WO2021104379A1 - 自适应口肺转换的多雾化芯雾化器及其控制方法 - Google Patents

自适应口肺转换的多雾化芯雾化器及其控制方法 Download PDF

Info

Publication number
WO2021104379A1
WO2021104379A1 PCT/CN2020/131803 CN2020131803W WO2021104379A1 WO 2021104379 A1 WO2021104379 A1 WO 2021104379A1 CN 2020131803 W CN2020131803 W CN 2020131803W WO 2021104379 A1 WO2021104379 A1 WO 2021104379A1
Authority
WO
WIPO (PCT)
Prior art keywords
core
negative pressure
airflow
atomizer
atomization
Prior art date
Application number
PCT/CN2020/131803
Other languages
English (en)
French (fr)
Inventor
谭会民
崔涛
乐雷
Original Assignee
深圳市新宜康科技股份有限公司
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 深圳市新宜康科技股份有限公司 filed Critical 深圳市新宜康科技股份有限公司
Publication of WO2021104379A1 publication Critical patent/WO2021104379A1/zh

Links

Classifications

    • AHUMAN NECESSITIES
    • A24TOBACCO; CIGARS; CIGARETTES; SIMULATED SMOKING DEVICES; SMOKERS' REQUISITES
    • A24FSMOKERS' REQUISITES; MATCH BOXES; SIMULATED SMOKING DEVICES
    • A24F40/00Electrically operated smoking devices; Component parts thereof; Manufacture thereof; Maintenance or testing thereof; Charging means specially adapted therefor
    • A24F40/10Devices using liquid inhalable precursors
    • AHUMAN NECESSITIES
    • A24TOBACCO; CIGARS; CIGARETTES; SIMULATED SMOKING DEVICES; SMOKERS' REQUISITES
    • A24FSMOKERS' REQUISITES; MATCH BOXES; SIMULATED SMOKING DEVICES
    • A24F40/00Electrically operated smoking devices; Component parts thereof; Manufacture thereof; Maintenance or testing thereof; Charging means specially adapted therefor
    • A24F40/40Constructional details, e.g. connection of cartridges and battery parts
    • AHUMAN NECESSITIES
    • A24TOBACCO; CIGARS; CIGARETTES; SIMULATED SMOKING DEVICES; SMOKERS' REQUISITES
    • A24FSMOKERS' REQUISITES; MATCH BOXES; SIMULATED SMOKING DEVICES
    • A24F40/00Electrically operated smoking devices; Component parts thereof; Manufacture thereof; Maintenance or testing thereof; Charging means specially adapted therefor
    • A24F40/40Constructional details, e.g. connection of cartridges and battery parts
    • A24F40/46Shape or structure of electric heating means
    • AHUMAN NECESSITIES
    • A24TOBACCO; CIGARS; CIGARETTES; SIMULATED SMOKING DEVICES; SMOKERS' REQUISITES
    • A24FSMOKERS' REQUISITES; MATCH BOXES; SIMULATED SMOKING DEVICES
    • A24F47/00Smokers' requisites not otherwise provided for

Definitions

  • the invention relates to an aerosol atomizer, in particular to an atomizer with multiple atomizing cores that can automatically adapt to the conversion of oral and lung intake.
  • the present invention also relates to the conversion control method of the above-mentioned atomizer.
  • inhalation When inhaling e-cigarette aerosol, there are two ways of inhalation and lung inhalation.
  • the so-called oral inhalation means that the e-cigarette aerosol is only ingested into the inlet cavity and then directly exhaled. Due to the small oral cavity volume, the required aerosol amount is also small. At this time, the required working conditions of the electronic cigarette produce a relatively small amount of aerosol.
  • the so-called lung inhalation is to inhale the aerosol into the lungs through the mouth and fill the alveoli as much as possible, and then exhale. Due to the large volume of the lungs, the amount of inhalation required is also large, and the electronic cigarette is required to produce a larger amount of aerosol. The state of mouth and lungs can be switched.
  • a single atomizing core is provided in a general atomizer.
  • the heating power can only be changed by changing the power supply voltage, current and other parameters to achieve the atomization effect and the amount of atomization.
  • this adjustment method has strong limitations.
  • the length and diameter of the resistance of the electronic cigarette heating wire are determined, and the resistance value is also determined. Even if the heating power can be changed by adjusting the supply voltage and current, the general resistance heating It is difficult for the silk to withstand the increased voltage or current by multiples, otherwise problems such as high-temperature fusing will easily occur, and the amount of adjustment is limited.
  • the change in the volume of aerosol required for inhalation from mouth to lung is generally more than several times the increase.
  • the heating power is increased by several times. Therefore, the atomization core of a single heating body cannot adapt to the transition of electronic cigarettes from mouth to lung at any time even through adaptive adjustment.
  • the atomization core is provided with a plurality of heating wires connected in parallel, and the atomization core is provided with a unified oil inlet hole, an air inlet hole and an air flow outlet.
  • a heating wire is turned on for work, a simple small amount of smoke is inhaled, and the oil inlet and air inlet are working at this time.
  • it is necessary to increase the intake it is necessary to adjust and open two or more heating wires to work at the same time.
  • the oil inlet and the air inlet still maintain the same working state, and the oil or air will still be fed in the original way.
  • the same air inlet and oil inlet are used.
  • there is only one most suitable oil and air intake Only when the oil and air intake and the number of heating wires work well can the best atomization effect be achieved.
  • the relative oil and air intake will be relatively large, which will cause insufficient atomization temperature, which will not only affect the atomization effect, but even be submerged by a large amount of smoke oil, and the atomization temperature will not be reached.
  • there will be relatively small oil intake problems which may cause insufficient supply of e-liquid, resulting in dry burning. If the relative air intake is small, the airflow speed will be slow, and the aerosol absorption speed will be slow, which will also affect the atomization effect, and the relatively large air intake will cause the problem of too low atomized aerosol concentration.
  • the inventor developed a nebulizer capable of adapting to the mouth-to-lung conversion of intake to overcome the above-mentioned shortcomings.
  • the purpose of the present invention is to provide a multi-core nebulizer with adaptive mouth-to-lung conversion. At the same time, an adaptive mouth-to-lung conversion control method of the atomizer is provided.
  • the multi-nebulizer core nebulizer with adaptive mouth-to-lung conversion of the present invention includes two or more nebulizer cores; each group of nebulizer core control circuits and air flow channels are independently set and controlled independently; The airflow channels of part or all of the two or more atomization cores are provided with negative pressure switches.
  • all airflow channels of the two or more nebulizing cores are provided with airflow sensors.
  • the airflow sensor can be arranged in such a way that the first, second to Nth atomization cores are provided with air inlets, and the air inlets are shared air inlets.
  • the holes form a common air inlet cavity, the air flow channel of each atomization core is connected to the common air inlet cavity, and the air flow sensor is arranged at the point where the air flow channel of each atomizer core communicates with the common air inlet cavity.
  • the airflow sensor can also be arranged in such a way that the air inlets of the first, second to Nth nebulizer cores are separately arranged, and the airflow sensor is arranged At the air inlet of each atomizer core.
  • the atomizer further includes a suction nozzle, the suction nozzle is butt-connected with the atomizing core housing, and the suction nozzle is connected to the atomizing core housing.
  • An airflow buffer cavity is provided; the airflow channel of each atomization core is connected to the airflow buffer cavity; the atomization core negative pressure switch is arranged at the connection between the airflow channel and the airflow buffer cavity, and the airflow channel is connected to the airflow buffer cavity through the negative pressure switch Connected.
  • each group of atomizing cores is provided with an independent heating body, an oil guide body, an air flow channel, an air inlet and an oil inlet;
  • the oil inlet of each atomization core is connected with the oil storage bin, and the airflow sensor of each atomization core is independently connected with the power control device.
  • the nebulization core part is provided with a negative pressure switch, and the two or more nebulization cores are defined as the first and second To the Nth atomization core; a negative pressure switch is provided at the outlet of the airflow channel of the second to Nth atomization core.
  • the negative pressure switch is a mechanical switch or an electronic switch, which senses the negative pressure in the airflow buffer cavity, and the second to Nth nebulizer cores
  • the negative pressure threshold of the negative pressure switch increases in turn.
  • all the nebulizer cores are equipped with a negative pressure switch, and the two or more nebulizer cores are defined as the first, second to second N atomization core; a negative pressure switch is provided at the outlet of the airflow channel of the first, second to Nth atomization core.
  • the negative pressure switch is a mechanical switch or an electronic switch, which senses the negative pressure in the airflow buffer cavity, the first, second to Nth
  • the negative pressure threshold of the negative pressure switch of the atomization core increases sequentially.
  • the control method of a multi-core nebulizer with adaptive mouth-to-lung conversion of the present invention includes the following steps:
  • Another method for controlling a multi-core nebulizer with adaptive mouth-to-lung conversion of the present invention includes the following steps:
  • the airflow buffer chamber starts smoking, the airflow buffer chamber generates negative pressure, turn on the negative pressure switch of the first atomizer core and the airflow channel, the first atomizer core airflow sensor senses the airflow, and the control device controls the first atomizer core to work and atomize, and then take the first atomizer.
  • An aerosol atomized by an atomizing core
  • Another control method of a multi-core nebulizer with adaptive mouth-to-lung conversion includes the following steps:
  • the airflow buffer cavity generates negative pressure
  • the first atomizer core airflow channel generates smoking airflow
  • the first atomizer core airflow sensor senses the airflow
  • the control device controls the first atomizer core to work and atomize, and suck the first mist Aerosols atomized by the core;
  • a plurality of groups of relatively independently controlled atomization cores are provided to realize the energization switch of each group of atomization cores, the opening and closing of the air flow channel, and the opening and closing of the smoke oil channel.
  • Achieve independent atomization and independent control combined with a negative pressure switch in the airflow channel to sense the suction negative pressure of the smoker, and control the number and working status of the atomization core according to the amount of inhalation.
  • the process of adaptive adjustment When the amount of inhalation is large, it is judged as lung inhalation, and multiple atomization cores work at the same time. When the amount of inhalation is small, it is determined as mouth inhalation, and a single or a few atomization cores work. Realize the state transition between self-adaptive mouth suction and lung suction.
  • FIG. 1 is a schematic diagram of a three-dimensional exploded structure of the atomizer of Embodiment 1 of the present invention
  • FIG. 2 is a schematic cross-sectional structure diagram of the atomizer of Embodiment 1 of the present invention.
  • Figure 3 is a schematic cross-sectional structure diagram of the mechanical negative pressure switch of the present invention.
  • Fig. 4 is a schematic cross-sectional structure diagram of the double electrode of the present invention.
  • 21 is the internal space; 41 is the first air passage; 42 is the second air passage; 51 is the return spring; 52 is the valve cover; 53 is the valve body. 54 is the vent hole; 71 is the first oil guide body; 72 is the second oil guide body; 81 is the first oil inlet hole; 82 is the second oil inlet hole; 91 is the first air inlet hole; 92 is the second inlet Stomata.
  • 100 is the negative plate; 101 is the first double electrode; 102 is the second double electrode; 711 is the first atomization core air flow channel; 721 is the second atomization core air flow channel; 1011 is the first electrode column; 1021 is the first Electrode insulation ring; 1021 is the second electrode column; 1022 is the second electrode insulation ring.
  • Embodiment 1 This embodiment is described with the structure of two sets of atomization cores.
  • the main body of the atomizer of this embodiment is formed by a combination of a housing 2, a base 11 and a suction nozzle 1.
  • the suction nozzle 1 and the housing 2 are integrally formed or have a sealed and fixed connection structure.
  • the outer shell 2 is a rectangular parallelepiped shell
  • the base 11 is also a rectangular parallelepiped shape
  • two sets of atomizing cores are arranged side by side in the longitudinal direction in the outer shell 2.
  • the space between the housing 2 and the base 11 constitutes an internal space 21 of the atomizer, which is used as an oil storage bin for storing e-liquid and an accommodating space for the atomizer core.
  • the two groups of atomization cores are all arranged in the space 21, arranged side by side and integrated.
  • a double atomizing core shell 8 is provided, which is divided into a first shell part and a second shell part that are independent of each other. Each shell part is provided with an oil guide
  • the accommodating space of the body 7 forms a first oil guide body accommodating space and a second oil guide body accommodating space, as shown in FIG. 1 in the cylindrical area, on the wall surface of the first housing part of the double housing 8
  • a first oil inlet 81 is provided on the upper part, and a second oil inlet 82 is provided on the wall surface of the second housing part.
  • the first oil inlet 81 and the second oil inlet 82 are also arranged independently of each other, and are not connected to each other.
  • the bottom of the double casing 8 of the atomizing core is provided with a horizontal double air inlet hole 9.
  • the air inlet hole 9 is also divided into a state of a first air inlet hole 91 and a second air inlet hole 92.
  • the first air inlet 91 and the second air inlet 92 communicate in the base to form a common air inlet cavity, that is, the incoming air meets in the common air inlet cavity.
  • the first air inlet 91 and the second air inlet 92 may be separately arranged separately, such as spaced apart, that is, they do not intersect with each other, but are led out independently. They are respectively located on the left and right sides of the lower end of the double shell 8 and extend outward.
  • the first air inlet hole 91 and the second air inlet hole 92 communicate inwardly to the inside of the first housing and the second housing, respectively.
  • the lower side of the double shell 8 is the double electrode 10 assembled and connected with the double shell 8, which are respectively set as a first double electrode 101 and a second double electrode 102, and each double electrode is set as a double electrode column and an outer electrode ring.
  • the outer ring electrodes of the first double electrode 101 and the second double electrode 102 can be integrated.
  • the assembling connection of the double electrode 10 and the double casing 8 is a sealed butt connection.
  • the specific cross-sectional structure of the double electrode 10 is shown in FIG. 4.
  • the first double electrode 101 and the second double electrode 102 are both arranged on a conductive material plate 100 and generally used as a common negative electrode.
  • Two corresponding holes are opened on the board 100, and each hole is provided with a conductor electrode post 1011 and 1021, which is generally used as a positive electrode.
  • Insulating fixing rings 1012 and 1022 are arranged between the electrode columns 1011 and 1021 and the plate body 100 to insulate and fix the electrode columns 1011 and 1021 from the plate body 100, respectively.
  • two sets of electrodes with separately connected positive electrodes and a unified negative electrode are formed, and the state of connecting independently controlled heating elements can be realized.
  • the electrodes at both ends of the heating element can be inserted into the inner and outer sides of the insulating fixing ring respectively, and the circuit connection of the heating element can be realized.
  • the oil guide body is also divided into two groups, the first oil guide body 71 and the second oil guide body 72, in which a first heating body (not shown in the figure) is provided inside the first oil guide body 71, A second heating body is arranged inside the second oil guiding body, a first air flow channel 711 is formed inside the first heating body, and a second air flow channel 721 is formed inside the second heating body.
  • the first heating body and the second heating body can be heating resistance wire spiral or cylindrical heating wire mesh.
  • a double cover body 6 is provided on the upper side of the double shell 8, and the double cover body 6 is arranged in a sealed butt connection with the double shell 8 for sealingly butting the first oil guide body 71 and the second oil guide body.
  • 72 is enclosed in the double shell 8 to form an independent first atomization core and a second atomization core respectively, and a first air outlet and a second air outlet are provided on the double cover 6.
  • a dual airway assembly 4 is provided.
  • the dual airway assembly is a dual airflow channel with an integrated structure and is connected to the double cover 6 to form a first airway 41 and a second airway 42 inside.
  • the first airway 41 and the first airway The atomization core airflow channel 711 is in communication, and the second air channel 42 is in communication with the second atomization core airflow channel 721.
  • the first air passage 41 and the second air passage 42 form a common chamber at the upper end of the double air passage 4, where the air flows of the double air passages are mixed with each other and buffered to become the air flow buffer cavity 3.
  • a negative pressure switch 5 is provided where the second air passage 42 communicates with the airflow buffer cavity 3.
  • the negative pressure switch is a mechanical switch that can sense the pressure state of the airflow buffer cavity 3.
  • the upper end of the dual air passage 4 is in a sealed butt connection with the suction nozzle 1.
  • the bottom end of the double shell 8 is fixed and sealed on the base 11, and the base 11 is provided with a accommodating space at the bottom of the double shell 8, and is provided with transverse air inlets, which are respectively a first air inlet 111 and a second air inlet 112 , Respectively communicate with the first lateral air inlet 91 and the second air inlet 92 at the bottom of the double shell 8, and the lateral air inlet of the base 11 communicates with the atmosphere.
  • a hole is opened from the end surface of the base 11 after bending downward.
  • the power control device After the power control device is docked with the atomizer, power is supplied to the double electrodes 10 separately, and can be controlled separately.
  • the heating control system of the second atomizing core is linked with the negative pressure switch 5.
  • the negative pressure switch 5 When the negative pressure switch 5 is closed, the second double electrode 102 does not supply power, that is, the second atomizing core does not work.
  • the negative pressure switch 5 When the negative pressure switch 5 is turned on, the second atomizing core works, and the negative pressure switch 5 is set to a normally closed state.
  • the negative pressure switch 5 of this embodiment is a mechanical switch, which is a spring pressure valve set at the outlet of the second air passage 42, and consists of a return spring 51, a valve cover 52, a valve body 53 and a vent 54 constitute.
  • the valve body 53 has a cylindrical structure and slides in cooperation with the inner wall of the second air passage 42.
  • the cylindrical hollow part of the valve body 53 communicates with the air passage 42.
  • a vent 54 is provided on the wall surface of the valve body 53, and the valve
  • the cover 52 is arranged on the upper part of the valve body 53, and can cover the upper end surface of the valve body 53 and the second air passage 42 as a whole, and the return spring 51 presses the valve cover 52 from the upper side.
  • the pressure of the return spring 51 is greater than the negative pressure.
  • the valve cover 52 and the valve body 53 have no action, and the valve cover 52 covers the air passage 42 and the valve. In the state of body 53, the airflow cannot communicate with each other at this time.
  • the spring pressure can be overcome, and the valve body 53 and valve cover 52 can be moved upward until the vent 54 is exposed to the position of the airflow buffer chamber 3.
  • the air flow buffer cavity and the air passage 42 can be connected through the vent hole 54 to realize the function of the negative pressure switch for ventilation.
  • the oil guide body 7 and the heating body are installed to electrically connect the heating body and the electrode, and the double cover body 6 is sealed from the upper side. Then install a dual airway 4 and a negative pressure switch 5. Then, the whole atomization core is assembled on the belt base 11. After assembling the housing 2 and the suction nozzle 1, a complete atomizer is formed. When the atomizer is in use, it is filled with smoke oil and connected to the power supply, and the smoking function can be realized by turning on the switch.
  • the atomizer of this embodiment is equipped with two groups of mutually independently controlled atomizing cores in the atomizing chamber.
  • the two groups of atomizing cores can control the working state separately, and change the working state when necessary, so that they work in a single atomizing core. It works in two states at the same time with two sets of atomizing cores.
  • the working process of the product of this embodiment is as follows: when the power is turned on, the negative pressure switch 5 is in the normally closed state, and the second atomizing core is not working at this time, only the first atomizing core is working, and it is automatically in the normal state.
  • the small amount of inhalation is quite a single atomizing core electronic cigarette.
  • the smoker suddenly increases the amount of smoking, that is, the amount of smoking and the smoking speed will increase, and the airflow speed will also increase.
  • a large negative pressure will be generated at the airflow buffer chamber 3, reaching the threshold of the negative pressure switch 5.
  • the negative pressure switch 5 is turned on, and the air flow channel of the second atomizing core is unblocked.
  • the second atomization core controller linked with the negative pressure switch 5 is turned on to control the heating operation of the second atomization core.
  • the second atomizing core starts to work, increasing the amount of smoke, and forming a state of lung inhalation with a large amount of smoke.
  • the airflow pressure of the airflow buffer chamber 3 returns to normal, and when it is lower than the threshold value of the negative pressure switch 5, it is automatically closed.
  • the linked second atomizing core controller stops working and resumes the mouth suction state. So as to achieve the function of adaptive mouth-to-lung conversion.
  • This embodiment is a structural change based on embodiment 1.
  • the connection structure does not change, but the number of atomization cores can be increased. According to the overall space requirement of the atomizer, the number of atomization cores can be increased to three groups , Four or more groups.
  • the negative pressure switch set only in the airflow channel of the subsequent atomization core of the second group of atomization cores to the airflow buffer cavity, and the threshold of the negative pressure switch is set to gradually increase.
  • the negative pressure switch threshold of the second atomizing core is 950 hPa
  • the threshold of the third atomizing core is set to 900 hPa.
  • the value here is just for explaining the principle, and it can be set according to the intake.
  • a negative pressure switch can also be set at the connection between the airway 41 of each group of atomization cores and the airflow buffer cavity 3 5. That is, a negative first pressure switch is provided where the first air passage 41 communicates with the airflow buffer cavity 3, and a second negative pressure switch is provided where the second air passage 42 communicates with the airflow buffer cavity 3. And the negative pressure switch is respectively linked with the heating controller of the atomization core where it is located, that is, when the corresponding negative pressure switch is turned on, the corresponding atomization core starts to work.
  • the start thresholds placed on the first negative pressure switch and the second negative pressure switch are generally different, and the start threshold is smaller and the work starts first.
  • the starting pressure of the first atomizing core can be set to 1000 hPa
  • the starting pressure of the second atomizing core can be set to 950 hPa.
  • the negative pressure switch 5 described in Embodiment 1 to Embodiment 3 is a mechanical switch, which is an elastic valve. When the negative pressure reaches the threshold, it overcomes the elastic force of the spring 51, and the spring is compressed and opened. When the negative pressure is below the threshold, the pressure of the spring 51 It returns to the closed state under pressure and is a normally closed mechanical switch.
  • an airflow sensor can be arranged in the airflow channel of each atomization core, specifically, it can be arranged at the air inlet 9 of the atomization core, and the heating is controlled to be turned on when the airflow passing through the part is sensed. Since the location of the air inlet 9 is relatively close to the power control device, it is relatively easy to provide an electrical connection structure here.
  • the airflow sensors are respectively arranged in the airflow channels of the first atomization core or the second atomization core The connection with the common air inlet cavity.
  • the airflow sensor can be directly arranged at the first air inlet 91 and the second air inlet, and the purpose is to realize the respective arrangement at Each is located in the airflow channel of the atomization core.
  • the structural self-adaptability of this embodiment is more enhanced.
  • the airflow sensor at 91 of the air inlet hole of the first atomizing core does not perceive it.
  • the first atomization core does not work at this time, and when the smoking airflow is generated, the first atomization core starts to work, heating and atomizing, to avoid the atomization core working state when not smoking.
  • the negative pressure switch 5 is turned on, when there is air flow through the second atomizing core, the second atomizing core starts to work to avoid malfunction.
  • more groups of atomization cores can be provided.
  • the third to the Nth atomization core can also be provided.
  • the air passages of all atomizing cores are connected to the airflow buffer cavity with negative pressure switches, and airflow sensors are installed at the air inlet positions of all atomizing cores.
  • the threshold of the negative pressure switch of the atomizer core should also be gradually increased.
  • the negative pressure switch threshold of the first atomizer core is 1000 hPa
  • the second atomizer core negative pressure switch threshold is 950 HPa
  • the third atomizer core negative pressure switch The threshold pressure is 900 hPa and so on.
  • the working state of the atomizing core will also appear that the first atomizing core works, the second atomizing core and the first atomizing core work at the same time, and the third atomizing core is in conjunction with the second and first atomizing cores. The core is working at the same time.
  • an electronic negative pressure switch is used instead of a mechanical negative pressure switch.
  • an electronic air pressure gauge can be set in the airflow buffer chamber 3, and an airflow valve can be set at the airflow passage 41 or 42 where the airflow channel is connected to open or close the airflow. aisle.
  • the electronic air press is linked with the air flow valve, and when a suitable negative pressure value is reached, the corresponding air flow valve is opened to realize adaptive control.
  • the airflow sensor at the air intake hole may not be provided, and the pressure sensed by the electronic pressure gauge is used to control the current on and off of the heating body of the atomization core.
  • the atomizer in embodiment 1 of the present invention works as follows:
  • the negative pressure switch 5 detects the suction pressure of the airflow buffer cavity 3.
  • the negative pressure switch 5 is turned on, the second atomizing core starts to work, and the second atomizing core generates gas Sol, in a state of lung inhalation.
  • the negative pressure pressure of the airflow buffer chamber 3 decreases, and when the negative pressure pressure is lower than the opening negative pressure threshold of the negative pressure switch 5, the negative pressure switch 5 is closed again and enters the mouth suction state again.
  • the e-cigarette switch needs to be turned off to stop breathing.
  • the negative pressure switches of the first atomizing core and the second atomizing core are both in the off state, and the atomizing cores are not working.
  • the negative pressure switch detects the negative pressure of smoking in the airflow buffer chamber 3.
  • the negative pressure switch of the first atomizing core is turned on and the control is turned on
  • the first atomizing core starts to heat and atomize.
  • the second atomizing core negative pressure switch detects the negative pressure pressure of the airflow buffer chamber 3.
  • the second atomizing core negative pressure switch When the negative pressure pressure no longer changes or the change does not reach the second atomizing core negative pressure switch opening threshold, it is still the first atomizing core Work, in a state of mouth sucking.
  • the second atomizing core negative pressure switch When it is detected that the negative pressure of the airflow buffer chamber 3 reaches the threshold of the negative pressure switch of the second atomizing core, the second atomizing core negative pressure switch is turned on to control the heating of the second atomizing core, and it is in the lung suction state at this time .
  • the negative pressure pressure of the airflow buffer chamber decreases.
  • the negative pressure pressure is lower than the negative pressure threshold of the second negative pressure switch, the second negative pressure switch is closed again and enters the standby state. Then it enters the mouth sucking state again.
  • the smoking pressure continues to decrease to the opening threshold pressure of the first atomizing core negative pressure switch, the first atomizing core negative pressure switch is turned off again and the whole electronic cigarette enters the standby state.
  • the structure of the second embodiment adds the work flow after the airflow sensor is installed.
  • the negative pressure switches of the first atomizing core and the second atomizing core are both in the off state, and the atomizing cores are not working.
  • the negative pressure switch detects the negative pressure of smoking in the airflow buffer chamber 3.
  • the first atomizing core negative pressure switch opening threshold the first atomizing core negative pressure switch is turned on, and at the same time An atomization core airflow sensor senses that there is airflow, and controls the opening of the first atomization core to start heating and atomization.
  • the second atomizing core negative pressure switch detects the negative pressure pressure of the airflow buffer chamber 3.
  • the second atomizing core negative pressure switch opening threshold When the negative pressure pressure no longer changes or the change does not reach the second atomizing core negative pressure switch opening threshold, it is still the first atomizing core Work, in a state of mouth sucking.
  • the second atomizing core negative pressure switch When it is detected that the negative pressure of the airflow buffer chamber 3 reaches the second atomizing core negative pressure switch opening threshold, the second atomizing core negative pressure switch is turned on, and the second atomizing core airflow sensor detects that the second atomizing core has airflow By controlling the heating of the second atomizing core, it is in the state of lung inhalation at this time. When the lung suction state is over and the suction pressure decreases, the negative pressure of the airflow buffer chamber decreases.
  • the second negative pressure switch When the negative pressure is lower than the negative pressure threshold of the second negative pressure switch, the second negative pressure switch is closed again and the second atomization The core airflow disappears, and the second atomizing core airflow sensor controls the second atomizing core to stop heating and enter the standby state, and then enter the mouth suction state again.
  • the negative pressure switch of the first atomizing core When the smoking pressure continues to decrease to the opening threshold pressure of the negative pressure switch of the first atomizing core, the negative pressure switch of the first atomizing core is closed again, the air flow of the first atomizing core disappears, and the first atomizing core airflow sensor controls the first atomizing core Stop working, and the whole electronic cigarette enters the standby state.
  • the negative pressure switch detects the negative pressure of smoking in the airflow buffer chamber 3.
  • the first atomizing core negative pressure switch opening threshold the first atomizing core negative pressure switch is turned on, and at the same time An atomization core airflow sensor senses that there is airflow, and controls the opening of the first atomization core to start heating and atomization.
  • the second atomizing core negative pressure switch detects the negative pressure pressure of the airflow buffer chamber 3.
  • the second atomizing core negative pressure switch opening threshold When the negative pressure pressure no longer changes or the change does not reach the second atomizing core negative pressure switch opening threshold, it is still the first atomizing core Work, in a state of mouth sucking.
  • the second atomizing core negative pressure switch When it is detected that the negative pressure of the airflow buffer chamber 3 reaches the second atomizing core negative pressure switch opening threshold, the second atomizing core negative pressure switch is turned on, and the second atomizing core airflow sensor detects that the second atomizing core has airflow By controlling the heating of the second atomizing core, it is in the state of lung inhalation at this time.
  • the Nth atomization core When the amount of smoking increases again and the negative pressure pressure of the airflow buffer cavity increases again to the negative pressure switch threshold of the Nth atomization core, the Nth atomization core is turned on to work, and all the aerosols produced by the operation of the atomization core are ingested.
  • the negative pressure pressure of the airflow buffer chamber decreases.
  • the Nth negative pressure switch When the negative pressure pressure is lower than the opening negative pressure threshold of the Nth negative pressure switch, the Nth negative pressure switch is closed again, and the Nth atomization
  • the Nth atomization core airflow sensor controls the Nth atomization core to stop heating, enter the standby state, continue to decrease and repeat the above process, until the first atomization core stops working. The whole electronic cigarette enters the standby state.
  • a plurality of independent atomizing cores are arranged in the atomizer, and a common air flow buffer cavity is set at the same time, and a negative pressure switch is provided at the connection between each atomizing core and the air flow buffer cavity.
  • the negative pressure switch Through the setting of the negative pressure switch, the negative pressure pressure of smoking can be detected.
  • the negative pressure switch opens and controls the corresponding atomization core to work, which can automatically and naturally according to the size of the inhalation pressure Control the working state of the atomization core, and realize the doubled increase in the amount of atomization.
  • the size of the inhalation pressure the state conversion of large smoke volume and small smoke volume can be realized, that is, the state conversion of mouth and lungs can be realized, without the need for complicated manual adjustment and program control adjustment, the realization is one A natural adaptation process.
  • the self-adaptive structure of the present invention adjusts the working state of the multiple atomization cores by automatically detecting the negative pressure generated during smoking according to the size of the person's smoking pressure, and realizes the conversion of the amount of atomized smoke.
  • those skilled in the art can make improvements on the basis of the above-mentioned structure according to the basic idea of the present invention, but as long as it does not deviate from the basic idea of alternate heating of the present invention, it should fall within the protection scope of the present invention.

Abstract

一种自适应口肺转换的多雾化芯雾化器,包括两组或者两组以上的雾化芯,每一组雾化芯的控制电路、气流通道(711,721)及进油通道分别独立设置。两组或者两组以上雾化芯中的至少其中的一组以上雾化芯的气流通道设置负压开关(5)。通过设置多组相对独立控制的雾化芯,实现每一组雾化芯的工作开关、气流通道(711,721)的启闭独立控制,实现了独立雾化和独立控制。在气流通道(711,721)设置负压开关(5)感测吸食者的吸气负压,以负压的大小控制雾化芯的工作数量和工作状态,实现根据吸气量大小自适应调整。

Description

自适应口肺转换的多雾化芯雾化器及其控制方法
本申请要求于2019年11月27日在中国专利局提交的、申请号为201911177478.0的中国专利申请的优先权,其全部内容通过引用结合在本申请中。
技术领域
本发明涉及一种气溶胶的雾化器,特别是一种具有多雾化芯的可自动适应口肺吸食量转换的雾化器。
本发明还涉及上述雾化器的转换控制方法。
背景技术
在吸食电子烟气溶胶时,存在口吸和肺吸两种方式。所谓口吸是指仅将电子烟气溶胶吸食进口腔然后直接呼出,由于口腔容积小因而需要的气溶胶量也小。此时需要的电子烟工作状况产生较小量的气溶胶。所谓肺吸也就是将气溶胶通过口腔吸进肺内并尽量充满肺泡,然后再呼出。由于肺内容积大,需要的吸食量也大,需要电子烟产生较大量的气溶胶。口吸和肺吸状态是可以转换的,对于电子烟吸食者来讲,吸食电子烟是一种休闲,处于随意状态,因而有时从口吸转换为肺吸很可能是一个偶尔的意念转换,这种转换时间快,突发性强,可能就在开始吸食后才发生变换。因而一般情况下来不及进行手动或者程序调整功率,手动调整和程序调整均达不到及时在口吸与肺吸之间随意转换的功能。这就需要电子烟具有一个自检测自适应调整的功能,在检测使用者吸气量大而快时判定为肺吸,吸气量小而慢时判定为口吸。并根据检测判断结果自动调整工作状态,目前电子烟领域并没有真正的实现上述功能。
如一般雾化器中仅设置有单一的雾化芯,单一雾化芯的电子烟雾化器在使用时,只能通过改变供电电压、电流等参数改变加热功率,实现雾化效果和雾化量的调节作用。但这种调节方式具有很强的局限性,电子烟发热丝电阻的长度、直径是确定的,电阻阻值也是确定的,即使通过供电电压及电流的调整能够改变加热功率,但是一般的电阻发热丝很难承受成倍数的提高电压或者电流,否则容易出现高温熔断等问题,调节量是有限的,口吸到肺吸需要的气溶胶体积之间的变换一般是数倍以上的增长,也需要发热功率以数倍进行增加。因此单一发热体的雾化芯即使通过自适应调整也不能够适应电子烟从口吸到肺吸的随时转换。
后来出现的一种雾化器中,其可以设置多个发热体,根据吸食量的需求设定发热体工作的数量,实现雾化量和吸食量调节。其具体结构是雾化芯设置多个发热丝并联连接,雾化芯设置统一的进油孔、进气孔和气流出口。在一般吸烟需求,打开一个发热丝进行工作时,进行简单的小烟雾量吸食,此时的进油孔和进气孔都在工作。而需要增大吸食量时则需要调节打开两个或者多个发热丝同时工作,此时的进油孔和进气孔仍然保持同一个工作状态,仍然会以原来的方式进油或者进气。从一个发热丝发热到多个发热丝发热都是使用同样的进气孔和进油孔。而对于每一组发热丝来说,都只有一个最适合的进油进气量,只有进油量和进气量与发热丝工作的数量匹配的好,才会达到最好的雾化效果。而这种同一进油孔同一进气孔的结构中,进油量和进气量不论大小都很难处于最佳的工作状态。如一组发热丝工作时相对的进油量和进气量会比较大,会导致雾化温度不足,不但影响雾化效果,甚至被大量的烟油淹没,达不到雾化温度。而多组发热丝工作时则相对会出现进油量小的问题,可能产生烟油供应不足,产生干烧现象。相对进气量小则气流速度慢,气溶胶吸走速度慢,也会影响雾化效果,相对进气量大造成雾化的气溶胶浓度过低的问题。
因而,虽然是设置了多个雾化发热丝,但是由于不能实现分别独立控制,仍然不会达到最好最佳的雾化目的。而且,多个发热丝的接通或者关闭,仍是通过手动调节或者程序控制实现的,并不能根据吸食量的大小进行自动调整。
本发明人根据上述缺陷,结合多发热体雾化芯的结构,开发了一种能够自适应吸食量的口肺转换的雾化器,以克服上述缺陷。
技术问题
本发明的目的在于提供一种自适应口肺转换的多雾化芯雾化器。同时提供一种这种雾化器的自适应口肺转换控制方法。
技术解决方案
本发明的自适应口肺转换的多雾化芯雾化器,包括两组或者两组以上的雾化芯;所述每一组雾化芯控制电路、气流通道分别独立设置,独立控制;所述两组或者两组以上雾化芯中的部分或者全部雾化芯的气流通道设置负压开关。
上述所述的自适应口肺转换的多雾化芯雾化器中,所述两组或者两组以上的全部雾化芯气流通道设置有气流传感器。
上述所述的自适应口肺转换的多雾化芯雾化器中,气流传感器可以这样设置,所述第一、第二至第N雾化芯设置进气孔,进气孔为共用进气孔,形成共用进气腔,每一雾化芯的气流通道与共用进气腔连通,气流传感器设置在每一雾化芯气流通道与共用进气腔连通处。
上述所述的自适应口肺转换的多雾化芯雾化器中,气流传感器也可以这样设置,所述第一、第二至第N雾化芯的进气孔分别独立设置,气流传感器设置在每一雾化芯进气孔处。
上述所述的自适应口肺转换的多雾化芯雾化器中,所述雾化器还包括吸嘴,吸嘴与雾化芯外壳对接连接,所述吸嘴与雾化芯外壳连接处设置气流缓冲腔;所述每一雾化芯的气流通道与气流缓冲腔连通;所述雾化芯负压开关设置在气流通道与气流缓冲腔连通处,气流通道通过负压开关与气流缓冲腔连通。
上述所述的自适应口肺转换的多雾化芯雾化器中,所述每一组雾化芯设置有独立的加热体、导油体、气流通道、进气孔和进油孔;所述每一雾化芯的进油孔与储油仓连通,每一雾化芯的气流传感器分别与电源控制装置独立连接。
上述所述的自适应口肺转换的多雾化芯雾化器中,所述雾化芯部分设置有负压开关,所述两组或者两组以上的雾化芯定义为第一、第二至第N雾化芯;所述第二至第N雾化芯气流通道出口处设置有负压开关。
上述所述的自适应口肺转换的多雾化芯雾化器中,所述负压开关为机械开关或者电子开关,感测气流缓冲腔内的负压压力,第二至第N雾化芯的负压开关的负压阈值依次增大。
上述所述的自适应口肺转换的多雾化芯雾化器中,全部雾化芯均设置负压开关,所述两组或者两组以上的雾化芯定义为第一、第二至第N雾化芯;所述第一、第二至第N雾化芯气流通道出口处设置负压开关。
上述所述的自适应口肺转换的多雾化芯雾化器中,所述负压开关为机械开关或者电子开关,感测气流缓冲腔内的负压压力,第一、第二至第N雾化芯的负压开关的负压阈值依次增大。
本发明的一种自适应口肺转换的多雾化芯雾化器的控制方法,包括以下步骤:
A:开始吸烟,气流缓冲腔产生负压,第一雾化芯工作,吸食第一雾化芯雾化的气溶胶;
B:增大吸烟量,气流缓冲腔负压增大,打开第二雾化芯负压开关,第二雾化芯工作,吸食第一雾化芯和第二雾化芯共同雾化的气溶胶;
C:继续增大吸烟量,气流缓冲腔负压继续增大,直至打开第N雾化芯负压开关,第N雾化芯工作,吸食第一加第二直至加第N雾化芯雾化的气溶胶。
本发明的另一种自适应口肺转换的多雾化芯雾化器的控制方法,包括以下步骤:
A:开始吸烟,气流缓冲腔产生负压,打开第一雾化芯负压开关及气流通道,第一雾化芯气流传感器感知气流通过,控制装置控制第一雾化芯工作雾化,吸食第一雾化芯雾化的气溶胶;
B:增大吸烟量,气流缓冲腔负压增大,打开第二雾化芯负压开关及气流通道,第二雾化芯气流传感器感知气流通过,控制装置控制第二雾化芯工作雾化,吸食第一加第二雾化芯雾化的气溶胶;
C:继续增大吸烟量,气流缓冲腔负压继续增大,直至打开第N雾化芯负压开关及气流通道,第N雾化芯气流传感器感知气流通过,控制装置控制第N雾化芯工作雾化,吸食第一加第二直至加第N雾化芯雾化的气溶胶。
本发明的再一种自适应口肺转换的多雾化芯雾化器的控制方法,包括以下步骤:
A:开始吸烟,气流缓冲腔产生负压,第一雾化芯气流通道产生吸烟气流,第一雾化芯气流传感器感知气流通过,控制装置控制第一雾化芯工作雾化,吸食第一雾化芯雾化的气溶胶;
B:增大吸烟量,气流缓冲腔负压增大,打开第二雾化芯负压开关及气流通道,第二雾化芯气流传感器感知气流通过,控制装置控制第二雾化芯工作雾化,吸食第一加第二雾化芯雾化的气溶胶;
C:继续增大吸烟量,气流缓冲腔负压继续增大,直至打开第N雾化芯负压开关及气流通道,第N雾化芯气流传感器感知气流通过,控制装置控制第N雾化芯工作雾化,吸食第一加第二直至加第N雾化芯雾化的气溶胶。
有益效果
上述的本发明的雾化器和控制方法中,通过设置多组相对独立控制的雾化芯,实现每一组雾化芯的通电开关、气流通道的启闭和烟油通道的通断。实现了独立雾化和独立控制,再结合在气流通道设置负压开关感测吸食者的吸气负压,以负压的大小控制雾化芯的工作数量和工作状态,实现根据吸气量大小自适应调整的过程。当吸气量大时判定为肺吸,多个雾化芯同时工作,当吸气量小时判定为口吸,单个或者少数个雾化芯工作。实现自适应的口吸和肺吸之间的状态转换。
附图说明
图1是本发明实施例1的雾化器的立体分解结构示意图;
图2是本发明实施例1的雾化器的剖面结构示意图;
图3是本发明的机械负压开关剖面结构示意图;
图4是本发明双电极的剖面结构示意图。
图中所示:1为吸嘴;2为雾化器外壳;3为气流缓冲腔;4为双气道;5为负压开关;6为雾化芯双盖体;7为导油体;8为雾化芯双壳体;9为雾化芯双进气孔;10为雾化芯双电极;11为底座。
21为内部空间;41为第一气道;42为第二气道;51为复位弹簧;52为阀盖;53为阀体。54为通气孔;71为第一导油体;72为第二导油体;81为第一进油孔;82为第二进油孔;91为第一进气孔;92为第二进气孔。
100为负极板;101为第一双电极;102为第二双电极;711为第一雾化芯气流通道;721为第二雾化芯气流通道;1011为第一电极柱;1021为第一电极绝缘圈;1021为第二电极柱;1022为第二电极绝缘圈。
本发明的实施方式
下面以具体实施例结合附图对本发明进行详细说明,但附图和具体实施例仅限于对本发明技术方案的解释,其中所做的任何描述均不影响保护范围的限定。
实施例1:本实施例以两组雾化芯的结构进行说明。
如图1和图2所示,本实施例的雾化器主体由外壳2、底座11和吸嘴1组合而成。其中的吸嘴1和外壳2一体成型或者密封固定连接结构。外壳2为长方体形壳体,底座11也为长方体状,两组雾化芯在该外壳2内以长度方向并列设置。
在外壳2和底座11之间的空间构成了雾化器内部空间21,用于作为储存烟油的储油仓和雾化芯容置空间。其中的两组雾化芯均设置在该空间21内,并列且一体化设置。
两组雾化芯的结构是这样的,设置一雾化芯双壳体8,分为相互独立的第一壳体部和第二壳体部,每一壳体部设置有用于容置导油体7的容置空间,形成第一导油体容置空间和第二导油体容置空间,如图1中所示的圆柱形区域,在双壳体8的第一壳体部的壁面上设置第一进油孔81,在第二壳体部的壁面上设置第二进油孔82。第一进油孔81和第二进油孔82也是相互独立设置的,相互之间并不连通。
其中,雾化芯双壳体8的底部设置有横向的双进气孔9,如图所示,该进气孔9也分为第一进气孔91和第二进气孔92的状态,而且第一进气孔91与第二进气孔92在底座内连通形成一共用进气腔,也就是进入的空气在该共用进气腔内交汇。当然也可以是将第一进气孔91和第二进气孔92分别独立设置的状态,如从中间隔开,即他们之间并不相互交汇,而是分别独立的引出。分别位于双壳体8下端的左右两侧,向外延伸。第一进气孔91和第二进气孔92分别向内连通到第一壳体和第二壳体的内部。
双壳体8的下侧是与双壳体8组装连接的双电极10,分别设置成第一双电极101和第二双电极102,每一双电极均设置成内电极柱和外电极环的双层电极状态,其中的第一双电极101和第二双电极102的外环电极可以一体设置。而双电极10与双壳体8的组装连接方式为密封对接连接。
具体双电极10的剖面结构体见附图4所示,其中的第一双电极101和第二双电极102均设置在一导体材料板100上,一般作为共同的负极使用。在板100上开设二对应的孔洞,每一孔洞中设置一导体电极柱1011和1021,一般作为正极使用。在电极柱1011和1021与板体100之间设置绝缘固定圈1012和1022,分别将电极柱1011和1021与板体100绝缘并固定设置。此时便形成形成两组分别连接的正极和统一的负极的电极,便可以实现连接独立控制的发热体的状态。
具体连接时可以将发热体两端的电极分别插入到绝缘固定圈的内外两侧,便可以实现了发热体的电路连接。
本实施例中将导油体也是分为两组,第一导油体71和第二导油体72,其中第一导油体71内侧设置第第一加热体(图中未绘出),第二导油体内侧设置第二加热体,第一加热体内侧形成第一气流通道711,第二加热体内侧形成第二气流通道721。第一加热体和第二加热体可以是发热电阻丝螺旋或者筒形发热丝网,虽然本实施例附图中没有表示出第一加热体和第二加热体的结构,但是本领域技术人员来说是完全可以想象到的。
在双壳体8的上侧设置一双盖体6,双盖体6与双壳体8密封对接设置,用于与双壳体8密封对接后将第一导油体71和第二导油体72封闭在双壳体8内,分别形成独立的第一雾化芯和第二雾化芯,并在双盖体6上设置第一出气道和第二出气道。
设置一双气道组件4,双气道组件为一体结构的双气流通道,与双盖体6对接,在其内部形成第一气道41和第二气道42,第一气道41与第一雾化芯气流通道711连通,第二气道42与第二雾化芯气流通道连通721。
其中的第一气道41和第二气道42在双气道4的上端部形成一个共同的腔室,在此处双气道的气流相互混合交汇并缓冲,成为气流缓冲腔3。在第二气道42与气流缓冲腔3连通处设置负压开关5,该负压开关为机械开关,能够感测气流缓冲腔3的压力状态。双气道4上端与吸嘴1密封对接连接。
双壳体8的底端固定密封设置在底座11上,底座11设置双壳体8底端容置空间,并设置横向进气孔,分别为第一进气道111和第二进气道112,分别与双壳体8底部的横向第一进气孔91和第二进气孔92连通,底座11横向进气道与大气连通。本实施例是在向下弯折后从底座11的端面开孔的。
本实施例还需要设置电源控制装置,电源控制装置与雾化器对接后,为双电极10分别供电,且可以分别控制。其中的第二雾化芯的加热控制系统与负压开关5联动,负压开关5关闭时,第二双电极102不供电,也就是第二雾化芯不工作。负压开关5打开时,第二雾化芯工作,而且负压开关5设置成常闭状态。
如图3所示,本实施例的负压开关5是机械开关,是在第二气道42的出口处设置的弹簧压力阀门,由复位弹簧51、阀盖52、阀体53和通气孔54构成。其中的阀体53是圆筒形结构,与第二气道42的内壁配合滑动,阀体53的圆筒中空部与气道42连通,在阀体53的壁面上设置通气孔54,而阀盖52设置在阀体53的上部,整体可以覆盖阀体53和第二气道42的上端面,复位弹簧51从上侧压紧阀盖52。当气流缓冲腔3负压未达到该负压开关5的阈值时,复位弹簧51的压力大于负压压力,此时阀盖52及阀体53无动作,处于阀盖52覆盖气道42及阀体53的状态,此时气流不能互通。而一旦气流缓冲腔的负压压力大于复位弹簧的弹性力时,便可以克服弹簧压力,使阀体53及阀盖52上移,直至通气孔54暴露到气流缓冲腔3的位置,此时便可以通过通气孔54将气流缓冲腔和气道42连通,实现了负压开关通气的作用。
本实施例的产品组装时,双电极10与双壳体8密封对接后,再装设导油体7及发热体,使发热体与电极电连接,从上侧密封盖上双盖体6,再装设双气道4和负压开关5。然后再将整体的雾化芯组装带底座11上。组装好外壳2和吸嘴1,便形成完整的雾化器。这种雾化器在使用时灌注烟油和接通电源,打开开关便可以实现吸烟功能。
本实施例的雾化器是在雾化腔室内设置两组相互独立控制的雾化芯,两组雾化芯可以分别控制工作状态,在需要时变更工作状态,使分别处于单一雾化芯工作和两组雾化芯同时工作两种状态。
本实施例的产品的工作过程是这样的:当开始打开电源吸食时,负压开关5处于常闭状态,此时第二雾化芯并不工作,只有第一雾化芯工作,自动处于常规的小量口吸状态,相当单一雾化芯电子烟。而当吸食者突然增大吸烟量时,也就是吸烟量和吸烟速度会加快,气流速度也会加快,此时会在气流缓冲腔3处产生较大负压,达到负压开关5的阈值时,会打开负压开关5,第二雾化芯气流通道畅通。与负压开关5联动的第二雾化芯控制器打开控制第二雾化芯加热工作。第二雾化芯便开始工作,增大烟雾量,形成大烟雾量的肺吸状态。当吸食量和吸食速度再次恢复口吸状态时,气流缓冲腔3的气流压力回归正常,低于负压开关5的阈值时,自动关闭。联动的第二雾化芯控制器停止工作,恢复口吸状态。从而达到自适应口肺转换的功能。
实施例2:
本实施例是实施例1基础上的结构变化,连接结构并不发生变化,但是可以增加雾化芯的组数,根据雾化器整体空间的需求,可以将雾化芯的数量增加至三组、四组或者更多组。而只在其中的第二组雾化芯的后续雾化芯的气流通道以气流缓冲腔的连通处设置负压开关吗,且负压开关的阈值设置为逐渐增大。如第二雾化芯的负压开关阈值为950百帕,第三雾化芯的阈值设置为900百帕等。这里的数值仅仅是做原理说明用,具体可以根据吸食量进行设置。
实施例3:
本实施例与实施例1的基本结构是相同的,为了实现真正的自适应口肺吸食转换,还可以在每一组雾化芯的气道41与气流缓冲腔3连通处都设置负压开关5,即在第一气道41与气流缓冲腔3连通处设置负第一压开关,第二气道42与气流缓冲腔3连通处设置第二负压开关。且负压开关分别与所在的雾化芯的加热控制器联动控制,即打开相应的负压开关时,对应的雾化芯便开始加热工作。置于第一负压开关和第二负压开关的启动阈值一般是不同的,启动阈值小的先启动开始工作。如设置第一雾化芯先工作时,可以设置第一雾化芯的启动压力为1000百帕,而第二雾化芯的启动压力可以为950百帕。
实施例4:
实施例1至实施例3所述的负压开关5为机械开关,是一个弹性阀门,当负压达到阈值时克服弹簧51的弹力,弹簧压缩打开,负压在阈值以下时,在弹簧51的压力下回复关闭状态,是一个常闭机械开关。
如果此时将该负压开关与雾化芯加热控制器联动的话,需要将负压开关5的动作转换为电信号,因此需要增加相应的装置,如连接导线等。需要较为复杂的电连接结构。为了避免复杂的电连接结构,可以在每一雾化芯的气流通道内设置气流传感器,具体可以设置在雾化芯的进气孔9处,在感知该部位有气流通过时控制打开加热。由于进气孔9处的位置比较靠近电源控制装置,此处设置电连接结构相对容易。具体的,如果第一进气孔91和第二进气孔92在底座11处汇合形成共用进气腔的话,则将气流传感器分别设置在第一雾化芯或者第二雾化芯的气流通道与共用进气腔的连通处。而第一进气孔91与第二进气孔92各自独立设置的话,则直接将气流传感器分别设置在第一进气孔91和第二进气孔处即可,目的都是实现分别设置在各自所在雾化芯的气流通道内。
本实施例的结构自适应能力更为加强,在刚开始吸烟动作时,处于待机状态,无气流通过第一雾化芯时,第一雾化芯气流进气孔的91处的气流传感器感知不到气流通过,此时第一雾化芯并不加热工作,而当吸烟气流产生时,第一雾化芯才开始工作,加热雾化,避免不吸烟时雾化芯处工作状态。同时也只有负压开关5打开以后,第二雾化芯中有气流通过时,第二雾化芯才开始加热工作,避免出现误动作。
实施例5:
在上述实施例的基础上,可以设置更多组的雾化芯,除了第一雾化芯、第二雾化芯外,还可以设置第三直至第N雾化芯。全部雾化芯的气道与气流缓冲腔连通处均设置负压开关,同时在全部雾化芯的进气孔位置均设置气流传感器。雾化芯的负压开关的阈值也要逐渐增大,如第一雾化芯负压开关阈值1000百帕,第二雾化芯负压开关阈值950百帕,第三雾化芯负压开关阈值压力900百帕等。只有这样设置才会出现随着吸食压力的增加逐渐打开。而随着吸食压力的不同,雾化芯的工作状态也会出现第一雾化芯工作,第二雾化芯和第一雾化芯同时工作,第三雾化芯与第二、第一雾化芯同时工作等状态。
实施例6:
本实施例使用电子负压开关替代机械负压开关,具体的可以在气流缓冲腔3处设置电子空气压力计,在气流通达41或者42与气流通道连通处设置气流阀门,用于打开或者关闭气流通道。电子空气压力机与气流阀门联动,达到某一适合的负压数值时打开相应的气流阀门,实现自适应控制。本实施例中则可以不再设置进气孔处的气流传感器,以电子压力计感知的压力控制雾化芯加热体的电流通断。
本发明的实施例1中的雾化器是这样工作的:
首先,打开电子烟开关,开始吸食,第一雾化芯开始工作,吸食第一雾化芯产生的气溶胶,处于口吸状态。同时负压开关5检测气流缓冲腔3的吸食压力,当吸食压力达到负压开关5的开启负压阈值时,开启负压开关5,第二雾化芯开始工作,第二雾化芯产生气溶胶,处于肺吸状态。当肺吸状态结束,吸食压力降低时,气流缓冲腔3的负压压力降低,负压压力低于负压开关5的开启负压阈值时,负压开关5再次关闭,又进入口吸状态。停止口吸状态需要关闭电子烟开关。
本发明实施例2的雾化器是这样工作的:
首先,打开电子烟开关,进入待机状态,第一雾化芯和第二雾化芯的负压开关均处于关闭状态,雾化芯都不工作。开始第一口吸食时,负压开关检测气流缓冲腔3的吸烟负压压力,当负压压力达到第一雾化芯负压开关开启阈值时,第一雾化芯负压开关打开,控制打开第一雾化芯开始加热雾化。同时第二雾化芯负压开关检测气流缓冲腔3的负压压力,当负压压力不再变换或者变化达不到第二雾化芯负压开关开启阈值时,仍然是第一雾化芯工作,处于口吸状态。当检测到气流缓冲腔3的负压压力达到第二雾化芯负压开关开启阈值时,打开第二雾化芯负压开关,控制第二雾化芯加热工作,此时便处于肺吸状态。当肺吸状态结束,吸食压力降低时,气流缓冲腔的负压压力降低,负压压力低于第二负压开关的开启负压阈值时,第二负压开关再次关闭,进入待机状态,此时又进入口吸状态。吸烟压力继续降低到第一雾化芯负压开关开启阈值压力时,再次关闭第一雾化芯负压开关整体电子烟进入待机状态。
实施例2的结构在增加设置气流传感器后的工作流程。
首先,打开电子烟开关,进入待机状态,第一雾化芯和第二雾化芯的负压开关均处于关闭状态,雾化芯都不工作。开始第一口吸食时,负压开关检测气流缓冲腔3的吸烟负压压力,当负压压力达到第一雾化芯负压开关开启阈值时,第一雾化芯负压开关打开,同时第一雾化芯气流传感器感测到有气流通过,控制打开第一雾化芯开始加热雾化。同时第二雾化芯负压开关检测气流缓冲腔3的负压压力,当负压压力不再变换或者变化达不到第二雾化芯负压开关开启阈值时,仍然是第一雾化芯工作,处于口吸状态。当检测到气流缓冲腔3的负压压力达到第二雾化芯负压开关开启阈值时,打开第二雾化芯负压开关,第二雾化芯气流传感器检测到第二雾化芯有气流通过,控制第二雾化芯加热工作,此时便处于肺吸状态。当肺吸状态结束,吸食压力降低时,气流缓冲腔的负压压力降低,负压压力低于第二负压开关的开启负压阈值时,第二负压开关再次关闭,同时第二雾化芯气流消失,第二雾化芯气流传感器控制第二雾化芯停止加热工作,进入待机状态,此时又进入口吸状态。吸烟压力继续降低到第一雾化芯负压开关开启阈值压力时,再次关闭第一雾化芯负压开关,第一雾化芯气流消失,第一雾化芯气流传感器控制第一雾化芯停止工作,整体电子烟进入待机状态。
实施例5的结构的工作流程。
首先,打开电子烟开关,进入待机状态,第一雾化芯、第二雾化芯至第N雾化芯的负压开关均处于关闭状态,雾化芯都不工作。开始第一口吸食时,负压开关检测气流缓冲腔3的吸烟负压压力,当负压压力达到第一雾化芯负压开关开启阈值时,第一雾化芯负压开关打开,同时第一雾化芯气流传感器感测到有气流通过,控制打开第一雾化芯开始加热雾化。同时第二雾化芯负压开关检测气流缓冲腔3的负压压力,当负压压力不再变换或者变化达不到第二雾化芯负压开关开启阈值时,仍然是第一雾化芯工作,处于口吸状态。当检测到气流缓冲腔3的负压压力达到第二雾化芯负压开关开启阈值时,打开第二雾化芯负压开关,第二雾化芯气流传感器检测到第二雾化芯有气流通过,控制第二雾化芯加热工作,此时便处于肺吸状态。当吸烟量再次增大,气流缓冲腔的负压压力再次增大到直至第N雾化芯的负压开关阈值时,打开第N雾化芯工作,吸食全部雾化芯工作产生的气溶胶。当肺吸状态结束,吸食压力降低时,气流缓冲腔的负压压力降低,负压压力低于第N负压开关的开启负压阈值时,第N负压开关再次关闭,同时第N雾化芯气流消失,第N雾化芯气流传感器控制第N雾化芯停止加热工作,进入待机状态,继续降低重复上述过程,直至第一雾化芯停止工作。整体电子烟进入待机状态。
综上所示,本发明是将多个独立的雾化芯设置在雾化器内,同时设置共同的气流缓冲腔,在每一雾化芯与气流缓冲腔的连通处设置负压开关。通过负压开关的设置,可以检测吸烟的负压压力,当吸烟负压压力达到一定的阈值时,负压开关打开并控制相应的雾化芯工作,进而可以根据吸气压力的大小自动的自然的控制雾化芯的工作状态,实现雾化量的成倍提高。可以根据吸气压力的大小实现大烟雾量及小烟雾量吸食的状态转换,也就是实现了口吸和肺吸的状态转换,而无需进行复杂的手动调节和程序控制的调整,实现的是一种自然适应过程。
本发明的自适应结构是根据人的吸食压力的大小,通过自动检测吸食时产生的负压,来调整多个雾化芯的工作状态,实现雾化烟雾量转换的。在实际使用时本领域技术人员完全可以根据本发明的基本思路,在上述结构的基础上进行改进,但是只要未脱离本发明交替加热的基本思路,便应属于本发明的保护范围。

Claims (13)

  1. 一种自适应口肺转换的多雾化芯雾化器,其特征在于:所述雾化器包括两组或者两组以上的雾化芯;所述每一组雾化芯控制电路、气流通道分别独立设置,独立控制;所述两组或者两组以上雾化芯中的部分或者全部雾化芯的气流通道设置负压开关。
  2. 根据权利要求1所述的自适应口肺转换的多雾化芯雾化器,其特征在于:所述两组或者两组以上的全部雾化芯气流通道设置有气流传感器。
  3. 根据权利要2所述的自适应口肺转换的多雾化芯雾化器,其特征在于:所述第一、第二至第N雾化芯设置进气孔,进气孔为共用进气孔,形成共用进气腔,每一雾化芯的气流通道与共用进气腔连通,气流传感器设置在每一雾化芯气流通道与共用进气腔连通处。
  4. 根据权利要2所述的自适应口肺转换的多雾化芯雾化器,其特征在于:所述第一、第二至第N雾化芯的进气孔分别独立设置,气流传感器设置在每一雾化芯进气孔处。
  5. 根据权利要求1-4任何一项所述的自适应口肺转换的多雾化芯雾化器,其特征在于:所述雾化器还包括吸嘴,吸嘴与雾化芯外壳对接连接,所述吸嘴与雾化芯外壳连接处设置气流缓冲腔;所述每一雾化芯的气流通道与气流缓冲腔连通;所述雾化芯负压开关设置在气流通道与气流缓冲腔连通处,气流通道通过负压开关与气流缓冲腔连通。
  6. 根据权利要求2、3或4所述的自适应口肺转换的多雾化芯雾化器,其特征在于:所述每一组雾化芯设置有独立的加热体、导油体、气流通道、进气孔和进油孔;所述每一雾化芯的进油孔与储油仓连通,每一雾化芯的气流传感器分别与电源控制装置独立连接。
  7. 根据权利要求1或2所述的自适应口肺转换的多雾化芯雾化器,其特征在于:所述两组或者两组以上的雾化芯定义为第一、第二至第N雾化芯;所述第二至第N雾化芯气流通道出口处设置有负压开关。
  8. 根据权利要7所述的自适应口肺转换的多雾化芯雾化器,其特征在于:所述负压开关为机械开关或者电子开关,感测气流缓冲腔内的负压压力,第二至第N雾化芯的负压开关的负压阈值依次增大。
  9. 根据权利要求1或2所述的自适应口肺转换的多雾化芯雾化器,其特征在于:所述两组或者两组以上的雾化芯定义为第一、第二至第N雾化芯;所述第一、第二至第N雾化芯气流通道出口处设置负压开关。
  10. 根据权利要9所述的自适应口肺转换的多雾化芯雾化器,其特征在于:所述负压开关为机械开关或者电子开关,感测气流缓冲腔内的负压压力,第一、第二至第N雾化芯的负压开关的负压阈值依次增大。
  11. 一种如权利要求1所述的自适应口肺转换的多雾化芯雾化器的控制方法,其特征在于包括以下步骤:
    A:开始吸烟,气流缓冲腔产生负压,第一雾化芯工作,吸食第一雾化芯雾化的气溶胶;
    B:增大吸烟量,气流缓冲腔负压增大,打开第二雾化芯负压开关,第二雾化芯工作,吸食第一雾化芯和第二雾化芯共同雾化的气溶胶;
    C:继续增大吸烟量,气流缓冲腔负压继续增大,直至打开第N雾化芯负压开关,第N雾化芯工作,吸食第一加第二直至加第N雾化芯雾化的气溶胶。
  12. 一种如权利要求10所述的自适应口肺转换的多雾化芯雾化器的控制方法,其特征在于包括以下步骤:
    A:开始吸烟,气流缓冲腔产生负压,打开第一雾化芯负压开关及气流通道,第一雾化芯气流传感器感知气流通过,控制装置控制第一雾化芯工作雾化,吸食第一雾化芯雾化的气溶胶;
    B:增大吸烟量,气流缓冲腔负压增大,打开第二雾化芯负压开关及气流通道,第二雾化芯气流传感器感知气流通过,控制装置控制第二雾化芯工作雾化,吸食第一加第二雾化芯雾化的气溶胶;
    C:继续增大吸烟量,气流缓冲腔负压继续增大,直至打开第N雾化芯负压开关及气流通道,第N雾化芯气流传感器感知气流通过,控制装置控制第N雾化芯工作雾化,吸食第一加第二直至加第N雾化芯雾化的气溶胶。
  13. 一种如权利要求8所述的自适应口肺转换的多雾化芯雾化器的控制方法,其特征在于包括以下步骤:
    A:开始吸烟,气流缓冲腔产生负压,第一雾化芯气流通道产生吸烟气流,第一雾化芯气流传感器感知气流通过,控制装置控制第一雾化芯工作雾化,吸食第一雾化芯雾化的气溶胶;
    B:增大吸烟量,气流缓冲腔负压增大,打开第二雾化芯负压开关及气流通道,第二雾化芯气流传感器感知气流通过,控制装置控制第二雾化芯工作雾化,吸食第一加第二雾化芯雾化的气溶胶;
    C:继续增大吸烟量,气流缓冲腔负压继续增大,直至打开第N雾化芯负压开关及气流通道,第N雾化芯气流传感器感知气流通过,控制装置控制第N雾化芯工作雾化,吸食第一加第二直至加第N雾化芯雾化的气溶胶。
PCT/CN2020/131803 2019-11-27 2020-11-26 自适应口肺转换的多雾化芯雾化器及其控制方法 WO2021104379A1 (zh)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
CN201911177478.0 2019-11-27
CN201911177478.0A CN112931970B (zh) 2019-11-27 2019-11-27 自适应口肺转换的多雾化芯雾化器及其控制方法

Publications (1)

Publication Number Publication Date
WO2021104379A1 true WO2021104379A1 (zh) 2021-06-03

Family

ID=76130011

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2020/131803 WO2021104379A1 (zh) 2019-11-27 2020-11-26 自适应口肺转换的多雾化芯雾化器及其控制方法

Country Status (2)

Country Link
CN (1) CN112931970B (zh)
WO (1) WO2021104379A1 (zh)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN113966876A (zh) * 2021-11-04 2022-01-25 深圳市博迪科技开发有限公司 一种雾化装置
CN114190592A (zh) * 2021-12-30 2022-03-18 深圳市华诚达精密工业有限公司 雾化机构、电子雾化装置及雾化机构工作控制方法

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN115813026B (zh) * 2022-12-23 2024-01-02 深圳美众联科技有限公司 一种双雾化芯的电子烟及其热量均衡控制方法

Citations (11)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN203575649U (zh) * 2013-10-16 2014-05-07 王立平 一种电子烟的雾化装置
CN204146323U (zh) * 2014-08-11 2015-02-11 深圳市合元科技有限公司 电子烟
CN108697174A (zh) * 2016-03-11 2018-10-23 菲利普莫里斯生产公司 多分散体生成器e蒸汽烟装置
CN108697173A (zh) * 2016-03-11 2018-10-23 菲利普莫里斯生产公司 多分散体生成器e蒸汽烟装置
CN208211466U (zh) * 2018-01-04 2018-12-11 东莞市佳铠精密金属制品有限公司 一种吸气控制的电子烟雾化器
CN208318235U (zh) * 2018-04-18 2019-01-04 章炎生 一种迷你扁形仨口味电子烟
CN109892701A (zh) * 2017-12-11 2019-06-18 深圳市康尔科技有限公司 口肺转换型电子烟及其使用方法
WO2019122880A1 (en) * 2017-12-20 2019-06-27 British American Tobacco (Investments) Limited Electronic aerosol provision system
CN209346108U (zh) * 2018-12-21 2019-09-06 东莞市雾登电子科技有限公司 电子烟
CN110313650A (zh) * 2019-08-21 2019-10-11 深圳市黎曼空间科技有限公司 一种多口味可按键切换口味电子烟
CN107072306B (zh) * 2014-10-28 2020-01-10 惠州市吉瑞科技有限公司 一种雾化组件及电子烟

Family Cites Families (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP2901872A4 (en) * 2012-09-28 2016-07-20 Huizhou Kimree Technology Co Ltd Shenzhen Branch ELECTRONIC CIGARETTE AND ELECTRONIC CIGARETTE DEVICE
CN103689811B (zh) * 2013-10-20 2016-03-16 红塔烟草(集团)有限责任公司 一种能调节烟雾量的智能电加热卷烟用加热器
CN105899093B (zh) * 2013-12-16 2019-04-12 吉瑞高新科技股份有限公司 电子烟控制电路、电子烟以及电子烟的控制方法
CN107495482B (zh) * 2017-10-09 2019-12-24 深圳市你我网络科技有限公司 一种电子烟
CN110495646A (zh) * 2019-09-30 2019-11-26 冷朝阳 具有气流感应元件保护功能的电子烟及雾化组件和供电组件

Patent Citations (11)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN203575649U (zh) * 2013-10-16 2014-05-07 王立平 一种电子烟的雾化装置
CN204146323U (zh) * 2014-08-11 2015-02-11 深圳市合元科技有限公司 电子烟
CN107072306B (zh) * 2014-10-28 2020-01-10 惠州市吉瑞科技有限公司 一种雾化组件及电子烟
CN108697174A (zh) * 2016-03-11 2018-10-23 菲利普莫里斯生产公司 多分散体生成器e蒸汽烟装置
CN108697173A (zh) * 2016-03-11 2018-10-23 菲利普莫里斯生产公司 多分散体生成器e蒸汽烟装置
CN109892701A (zh) * 2017-12-11 2019-06-18 深圳市康尔科技有限公司 口肺转换型电子烟及其使用方法
WO2019122880A1 (en) * 2017-12-20 2019-06-27 British American Tobacco (Investments) Limited Electronic aerosol provision system
CN208211466U (zh) * 2018-01-04 2018-12-11 东莞市佳铠精密金属制品有限公司 一种吸气控制的电子烟雾化器
CN208318235U (zh) * 2018-04-18 2019-01-04 章炎生 一种迷你扁形仨口味电子烟
CN209346108U (zh) * 2018-12-21 2019-09-06 东莞市雾登电子科技有限公司 电子烟
CN110313650A (zh) * 2019-08-21 2019-10-11 深圳市黎曼空间科技有限公司 一种多口味可按键切换口味电子烟

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN113966876A (zh) * 2021-11-04 2022-01-25 深圳市博迪科技开发有限公司 一种雾化装置
CN114190592A (zh) * 2021-12-30 2022-03-18 深圳市华诚达精密工业有限公司 雾化机构、电子雾化装置及雾化机构工作控制方法

Also Published As

Publication number Publication date
CN112931970A (zh) 2021-06-11
CN112931970B (zh) 2023-08-11

Similar Documents

Publication Publication Date Title
WO2021104379A1 (zh) 自适应口肺转换的多雾化芯雾化器及其控制方法
JP6749565B2 (ja) 電子タバコ
KR101670145B1 (ko) 전자담배 및 전자담배장치
CN101986906B (zh) 一种用于电子烟具的雾化器
US20190254347A1 (en) Atomizing head assembly
KR102343795B1 (ko) 전자식 흡입 장치
WO2016154798A1 (zh) 雾化器及电子烟
WO2020011113A1 (zh) 具有一体式横置雾化芯的雾化器及其电子烟
WO2015062136A1 (zh) 具有气流调节功能的雾化器
WO2019205226A1 (zh) 一种雾化器及使用该雾化器的电子烟
WO2019184468A1 (zh) 混合式电子雾化装置
CN107713023B (zh) 雾化器
US20220061387A1 (en) Electronic atomization device
US20240000150A1 (en) Vaporization device and electronic cigarette having same
CN113243560A (zh) 一种多口味多功能电子烟烟具
CN211091883U (zh) 一种带有冷凝液回收结构的电子烟
CN112931984A (zh) 一种可更换的双向通气电子烟雾化芯及电子烟
CN219877493U (zh) 一种直通式气道电子雾化器
CN217609598U (zh) 雾化组件及具有雾化组件的电子烟
CN210445679U (zh) 一种雾化设备
CN219920308U (zh) 一种具有双气流通道的电子烟
CN218389806U (zh) 一种双管大容量一次性电子烟
CN219330725U (zh) 一种具有分流式气道的电子烟
CN220174476U (zh) 一种提高空气开关灵敏度的雾化装置
CN219961954U (zh) 一种电子烟

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 20893770

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 20893770

Country of ref document: EP

Kind code of ref document: A1