WO2021103539A1 - 一种非接触式轮廓仪管材样品快捷定位装置及操作方法 - Google Patents

一种非接触式轮廓仪管材样品快捷定位装置及操作方法 Download PDF

Info

Publication number
WO2021103539A1
WO2021103539A1 PCT/CN2020/100397 CN2020100397W WO2021103539A1 WO 2021103539 A1 WO2021103539 A1 WO 2021103539A1 CN 2020100397 W CN2020100397 W CN 2020100397W WO 2021103539 A1 WO2021103539 A1 WO 2021103539A1
Authority
WO
WIPO (PCT)
Prior art keywords
positioning shaft
sample
cylinder
bearing
pipe sample
Prior art date
Application number
PCT/CN2020/100397
Other languages
English (en)
French (fr)
Inventor
冯辉
刘鲁生
张重远
李红军
明洪亮
Original Assignee
中国科学院金属研究所
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 中国科学院金属研究所 filed Critical 中国科学院金属研究所
Publication of WO2021103539A1 publication Critical patent/WO2021103539A1/zh

Links

Images

Classifications

    • GPHYSICS
    • G01MEASURING; TESTING
    • G01BMEASURING LENGTH, THICKNESS OR SIMILAR LINEAR DIMENSIONS; MEASURING ANGLES; MEASURING AREAS; MEASURING IRREGULARITIES OF SURFACES OR CONTOURS
    • G01B11/00Measuring arrangements characterised by the use of optical techniques
    • G01B11/24Measuring arrangements characterised by the use of optical techniques for measuring contours or curvatures

Definitions

  • the invention relates to the technical field of analysis of sample surface morphology by a non-contact profiler, in particular to a quick positioning device and an operation method for a non-contact profiler tube sample.
  • the methods of material surface profile analysis are mainly divided into two measurement methods: contact and non-contact.
  • the main instruments used for non-contact measurement of material surface profile are white light interferometer and laser confocal microscope. It mainly measures the surface of various precision devices and materials at sub-nanometer level. Both instruments can perform non-contact scanning on the surface of the device and establish a 3D surface image.
  • the 3D image of the device surface can be processed and analyzed through the system software, and 2D and 3D parameters reflecting the surface quality of the device can be obtained to realize the surface shape of the device. Appearance 3D measurement.
  • the technical problem to be solved by the present invention is to provide a quick positioning device and operation method for a non-contact profiler tube sample to ensure that the part that needs to be measured is always at the top of the tube during the surface profile analysis experiment.
  • the accuracy of data collection and result analysis in the non-contact surface profile analysis experiment can be fixed on a glass slide through plasticine for batch positioning of multiple sets of samples, which is suitable for surface profile analysis of a large number of samples.
  • a non-contact profiler tube sample quick positioning device includes: light source, fine-tuning optical slit, ultra-thin ⁇ -axis hollow fine-tuning manual platform, right walking transmission positioning shaft, right air cylinder, right slider, quilt Test tube sample, plasticine, lower cylinder, glass slide, moving platform, slide rail, left cylinder, left slider, left travel transmission positioning shaft, bracket, the specific structure is as follows:
  • the two sides of the horizontal tested pipe sample are supported by the left-side traveling transmission positioning shaft and the right-side traveling transmission positioning shaft respectively.
  • the left side of the tested pipe fitting sample is provided with a left walking drive positioning axis, a left slider, and a left cylinder.
  • the right side of the tested pipe fitting sample is provided with a right walking drive positioning axis and an ultra-thin ⁇ -axis hollow fine-tuning manual platform.
  • the right slider, the right cylinder, and directly above the tested pipe sample are provided with a bracket, a fine-tuning optical slit, and a light source.
  • legs are installed at the bottoms of both ends of the slide rail.
  • the tested tube sample is placed horizontally on the plasticine, the plasticine is glued to the glass slide, the glass slide is placed horizontally on the mobile platform, and the cylinder head of the lower cylinder is fixed on the plasticine.
  • the moving platform is connected with the lever of the lower cylinder at the center and bottom of the slide rail.
  • the left-hand travel transmission positioning shaft is fixed on the left slide block, the cylinder body of the left cylinder is fixed on the left side of the slide rail, and the cylinder rod of the left cylinder and the left side The sliders are connected.
  • the ultra-thin ⁇ -axis hollow fine-tuning manual platform is fixed on the right side of the right-side walking transmission positioning shaft
  • the ultra-thin ⁇ -axis hollow fine-tuning manual platform and the right-side walking transmission positioning shaft are two
  • the components are fixed together on the right slider, the cylinder body of the right cylinder is fixed on the right side of the slide rail, and the cylinder rod of the right cylinder is connected with the right slider.
  • the bracket is fixed on the slide rail, the light source and the fine-tuning optical slit are respectively fixed on the bracket, and the light source is located above the fine-tuning optical slit. Corresponding to the pipe fitting samples.
  • the right-side walking transmission positioning shaft and the left-side walking transmission positioning shaft have the same structure and are arranged symmetrically.
  • the right travel transmission positioning shaft includes the right bearing box, the right positioning shaft, the right retaining ring, the right bearing one, the right hexagonal screw, the right flange gland, and the right card.
  • Spring and right bearing two One end of the horizontal right positioning shaft is inserted into the right bearing box.
  • Two sets of bearings are installed in parallel in the right bearing box: right bearing one and right bearing two.
  • Right bearing one and right bearing two are located on the right positioning shaft.
  • the right bearing one is clamped between the shoulder of the right positioning shaft, the inner side of the right bearing box and the right retaining ring.
  • One end of the right bearing box is installed with the right flange gland through the right hexagonal screw.
  • the left-side traveling transmission positioning shaft includes a left bearing box, a left positioning shaft, a left retaining ring, a left bearing one, a left hexagonal screw, a left flange gland, and a left card Spring and left bearing two.
  • One end of the horizontal left positioning shaft is inserted into the left bearing box.
  • Two sets of bearings are installed in parallel in the left bearing box: left bearing one and left bearing two.
  • Left bearing one and left bearing two are located on the left positioning shaft.
  • the left bearing one is clamped between the shoulder of the left positioning shaft, the inner side of the left bearing box and the left retaining ring.
  • One end of the left bearing box is installed with the left flange gland through the left hexagonal screw.
  • One end of the flange gland is inserted into the left bearing box, and the second bearing of the left bearing is clamped between the left circlip on the left positioning shaft, the inner side of the left flange gland and the left retaining ring; the other end of the left positioning shaft is a cone Shaped tip, the left side walking transmission positioning shaft is held on the left end of the tested pipe sample through the tapered tip of the left positioning shaft.
  • the present invention can quickly and accurately position the tested scratched pipe sample on the glass slide to ensure that the sample can be quickly adjusted during the surface profile analysis experiment process, and the part that needs to be measured is always at the top of the pipe, thereby ensuring non-contact Accuracy of data collection and result analysis in the experimental surface profile analysis.
  • the ultra-thin ⁇ -axis hollow fine-tuning manual platform, the right-side walking transmission positioning shaft, the right-side sliding block moving platform, the slide rail, the left-side sliding block, the left-side walking transmission positioning shaft and other transmission components are all abrasives Steel, with high hardness and grindability and dimensional stability, can effectively ensure that there is no relative displacement between the pipe sample and the positioning device during the whole experiment, so as to achieve the kinetic energy of each operation to accurately position the pipe sample.
  • the invention has the advantages of simple structure, simple manufacture, convenient maintenance and disassembly, low cost, and high-efficiency ideal laboratory and industrial application effects.
  • Figure 1 is a structural diagram of the present invention.
  • Figure 2 is an enlarged cross-sectional view of the structure of the right-hand travel transmission positioning shaft.
  • Fig. 3 is an enlarged cross-sectional view of the structure of the left side walking transmission positioning shaft.
  • 16-1 left bearing box 16-2 left positioning shaft; 16-3 left retaining ring; 16-4 left bearing one; 16-5 left hexagon socket screw; 16-6 left flange gland; 16- 7 Left circlip; 16-8 left bearing two.
  • the non-contact profiler tube sample quick positioning device of the present invention mainly includes: light source 1, fine-tuning optical slit 2, ultra-thin ⁇ -axis hollow fine-tuning manual platform 3, walking on the right side Drive positioning shaft 4, right cylinder 5, right slider 6, tested pipe fitting sample 7, plasticine 8, lower cylinder 9, slide 10, moving platform 11, outrigger 12, slide rail 13, left cylinder 14.
  • the left slide block 15, the left travel transmission positioning shaft 16, the bracket 17, etc.
  • the tested pipe sample 7 is placed horizontally on the plasticine 8, the plasticine 8 is glued to the slide 10, the slide 10 is placed horizontally on the moving platform 11, and the cylinder head of the lower cylinder 9 is fixed on the slide rail 13 Right below the center, the moving platform 11 is connected with the lever of the lower cylinder 9.
  • the left side travel transmission positioning shaft 16 is fixed on the left side slider 15, the cylinder body of the left side cylinder 14 is fixed on the left side of the slide rail 13, and the cylinder rod of the left side cylinder 14 is connected with the left side slider 15.
  • the ultra-thin ⁇ -axis hollow fine-tuning manual platform 3 is fixed on the right side of the right-side walking transmission positioning shaft 4, and the two parts of the ultra-thin ⁇ -axis hollow fine-tuning manual platform 3 and the right-side walking transmission positioning shaft 4 are fixed on the right slider 6 together.
  • the cylinder body of the right cylinder 5 is fixed on the right side of the slide rail 13, and the cylinder rod of the right cylinder 5 is connected with the right slider 6.
  • the bracket 17 is fixed on the slide rail 13, the light source 1 and the fine-tuning optical slit 2 are respectively fixed on the bracket 17, the light source 1 is located above the fine-tuning optical slit 2, and the light source 1 is in phase with the tested tube sample 7 through the fine-tuning optical slit 2. correspond.
  • the ultra-thin ⁇ -axis hollow fine-tuning manual platform can use the Sigma ultra-thin ⁇ -axis hollow fine-tuning rotating platform produced by Japan Sigma Koki Co., Ltd. (SIGMA KOKI), the model is KSPT-406, its thickness is only 10mm, and its function Yes: The pitch of the precision adjustment screw on the ultra-thin ⁇ -axis hollow fine-tuning manual platform is 0.25mm.
  • the right-side walking transmission positioning shaft 4 can be precisely rotated until it will be irradiated The long and narrow light strips above the test tube sample 7 coincide with the strip scratches above the test tube sample 7.
  • the fine-tuning optical slit can be the FPSTA-10AOS10-1 type adjustable optical slit produced by Fuguang Precision Instrument (China) Co., Ltd.
  • the maximum width of the adjustable optical slit is 10mm, and the sensitivity (manual) is 1 ⁇ m, Its function is to fine-tune the optical slit to achieve optically adjustable slit widths of different widths by precisely adjusting the positions of the two blades. It can be used as a spectrometer slit.
  • the minimum slit width is 20 ⁇ m (when fully closed), and the maximum slit width is 10mm.
  • the sensitivity is 1 ⁇ m, and the long and narrow light bar can be projected directly above the pipe sample 7 to be tested through adjustment.
  • the right travel transmission positioning shaft 4 has the same structure as the left travel transmission positioning shaft 16, and they are arranged symmetrically, in which:
  • the right travel transmission positioning shaft 4 includes a right bearing box 4-1, a right positioning shaft 4-2, a right retaining ring 4-3, a right bearing 4-4, a right hexagon socket screw 4-5, Right flange gland 4-6, right circlip 4-7, right bearing 2 4-8, one end of the horizontal right positioning shaft 4-2 is inserted into the right bearing box 4-1, and the right bearing box 4-1 is opposite Install two sets of bearings in parallel: right bearing 1 4-4, right bearing 2 4-8, right bearing 1 4-4, right bearing 2 4-8, located on both sides of the right retaining ring 4-3 on the right positioning shaft 4-2 , The right bearing 4-4 is clamped between the shoulder of the right positioning shaft 4-2, the inner side of the right bearing box 4-1 and the right retaining ring 4-3, and one end of the right bearing box 4-1 passes through the right inner hexagon Screw 4-5 to install the right flange gland 4-6, one end of the right flange gland 4-6 is inserted into the right bearing box 4-1, and the right bearing
  • the left travel transmission positioning shaft 16 includes a left bearing box 16-1, a left positioning shaft 16-2, a left retaining ring 16-3, and a left bearing one. 16-4.
  • Left hexagon socket screw 16-5, left flange gland 16-6, left circlip 16-7, left bearing two 16-8, one end of horizontal left positioning shaft 16-2 is inserted into the left bearing box 16-1, two sets of bearings are installed in parallel in the left bearing box 16-1: left bearing one 16-4, left bearing two 16-8, left bearing one 16-4, left bearing two 16-8 are located on the left positioning shaft 16 -2 on both sides of the left retaining ring 16-3, the left bearing one 16-4 is clamped between the shoulder of the left positioning shaft 16-2, the inner side of the left bearing box 16-1 and the left retaining ring 16-3, One end of the left bearing box 16-1 is installed with the left flange gland 16-6 through the left hexagonal screw 16-5, one end of the left flange gland 16-6 is
  • the operating method of the present invention is as follows:
  • the present invention combines the existing white light interferometer and laser confocal microscope to build a non-contact profiler tube sample quick positioning device.
  • the positioned tube sample 7 can be fixed on the slide glass 10 through the plasticine 8
  • the batch positioning of multiple sets of sample components is suitable for the surface profile analysis of large quantities of samples. First, place the prepared sample 7 of the pipe to be tested on the plasticine 8 with the scratch facing upwards, and place the plasticine 8 on the glass slide 10, and place this set of preliminarily fixed sample components on the mobile platform 11.
  • the present invention can ensure that the part to be measured for rapid adjustment is always at the top of the pipe during the surface profile analysis experiment, thereby ensuring the accuracy of data collection and result analysis in the non-contact surface profile analysis experiment.
  • the sample positioned by the device of the present invention can be fixed on a glass slide through plasticine for batch positioning of multiple sets of samples, which is suitable for surface profile analysis of a large number of samples.

Abstract

一种非接触式轮廓仪管材样品(7)快捷定位装置及操作方法,定位装置的被测管件样品(7)正下方依次设有橡皮泥(8)、载玻片(10)、移动平台(11)、滑轨(13)、下端气缸(9),水平被测管件样品(7)的两侧分别通过左侧行走传动定位轴(16)、右侧行走传动定位轴(4)顶持,被测管件样品(7)左侧依次设有左侧行走传动定位轴(16)、左侧滑块(15)、左侧气缸(14),被测管件样品(7)右侧依次设有右侧行走传动定位轴(4)、超薄θ轴中空微调手动平台(3)、右侧滑块(6)、右侧气缸(5),被测管件样品(7)正上方依次设有支架(17)、微调光学狭缝(2)、光源(1),确保在表面轮廓分析实验过程中快速调整需要测量部位始终处于被测管件样品(7)的最顶端,保证非接触式表面轮廓分析实验中数据采集及结果分析的准确性。

Description

一种非接触式轮廓仪管材样品快捷定位装置及操作方法 技术领域
本发明涉及非接触式轮廓仪分析样品表面形貌技术领域,尤其涉及一种非接触式轮廓仪管材样品快捷定位装置及操作方法。
背景技术
目前,材料表面轮廓分析的手段主要分为接触式和非接触式两种测量方式。非接触式测量材料表面轮廓用到的仪器主要是白光干涉仪和激光共聚焦显微镜。主要是对各种精密器件及材料表面进行亚纳米级的测量。两种仪器均可以对器件表面进行非接触式扫描并建立表面3D图像,通过系统软件对器件表面3D图像进行数据处理与分析,并获取反映器件表面质量的2D、3D参数,从而实现器件表面形貌3D测量。
对于核电站蒸汽发生器传热管由于流致振动引起的微动磨损失效行为的研究中,磨痕区域狭长,并且深度很浅。经过多种实验测试研究发现目前利用白光干涉仪对管材的磨损体积进行测量,结果要更加准确。而对管材某一固定位置进行表面轮廓分析时,如何调整使该位置处于最高点以及固定该位置,对数据的采集和结果分析是至关重要的。
发明内容
本发明要解决的技术问题在于,提供一种非接触式轮廓仪管材样品快捷定位装置及操作方法,以确保在表面轮廓分析实验过程中可以快速调整需要测量部位始终处于管材的最顶端,从而保证非接触式表面轮廓分析实验中数据采集及结果分析的准确性。而且,本发明装置定位好的样品可以通过橡皮泥固定在载玻片上进行多组样品的批量定位,适合大批量样品的表面轮廓分析。
本发明解决其问题所采取的技术方案是:
一种非接触式轮廓仪管材样品快捷定位装置,该装置包括:光源、微调光学狭缝、超薄θ轴中空微调手动平台、右侧行走传动定位轴、右侧气缸、右侧滑块、被测管件样品、橡皮泥、下端气缸、载玻片、移动平台、滑轨、左侧气缸、左侧滑块、左侧行走传动定位轴、支架,具体结构如下:
被测管件样品正下方依次设有橡皮泥、载玻片、移动平台、滑轨、下端气缸,水平被测管件样品的两侧分别通过左侧行走传动定位轴、右侧行走传动定位轴顶持,被测管件样品左侧依次设有左侧行走传动定位轴、左侧滑块、左侧气缸,被测管件样品右侧依次设有右侧行走传动定位轴、超薄θ轴中空微调手动平台、右侧滑块、右侧气缸,被测管件样品正上方依次设有支架、微调光学狭缝、光源。
所述的非接触式轮廓仪管材样品快捷定位装置,滑轨的两端底部安装支腿。
所述的非接触式轮廓仪管材样品快捷定位装置,被测管件样品水平放置在橡皮泥上,橡皮泥粘在载玻片上,载玻片水平放置在移动平台上,下端气缸的缸头固定在滑轨的正中下方,移动平台与下端气缸的杠杆相连接。
所述的非接触式轮廓仪管材样品快捷定位装置,左侧行走传动定位轴固定在左侧滑块上, 左侧气缸的缸身固定在滑轨左侧、左侧气缸的缸杆与左侧滑块相连接。
所述的非接触式轮廓仪管材样品快捷定位装置,超薄θ轴中空微调手动平台固定在右侧行走传动定位轴的右侧,超薄θ轴中空微调手动平台和右侧行走传动定位轴两部件一起固定在右侧滑块上,右侧气缸的缸身固定在滑轨右侧、右侧气缸的缸杆与右侧滑块相连接。
所述的非接触式轮廓仪管材样品快捷定位装置,支架固定在滑轨上,光源和微调光学狭缝分别固定在支架上,光源位于微调光学狭缝的上方,光源通过微调光学狭缝与被测管件样品相对应。
所述的非接触式轮廓仪管材样品快捷定位装置,右侧行走传动定位轴与左侧行走传动定位轴结构相同,并对称设置。
所述的非接触式轮廓仪管材样品快捷定位装置,右侧行走传动定位轴包括右轴承盒、右定位轴、右挡环、右轴承一、右内六角螺钉、右法兰压盖、右卡簧、右轴承二,水平的右定位轴一端插设于右轴承盒,右轴承盒内相对平行安装两组轴承:右轴承一、右轴承二,右轴承一、右轴承二位于右定位轴上的右挡环两侧,右轴承一卡装于右定位轴的台肩、右轴承盒的内侧与右挡环之间,右轴承盒的一端通过右内六角螺钉安装右法兰压盖,右法兰压盖的一端插设于右轴承盒,右轴承二卡装于右定位轴上的右卡簧、右法兰压盖的内侧与右挡环之间;右定位轴的另一端为锥形尖头,右侧行走传动定位轴通过右定位轴的锥形尖头顶持于被测管件样品的右端。
所述的非接触式轮廓仪管材样品快捷定位装置,左侧行走传动定位轴包括左轴承盒、左定位轴、左挡环、左轴承一、左内六角螺钉、左法兰压盖、左卡簧、左轴承二,水平的左定位轴一端插设于左轴承盒,左轴承盒内相对平行安装两组轴承:左轴承一、左轴承二,左轴承一、左轴承二位于左定位轴上的左挡环两侧,左轴承一卡装于左定位轴的台肩、左轴承盒的内侧与左挡环之间,左轴承盒的一端通过左内六角螺钉安装左法兰压盖,左法兰压盖的一端插设于左轴承盒,左轴承二卡装于左定位轴上的左卡簧、左法兰压盖的内侧与左挡环之间;左定位轴的另一端为锥形尖头,左侧行走传动定位轴通过左定位轴的锥形尖头顶持于被测管件样品的左端。
所述的非接触式轮廓仪管材样品快捷定位装置的操作方法,具体步骤如下:
(1)将制作好的被测管材样品划伤朝上放置在橡皮泥上,将橡皮泥放置在载玻片上,将初步固定好的被测管材样品放置在移动平台上,保持被测管材样品中心线、左侧行走传动定位轴中心线和右侧行走传动定位轴中心线在一条直线上,开启左侧气缸和右侧气缸伸长的进气阀门,推动左侧滑块与左侧行走传动定位轴和右侧滑块与右侧行走传动定位轴将被测管材样品中心线对正;
(2)调整微调光学狭缝使光源在被测管材样品的正上方投射一条狭长光条,调整超薄θ轴中空微调手动平台使右侧行走传动定位轴转动,直至将照射在被测管材样品上方的狭长光条与被测管材样品上方的条形划伤相重合;
(3)开启下端气缸伸长的进气阀门推动移动平台上升将橡皮泥挤紧,开启左侧气缸和右 侧气缸缩短的进气阀门,推动左侧滑块与左侧行走传动定位轴和右侧滑块与右侧行走传动定位轴同时向被测管材样品外侧行走,取出定位好的样品组件。
本发明非接触式轮廓仪管材样品快捷定位装置及操作方法,具有以下优点及有益效果:
1、本发明可以快捷准确地将被检测的划伤管材样品精确定位在载玻片上,以确保样品在表面轮廓分析实验过程中可以快速调整需要测量部位始终处于管材的最顶端,从而保证非接触式表面轮廓分析实验中数据采集及结果分析的准确性。
2、本发明中超薄θ轴中空微调手动平台、右侧行走传动定位轴、右侧滑块移动平台、滑轨、左侧滑块、左侧行走传动定位轴等传动部件材料均为磨具钢,具有很高的硬度磨性和尺寸稳定性,能有效低保证整着实验过程中管材样品和定位装置无相对位移从而达到每次操作动能精准定位管材样品。
3、本发明结构简单、制作简易、维修拆卸方便、造价低廉,具有高效理想的实验室和工业化应用效果。
附图说明
图1为本发明的结构图。
图中:1-光源;2-微调光学狭缝;3-超薄θ轴中空微调手动平台;4-右侧行走传动定位轴;5-右侧气缸;6-右侧滑块;7-被测管件样品;8-橡皮泥;9-下端气缸;10-载玻片;11-移动平台:12-支腿;13-滑轨;14-左侧气缸;15-左侧滑块;16-左侧行走传动定位轴;17-支架。
图2为右侧行走传动定位轴的结构剖视放大图。
图中:4-1右轴承盒;4-2右定位轴;4-3右挡环;4-4右轴承一;4-5右内六角螺钉;4-6右法兰压盖;4-7右卡簧;4-8右轴承二。
图3为左侧行走传动定位轴的结构剖视放大图。
图中:16-1左轴承盒;16-2左定位轴;16-3左挡环;16-4左轴承一;16-5左内六角螺钉;16-6左法兰压盖;16-7左卡簧;16-8左轴承二。
具体实施方式
下面,结合附图和实施例对发明的具体实施方式作进一步详细的说明。对于这些实施例的详细描述,应该理解为本领域的技术人员可以通过本发明来实践,并可以通过使用其它实施例,在不脱离所附权利要求书的精神和本发明范畴的情况下,对所示实例进行更改和/或改变。此外,虽然在实施例中公布本发明的特定特征,但是这种特定特征可以适当进行更改,实现本发明的功能。
如图1、图2、图3所示,本发明非接触式轮廓仪管材样品快捷定位装置,主要包括:光源1、微调光学狭缝2、超薄θ轴中空微调手动平台3、右侧行走传动定位轴4、右侧气缸5、右侧滑块6、被测管件样品7、橡皮泥8、下端气缸9、载玻片10、移动平台11、支腿12、滑轨13、左侧气缸14、左侧滑块15、左侧行走传动定位轴16、支架17等,具体结构如下:
被测管件样品7正下方依次设有橡皮泥8、载玻片10、移动平台11、滑轨13、下端气缸9,水平被测管件样品7的两侧分别通过左侧行走传动定位轴16、右侧行走传动定位轴4顶 持,被测管件样品7左侧依次设有左侧行走传动定位轴16、左侧滑块15、左侧气缸14,被测管件样品7右侧依次设有右侧行走传动定位轴4、超薄θ轴中空微调手动平台3、右侧滑块6、右侧气缸5,被测管件样品7正上方依次设有支架17、微调光学狭缝2、光源1,滑轨13的两端底部安装支腿12。
其中,被测管件样品7水平放置在橡皮泥8上,橡皮泥8粘在载玻片10上,载玻片10水平放置在移动平台11上,下端气缸9的缸头固定在滑轨13的正中下方,移动平台11与下端气缸9的杠杆相连接。左侧行走传动定位轴16固定在左侧滑块15上,左侧气缸14的缸身固定在滑轨13左侧、左侧气缸14的缸杆与左侧滑块15相连接。超薄θ轴中空微调手动平台3固定在右侧行走传动定位轴4的右侧,超薄θ轴中空微调手动平台3和右侧行走传动定位轴4两部件一起固定在右侧滑块6上,右侧气缸5的缸身固定在滑轨13右侧、右侧气缸5的缸杆与右侧滑块6相连接。支架17固定在滑轨13上,光源1和微调光学狭缝2分别固定在支架17上,光源1位于微调光学狭缝2的上方,光源1通过微调光学狭缝2与被测管件样品7相对应。
本发明中,超薄θ轴中空微调手动平台可以采用日本西格玛光机株式会社(SIGMA KOKI)生产的西格玛超薄θ轴中空微调转动平台,型号为KSPT-406,其厚度仅为10mm,其作用是:超薄θ轴中空微调手动平台上精密调整螺杆的螺距为0.25mm,可以在调整超薄θ轴中空微调手动平台3时,使右侧行走传动定位轴4精密转动,直至将照射在被测管材样品7上方的狭长光条与被测管材样品7上方的条形划伤相重合。
本发明中,微调光学狭缝可以采用孚光精仪(中国)有限公司生产的FPSTA-10AOS10-1型可调光学狭缝,可调光学狭缝的最大宽度是10mm,灵敏度(手动)1μm,其作用是:微调光学狭缝通过精确调整两叶片位置来实现不同宽度的光学可调狭缝宽度,可用作光谱仪狭缝,最小狭缝宽度20μm(全闭合时),最大狭缝宽度10mm,灵敏度1μm,通过调节可以将狭长光条投射在被测管材样品7正上方。
右侧行走传动定位轴4与左侧行走传动定位轴16结构相同,并对称设置,其中:
如图2所示,右侧行走传动定位轴4包括右轴承盒4-1、右定位轴4-2、右挡环4-3、右轴承一4-4、右内六角螺钉4-5、右法兰压盖4-6、右卡簧4-7、右轴承二4-8,水平的右定位轴4-2一端插设于右轴承盒4-1,右轴承盒4-1内相对平行安装两组轴承:右轴承一4-4、右轴承二4-8,右轴承一4-4、右轴承二4-8位于右定位轴4-2上的右挡环4-3两侧,右轴承一4-4卡装于右定位轴4-2的台肩、右轴承盒4-1的内侧与右挡环4-3之间,右轴承盒4-1的一端通过右内六角螺钉4-5安装右法兰压盖4-6,右法兰压盖4-6的一端插设于右轴承盒4-1,右轴承二4-8卡装于右定位轴4-2上的右卡簧4-7、右法兰压盖4-6的内侧与右挡环4-3之间。右定位轴4-2的另一端为锥形尖头,右侧行走传动定位轴4通过右定位轴4-2的锥形尖头顶持于被测管件样品7的一端。
如图3所示,与右侧行走传动定位轴4的结构相同,左侧行走传动定位轴16包括左轴承盒16-1、左定位轴16-2、左挡环16-3、左轴承一16-4、左内六角螺钉16-5、左法兰压盖16-6、 左卡簧16-7、左轴承二16-8,水平的左定位轴16-2一端插设于左轴承盒16-1,左轴承盒16-1内相对平行安装两组轴承:左轴承一16-4、左轴承二16-8,左轴承一16-4、左轴承二16-8位于左定位轴16-2上的左挡环16-3两侧,左轴承一16-4卡装于左定位轴16-2的台肩、左轴承盒16-1的内侧与左挡环16-3之间,左轴承盒16-1的一端通过左内六角螺钉16-5安装左法兰压盖16-6,左法兰压盖16-6的一端插设于左轴承盒16-1,左轴承二16-8卡装于左定位轴16-2上的左卡簧16-7、左法兰压盖16-6的内侧与左挡环16-3之间。左定位轴16-2的另一端为锥形尖头,左侧行走传动定位轴16通过左定位轴16-2的锥形尖头顶持于被测管件样品7的另一端。
如图1-图3所示,本发明的操作方法如下:
本发明结合现有的白光干涉仪和激光共聚焦显微镜等设备,搭建一种非接触式轮廓仪管材样品快捷定位装置,定位好的被测管材样品7可以通过橡皮泥8固定在载玻片10上进行多组样品组件的批量定位,适合大批量样品的表面轮廓分析。首先将制作好的被测管材样品7划伤朝上放置在橡皮泥8上,将橡皮泥8放置在载玻片10上,将这一套初步固定好的样品组件放置在移动平台11上,保持被测管材样品7中心线、左侧行走传动定位轴16中心线和右侧行走传动定位轴4中心线大致在一条直线上,开启左侧气缸14和右侧气缸5伸长的进气阀门,推动左侧滑块15与左侧行走传动定位轴16和右侧滑块6与右侧行走传动定位轴4将被测管材样品7中心线对正。然后调整微调光学狭缝2使光源1在被测管材样品7的正上方投射一条狭长光条,调整超薄θ轴中空微调手动平台3使右侧行走传动定位轴4转动,直至将照射在被测管材样品7上方的狭长光条与被测管材样品7上方的条形划伤相重合。最后开启下端气缸9伸长的进气阀门推动移动平台11上升将橡皮泥8挤紧,开启左侧气缸14和右侧气缸5缩短的进气阀门,推动左侧滑块15与左侧行走传动定位轴16和右侧滑块6与右侧行走传动定位轴4同时向被测管材样品7外侧行走,取出定位好的样品组件。
结果表明,本发明可以确保在表面轮廓分析实验过程中快速调整需要测量部位始终处于管材的最顶端,从而保证非接触式表面轮廓分析实验中数据采集及结果分析的准确性。而且,本发明装置定位好的样品可以通过橡皮泥固定在载玻片上进行多组样品的批量定位,适合大批量样品的表面轮廓分析。
上面结合附图对本发明的实施例进行描述,但是本发明并不局限于上述的具体实施方式,上述的具体实施例仅仅是示意性的,而不是限制性的,本领域的普通技术人员在本发明的启示下,在不脱离本发明宗旨和权利要求所保护的范围情况下,还可以做出很多形式,这些均属本本发明的保护之内。

Claims (10)

  1. 一种非接触式轮廓仪管材样品快捷定位装置,其特征在于,该装置包括:光源、微调光学狭缝、超薄θ轴中空微调手动平台、右侧行走传动定位轴、右侧气缸、右侧滑块、被测管件样品、橡皮泥、下端气缸、载玻片、移动平台、滑轨、左侧气缸、左侧滑块、左侧行走传动定位轴、支架,具体结构如下:
    被测管件样品正下方依次设有橡皮泥、载玻片、移动平台、滑轨、下端气缸,水平被测管件样品的两侧分别通过左侧行走传动定位轴、右侧行走传动定位轴顶持,被测管件样品左侧依次设有左侧行走传动定位轴、左侧滑块、左侧气缸,被测管件样品右侧依次设有右侧行走传动定位轴、超薄θ轴中空微调手动平台、右侧滑块、右侧气缸,被测管件样品正上方依次设有支架、微调光学狭缝、光源。
  2. 按照权利要求1所述的非接触式轮廓仪管材样品快捷定位装置,其特征在于,滑轨的两端底部安装支腿。
  3. 按照权利要求1所述的非接触式轮廓仪管材样品快捷定位装置,其特征在于,被测管件样品水平放置在橡皮泥上,橡皮泥粘在载玻片上,载玻片水平放置在移动平台上,下端气缸的缸头固定在滑轨的正中下方,移动平台与下端气缸的杠杆相连接。
  4. 按照权利要求1所述的非接触式轮廓仪管材样品快捷定位装置,其特征在于,左侧行走传动定位轴固定在左侧滑块上,左侧气缸的缸身固定在滑轨左侧、左侧气缸的缸杆与左侧滑块相连接。
  5. 按照权利要求1所述的非接触式轮廓仪管材样品快捷定位装置,其特征在于,超薄θ轴中空微调手动平台固定在右侧行走传动定位轴的右侧,超薄θ轴中空微调手动平台和右侧行走传动定位轴两部件一起固定在右侧滑块上,右侧气缸的缸身固定在滑轨右侧、右侧气缸的缸杆与右侧滑块相连接。
  6. 按照权利要求1所述的非接触式轮廓仪管材样品快捷定位装置,其特征在于,支架固定在滑轨上,光源和微调光学狭缝分别固定在支架上,光源位于微调光学狭缝的上方,光源通过微调光学狭缝与被测管件样品相对应。
  7. 按照权利要求1所述的非接触式轮廓仪管材样品快捷定位装置,其特征在于,右侧行走传动定位轴与左侧行走传动定位轴结构相同,并对称设置。
  8. 按照权利要求1所述的非接触式轮廓仪管材样品快捷定位装置,其特征在于,右侧行走传动定位轴包括右轴承盒、右定位轴、右挡环、右轴承一、右内六角螺钉、右法兰压盖、右卡簧、右轴承二,水平的右定位轴一端插设于右轴承盒,右轴承盒内相对平行安装两组轴承:右轴承一、右轴承二,右轴承一、右轴承二位于右定位轴上的右挡环两侧,右轴承一卡装于右定位轴的台肩、右轴承盒的内侧与右挡环之间,右轴承盒的一端通过右内六角螺钉安装右法兰压盖,右法兰压盖的一端插设于右轴承盒,右轴承二卡装于右定位轴上的右卡簧、右法兰压盖的内侧与右挡环之间;右定位轴的另一端为锥形尖头,右侧行走传动定位轴通过右定位轴的锥形尖头顶持于被测管件样品的右端。
  9. 按照权利要求1所述的非接触式轮廓仪管材样品快捷定位装置,其特征在于,左侧行走传动定位轴包括左轴承盒、左定位轴、左挡环、左轴承一、左内六角螺钉、左法兰压盖、左卡簧、左轴承二,水平的左定位轴一端插设于左轴承盒,左轴承盒内相对平行安装两组轴承:左轴承一、左轴承二,左轴承一、左轴承二位于左定位轴上的左挡环两侧,左轴承一卡装于左定位轴的台肩、左轴承盒的内侧与左挡环之间,左轴承盒的一端通过左内六角螺钉安装左法兰压盖,左法兰压盖的一端插设于左轴承盒,左轴承二卡装于左定位轴上的左卡簧、左法兰压盖的内侧与左挡环之间;左定位轴的另一端为锥形尖头,左侧行走传动定位轴通过左定位轴的锥形尖头顶持于被测管件样品的左端。
  10. 一种权利要求1至9之一所述的非接触式轮廓仪管材样品快捷定位装置的操作方法,其特征在于,具体步骤如下:
    (1)将制作好的被测管材样品划伤朝上放置在橡皮泥上,将橡皮泥放置在载玻片上,将初步固定好的被测管材样品放置在移动平台上,保持被测管材样品中心线、左侧行走传动定位轴中心线和右侧行走传动定位轴中心线在一条直线上,开启左侧气缸和右侧气缸伸长的进气阀门,推动左侧滑块与左侧行走传动定位轴和右侧滑块与右侧行走传动定位轴将被测管材样品中心线对正;
    (2)调整微调光学狭缝使光源在被测管材样品的正上方投射一条狭长光条,调整超薄θ轴中空微调手动平台使右侧行走传动定位轴转动,直至将照射在被测管材样品上方的狭长光条与被测管材样品上方的条形划伤相重合;
    (3)开启下端气缸伸长的进气阀门推动移动平台上升将橡皮泥挤紧,开启左侧气缸和右侧气缸缩短的进气阀门,推动左侧滑块与左侧行走传动定位轴和右侧滑块与右侧行走传动定位轴同时向被测管材样品外侧行走,取出定位好的样品组件。
PCT/CN2020/100397 2019-11-27 2020-07-06 一种非接触式轮廓仪管材样品快捷定位装置及操作方法 WO2021103539A1 (zh)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
CN201911185922.3A CN111076673A (zh) 2019-11-27 2019-11-27 一种非接触式轮廓仪管材样品快捷定位装置及操作方法
CN201911185922.3 2019-11-27

Publications (1)

Publication Number Publication Date
WO2021103539A1 true WO2021103539A1 (zh) 2021-06-03

Family

ID=70311927

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2020/100397 WO2021103539A1 (zh) 2019-11-27 2020-07-06 一种非接触式轮廓仪管材样品快捷定位装置及操作方法

Country Status (2)

Country Link
CN (1) CN111076673A (zh)
WO (1) WO2021103539A1 (zh)

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN111076673A (zh) * 2019-11-27 2020-04-28 中国科学院金属研究所 一种非接触式轮廓仪管材样品快捷定位装置及操作方法

Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN101625231A (zh) * 2009-04-14 2010-01-13 华中科技大学 一种白光干涉光学轮廓仪
CN104596470A (zh) * 2015-02-10 2015-05-06 四川绵阳三力股份有限公司 一种管柱相位测量检具及方法
CN104625548A (zh) * 2013-11-13 2015-05-20 无锡新奇特钣金机械有限公司 管道加工用定位夹具
US20160061596A1 (en) * 2014-08-26 2016-03-03 Commonwealth Center for Advanced Manufacturing Portable Optical Profilometer Device, System and Method
CN206447424U (zh) * 2016-12-29 2017-08-29 无锡凯涵科技有限公司 一种定位夹紧同步绕线装置
CN208432571U (zh) * 2018-07-17 2019-01-25 盐城市电子设备厂有限公司 一种用于构架横梁探伤的夹紧装置
CN111076673A (zh) * 2019-11-27 2020-04-28 中国科学院金属研究所 一种非接触式轮廓仪管材样品快捷定位装置及操作方法

Family Cites Families (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN203642885U (zh) * 2013-12-24 2014-06-11 河北科技大学 多功能集成型光切显微镜
CN104748674B (zh) * 2013-12-27 2019-01-18 上海微电子装备(集团)股份有限公司 焦点监测装置和方法
CN204514280U (zh) * 2015-01-30 2015-07-29 厦门大学 一种非接触式样品表面轮廓测试装置
MX2018008322A (es) * 2016-01-07 2018-09-21 Arkema Inc Metodo independiente de la posicion del objeto para medir el espesor de recubrimientos depositados en objetos curvados moviendose a altas velocidades.
CN105674911A (zh) * 2016-01-27 2016-06-15 淮安普瑞精仪科技有限公司 非接触式微纳三维测量方法及其装置
CN110332904B (zh) * 2019-07-18 2021-06-25 天津大学 基于平面光栅分光的线型显微干涉光谱测量系统与方法
CN110470250B (zh) * 2019-07-30 2021-06-15 湖北三江航天万山特种车辆有限公司 一种零件表面平面度的检测装置及检测方法
CN210981179U (zh) * 2019-11-27 2020-07-10 中国科学院金属研究所 一种非接触式轮廓仪管材样品快捷定位装置

Patent Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN101625231A (zh) * 2009-04-14 2010-01-13 华中科技大学 一种白光干涉光学轮廓仪
CN104625548A (zh) * 2013-11-13 2015-05-20 无锡新奇特钣金机械有限公司 管道加工用定位夹具
US20160061596A1 (en) * 2014-08-26 2016-03-03 Commonwealth Center for Advanced Manufacturing Portable Optical Profilometer Device, System and Method
CN104596470A (zh) * 2015-02-10 2015-05-06 四川绵阳三力股份有限公司 一种管柱相位测量检具及方法
CN206447424U (zh) * 2016-12-29 2017-08-29 无锡凯涵科技有限公司 一种定位夹紧同步绕线装置
CN208432571U (zh) * 2018-07-17 2019-01-25 盐城市电子设备厂有限公司 一种用于构架横梁探伤的夹紧装置
CN111076673A (zh) * 2019-11-27 2020-04-28 中国科学院金属研究所 一种非接触式轮廓仪管材样品快捷定位装置及操作方法

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
MA YUN-FENG, ZHENG HAO-JUN, CHENG ZHI-FENG, WANG YAO: "Design of a high-precision non-contact 3D profile scanner", MACHINERY DESIGN & MANUFACTURE, no. 7, 1 July 2011 (2011-07-01), pages 189 - 191, XP055814932, ISSN: 1001-3997, DOI: 10.19356/j.cnki.1001-3997.2011.07.075 *

Also Published As

Publication number Publication date
CN111076673A (zh) 2020-04-28

Similar Documents

Publication Publication Date Title
CN105203391B (zh) 显微硬度测试夹具
WO2021103539A1 (zh) 一种非接触式轮廓仪管材样品快捷定位装置及操作方法
CN102620684A (zh) 三维形貌痕迹比对测量仪
CN109813250A (zh) 一种桥壳检测平台及检测方法
CN109696138B (zh) 圆柱度检测装置及其偏心校准方法
WO2021135048A1 (zh) 一种荧光显微物镜综合测试平台
CN105387793A (zh) 一种压气机叶片流道面轮廓度检测装置及方法
CN210981179U (zh) 一种非接触式轮廓仪管材样品快捷定位装置
CN203337113U (zh) 三维显微光切法表面粗糙度测量仪
CN205049412U (zh) 一种显微硬度测试夹具
CN219511480U (zh) 一种led线结构光高精度轮廓测量装置
CN210570545U (zh) 一种航空发动机单叶片表面粗糙度检测装置
CN107091625A (zh) 一种用于小型航空发动机曲轴综合检测装置
CN202420363U (zh) 一种车门单件检具
CN111469107A (zh) 一种箱体划线装置
CN111413068A (zh) 一种光学检测装置
CN105823391A (zh) 一种旋转平台用于游标卡尺平行定位检定的装置
CN205537941U (zh) 一种传声器线阵列定位装置
CN108981527A (zh) 气门盘外圆及端面精度检测方法
CN109506902B (zh) 列车照灯照射角度测试装置及其测试方法
CN110345837B (zh) 一种基于激光干涉的大量程长度测量量具综合检校装置
CN208155238U (zh) 一种气门盘外圆圆度误差检测装置及其检测套装
CN202599359U (zh) 三维形貌痕迹比对测量仪
CN207991495U (zh) 滚珠丝杆丝母滚道起始点专用检具
CN220251321U (zh) 一种全反射直透镜生产检验平台

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 20891659

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 20891659

Country of ref document: EP

Kind code of ref document: A1