WO2021103497A1 - 一种气流喷射式转向无人机 - Google Patents
一种气流喷射式转向无人机 Download PDFInfo
- Publication number
- WO2021103497A1 WO2021103497A1 PCT/CN2020/096678 CN2020096678W WO2021103497A1 WO 2021103497 A1 WO2021103497 A1 WO 2021103497A1 CN 2020096678 W CN2020096678 W CN 2020096678W WO 2021103497 A1 WO2021103497 A1 WO 2021103497A1
- Authority
- WO
- WIPO (PCT)
- Prior art keywords
- unmanned aerial
- aerial vehicle
- duct
- motor
- steering
- Prior art date
Links
- RZVHIXYEVGDQDX-UHFFFAOYSA-N 9,10-anthraquinone Chemical compound C1=CC=C2C(=O)C3=CC=CC=C3C(=O)C2=C1 RZVHIXYEVGDQDX-UHFFFAOYSA-N 0.000 claims abstract description 16
- 230000005484 gravity Effects 0.000 claims abstract description 8
- 230000005540 biological transmission Effects 0.000 claims description 4
- 230000007704 transition Effects 0.000 abstract 1
- 238000010586 diagram Methods 0.000 description 5
- 238000000034 method Methods 0.000 description 4
- 230000000694 effects Effects 0.000 description 2
- 230000001133 acceleration Effects 0.000 description 1
- 230000009286 beneficial effect Effects 0.000 description 1
- 238000005259 measurement Methods 0.000 description 1
- 238000012986 modification Methods 0.000 description 1
- 230000004048 modification Effects 0.000 description 1
- 238000000926 separation method Methods 0.000 description 1
Images
Classifications
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B64—AIRCRAFT; AVIATION; COSMONAUTICS
- B64C—AEROPLANES; HELICOPTERS
- B64C11/00—Propellers, e.g. of ducted type; Features common to propellers and rotors for rotorcraft
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B64—AIRCRAFT; AVIATION; COSMONAUTICS
- B64C—AEROPLANES; HELICOPTERS
- B64C27/00—Rotorcraft; Rotors peculiar thereto
- B64C27/04—Helicopters
- B64C27/08—Helicopters with two or more rotors
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B64—AIRCRAFT; AVIATION; COSMONAUTICS
- B64C—AEROPLANES; HELICOPTERS
- B64C27/00—Rotorcraft; Rotors peculiar thereto
- B64C27/04—Helicopters
- B64C27/12—Rotor drives
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B64—AIRCRAFT; AVIATION; COSMONAUTICS
- B64D—EQUIPMENT FOR FITTING IN OR TO AIRCRAFT; FLIGHT SUITS; PARACHUTES; ARRANGEMENT OR MOUNTING OF POWER PLANTS OR PROPULSION TRANSMISSIONS IN AIRCRAFT
- B64D27/00—Arrangement or mounting of power plants in aircraft; Aircraft characterised by the type or position of power plants
- B64D27/02—Aircraft characterised by the type or position of power plants
- B64D27/24—Aircraft characterised by the type or position of power plants using steam or spring force
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B64—AIRCRAFT; AVIATION; COSMONAUTICS
- B64U—UNMANNED AERIAL VEHICLES [UAV]; EQUIPMENT THEREFOR
- B64U10/00—Type of UAV
- B64U10/10—Rotorcrafts
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B64—AIRCRAFT; AVIATION; COSMONAUTICS
- B64U—UNMANNED AERIAL VEHICLES [UAV]; EQUIPMENT THEREFOR
- B64U50/00—Propulsion; Power supply
- B64U50/10—Propulsion
- B64U50/19—Propulsion using electrically powered motors
-
- Y—GENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
- Y02—TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
- Y02T—CLIMATE CHANGE MITIGATION TECHNOLOGIES RELATED TO TRANSPORTATION
- Y02T50/00—Aeronautics or air transport
- Y02T50/60—Efficient propulsion technologies, e.g. for aircraft
Definitions
- the invention mainly relates to the field of unmanned aerial vehicles, in particular to an air jet steering unmanned aerial vehicle.
- Multi-rotor UAVs can advance, retreat, and turn by changing the rotation speed of some of the rotor motors.
- the forward, backward and steering control methods of this kind of multi-rotor UAV are relatively mature. However, when the multi-rotor UAV moves forward and backward, it needs to have a certain tilt angle to fly. In order to ensure the lift point to the front. If the force is large enough, the motor needs to guarantee a large enough rotation speed. The drone tilts at a greater angle, but the power of the motor is limited, and the safe angle that the drone can tilt is also limited. This drive forward and backward through lift separation drive In this way, the speed of the multi-rotor unmanned is limited.
- the present invention provides an air jet steering UAV, which can increase the way of advancing the duct, so that the advance and retreat of the UAV and the steering in the non-emergency state all pass through the duct.
- the realization of the drive of the motor can greatly increase the flying speed of the UAV, and provide multiple operations for the steering of the multi-rotor UAV.
- An air jet steering unmanned aerial vehicle comprising an unmanned aerial vehicle body, the unmanned aerial vehicle body is a multi-rotor unmanned aerial vehicle, the unmanned aerial vehicle body is provided with a flight control module, and the bottom of the unmanned aerial vehicle body is provided with a propulsion Duct, the center of gravity of the propulsion duct is located directly below the gravity center of the drone, the front end diameter of the propulsion duct is larger than the rear end diameter, the inner diameter of the propulsion duct is smoothly transitioned, and the front end of the propulsion duct is provided with a front end A ducted motor, a rear ducted motor is arranged at the rear end of the propulsion duct, the front ducted motor and the rear ducted motor rotate in opposite directions, and the front ducted motor and the rear ducted motor are both An impeller is provided, a rotating shaft is arranged between the propulsion duct and the bottom of the UAV, a steering motor for driving the rotating shaft and a steering gear box are arranged at the bottom of the UAV, the front duct
- a pivot shaft is arranged between the propulsion duct and the rotating shaft, and the pivot shaft is fixed perpendicularly to the rotating shaft.
- a swing motor and a swing reduction box are provided on one side of the top of the propulsion duct. The pivot shaft is adapted, and the swing motor is electrically connected with the flight control module.
- the swing angle of the propulsion duct axis relative to the horizontal plane is -45° ⁇ 45°.
- the steering motor is a servo motor.
- the inner diameter of the front end of the propelling duct is 1.5 to 3 times the inner diameter of the rear end.
- the swing motor is a servo motor.
- the oscillating reduction box is driven by a two-stage gear.
- the steering gearbox is driven by a two-stage gear.
- the rotating shaft is a hollow rotating shaft.
- the present invention controls the forward, backward and steering of the drone by adding a propulsion duct at the bottom of the drone, propelling the duct built-in duct motor, and driving the impeller through the duct motor to drive the airflow to eject at a high speed in the duct, thereby preventing
- the UAV is driven to achieve a new multi-rotor UAV forward and steering control method that is different from the power adjustment of the rotor, and through the change of the inner diameter of the propulsion duct, the impeller propulsion airflow is further accelerated, thereby improving the propulsion duct Thrust to increase the speed of the drone.
- Figure 1 is a reference diagram of prior art control
- Figure 2 is a schematic diagram of the front view of the present invention.
- Fig. 3 is a schematic diagram of the front view structure of the swing posture of the propelling duct of the present invention.
- Fig. 4 is a schematic diagram of the sectional structure of the advancing duct of the present invention.
- Fig. 5 is a partially enlarged schematic diagram of the structure of part A in Fig. 2 of the present invention.
- the air jet steering drone of the present invention includes a drone body 1, the drone body 1 is a multi-rotor drone, and the drone body 1 There is a flight control module inside, and the flight control module is a controller that accepts ground control on the drone and controls the rotor motor, camera, and various sensors of the drone.
- a propulsion duct 3 is provided at the bottom of the drone body 1, and the center of gravity of the propulsion duct 3 is located directly below the center of gravity of the drone body 1, which does not affect the balance of the drone body.
- the diameter of the front end of the propulsion duct 3 is larger than the diameter of the rear end, and the inner diameter of the propulsion duct 3 is smoothly transitioned, so as to have a smooth guiding effect on the airflow.
- a front duct motor 4 is installed in the front end of the propulsion duct 3
- a rear duct motor 5 is installed in the rear end of the propulsion duct 3
- the front duct motor 4 is opposite to the rear duct motor 5
- the front ducted motor 4 and the rear ducted motor 5 are both equipped with impellers 6, and the blades of the two impellers have opposite inclination angles.
- the two ducted motors drive their respective impellers to rotate, the air flow they drive is equal It is self-propelled from the front to the rear of the duct.
- a rotating shaft 7 is installed between the propulsion duct 3 and the bottom of the UAV 1, and the bottom of the UAV 1 is provided with a steering motor 8 for driving the rotating shaft 7 and a steering gear box 9, and the steering motor is used to drive the rotating shaft to drive Propelling the rotation of the duct, so that the rotation of the propelling duct realizes the change of the forward direction of the UAV.
- the support frame at the bottom of the drone body is used as a four-point support, so that the support legs of the drone will not block the airflow ejected from the propulsion duct.
- the front ducted motor 4, the rear ducted motor 5, and the steering motor 8 are all electrically connected to the flight control module.
- the UAV By advancing the high-speed ejection of the airflow in the duct, the UAV can be driven at a high speed, the flight speed of the UAV can be increased, and a new multi-rotor UAV forward and steering control method that is different from the power adjustment of the rotor can be realized. And by changing the inner diameter of the advancing duct, the further acceleration of the impeller propelling airflow is realized, thereby further increasing the thrust of the advancing duct and increasing the speed of the drone.
- a pivot shaft 10 is installed between the propulsion duct 3 and the rotating shaft 7, and the pivot shaft 10 is vertically fixed to the rotary shaft 7, and a swing motor 11 and a swing reduction box 12 are installed on the top side of the propulsion duct 3
- the oscillating motor 11 cooperates with the pivot shaft 10 through the oscillating reduction box 12, and uses the transmission of gears to drive the swing of the propelling duct.
- the swing motor 11 is electrically connected to the flight control module. By advancing the up and down swing of the duct, it can assist the drone to fly diagonally above and below, so as to realize the rapid obstacle avoidance of the drone.
- the swing angle of the axis of the propulsion duct 3 relative to the horizontal plane is -45° ⁇ 45°.
- the steering motor 8 is a servo motor.
- the servo motor can control the rotation angle more accurately, so as to ensure the accurate adjustment of the angle of the propulsion duct.
- the inner diameter of the front end of the propelling duct 3 is 1.5 to 3 times the inner diameter of the rear end.
- the airflow speed can be increased by 1.5 to 3 times, so as to achieve the effect of jetting the airflow in the duct and exert a greater thrust on the UAV.
- the swing motor 11 is a servo motor.
- the servo motor can more accurately control the angle of the advancing duct, so as to ensure the precise adjustment of the swing angle of the advancing duct.
- the swing reduction box 12 is a two-stage gear transmission.
- the steering reduction box 9 is a two-stage gear transmission.
- the rotating shaft 7 is a hollow rotating shaft.
- the hollow shaft can reduce the overall weight of the UAV, thereby reducing the load of the UAV and improving the endurance of the UAV.
- the remote control of the unmanned aerial vehicle is operated, and the wireless transmitting module of the remote control sends a signal to the wireless receiving module in the flight control module, so that the rotor motor of the multi-rotor unmanned aerial vehicle rotates at a constant speed, so that the The man-machine rises to a stable height, and then the rotor motor speed drops to ensure that the drone hover at a stable high altitude.
- the flight control module receives the instruction and controls the ducted motor to start, so that the ducted jet airflow is propelled to push the UAV forward.
- the flight control module receives the instruction to control the steering motor action , To drive the propulsion duct steering, so as to realize the direction measurement of the UAV, and realize the steering flight of the UAV without changing the attitude of the UAV.
- the flight control module receives instructions to control the movement of the swing motor to make the propulsion duct swing to a certain angle. By advancing the airflow jetted diagonally downward/obliquely upward from the duct, the airflow is achieved. The flight of the man-machine diagonally upwards/diagonally downwards.
- this air jet steering UAV is realized on the premise that the rotor motor of the multi-rotor UAV rotates at a constant speed.
- the air jet pushes the UAV forward and turns, the direction of the UAV itself will not change. No change, just pan in different directions. Therefore, if you need to install a camera on the drone for shooting, you need to install the camera on the propulsion duct.
Landscapes
- Engineering & Computer Science (AREA)
- Aviation & Aerospace Engineering (AREA)
- Mechanical Engineering (AREA)
- Chemical & Material Sciences (AREA)
- Combustion & Propulsion (AREA)
- Remote Sensing (AREA)
- Toys (AREA)
Abstract
一种气流喷射式转向无人机,包括多旋翼无人机的无人机本体(1),无人机本体(1)内具有飞控模块,无人机本体(1)底部重心的正下方设置推进涵道(3),推进涵道(3)前端直径大于后端直径,且其内径圆润过渡,推进涵道(3)内前后端分别设置前置涵道电机(4)和后置涵道电机(5),前置涵道电机(4)与后置涵道电机(5)反向转动,前置涵道电机(4)与后置涵道电机(5)上均设置叶轮(6),推进涵道(3)与无人机(1)底部之间设置转轴(7),无人机(1)底部设置用于驱动转轴(7)的转向电机(8)以及转向减速箱(9),前置涵道电机(4)、后置涵道电机(5)、转向电机(8)均与飞控模块电连接。这种无人机通过增加推进涵道,实现区别于旋翼功率调节的多旋翼无人机前进、转向控制,并提高无人机的飞行速度。
Description
本发明主要涉及无人机领域,具体是一种气流喷射式转向无人机。
多旋翼无人机是通过改变其中部分旋翼电机的转速来进行前进、后退、转向的,以四旋翼无人机为例,参照附图1,如果想让无人机向前移动,增加旋翼3和4的转速,降低旋翼1和2的转速,这样机体后部升力大、前部升力小,就会使机体倾斜,后部比前部高,而升力是始终垂直于机体的,从而升力就有了一个指向前方的分力,无人机就能够往前飞了。如果想让飞行器向后移动,增加旋翼1和2的转速,降低旋翼3和4的转速,就可以做到了。如果想让无人机顺时针旋转,增大2和4的逆时针转速,减小1和3的顺时针转速,显然旋翼2和4给无人机的顺时针转速大,无人机就会顺时针旋转,无人机也不会左右前后倾斜。
此种多旋翼无人机的前进后退与转向的控制方法已经较为成熟,但是在多旋翼无人机前进后退时,均是需要具有一定的倾斜角度来进行飞行的,为了保障升力指向前方的分力足够大,就需要电机保障足够大的转速,无人机倾斜更大的角度,但是电机的功率是有限的,无人机能够倾斜的安全角度也是有限的,这种通过升力分离驱动前进后退的方式,使多旋翼无人的速度受到限制。
发明内容
为解决现有技术的不足,本发明提供了一种气流喷射式转向无人机,它能够通过增加推进涵道的方式,使无人机的前进后退、非应急状态下的转向均通 过涵道电机的驱动实现,可极大的增加无人机的飞行速度,为多旋翼无人机的转向提供多种操作。
本发明为实现上述目的,通过以下技术方案实现:
一种气流喷射式转向无人机,包括无人机本体,所述无人机本体为多旋翼无人机,所述无人机本体内具有飞控模块,所述无人机本体底部设置推进涵道,所述推进涵道的重心位于无人机本体重心的正下方,所述推进涵道前端直径大于后端直径,所述推进涵道内径圆润过渡,所述推进涵道内前端设置前置涵道电机,所述推进涵道内后端设置后置涵道电机,所述前置涵道电机与后置涵道电机反向转动,所述前置涵道电机与后置涵道电机上均设置叶轮,所述推进涵道与无人机底部之间设置转轴,所述无人机底部设置用于驱动转轴的转向电机以及转向减速箱,所述前置涵道电机、后置涵道电机、转向电机均与飞控模块电连接。
所述推进涵道与转轴之间设置枢接轴,所述枢接轴与转轴垂直固定,所述推进涵道顶部一侧设置摆动电机与摆动减速箱,所述摆动电机通过摆动减速箱与所述枢接轴相适应,所述摆动电机与飞控模块电连接。
所述推进涵道轴线相对于水平面的摆动角度为-45°~45°。
所述转向电机为伺服电机。
所述推进涵道前端内径是后端内径的1.5~3倍。
所述摆动电机为伺服电机。
所述摆动减速箱为二级齿轮传动。
所述转向减速箱为二级齿轮传动。
所述转轴为空心转轴。
对比现有技术,本发明的有益效果是:
本发明通过在无人机底部增加推进涵道来对无人机的前进后退和转向进行控制,推进涵道内置涵道电机,通过涵道电机驱动叶轮带动气流在涵道内高速喷出,从而对无人机进行驱动,实现区别于旋翼功率调节的新的多旋翼无人机前进、转向控制方法,且通过推进涵道内径的变化,实现对叶轮推进气流的进一步加速,从而提高推进涵道的推力,提高无人机的速度。
附图1是现有技术控制参考图;
附图2是本发明主视结构示意图;
附图3是本发明推进涵道摆动姿态主视结构示意图;
附图4是本发明推进涵道剖视结构示意图;
附图5是本发明附图2中A部局部放大结构示意图。
附图中所示标号:1、无人机本体;3、推进涵道;4、前置涵道电机;5、后置涵道电机;6、叶轮;7、转轴;8、转向电机;9、转向减速箱;10、枢接轴;11、摆动电机;12、摆动减速箱。
结合附图和具体实施例,对本发明作进一步说明。应理解,这些实施例仅用于说明本发明而不用于限制本发明的范围。此外应理解,在阅读了本发明讲授的内容之后,本领域技术人员可以对本发明作各种改动或修改,这些等价形式同样落于本申请所限定的范围。
如图1-5所示,本发明所述一种气流喷射式转向无人机,包括无人机本体1,所述无人机本体1为多旋翼无人机,所述无人机本体1内具有飞控模块,所述飞控模块为无人机上接受地面控制、对无人机的旋翼电机、摄像头、各种传感器的控制器。所述无人机本体1底部设置推进涵道3,所述推进涵道3的重心位 于无人机本体1重心的正下方,不影响无人机的机身平衡。所述推进涵道3前端直径大于后端直径,所述推进涵道3内径圆润过渡,从而对气流进行顺畅的引导效果。所述推进涵道3内前端安装前置涵道电机4,所述推进涵道3内后端安装后置涵道电机5,所述前置涵道电机4与后置涵道电机5反向转动,所述前置涵道电机4与后置涵道电机5上均设置叶轮6,两个所述叶轮的叶片倾斜角度相反,当两涵道电机驱动各自的叶轮转动时,带动的气流均是自推进涵道前方向后方的。所述推进涵道3与无人机1底部之间安装转轴7,所述无人机1底部设置用于驱动转轴7的转向电机8以及转向减速箱9,所述转向电机用于驱动转轴带动推进涵道的转动,使推进涵道转动实现无人机前进方向的改变。为配合推进涵道的设置,将无人机本体底部的支撑架作为四点支承,使无人机的支撑腿不会对推进涵道喷出的气流造成阻挡。所述前置涵道电机4、后置涵道电机5、转向电机8均与飞控模块电连接。通过推进涵道内气流高速喷出,可以实现对无人机的高速驱动,提高无人机的飞行速度,实现区别于旋翼功率调节的新的多旋翼无人机前进、转向控制方法。且通过推进涵道内径的变化,实现对叶轮推进气流的进一步加速,从而进一步提高推进涵道的推力,提高无人机的速度。
优选的,所述推进涵道3与转轴7之间安装枢接轴10,所述枢接轴10与转轴7垂直固定,所述推进涵道3顶部一侧安装摆动电机11与摆动减速箱12,所述摆动电机11通过摆动减速箱12与所述枢接轴10相配合,利用齿轮的传动带动推进涵道的摆动。所述摆动电机11与飞控模块电连接。通过推进涵道的上下摆动,可以辅助无人机进行斜上方、斜下方的飞行,从而实现无人机的快速避障。
优选的,所述推进涵道3轴线相对于水平面的摆动角度为-45°~45°。
优选的,所述转向电机8为伺服电机。伺服电机可以更精确的控制转动角 度,从而保障推进涵道的角度精准调节。
优选的,所述推进涵道3前端内径是后端内径的1.5~3倍。通过推进涵道内径的缩小,可以使气流速度增加1.5~3倍,从而实现气流在涵道内的喷射而出效果,对无人机起到更大的推力。
优选的,所述摆动电机11为伺服电机。伺服电机可以更精确的控制推进涵道的角度,从而保障推进涵道的摆动角度精准调节。
优选的,所述摆动减速箱12为二级齿轮传动。
优选的,所述转向减速箱9为二级齿轮传动。
优选的,所述转轴7为空心转轴。空心转轴可以减轻无人机的总体重量,从而减少无人机的负载,提高无人机的续航能力。
本发明的无人机启动后,操作无人机的遥控器,遥控器的无线发射模块向飞控模块内的无线接收模块发送信号,使多旋翼无人机的旋翼电机定速转动,使无人机上升至稳定的高度,然后旋翼电机转速下降,保障无人机在稳定高空悬停。当需要前进时,飞控模块接收到指令,控制涵道电机启动,使推进涵道喷射气流,推动无人机前进,当无人机需要转弯时,飞控模块接收到指令,控制转向电机动作,驱动推进涵道转向,从而实现对无人机的测方向推进,在不改变无人机姿态的条件下,实现无人机的转向飞行。当无人机需要向斜上方或者斜下方飞行,则飞控模块收到指令,控制摆动电机动作使推进涵道摆动到一定角度,通过推进涵道向斜下方/斜上方喷射的气流,实现无人机的向斜上方/斜下方的飞行。
需要指出的是,本气流喷射式转向无人机,是基于多旋翼无人机的旋翼电机匀速转动前提下实现的,其气流喷射推进无人机前进、转向时,无人机的本身方向并不改变,只是在不同方向上进行平移。因此若需要在无人机上安装摄 像头进行拍摄使用,则需要将摄像头安装在推进涵道上。
Claims (9)
- 一种气流喷射式转向无人机,包括无人机本体(1),所述无人机本体(1)为多旋翼无人机,所述无人机本体(1)内具有飞控模块,其特征在于:所述无人机本体(1)底部设置推进涵道(3),所述推进涵道(3)的重心位于无人机本体(1)重心的正下方,所述推进涵道(3)前端直径大于后端直径,所述推进涵道(3)内径圆润过渡,所述推进涵道(3)内前端设置前置涵道电机(4),所述推进涵道(3)内后端设置后置涵道电机(5),所述前置涵道电机(4)与后置涵道电机(5)反向转动,所述前置涵道电机(4)与后置涵道电机(5)上均设置叶轮(6),所述推进涵道(3)与无人机(1)底部之间设置转轴(7),所述无人机(1)底部设置用于驱动转轴(7)的转向电机(8)以及转向减速箱(9),所述前置涵道电机(4)、后置涵道电机(5)、转向电机(8)均与飞控模块电连接。
- 根据权利要求1所述的一种气流喷射式转向无人机,其特征在于:所述推进涵道(3)与转轴(7)之间设置枢接轴(10),所述枢接轴(10)与转轴(7)垂直固定,所述推进涵道(3)顶部一侧设置摆动电机(11)与摆动减速箱(12),所述摆动电机(11)通过摆动减速箱(12)与所述枢接轴(10)相适应,所述摆动电机(11)与飞控模块电连接。
- 根据权利要求2所述的一种气流喷射式转向无人机,其特征在于:所述推进涵道(3)轴线相对于水平面的摆动角度为-45°~45°。
- 根据权利要求1所述的一种气流喷射式转向无人机,其特征在于:所述转向电机(8)为伺服电机。
- 根据权利要求1所述的一种气流喷射式转向无人机,其特征在于:所述推进涵道(3)前端内径是后端内径的1.5~3倍。
- 根据权利要求2-3任一项所述的一种气流喷射式转向无人机,其特征在 于:所述摆动电机(11)为伺服电机。
- 根据权利要求2-3任一项所述的一种气流喷射式转向无人机,其特征在于:所述摆动减速箱(12)为二级齿轮传动。
- 根据权利要求1-5任一项所述的一种气流喷射式转向无人机,其特征在于:所述转向减速箱(9)为二级齿轮传动。
- 根据权利要求1-5任一项所述的一种气流喷射式转向无人机,其特征在于:所述转轴(7)为空心转轴。
Priority Applications (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
ZA2021/02376A ZA202102376B (en) | 2019-11-26 | 2021-04-12 | Air-jet steering drone |
Applications Claiming Priority (2)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
CN201911170563.4A CN110816811A (zh) | 2019-11-26 | 2019-11-26 | 一种气流喷射式转向无人机 |
CN201911170563.4 | 2019-11-26 |
Publications (1)
Publication Number | Publication Date |
---|---|
WO2021103497A1 true WO2021103497A1 (zh) | 2021-06-03 |
Family
ID=69559223
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
PCT/CN2020/096678 WO2021103497A1 (zh) | 2019-11-26 | 2020-06-18 | 一种气流喷射式转向无人机 |
Country Status (4)
Country | Link |
---|---|
CN (1) | CN110816811A (zh) |
AU (1) | AU2020101802A4 (zh) |
WO (1) | WO2021103497A1 (zh) |
ZA (1) | ZA202102376B (zh) |
Cited By (2)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CN113650780A (zh) * | 2021-08-12 | 2021-11-16 | 中国科学院沈阳自动化研究所 | 一种辅助多旋翼无人机飞行系统 |
CN114684360A (zh) * | 2022-04-08 | 2022-07-01 | 西安泽盛航空科技有限公司 | 一种串列式双涵道推进无人飞行器 |
Families Citing this family (3)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CN110816811A (zh) * | 2019-11-26 | 2020-02-21 | 滨州学院 | 一种气流喷射式转向无人机 |
CN112498672A (zh) * | 2020-11-03 | 2021-03-16 | 中国直升机设计研究所 | 一种无人机 |
CN113492979B (zh) * | 2021-07-26 | 2023-01-06 | 李佳锴 | 一种辅升式无人机 |
Citations (9)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CN200964040Y (zh) * | 2006-11-07 | 2007-10-24 | 北京航空航天大学 | 一种多功能飞行器 |
CN106292680A (zh) * | 2016-09-18 | 2017-01-04 | 上海交通大学 | 多旋翼无人机及其系统以及飞行控制方法 |
DE202018104722U1 (de) * | 2018-08-16 | 2018-08-30 | Technisch-Mathematische Studiengesellschaft Mbh | Fluggerät |
CN207902741U (zh) * | 2017-10-26 | 2018-09-25 | 深圳光启合众科技有限公司 | 旋翼飞行器 |
CN108622384A (zh) * | 2017-03-16 | 2018-10-09 | 广东合即得能源科技有限公司 | 一种旋翼喷气组合式运载飞机 |
CN208036619U (zh) * | 2018-03-23 | 2018-11-02 | 深圳市科创航空技术有限公司 | 一种可投放催泪瓦斯的无人机 |
CN109311536A (zh) * | 2017-12-04 | 2019-02-05 | 深圳市大疆创新科技有限公司 | 动力装置、无人飞行器及飞行控制方法 |
US20190047707A1 (en) * | 2016-02-18 | 2019-02-14 | Wing Aviation Llc | Inflatable Packaging for Use With UAV |
CN110816811A (zh) * | 2019-11-26 | 2020-02-21 | 滨州学院 | 一种气流喷射式转向无人机 |
Family Cites Families (7)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US8328130B2 (en) * | 2008-12-08 | 2012-12-11 | Honeywell International Inc. | Vertical take off and landing unmanned aerial vehicle airframe structure |
CN203544371U (zh) * | 2013-05-17 | 2014-04-16 | 谷承露 | 双主涵道超轻型垂直起降单人飞行器 |
CN103552686B (zh) * | 2013-10-21 | 2015-10-28 | 北京航空航天大学 | 一种组合式涵道空中侦察机器人 |
CN205076045U (zh) * | 2015-10-29 | 2016-03-09 | 安徽理工大学 | 可变结构的复合式飞行器 |
CN106005388A (zh) * | 2016-07-20 | 2016-10-12 | 奉化市逍巧农机有限公司 | 一种多轴垂直充气多用途飞行器 |
CN106347655B (zh) * | 2016-09-11 | 2019-11-29 | 珠海市磐石电子科技有限公司 | 一种涵道动力装置及飞行器 |
CN110239710A (zh) * | 2019-07-17 | 2019-09-17 | 郭亮 | 一种用于自然灾害情况巡查的电动力无人机 |
-
2019
- 2019-11-26 CN CN201911170563.4A patent/CN110816811A/zh active Pending
-
2020
- 2020-06-18 WO PCT/CN2020/096678 patent/WO2021103497A1/zh active Application Filing
- 2020-08-13 AU AU2020101802A patent/AU2020101802A4/en not_active Ceased
-
2021
- 2021-04-12 ZA ZA2021/02376A patent/ZA202102376B/en unknown
Patent Citations (9)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CN200964040Y (zh) * | 2006-11-07 | 2007-10-24 | 北京航空航天大学 | 一种多功能飞行器 |
US20190047707A1 (en) * | 2016-02-18 | 2019-02-14 | Wing Aviation Llc | Inflatable Packaging for Use With UAV |
CN106292680A (zh) * | 2016-09-18 | 2017-01-04 | 上海交通大学 | 多旋翼无人机及其系统以及飞行控制方法 |
CN108622384A (zh) * | 2017-03-16 | 2018-10-09 | 广东合即得能源科技有限公司 | 一种旋翼喷气组合式运载飞机 |
CN207902741U (zh) * | 2017-10-26 | 2018-09-25 | 深圳光启合众科技有限公司 | 旋翼飞行器 |
CN109311536A (zh) * | 2017-12-04 | 2019-02-05 | 深圳市大疆创新科技有限公司 | 动力装置、无人飞行器及飞行控制方法 |
CN208036619U (zh) * | 2018-03-23 | 2018-11-02 | 深圳市科创航空技术有限公司 | 一种可投放催泪瓦斯的无人机 |
DE202018104722U1 (de) * | 2018-08-16 | 2018-08-30 | Technisch-Mathematische Studiengesellschaft Mbh | Fluggerät |
CN110816811A (zh) * | 2019-11-26 | 2020-02-21 | 滨州学院 | 一种气流喷射式转向无人机 |
Cited By (2)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CN113650780A (zh) * | 2021-08-12 | 2021-11-16 | 中国科学院沈阳自动化研究所 | 一种辅助多旋翼无人机飞行系统 |
CN114684360A (zh) * | 2022-04-08 | 2022-07-01 | 西安泽盛航空科技有限公司 | 一种串列式双涵道推进无人飞行器 |
Also Published As
Publication number | Publication date |
---|---|
CN110816811A (zh) | 2020-02-21 |
ZA202102376B (en) | 2021-07-28 |
AU2020101802A4 (en) | 2020-09-17 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
WO2021103497A1 (zh) | 一种气流喷射式转向无人机 | |
US10144509B2 (en) | High performance VTOL aircraft | |
EP1943001B1 (en) | Rotary-wing vehicle system | |
US20140158815A1 (en) | Zero Transition Vertical Take-Off and Landing Aircraft | |
US7798883B2 (en) | Acrobatic rotary-wing toy helicopter | |
TW201836925A (zh) | 具有單體機翼和雙轉子推進/提升模組的無人駕駛飛行器 | |
CN106585976A (zh) | 一种倾转旋翼/升力风扇高速长航时飞行器布局 | |
CN103979104B (zh) | 一种可变体x型机翼垂直起降微型飞行器 | |
WO2016028358A2 (en) | High Performance VTOL Aircraft | |
CN113753229B (zh) | 一种可折叠式固定翼四旋翼复合无人机及其控制方法 | |
CN111516869A (zh) | 一种倾转旋翼-机翼垂直起降飞行器的布局与控制方法 | |
CN201712787U (zh) | 电动倾转旋翼无人机 | |
CN105905291A (zh) | 倾转旋翼多旋翼飞行器 | |
CN101879945A (zh) | 电动倾转旋翼无人机 | |
CN105966609B (zh) | 一种具有可变距跷跷板式旋翼头的重型自转旋翼机混合动力跳飞系统 | |
CN113562168B (zh) | 一种二维矢量推进式三轴飞行器及其控制方法 | |
US20210403161A1 (en) | Aeronautical Apparatus | |
WO2019109215A1 (zh) | 动力装置、无人飞行器及飞行控制方法 | |
US11372427B2 (en) | System and method for enhanced altitude control of an autogyro | |
CN116331478A (zh) | 一种利用涵道风扇矢量喷管的倾转旋翼机 | |
CN111762315A (zh) | 一种可倾转旋翼无人机及其使用方法 | |
CN215098247U (zh) | 一种垂直起降固定翼飞行器 | |
CN211442740U (zh) | 喷气式垂直起落无人机 | |
CN112046740A (zh) | 一种垂直起降飞行器和飞行方法 | |
CN106986029B (zh) | 碟形飞行器 |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
121 | Ep: the epo has been informed by wipo that ep was designated in this application |
Ref document number: 20894348 Country of ref document: EP Kind code of ref document: A1 |
|
NENP | Non-entry into the national phase |
Ref country code: DE |
|
122 | Ep: pct application non-entry in european phase |
Ref document number: 20894348 Country of ref document: EP Kind code of ref document: A1 |