层433、使得导线4311、导线4312之间、各导线和屏蔽层432之间互相绝缘的第二绝缘层434。其中,导线4311可以为正线缆、导线4312可以为负线缆;或者,导线4311还可以为传输电能的线缆(例如正线缆、负线缆、火线、零线中的一条),导线4312可以为不传输电能的线缆。
图7示出了电力线为三芯线结构的示意图,图8为图7所示的电力线的俯视图。在图7、图8中,电力线包括导线4311、导线4312、导线4313、用于进行电磁屏蔽的屏蔽层432、包裹在屏蔽层432外部的第一绝缘层433、使得导线4311、导线4312、导线4313之间、各导线和屏蔽层432之间互相绝缘的第二绝缘层434。其中,导线4311可以为正线缆、导线4312可以为负线缆、导线4313可以为不传输电能的线缆;或者,导线4311可以为火线、导线4312可以为零线、导线4313可以为接地线。
当图2所示的电力线为多芯线结构时,电力线01、电力线03、电力线04均可以包括至少一条图5所示的双芯线结构的电力线,其中导线4311可以为正线缆、导线4312可以为负线缆;电力线01、电力线03、电力线04均可以包括至少一条图7所示的三芯线结构的电力线,其中导线4311可以为正线缆、导线4312可以为负线缆、导线4313可以为不传输电能的线缆;电力线02、电力线05均可以包括至少一条图7所示的三芯线结构的电力线,其中,导线4311可以为火线、导线4312可以为零线、导线4313可以为接地线。
在上述任意两个设备之间,除了进行电能传输外,通常还会进行信号传输,也即数据交互。对于设备间的远距离信号传输中,也即两设备之间的距离大于1KM时,通常采用PLC(power line communication,电力线通信)、或者也叫载波通信的方式进行信号交互。也即是说,本申请所示的发电系统所包括的任意两个电力设备之间的距离较大,需要进行远距离信号传输时,均可采用PLC传输方式。也即,对需要传输的信号进行调制后,耦合至上述电力线进行传输(例如,当电力线传输直流电能时,调制信号耦合至正线缆和负线缆进行传输;当电力线传输交流电能时,调制信号耦合至火线和零线进行传输)。示例性的,当MPPT汇流箱5与逆变器2之间进行信号传输时,例如MPPT汇流箱5向逆变器2 发送信号时,MPPT汇流箱将信号调制后耦合至电力线04,以将信号传输至逆变器2。逆变器2在接收到调制信号后,对调制信号解调后即可获取到数据。
现有的PLC信号传输中,如图9所示,以MPPT汇流箱5与逆变器2之间采用PLC信号为例,通常在MPPT汇流箱5一侧的电力线04的其中一条线缆(正线缆或负线缆)上设置磁环10。MPPT汇流箱5的信号输出端穿过磁环,从而信号输出端可以将信号通过磁环10耦合至电力线04上。通常,MPPT汇流箱5利用电力线04向逆变器2传输信号的同时,还会利用电力线04传输直流电能。通常,随着穿过磁环10的电流逐渐增大,磁环10的磁感应强度会逐渐增大。当磁环10的磁感应强度增大到一定程度后,不会随电流的增大而增大。而此时,磁环10周围的磁场强度还会继续增大。从而,磁环10的磁导率逐渐减小。而磁环10的电感量与磁导率成正比,导致磁环10的电感量逐渐减小,直到磁环10达到磁饱和。此时,磁环10的电感量趋于0。而发电系统中所传输的电流通常较高,从而导致磁环10的电感量急剧衰减,进而导致所传输的信号衰减,降低所传输的信号的可靠性。
当在如上所示的大电流场景下进行PLC信号传输时,通常采用初始磁导率较高,也即电感量较大的磁环,这就导致磁环的体积较大、对磁环的材料以及磁环工艺要求较高,从而提高了PLC信号传输的成本以及电力系统空间结构的复杂性。
基于上述的PLC传输方式,本申请提供的电力线通信装置,用于上述发电系统100任意两电力设备之间的PLC信号传输。需要说明的是,本申请提供的电力线通信装置不限于发电系统100中的光伏组件1、逆变器2、变压器3、数据采集器4、MPPT汇流箱5任意两设备之间的PLC信号传输,还可以应用于发电系统100所包括的其他未示出的设备之间的PLC信号传输。
本申请提供的电力线通信装置中,通过将磁环耦合至电力线的屏蔽层或者不传输电能的线缆,可以有效的降低磁环的磁导率的衰减,提高所传输的信号的可靠性。
下面通过图10-图21所示的实施例,对本申请所示的电力线通信装置进行具体描述。在图10-图21所示的实施例中,包括第一电力线通信设备41、第二电力线通信设备42、用于进行PLC信号传输的电力线、设置于第一电力线通信设备41侧的第一磁环L1和设置于第二电力线通信设备侧的第二磁环L2。图10-图21所示的实施例中的电力线可以为图2所示的电力线04。第一电力线通信设备41和第二电力线通信设备42分别设置于进行PLC信号传输的两电力设备中。以图2所示的MPPT汇流箱5与逆变器2之间进行PLC信号传输为例,第一电力线通信设备41可以设置于MPPT汇流箱5中,第二电力线通信设备42可以设置于逆变器2中。这里,MPPT汇流箱5可以向逆变器2发送信号,也可以从逆变器2接收信号。当MPPT汇流箱5向逆变器2发送信号时,MPPT汇流箱5为信号发送端、逆变器2为信号接收端。当MPPT汇流箱5从逆变器2接收信号时,MPPT汇流箱5为信号接收端、逆变器2为信号发送端。
在图10-图21所示的实施例中,第一电力线通信设备41和第二电力线通信设备42均具有PLC信号的调制解调功能。第一电力线通信设备41可以包括第一端V411和第二端V412。第二电力线通信设备42可以包括第一端V421和第二端V422。第一电力线通信设备42将MPPT汇流箱5向逆变器2发送的原始信号进行调制后,通过第一端V411和第二端V412将调制信号耦合至电力线,电力线将调制信号从信号发送端传输至信号接收端。 第二电力线通信设备42可以通过第一端V421和第二端V422从电力线接收调制信号,然后对所接收到的调制信号解调,即可得到原始信号。
下面以MPPT汇流箱5为信号发送端、逆变器2为信号接收端、MPPT汇流箱5与逆变器2之间的电力线为单芯线为例,对电力线通信装置的具体结构以及信号耦合方式进行具体描述。
请参考图10,其示出了本申请实施例提供的电力线通信装置的一个结构示意图。
图10所示的电力线通信装置中,电力线包括正线缆041和负线缆042,正线缆041和负线缆042用于传输直流电能。其中,正线缆041和负线缆042具有相同的结构。在信号发送端侧和信号接收端侧,其中一条电力线(既可以为图10所示的正线缆041,还可以为图10所示的负线缆042)的导线和屏蔽层裸露在外部用于耦合磁环等元器件。图10示意性的示出了正线缆041中的导线和屏蔽层裸露在外部。负线缆042中的导线和屏蔽层由于不需要耦合磁环等,可以不裸露在外部,图10中由直线段代替负线缆042,具体结构未示出。
在信号发送端,裸露在外部的屏蔽层432可以设置有OT端子,从OT端子可以引出一条导线,该导线穿过第一磁环L1,也即是说,第一磁环L1通过导线耦合至屏蔽层。在信号发送端,裸露在外部的屏蔽层432同样可以设置有OT端子,从OT端子可以引出一条导线,该导线穿过第二磁环L2,也即是说,第二磁环L2通过导线耦合至屏蔽层。由于屏蔽层不传输电能,从而第一磁环L1和第二磁环L2不会因为电力线上传输的电流过大而导致磁环的电感量急剧降低,提高了磁环的稳定性。
在一种可能的实现方式中,信号发送端通过电磁耦合的方式将调制信号耦合至电力线,信号接收端通过电磁耦合的方式从电力线接收调制信号。
具体的,从第一电力线通信设备41的第一端V411引出的线缆穿过磁环L1连接至第一电力线通信设备41的第二端V412。从第二电力线通信设备42的第一端V421引出的线缆穿过磁环L2连接至第二电力线通信设备42的第二端V422。在图10中,采用正线缆041的导线431与屏蔽层432一起传输调制信号。这里,屏蔽层432和导线431由信号发送端延伸至信号接收端。在信号发送端的一侧,屏蔽层432与导线431通过电容C1连接;在信号接收端的一侧,屏蔽层432与导线431通过电容C2连接。第一电力线通信设备41发送的调制信号通过第一磁环L1耦合至屏蔽层432。由于调制信号为中高频信号,通常频率在KHz~MHz频率范围内。从而,耦合至屏蔽层432的调制信号通过电容C1传输至导线431,在屏蔽层432与导线431之间构成信号回路,从而将调制信号传输至信号接收端。在信号接收端,耦合至导线431的信号通过电容C2传输至屏蔽层。第二电力线通信设备42可以通过第二磁环L2从屏蔽层接收调制信号。
从图10中可以看出,通过利用传输电能的导线431和不传输电能的屏蔽层432构成调制信号回路,将磁环设置于屏蔽层,降低信号的衰减,提高信号传输的可靠性。
在一种可能的实现方式中,信号发送端通过电容耦合的方式将调制信号耦合至电力线,信号接收端通过电容耦合的方式从电力线接收调制信号。如图11所示,图11示出了本申请提供的电力线通信装置的又一个实施例的结构示意图。
具体的,第一电力线通信设备41的第一端V411与电容C3的一端连接,电容C3的另一端连接至屏蔽层432;第一电力线通信设备41的第二端V412与电容C4的一端连接, 电容C4的另一端连接至正线缆041中的导线431。第二电力线通信设备42的第一端V421与电容C5的一端连接,电容C5的另一端连接至屏蔽层432;第二电力线通信设备42的第二端V422与电容C6的一端连接,电容C6的另一端连接至正线缆041中的导线431。
第一电力线通信设备41发送的调制信号通过电容C3、电容C4分别耦合至屏蔽层432和导线431,从而将调制信号传输至信号接收端。在信号接收端,第二电力线通信设备42可以通过电容C5和电容C6分别从屏蔽层432和导线431接收调制信号。
从图11中可以看出,第一电力线通信设备41的第一端V411、第二端V412、屏蔽层432、导线431、第二电力线通信设备42的第一端V421、第二端V422之间形成信号回路。在此信号回路中,由于外部其他各种因素(例如信号传输介质的分布电感、分布电容等)的影响,在屏蔽层432和导线431之间容易产生差模噪声信号。为了抑制差模噪声信号,信号发送端的一侧,屏蔽层432与导线431之间连接电容C1;在信号接收端的一侧,屏蔽层432与导线431连接电容C2。这里的电容C1和电容C2为滤波电容。然而,电容C1和电容C2的容量通常为微法级别,相对于中高频调制信号来说,可以看作小阻抗。也即调制信号可以通过电容C1或电容C2从一侧流向另一侧。在通过电容C1或电容C2的过程中,均会有信号衰减,影响接收端所接收到的信号的可靠性。鉴于此,如图11所示的第一磁环L1、第二磁环L2用于提供大阻抗,也即屏蔽层432与导线431之间相当于断路,从而抑制调制信号在电容C1和电容C2上的流通,进而抑制信号衰减。从图11中可以看出,通过将第一磁环L1、第二磁环L2耦合至屏蔽层432,可以抑制磁环的电感量的衰减,使得磁环的阻抗保持在稳定的范围内。
需要说明的是,由于用于传输PLC差分信号的其中一边为屏蔽层,该屏蔽层无电力能源通过,而PLC信号的电流远远小于电力能源的电流,因此,屏蔽层与导线之间通常具有较小的差模噪声信号。从而,电容C1和电容C2可以采用容量较小的电容。当电容C1和电容C2的容量小到相对于调制信号来说其产生的阻抗完全可以忽略不计时,此时也可以采用电感量很小的第一磁环L1和第二磁环L2,或者不采用第一磁环L1和第二磁环L2。由此,可以进一步简化电力线通信装置的结构,从而节约成本。
在一种可能的实现方式中,信号发送端通过电磁耦合的方式将调制信号耦合至电力线,信号接收端通过电容耦合的方式从电力线接收调制信号。此时,电力线通信装置的结构如图12所示。在如图12所示的电力线通信装置中,信号发送端侧的具体结构以及工作原理可参考图10所示的信号发送端侧的相关描述,信号接收端侧的具体结构以及工作原理可参考图11所示的信号接收端侧的相关描述,在此不再赘述。
在一种可能的实现方式中,信号发送端通过电容耦合的方式将调制信号耦合至电力线,信号接收端通过电磁耦合的方式从电力线接收调制信号。此时,电力线通信装置的结构如图13所示。在如图13所示的电力线通信装置中,信号发送端侧的具体结构以及工作原理可参考图11所示的信号发送端侧的相关描述,信号接收端侧的具体结构以及工作原理可参考图10所示的信号接收端侧的相关描述,在此不再赘述。
请继续参考图14,其示出了本申请提供的电力线通信装置的又一个实施例的结构示意图。
在图14所示的电力线通信装置中,包括第一电力线通信设备41、第二电力线通信设备42、电力线、设置于第一电力线通信设备侧的第一磁环L1和设置于第二电力线通信设 备侧的第二磁环L2。其中,电力线包括正线缆041、负线缆042,正线缆041、负线缆042可以为图3所示的结构。图14中将正线缆041、负线缆042分别简化成二条线段,各电力线的具体结构未示出。其中,图14所示的正线缆041、负线缆042用于传输电能。
电力线还包括线缆043,线缆043不用于传输带能。具体的,线缆043既可以为图3所示的结构,还可以是仅仅由绝缘层包裹导线的结构。图14将线缆043简化成一条线段。
在信号发送端,线缆043穿过第一磁环L1,也即是说,第一磁环L1通过导线耦合至线缆043。在信号接收端,线缆043穿过第二磁环L2,也即是说,第二磁环L2通过导线耦合至线缆043。由于线缆043不传输电能,从而第一磁环L1和第二磁环L2不会因为电力线上传输的电流过大而导致磁环的电感量急剧降低,提高了磁环的稳定性。这里需要说明的是,当线缆043采用图3所示的结构时,第一磁环L1、第二磁环L2耦合至线缆043时,可以耦合至线缆043的导线,也可以耦合至线缆043的屏蔽层。具体的,在信号发送端和信号接收端,可以分别使得线缆043的导线或者屏蔽层裸露在外部,通过OT端子引出导线,将第一磁环L1和第二磁环L2耦合至线缆043的导线或者屏蔽层。当线缆043为绝缘层包裹导线的结构时,由于不存在屏蔽层,在信号发送端和信号接收端,可以将线缆043分别穿过第一磁环L1和第二磁环L2,以使第一磁环L1和第二磁环L2耦合至线缆043。
在一种可能的实现方式中,信号发送端通过电磁耦合的方式将调制信号耦合至电力线,信号接收端通过电磁耦合的方式从电力线接收调制信号。
具体的,从第一电力线通信设备41的第一端V411引出的线缆穿过磁环L1连接至第一电力线通信设备41的第二端V412。从第二电力线通信设备42的第一端V421引出的线缆穿过磁环L2连接至第二电力线通信设备42的第二端V422。在图14中,采用正线缆041和线缆043一起传输调制信号。这里,正线缆041和线缆043由信号发送端延伸至信号接收端。在信号发送端的一侧,正线缆041与线缆043通过电容C1连接;在信号接收端的一侧,正线缆041与线缆043通过电容C2连接。第一电力线通信设备41发送的调制信号通过第一磁环L1耦合至线缆043。由于调制信号为中高频信号,通常频率在KHz~MHz频率范围内。从而,耦合至线缆043的调制信号通过电容C1传输至正线缆041,在正线缆041与线缆043之间构成信号回路,从而将调制信号传输至信号接收端。在信号接收端,耦合至正线缆041的信号通过电容C2传输至线缆043。第二电力线通信设备42可以通过第二磁环L2从线缆043接收调制信号。
从图14中可以看出,通过利用传输电能的正线缆041和不传输电能的导线043构成调制信号回路,将磁环设置于不传输电能的导线043,可以降低信号的衰减,提高信号传输的可靠性。
在一种可能的实现方式中,信号发送端通过电容耦合的方式将调制信号耦合至电力线,信号接收端通过电容耦合的方式从电力线接收调制信号。如图15所示,图15示出了本申请提供的电力线通信装置的又一个实施例的结构示意图。
具体的,第一电力线通信设备41的第一端V411与电容C3的一端连接,电容C3的另一端连接至线缆043;第一电力线通信设备41的第二端V412与电容C4的一端连接,电容C4的另一端连接至正线缆041。第二电力线通信设备42的第一端V421与电容C5的一端连接,电容C5的另一端连接至线缆043;第二电力线通信设备42的第二端V422 与电容C6的一端连接,电容C6的另一端连接至正线缆041。
第一电力线通信设备41发送的调制信号通过电容C3、电容C4分别耦合至正线缆041和线缆043,从而将调制信号传输至信号接收端。在信号接收端,第二电力线通信设备42可以通过电容C5和电容C6分别从正线缆041和线缆043接收调制信号。
在一种可能的实现方式中,信号发送端通过电磁耦合的方式将调制信号耦合至电力线,信号接收端通过电容耦合的方式从电力线接收调制信号。此时,电力线通信装置的结构如图16所示。在如图16所示的电力线通信装置中,信号发送端侧的具体结构以及工作原理可参考图14所示的信号发送端侧的相关描述,信号接收端侧的具体结构以及工作原理可参考图15所示的信号接收端侧的相关描述,在此不再赘述。
在一种可能的实现方式中,信号发送端通过电容耦合的方式将调制信号耦合至电力线,信号接收端通过电磁耦合的方式从电力线接收调制信号。此时,电力线通信装置的结构如图17所示。在如图17所示的电力线通信装置中,信号发送端侧的具体结构以及工作原理可参考图15所示的信号发送端侧的相关描述,信号接收端侧的具体结构以及工作原理可参考图14所示的信号接收端侧的相关描述,在此不再赘述。
采用图14-图17任意所示的电力线通信装置所带来的有益效果与采用图10-图13所示的电力线通信装置所带来的有益效果相同,具体可参考图10-图13所示的实施例的相关描述,在此不再赘述。
请继续参考图18,其示出了本申请提供的电力线通信装置的又一个实施例的结构示意图。
在图18所示的电力线通信装置中,包括第一电力线通信设备41、第二电力线通信设备42、电力线、设置于第一电力线通信设备侧的第一磁环L1和设置于第二电力线通信设备侧的第二磁环L2。其中,电力线包括正线缆041、负线缆042,正线缆041、负线缆042可以为图3所示的结构。图18中将正线缆041、负线缆042分别简化成二条线段,各线缆的具体结构未示出。其中,图18所示的正线缆041、负线缆042用于传输电能。在信号发送端,正线缆041和负线缆042通过电容C1连接;在信号接收端,正线缆041和负线缆042通过电容C2连接。其中,电容C1和电容C2为滤波电容。通常,在正线缆041和负线缆042上均有较大的电流流过。而正线缆041和负线缆042之间通常产生差模噪声信号,电容C1和电容C2用于过滤差模噪声信号。
在图18中,电力线还包括多条不传输电能的线缆043。在信号发送端,电容C1的一端通过其中一条线缆043耦合至正线缆041,电容C1的另一端通过其中一条线缆043耦合至负线缆042。在信号接收端,电容C2的一端通过其中一条线缆043耦合至正线缆041,电容C2的另一端通过其中一条线缆043耦合至负线缆042。由于MPPT汇流箱5向逆变器2传输的电能为直流电,而电容C1、电容C2具有“通交流隔直流”的作用,因此,线缆043上无电力电能流通。在信号发送端,其中一条线缆043穿过第一磁环L1,也即第一磁环L1耦合至信号发送端侧的线缆043;在信号接收端,其中一条线缆043穿过第二磁环L2,也即第二磁环L2耦合至信号接收端侧的线缆043。通过将第一磁环L1和第二磁环L2耦合至线缆043,可以抑制磁环电感量的降低,提高了磁环的稳定性,从而提高信号传输的可靠性。
在一种可能的实现方式中,信号发送端通过电磁耦合的方式将调制信号耦合至电力线, 信号接收端通过电磁耦合的方式从电力线接收调制信号。
具体的,从第一电力线通信设备41的第一端V411引出的线缆穿过磁环L1连接至第一电力线通信设备41的第二端V412。从第二电力线通信设备42的第一端V421引出的线缆穿过磁环L2连接至第二电力线通信设备42的第二端V422。这里,正线缆041和负线缆042包括由信号发送端延伸至信号接收端。第一电力线通信设备41发送的调制信号通过第一磁环L1耦合至线缆043。耦合至线缆043的调制信号通过线缆043、电容C1传输至正线缆041、负线缆042,在正线缆041、负线缆042以及线缆043之间构成信号回路,从而将调制信号传输至信号接收端。在信号接收端,耦合至正线缆041和负线缆042的调制信号传输至线缆043,第二电力线通信设备42可以通过第二磁环L2从第二子电子线接收调制信号。
从图18中可以看出,与图10-图17所示的实施例不同的是,本实施例通过将磁环设置于将电容耦合至正线缆041的线缆043,通过线缆043将调制信号耦合至正线缆和负线缆,降低信号的衰减,提高信号传输的可靠性,同时还可以降低施工成本。
在一种可能的实现方式中,信号发送端通过电容耦合的方式将调制信号耦合至电力线,信号接收端通过电容耦合的方式从电力线接收调制信号。如图19所示,图19示出了本申请实施例提供的电力线通信装置的又一个结构示意图。
具体的,第一电力线通信设备41的第一端V411与电容C3的一端连接,电容C3的另一端连接至正线缆041;第一电力线通信设备41的第二端V412与电容C4的一端连接,电容C4的另一端连接至负线缆042。第二电力线通信设备42的第一端V421与电容C5的一端连接,电容C5的另一端连接至正线缆041;第二电力线通信设备42的第二端V422与电容C6的一端连接,电容C6的另一端连接至负线缆042。
第一电力线通信设备41发送的调制信号通过电容C3、电容C4分别耦合至正线缆041和负线缆042,从而将调制信号传输至信号接收端。在信号接收端,第二电力线通信设备42可以通过电容C5和电容C6分别从正线缆041和负线缆042接收调制信号。
从图19中可以看出,第一电力线通信设备41的第一端V411、第二端V412、正线缆041、负线缆042、第二电力线通信设备42的第一端V421、第二端V422之间形成信号回路。为了抑制差模噪声信号,信号发送端的一侧,正线缆041与负线缆042之间连接电容C1;在信号接收端的一侧,正线缆041与负线缆042之间连接电容C2。这里的电容C1和电容C2为滤波电容。图19所示的第一磁环L1、第二磁环L2用于提供抑制调制信号在电容C1和电容C2上流通的大阻抗。从图19中可以看出,通过将第一磁环L1、第二磁环L2设置于线缆043,可以抑制磁环的电感量的衰减,使得磁环的阻抗保持在稳定的范围内。其中,电容C1、电容C2、第一磁环L1、第二磁环L2在电力线通信装置中的作用以及工作原理可参考图11所示的电容C1、电容C2、第一磁环L1、第二磁环L2的相关描述,在此不再详细赘述。
需要说明的是,当电容C1和电容C2的容量小到相对于调制信号来说其产生的阻抗完全可以忽略不计时,此时也可以采用电感量很小的第一磁环L1和第二磁环L2,或者不采用第一磁环L1和第二磁环L2。由此,可以进一步简化电力线通信装置的结构,从而节约成本。
在一种可能的实现方式中,信号发送端通过电磁耦合的方式将调制信号耦合至电力线, 信号接收端通过电容耦合的方式从电力线接收调制信号。此时,电力线通信装置的结构如图20所示。在如图20所示的电力线通信装置中,信号发送端侧的具体结构以及工作原理可参考图18所示的信号发送端侧的相关描述,信号接收端侧的具体结构以及工作原理可参考图19所示的信号接收端侧的相关描述,在此不再赘述。
在一种可能的实现方式中,信号发送端通过电容耦合的方式将调制信号耦合至电力线,信号接收端通过电磁耦合的方式从电力线接收调制信号。此时,电力线通信装置的结构如图21所示。在如图21所示的电力线通信装置中,信号发送端侧的具体结构以及工作原理可参考图19所示的信号发送端侧的相关描述,信号接收端侧的具体结构以及工作原理可参考图18所示的信号接收端侧的相关描述,在此不再赘述。
这里需要说明的是,在上述各实施例所示的实现方式中,为了保证第二电力线通信设备能够有效的从电力线接收到调制信号,第一电力线通信设备的第一端和在第二电力线通信设备的第一端耦合至电力线的同一条线缆或同一部分;第一电力线通信设备的第二端和第二电力线通信设备的第二端耦合至电力线的同一条线缆或同一部分。
上面结合附图对本申请的实施例进行了描述,但是本申请并不局限于上述的具体实施方式,上述的具体实施方式仅仅是示意性的,而不是限制性的,本领域的普通技术人员在本申请的启示下,在不脱离本申请宗旨和权利要求所保护的范围情况下,还可做出很多形式,均属于本申请的保护之内。

Claims (15)

  1. 一种电力线通信装置,其特征在于,所述电力线通信装置包括设置于信号发送端的第一电力线通信设备、设置于信号接收端的第二电力线通信设备、电力线、设置于所述信号发送端的第一磁环和设置于所述信号接收端的第二磁环;
    在所述第一磁环以及所述第二磁环的作用下,所述电力线将所述第一电力线通信设备耦合的调制信号由所述信号发送端传输至所述信号接收端,以使所述第二电力线通信设备从所述电力线接收所述调制信号;
    所述电力线包括用于传输电能的导线和包裹在所述导线外部用于进行电磁屏蔽的屏蔽层,所述导线和所述屏蔽层分别从所述信号发送端延伸至所述信号接收端;
    所述第一磁环和所述第二磁环分别耦合至所述屏蔽层。
  2. 根据权利要求1所述的电力线通信装置,其特征在于,所述第一电力线通信设备的输出端耦合至所述第一磁环;
    所述调制信号通过所述第一磁环耦合至所述导线和所述屏蔽层,由所述信号发送端传输至所述信号接收端。
  3. 根据权利要求1所述的电力线通信装置,其特征在于,所述第一电力线通信设备的第一信号输出端通过第一电容耦合至所述导线,所述第一电力线通信设备的第二信号输出端通过第二电容耦合至所述屏蔽层;
    所述调制信号通过所述第一电容和所述第二电容耦合至所述导线和所述屏蔽层,由所述信号发送端传输至所述信号接收端。
  4. 根据权利要求2或3所述的电力线通信装置,其特征在于,所述第二电力线通信设备的输出端耦合至所述第二磁环;
    所述第二电力线设备通过所述第二磁环从所述导线和所述屏蔽层接收所述调制信号。
  5. 根据权利要求2或3所述的电力线通信装置,其特征在于,所述第二电力线通信设备的第一信号接收端通过第三电容耦合至所述导线,所述第二电力线通信设备的第二信号接收端通过第四电容耦合至所述屏蔽层;
    所述第二电力线通信设备通过所述第三电容和所述第四电容从所述导线和所述屏蔽层接收所述调制信号。
  6. 根据权利要求1-5任一项所述的电力线通信装置,其特征在于,所述电力线通信装置还包括第五电容和第六电容;其中,
    在所述信号发送端,所述导线和所述屏蔽层通过所述第五电容耦合;
    在所述信号接收端,所述导线和所述屏蔽层通过所述第六电容耦合。
  7. 一种电力线通信装置,其特征在于,所述电力线通信装置包括设置于信号发送端的第一电力线通信设备、设置于信号接收端的第二电力线通信设备、电力线、设置于所述信号发送端的第一磁环和设置于所述信号接收端的第二磁环;
    在所述第一磁环以及所述第二磁环的作用下,所述电力线将所述第一电力线通信设备耦合的调制信号由所述信号发送端传输至所述信号接收端,以使所述第二电力线通信设备从所述电力线接收所述调制信号;
    所述电力线包括用于传输电能的第一线缆和不传输电能的第二线缆;
    所述第一磁环和所述第二磁环耦合至所述第二线缆。
  8. 根据权利要求7所述的电力线通信装置,其特征在于,所述第一线缆、所述第二线缆分别从所述信号发送端延伸至所述信号接收端,所述第一线缆和所述第二线缆之间相互绝缘。
  9. 根据权利要求7所述的电力线通信装置,其特征在于,所述第一线缆包括第一子线缆和第二子线缆,所述第二线缆包括至少四条,所述电力线通信装置还包括第一电容和第二电容;
    所述第一线缆从所述信号发送端延伸至所述信号接收端;
    在所述信号发送端,其中两条所述第二线缆将所述第一电容耦合在所述第一子线缆和所述第二子线缆之间;
    在所述信号接收端,其中两条所述第二线缆将所述第二电容耦合在所述第一子线缆和所述第二子线缆之间;
    所述第一磁环耦合至位于所述信号发送端的其中一条所述第二线缆;
    所述第二磁环耦合至位于所述信号接收端的其中一条所述第二线缆。
  10. 根据权利要求9所述的电力线通信装置,其特征在于,所述第一电力线通信设备的输出端耦合至所述第一磁环;
    所述调制信号通过所述第一磁环耦合至所述第一子线缆和所述第二子线缆,由所述信号发送端传输至所述信号接收端。
  11. 根据权利要求9所述的电力线通信装置,其特征在于,所述第一电力线通信设备的第一信号输出端通过第三电容耦合至所述第一线缆,所述第一电力线通信设备的第二信号输出端通过第四电容耦合至所述第二线缆;
    所述调制信号通过所述第三电容和所述第四电容耦合至所述第一线缆和所述第二线缆,由所述信号发送端传输至所述信号接收端。
  12. 根据权利要求10或11所述的电力线通信装置,其特征在于,所述第二电力线通信设备的输出端耦合至所述第二磁环;
    所述第二电力线设备通过所述第二磁环从所述第一子线缆和所述第二子线缆接收所述调制信号。
  13. 根据权利要求10或11所述的电力线通信装置,其特征在于,所述第二电力线通信设备的第一信号接收端通过第五电容耦合至所述第一子线缆,所述第二电力线通信设备的第二信号接收端通过第六电容耦合至所述第二子线缆;
    所述第二电力线通信设备通过所述第五电容和所述第六电容从所述第一子线缆和所述第二子线缆接收所述调制信号。
  14. 根据权利要求1-13任一项所述的电力线通信装置,其特征在于,所述电力线所传输的电能为直流电能或交流电能。
  15. 一种发电系统,其特征在于,所述发电系统包括多个电力设备,每两个所述电力设备之间设置有如权利要求1-14任意一项所述的电力线通信装置;其中,每两个所述电力设备之间的中高频信号利用架设于二者之间的电力线传输。
PCT/CN2020/131853 2019-11-28 2020-11-26 电力线通信装置以及发电系统 WO2021104386A1 (zh)

Priority Applications (3)

Application Number Priority Date Filing Date Title
EP20893259.0A EP4057518B1 (en) 2019-11-28 2020-11-26 Power line communication apparatus and power generating system
AU2020390294A AU2020390294A1 (en) 2019-11-28 2020-11-26 Power line communication apparatus and power generating system
US17/825,889 US11637589B2 (en) 2019-11-28 2022-05-26 Power line communication apparatus and power generating system

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
CN201911195151.6A CN111106851B (zh) 2019-11-28 2019-11-28 电力线通信装置以及发电系统
CN201911195151.6 2019-11-28

Related Child Applications (1)

Application Number Title Priority Date Filing Date
US17/825,889 Continuation US11637589B2 (en) 2019-11-28 2022-05-26 Power line communication apparatus and power generating system

Publications (1)

Publication Number Publication Date
WO2021104386A1 true WO2021104386A1 (zh) 2021-06-03

Family

ID=70421010

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2020/131853 WO2021104386A1 (zh) 2019-11-28 2020-11-26 电力线通信装置以及发电系统

Country Status (5)

Country Link
US (1) US11637589B2 (zh)
EP (1) EP4057518B1 (zh)
CN (1) CN111106851B (zh)
AU (1) AU2020390294A1 (zh)
WO (1) WO2021104386A1 (zh)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20220286163A1 (en) * 2019-11-28 2022-09-08 Huawei Digital Power Technologies Co., Ltd. Power line communication apparatus and power generating system

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2007087733A (ja) * 2005-09-21 2007-04-05 Mitsubishi Cable Ind Ltd 電磁波遮蔽ケーブル
CN201821345U (zh) * 2010-09-19 2011-05-04 北京意科通信技术有限责任公司 通过地线进行数据传输的系统
CN202634425U (zh) * 2012-05-31 2012-12-26 山东电力集团公司烟台供电公司 一对多半双工应答式地缆电力线载波中继通信系统
CN208849763U (zh) * 2019-03-04 2019-05-10 许昌许继昌南通信设备有限公司 一种新型中压电力线载波智能终端

Family Cites Families (14)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US6452482B1 (en) * 1999-12-30 2002-09-17 Ambient Corporation Inductive coupling of a data signal to a power transmission cable
GB9816953D0 (en) * 1998-08-04 1998-09-30 Nor Web Dpl Limited Power networks
NL1020925C2 (nl) * 2002-06-21 2004-01-20 Stichting Tech Wetenschapp Werkwijze en systeem voor het overbrengen van een informatiesignaal over een vermogenskabel.
JP5351217B2 (ja) * 2010-09-10 2013-11-27 住友電気工業株式会社 電力線通信システム、電力線通信装置及び充電ケーブル接続用車載コネクタ装置
ES2405839B1 (es) * 2012-11-12 2014-03-25 Premo, S.L. Dispositivo de acople inductivo de señales a la red eléctrica
US9391669B2 (en) * 2013-07-03 2016-07-12 Northern Microdesign, Inc. Communication using multiple conductor cable
CN203933616U (zh) * 2014-05-09 2014-11-05 中兴通讯股份有限公司 一种信号传输系统
US10137794B2 (en) * 2014-09-15 2018-11-27 Stmicroelectronics, Inc. Method and apparatus for a wireless charging system
CN106506048A (zh) * 2016-11-11 2017-03-15 上海欣影电力科技股份有限公司 一种基于电感耦合的载波通信耦合电路
US11398749B2 (en) * 2017-05-22 2022-07-26 Solaredge Technologies Ltd. Method and apparatus to enable communication and control in a power system
US10175083B1 (en) * 2017-08-30 2019-01-08 Schneider Electric Systems Usa, Inc. Vortex flowmeter having injection cleaning ports
CN207939277U (zh) * 2018-02-05 2018-10-02 浙江英伦汽车有限公司 一种用于车辆的发电装置及车辆
CN110798246B (zh) * 2019-09-29 2022-02-25 华为数字能源技术有限公司 一种应用于电力线通信的接口电路、组串及系统
CN111106851B (zh) * 2019-11-28 2021-10-15 华为技术有限公司 电力线通信装置以及发电系统

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2007087733A (ja) * 2005-09-21 2007-04-05 Mitsubishi Cable Ind Ltd 電磁波遮蔽ケーブル
CN201821345U (zh) * 2010-09-19 2011-05-04 北京意科通信技术有限责任公司 通过地线进行数据传输的系统
CN202634425U (zh) * 2012-05-31 2012-12-26 山东电力集团公司烟台供电公司 一对多半双工应答式地缆电力线载波中继通信系统
CN208849763U (zh) * 2019-03-04 2019-05-10 许昌许继昌南通信设备有限公司 一种新型中压电力线载波智能终端

Non-Patent Citations (2)

* Cited by examiner, † Cited by third party
Title
LIU YAO, HUANG YU-HUI, PAN HUA-MING: "Broadband Carrier Communication Technology Based on Cable Shielding Layers of Distribution Networks", EAST CHINA ELECTRIC POWER, vol. 35, no. 12, 31 December 2007 (2007-12-31), pages 60 - 63, XP055817515 *
See also references of EP4057518A4

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20220286163A1 (en) * 2019-11-28 2022-09-08 Huawei Digital Power Technologies Co., Ltd. Power line communication apparatus and power generating system
US11637589B2 (en) * 2019-11-28 2023-04-25 Huawei Digital Power Technologies Co., Ltd. Power line communication apparatus and power generating system

Also Published As

Publication number Publication date
US11637589B2 (en) 2023-04-25
EP4057518B1 (en) 2023-12-27
CN111106851B (zh) 2021-10-15
AU2020390294A1 (en) 2022-06-16
CN111106851A (zh) 2020-05-05
US20220286163A1 (en) 2022-09-08
EP4057518A4 (en) 2022-12-14
EP4057518A1 (en) 2022-09-14

Similar Documents

Publication Publication Date Title
EP3291453B1 (en) Power carrier signal coupling circuit and communication system
CN102590576B (zh) 无线感应供电的有源光电电流互感器
WO2021104386A1 (zh) 电力线通信装置以及发电系统
CN105187096A (zh) 电力载波信号耦合电路
CN204068968U (zh) 基于电力线载波的电信号分离装置
CN203774884U (zh) 一种用于高压在线检测装置的电源
CN104779975A (zh) 一种高速电力线载波系统的差动耦合通信装置
CN102075216A (zh) 电力线通信信号隔离及耦合系统
CN112213555A (zh) 一种基于高速磁隔离通信的电能表解决方法
CN106506048A (zh) 一种基于电感耦合的载波通信耦合电路
CN105827130A (zh) 一种级联多电平逆变器系统
CN201918989U (zh) 电力线通信信号隔离及耦合装置
WO2020000864A1 (zh) 一种直流电压型plc光伏关断器电路
CN203747818U (zh) 基于混合线路的中压电力线载波通信连接结构
CN206585563U (zh) 一种三相电表宽带载波通信装置
CN106930750B (zh) 潜油电泵井下数据采集装置
CN220210389U (zh) 一种逆变器、汇流箱及光伏系统
CN211377703U (zh) 一种电力线载波通信装置及光伏逆变系统
CN213092896U (zh) 一种高频信号传输系统
CN220457407U (zh) 电力与通信共用线缆传输架构、电动冲浪板
CN204089822U (zh) 一种配电网络的光纤通信结构
CN112260412B (zh) 基于多屏蔽层的通信电路、供电电路、通信及供电电路
CN212647949U (zh) 一种光电混合信号传输线缆
CN117692027B (zh) 电力载波传输电路、集成电源适配器及电力载波传输系统
CN217824984U (zh) 一种工业用光电转换器

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 20893259

Country of ref document: EP

Kind code of ref document: A1

ENP Entry into the national phase

Ref document number: 2020390294

Country of ref document: AU

Date of ref document: 20201126

Kind code of ref document: A

ENP Entry into the national phase

Ref document number: 2020893259

Country of ref document: EP

Effective date: 20220609

NENP Non-entry into the national phase

Ref country code: DE