WO2021104151A1 - 发热体组件及其制作方法、电子雾化装置 - Google Patents

发热体组件及其制作方法、电子雾化装置 Download PDF

Info

Publication number
WO2021104151A1
WO2021104151A1 PCT/CN2020/130118 CN2020130118W WO2021104151A1 WO 2021104151 A1 WO2021104151 A1 WO 2021104151A1 CN 2020130118 W CN2020130118 W CN 2020130118W WO 2021104151 A1 WO2021104151 A1 WO 2021104151A1
Authority
WO
WIPO (PCT)
Prior art keywords
heating film
porous substrate
heating
metal
control circuit
Prior art date
Application number
PCT/CN2020/130118
Other languages
English (en)
French (fr)
Inventor
刘平昆
蒋玥
陈智超
Original Assignee
深圳麦克韦尔科技有限公司
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 深圳麦克韦尔科技有限公司 filed Critical 深圳麦克韦尔科技有限公司
Publication of WO2021104151A1 publication Critical patent/WO2021104151A1/zh

Links

Images

Classifications

    • AHUMAN NECESSITIES
    • A24TOBACCO; CIGARS; CIGARETTES; SIMULATED SMOKING DEVICES; SMOKERS' REQUISITES
    • A24FSMOKERS' REQUISITES; MATCH BOXES; SIMULATED SMOKING DEVICES
    • A24F40/00Electrically operated smoking devices; Component parts thereof; Manufacture thereof; Maintenance or testing thereof; Charging means specially adapted therefor
    • A24F40/40Constructional details, e.g. connection of cartridges and battery parts
    • A24F40/46Shape or structure of electric heating means
    • AHUMAN NECESSITIES
    • A24TOBACCO; CIGARS; CIGARETTES; SIMULATED SMOKING DEVICES; SMOKERS' REQUISITES
    • A24FSMOKERS' REQUISITES; MATCH BOXES; SIMULATED SMOKING DEVICES
    • A24F47/00Smokers' requisites not otherwise provided for

Definitions

  • This application relates to the field of electronic cigarettes, in particular to a heating element assembly and a manufacturing method thereof, and an electronic atomization device.
  • the existing electronic atomizers mostly use cotton cores, fiber ropes or ceramic heating elements for heating and atomizing.
  • ceramic heating elements are mainly divided into two categories.
  • the first type is a tubular ceramic heating element, in which heating wires are wound on the inner wall of a porous ceramic and then sintered together;
  • the second type is a sheet-type ceramic heating element, in which a metal film or metal mesh is placed on the surface of a porous ceramic sheet. Then sintered together.
  • the existing ceramic heating element no matter what type, it is impossible to control the consumption of the atomization chemical quality during each atomization, and it is impossible to control the effect of the atomization smoke, which causes consumers to take every bite when using it.
  • the taste is inconsistent, which affects the user experience.
  • the present application provides a heating element assembly, a manufacturing method thereof, and an electronic atomization device, which are used to quantitatively provide the quality of the atomization, thereby improving the taste of the user and enhancing the user experience.
  • the first technical solution provided by this application is to provide a heating element assembly, including: at least one first porous substrate for storing liquid; A surface of the porous substrate is used to quantitatively derive the liquid; a second porous substrate is located on the side of the first heating film away from the first porous substrate, and is used to quantify the first heating film The derived liquid conducts directional conduction; a second heating film, located on the side of the second porous substrate away from the first heating film, is used for heating and misting the liquid in the second porous substrate ⁇ .
  • first heating film and the second heating film are connected to a first control circuit, and the first heating film and the second heating film have different materials.
  • the first heating film is connected to a second control circuit; the second heating film is connected to the first heating film and the third control circuit, and the first heating film and the second heating film have the same material or different.
  • the first heating film includes a first metal mesh portion and a first metal sheet portion connected to the first metal mesh portion, and a first connecting hole is provided on the first metal sheet portion;
  • the second heating film includes a second metal mesh portion and a second metal sheet portion connected to the second metal mesh portion, and a second connecting hole is provided on the second metal sheet portion; wherein, the The first sheet metal part and the second sheet metal part are connected to the first control circuit, and the first connection hole and the second connection hole are connected by a conductive substance.
  • the first heating film includes a first metal mesh portion and a first metal sheet portion connected to the first metal mesh portion, and a first connecting hole is provided on the first metal sheet portion;
  • the second heating film includes a second metal mesh portion and a second metal sheet portion connected to the second metal mesh portion; a side of the second metal sheet portion away from the second metal mesh portion Having a third sheet metal part, the third sheet metal part having a second connecting hole corresponding to the position of the first connecting hole; wherein the first sheet metal part is connected to the second control circuit, The second metal sheet portion is connected to the third control circuit, and the second connection hole is connected to the first connection hole through a conductive substance.
  • the first porous matrix and the second porous matrix have a plurality of holes, wherein the direction of the plurality of holes in the second porous matrix is perpendicular to the second porous matrix;
  • the pores in the first porous matrix account for 40% to 70% of the volume of the first porous matrix, and the diameter of the pores in the first porous matrix is 5-50 ⁇ m;
  • in the second porous matrix The pores in the second porous matrix account for 30%-60% of the volume of the second porous matrix.
  • the diameter of the pores in the second porous matrix is 5-30 ⁇ m.
  • the material of the first heating film and the second heating film is one or any combination of FeCrAl, FeCrNi, and TiZr.
  • the power of the first heating film is less than the power of the second heating film.
  • the electronic atomization device includes a heating element assembly.
  • the heating element includes: at least one first porous substrate for Store liquid; a first heating film, located on a surface of the first porous substrate, used to quantify the liquid; a second porous substrate, located on the first heating film away from the first porous substrate The side of the first heating film is used to conduct directional conduction of the liquid quantitatively derived; the second heating film is located on the side of the second porous substrate away from the first heating film and is used for heating The liquid in the second porous matrix is atomized.
  • first heating film and the second heating film are connected to a first control circuit, and the first heating film and the second heating film have different materials.
  • the first heating film is connected to a second control circuit; the second heating film is connected to the first heating film and the third control circuit, and the first heating film and the second heating film have the same material or different.
  • the first heating film includes a first metal mesh portion and a first metal sheet portion connected to the first metal mesh portion, and a first connecting hole is provided on the first metal sheet portion;
  • the second heating film includes a second metal mesh portion and a second metal sheet portion connected to the second metal mesh portion, and a second connecting hole is provided on the second metal sheet portion; wherein, the The first sheet metal part and the second sheet metal part are connected to the first control circuit, and the first connection hole and the second connection hole are connected by a conductive substance.
  • the first heating film includes a first metal mesh portion and a first metal sheet portion connected to the first metal mesh portion, and a first connecting hole is provided on the first metal sheet portion;
  • the second heating film includes a second metal mesh portion and a second metal sheet portion connected to the second metal mesh portion; a side of the second metal sheet portion away from the second metal mesh portion Having a third sheet metal part, the third sheet metal part having a second connecting hole corresponding to the position of the first connecting hole; wherein the first sheet metal part is connected to the second control circuit, The second metal sheet portion is connected to the third control circuit, and the second connection hole is connected to the first connection hole through a conductive substance.
  • the first porous matrix and the second porous matrix have a plurality of holes, wherein the direction of the plurality of holes in the second porous matrix is perpendicular to the second porous matrix;
  • the pores in the first porous matrix account for 40% to 70% of the volume of the first porous matrix, and the diameter of the pores in the first porous matrix is 5-50 ⁇ m;
  • in the second porous matrix The pores in the second porous matrix account for 30%-60% of the volume of the second porous matrix.
  • the diameter of the pores in the second porous matrix is 5-30 ⁇ m.
  • the materials of the first heating film and the second heating film are one or any combination of FeCrAl, FeCrNi, and TiZr.
  • the power of the first heating film is less than the power of the second heating film.
  • the third technical solution provided by this application is to provide a method for manufacturing a heating element assembly, including: manufacturing a first porous substrate and a second porous substrate; manufacturing a first heating film and a second heating film Heating film; a first heating film is provided on the first porous substrate, and a second heating film is fabricated on the second porous substrate; the first porous substrate and the second porous substrate They are arranged in layers, and the second porous base body is in contact with the first heating film.
  • the preparation of the first porous matrix and the second porous matrix specifically includes: preparing green substrates by tape casting, ceramic powder injection molding, low-temperature co-fired ceramic technology or high-temperature co-fired ceramic technology; A plurality of holes are prepared on the green substrate to form a first porous substrate, and a plurality of holes perpendicular to the green substrate are prepared on the green substrate to form a second porous substrate; the first heating film and the second heating film are made
  • the film also includes: the control circuit required to prepare the first heating film and the second heating film as required; the first porous substrate and the second porous substrate are laminated and arranged, and the The contacting of the second porous substrate with the first heating film specifically includes: debinding and sintering to bond the first porous substrate and the second porous substrate.
  • the heating element assembly proposed in the present application includes a first porous substrate, a first heating film, a second porous substrate, and a second heating film.
  • the first porous substrate is used for storing liquid
  • the second heating film is located on a surface of the first porous substrate for quantitatively exporting the liquid
  • the second porous substrate is located on the first heating film away from the first porous substrate.
  • One side is used to conduct directional conduction of the liquid quantitatively derived from the first heating film.
  • the second heating film is located on the side of the second porous substrate away from the first heating film. Carry out atomization. In this way, the amount of liquid to be atomized is controlled by the first heating film, thereby realizing quantitative atomization, thereby improving the taste of the user and enhancing the user experience.
  • Fig. 1 is a schematic structural diagram of an embodiment of the heating element assembly of the present application
  • FIG. 2 is a schematic structural diagram of an embodiment of the first heating film of this application.
  • FIG. 3 is a schematic structural diagram of the first embodiment of the second heating film of this application.
  • FIG. 4 is a schematic structural diagram of a second embodiment of the second heating film of the present application.
  • Fig. 5 is a schematic flow chart of the manufacturing method of the heating element assembly of the present application.
  • Fig. 6 is a schematic diagram of the structure of the electronic atomization device of the present application.
  • FIG. 1 is a schematic structural diagram of a first embodiment of a heating element assembly of the present application. It includes at least a first porous substrate 11, a first heating film 12, a second porous substrate 13 and a second heating film 14. Among them, the first porous substrate 11 is used to store liquid, the first heating film 12 is located on a surface of the first porous substrate 11 for quantitatively leading out the liquid, and the second porous substrate 13 is located far away from the first heating film 12.
  • One side of a porous substrate 11 is used to conduct directional conduction of the liquid quantitatively derived from the first heating film 12; the second heating film 14 is located on the side of the second porous substrate 13 away from the first heating film 12 and is used for heating The liquid in the second porous substrate 13 is atomized.
  • first porous substrate 11 there is one first porous substrate 11, and in another embodiment, there may also be multiple first porous substrates 11, which are respectively located on the first porous substrate 11 far away from the second porous substrate 13. Side, used to store liquid. At this time, the first porous substrate 11 on the side away from the second porous substrate 13 gradually reduces the liquid stored in the direction close to the second porous substrate 13.
  • the first heating film 12 and the second heating film 14 may be controlled by the same control circuit, or may be controlled by different control circuits. That is: the first heating film 12 and the second heating film 14 are connected to a common first control circuit (not shown); or, the first heating film 12 is connected to a second control circuit (not shown), and the second heating film 14 Connect the third control circuit (not shown).
  • the power of the first heating film 12 needs to be less than that of the second heating film.
  • first heating film 12 and the second heating film 14 are connected to the first control circuit, since the first heating film 12 and the second heating film 14 receive the same voltage and current from the first control circuit, in order to make The power of the first heating film 12 and the second heating film 14 are different, and the materials of the first heating film 12 and the second heating film 14 are different.
  • the second control circuit and the third control circuit separately control the first heating film 12 and The second heating film 14, therefore, in a specific embodiment, if the current and voltage of the second control circuit and the third control circuit are the same, in order to ensure the power difference, the materials of the first heating film 12 and the second heating film 14 Different; if the current and voltage of the second control circuit and the third control circuit are not the same, the materials of the first heating film 12 and the second heating film 14 can be the same. It is understandable that the power of the second heating film 14 is greater than The power of the first heating film 12 and the current and voltage of the second control circuit need to be smaller than the current and voltage of the third control circuit.
  • the first porous substrate 11 and the second porous substrate 13 are provided, the first heating film 12 is provided between the first porous substrate 11 and the second porous substrate 13, and the second The second heating film 14 is provided on the side of the porous substrate 13 away from the first porous substrate 11, so that the first heating film 12 and the second heating film 14 are controlled by the control circuit, and the power of the first heating film 12 is lower than that of the first heating film.
  • the first heating film 12 generates heat quantitatively according to the power to derive the liquid
  • the second heating film 14 atomizes the derived liquid according to the power.
  • the liquid is e-liquid, which has a certain viscosity. When the temperature is satisfied, it will penetrate from the first heating film 12 into the second porous substrate 13, and then enter the second porous substrate 13. When the amount of liquid meets the demand, the power of the first heating film 12 is adjusted so that the e-liquid no longer penetrates.
  • the second porous substrate 13 of the present application is used to store the liquid from the first porous substrate 11 and direct it into the second heating film 14. In specific applications, the second porous substrate 13 does not interact with the liquid. direct contact. In one embodiment, the thickness of the second porous substrate 13 is 0.5-1 mm.
  • the second porous substrate 13 has a plurality of holes 131 with the same direction, as shown in FIG. 1, in order to ensure that the liquid entering the second porous substrate 13 can be led out from one direction to complete the mist.
  • the hole 131 is a directional hole. It may be a hole perpendicular to the second porous substrate 13 shown in FIG. 1, or may be a hole in other directions, as long as the requirement can be met, and the details are not limited.
  • the function of the first porous substrate 11 is to store e-liquid.
  • the first porous substrate 11 has a number of holes 111. As shown in FIG. 1, the holes 111 can be The pores parallel to the first porous substrate 11 may also be pores perpendicular to the first porous substrate 11.
  • the pores 111 in the first porous substrate 11 account for 40% to 70% of the volume of the first porous substrate 11, and the diameter of the pores 111 is 5 to 50 ⁇ m.
  • the pores 131 in the second porous substrate 13 account for 30%-60% of the volume of the second porous substrate 13, and the diameter of the pores 131 is 5-30 ⁇ m.
  • the heating element assembly provided in the present application realizes quantitatively conducting liquid through the first heating film 12, directionally conducting the liquid through the second porous substrate 13, and then atomizing the liquid through the second heating film 14, thereby achieving quantitative atomization. In turn, it improves user taste and user experience.
  • FIG. 2 is a schematic structural diagram of an embodiment of the first heating film of the present application
  • FIG. 3 is a schematic structural diagram of the first embodiment of the second heating film of the present application.
  • both the first heating film 12 and the second heating film 14 are connected to the first control circuit.
  • the first heating film 12 includes a first metal mesh portion 121 and two first metal sheet-like portions 122 connected to the first metal mesh portion 121, that is, there is a first metal mesh portion 121 on each side of the first metal mesh portion 121.
  • a sheet metal portion 122, and each first sheet metal portion 122 is provided with a first connecting hole 123.
  • the second heating film 14 includes a second metal mesh portion 145 and two second metal sheet-like portions 146 connected to the second metal mesh portion 145, that is, there is a second metal on each side of the second metal mesh portion 145
  • the sheet portion 146, each second metal sheet portion 146 is provided with a second connecting hole 147 corresponding to the position of the first connecting hole 123.
  • the first connecting hole 123 is connected to the second connecting hole 147 through a conductive material, and the first metal sheet portion 122 of the first heating film 12 may be integrated with a first control circuit, so that the first heating film 12 may be integrated with a first control circuit.
  • the film 12 and the second heating film 14 are commonly connected to the first control circuit.
  • the first connection hole 123 can be connected to the second connection hole 147 through a wire, and can also be connected to the second connection hole 147 through a conductive paste. It is understandable that the first connection hole 123 is connected to the second connection hole 147 At this time, the designated position of the second porous substrate 13 has a passage for the wire or conductive paste to pass through.
  • the materials of the first heating film 12 and the second heating film 14 are different to ensure that the power of the first heating film 12 is different from that of the second heating film 14. Specifically, it is ensured that the power of the first heating film 12 is less than The power of the second heating film 14.
  • the material of the first heating film 12 and the second heating film 14 may be one of FeCrAl, FeCrNi, TiZr, or any combination thereof.
  • FIG. 2 is a schematic structural diagram of an embodiment of the first heating film of the present application
  • FIG. 4 is a schematic structural diagram of a second embodiment of the second heating film of the present application.
  • the first heating film 12 is connected to the second control circuit
  • the second heating film 14 is connected to the third control circuit.
  • the first heating film 12 includes a first metal mesh portion 121 and two first metal sheet-like portions 122 connected to the first metal mesh portion 121, that is, in the first metal mesh portion 121 There is a first sheet metal portion 122 on each side, and each first sheet metal portion 122 is provided with a first connecting hole 123.
  • the second heating film 14 includes a second metal mesh portion 141 and two second metal sheet-like portions 142 connected to the second metal mesh portion 141, that is, on both sides of the second metal mesh portion 141 Each has a second metal sheet portion 142.
  • Each second metal sheet portion 142 has a third metal sheet portion 143 on a side away from the second metal mesh portion 141, and each third metal sheet portion 143 has a second connection corresponding to the position of the first connection hole 123 ⁇ 144.
  • the first sheet metal portion 122 is connected to the second control circuit
  • the second sheet metal portion 142 is connected to the third control circuit
  • the first connection hole 123 is connected to the second connection hole 144 through a conductive material.
  • the first connection hole 123 can be connected to the second connection hole 144 through a wire, and can also be connected to the second connection hole 144 through a conductive paste. It is understandable that the connection is made between the first connection hole 123 and the second connection hole 144 At this time, the designated position of the second porous substrate 13 has a passage for the wire or conductive paste to pass through.
  • the first heating film 12 and the second heating film 14 are respectively controlled by different control circuits.
  • the materials of the first heating film 12 and the second heating film 14 may be the same or different.
  • the current and voltage of the second control circuit connected to the first heating film 12 is connected to the second heating film 14
  • the materials of the first heating film 12 and the second heating film 14 are different.
  • the materials of the first heating film 12 and the second heating film 14 may be the same.
  • the material of the first heating film 12 and the second heating film 14 may be one of FeCrAl, FeCrNi, TiZr, or any combination thereof.
  • FIG. 5 is a schematic flowchart of the first embodiment of the manufacturing method of the heating element assembly of the present application.
  • Step S51 Fabricate a first porous substrate and a second porous substrate.
  • tape casting (Tape Casting), ceramic powder injection molding (Colloidal Ceramic Injection Moulding, CIM), low-temperature co-fired ceramics (LTCC) technology or high-temperature co-fired ceramics (LTCC) technology is adopted.
  • co-fired ceramics (HTCC) technology to prepare green substrates.
  • a number of holes are arranged on the prepared green substrate as required to form a first porous substrate and a second porous substrate. Specifically, a number of non-directional holes are provided on the green substrate to form a first porous substrate, and a number of holes perpendicular to the green substrate are provided on the green substrate to form a second porous substrate.
  • Step S52 making a first heating film and a second heating film.
  • the metal sheet can be punched as required to form a grid portion, and then the first heating film and the second heating film are formed.
  • the first heating film prepared is the heating film shown in FIG. 2
  • the second heating film prepared is as shown in FIG. 3
  • only one control circuit needs to be prepared.
  • the prepared first heating film is the heating film shown in FIG. 2 and the prepared second heating film is the heating film shown in FIG. 4, two control circuits need to be prepared, one of which controls the first heating film, and the other One controls the second heating film.
  • Step S53 disposing a first heating film on the first porous substrate, and forming a second heating film on the second porous substrate.
  • the first heating film and the second heating film are stacked with the first porous base and the second porous base as required.
  • Step S54 Laminating the first porous substrate and the second porous substrate, and bringing the second porous substrate into contact with the first heating film.
  • the first porous substrate and the second porous substrate are laminated and arranged, and the first porous substrate and the second porous substrate are bonded to form a heating element assembly by means of debinding and sintering.
  • FIG. 6 is a schematic structural diagram of an embodiment of the electronic atomization device of this application.
  • the electronic atomization device provided by the present application includes the heating element assembly 61 described above.
  • the electronic atomization device of the present application can be used in an electronic cigarette, so that the e-liquid can be quantitatively provided through the above-mentioned heating element assembly 61, and then the quantitatively provided e-liquid can be atomized to achieve quantitative atomization. Improve user taste.
  • heating element assembly and the electronic atomization device described in this application only describe part of the functional structure, and other structures are the same as those in the prior art, and are not described here.

Abstract

一种发热体组件及其制作方法、电子雾化装置,其中发热体组件包括:至少一第一多孔基体(11),用于存储液体;第一发热膜(12),位于第一多孔基体(11)的一表面,用于将液体定量导出;第二多孔基体(13),位于第一发热膜(12)远离第一多孔基体(11)的一侧,用于将第一发热膜(12)定量导出的液体进行定向传导;第二发热膜(14),位于第二多孔基体(13)远离第一发热膜(12)的一侧,用于发热而将第二多孔基体(13)内的液体进行雾化,以此定量提供雾化工质,进而提高用户口感,提升用户体验。

Description

发热体组件及其制作方法、电子雾化装置 【技术领域】
本申请涉及电子烟具领域,特别是涉及一种发热体组件及其制作方法、电子雾化装置。
【背景技术】
现有的电子雾化器多采用棉芯、纤维绳或陶瓷发热体进行加热雾化。其中,陶瓷发热体主要分为两大类。第一类是管式的陶瓷发热体,是将发热丝缠绕在多孔陶瓷内壁,然后一起烧结;第二类是片式的陶瓷发热体,是将金属膜或金属网置于多孔陶瓷片表面,然后一起烧结。但是,对于现有的陶瓷发热体,无论哪一类,都无法控制每一次雾化时对雾化工质的消耗量,也就无法控制雾化烟气的效果,导致消费者在使用时每一口的口感不一致,影响用户体验。
【发明内容】
本申请提供一种发热体组件及其制作方法、电子雾化装置,用以定量提供雾化工质,进而提高用户口感,提升用户体验。
为解决上述技术问题,本申请提供的第一个技术方案为:提供一种发热体组件,包括:至少一第一多孔基体,用于存储液体;第一发热膜,位于所述第一多孔基体的一表面,用于将所述液体定量导出;第二多孔基体,位于所述第一发热膜远离所述第一多孔基体的一侧,用于将所述第一发热膜定量导出的所述液体进行定向传导;第二发热膜,位于所述第二多孔基体远离所述第一发热膜的一侧,用于发热而将所述第二多孔基体内的液体进行雾化。
其中,所述第一发热膜与所述第二发热膜连接第一控制电路,且所述第一发热膜与所述第二发热膜材料不同。
其中,所述第一发热膜连接第二控制电路;所述第二发热膜连接所述第一发热膜及第三控制电路,且所述第一发热膜与所述第二发热膜材 料相同或不同。
其中,所述第一发热膜包括第一金属网格部及连接所述第一金属网格部的第一金属片状部,所述第一金属片状部上设置有第一连接孔;所述第二发热膜包括第二金属网格部及连接所述第二金属网格部的第二金属片状部,所述第二金属片状部上设置有第二连接孔;其中,所述第一金属片状部与所述第二金属片状部连接所述第一控制电路,所述第一连接孔与所述第二连接孔通过导电物质连接。
其中,所述第一发热膜包括第一金属网格部及连接所述第一金属网格部的第一金属片状部,所述第一金属片状部上设置有第一连接孔;所述第二发热膜包括第二金属网格部及连接所述第二金属网格部的第二金属片状部;所述第二金属片状部远离所述第二金属网格部的一侧具有第三金属片状部,所述第三金属片状部具有与所述第一连接孔位置对应的第二连接孔;其中,所述第一金属片状部连接所述第二控制电路,所述第二金属片状部连接所述第三控制电路,所述第二连接孔通过导电物质连接至所述第一连接孔。
其中,所述第一多孔基体及所述第二多孔基体中具有若干孔,其中,所述第二多孔基体中的若干所述孔的方向垂直所述第二多孔基体;所述第一多孔基体中的孔占所述第一多孔基体的体积的40%~70%,所述第一多孔基体中的孔的直径为5~50μm;所述第二多孔基体中的孔占所述第二多孔基体的体积的30%~60%所述第二多孔基体中的孔的直径为5~30μm。
其中,所述第一发热膜及所述第二发热膜的材料为FeCrAl,FeCrNi,TiZr中一种或任意组合。
其中,所述第一发热膜的功率小于所述第二发热膜的功率。
为解决上述技术问题,本申请提供的第二个技术方案为:提供一种电子雾化装置,电子雾化装置包括发热体组件,所述发热组件包括:至少一第一多孔基体,用于存储液体;第一发热膜,位于所述第一多孔基体的一表面,用于将所述液体定量导出;第二多孔基体,位于所述第一发热膜远离所述第一多孔基体的一侧,用于将所述第一发热膜定量导出 的所述液体进行定向传导;第二发热膜,位于所述第二多孔基体远离所述第一发热膜的一侧,用于发热而将所述第二多孔基体内的液体进行雾化。
其中,所述第一发热膜与所述第二发热膜连接第一控制电路,且所述第一发热膜与所述第二发热膜材料不同。
其中,所述第一发热膜连接第二控制电路;所述第二发热膜连接所述第一发热膜及第三控制电路,且所述第一发热膜与所述第二发热膜材料相同或不同。
其中,所述第一发热膜包括第一金属网格部及连接所述第一金属网格部的第一金属片状部,所述第一金属片状部上设置有第一连接孔;所述第二发热膜包括第二金属网格部及连接所述第二金属网格部的第二金属片状部,所述第二金属片状部上设置有第二连接孔;其中,所述第一金属片状部与所述第二金属片状部连接所述第一控制电路,所述第一连接孔与所述第二连接孔通过导电物质连接。
其中,所述第一发热膜包括第一金属网格部及连接所述第一金属网格部的第一金属片状部,所述第一金属片状部上设置有第一连接孔;所述第二发热膜包括第二金属网格部及连接所述第二金属网格部的第二金属片状部;所述第二金属片状部远离所述第二金属网格部的一侧具有第三金属片状部,所述第三金属片状部具有与所述第一连接孔位置对应的第二连接孔;其中,所述第一金属片状部连接所述第二控制电路,所述第二金属片状部连接所述第三控制电路,所述第二连接孔通过导电物质连接至所述第一连接孔。
其中,所述第一多孔基体及所述第二多孔基体中具有若干孔,其中,所述第二多孔基体中的若干所述孔的方向垂直所述第二多孔基体;所述第一多孔基体中的孔占所述第一多孔基体的体积的40%~70%,所述第一多孔基体中的孔的直径为5~50μm;所述第二多孔基体中的孔占所述第二多孔基体的体积的30%~60%所述第二多孔基体中的孔的直径为5~30μm。
其中,所述第一发热膜及所述第二发热膜的材料为FeCrAl,FeCrNi, TiZr中一种或任意组合。
其中,所述第一发热膜的功率小于所述第二发热膜的功率。
为解决上述技术问题,本申请提供的第三个技术方案为:提供一种发热体组件的制作方法,包括:制作第一多孔基体及第二多孔基体;制作第一发热膜及第二发热膜;在所述第一多孔基体上设置第一发热膜,及在所述第二多孔基体上制作第二发热膜;将所述第一多孔基体及所述第二多孔基体层叠设置,并使所述第二多孔基体与所述第一发热膜接触。
其中,所述制作第一多孔基体及第二多孔基体具体包括:采用流延成型、陶瓷粉末注射成型、低温共烧陶瓷技术或高温共烧陶瓷技术制备生坯基片;在所述生坯基片上制备若干孔形成第一多孔基体,在所述生坯基片上制备若干垂直于所述生坯基片的孔形成第二多孔基体;所述制作第一发热膜及第二发热膜还包括:按要求制备所述第一发热膜及所述第二发热膜所需要的控制电路;所述将所述第一多孔基体及所述第二多孔基体层叠设置,并使所述第二多孔基体与所述第一发热膜接触具体包括:进行排胶和烧结,使所述第一多孔基体及所述第二多孔基体粘合。
本申请的有益效果是:区别于现有技术,本申请提出的发热体组件包括第一多孔基体、第一发热膜、第二多孔基体及第二发热膜。其中,第一多孔基体用于存储液体,第二发热膜位于第一多孔基体的一表面,用于将液体定量导出,第二多孔基体位于第一发热膜远离第一多孔基体的一侧,用于将第一发热膜定量导出的液体进行定向传导,第二发热膜位于第二多孔基体远离第一发热膜的一侧,用于发热而将第二多孔基体内的液体进行雾化。以此通过第一发热膜控制进行雾化的液体的量,从而实现定量雾化,进而提高用户口感,提升用户体验。
【附图说明】
为了更清楚地说明本申请实施例中的技术方案,下面将对实施例描述中所需要使用的附图作简单地介绍,显而易见地,下面描述中的附图仅仅是本申请的一些实施例,对于本领域普通技术人员来讲,在不付出 创造性劳动的前提下,还可以根据这些附图获得其他的附图。其中:
图1为本申请发热体组件的一实施例的结构示意图;
图2为本申请第一发热膜的一实施例的结构示意图;
图3为本申请第二发热膜的第一实施例的结构示意图;
图4为本申请第二发热膜的第二实施例的结构示意图;
图5为本申请发热体组件的制作方法的流程示意图;
图6是本申请电子雾化装置的结构示意图。
【具体实施方式】
下面将结合本申请实施例中的附图,对本申请实施例中的技术方案进行清楚、完整地描述,显然,所描述的实施例仅是本申请的一部分实施例,而不是全部的实施例。基于本申请中的实施例,本领域普通技术人员在没有做出创造性劳动前提下所获得的所有其他实施例,都属于本申请保护的范围。
下面结合附图和实施例对本申请进行详细的说明。
请参见图1,为本申请发热体组件的第一实施例的结构示意图。包括至少一第一多孔基体11、第一发热膜12、第二多孔基体13及第二发热膜14。其中,第一多孔基体11用于存储液体,第一发热膜12位于第一多孔基体11的一表面,用于将液体定量导出,第二多孔基体13位于第一发热膜12远离第一多孔基体11的一侧,用于将第一发热膜12定量导出的液体进行定向传导;第二发热膜14位于第二多孔基体13远离第一发热膜12的一侧,用于发热而将第二多孔基体13内的液体进行雾化。
在本实施例中,第一多孔基体11为一个,在另一实施例中,第一多孔基体11还可以为多个,分别位于第一多孔基体11远离第二多孔基体13一侧,用于存储液体。此时远离第二多孔基体13一侧的第一多孔基体11沿靠近第二多孔基体13的方向存储的液体依次减少。
其中,第一发热膜12及第二发热膜14可以由同一控制电路进行控制,也可以分别由不同的控制电路进行控制。即:第一发热膜12及第 二发热膜14连接共同的第一控制电路(图未示);或,第一发热膜12连接第二控制电路(图未示),而第二发热膜14连接第三控制电路(图未示)。在一具体实施例中,由于第一发热膜12的作用是为了定量导出液体,而第二发热膜14的作用是为了将液体进行雾化,因此第一发热膜12的功率需要小于第二发热膜14的功率。具体地,在第一发热膜12及第二发热膜14连接第一控制电路时,由于第一发热膜12及第二发热膜14接收的来自第一控制电路的电压及电流等相同,为了使第一发热膜12及第二发热膜14的功率产生差异,第一发热膜12及第二发热膜14的材料不同。在另一实施例中,在第一发热膜12连接第二控制电路,第二发热膜14连接第三控制电路时,由于第二控制电路及第三控制电路分别单独控制第一发热膜12及第二发热膜14,因此,在具体实施例中,若第二控制电路及第三控制电路的电流、电压等相同时,为保证功率差异,第一发热膜12及第二发热膜14的材料不同;若第二控制电路与第三控制电路的电流、电压不相同时,第一发热膜12及第二发热膜14的材料可以相同,可以理解的,为了满足第二发热膜14的功率大于第一发热膜12的功率,第二控制电路的电流、电压需要小于第三控制电路的电流、电压。
本申请提供的发热体组件,通过设置第一多孔基体11及第二多孔基体13,在第一多孔基体11及第二多孔基体13之间设置第一发热膜12,在第二多孔基体13远离第一多孔基体11的一侧设置第二发热膜14,使第一发热膜12及第二发热膜14通过控制电路进行控制,并使第一发热膜12的功率小于第二发热膜14的功率,第一发热膜12根据功率产生热量将液体定量的导出,第二发热膜14根据功率将导出的液体进行雾化。在一具体实施例中,液体为烟油,其具有一定的黏度,在温度满足的条件下,会从第一发热膜12渗透进入第二多孔基体13,在进入第二多孔基体13中的液体的量满足需求时,调整第一发热膜12的功率,使烟油不再渗透。
本申请的第二多孔基体13用于存储来自第一多孔基体11的液体,并将其定向输入到第二发热膜14中,其在具体应用中,第二多孔基体 13不与液体直接接触。在一实施例中,第二多孔基体13的厚度为0.5~1㎜。
在一具体实施例中,第二多孔基体13中具有若干方向相同的孔131,如图1所示,为了能够保证进入第二多孔基体13中的液体能够从一方向导出,进而完成雾化,孔131为定向孔。其可以为图1所示的垂直于第二多孔基体13的孔,还可以为其他方向上的孔,只要能够满足需求即可,具体不做限定。
在一具体实施例中,第一多孔基体11的作用是存储烟油,为了能够存储一定量的烟油,第一多孔基体11中具有若干孔111,如图1所示,孔111可以为平行于第一多孔基体11的孔,还可以为垂直于第一多孔基体11的孔。
其中,第一多孔基体11中的孔111占第一多孔基体11的体积的40%~70%,且孔111的直径为5~50μm。第二多孔基体13中的孔131占第二多孔基体13的体积的30%~60%,且孔131的直径为5~30μm。
本申请提供的发热体组件,通过第一发热膜12实现定量传导液体,通过第二多孔基体13定向传导液体,再通过第二发热膜14将液体进行雾化,以此实现定量雾化,进而提高用户口感,提升用户体验。
请参见图2及图3,图2为本申请第一发热膜的一实施例的结构示意图,图3为本申请第二发热膜的第一实施例的结构示意图。在本实施例中,第一发热膜12及第二发热膜14均连接第一控制电路。
其中,第一发热膜12包括第一金属网格部121及连接第一金属网格部121的两个第一金属片状部122,即在第一金属网格部121两侧各有一个第一金属片状部122,各第一金属片状部122上设置有第一连接孔123。
第二发热膜14包括第二金属网格部145及连接第二金属网格部145的两个第二金属片状部146,即在第二金属网格部145两侧各有一个第二金属片状部146,各第二金属片状部146上设置有与第一连接孔123位置对应的第二连接孔147。
在本实施例中,第一连接孔123通过导电物质连接第二连接孔147, 第一发热膜12的第一金属片状部122上可以集成有第一控制电路,以此可以将第一发热膜12与第二发热膜14共同连接到第一控制电路上。其中,第一连接孔123可以通过导线连接第二连接孔147,还可以通过导电浆料连接到第二连接孔147上,可以理解的,在第一连接孔123与第二连接孔147进行连接时,第二多孔基体13的指定位置处具有使导线或导电浆料通过的通道。
在本实施例中,第一发热膜12与第二发热膜14的材料不同,以保证第一发热膜12与第二发热膜14的功率不同,具体地,保证第一发热膜12的功率小于第二发热膜14的功率。在一具体实施例中,第一发热膜12及第二发热膜14的材料可以为FeCrAl,FeCrNi,TiZr中一种,或任意组合。
请参见图2及图4,图2为本申请第一发热膜的一实施例的结构示意图,图4为本申请第二发热膜的第二实施例的结构示意图。在本实施例中,第一发热膜12连接第二控制电路,第二发热膜14连接第三控制电路。
其中,如图2所示,第一发热膜12包括第一金属网格部121及连接第一金属网格部121的两个第一金属片状部122,即在第一金属网格部121两侧各有一个第一金属片状部122,各第一金属片状部122上设置有第一连接孔123。
如图4所示,第二发热膜14包括第二金属网格部141及连接第二金属网格部141的两个第二金属片状部142,即在第二金属网格部141两侧各有一个第二金属片状部142。各第二金属片状部142远离第二金属网格部141的一侧具有一第三金属片状部143,各第三金属片状部143具有与第一连接孔123位置对应的第二连接孔144。
在本实施例中,第一金属片状部122连接第二控制电路,第二金属片状部142连接第三控制电路,第一连接孔123通过导电物质连接第二连接孔144。其中,第一连接孔123可以通过导线连接第二连接孔144,还可以通过导电浆料连接到第二连接孔144上,可以理解的,在第一连接孔123与第二连接孔144进行连接时,第二多孔基体13的指定位置 处具有使导线或导电浆料通过的通道。
在本实施例中,第一发热膜12与第二发热膜14分别通过不同的控制电路进行控制。第一发热膜12与第二发热膜14的材料可以相同,也可以不同。在一具体实施例中,为保证第一发热膜12的功率小于第二发热膜14的功率,若第一发热膜12连接的第二块控制电路的电流及电压等与第二发热膜14连接的第三控制电路的电流及电压相同时,第一发热膜12与第二发热膜14的材料不同,若第一发热膜12连接的第二块控制电路的电流及电压等与第二发热膜14连接的第三控制电路的电流及电压不同时,第一发热膜12与第二发热膜14的材料可以相同。在一具体实施例中,第一发热膜12及第二发热膜14的材料可以为FeCrAl,FeCrNi,TiZr中一种,或任意组合。
请参见图5,为本申请发热体组件的制作方法的第一实施例的流程示意图。包括:
步骤S51:制作第一多孔基体及第二多孔基体。
具体地,采用流延成型(Tape Casting)、陶瓷粉末注射成型(Colloidal Ceramic Injection Moulding,CIM)、低温共烧陶瓷(Low-temperature co-fired ceramics,LTCC)技术或高温共烧陶瓷(High-temperature co-fired ceramics,HTCC)技术制备生坯基片。
在制备完成的生坯基片上按照要求设置若干孔以形成第一多孔基体及第二多孔基体。具体地,在生坯基片上设置若干非定向孔以形成第一多孔基体,在生坯基体上设置若干垂直于生坯基体的孔以形成第二多孔基体。
步骤S52:制作第一发热膜及第二发热膜。
具体地,可在金属片上按要求打孔以形成网格部,进而形成第一发热膜及第二发热膜。
具体地,在制作第一发热膜及第二发热膜时,需要按照要求制备控制电路,若制备的第一发热膜为如图2所示的发热膜,制备的第二发热膜为如图3所示的发热膜,则只需要制备一个控制电路即可。若制备的第一发热膜为如图2所示的发热膜,制备的第二发热膜为如图4所示的 发热膜,则需要制备两个控制电路,其中一个控制第一发热膜,另一个控制第二发热膜。
步骤S53:在第一多孔基体上设置第一发热膜,及在第二多孔基体上制作第二发热膜。
将第一发热膜及第二发热膜按照要求与第一多孔基体及第二多孔基体进行堆叠。
步骤S54:将第一多孔基体及第二多孔基体层叠设置,并使第二多孔基体与第一发热膜接触。
将第一多孔基体及第二多孔基体层叠设置,采用排胶及烧结的方式,使第一多孔基体及第二多孔基体粘合以形成发热体组件。
请参见图6,为本申请电子雾化装置的一实施例的结构示意图。本申请提供的电子雾化装置包括上述所述的发热体组件61。具体地,本申请的电子雾化装置可用于电子烟中,以此能够通过上述的发热体组件61定量的提供烟油,然后将定量提供的烟油进行雾化,以此实现定量雾化,提高用户口感。
本申请所述的发热体组件及电子雾化装置仅描述了部分功能结构,其他结构与现有技术中的结构相同,在此不再述。
以上仅为本申请的实施方式,并非因此限制本申请的专利范围,凡是利用本申请说明书及附图内容所作的等效结构或等效流程变换,或直接或间接运用在其他相关的技术领域,均同理包括在本申请的专利保护范围内。

Claims (18)

  1. 一种发热体组件,其中,包括:
    至少一第一多孔基体,用于存储液体;
    第一发热膜,位于所述第一多孔基体的一表面,用于将所述液体定量导出;
    第二多孔基体,位于所述第一发热膜远离所述第一多孔基体的一侧,用于将所述第一发热膜定量导出的所述液体进行定向传导;
    第二发热膜,位于所述第二多孔基体远离所述第一发热膜的一侧,用于发热而将所述第二多孔基体内的液体进行雾化。
  2. 根据权利要求1所述的发热体组件,其中,所述第一发热膜与所述第二发热膜连接第一控制电路,
    且所述第一发热膜与所述第二发热膜材料不同。
  3. 根据权利要求1所述的发热体组件,其中,所述第一发热膜连接第二控制电路;
    所述第二发热膜连接所述第一发热膜及第三控制电路,
    且所述第一发热膜与所述第二发热膜材料相同或不同。
  4. 根据权利要求2所述的发热体组件,其中,所述第一发热膜包括第一金属网格部及连接所述第一金属网格部的第一金属片状部,所述第一金属片状部上设置有第一连接孔;
    所述第二发热膜包括第二金属网格部及连接所述第二金属网格部的第二金属片状部,所述第二金属片状部上设置有与所述第一连接孔位置对应的第二连接孔;
    其中,所述第一金属片状部与所述第二金属片状部连接所述第一控制电路,所述第一连接孔与所述第二连接孔通过导电物质连接。
  5. 根据权利要求3所述的发热体组件,其中,所述第一发热膜包括第一金属网格部及连接所述第一金属网格部的第一金属片状部,所述第一金属片状部上设置有第一连接孔;
    所述第二发热膜包括第二金属网格部及连接所述第二金属网格部的第二金属片状部;所述第二金属片状部远离所述第二金属网格部的一侧具有 第三金属片状部,所述第三金属片状部具有与所述第一连接孔位置对应的第二连接孔;
    其中,所述第一金属片状部连接所述第二控制电路,所述第二金属片状部连接所述第三控制电路,所述第二连接孔通过导电物质连接至所述第一连接孔。
  6. 根据权利要求1所述的发热体组件,其中,所述第一多孔基体及所述第二多孔基体中具有若干孔,其中,所述第二多孔基体中的若干所述孔的方向垂直所述第二多孔基体;
    所述第一多孔基体中的孔占所述第一多孔基体的体积的40%~70%,所述第一多孔基体中的孔的直径为5~50μm;
    所述第二多孔基体中的孔占所述第二多孔基体的体积的30%~60%所述第二多孔基体中的孔的直径为5~30μm。
  7. 根据权利要求1所述的发热体组件,其中,所述第一发热膜及所述第二发热膜的材料为FeCrAl,FeCrNi,TiZr中一种或任意组合。
  8. 根据权利要求1所述的发热体组件,其中,所述第一发热膜的功率小于所述第二发热膜的功率。
  9. 一种电子雾化装置,其中,所述电子烟雾化装置包括发热体组件;
    所述发热组件包括:
    至少一第一多孔基体,用于存储液体;
    第一发热膜,位于所述第一多孔基体的一表面,用于将所述液体定量导出;
    第二多孔基体,位于所述第一发热膜远离所述第一多孔基体的一侧,用于将所述第一发热膜定量导出的所述液体进行定向传导;
    第二发热膜,位于所述第二多孔基体远离所述第一发热膜的一侧,用于发热而将所述第二多孔基体内的液体进行雾化。
  10. 根据权利要求9所述的发热体组件,其中,所述第一发热膜与所述第二发热膜连接第一控制电路,
    且所述第一发热膜与所述第二发热膜材料不同。
  11. 根据权利要求9所述的发热体组件,其中,所述第一发热膜连接第二控制电路;
    所述第二发热膜连接所述第一发热膜及第三控制电路,
    且所述第一发热膜与所述第二发热膜材料相同或不同。
  12. 根据权利要求10所述的发热体组件,其中,所述第一发热膜包括第一金属网格部及连接所述第一金属网格部的第一金属片状部,所述第一金属片状部上设置有第一连接孔;
    所述第二发热膜包括第二金属网格部及连接所述第二金属网格部的第二金属片状部,所述第二金属片状部上设置有与所述第一连接孔位置对应的第二连接孔;
    其中,所述第一金属片状部与所述第二金属片状部连接所述第一控制电路,所述第一连接孔与所述第二连接孔通过导电物质连接。
  13. 根据权利要求11所述的发热体组件,其中,所述第一发热膜包括第一金属网格部及连接所述第一金属网格部的第一金属片状部,所述第一金属片状部上设置有第一连接孔;
    所述第二发热膜包括第二金属网格部及连接所述第二金属网格部的第二金属片状部;所述第二金属片状部远离所述第二金属网格部的一侧具有第三金属片状部,所述第三金属片状部具有与所述第一连接孔位置对应的第二连接孔;
    其中,所述第一金属片状部连接所述第二控制电路,所述第二金属片状部连接所述第三控制电路,所述第二连接孔通过导电物质连接至所述第一连接孔。
  14. 根据权利要求9所述的发热体组件,其中,所述第一多孔基体及所述第二多孔基体中具有若干孔,其中,所述第二多孔基体中的若干所述孔的方向垂直所述第二多孔基体;
    所述第一多孔基体中的孔占所述第一多孔基体的体积的40%~70%,所述第一多孔基体中的孔的直径为5~50μm;
    所述第二多孔基体中的孔占所述第二多孔基体的体积的30%~60%所述第二多孔基体中的孔的直径为5~30μm。
  15. 根据权利要求9所述的发热体组件,其中,所述第一发热膜及所述第二发热膜的材料为FeCrAl,FeCrNi,TiZr中一种或任意组合。
  16. 根据权利要求9所述的发热体组件,其中,所述第一发热膜的功 率小于所述第二发热膜的功率。
  17. 一种发热体组件的制作方法,其中,所述方法包括:
    制作第一多孔基体及第二多孔基体;
    制作第一发热膜及第二发热膜;
    在所述第一多孔基体上设置第一发热膜,及在所述第二多孔基体上制作第二发热膜;
    将所述第一多孔基体及所述第二多孔基体层叠设置,并使所述第二多孔基体与所述第一发热膜接触。
  18. 根据权利要求17所述的制作方法,其中,所述制作第一多孔基体及第二多孔基体具体包括:
    采用流延成型、陶瓷粉末注射成型、低温共烧陶瓷技术或高温共烧陶瓷技术制备生坯基片;
    在所述生坯基片上制备若干孔形成第一多孔基体,在所述生坯基片上制备若干垂直于所述生坯基片的孔形成第二多孔基体;
    所述制作第一发热膜及第二发热膜还包括:
    按要求制备所述第一发热膜及所述第二发热膜所需要的控制电路;
    所述将所述第一多孔基体及所述第二多孔基体层叠设置,并使所述第二多孔基体与所述第一发热膜接触具体包括:
    进行排胶和烧结,使所述第一多孔基体及所述第二多孔基体粘合。
PCT/CN2020/130118 2019-11-25 2020-11-19 发热体组件及其制作方法、电子雾化装置 WO2021104151A1 (zh)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
CN201911168525.5A CN110934343A (zh) 2019-11-25 2019-11-25 发热体组件及其制作方法、电子雾化装置
CN201911168525.5 2019-11-25

Publications (1)

Publication Number Publication Date
WO2021104151A1 true WO2021104151A1 (zh) 2021-06-03

Family

ID=69908509

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2020/130118 WO2021104151A1 (zh) 2019-11-25 2020-11-19 发热体组件及其制作方法、电子雾化装置

Country Status (2)

Country Link
CN (1) CN110934343A (zh)
WO (1) WO2021104151A1 (zh)

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2022170728A1 (zh) * 2021-07-05 2022-08-18 深圳麦克韦尔科技有限公司 发热体、雾化组件及电子雾化装置
EP4226783A4 (en) * 2021-12-30 2023-09-20 Shenzhen Smoore Technology Limited HEATING ARRANGEMENT, ATOMIZER AND ELECTRONIC ATOMIZING DEVICE
EP4159057A4 (en) * 2022-05-13 2023-09-20 Shenzhen Smoore Technology Limited HEATING BODY, ATOMIZER AND ELECTRONIC ATOMIZATION DEVICE

Families Citing this family (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN110934343A (zh) * 2019-11-25 2020-03-31 深圳麦克韦尔科技有限公司 发热体组件及其制作方法、电子雾化装置
CN215992752U (zh) * 2021-08-31 2022-03-11 常州市派腾电子技术服务有限公司 雾化组件、雾化器及气溶胶发生装置
EP4205582A4 (en) * 2021-12-30 2023-12-20 Shenzhen Smoore Technology Limited HEATING ARRANGEMENT, ATOMIZER AND ELECTRONIC ATOMIZING DEVICE
WO2023130389A1 (zh) * 2022-01-07 2023-07-13 江门思摩尔新材料科技有限公司 发热组件及其制备方法、雾化器、电子雾化装置
CN114287677A (zh) * 2022-01-17 2022-04-08 惠州市新泓威科技有限公司 具有定向微孔的雾化芯

Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN105394816A (zh) * 2015-10-22 2016-03-16 深圳麦克韦尔股份有限公司 电子烟及其雾化组件和雾化元件
US20180271172A1 (en) * 2015-03-04 2018-09-27 Altria Client Services Llc E-vaping cartridge
CN108783595A (zh) * 2017-05-04 2018-11-13 常州市派腾电子技术服务有限公司 雾化器、雾化装置、以及控制雾化器的控制方法
KR101927135B1 (ko) * 2017-06-26 2018-12-11 전자부품연구원 전기 가열식 흡연 장치용 히터 및 그의 제조 방법
CN109363248A (zh) * 2018-11-29 2019-02-22 深圳麦克韦尔股份有限公司 电子烟及其雾化装置和多层结构定向导液雾化芯
CN109875124A (zh) * 2019-03-07 2019-06-14 昂纳自动化技术(深圳)有限公司 雾化组件及其制作方法
CN110934343A (zh) * 2019-11-25 2020-03-31 深圳麦克韦尔科技有限公司 发热体组件及其制作方法、电子雾化装置

Patent Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20180271172A1 (en) * 2015-03-04 2018-09-27 Altria Client Services Llc E-vaping cartridge
CN105394816A (zh) * 2015-10-22 2016-03-16 深圳麦克韦尔股份有限公司 电子烟及其雾化组件和雾化元件
CN108783595A (zh) * 2017-05-04 2018-11-13 常州市派腾电子技术服务有限公司 雾化器、雾化装置、以及控制雾化器的控制方法
KR101927135B1 (ko) * 2017-06-26 2018-12-11 전자부품연구원 전기 가열식 흡연 장치용 히터 및 그의 제조 방법
CN109363248A (zh) * 2018-11-29 2019-02-22 深圳麦克韦尔股份有限公司 电子烟及其雾化装置和多层结构定向导液雾化芯
CN109875124A (zh) * 2019-03-07 2019-06-14 昂纳自动化技术(深圳)有限公司 雾化组件及其制作方法
CN110934343A (zh) * 2019-11-25 2020-03-31 深圳麦克韦尔科技有限公司 发热体组件及其制作方法、电子雾化装置

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2022170728A1 (zh) * 2021-07-05 2022-08-18 深圳麦克韦尔科技有限公司 发热体、雾化组件及电子雾化装置
EP4226783A4 (en) * 2021-12-30 2023-09-20 Shenzhen Smoore Technology Limited HEATING ARRANGEMENT, ATOMIZER AND ELECTRONIC ATOMIZING DEVICE
EP4159057A4 (en) * 2022-05-13 2023-09-20 Shenzhen Smoore Technology Limited HEATING BODY, ATOMIZER AND ELECTRONIC ATOMIZATION DEVICE

Also Published As

Publication number Publication date
CN110934343A (zh) 2020-03-31

Similar Documents

Publication Publication Date Title
WO2021104151A1 (zh) 发热体组件及其制作方法、电子雾化装置
CN108158040B (zh) 一种均匀发热的mems电子烟芯片及其制造方法
EP3771354A1 (en) Porous component and electronic cigarette including the same
CN108208938A (zh) 一种发热体及制备方法
CN109363248A (zh) 电子烟及其雾化装置和多层结构定向导液雾化芯
CN111700310A (zh) 液体雾化器用多孔梯度陶瓷发热体及其制备方法
CN111053291A (zh) 电子雾化装置、雾化芯及其制备方法
CN207784280U (zh) 一种发热体
EP3935973A1 (en) Electronic cigarette atomization assembly and manufacturing method therefor
CN113662250A (zh) 一种mems硅基雾化芯及其制造方法
JP6207517B2 (ja) 銅構造物を有するAlNからなる回路板
CN111227310A (zh) 电子雾化装置及其雾化芯
WO2021163950A1 (zh) 发热组件、雾化器及电子烟
CN215992754U (zh) 吸液发热件、雾化器及气溶胶发生装置
WO2022121579A1 (zh) 雾化芯、雾化器、气溶胶发生装置及雾化芯加工方法
CN218773343U (zh) 分体式玻璃发热片及雾化装置
DE102019103987A1 (de) Verdampfervorrichtung für einen Inhalator, Verbrauchseinheit, Inhalator und Herstellungsverfahren
CN212185120U (zh) 发热体组件、电子雾化装置
CN219679797U (zh) 多孔陶瓷雾化芯及电子烟雾化器
JP4534355B2 (ja) 電極用多孔質基体の製造方法
CN217644616U (zh) 一种快速响应mems雾化芯
CN219537471U (zh) 多孔陶瓷雾化芯及电子烟雾化器
CN108185533A (zh) 薄片式陶瓷雾化芯及其制作方法
JP2007266042A (ja) 積層構造体の製造方法
CN216931904U (zh) 雾化芯、雾化器及电子雾化装置

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 20894852

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 20894852

Country of ref document: EP

Kind code of ref document: A1