WO2021104202A1 - 一种移相器和相控阵天线 - Google Patents

一种移相器和相控阵天线 Download PDF

Info

Publication number
WO2021104202A1
WO2021104202A1 PCT/CN2020/130871 CN2020130871W WO2021104202A1 WO 2021104202 A1 WO2021104202 A1 WO 2021104202A1 CN 2020130871 W CN2020130871 W CN 2020130871W WO 2021104202 A1 WO2021104202 A1 WO 2021104202A1
Authority
WO
WIPO (PCT)
Prior art keywords
conductive
sub
signal line
substrate
phase shifter
Prior art date
Application number
PCT/CN2020/130871
Other languages
English (en)
French (fr)
Inventor
丁天伦
Original Assignee
京东方科技集团股份有限公司
北京京东方传感技术有限公司
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 京东方科技集团股份有限公司, 北京京东方传感技术有限公司 filed Critical 京东方科技集团股份有限公司
Priority to US17/437,517 priority Critical patent/US11929535B2/en
Publication of WO2021104202A1 publication Critical patent/WO2021104202A1/zh

Links

Images

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01QANTENNAS, i.e. RADIO AERIALS
    • H01Q3/00Arrangements for changing or varying the orientation or the shape of the directional pattern of the waves radiated from an antenna or antenna system
    • H01Q3/26Arrangements for changing or varying the orientation or the shape of the directional pattern of the waves radiated from an antenna or antenna system varying the relative phase or relative amplitude of energisation between two or more active radiating elements; varying the distribution of energy across a radiating aperture
    • H01Q3/30Arrangements for changing or varying the orientation or the shape of the directional pattern of the waves radiated from an antenna or antenna system varying the relative phase or relative amplitude of energisation between two or more active radiating elements; varying the distribution of energy across a radiating aperture varying the relative phase between the radiating elements of an array
    • H01Q3/34Arrangements for changing or varying the orientation or the shape of the directional pattern of the waves radiated from an antenna or antenna system varying the relative phase or relative amplitude of energisation between two or more active radiating elements; varying the distribution of energy across a radiating aperture varying the relative phase between the radiating elements of an array by electrical means
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01PWAVEGUIDES; RESONATORS, LINES, OR OTHER DEVICES OF THE WAVEGUIDE TYPE
    • H01P1/00Auxiliary devices
    • H01P1/18Phase-shifters
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01PWAVEGUIDES; RESONATORS, LINES, OR OTHER DEVICES OF THE WAVEGUIDE TYPE
    • H01P1/00Auxiliary devices
    • H01P1/18Phase-shifters
    • H01P1/185Phase-shifters using a diode or a gas filled discharge tube
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01QANTENNAS, i.e. RADIO AERIALS
    • H01Q3/00Arrangements for changing or varying the orientation or the shape of the directional pattern of the waves radiated from an antenna or antenna system
    • H01Q3/26Arrangements for changing or varying the orientation or the shape of the directional pattern of the waves radiated from an antenna or antenna system varying the relative phase or relative amplitude of energisation between two or more active radiating elements; varying the distribution of energy across a radiating aperture
    • H01Q3/30Arrangements for changing or varying the orientation or the shape of the directional pattern of the waves radiated from an antenna or antenna system varying the relative phase or relative amplitude of energisation between two or more active radiating elements; varying the distribution of energy across a radiating aperture varying the relative phase between the radiating elements of an array
    • H01Q3/34Arrangements for changing or varying the orientation or the shape of the directional pattern of the waves radiated from an antenna or antenna system varying the relative phase or relative amplitude of energisation between two or more active radiating elements; varying the distribution of energy across a radiating aperture varying the relative phase between the radiating elements of an array by electrical means
    • H01Q3/36Arrangements for changing or varying the orientation or the shape of the directional pattern of the waves radiated from an antenna or antenna system varying the relative phase or relative amplitude of energisation between two or more active radiating elements; varying the distribution of energy across a radiating aperture varying the relative phase between the radiating elements of an array by electrical means with variable phase-shifters

Definitions

  • the present disclosure relates to the field of communication technology, and in particular to a phase shifter and a phased array antenna.
  • Phase shifters can change the phase of electromagnetic wave signals and are widely used in radar, satellite communications, mobile communications and other fields.
  • the phase shifter is used to control the phase of each signal in the antenna array, which can make the radiation beam perform electrical scanning. It is an important component of the phased array antenna.
  • the ideal phase shifter should have less loss, and should have almost the same loss in different phase states.
  • an ideal phase shifter should also meet the requirements of fast phase shifting speed and low control power required.
  • a phase shifter including: a substrate, a signal transmission structure provided on the substrate, and a phase adjustment structure provided on the substrate; wherein the phase adjustment structure includes a conductive structure and at least one semiconductor Structure, a first insulating layer, and at least one first bias line; the at least one semiconductor structure is disposed between the signal transmission structure and the conductive structure; the signal transmission structure, the conductive structure, and the at least one The orthographic projection of a semiconductor structure on the substrate overlaps; the first insulating layer is disposed between the conductive structure and the at least one semiconductor structure; the orthographic projection of the first insulating layer on the substrate The projection is located at least in the overlapping area of the conductive structure and the orthographic projection of the at least one semiconductor structure on the substrate; the at least one first bias line is electrically connected to the conductive structure.
  • the signal transmission structure includes a first ground electrode and a first signal line, and the first ground electrode and the first signal line are respectively disposed on opposite sides of the substrate along its thickness direction; Each semiconductor structure is electrically connected to the first signal line; each semiconductor structure overlaps the orthographic projection of the first signal line on the substrate.
  • the phase shifter further includes a second bias line, and the second bias line is electrically connected to the first signal line.
  • the conductive structure includes at least one first sub-conductive structure, and each first sub-conductive structure overlaps an orthographic projection of the first signal line on the substrate; the at least one The first sub-conductive structure and the at least one semiconductor structure are configured in a one-to-one correspondence.
  • the first signal line includes a main structure and at least one branch structure; the at least one branch structure is electrically connected to the main structure, and the extension direction of the orthographic projection of each branch structure on the substrate Intersect with the extension direction of the orthographic projection of the main structure on the substrate; the at least one branch structure and the at least one first conductive substructure are configured in a one-to-one correspondence, and each branch structure corresponds to the first The orthographic projection of a sub-conductive structure on the substrate overlaps.
  • the conductive structure further includes at least one second sub-conductive structure; the at least one second sub-conductive structure has no overlap with the orthographic projection of the first signal line on the substrate; each The second conductive substructure is electrically connected to at least one first conductive substructure.
  • the at least one first sub-conductive structure includes a plurality of first sub-conductive structures; the at least one second sub-conductive structure includes a plurality of second sub-conductive structures, and each second sub-conductive structure is connected to At least one first sub-conductive structure of the plurality of first sub-conductive structures is electrically connected, and different second sub-conductive structures are electrically connected to different first sub-conductive structures.
  • the number of first conductive substructures electrically connected to different second conductive substructures is not completely the same.
  • the at least one first bias line and the at least one second sub-conductive structure are configured in a one-to-one correspondence, and each first bias line is electrically connected to the corresponding second sub-conductive structure .
  • the first signal line includes a plurality of signal line segment structures arranged at intervals, the orthographic projections of the plurality of signal line segments on the substrate do not overlap, and the plurality of signal lines The orthographic projections of the segments on the plane perpendicular to the extension direction of the first signal line all overlap; the end of each signal line segment structure opposite to the adjacent signal line segment structure is configured to be electrically conductive with one first sub Structure correspondence.
  • the conductive structure further includes at least one third sub-conductive structure; there is no overlap between the at least one third sub-conductive structure and the orthographic projection of the plurality of signal line segment structures on the substrate ; Each third sub-conductive structure is electrically connected to two adjacent first sub-conductive structures.
  • the phase shifter further includes a plurality of third bias lines; the plurality of third bias lines and the plurality of signal line segment structures are configured in a one-to-one correspondence, and each of the third bias lines
  • the three-bias voltage line is electrically connected to a corresponding signal line segment structure; the at least one first bias line and the at least one third sub-conductive structure are configured in a one-to-one correspondence, and each first bias line is The corresponding third sub-conductive structure is electrically connected.
  • the signal transmission structure includes a second signal line, and a second ground electrode and a third ground electrode disposed on opposite sides of the second signal line along its width direction; the second signal line Wire, the second ground electrode, and the third ground electrode are located on the same side of the substrate; each semiconductor structure is electrically connected to the second signal line; the semiconductor structure is connected to the second signal line.
  • the conductive structure includes at least one fourth sub-conductive structure, and each fourth sub-conductive structure overlaps an orthographic projection of the second signal line on the substrate; wherein, the The at least one fourth sub-conductive structure and the at least one semiconductor structure are configured in a one-to-one correspondence.
  • the phase shifter further includes a fourth bias line, and the fourth bias line is electrically connected to the second signal line.
  • the at least one first bias line and the at least one fourth sub-conductive structure are configured in a one-to-one correspondence, and each first bias line is electrically connected to the corresponding fourth sub-conductive structure .
  • each fourth sub-conductive structure is electrically connected to the second ground electrode and the third ground electrode; the first bias line is configured to be connected to the second ground electrode or the third ground electrode.
  • the third ground electrode is electrically connected.
  • the second ground electrode and the third ground electrode are disposed on a surface of the first insulating layer away from the second signal line; the second signal line is disposed on the Between the first insulating layer and the substrate.
  • the semiconductor unit is a PIN junction or a PN junction.
  • phased array antenna which includes the phase shifter described in any of the above embodiments.
  • FIG. 1A is a plan structure diagram of a phase shifter according to some embodiments of the present disclosure.
  • FIG. 1B is a plan structure diagram of another phase shifter according to some embodiments of the present disclosure.
  • Figure 2A shows a partial cross-sectional structural view taken along the line AA' in Figure 1A;
  • FIG. 2B shows another partial cross-sectional structural view taken along the line AA' in FIG. 1A;
  • FIG. 3 is a plan structure diagram of yet another phase shifter according to some embodiments of the present disclosure.
  • Figure 4 shows a partial cross-sectional structure view taken along the line BB' in Figure 3;
  • Fig. 5 is a plan structure diagram of yet another phase shifter according to some embodiments of the present disclosure.
  • Figure 6 shows a partial cross-sectional structure view taken along the line CC' in Figure 5;
  • Fig. 7 is a plan structure diagram of yet another phase shifter according to some embodiments of the present disclosure.
  • FIG. 8 shows a partial cross-sectional structure diagram taken along the line DD' in FIG. 7.
  • first and second are only used for descriptive purposes, and cannot be understood as indicating or implying relative importance or implicitly indicating the number of indicated technical features. Thus, the features defined with “first” and “second” may explicitly or implicitly include one or more of these features. In the description of the embodiments of the present disclosure, unless otherwise specified, “plurality” means two or more.
  • connection may be used when describing some embodiments to indicate that two or more components are in direct physical or electrical contact with each other.
  • the term “connected” may also mean that two or more components are not in direct contact with each other, but still cooperate or interact with each other.
  • the embodiments disclosed herein are not necessarily limited to the content of this document.
  • Figures 1A, 1B, and Figures 2A, 2B show the structure of a phase shifter according to some embodiments of the present disclosure, wherein Figure 1A is a schematic diagram of a plane structure of a phase shifter, and Figure 1B is another type of shifter. 2A is a partial cross-sectional view of AA' of the phase shifter in FIG. 1A, and FIG. 2B is another partial cross-sectional view of AA' of the phase shifter in FIG. 1A.
  • the phase shifter includes a substrate 101, a signal transmission structure 102 disposed on the substrate 101, and a phase adjustment structure.
  • the phase adjustment structure includes a conductive structure 103, at least one semiconductor structure 104, a first insulating layer 105 and at least one first bias line 106.
  • At least one semiconductor structure 104 is disposed between the signal transmission structure 102 and the conductive structure 103, and the orthographic projections of the signal transmission structure 102, the conductive structure 103, and the at least one semiconductor structure 104 on the substrate 101 overlap.
  • the first insulating layer 105 is disposed between the conductive structure 103 and the at least one semiconductor structure 104, and the orthographic projection of the first insulating layer 105 on the substrate 101 is at least the orthographic projection of the conductive structure 103 and the at least one semiconductor structure 104 on the substrate 101 In the overlapping area.
  • At least one first bias line 106 is electrically connected to the conductive structure 103, and the at least one first bias line 106 is configured to provide a required voltage signal to the conductive structure 103.
  • Each semiconductor structure 104 is configured to adjust the phase of a signal (for example, a microwave signal) transmitted by the signal transmission structure 102 according to the voltage applied by the signal transmission structure 102 and the conductive structure 103.
  • the semiconductor structure 104 and the signal transmission structure 102 are directly electrically connected. That is, the semiconductor structure 104 is provided on the surface of the signal transmission structure 102. In other embodiments, the semiconductor structure 104 is electrically connected to the signal transmission structure 102 through via holes.
  • the at least one semiconductor structure 104 includes a plurality of semiconductor structures 104, and the orthographic projections of the plurality of semiconductor structures 104 on the substrate 101 do not overlap each other.
  • the signal transmission structure 102, the conductive structure 103, and the orthographic projection of each semiconductor structure 104 on the substrate 10 have overlapping regions.
  • the first insulating layer 105 includes a plurality of parts, and each part is disposed between the conductive structure and a semiconductor structure 104.
  • each semiconductor structure 104 the signal transmission structure 102, the semiconductor structure 104, the conductive structure 103, and the portion of the first insulating layer 105 located between the conductive structure 103 and the semiconductor structure 104 form one based on the semiconductor structure 104 Equivalent capacitor.
  • the capacitance value of the equivalent capacitor By changing the capacitance value of the equivalent capacitor, the phase velocity of the microwave signal transmitted to the signal transmission structure 102 can be changed. Since the capacitance value of the equivalent capacitor is related to the length of the depletion region inside the semiconductor structure 104, and the length of the depletion region is related to the charge distribution inside the semiconductor structure 104, the equivalent capacitor can be adjusted by adjusting the charge distribution inside the semiconductor structure 104. The capacitance value of the capacitor.
  • the length of the depletion region in the semiconductor structure 104 can be changed according to the voltage applied by the signal transmission structure 102 and the conductive structure 103.
  • the capacitance value of the above-mentioned equivalent capacitor changes, so that the phase velocity of the microwave signal transmitted by the signal transmission structure 102 can be changed, and thus the phase of the microwave signal can be changed.
  • the voltage applied by the signal transmission structure 102 and the conductive structure 103 is changed, only the length of the depletion region changed by the redistribution of the charge inside the semiconductor structure 104 is involved, and the response speed can reach the order of microseconds.
  • the phase shifter of the present disclosure has a fast response speed and a large degree of phase shift.
  • the capacitor of the equivalent capacitor can be It can be adjusted, and the present disclosure does not limit the specific structure type of the semiconductor structure 104.
  • the semiconductor structure 104 may include a PIN junction.
  • the semiconductor structure 104 includes a P-type semiconductor layer, an N-type semiconductor layer, and an intrinsic semiconductor layer located between the P-type semiconductor layer and the N-type semiconductor layer stacked along the thickness direction of the substrate 101.
  • the semiconductor structure 104 may include a PN junction.
  • the semiconductor structure 104 includes a P-type semiconductor layer and an N-type semiconductor layer stacked along the thickness direction of the substrate 101.
  • the semiconductor structure 104 including a PIN junction or a PN junction
  • the bias signal loaded by the P-type semiconductor layer is lower than the bias signal loaded by the N-type semiconductor layer
  • change the difference between the two bias signals Then the capacitance value adjustment of the above-mentioned equivalent capacitor can be realized.
  • the adjustment speed of the capacitance value of the equivalent capacitor is faster, and the phase adjustment speed of the microwave signal transmitted by the signal transmission unit structure 102 is improved. Therefore, the response speed of the phase shifter of the embodiment of the present disclosure is fast.
  • the material of the first insulating layer 105 may be any suitable insulating material.
  • the material of the first insulating layer 105 includes at least one of silicon oxide, silicon nitride, or silicon oxynitride.
  • the material of the first bias line 106 includes a conductive material.
  • the material of the first bias line 106 includes metal materials such as copper, silver, aluminum, gold, and iron.
  • the material of the first bias line 106 includes conductive compound materials such as ITO (Indium tin oxide) and IZO (Indium zinc oxide).
  • the signal transmission structure 102 includes a first ground electrode 1022 and a first signal line 1021.
  • the first ground electrode 1022 and the first signal line 1021 are respectively disposed along the substrate 101. The opposite sides of the thickness direction.
  • the first ground electrode 1022 is disposed on the lower surface of the substrate 101
  • the first signal line 1021 is disposed on the side of the substrate 101 away from the first ground electrode 1022.
  • Each semiconductor structure 104 is electrically connected to the first signal line 1021 (for example, each semiconductor structure 104 is directly electrically connected to the first signal line 1021), and the orthographic projection of each semiconductor structure 104 on the substrate 101 and the first signal line 1021 The orthographic projections of a signal line 1021 on the substrate 101 all overlap. Based on this, the first signal line 1021, each semiconductor structure 104, the conductive structure 103, and the portion of the first insulating layer 105 located between the semiconductor structure 104 and the conductive structure 103 form the aforementioned equivalent capacitor.
  • the first ground electrode 1022 and the first signal line 1021 may be formed on different sides of the substrate 101 through processes such as sputtering and etching.
  • the materials of the first ground electrode 1022 and the first signal line 1021 may include metal materials such as copper, silver, aluminum, gold, and iron.
  • the materials of the first ground electrode 1022 and the first signal line 1021 may be the same or different.
  • the conductive structure 103 includes at least one first sub-conductive structure 1031, and the orthographic projection of each first sub-conductive structure 1031 on the substrate 101 and the first The orthographic projections of the signal lines 1021 on the substrate 101 all overlap.
  • the at least one first conductive substructure 1031 and the at least one semiconductor structure 104 are configured in a one-to-one correspondence.
  • the at least one first conductive substructure 1031 includes a plurality of first conductive substructures 1031, and the orthographic projections of the plurality of first conductive substructures 1031 on the substrate 101 do not overlap each other.
  • each first conductive substructure 1031 and its corresponding semiconductor structure 104, the portion of the first insulating layer 105 between the first conductive substructure 1031 and the corresponding semiconductor structure 104, and the first signal line 1021 constitute An equivalent capacitor, that is, the number of equivalent capacitors included in the phase shifter is the same as the number of semiconductor structures 104.
  • the shape of the first conductive sub-structure 1031 can be set according to actual needs, which is not limited in the embodiment of the present disclosure.
  • the shapes of the plurality of first conductive substructures 1031 are the same, that is, the shapes of any two of the first conductive substructures 1031 are the same.
  • the shapes of the plurality of first conductive substructures 1031 are different. For example, among the plurality of first conductive substructures 1031, any two first conductive substructures 1031 have different shapes.
  • the plurality of first conductive substructures 1031 includes at least three first conductive substructures 1031, wherein at least two of the first conductive substructures 1031 have the same shape, and the at least two first conductive substructures 1031 and The shapes of the remaining first conductive substructures 1031 are different.
  • the distance between two adjacent first sub-conductive structures 1031 can be set according to actual needs, which is not limited in the embodiment of the present disclosure. In some examples, the distance between any two adjacent first sub-conductive structures 1031 among the plurality of first sub-conductive structures 1031 is the same. In other examples, the distance between any two adjacent first sub-conductive structures 1031 among the plurality of first sub-conductive structures 1031 is different.
  • the length of the gap refers to the distance between two adjacent first sub-conductive structures 1031.
  • the material of the first sub-conductive structure 1031 may include metal materials such as copper, silver, aluminum, gold, iron, and the like.
  • the capacitance value of the equivalent capacitor can be expressed as:
  • C 1 is the capacitance value of the equivalent capacitor
  • d is the equivalent distance of the equivalent capacitor
  • ⁇ r is the relative dielectric constant
  • ⁇ 0 is the vacuum dielectric constant
  • S is the equivalent area of the equivalent capacitor.
  • the equivalent distance is related to the thickness of the semiconductor structure 104 and the thickness of the first insulating layer 105.
  • the charge distribution in the semiconductor structure 104 is not uniform, so the equivalent distance may be slightly smaller than the sum of the thickness of the semiconductor structure 104 and the first insulating layer 105.
  • the equivalent area is the area of the overlapping area of the orthographic projection of the first conductive sub-structure 1031 on the substrate 101 and the orthographic projection of the first signal line 1021 on the substrate 101. It can be seen from the above formula that the capacitance value of the equivalent capacitor is directly proportional to the relative dielectric constant and inversely proportional to the equivalent distance.
  • the relative dielectric constant of the equivalent capacitor formed is generally 2.58 to 3.6, and the thickness of the liquid crystal cell (ie, the equivalent distance of the equivalent capacitor) is greater than 5 microns .
  • the relative dielectric constant of the equivalent capacitor may be 10-20, and the equivalent distance of the equivalent capacitor About 0.1 to 2 microns. Therefore, without applying a bias voltage, the equivalent capacitance value of the equivalent capacitor in the phase shifter according to some embodiments of the present disclosure is at least 10 times the equivalent capacitance value of the liquid crystal phase shifter.
  • the phase shifter provided according to some embodiments of the present disclosure can obtain a wider adjustment range of the equivalent capacitance.
  • the phase shifter according to the embodiment of the present disclosure adjusts the capacitance value of the equivalent capacitor by adjusting the distribution of the charge in the semiconductor structure 104, the response speed of the phase shifter according to the embodiment of the present disclosure is faster than that of the liquid crystal phase shifter. The response speed of the device is fast.
  • the first signal line 1021 includes a main structure 10211 and at least one branch structure 10212.
  • the at least one branch structure 10212 is electrically connected to the main structure 10211, and the extension direction of the orthographic projection of each branch structure 10212 on the substrate 101 intersects the extension direction of the orthographic projection of the main structure 10211 on the substrate 101.
  • at least one branch structure 10212 and at least one first sub-conductive structure 1031 are configured in a one-to-one correspondence, and the orthographic projection of each branch structure 10212 on the substrate 101 corresponds to the first sub-conductive structure 1031 on the substrate 101. The orthographic projections on there overlap.
  • the at least one branch structure 10212 includes a plurality of branch structures 10212, and the orthographic projections of the plurality of branch structures 10212 on the substrate 101 do not overlap each other.
  • each first conductive substructure 1031 and its corresponding semiconductor structure 104, the branch structure 10212 corresponding to the first conductive substructure 1031, and the first insulating layer 105 are located in the first conductive substructure 1031 and its corresponding semiconductor structure 104 The part in between constitutes an equivalent capacitance.
  • the shape of the branch structure 10212 can be set according to actual needs, which is not limited in the embodiment of the present disclosure.
  • the shapes of the multiple branch structures 10212 are the same, that is, the shapes of any two branch structures 10212 are the same.
  • the shapes of the plurality of branch structures 10212 are different.
  • the plurality of branch structures 10212 includes at least three branch structures 10212, wherein the shapes of at least two branch structures 10212 are the same, and the shapes of the at least two branch structures 10212 and the remaining branch structures 10212 are different.
  • the distance between two adjacent branch structures 10212 can be set according to actual needs, which is not limited in the embodiment of the present disclosure. In some examples, the distance between any two adjacent branch structures 10212 in the plurality of branch structures 10212 is the same. In other examples, the distance between any two adjacent branch structures 10212 in the plurality of branch structures 10212 is different.
  • the length of the gap refers to the distance between two adjacent branch structures 10212.
  • the conductive structure 103 further includes at least one second sub-conductive structure 1032.
  • Each second conductive substructure 1032 is electrically connected to at least one first conductive substructure 1031.
  • the orthographic projection of the at least one second conductive substructure 1032 on the substrate 101 and the orthographic projection of the first signal line 1021 on the substrate 101 do not overlap.
  • the conductive structure 103 includes a plurality of first sub-conductive structures 1031 and a second sub-conductive structure 1032, and the plurality of first sub-conductive structures 1031 are all connected to the second sub-conductive structure. 1032 electrical connection.
  • the conductive structure 103 includes a plurality of first sub-conductive structures 1031 and a plurality of second sub-conductive structures 1032, each of the second sub-conductive structures 1032 and the plurality of first sub-structures At least one first sub-conductive structure 1031 in the conductive structure 1031 is electrically connected, and the first sub-conductive structure 1031 connected to the different second sub-conductive structure 1032 is different.
  • the number of first conductive substructures 1031 electrically connected to different second conductive substructures 1032 is not completely the same. For example, along the extension direction of the main structure 10211, the number of the first conductive substructures 1031 connected to each second conductive substructure 1032 gradually increases or decreases. In other examples, the number of first conductive substructures 1031 connected to each second conductive substructure 1032 is equal.
  • the material of the second sub-conductive structure 1032 may include metal materials such as copper, silver, aluminum, gold, iron, etc., which are not limited in the embodiment of the present disclosure.
  • the materials of the first conductive substructure 1031 and the second conductive substructure 1032 are the same to simplify the manufacturing process.
  • At least one first bias line 106 and at least one second sub-conductive structure 1032 are configured in a one-to-one correspondence, and each first bias line 106 is configured to correspond to a corresponding second sub-conductive structure 1032. Electric connection.
  • the phase shifter further includes a second bias line 107.
  • the second bias line 107 is configured to be electrically connected with the first signal line 1021.
  • the material of the second bias line 107 may include metal materials such as copper, silver, aluminum, gold, and iron, or conductive compound materials such as ITO (Indium Tin Oxide), IZO (Indium Zinc Oxide), etc. This is not the case in the embodiments of the present disclosure. Make a limit.
  • the potential difference between the two sides of the semiconductor structure 104 can be controlled, thereby changing the semiconductor structure 104
  • the charge distribution changes the capacitance value of the equivalent capacitor.
  • each second sub-conductive structure 1032 adjusts a phase shift correspondingly.
  • N the number of second conductive substructures 1032
  • 2N phase shifts can be obtained, so the bias signal loaded by the corresponding second conductive substructure 1032 can be controlled according to the magnitude of the phase shift to be adjusted, without The bias signal is applied to all the second conductive substructures 1032, so that the phase shifter in this embodiment is convenient to control and has low power consumption.
  • the phase shifter further includes a second insulating layer 108 disposed on the side of the conductive structure 103 away from the substrate 101.
  • the first bias line 106 may be electrically connected to the second sub-conductive structure 1032 through a via hole penetrating the second insulating layer 108.
  • the second bias line 107 may be electrically connected to the first signal line 1021 through a via hole penetrating the first insulating layer 105 and the second insulating layer 108.
  • the second insulating layer 108 can prevent the oxidation of the first conductive substructure 1031 and the second conductive substructure 1032, and avoid the phase shifter from being caused by metal materials. Loss caused by oxidation.
  • the material of the second insulating layer 108 may be any suitable electrical insulating material.
  • the material of the second insulating layer 108 may include at least one of silicon oxide, silicon nitride, or silicon oxynitride.
  • Figures 3 and 4 show the structure of a phase shifter according to some embodiments of the present disclosure, in which Figure 3 is a schematic diagram of a plan structure of the phase shifter, and Figure 4 is a diagram of the phase shifter along the line in Figure 3 A partial cross-sectional view of BB'.
  • the first signal line 1021 includes a plurality of signal line segment structures 10213 arranged at intervals, and the orthographic projection of the plurality of signal line segment structures 10213 on the substrate 101 does not exist. Overlap, and the orthographic projections of the plurality of signal line segment structures 10213 on a plane perpendicular to the extension direction of the first signal line 1021 all overlap. The end of each signal line segment structure 10213 opposite to the adjacent signal line segment structure 10213 is configured to correspond to one first sub-conductive structure 1031.
  • the conductive structure 103 may further include at least one third sub-conductive structure 1033, and the orthographic projection of the at least one third sub-conductive structure 1033 on the substrate 101 and the The orthographic projections of the multiple signal line segment structures 10213 on the substrate 101 do not overlap.
  • Each third conductive substructure 1033 is configured to be electrically connected to two adjacent first conductive substructures 1031.
  • each third conductive substructure 1033 is electrically connected to two adjacent first conductive substructures 1031 into one body.
  • each first conductive substructure 1031 and the corresponding semiconductor structure 104, one end of the signal line segment structure 10213 corresponding to the first conductive substructure 1031, and the first insulating layer 105 are located in the first conductive substructure 1031 and the corresponding semiconductor structure 104.
  • the portion between the corresponding semiconductor structures 104 constitutes an equivalent capacitance.
  • the material of the third sub-conductive structure 1033 may include metals such as copper, silver, aluminum, gold, iron, etc., which are not limited in the embodiments of the present disclosure.
  • the first sub-conductive structure 1031 and the third sub-conductive structure 1033 are made of the same material, and are fabricated by using the same layer and the same process to reduce the process difficulty.
  • the phase shifter may further include a plurality of third bias lines 110.
  • the plurality of third bias lines 110 and the plurality of signal line segment structures 10213 are configured in a one-to-one correspondence, and each third bias line 110 is electrically connected to a corresponding signal line segment structure 10213.
  • the at least one first bias line 106 and the at least one third sub-conductive structure 1033 are configured in a one-to-one correspondence, and each first bias line 106 and The corresponding third sub-conductive structure 1033 is electrically connected.
  • different third conductive substructures 1033 can load different bias signals to the first conductive substructure 1031 electrically connected to them through different first bias lines 106.
  • different signal line segment structures 10213 can be loaded with different bias signals through different third bias lines 110, so that different equivalent capacitors can be controlled separately, so that the microwave signal can be shifted after passing through different equivalent capacitors.
  • the phasors are different. Therefore, the bias signal loaded by the corresponding equivalent capacitor can be controlled according to the magnitude of the phase shift to be adjusted, that is, it is not necessary to load the bias signal to all the third sub-conductive structures 1033, and it is not necessary to apply the bias signal to all the signal line segment structures.
  • the 10213 loads the bias signal, so that the phase shifter in the embodiment of the present disclosure is further convenient to control, and the power consumption is further reduced.
  • the material of the third bias line 110 may include metal materials such as copper, silver, aluminum, gold, iron, or conductive compound materials such as ITO (Indium Tin Oxide), IZO (Indium Zinc Oxide), etc. Not limited.
  • the phase shifter further includes a flat layer 109 disposed between the substrate 101 and the first signal line 1021.
  • the signal line segment structure 10213 is disposed on a side of the planar layer 109 away from the substrate 101.
  • the first bias line 106 and the third bias line 110 are disposed between the substrate 101 and the flat layer 109, and the signal line segment structure 10213 is electrically connected to the third bias line 110 through a via hole penetrating the flat layer 109. connection.
  • the third sub-conductive structure 1033 is electrically connected to the first bias line 106 through a via hole penetrating the flat layer 109 and the first insulating layer 105.
  • the step difference caused by the first bias line 106 and the third bias line 110 can be reduced, the risk of breakage during film formation of other structures caused by the high step difference can be reduced, and the phase shifter can be improved.
  • the yield rate By providing the flat layer 109, the step difference caused by the first bias line 106 and the third bias line 110 can be reduced, the risk of breakage during film formation of other structures caused by the high step difference can be reduced, and the phase shifter can be improved.
  • the yield rate is the yield rate.
  • the material of the flat layer 109 may include inorganic materials such as silicon oxide, silicon nitride, aluminum oxide, or silicon oxynitride, which is not limited in the embodiments of the present disclosure.
  • the orthographic projection of the first bias line 106 on the substrate 101 and the orthographic projection of the third bias line 110 on the substrate 101 do not overlap.
  • FIG. 5 and 6 show the structure of a phase shifter according to some embodiments of the present disclosure, wherein FIG. 5 is a schematic diagram of a plan structure of the phase shifter, and FIG. 6 is a schematic diagram of the phase shifter along the line in FIG. 5.
  • a partial cross-sectional view of CC' in. 7 and 8 show the structure of another phase shifter according to some embodiments of the present disclosure, wherein FIG. 7 is a schematic diagram of a plan structure of the phase shifter, and FIG. 8 is a diagram along the line of the phase shifter.
  • the signal transmission structure 102 includes a second signal line 1023, and a second ground electrode 1024 and a third ground electrode 1025 disposed on opposite sides of the second signal line 1023 along its width direction.
  • the second signal line 1023, the second ground electrode 1024, and the third ground electrode 1025 are located on the same side of the substrate 101.
  • Each semiconductor structure 104 is electrically connected to the second signal line 1023.
  • the orthographic projection of each semiconductor structure 104 on the substrate 101 overlaps the orthographic projection of the second signal line 1023 on the substrate 101, and the orthographic projection of each semiconductor structure 104 on the substrate 101 overlaps with the second ground electrode 1024 and the second ground electrode 1024. There is no overlap in the orthographic projections of the third ground electrode 1025 on the substrate 101.
  • the second ground electrode 1024 and the third ground electrode 1025 are disposed on the surface of the first insulating layer 105 away from the second signal line 1023, and the second signal line 1023 is disposed on Between the first insulating layer 105 and the substrate 101.
  • the semiconductor structure 104 is disposed on the surface of the second signal line 1023 close to the first insulating layer 105.
  • the material of the second signal line 1023, the second ground electrode 1024, and the third ground electrode 1025 may include metal materials such as copper, silver, aluminum, gold, and iron.
  • the second signal line 1023, the second ground electrode 1024, and the third ground electrode 1025 may use the same metal material.
  • the conductive structure 103 includes at least one fourth sub-conductive structure 1034.
  • at least one fourth sub-conductive structure 1034 and at least one semiconductor structure 104 are configured in a one-to-one correspondence.
  • at least one fourth conductive substructure 1034 includes a plurality of fourth conductive substructures 1034
  • at least one semiconductor structure 104 includes a plurality of semiconductor structures 104.
  • each fourth sub-conductive structure 1034 and the correspondingly configured semiconductor structure 104, the portion of the first insulating layer 105 between the fourth sub-conductive structure 1034 and the correspondingly configured semiconductor structure 104, and the second signal line 1023 Form an equivalent capacitor.
  • the number of equivalent capacitors included in the phase shifter is the same as the number of semiconductor structures 104.
  • the shape of the fourth sub-conductive structure 1034 can be set according to actual needs, which is not limited in the embodiment of the present disclosure.
  • the shapes of the plurality of fourth conductive substructures 1034 are the same, that is, any two of the fourth conductive substructures 1034 have the same shape.
  • the shapes of the fourth conductive substructures 1034 are different.
  • any two fourth conductive substructures 1034 have different shapes.
  • the plurality of fourth conductive substructures 1034 includes at least three fourth conductive substructures 1034, wherein at least two of the fourth conductive substructures 1034 have the same shape, and the at least two fourth conductive substructures 1034 and The shapes of the remaining fourth sub-conductive structures 1034 are different.
  • the distance between two adjacent fourth sub-conductive structures 1034 can be set according to actual needs, which is not limited in the embodiment of the present disclosure. In some embodiments, the distance between any two adjacent fourth sub-conductive structures 1034 among the plurality of fourth sub-conductive structures 1034 is the same. In other embodiments, the distance between any two adjacent fourth sub-conductive structures 1034 among the plurality of fourth sub-conductive structures 1034 is different.
  • the length of the gap refers to the distance between two adjacent fourth conductive substructures 1034.
  • the material of the fourth sub-conductive structure 1034 may include metals such as copper, silver, aluminum, gold, iron, etc., which are not limited in the embodiments of the present disclosure.
  • the at least one first bias line 106 is configured to correspond to the at least one fourth sub-conductive structure 1034 one-to-one, and each first bias line 106 The line 106 is electrically connected to the corresponding fourth sub-conductive structure 1034.
  • at least one first bias line 106 includes a plurality of first bias lines 106
  • at least one fourth sub-conductive structure 1034 includes a plurality of fourth sub-conductive structures 1034.
  • each fourth conductive substructure 1034 can be loaded with a different bias signal, so that different equivalent capacitors can be controlled separately, so that the microwave signal passes through different levels.
  • the amount of phase shift after the effect capacitor is different. Therefore, the bias signal loaded by the corresponding equivalent capacitor can be controlled according to the magnitude of the phase shift to be adjusted, and there is no need to load the bias signal on all the fourth sub-conductive structures 1034, so that the phase shifter in this embodiment is Convenient to control, and low power consumption.
  • the phase shifter further includes a third insulating layer 112, the third insulating layer 112 is disposed between the second ground electrode 1024 and the fourth sub-conductive structure 1034, and the third ground electrode 1025 and Between the fourth sub-conductive structures 1034.
  • insulation is maintained between each fourth sub-conductive structure 1034 and the second ground electrode 1024, and between each fourth sub-conductive structure 1034 and the third ground electrode 1025.
  • first bias line 106 and the fourth sub-conductive structure 1034 are disposed on the same side of the third insulating layer 112.
  • each first bias line 106 is electrically connected to the corresponding fourth sub-conductive structure 1034 as a whole.
  • each fourth sub-conductive structure 1034 is configured to be electrically connected to the second ground electrode 1024 and the third ground electrode 1025.
  • the first bias line 106 is configured to be electrically connected to the fourth sub-conductive structure 1034 in the conductive structure 103 through the second ground electrode 1024 or the third ground electrode 1025.
  • the phase shifter further includes a fourth bias line 111, and the fourth bias line 111 is configured to be electrically connected to the second signal line 1023.
  • the material of the fourth bias line 111 may include metal materials such as copper, silver, aluminum, gold, iron, or conductive compound materials such as ITO (Indium Tin Oxide), IZO (Indium Zinc Oxide), etc. This is not the case in the embodiments of the present disclosure. Make a limit.
  • some embodiments of the present disclosure further provide a phased array antenna, which includes the phase shifter of any of the foregoing embodiments of the present disclosure.
  • a phased array antenna which includes the phase shifter of any of the foregoing embodiments of the present disclosure.
  • the phase shifter please refer to the corresponding description in the above embodiment, which will not be repeated here. It should be noted that the number of phase shifters included in the phased array antenna is determined according to actual requirements, and the embodiment of the present disclosure does not specifically limit it.

Landscapes

  • Semiconductor Integrated Circuits (AREA)
  • Variable-Direction Aerials And Aerial Arrays (AREA)

Abstract

一种移相器,包括:基底、设置于所述基底上的信号传输结构以及设置于所述基底上的相位调整结构;其中,所述相位调整结构包括导电结构、至少一个半导体结构、第一绝缘层以及至少一条第一偏压线;所述至少一个半导体结构设置于所述信号传输结构与所述导电结构之间;所述信号传输结构、所述导电结构以及所述至少一个半导体结构在所述基底上的正投影存在交叠;所述第一绝缘层设置于所述导电结构与所述至少一个半导体结构之间;所述第一绝缘层在所述基底上的正投影至少位于所述导电结构与所述至少一个半导体结构在所述基底上的正投影的交叠区域中;所述至少一条第一偏压线与所述导电结构电连接。

Description

一种移相器和相控阵天线
本申请要求于2019年11月29日提交的、申请号为201911207745.4的中国专利申请的优先权,其全部内容通过引用结合在本申请中。
技术领域
本公开涉及通信技术领域,尤其涉及一种移相器和相控阵天线。
背景技术
移相器能够改变电磁波信号相位,广泛应用于雷达、卫星通信、移动通信等领域。在相控阵天线中,移相器用于控制天线阵列中各路信号的相位,可以使辐射波束进行电扫描,是相控阵天线的重要组成器件。理想的移相器应具有较小的损耗,且在不同的相位状态应有几乎相同的损耗。此外,理想的移相器还应满足移相速度快、所需控制功率小的要求。
发明内容
一方面,提供一种移相器,包括:基底、设置于所述基底上的信号传输结构以及设置于所述基底上的相位调整结构;其中,所述相位调整结构包括导电结构、至少一个半导体结构、第一绝缘层以及至少一条第一偏压线;所述至少一个半导体结构设置于所述信号传输结构与所述导电结构之间;所述信号传输结构、所述导电结构以及所述至少一个半导体结构在所述基底上的正投影存在交叠;所述第一绝缘层设置于所述导电结构与所述至少一个半导体结构之间;所述第一绝缘层在所述基底上的正投影至少位于所述导电结构与所述至少一个半导体结构在所述基底上的正投影的交叠区域中;所述至少一条第一偏压线与所述导电结构电连接。
在一些实施例中,所述信号传输结构包括第一地电极和第一信号线,所述第一地电极和所述第一信号线分别设置于所述基底沿其厚度方向的相对两侧;每个半导体结构均与所述第一信号线电连接;每个半导体结构与所述第一信号线在所述基底上的正投影均存在交叠。
在一些实施例中,所述移相器还包括第二偏压线,所述第二偏压线与所述第一信号线电连接。
在一些实施例中,所述导电结构包括至少一个第一子导电结构,每个第一子导电结构与所述第一信号线在所述基底上的正投影均存在交叠;所述至少一个第一子导电结构与所述至少一个半导体结构被配置为一一对应。
在一些实施例中,所述第一信号线包括主体结构和至少一个分支结构;所述至少一个分支结构与所述主体结构电连接,每个分支结构在所述基底上的正投影的延伸方向与所述主体结构在所述基底上的正投影的延伸方向相交;所述至少一个分支结构与所述至少一个第一子导电结构被配置为一一对应,且每个分支结构与对应的第一子导电结构在所述基底上的正投影存在交叠。
在一些实施例中,所述导电结构还包括至少一个第二子导电结构;所述至少一个第二子导电结构与所述第一信号线在所述基底上的正投影无交叠;每个第二子导电结构与至少一个第一子导电结构电连接。
在一些实施例中,所述至少一个第一子导电结构包括多个第一子导电结构;所述至少一个第二子导电结构包括多个第二子导电结构,每个第二子导电结构与所述多个第一子导电结构中的至少一个第一子导电结构电连接,且不同的第二子导电结构电连接的第一子导电结构不同。
在一些实施例中,不同的第二子导电结构电连接的第一子导电结构的数量不完全相同。
在一些实施例中,所述至少一条第一偏压线与所述至少一个第二子导电结构被配置为一一对应,且每条第一偏压线与对应的第二子导电结构电连接。
在一些实施例中,所述第一信号线包括间隔设置的多个信号线片段结构,所述多个信号线片段在所述基底上的正投影不存在交叠,且所述多个信号线片段在垂直于所述第一信号线的延伸方向的平面上的正投影均存在交叠;每个信号线片段结构与相邻信号线片段结构相对的一端均被配置为与一个第一子导电结构对应。
在一些实施例中,所述导电结构还包括至少一个第三子导电结构;所述至少一个第三子导电结构与所述多个信号线片段结构在所述基底上的正投影不存在交叠;每个第三子导电结构与相邻的两个第一子导电结构电连接。
在一些实施例中,所述移相器还包括多条第三偏压线;所述多条第三偏压线与所述多个信号线片段结构被配置为一一对应,且每条第三偏压线与对应的一个信号线片段结构电连接;所述至少一条第一偏压线与所述至少一个第三子导电结构被配置为一一对应,且每条第一偏压线与对应的第三子导电结构电连接。
在一些实施例中,所述信号传输结构包括第二信号线,以及设置于所 述第二信号线沿其宽度方向的相对两侧的第二地电极和第三地电极;所述第二信号线、所述第二地电极和所述第三地电极位于所述基底的同一侧;每个半导体结构均与所述第二信号线电连接;所述半导体结构与所述第二信号线在所述基底上的正投影存在交叠,且所述半导体结构与所述第二地电极及所述第三地电极在所述基底上的正投影均不存在交叠。
在一些实施例中,所述导电结构包括至少一个第四子导电结构,每个第四子导电结构与所述第二信号线在所述基底上的正投影均存在交叠;其中,所述至少一个第四子导电结构与所述至少一个半导体结构被配置为一一对应。
在一些实施例中,所述移相器还包括第四偏压线,所述第四偏压线与所述第二信号线电连接。
在一些实施例中,所述至少一条第一偏压线与所述至少一个第四子导电结构被配置为一一对应,且每条第一偏压线与对应的第四子导电结构电连接。
在一些实施例中,每个第四子导电结构均与所述第二地电极和所述第三地电极电连接;所述第一偏压线被配置为与所述第二地电极或所述第三地电极电连接。
在一些实施例中,所述第二地电极和所述第三地电极设置于所述第一绝缘层的远离所述第二信号线的一侧表面上;所述第二信号线设置于所述第一绝缘层与所述基底之间。
在一些实施例中,所述半导体单元为PIN结或PN结。
另一方面,提供一种相控阵天线,包括以上任一实施例所述的移相器。
附图说明
为了更清楚地说明本公开中的技术方案,下面将对本公开一些实施例中所需要使用的附图作简单地介绍,显而易见地,下面描述中的附图仅仅是本公开的一些实施例的附图,对于本领域普通技术人员来讲,还可以根据这些附图获得其他的附图。此外,以下描述中的附图可以视作示意图,并非对本公开实施例所涉及的产品的实际尺寸、方法的实际流程、信号的实际时序等的限制。
图1A为根据本公开一些实施例的一种移相器的平面结构图;
图1B为根据本公开一些实施例的另一种移相器的平面结构图;
图2A示出了一种沿图1A中AA'线所截的局部截面结构图;
图2B示出了另一种沿图1A中AA'线所截的局部截面结构图;
图3为根据本公开一些实施例的又一种移相器的平面结构图;
图4示出了沿图3中BB'线所截的局部截面结构图;
图5为根据本公开一些实施例的又一种移相器的平面结构图;
图6示出了沿图5中CC'线所截的局部截面结构图;
图7为根据本公开一些实施例的又一种移相器的平面结构图;
图8示出了沿图7中DD'线所截的局部截面结构图。
具体实施方式
下面将结合附图,对本公开一些实施例中的技术方案进行清楚、完整地描述,显然,所描述的实施例仅仅是本公开一部分实施例,而不是全部的实施例。基于本公开所提供的实施例,本领域普通技术人员所获得的所有其他实施例,都属于本公开保护的范围。
除非上下文另有要求,否则,在整个说明书和权利要求书中,术语“包括(comprise)”及其其他形式例如第三人称单数形式“包括(comprises)”和现在分词形式“包括(comprising)”被解释为开放、包含的意思,即为“包含,但不限于”。在说明书的描述中,术语“一个实施例(one embodiment)”、“一些实施例(some embodiments)”、“示例性实施例(exemplary embodiments)”、“示例(example)”、“特定示例(specific example)”或“一些示例(some examples)”等旨在表明与该实施例或示例相关的特定特征、结构、材料或特性包括在本公开的至少一个实施例或示例中。上述术语的示意性表示不一定是指同一实施例或示例。此外,所述的特定特征、结构、材料或特点可以以任何适当方式包括在任何一个或多个实施例或示例中。
以下,术语“第一”、“第二”仅用于描述目的,而不能理解为指示或暗示相对重要性或者隐含指明所指示的技术特征的数量。由此,限定有“第一”、“第二”的特征可以明示或者隐含地包括一个或者更多个该特征。在本公开实施例的描述中,除非另有说明,“多个”的含义是两个或两个以上。
在描述一些实施例时,可能使用了“连接”及其衍伸的表达。例如,描述一些实施例时可能使用了术语“连接”以表明两个或两个以上部件彼此间有直接物理接触或电接触。然而,术语“连接”也可能指两个或两个以上部件彼此间并无直接接触,但仍彼此协作或相互作用。这里所公开的实施例并不必然限制于本文内容。
本文中“被配置为”的使用意味着开放和包容性的语言,其不排除适用于或被配置为执行额外任务或步骤的设备。
另外,“基于”的使用意味着开放和包容性,因为“基于”一个或多个 所述条件或值的过程、步骤、计算或其他动作在实践中可以基于额外条件或超出所述的值。
如本文所使用的那样,“约”或“近似”包括所阐述的值以及处于特定值的可接受偏差范围内的平均值,其中所述可接受偏差范围如由本领域普通技术人员考虑到正在讨论的测量以及与特定量的测量相关的误差(即,测量系统的局限性)所确定。
本文参照作为理想化示例性附图的剖视图和/或平面图描述了示例性实施方式。在附图中,为了清楚,放大了各结构的尺寸。此外,示例性实施方式不应解释为局限于本文示出的各结构的形状,而是包括因例如制造而引起的形状偏差。附图中所示的区域本质上是示意性的,并非旨在限制示例性实施方式的范围。
图1A、图1B和图2A、图2B示出了根据本公开的一些实施例的移相器的结构,其中,图1A为一种移相器的平面结构示意图,图1B为另一种移相器的平面结构示意图,图2A为图1A中移相器的AA'的一种局部截面图,图2B为沿图1A中移相器的AA'的另一种局部截面图。
本公开的一些实施例提供一种移相器。如图1A~1B和图2A~2B所示,移相器包括基底101、设置于基底101上的信号传输结构102和相位调整结构。相位调整结构包括导电结构103、至少一个半导体结构104、第一绝缘层105和至少一条第一偏压线106。
至少一个半导体结构104设置于信号传输结构102与导电结构103之间,且信号传输结构102、导电结构103以及至少一个半导体结构104在基底101上的正投影存在交叠。第一绝缘层105设置于导电结构103与至少一个半导体结构104之间,且第一绝缘层105在基底101上的正投影至少位于导电结构103与至少一个半导体结构104在基底101上的正投影的交叠区域中。至少一条第一偏压线106与导电结构103电连接,该至少一条第一偏压线106被配置为向导电结构103提供所需的电压信号。每个半导体结构104被配置为根据信号传输结构102与导电结构103所加载的电压,对信号传输结构102传输的信号(例如微波信号)的相位进行调整。
在一些实施例中,半导体结构104与信号传输结构102直接电连接。即,半导体结构104设置在信号传输结构102的表面。在另一些实施例中,半导体结构104通过过孔与信号传输结构102电连接。
在一些实施例中,至少一个半导体结构104包括多个半导体结构104, 多个半导体结构104在基底101上的正投影互不交叠。信号传输结构102、导电结构103以及每个半导体结构104在基底10上的正投影存在交叠区域。第一绝缘层105包括多个部分,每个部分设置于导电结构与一个半导体结构104之间。
在每个半导体结构104的位置,信号传输结构102、该半导体结构104、导电结构103、以及第一绝缘层105位于导电结构103和该半导体结构104之间的部分形成基于该半导体结构104的一个等效电容器。通过改变等效电容器的电容值,可以改变对信号传输结构102传输的微波信号的相速度。由于等效电容器的电容值与半导体结构104内部的耗尽区长度有关,而耗尽区长度与半导体结构104内部的电荷的分布有关,因而可以通过调节半导体结构104内部的电荷分布来调节等效电容器的电容值。
在本公开的实施例中,半导体结构104内耗尽区长度可根据信号传输结构102和导电结构103施加的电压变化而改变。当半导体结构104内耗尽区长度改变后,上述等效电容器的电容值发生改变,从而可以改变信号传输结构102传输的微波信号的相速度,进而改变微波信号的相位。当改变信号传输结构102和导电结构103施加的电压时,仅涉及半导体结构104内部的电荷的重新分布所改变的耗尽区的长度,响应速度可达到微秒级。此外,由于半导体结构104的厚度较小,使得信号传输结构102和导电结构103之间的等效距离较小,从而使得该等效电容器的电容值较大。由此,本公开的移相器响应速度快,且移相度大。
对应半导体结构104的具体结构,只要能够与信号传输结构102和导电结构103一起形成等效电容器,并通过控制施加在信号传输结构102和导电结构103上的电压,使该等效电容器的电容器可调即可,本公开对半导体结构104的具体结构类型不做限定。在一些实施例中,半导体结构104可以包括PIN结。在一些示例中,半导体结构104包括沿基底101厚度方向层叠设置的P型半导体层、N型半导体层以及位于P型半导体层和N型半导体层之间的本征半导体层。在另一些实施例中,半导体结构104可以包括PN结。在一些示例中,半导体结构104包括沿基底101厚度方向层叠设置的P型半导体层和N型半导体层。
对于包括PIN结或PN结的半导体结构104,在P型半导体层加载的偏压信号低于N型半导体层加载的偏压信号的前提下,改变这两个偏压信号之间的差值,即可实现上述等效电容器的电容值调节。采用本公开实施例的移相器,等效电容器的电容值的调节速度较快,提高了信号传输单元结构102传 输的微波信号的相位调整速度。因此,本公开实施例的移相器的响应速度快。
在导电结构103与半导体结构104之间设置第一绝缘层105,可以避免导电结构103与半导体结构104直接电连接而造成的微波信号传输的损耗。在一些示例中,第一绝缘层105的材料可以是任何合适的绝缘材料。例如,第一绝缘层105的材料包括氧化硅、氮化硅或氮氧化硅中的至少一种。
第一偏压线106的材料包括导电材料。在一些示例中,第一偏压线106的材料包括如铜、银、铝、金、铁等金属材料。在一些示例中,第一偏压线106的材料包括ITO(Indium tin oxide,氧化铟锡)、IZO(Indium zinc oxide,氧化铟锌)等导电化合物材料。
在一些实施例中,如图1A以及2A~2B所示,信号传输结构102包括第一地电极1022和第一信号线1021,第一地电极1022和第一信号线1021分别设置于基底101沿其厚度方向的相对两侧。示例的,第一地电极1022设置于基底101的下表面,第一信号线1021设置于基底101远离第一地电极1022的一侧。每个半导体结构104均与第一信号线1021电连接(示例的,每个半导体结构104均与第一信号线1021直接电连接),且每个半导体结构104在基底101上的正投影与第一信号线1021在基底101上的正投影均存在交叠。基于此,第一信号线1021、每个半导体结构104、导电结构103、以及第一绝缘层105位于半导体结构104与导电结构103之间的部分形成上述等效电容器。
在一些示例中,第一地电极1022与第一信号线1021可以通过溅射、刻蚀等工艺形成在基底101的不同侧。
在一些示例中,第一地电极1022与第一信号线1021的材料可以包括诸如铜、银、铝、金、铁等金属材料。第一地电极1022与第一信号线1021的材料可以相同也可以不同。
在一些实施例中,如图1A~1B和图2A~2B所示,导电结构103包括至少一个第一子导电结构1031,每个第一子导电结构1031在基底101上的正投影与第一信号线1021在基底101上的正投影均存在交叠。至少一个第一子导电结构1031与至少一个半导体结构104被配置为一一对应。
在一些示例中,至少一个第一子导电结构1031包括多个第一子导电结构1031,多个第一子导电结构1031在基底101上的正投影互不交叠。由此,每个第一子导电结构1031以及与其对应的半导体结构104、第一绝缘层105位于该第一子导电结构1031以及与其对应的半导体结构104之间的部分、第一信号线1021构成一个等效电容器,也就是说,移相器包含的等效电容器的数 量与半导体结构104的数量相同。
第一子导电结构1031的形状可根据实际需要设置,本公开实施例对此不做限定。在一些示例中,多个第一子导电结构1031的形状相同,即其中任意两个第一子导电结构1031的形状都是相同的。在另一些示例中,多个第一子导电结构1031的形状不同。示例的,在多个第一子导电结构1031中,任意两个第一子导电结构1031的形状都不相同。又示例的,多个第一子导电结构1031包括至少三个第一子导电结构1031,其中至少两个第一子导电结构1031的形状相同,且所述至少两个第一子导电结构1031与其余第一子导电结构1031的形状都不相同。
相邻的两个第一子导电结构1031之间的距离可根据实际需要设置,本公开实施例对此不做限定。在一些示例例中,多个第一子导电结构1031中任意相邻的两个第一子导电结构1031之间的距离相同。在另一些示例中,多个第一子导电结构1031中任意相邻的两个第一子导电结构1031之间的距离不同。
在另一些示例中,多个第一子导电结构1031中由每相邻的两个第一子导电结构1031形成的所有间隙中,至少两个间隙的长度相同,至少两个间隙的长度不同。这里,间隙的长度即指相邻两个第一子导电结构1031之间的距离。
在一些示例中,第一子导电结构1031的材料可以包括如铜、银、铝、金、铁等的金属材料。
根据平行板电容器的电容值计算公式,等效电容器的电容值可以表示为:
Figure PCTCN2020130871-appb-000001
上式中,C 1为等效电容器的电容值,d为等效电容器的等效距离,ε r为相对介电常数,ε 0为真空介电常数,S为等效电容器的等效面积。例如,等效距离与半导体结构104的厚度以及第一绝缘层105的厚度有关。在一些情况下,半导体结构104中的电荷分布不均匀,因此等效距离可能略小于半导体结构104与第一绝缘层105的厚度之和。例如,等效面积为该第一子导电结构1031在基底101上的正投影和该第一信号线1021在基底101上的正投影的交叠区域的面积。从上式可以看出,等效电容器的电容值与相对介电常数成正比,与等效距离成反比。
对于相关技术中的其他移相器,例如液晶移相器,形成的等效电容器的相对介电常数一般为2.58~3.6,液晶盒的厚度(即,等效电容器的等效距离)大于5微米。在根据本公开的一些实施例的移相器中,在半导体结构104包括PIN结或PN结等的情况下,等效电容器的相对介电常数可以为10~20,等 效电容器的等效距离约为0.1~2微米。因此,在不施加偏压的情况下,根据本公开的一些实施例的移相器中的等效电容器的等效电容值至少是液晶移相器的等效电容值的10倍。因此,与相关技术中的液晶移相器相比,根据本公开的一些实施例提供的移相器可以获得更宽的等效电容的调节范围。另外,由于根据本公开的实施例的移相器通过调节半导体结构104中的电荷的分布来调节等效电容器的电容值,因此根据本公开的实施例的移相器的响应速度比液晶移相器的响应速度快。
在一些实施例中,如图1A~1B所示,第一信号线1021包括主体结构10211和至少一个分支结构10212。所述至少一个分支结构10212与主体结构10211电连接,且每个分支结构10212在基底101上的正投影的延伸方向均与主体结构10211在基底101上的正投影的延伸方向相交。在一些示例中,至少一个分支结构10212与至少一个第一子导电结构1031被配置为一一对应,每个分支结构10212在基底101上的正投影与对应的第一子导电结构1031在基底101上的正投影存在交叠。
在一些示例中,至少一个分支结构10212包括多个分支结构10212,且多个分支结构10212在基底101上的正投影互不交叠。由此,每个第一子导电结构1031以及与其对应的半导体结构104、该第一子导电结构1031对应的分支结构10212以及第一绝缘层105位于第一子导电结构1031与其对应的半导体结构104之间的部分构成一个等效电容。
分支结构10212的形状可以根据实际需要设置,本公开实施例对此不做限定。在一些示例中,多个分支结构10212的形状相同,即其中任意两个分支结构10212的形状均相同。在另一些示例中,多个分支结构10212的形状不同。示例的,在多个分支结构10212中,任意两个分支结构10212的形状都不相同。又示例的,多个分支结构10212包括至少三个分支结构10212,其中至少两个分支结构10212的形状相同,且所述至少两个分支结构10212与其余分支结构10212的形状都不相同。
相邻的两个分支结构10212之间的距离可根据实际需要设置,本公开实施例对此不做限定。在一些示例中,多个分支结构10212中任意相邻的两个分支结构10212之间的距离相同。在另一些示例中,多个分支结构10212中任意相邻的两个分支结构10212之间的距离不同。
在另一些示例中,多个分支结构10212中由每相邻的两个分支结构10212形成的所有间隙中,至少两个间隙的长度相同,至少两个间隙的长度不同。这里,间隙的长度即指相邻两个分支结构10212之间的距离。
在一些实施例中,如图1A~1B所示,导电结构103还包括至少一个第二子导电结构1032。每个第二子导电结构1032与至少一个第一子导电结构1031电连接。至少一个第二子导电结构1032在基底101上的正投影与第一信号线1021在基底101上的正投影无交叠。
在一些实施例中,如图1A所示,导电结构103包括多个第一子导电结构1031和一个第二子导电结构1032,该多个第一子导电结构1031均与该第二子导电结构1032电连接。
在另一些实施例中,如图1B所示,导电结构103包括多个第一子导电结构1031和多个第二子导电结构1032,每个第二子导电结构1032与该多个第一子导电结构1031中的至少一个第一子导电结构1031电连接,且不同第二子导电结构1032所连接的第一子导电结构1031不同。在一些示例中,不同的第二子导电结构1032电连接的第一子导电结构1031的数量不完全相同。示例的,沿主体结构10211的延伸方向,每个第二子导电结构1032连接的第一子导电结构1031的数量逐渐增加或逐渐减少。在另一些示例中,每个第二子导电结构1032连接的第一子导电结构1031的数量相等。
在一些示例中,第二子导电结构1032的材料可以包括如铜、银、铝、金、铁等的金属材料,本公开实施例对此不做限定。在一些示例中,第一子导电结构1031和第二子导电结构1032的材料相同,以简化制作工艺。
在一些实施例中,至少一条第一偏压线106与至少一个第二子导电结构1032被配置为一一对应,每条第一偏压线106被配置为与对应的第二子导电结构1032电连接。
在一些实施例中,如图1A~1B和2A~2B所示,移相器还包括第二偏压线107。第二偏压线107被配置为与第一信号线1021电连接。
第二偏压线107的材料可以包括如铜、银、铝、金、铁等金属材料,或ITO(氧化铟锡)、IZO(氧化铟锌)等导电化合物材料,本公开实施例对此不做限定。
通过第一偏压线106及第二偏压线107分别向第二子导电结构1032及第一信号线1021加载偏压信号,可以控制半导体结构104两侧的电势差,从而改变半导体结构104中的电荷分布,进而改变等效电容器的电容值。
由于不同的第一偏压线106可以向不同的第二子导电结构1032加载不同的偏压信号,使得不同的等效电容器可以分别进行控制,进而使得微波信号经过不同的等效电容器后的移相量不同,即每一个第二子导电结构1032对应调整一个移相量。当第二子导电结构1032的数量为N时,可以获得2N个移 相量,故可以根据要调整的相移量的大小控制相应的第二子导电结构1032被加载的偏压信号,而无需对所有的第二子导电结构1032加载偏压信号,从而使得本实施例中的移相器方便控制,且功耗较小。
在一些实施例中,如图2B所示,移相器还包括设置于导电结构103远离基底101一侧的第二绝缘层108。第一偏压线106可以通过贯穿第二绝缘层108的过孔与第二子导电结构1032电连接。第二偏压线107可以通过贯穿第一绝缘层105与第二绝缘层108的过孔与第一信号线1021电连接。由于第一子导电结构1031及第二子导电结构1032均为金属材料,第二绝缘层108可以防止第一子导电结构1031及第二子导电结构1032的氧化,避免了移相器因金属材料氧化所导致的损耗。
第二绝缘层108的材料可以是任何合适的电绝缘材料。例如,第二绝缘层108的材料可以包括氧化硅、氮化硅或氮氧化硅中的至少一种。
图3和图4示出了根据本公开的一些实施例的移相器的结构,其中,图3为该移相器的一种平面结构示意图,图4为该移相器沿图3中的BB'的一种局部截面图。
在一些实施例中,如图3和图4所示,第一信号线1021包括间隔设置的多个信号线片段结构10213,所述多个信号线片段结构10213在基底101上的正投影不存在交叠,且所述多个信号线片段结构10213在垂直于第一信号线1021的延伸方向的平面上的正投影均存在交叠。每个信号线片段结构10213与相邻的信号线片段结构10213相对的一端均被配置为与一个第一子导电结构1031对应。
在一些实施例中,如图3和图4所示,导电结构103还可以包括至少一个第三子导电结构1033,所述至少一个第三子导电结构1033在基底101上的正投影与所述多个信号线片段结构10213在基底101上的正投影不存在交叠。每个第三子导电结构1033被配置为与相邻的两个第一子导电结构1031电连接。例如,每个第三子导电结构1033与相邻的两个第一子导电结构1031电连接为一体。
相应地,每个第一子导电结构1031以及与其对应的半导体结构104、该第一子导电结构1031对应的信号线片段结构10213的一端、第一绝缘层105位于第一子导电结构1031以及与其对应的半导体结构104之间的部分构成一个等效电容。
在一些实施例中,第三子导电结构1033的材料可以包括如铜、银、铝、金、铁等的金属,本公开实施例对此不做限定。在一些示例中,第一子导电 结构1031及第三子导电结构1033的材料相同,并采用同层同工艺的方法制作,以降低工艺难度。
在一些实施例中,如图3所示,移相器还可以包括多条第三偏压线110。所述多条第三偏压线110与所述多个信号线片段结构10213被配置为一一对应,且每条第三偏压线110与对应的一个信号线片段结构10213电连接。
在一些实施例中,如图3所示,所述至少一条第一偏压线106与所述至少一个第三子导电结构1033被配置为一一对应,且每条第一偏压线106与对应的第三子导电结构1033电连接。
在第三子导电结构1033为多个的情况下,由于不同的第三子导电结构1033可以通过不同的第一偏压线106加载不同的偏压信号至与其电连接的第一子导电结构1031,且不同的信号线片段结构10213可以通过不同的第三偏压线110加载不同的偏压信号,使得不同的等效电容器可以分别进行控制,进而使得微波信号经过不同的等效电容器后的移相量不同。因此,可以根据要调整的相移量的大小控制相应的等效电容器被加载的偏压信号,即无需对所有的第三子导电结构1033加载偏压信号,并且无需对所有的信号线片段结构10213加载偏压信号,从而使得本公开实施例中的移相器进一步方便控制,且功耗进一步减小。
第三偏压线110的材料可以包括如铜、银、铝、金、铁等金属材料,或ITO(氧化铟锡)、IZO(氧化铟锌)等的导电化合物材料,本公开实施例对此不做限定。
在一些实施例中,如图4所示,移相器还包括设置于基底101与第一信号线1021之间的平坦层109。在一些示例中,信号线片段结构10213设置于平坦层109远离基底101的一侧。
在一些示例中,第一偏压线106及第三偏压线110设置于基底101与平坦层109之间,信号线片段结构10213通过贯穿平坦层109的过孔与第三偏压线110电连接。第三子导电结构1033通过贯穿平坦层109与第一绝缘层105的过孔与第一偏压线106电连接。
通过设置平坦层109,可以减小因第一偏压线106及第三偏压线110而造成的段差,降低了因高段差导致的其他结构的成膜时的断裂风险,提升了移相器的良率。
在一些实施例中,平坦层109的材料可以包括氧化硅、氮化硅、氧化铝或氮氧化硅等无机材料,本公开实施例对此不做限定。
在一些实施例中,第一偏压线106在基底101上的正投影与第三偏压线 110在基底101上的正投影不存在交叠。
图5和图6示出了根据本公开的一些实施例的一种移相器的结构,其中,图5为该移相器的一种平面结构示意图,图6为该移相器沿图5中的CC'的一种局部截面图。图7和图8示出了根据本公开的一些实施例的另一种移相器的结构,其中,图7为该移相器的一种平面结构示意图,图8为该移相器沿图5中的DD'的一种局部截面图。
如图5-8所示,信号传输结构102包括第二信号线1023,以及设置于第二信号线1023沿其宽度方向的相对两侧的第二地电极1024和第三地电极1025。第二信号线1023、第二地电极1024和第三地电极1025位于基底101的同一侧。每个半导体结构104均与第二信号线1023电连接。每个半导体结构104在基底101上的正投影与第二信号线1023在基底101上的正投影均存在交叠,且每个半导体结构104在基底101上的正投影与第二地电极1024及第三地电极1025在基底101上的正投影均不存在交叠。
在一些示例中,如图6和图8所示,第二地电极1024和第三地电极1025设置于第一绝缘层105的远离第二信号线1023的表面上,第二信号线1023设置于第一绝缘层105与基底101之间。示例的,半导体结构104设置在第二信号线1023靠近第一绝缘层105的表面上。
在一些实施例中,第二信号线1023、第二地电极1024、第三地电极1025的材料可以包括诸如铜、银、铝、金、铁等金属材料。在一些示例中,为简化工艺,第二信号线1023、第二地电极1024以及第三地电极1025可以采用同一种金属材料。
在一些实施例中,如图5和图7所示,导电结构103包括至少一个第四子导电结构1034。每个第四子导电结构1034在基底101上的正投影与第二信号线1023在基底101上的正投影均存在交叠。在一些示例中,至少一个第四子导电结构1034与至少一个半导体结构104被配置为一一对应。例如,至少一个第四子导电结构1034包括多个第四子导电结构1034,至少一个半导体结构104包括多个半导体结构104。
相应地,每个第四子导电结构1034以及与其对应配置的半导体结构104、第一绝缘层105位于第四子导电结构1034以及与其对应配置的半导体结构104之间的部分、第二信号线1023构成一个等效电容器。也就是说,移相器包含的等效电容器的数量与半导体结构104的数量相同。
第四子导电结构1034的形状可根据实际需要设置,本公开实施例对此不做限定。在一些实施例中,多个第四子导电结构1034的形状相同,即其中任 意两个第四子导电结构1034的形状均相同。在另一些实施例中,多个第四子导电结构1034的形状不同。示例的,在多个第四子导电结构1034中,任意两个第四子导电结构1034的形状都不相同。又示例的,多个第四子导电结构1034包括至少三个第四子导电结构1034,其中至少两个第四子导电结构1034的形状相同,且所述至少两个第四子导电结构1034与其余第四子导电结构1034的形状都不相同。
相邻的两个第四子导电结构1034之间的距离可根据实际需要设置,本公开实施例对此不做限定。在一些实施例中,多个第四子导电结构1034中任意相邻的两个第四子导电结构1034之间的距离相同。在另一些实施例中,多个第四子导电结构1034中任意相邻的两个第四子导电结构1034之间的距离不同。
在另一些示例中,多个第四子导电结构1034中由每相邻的两个第四子导电结构1034形成的所有间隙中,至少两个间隙的长度相同,至少两个间隙的长度不同。这里,间隙的长度即指相邻两个第四子导电结构1034之间的距离。
在一些实施例中,第四子导电结构1034的材料可以包括如铜、银、铝、金、铁等金属,本公开实施例对此不做限定。
在一些实施例中,如图7和图8所示,所述至少一条第一偏压线106被配置为与所述至少一个第四子导电结构1034一一对应,且每条第一偏压线106与对应的第四子导电结构1034电连接。在一些示例中,至少一条第一偏压线106包括多个第一偏压线106,至少一个第四子导电结构1034包括多个第四子导电结构1034。
在第四子导电结构1034为多个的情况下,每个第四子导电结构1034可以被加载不同的偏压信号,使得不同的等效电容器可以分别进行控制,进而使得微波信号经过不同的等效电容器后的移相量不同。因此,可以根据要调整的相移量的大小控制相应的等效电容器被加载的偏压信号,无需对所有的第四子导电结构1034加载偏压信号,从而使得本实施例中的移相器方便控制,且功耗较小。
在一些示例中,如图8所示,移相器还包括第三绝缘层112,第三绝缘层112设置于第二地电极1024和第四子导电结构1034之间、第三地电极1025和第四子导电结构1034之间。这里,每个第四子导电结构1034和第二地电极1024之间、每个第四子导电结构1034和第三地电极1025之间都保持绝缘。
在一些示例中,第一偏压线106与第四子导电结构1034设置于第三绝缘层112的同一侧。示例的,每条第一偏压线106与对应的第四子导电结构1034 电连接为一体。
在一些实施例中,如图5和图6,每个第四子导电结构1034均被配置为与第二地电极1024及第三地电极1025电连接。在一些示例中,第一偏压线106被配置为通过第二地电极1024或第三地电极1025与导电结构103内的第四子导电结构1034电连接。
在一些实施例中,如图5~8所示,移相器还包括第四偏压线111,第四偏压线111被配置为与第二信号线1023电连接。
第四偏压线111的材料可以包括如铜、银、铝、金、铁等金属材料,或ITO(氧化铟锡)、IZO(氧化铟锌)等导电化合物材料,本公开实施例对此不做限定。
基于上述实施例的发明构思,本公开一些实施例还提供一种相控阵天线,该相控阵天线包括本公开上述实施例任一的移相器。关于该移相器的实施说明可以参看上面的实施例中的相应描述,在此不再赘述。需要说明的是,该相控阵天线包括的移相器的个数根据实际需求确定,本公开实施例并不做具体限定。
有以下几点需要说明:
(1)本公开的实施例附图中,只涉及到与本公开实施例涉及到的结构,其他结构可参考通常设计。
(2)在不冲突的情况下,本公开的同一实施例及不同实施例中的特征可以相互组合。
以上所述,仅为本公开的具体实施方式,但本公开的保护范围并不局限于此,任何熟悉本技术领域的技术人员在本公开揭露的技术范围内,想到变化或替换,都应涵盖在本公开的保护范围之内。因此,本公开的保护范围应以所述权利要求的保护范围为准。

Claims (20)

  1. 一种移相器,包括:
    基底;
    设置于所述基底上的信号传输结构;
    设置于所述基底上的相位调整结构;其中,所述相位调整结构包括:
    导电结构;
    至少一个半导体结构,设置于所述信号传输结构与所述导电结构之间;所述信号传输结构、所述导电结构以及所述至少一个半导体结构在所述基底上的正投影存在交叠;
    第一绝缘层,设置于所述导电结构与所述至少一个半导体结构之间;所述第一绝缘层在所述基底上的正投影至少位于所述导电结构与所述至少一个半导体结构在所述基底上的正投影的交叠区域中;以及
    至少一条第一偏压线,与所述导电结构电连接。
  2. 根据权利要求1所述的移相器,其中,所述信号传输结构包括第一地电极和第一信号线,所述第一地电极和所述第一信号线分别设置于所述基底沿其厚度方向的相对两侧;其中,
    每个半导体结构均与所述第一信号线电连接;
    每个半导体结构与所述第一信号线在所述基底上的正投影均存在交叠。
  3. 根据权利要求2所述的移相器,还包括:
    第二偏压线,所述第二偏压线与所述第一信号线电连接。
  4. 根据权利要求2所述的移相器,其中,所述导电结构包括至少一个第一子导电结构,每个第一子导电结构与所述第一信号线在所述基底上的正投影均存在交叠;
    所述至少一个第一子导电结构与所述至少一个半导体结构被配置为一一对应。
  5. 根据权利要求4所述的移相器,其中,所述第一信号线包括主体结构和至少一个分支结构;所述至少一个分支结构与所述主体结构电连接,每个分支结构在所述基底上的正投影的延伸方向与所述主体结构在所述基底上的正投影的延伸方向相交;
    所述至少一个分支结构与所述至少一个第一子导电结构被配置为一一对应,且每个分支结构与对应的第一子导电结构在所述基底上的正投影存在交叠。
  6. 根据权利要求5所述的移相器,其中,所述导电结构还包括至少一个第二子导电结构;
    所述至少一个第二子导电结构与所述第一信号线在所述基底上的正投影无交叠;
    每个第二子导电结构与至少一个第一子导电结构电连接。
  7. 根据权利要求6所述的移相器,其中,所述至少一个第一子导电结构包括多个第一子导电结构;
    所述至少一个第二子导电结构包括多个第二子导电结构,每个第二子导电结构与所述多个第一子导电结构中的至少一个第一子导电结构电连接,且不同的第二子导电结构电连接的第一子导电结构不同。
  8. 根据权利要求7所述的移相器,其中,不同的第二子导电结构电连接的第一子导电结构的数量不完全相同。
  9. 根据权利要求6-8任一项所述的移相器,其中,所述至少一条第一偏压线与所述至少一个第二子导电结构被配置为一一对应,且每条第一偏压线与对应的第二子导电结构电连接。
  10. 根据权利要求4所述的移相器,其中,所述第一信号线包括间隔设置的多个信号线片段结构,所述多个信号线片段在所述基底上的正投影不存在交叠,且所述多个信号线片段在垂直于所述第一信号线的延伸方向的平面上的正投影均存在交叠;
    每个信号线片段结构与相邻信号线片段结构相对的一端均被配置为与一个第一子导电结构对应。
  11. 根据权利要求10所述的移相器,其中,所述导电结构还包括至少一个第三子导电结构;
    所述至少一个第三子导电结构与所述多个信号线片段结构在所述基底上的正投影不存在交叠;
    每个第三子导电结构与相邻的两个第一子导电结构电连接。
  12. 根据权利要求11所述的移相器,还包括:
    多条第三偏压线;其中,
    所述多条第三偏压线与所述多个信号线片段结构被配置为一一对应,且每条第三偏压线与对应的一个信号线片段结构电连接;
    所述至少一条第一偏压线与所述至少一个第三子导电结构被配置为一一对应,且每条第一偏压线与对应的第三子导电结构电连接。
  13. 根据权利要求1所述的移相器,其中,所述信号传输结构包括 第二信号线,以及设置于所述第二信号线沿其宽度方向的相对两侧的第二地电极和第三地电极;所述第二信号线、所述第二地电极和所述第三地电极位于所述基底的同一侧;
    每个半导体结构均与所述第二信号线电连接;所述半导体结构与所述第二信号线在所述基底上的正投影存在交叠,且所述半导体结构与所述第二地电极及所述第三地电极在所述基底上的正投影均不存在交叠。
  14. 根据权利要求13所述的移相器,所述导电结构包括至少一个第四子导电结构,每个第四子导电结构与所述第二信号线在所述基底上的正投影均存在交叠;其中,
    所述至少一个第四子导电结构与所述至少一个半导体结构被配置为一一对应。
  15. 根据权利要求14所述的移相器,还包括:
    第四偏压线,所述第四偏压线与所述第二信号线电连接。
  16. 根据权利要求14所述的移相器,所述至少一条第一偏压线与所述至少一个第四子导电结构被配置为一一对应,且每条第一偏压线与对应的第四子导电结构电连接。
  17. 根据权利要求14所述的移相器,其中,每个第四子导电结构均与所述第二地电极和所述第三地电极电连接;
    所述第一偏压线被配置为与所述第二地电极或所述第三地电极电连接。
  18. 根据权利要求13所述的移相器,其中,所述第二地电极和所述第三地电极设置于所述第一绝缘层的远离所述第二信号线的一侧表面上;所述第二信号线设置于所述第一绝缘层与所述基底之间。
  19. 根据权利要求1-18任一项所述的移相器,所述半导体单元为PIN结或PN结。
  20. 一种相控阵天线,包括权利要求1-19任一项所述的移相器。
PCT/CN2020/130871 2019-11-29 2020-11-23 一种移相器和相控阵天线 WO2021104202A1 (zh)

Priority Applications (1)

Application Number Priority Date Filing Date Title
US17/437,517 US11929535B2 (en) 2019-11-29 2020-11-23 Phase shifter and phased array antenna

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
CN201911207745.4A CN110943299B (zh) 2019-11-29 2019-11-29 移相器和相控阵天线
CN201911207745.4 2019-11-29

Publications (1)

Publication Number Publication Date
WO2021104202A1 true WO2021104202A1 (zh) 2021-06-03

Family

ID=69908759

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2020/130871 WO2021104202A1 (zh) 2019-11-29 2020-11-23 一种移相器和相控阵天线

Country Status (3)

Country Link
US (1) US11929535B2 (zh)
CN (1) CN110943299B (zh)
WO (1) WO2021104202A1 (zh)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2024098275A1 (zh) * 2022-11-09 2024-05-16 京东方科技集团股份有限公司 移相器、移相器阵列、天线阵列及电子设备

Families Citing this family (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN110943299B (zh) 2019-11-29 2021-01-08 北京京东方传感技术有限公司 移相器和相控阵天线
US11870123B2 (en) * 2021-01-28 2024-01-09 Boe Technology Group Co., Ltd. Phase shifter and antenna
US20230097839A1 (en) * 2021-01-29 2023-03-30 Beijing Boe Technology Development Co., Ltd. Phase shifter, manufacturing method thereof and antenna

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20100171674A1 (en) * 2009-01-08 2010-07-08 Thinkom Solutions, Inc. Low cost electronically scanned array antenna
CN110137636A (zh) * 2019-05-23 2019-08-16 京东方科技集团股份有限公司 移相器和液晶天线
CN110462842A (zh) * 2017-04-07 2019-11-15 夏普株式会社 Tft基板、具备tft基板的扫描天线以及tft基板的制造方法
CN110943299A (zh) * 2019-11-29 2020-03-31 北京京东方传感技术有限公司 移相器和相控阵天线

Family Cites Families (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR100548244B1 (ko) 2003-03-14 2006-02-02 엘지전자 주식회사 저가형 능동 스마트 안테나 시스템 및 그 제조 방법
CN2657214Y (zh) * 2003-07-04 2004-11-17 华东师范大学 硅基级联式mems移相器
EP2768072A1 (en) * 2013-02-15 2014-08-20 Technische Universität Darmstadt Phase shifting device
DE102017000406A1 (de) * 2017-01-18 2018-07-19 Stephanie Faustig Elektrisch steuerbares optisches Element, insbesondere Dünnschichtzelle und Verfahren zu dessen Herstellung
WO2018186309A1 (ja) * 2017-04-07 2018-10-11 シャープ株式会社 Tft基板、tft基板を備えた走査アンテナ、およびtft基板の製造方法

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20100171674A1 (en) * 2009-01-08 2010-07-08 Thinkom Solutions, Inc. Low cost electronically scanned array antenna
CN110462842A (zh) * 2017-04-07 2019-11-15 夏普株式会社 Tft基板、具备tft基板的扫描天线以及tft基板的制造方法
CN110137636A (zh) * 2019-05-23 2019-08-16 京东方科技集团股份有限公司 移相器和液晶天线
CN110943299A (zh) * 2019-11-29 2020-03-31 北京京东方传感技术有限公司 移相器和相控阵天线

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
PINGYUE SONG , HASHEMI HOSSEIN: "Wideband mm-Wave Phase Shifters Based on Constant-Impedance Tunable Transmission Lines", 2016 IEEE MTT-S INTERNATIONAL MICROWAVE SYMPOSIUM (IMS), 31 December 2016 (2016-12-31), pages 1 - 4, XP032941442, DOI: 10.1109/MWSYM.2016.7540418 *

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2024098275A1 (zh) * 2022-11-09 2024-05-16 京东方科技集团股份有限公司 移相器、移相器阵列、天线阵列及电子设备

Also Published As

Publication number Publication date
CN110943299A (zh) 2020-03-31
CN110943299B (zh) 2021-01-08
US20220149498A1 (en) 2022-05-12
US11929535B2 (en) 2024-03-12

Similar Documents

Publication Publication Date Title
WO2021104202A1 (zh) 一种移相器和相控阵天线
US10637133B2 (en) Antenna structure, driving method thereof, and antenna system
US11119364B2 (en) Liquid crystal phase shifter, method for operating the same, liquid crystal antenna, and communication apparatus
US11158916B2 (en) Phase shifter and liquid crystal antenna
CN108539331B (zh) 基于液晶的太赫兹开槽移相单元及其构成的相控阵天线
WO2021259142A1 (zh) 移相器及天线
US11569556B2 (en) Phase shifter comprising DGS and radio communication module comprising same
US20210210851A1 (en) Signal Conditioner, Antenna Device and Manufacturing Method
WO2021189238A1 (zh) 移相器及天线
EP3745526A1 (en) Radio frequency phase shift device
TWI749987B (zh) 天線結構及陣列天線模組
US11204530B2 (en) Array substrate and display device
US20240106132A1 (en) Intelligent reflecting surface and phased array antenna
US11811121B2 (en) Electronic device comprising a dielectric substrate having a voltage adjustable phase shifter disposed with respect to the substrate and a manufacturing method
EP2590190B1 (en) Thin film capacitors
WO2022032889A1 (zh) 液晶天线
US6037650A (en) Variable capacitance semiconductor device
US20210358962A1 (en) Array substrate, display panel and manufacturing method of array substrate
CN102244000B (zh) 半导体器件、变容二极管及其形成方法
CN113341599B (zh) 半导体器件、制备方法、光子芯片及光计算设备
US20240172539A1 (en) Display panel
CN113327989B (zh) 薄膜晶体管、阵列基板、显示面板及显示装置
WO2024020834A1 (zh) 一种移相器、天线及电子设备
CN114976532B (zh) 移相器、天线和通信设备
CN212009232U (zh) 液晶移相器和液晶天线装置

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 20892534

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 20892534

Country of ref document: EP

Kind code of ref document: A1

32PN Ep: public notification in the ep bulletin as address of the adressee cannot be established

Free format text: NOTING OF LOSS OF RIGHTS PURSUANT TO RULE 112(1) EPC (EPO FORM 1205 DATED 20.07.2022)

122 Ep: pct application non-entry in european phase

Ref document number: 20892534

Country of ref document: EP

Kind code of ref document: A1