WO2021103224A1 - 一种部署了upf的5g基站及其数据报文处理方法 - Google Patents

一种部署了upf的5g基站及其数据报文处理方法 Download PDF

Info

Publication number
WO2021103224A1
WO2021103224A1 PCT/CN2019/127147 CN2019127147W WO2021103224A1 WO 2021103224 A1 WO2021103224 A1 WO 2021103224A1 CN 2019127147 W CN2019127147 W CN 2019127147W WO 2021103224 A1 WO2021103224 A1 WO 2021103224A1
Authority
WO
WIPO (PCT)
Prior art keywords
data message
processing
interface
base station
module
Prior art date
Application number
PCT/CN2019/127147
Other languages
English (en)
French (fr)
Inventor
吕东
Original Assignee
广州爱浦路网络技术有限公司
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 广州爱浦路网络技术有限公司 filed Critical 广州爱浦路网络技术有限公司
Priority to EP19953768.9A priority Critical patent/EP4027752A4/en
Publication of WO2021103224A1 publication Critical patent/WO2021103224A1/zh

Links

Images

Classifications

    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04WWIRELESS COMMUNICATION NETWORKS
    • H04W88/00Devices specially adapted for wireless communication networks, e.g. terminals, base stations or access point devices
    • H04W88/08Access point devices
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04WWIRELESS COMMUNICATION NETWORKS
    • H04W80/00Wireless network protocols or protocol adaptations to wireless operation
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04WWIRELESS COMMUNICATION NETWORKS
    • H04W88/00Devices specially adapted for wireless communication networks, e.g. terminals, base stations or access point devices
    • H04W88/14Backbone network devices
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04WWIRELESS COMMUNICATION NETWORKS
    • H04W92/00Interfaces specially adapted for wireless communication networks
    • H04W92/04Interfaces between hierarchically different network devices
    • H04W92/10Interfaces between hierarchically different network devices between terminal device and access point, i.e. wireless air interface
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04WWIRELESS COMMUNICATION NETWORKS
    • H04W92/00Interfaces specially adapted for wireless communication networks
    • H04W92/04Interfaces between hierarchically different network devices
    • H04W92/12Interfaces between hierarchically different network devices between access points and access point controllers
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04WWIRELESS COMMUNICATION NETWORKS
    • H04W92/00Interfaces specially adapted for wireless communication networks
    • H04W92/04Interfaces between hierarchically different network devices
    • H04W92/045Interfaces between hierarchically different network devices between access point and backbone network device

Definitions

  • the present invention relates to the field of mobile communication technology, in particular to a 5G base station deployed with UPF and a data message processing method thereof.
  • the 5G base station ngNB and the 5G core network 5GC's user plane function network element UPF are carried by different hardware platforms, using different technology evolution, 5G base station ngNB adopts X86+FPGA model evolution, x86+FPGA platform It is a general-purpose hardware platform with a general-purpose x86 processor as the CPU and FPGA as the core device to realize expansion and interface functions. 5GC adopts NFV (Network Function Virtualization)/SDN (Software Defined Network) model evolution.
  • NFV Network Function Virtualization
  • SDN Software Defined Network
  • the realization of high-speed data forwarding, massive links, and low latency poses a great challenge to the user plane function network element UPF of 5G base stations ngNB and 5GC.
  • the Chinese patent application publication number is CN102640525A, and the title of the invention is "Methods and devices for managing the offloading of selected IP services for mobile communications based on the user’s location.” It describes the application layer in the base station and core network based on the user’s IP. The method of unloading the message.
  • the Chinese patent application publication number is CN105634980A, and the name of the invention is "Data message processing method and base station".
  • a data message processing method is added to the base station. After identifying the message to be processed, it is directly unloaded at the base station and the outer layer is stripped Tunnel messages are a method of directly forwarding user data to the public network.
  • the Chinese patent application publication number is CN107333267A, and the invention title is "An edge computing method for 5G ultra-dense networking scenarios”.
  • MEC servers are deployed near ultra-dense 5G small base stations to provide edge servers.
  • the existing 5G wireless communication network architecture The 5G base station ngNB and the core network 5GC are deployed independently, while the 5G base station ngNB uses dedicated hardware and is deployed in areas close to users.
  • the 5GC core network uses the NFV/SDN platform, and the 5GC core network
  • the deployed hardware is generally an X86 processor platform. According to the Release15 version defined by 3GPP, the 5GC core network is based on an independent hardware architecture, and the 5G base station ngNB is also based on an independent dedicated hardware architecture. Between two large systems, the N1/N2/N3 interface is used to complete the interconnection, which is relatively independent.
  • the deployed hardware resources/network resources are allocated independently.
  • 5G edge computing does not combine the functions of wireless and core network UPF well. In terms of physical deployment distance or logical deployment distance, it is very difficult. The large isolation affects the implementation of MEC in the actual network, and will affect the application of the subsequent 5G in the MEC function and in the vertical industry.
  • GTP-U is a kind of GTP protocol used to transmit user data between the wireless access network and the core network in the GPRS core network
  • the present invention provides a 5G base station deployed with UPF and a data message processing method thereof, and the user plane function network element UPF of the 5G core network is sinked and deployed to the 5G base station ngNB ,
  • the network is flatter and decentralized, the deployment and installation of base stations and core network equipment are simpler, and it also brings great convenience and security to the operation and maintenance of the 5G core network.
  • the present invention provides a 5G base station with UPF deployed, including a hardware platform, user plane functional units, logical units, and functional units, where:
  • the hardware platform is the X86/FPGA platform, which interacts with the user terminal through the air interface externally, and interacts with the Internet through the network port; internally it is connected with the logic unit and the user plane functional unit;
  • the user plane functional unit is deployed on the 5G base station and performs data interaction with the hardware platform and logic unit respectively;
  • Logic unit used for wireless resource management and algorithm realization of wireless resource management, as well as wireless resource control and PDCP user data processing;
  • Functional units including but not limited to classification processing of data messages, edge computing processing, application service platform processing, and charging CDR interface processing.
  • the logic unit includes a PDCP module, and the PDCP module processes the received data message according to the PDCP protocol.
  • the logic unit further includes a base station GTP-U codec, and the base station GTP-U codec performs GTP-U tunnel coding or decapsulation processing on the data message.
  • the user plane functional unit includes a core network GTP codec, and the core network GTP codec encapsulates or decodes message data.
  • the functional unit includes a classification processing module, a classification rule generator, an MEC edge calculation module, and a charging CDR statistical processing module, wherein:
  • Classification rule generator used to edit and generate classification rules for data messages
  • Classification processing module receiving data messages from PDCP modules or user plane functional units, and classifying the data messages according to the classification rules generated by the classification rule generator;
  • MEC edge computing module Perform edge computing processing on data messages
  • Billing CDR statistics processing module Perform billing CDR interface processing on data messages.
  • the present invention provides a data message processing method for a 5G base station deployed with UPF, which includes an uplink data message processing step and a downlink data message processing step:
  • the steps of processing the uplink data message include:
  • Step S101 The L2 physical layer of the hardware platform receives the data message from the wireless air interface user terminal, and sends it to the PDCP module after processing;
  • Step S102 The PDCP module receives the data message, processes the data message according to the PDCP protocol, and delivers it to the base station GTP codec;
  • Step S103 The data message received by the GTP codec of the base station undergoes GTP-U tunnel coding and is sent to the GTP codec of the core network, and is handed over to the N3 interface module to complete the network interface protocol processing, and is sent to the N3 network of the 5G core network Interface unit
  • Step S104 the 5G core network N3 network interface unit receives the GTP-U data message from the 5G base station, and the 5G core network GTP codec decodes the received data message to obtain the data message of the inner IP , And then send the data message of the inner IP to the user plane functional unit;
  • Step S105 The user plane function unit performs QoS, regular charging, and PFCP node management of the data message, and reports the management information and new status information generated by the data message to the 5GC core network SMF network element through the N4 interface; the user plane The interface module of the functional unit sends the data message to the hardware platform according to the N6 interface;
  • Step S106 The hardware platform performs network layer processing according to the requirements of the N6 interface, and sends the data message to the network side through the Ethernet network interface.
  • the processing steps of the downlink data message include:
  • Step S201 The hardware platform receives the data message on the network side, and delivers it to the 5G core network N6 network interface unit to complete the network protocol processing, and delivers it to the user plane function unit of the UPF of the 5G core network;
  • Step S202 The user plane function unit receives the data message, performs QoS, regular charging, and PFCP node management, and reports the management information and new state information generated by the data message to the 5GC core network SMF network element through the N4 interface; and Hand the data message to the core network GTP codec;
  • Step S203 The core network GTP codec performs GTP-U encapsulation processing on the received data message, and then passes it to the interface module of the user plane functional unit, and the interface module sends the data message to the base station according to the N3 interface.
  • GTP codec performs GTP-U encapsulation processing on the received data message, and then passes it to the interface module of the user plane functional unit, and the interface module sends the data message to the base station according to the N3 interface.
  • Step S204 the base station GTP codec receives the data message through the N3 interface, performs GTP-U decapsulation processing on the received data message, obtains an independent IP data message, and then delivers the independent IP data message PDCP module;
  • Step S205 The PDCP module receives the IP data message, processes it according to the PDCP protocol, and sends it to the physical layer L2 of the hardware platform for processing;
  • Step S206 After the physical layer L2 processing of the hardware platform is completed, the data message is sent to the user terminal through the air interface.
  • the present invention provides a data message processing method for a 5G base station deployed with UPF, which includes an uplink data message processing step and a downlink data message processing step:
  • the steps of processing the uplink data message include:
  • Step S101' the L2 physical layer of the hardware platform receives the data message from the wireless air interface user terminal, and sends it to the PDCP module after processing;
  • Step S102' the PDCP module receives the data message, processes the data message according to the PDCP protocol, and then delivers it to the user plane functional unit;
  • Step S103' the user plane function unit performs QoS, regular charging, and PFCP node management on the received data message, and reports the management information and state new information generated by the data message to the 5GC core network SMF network element through the N4 interface ;
  • the interface module of the user plane functional unit sends the data message to the hardware platform according to the N6 interface;
  • Step S104' the hardware platform performs network layer processing according to the requirements of the N6 interface, and sends the data message to the network side through the Ethernet network interface.
  • the steps of processing the downlink data message include:
  • Step S201' the hardware platform receives the data message on the network side and delivers it to the user plane functional unit;
  • Step S202' the user plane function unit receives the data message, performs QoS, regular charging, and PFCP node management, and reports the management information and new status information generated by the data message to the 5GC core network SMF network element through the N4 interface; And deliver the data message to the PDCP module;
  • Step S203' the PDCP module receives the data message through the N3 interface, processes it according to the PDCP protocol, and sends it to the physical layer L2 of the hardware platform for processing;
  • Step S204' after the processing of the physical layer L2 of the hardware platform is completed, the data message is sent to the user terminal through the air interface.
  • the above-mentioned method for processing data packets of 5G base stations with UPF also includes the steps of classification, calculation and charging processing, in which:
  • the classification step includes: the classification processing module receives the uplink data message from the PDCP module or the downlink data message of the user plane functional unit, and performs classification on the received data message according to the classification rule generated by the classification rule generator. Return to the corresponding PDCP module or user plane functional unit after classification processing;
  • the calculation and charging processing steps include: the calculation and charging processing module receives data messages from more than one of the PDCP module, the user plane functional unit, and the classification processing module, and performs MEC edge calculation processing or charging CDR interface After processing, return to the corresponding PDCP module, user plane functional unit or classification processing module.
  • classification rule generator edits and generates the classification rules and sends them to the classification processing module.
  • the present invention deploys UPF network elements in 5G base stations:
  • the GTP-U data plane tunnel processing module of the N3 interface can be removed, which will greatly accelerate the processing speed of the user data module, reduce the overhead of the existing hardware platform of the UPF network element, and save hardware resources.
  • GTP-U tunnel processing is reduced, and IP packets do not need to be GTP-U encapsulated and de-encapsulated, saving user data delay and jitter.
  • the third is to use the UPF network element deployed by this method to the hardware platform of the 5G base station ngNB, and the locally offloaded user plane data provides a very friendly and rich interface required for MEC edge computing.
  • the 5G base station ngNB is deployed, Deployed 5G core network UPF network elements, with the capability of MEC and other applications. Users can start MEC edge computing and service applications according to the actual situation of the application.
  • the deployment model of the 5GC core network UPF has completely changed from a centralized mode to a distributed deployment.
  • the 5G base station deployed with UPF of the present invention also has the user plane data offloading function and the MEC edge computing user plane offloading function mentioned in the prior art.
  • Figure 1 is a schematic diagram of the hardware structure of a 5G base station and 5G core network deployment in the prior art
  • Figure 2 is a schematic diagram of a wireless network architecture
  • FIG. 3 is a schematic structural diagram of a 5G core network UPF deployed on a hardware platform of a base station according to the first embodiment of the present invention
  • Embodiment 4 is a schematic diagram of a data message processing flow in Embodiment 1 of the present invention.
  • Fig. 5 is a schematic diagram of the optimized data message processing flow of the present invention.
  • SGSN/GGSN were all dedicated network equipment. For 3G base stations, they were also customized dedicated hardware. Each supplier had its own hardware system. In actual deployment, 3G base stations and 3G core networks were purchased separately. There is no 3G base station and 3G core network. 3G core network data plane SGSN/GGSN convergence solution.
  • the flat/IP-based design of the network and the para-virtualized design of the 4G core network involve part of the GTP-U data plane offloading function in the 4G base station, similar to the description of the Chinese patent application publication number CN105634980A Program.
  • the present invention deploys the 5GC core network element UPF as a whole on the hardware platform of the 5G base station ngNB, thereby realizing all the functions of CN105634980A, but it has many advantages and characteristics that it does not have.
  • the 5G core network mainly includes the network elements shown in Figure 2: network slice selection function NSSF, identity authentication server function AUSF, unified data management UDM, access and mobility management function AMF, session management function SMF, user plane function unit UPF, Policy control function PCF, 5G base station ngNB(NR), 5G terminal UE.
  • This embodiment provides a 5G base station deploying the user plane functional unit UPF, deploys the user plane functional unit UPF network element of the 5G core network 5GC to the 5G base station ngNB, and makes full use of the X86/FPGA dedicated computing platform of the 5G base station ngNB Resources to carry the 5GC core network user plane functional unit UPF.
  • FIG. 3 it includes a hardware platform 101, a user plane function unit UPF102, a logic unit 103, and a function unit 104.
  • the 101 component is the basic hardware platform X86/FPGA of the 5G base station of the present invention. It interacts with the 5G terminal through the air interface externally, and interacts with the Internet through the network port; internally, it interacts with the PDCP/RRC protocol layer module of the logic unit 103 and User plane function UPF network element connection, X86 is used to load the PDCP/RRC protocol layer module of the base station ngNB and the UPF network element of the 5GC core network.
  • FPGA is mainly used to load the physical layer algorithm of ngNB and is responsible for the implementation of the basic algorithm of wireless resource allocation. .
  • the 102 component is the user plane function UPF network element of the 5GC core network. It is the key of the present invention.
  • the component is deployed on the 5GC base station to exchange data with the hardware platform 101 and the logic unit 103 respectively.
  • the functions of UPF network elements are the same as those deployed on independent hardware X86 platforms. The main difference lies in the performance of UPF.
  • UPF The main functions of UPF include:
  • GTP-U protocol processing on N3 interface GTP-U error indication processing
  • N6 interface data packet routing and forwarding packet cache notification and session monitoring, Redis data interaction interface
  • UPF and control plane Interface packet forwarding function UPCOAM configuration
  • UPC-UPU message transmission control PFCP messaging interface/encoding/decoding/transmission control/session management
  • N4 interface PFD management/association management/heartbeat/load/overload management/support N3/N4 /N9/N6/Nnrf interface
  • intra-RAT and inter-RAT mobility anchor point conversation point for external PDU and data network interconnection
  • data packet routing and forwarding user plane QoS processing
  • uplink traffic verification uplink and downlink Transmission-level packet marking.
  • the 103 component is the logical unit of the 5G base station ngNB, which runs on the base station X86/FPGA hardware platform and achieves the same functions and performance as the ordinary 5G base station. Its functions include L2 L2 RLC/MAC, basic radio resource management and algorithm realization of radio resource management, as well as RRC/PDCP of the third layer, radio resource control and PDCP user data processing.
  • the 104 component is a functional unit that is available after 102 is deployed on the 101 basis, including IP packet classification processing, edge computing MEC platform, application service platform, billing system interface customization CDR and other open platform interfaces.
  • the data message processing flow corresponding to the 5G base station of this embodiment is shown in Figure 4.
  • the processing of data messages mainly relies on the following components of the 5G base station: hardware platform 101, PDCP (Packet Data Convergence Protocol) module 203.
  • 201 component is part of 203 component in actual deployment, 201 and 203 are part of 103 in Figure 3;
  • the steps of upstream data packet processing include:
  • Step S101 the L2 physical layer of the component 101 receives the data message from the user terminal UE of the wireless air interface mobile phone, and sends it to the component 203 after processing;
  • the PDCP module components in steps S102 and 203 receive the data message, process the data message according to the PDCP protocol, and deliver the processed data message to the 201 component;
  • Step S103 201 component performs GTP-U tunnel coding processing on the processed data message, sends the GTP-U data message to 202 component, and hands it to the N3 interface module to complete the network interface protocol processing, and sends the N3 of the 5G core network Network interface unit
  • Step S104 The N3 network interface unit of the 5G core network receives the GTP-U data message from the 5G base station. After receiving the GTP-U message data, the 202 component decodes the GTP-U message data to obtain the inner layer IP data message, and then send the inner IP data message to the 204 component;
  • Steps S105 and 204 perform the QoS (Quality of Service), regular billing, and PFCP (PacketForwardingControlProtocol, packet forwarding control protocol) node management (status/load/heartbeat, etc.) of the data message, which will be controlled by the data message
  • QoS Quality of Service
  • PFCP PacketForwardingControlProtocol, packet forwarding control protocol
  • node management status/load/heartbeat, etc.
  • Step S106 101 components perform network layer processing according to the requirements of the N6 interface, and send the data message to the network side through the Ethernet network interface.
  • Downlink data message processing steps include:
  • Step S201 101 component receives a data message from the bottom network side, the data message is an IP data message from the N6 interface, and delivers the data message to the UPF network element 204 component of the 5GC core network;
  • Step S202, 204 components receive the data message, do QoS, regular charging, PFCP node management (status/load/heartbeat, etc.), and report the management information and new status information generated by the data message to the 5GC core through the N4 interface Network SMF network element; and deliver the data message to component 202;
  • Step S203 202 component receives the data message, performs GTP-U encapsulation processing, and then delivers it to the interface module of the 5GC core network element UPF, and sends the data message to component 201 according to the N3 interface;
  • step S204 component 201 receives the data message through the N3 interface, performs GTP-U decapsulation processing on the received data message, obtains an independent IP data message, and then delivers the independent IP data message to component 203;
  • Step S205 203 components receive the IP data message, process it according to the PDCP protocol, and send the physical layer L2 processing of the hardware platform 101 of the 5G base station ngNB;
  • Step S206 After the physical layer L2 processing of the hardware platform 101 is completed, that is, after processing such as 5G wireless resource management is completed, the data message is sent to the mobile phone user through the air interface.
  • the difference from the first embodiment is that the 201 component and 202 component and the steps of processing the data message are removed from the data message processing method, that is, the base station GTP-U codec and the core network GTP-U codec are removed.
  • the encoding and decoding process simplifies the N3 interface between the 5G base station ngNB and the 5GC core network UPF network element.
  • step S101' the L2 physical layer of component 101 receives the data message from the user terminal UE of the wireless air interface mobile phone, and sends it to component 203 after processing;
  • the PDCP module component of step S102' and 203 receives the data message, processes the data message according to the PDCP protocol, and delivers the processed data message to the 204 component;
  • Step S103', 204 components do QoS, regular charging, PFCP node management (status/load/heartbeat, etc.) of the data message, and report the management information and new status information generated by the data message to the 5GC core through the N4 interface Network SMF network element; UPF network element interface module, according to the N6 interface, send data messages to the 101 component;
  • step S104' the component 101 performs network layer processing according to the requirements of the N6 interface, and sends the data message to the network side through the Ethernet network interface.
  • step S201' the component 101 receives a data message from the bottom network side, which is an IP data message from the N6 interface, and delivers the data message to the UPF network element 204 component of the 5GC core network;
  • Step S202', 204 components receive the data message, do QoS, regular charging, PFCP node management (status/load/heartbeat, etc.), and report the management information and new status information generated by the data message to 5GC through the N4 interface SMF network element of the core network; and deliver the data message to the 203 component;
  • step S203' component 203 receives the data message from component 204 through the N3 interface, processes it according to the PDCP protocol, and sends it to the physical layer L2 of the hardware platform 101 of the 5G base station ngNB for processing;
  • step S204' after the physical layer L2 processing of the hardware platform 101 is completed, that is, after processing such as 5G wireless resource management is completed, the data message is sent to the mobile phone user through the air interface.
  • the GTP data decapsulation function of the N3 interface between ngNB and UPF is removed, which greatly improves the processing speed of the 5G data plane, and reduces the data plane processing delay and data transmission jitter.
  • the functional unit includes a classification processing module 301, a classification rule generator 304, a calculation and charging processing module composed of an MEC edge calculation module and a charging CDR statistical processing module 302. This is a feature that 3GPP protocols and specifications do not have.
  • Classification rule generator 304 used to edit and generate classification rules for data messages
  • Classification processing module 301 receiving data packets from 203 or 204, and classifying the data packets according to the classification rules generated by 304;
  • MEC edge computing module Perform edge computing processing on data messages
  • Billing CDR statistics processing module Perform billing CDR interface processing on data messages.
  • the flow processing according to the dotted line 2 in Fig. 5 includes the steps of classification, calculation and charging processing.
  • the step of classification includes: component 301 receives an uplink data message from component 203 or a downlink data message from component 204, classifies the received data message according to the classification rule generated in 304, and returns it to the corresponding component.
  • the 304 component edits the classification rules of the 301 component and sends it to the 301 component after completion.
  • the 301 component executes the rules issued by the 304 component; the 304 component, the generated rules, is based on the 5G base station ngNB and the 5GC core network UPF and SMF/
  • the applications required by AMF and the special properties of current interconnected applications OTT are presented.
  • the calculation and charging processing steps include: 302 component receives IP data packets from more than one of 203, 204, and 301, performs MEC edge computing processing or charging CDR interface processing, and returns to the corresponding component to meet the current requirements Edge computing/special computing/special data message classification and recognition processing, etc.

Abstract

本发明提供一种部署了UPF的5G基站及其数据报文处理方法,其中5G基站包括硬件平台、用户面功能、逻辑单元和功能单元。本发明将5G核心网的用户面功能网元UPF下沉部署到5G基站ngNB上,网络更加片扁平化,去中心化,基站与核心网设备的部署安装更加简单,同时给5G核心网的运维带来极大的便利和安全性。

Description

一种部署了UPF的5G基站及其数据报文处理方法 技术领域
本发明涉及移动通信技术领域,特别涉及一种部署了UPF的5G基站及其数据报文处理方法。
背景技术
在5G无线网络架构中,5G基站ngNB和5G核心网5GC的用户面功能网元UPF采用不同的硬件平台来承载,使用不同技术演进,5G基站ngNB采用X86+FPGA的模式演进,x86+FPGA平台是以通用x86处理器为CPU,以FPGA作为核心器件实现扩展和接口功能的通用硬件平台。5GC采用NFV(网络功能虚拟化)/SDN(软件定义网络)的模式演进。
特别是5G定义的应用场景中,实现高速数据转发、海量链接以及低时延,对5G基站ngNB和5GC的用户面功能网元UPF,提出了极大的挑战。
在5G的应用中,垂直行业和专网行业,是重大的应用方向,将MEC边缘计算与本地用户的数据中心相结合的,大大加速无线通信在垂直行业的应用。
中国专利申请公开号为CN102640525A,发明名称为“用于根据用户位置来管理选定的IP业务卸载以进行移动通信的方法和装置”,描述了在根据用户的IP在基站和核心网进行应用层报文的卸载方法。
中国专利申请公开号为CN105634980A,发明名称为“数据报文处理方法及基站”,在基站上增加一种数据报文处理方法,识别到需要处理的报文,直接在基站卸载,剥离外层的隧道报文,直接将用户数据转发到公共网络的一种方 法。
中国专利申请公开号为CN107333267A,发明名称为“一种用于5G超密集组网场景的边缘计算方法”,在超密集5G的小基站附近部署MEC服务器,提供边缘服务器。
以上现有技术的缺点在于:
(1)现有的5G无线通信网络架构,5G基站ngNB与核心网5GC是独立部署,而5G基站ngNB采用专用硬件,部署在靠近用户的区域,5GC核心网采用NFV/SDN平台,5GC核心网部署的硬件,一般是X86处理器平台。根据3GPP定义的Release15版本,5GC核心网是基于独立的硬件体系架构,5G基站ngNB也是基于独立的专用硬件架构,两个大的系统之间,采用N1/N2/N3接口完成互联,相对独立。部署的硬件资源/网络资源等采用独立分配。
(2)5G无线通信网络的MEC边缘计算,目前5G边缘计算中,并没有很好的将无线与核心网UPF的功能很好结合起来,在物理部署距离,或者是逻辑部署距离方面,都很大的隔离,影响MEC在实际的网络中的实施,将影响后续的5G在MEC功能上,在垂直行业的应用。
(3)特别是5G边缘计算MEC的方法中,更多的考虑是功能,比如用户面数据的卸载,用户面的计费等基本功能,没有实际考虑在卸载/计费/转发的高性能,以及基站与5GC核心网GTP-U(GTP-U是GTP协议的一种,用于在GPRS核心网内,无线接入网与核心网之间传送用户数据)数据面模块的合并处理等。
发明内容
有鉴于此,为了解决现有技术的问题,本发明提供一种部署了UPF的5G 基站及其数据报文处理方法,将5G核心网的用户面功能网元UPF下沉部署到5G基站ngNB上,网络更加片扁平化,去中心化,基站与核心网设备的部署安装更加简单,同时给5G核心网的运维带来极大的便利和安全性。
第一方面,本发明提供一种部署了UPF的5G基站,包括硬件平台、用户面功能单元、逻辑单元和功能单元,其中:
硬件平台是X86/FPGA平台,对外通过空中接口与用户终端进行数据交互,通过网络端口与互联网进行数据交互;对内与逻辑单元和用户面功能单元连接;
用户面功能单元,部署在5G基站上,分别与硬件平台和逻辑单元进行数据交互;
逻辑单元,用于无线资源管理以及无线资源管理的算法实现,以及无线资源的控制和PDCP用户数据的处理;
功能单元,包括但不限于对数据报文进行分类处理、边缘计算处理、应用服务平台处理和计费CDR接口处理。
进一步的,所述的逻辑单元包括PDCP模块,所述PDCP模块根据PDCP协议对接收到的数据报文进行处理。
进一步的,所述的逻辑单元还包括基站GTP-U编码解码器,所述的基站GTP-U编码解码器对数据报文进行GTP-U的隧道编码或解封装处理。
进一步的,所述的用户面功能单元包括核心网GTP编码解码器,所述的核心网GTP编码解码器对报文数据进行封装或解码处理。
进一步的,所述的功能单元包括分类处理模块、分类规则生成器、MEC边 缘计算模块和计费CDR统计处理模块,其中:
分类规则生成器:用于编辑和生成数据报文的分类规则;
分类处理模块:接收来自PDCP模块或用户面功能单元的数据报文,并根据分类规则生成器生成的分类规则对该数据报文进行分类;
MEC边缘计算模块:对数据报文进行边缘计算处理;
计费CDR统计处理模块:对数据报文进行计费CDR接口处理。
第二方面,本发明提供一种部署了UPF的5G基站的数据报文处理方法,包括上行数据报文处理的步骤和下行数据报文处理的步骤:
所述上行数据报文处理的步骤包括:
步骤S101、硬件平台的L2物理层收到来自无线空口用户终端的数据报文,经过处理后发给PDCP模块;
步骤S102、PDCP模块接收到数据报文,根据PDCP协议对该数据报文进行处理后交给基站GTP编码解码器;
步骤S103、基站GTP编码解码器接收到的数据报文进行GTP-U的隧道编码处理后发送给核心网GTP编码解码器,交给N3接口模块完成网络接口协议处理,发送5G核心网的N3网络接口单元;
步骤S104、5G核心网N3网络接口单元,收到来自5G基站的GTP-U数据报文,5G核心网GTP编码解码器对接收到的数据报文进行解码处理,获得内层IP的数据报文,再将该内层IP的数据报文发送给用户面功能单元;
步骤S105、用户面功能单元做该数据报文的QoS、常规计费、PFCP节点管理,将由该数据报文产生的管理信息和状态新信息通过N4接口上报给5GC核 心网SMF网元;用户面功能单元的接口模块按照N6接口将数据报文发送到硬件平台;
步骤S106、硬件平台按照N6接口的要求进行网络层处理,通过以太网网络接口将数据报文发送网络侧。
所述的下行数据报文处理步骤包括:
步骤S201、硬件平台接收到网络侧的数据报文,交给5G核心网N6网络接口单元完成网络协议的处理,交给5G核心网的UPF的用户面功能单元;
步骤S202、用户面功能单元接收到数据报文,做QoS、常规计费、PFCP节点管理,将由该数据报文产生的管理信息和状态新信息通过N4接口上报给5GC核心网SMF网元;并将该数据报文交给核心网GTP编码解码器;
步骤S203、核心网GTP编码解码器对接收到的数据报文进行GTP-U封装处理,再交给用户面功能单元的接口模块,由所述接口模块按照N3接口将该数据报文发送到基站GTP编码解码器;
步骤S204、基站GTP编码解码器通过N3接口接收数据报文,对接收到数据报文进行GTP-U的解封装处理,获得独立的IP数据报文,再将该独立的IP数据报文交给PDCP模块;
步骤S205、PDCP模块收到IP数据报文,根据PDCP协议进行处理后发送硬件平台的物理层L2处理;
步骤S206、硬件平台的物理层L2处理完成后,将该数据报文通过空中接口发送用户终端。
第三方面,本发明提供一种部署了UPF的5G基站的数据报文处理方法,包括上行数据报文处理的步骤和下行数据报文处理的步骤:
所述上行数据报文处理的步骤包括:
步骤S101’、硬件平台的L2物理层收到来自无线空口用户终端的数据报文,经过处理后发给PDCP模块;
步骤S102’、PDCP模块接收到数据报文,根据PDCP协议对该数据报文进行处理后交给用户面功能单元;
步骤S103’、用户面功能单元对接收到的数据报文做QoS、常规计费、PFCP节点管理,将由该数据报文产生的管理信息和状态新信息通过N4接口上报给5GC核心网SMF网元;用户面功能单元的接口模块按照N6接口将数据报文发送到硬件平台;
步骤S104’、硬件平台按照N6接口的要求进行网络层处理,通过以太网网络接口将数据报文发送网络侧。
所述的下行数据报文处理的步骤包括:
步骤S201’、硬件平台接收到网络侧的数据报文,交给用户面功能单元;
步骤S202’、用户面功能单元接收到数据报文,做QoS、常规计费、PFCP节点管理,将由该数据报文产生的管理信息和状态新信息通过N4接口上报给5GC核心网SMF网元;并将该数据报文交给PDCP模块;
步骤S203’、PDCP模块通过N3接口接收数据报文,并根据PDCP协议进行处理后发送给硬件平台的物理层L2进行处理;
步骤S204’、硬件平台的物理层L2处理完成后,将该数据报文通过空中接口发送到用户终端。
第三方面,上述一种部署了UPF的5G基站的数据报文处理方法,还包括分类的步骤、计算和计费处理的步骤,其中:
所述的分类的步骤包括:分类处理模块收到来自PDCP模块的上行数据报文或者用户面功能单元的下行数据报文,并根据分类规则生成器生成的分类规则对接收到的数据报文进行分类处理后返回给对应的PDCP模块或用户面功能单元;
所述的计算和计费处理的步骤包括:计算和计费处理模块接受来自PDCP模块、用户面功能单元、分类处理模块中的一个以上的数据报文,进行MEC边缘计算处理或者计费CDR接口处理后返回给对应的PDCP模块、用户面功能单元或分类处理模块。
进一步的,分类规则生成器编辑和生成分类规则后发送给分类处理模块。
本发明通过在5G基站中部署UPF网元:
一是利用5G基站ngNB的硬件平台,充分利用了5G基站的富余硬件资源,加大了硬件资源利用,也间接充分利用基站电力使用,降低了5GC核心网的耗电量。
二是通过该部署,可以将N3接口的GTP-U数据面隧道处理模块去掉,将大大加快用户数据模块的处理速度,减少UPF网元现有硬件平台的开销,节省硬件资源。同时,减少了GTP-U的隧道处理,IP报文不用进行GTP-U的封装和解封装处理,节省了用户数据的时延和抖动。
三是通过该方法部署的UPF网元到5G基站ngNB的硬件平台上,本地卸载的用户面数据,非常友好和丰富的提供了MEC边缘计算等所需要的接口,在5G基站ngNB部署的地方,部署了5G核心网UPF网元,具备了MEC等应用的能力。用户可以根据应用的实际情况,启动MEC边缘计算和服务应用。
四是通过该方法部署的5GC核心网用户面UPF网元到5G基站ngNB的硬件平台上,5GC核心网UPF的部署模型,从集中方式,完全转变为分布式部署。
同时,本发明的部署了UPF的5G基站同样具备现有技术中提到的用户面数据卸载功能和MEC边缘计算用户面卸载功能。
附图说明
图1为现有技术的5G基站和5G核心网部署的硬件结构示意图;
图2为无线网络架构示意图;
图3为本发明的实施例一的5G核心网UPF部署在基站硬件平台的结构示意图;
图4为本发明的实施例一的数据报文处理流程示意图;
图5为本发明优化后的数据报文处理流程示意图。
具体实施例
下面结合附图对本公开实施例进行详细描述。
以下通过特定的具体实例说明本公开的实施方式,本领域技术人员可由本说明书所揭露的内容轻易地了解本公开的其他优点与功效。显然,所描述的实施例仅仅是本公开一部分实施例,而不是全部的实施例。本公开还可以通过另外不同的具体实施方式加以实施或应用,本说明书中的各项细节也可以基于不同观点与应用,在没有背离本公开的精神下进行各种修饰或改变。需说明的是,在不冲突的情况下,以下实施例及实施例中的特征可以相互组合。基于本公开中的实施例,本领域普通技术人员在没有作出创造性劳动前提下所获得的所有 其他实施例,都属于本公开保护的范围。
在3G时期,SGSN/GGSN都是专用网络设备,对于3G基站,也是定制专用硬件,各家供应商都是自己的硬件系统,在实际部署中3G基站与3G核心网时分开采购,没有3G基站与3G核心网数据面SGSN/GGSN融合的解决方法。
在4G时期,网络扁平化/IP化的设计,4G核心网半虚拟化的设计,在4G的基站中涉及到部分GTP-U数据面卸载的功能,类似中国专利申请公开号为CN105634980A所描述的方案。
本发明是将5GC核心网网元UPF整体部署在5G基站ngNB的硬件平台上,从而实现CN105634980A的所有功能,但是却具有其不具有的众多优点与特性。
实施例一
5G核心网主要包含如图2所示的网元:网络切片选择功能NSSF、身份验证服务器功能AUSF、统一数据管理UDM、接入和移动管理功能AMF、会话管理功能SMF、用户面功能单元UPF、策略控制功能PCF、5G基站ngNB(NR)、5G终端UE。
本实施例提供一种部署了用户面功能单元UPF的5G基站,将5G核心网5GC的用户面功能单元UPF网元部署到到5G基站ngNB上,充分利用5G基站ngNB的X86/FPGA专用计算平台资源来承载5GC核心网用户面功能单元UPF。
如图3所示,包括硬件平台101、用户面功能单元UPF102、逻辑单元103、功能单元104。
101部件是本发明的5G基站的基础硬件平台X86/FPGA,对外通过空中接口与5G终端进行数据交互,通过网络端口与互联网进行数据交互;对内与逻 辑单元103的PDCP/RRC协议层模块和用户面功能UPF网元连接,X86用来加载基站ngNB的PDCP/RRC协议层模块和5GC核心网的UPF网元,FPGA主要是用来加载ngNB的物理层算法,负责无线资源分配的基本算法实现。
102部件,是5GC核心网的用户面功能UPF网元,是本发明的关键,将该部件部署在5GC基站上,分别与硬件平台101和逻辑单元103进行数据交互。UPF网元,其功能与部署在独立硬件X86平台的功能一样,其主要的差别是在UPF的性能。
UPF主要功能包括:
本端通信系列号SEID的分配和释放、N3接口GTP-U协议处理、GTP-U错误指示处理、N6接口数据包路由和转发、包缓存通知与会话监测、Redis数据交互接口、UPF与控制面接口的包转发功能、UPCOAM配置、UPC-UPU消息传输控制、PFCP消息收发接口/编码解码/传输控制/会话管理、N4接口PFD管理/关联管理/心跳/负载/过载等管理/支持N3/N4/N9/N6/Nnrf接口、RAT内和RAT间移动性的锚点、外部PDU和数据网络互连的会话点、数据包路由和转发、用户面QoS处理、上行链路流量验证、上下行链路传输级数据包标记。
103部件,是5G基站ngNB的逻辑单元,运行在基站X86/FPGA硬件平台上,实现了与普通5G基站一样的功能和性能。其功能包括二层L2的RLC/MAC,基本的无线资源管理以及无线资源管理的算法实现,以及第三层的RRC/PDCP,无线资源的控制和PDCP用户数据的处理。
104部件,是在101基础部署了102之后具备了的功能单元,包括IP报文分类处理、边缘计算MEC平台、应用服务平台、计费系统接口定制CDR等能力开放平台接口。
与本实施例的5G基站对应的数据报文处理流程如图4所示,数据报文的处理主要依靠5G基站的以下部件:硬件平台101、PDCP(Packet Data  Convergence Protocol分组数据汇聚协议层)模块203、基站GTP编码解码器201、核心网GTP编码解码器202和5GC核心网的用户面功能UPF204。201部件在实际部署是203部件的一部分,201和203是图3中103的一部分;202部件是204部件的一部分,202和204合在一起就是图3中的102,为了方便描述分开来表示。
本实施例的数据报文处理方法包括上行数据报文处理的步骤和下行数据报文处理的步骤:
上行数据报文处理的步骤包括:
步骤S101、101部件的L2物理层收到来自无线空口手机用户终端UE的数据报文,经过处理后发给部件203;
步骤S102、203的PDCP模块部件收到数据报文,根据PDCP协议对该数据报文进行处理并将处理后的数据报文交给201部件;
步骤S103、201部件对处理后的数据报文进行GTP-U的隧道编码处理,将GTP-U数据报文发送给202部件,交给N3接口模块完成网络接口协议处理,发送5G核心网的N3网络接口单元;
步骤S104、5G核心网N3网络接口单元,收到来自5G基站的GTP-U数据报文,202部件收到GTP-U报文数据后,对GTP-U报文数据进行解码处理,获得内层IP的数据报文,再将该内层IP的数据报文发送给204部件;
步骤S105、204部件做该数据报文的QoS(Quality of Service,服务质量)、常规计费、PFCP(PacketForwardingControlProtocol,报文转发控制协议)节点管理(状态/负载/心跳等),将由该数据报文产生的管理信息和状态新信息通过N4接口上报给5GC核心网SMF网元;UPF网元的接口模块,按照N6接口,将数据报文发送到101部件;
步骤S106、101部件按照N6接口的要求进行网络层处理,通过以太网网络接口将数据报文发送网络侧。
下行数据报文处理步骤包括:
步骤S201、101部件收到底层网络侧的数据报文,该数据报文是一个来自N6接口的IP数据报文,将该数据报文交给5GC核心网的UPF网元204部件;
步骤S202、204部件收到数据报文,做QoS、常规计费、PFCP节点管理(状态/负载/心跳等),将由该数据报文产生的管理信息和状态新信息通过N4接口上报给5GC核心网SMF网元;并将该数据报文交给202部件;
步骤S203、202部件收到该数据报文,进行GTP-U封装处理,再交给5GC核心网网元UPF的接口模块,按照N3接口,将该数据报文发送到201部件;
步骤S204、201部件通过N3接口接收数据报文,对接收到数据报文进行GTP-U的解封装处理,获得独立的IP数据报文,再将该独立的IP数据报文交给203部件;
步骤S205、203部件收到IP数据报文,根据PDCP协议进行处理后发送5G基站ngNB的硬件平台101的物理层L2处理;
步骤S206、硬件平台101的物理层L2处理完成后,即完成5G无线资源管理等处理后,将该数据报文通过空中接口发送手机用户。
实施例二
与实施例一不同的是,数据报文的处理方法中去掉了201部件和202部件及其处理数据报文的步骤,即去掉了基站GTP-U编码解码器和核心网GTP-U编码解码器的编码和解码的过程,简化了5G基站ngNB和5GC核心网UPF网元之间的N3接口。
本实施例中,其数据报文的处理流程如图5的虚线①所示,其上行数据报 文步骤如下:
步骤S101’、101部件的L2物理层收到来自无线空口手机用户终端UE的数据报文,经过处理后发给部件203;
步骤S102’、203的PDCP模块部件收到数据报文,根据PDCP协议对该数据报文进行处理并将处理后的数据报文交给204部件;
步骤S103’、204部件做该数据报文的QoS、常规计费、PFCP节点管理(状态/负载/心跳等),将由该数据报文产生的管理信息和状态新信息通过N4接口上报给5GC核心网SMF网元;UPF网元的接口模块,按照N6接口,将数据报文发送到101部件;
步骤S104’、101部件按照N6接口的要求进行网络层处理,通过以太网网络接口将数据报文发送网络侧。
其下行数据报文步骤如下:
步骤S201’、101部件收到底层网络侧的数据报文,该报文是一个来自N6接口的IP数据报文,将该数据报文交给5GC核心网的UPF网元204部件;
步骤S202’、204部件收到数据报文,做QoS、常规计费、PFCP节点管理(状态/负载/心跳等),将由该数据报文产生的管理信息和状态新信息通过N4接口上报给5GC核心网SMF网元;并将该数据报文交给203部件;
步骤S203’、203部件通过N3接口接收来自204部件的数据报文,并根据PDCP协议进行处理后发送5G基站ngNB的硬件平台101的物理层L2处理;
步骤S204’、硬件平台101的物理层L2处理完成后,即完成5G无线资源管理等处理后,将该数据报文通过空中接口发送手机用户。
在5G网络,除去ngNB和UPF之间N3接口的GTP数据解封装功能,大大提升5G数据面的处理速度,降低数据面处理时延和数据传输抖动等。
实施例三
在实施例二的基础上,增加了功能单元的处理流程,功能单元包括分类处理模块301、分类规则生成器304、由MEC边缘计算模块和计费CDR统计处理模块组成的计算和计费处理模块302,这是3GPP协议与规范所不具有的特性。
分类规则生成器304:用于编辑和生成数据报文的分类规则;
分类处理模块301:接收来自203或204的数据报文,并根据304生成的分类规则对该数据报文进行分类;
MEC边缘计算模块:对数据报文进行边缘计算处理;
计费CDR统计处理模块:对数据报文进行计费CDR接口处理。
根据图5的虚线②的流程处理,包括分类的步骤、计算和计费处理的步骤。
其中,分类的步骤包括:301部件收到来自203部件的上行数据报文或者204部件下行数据报文,根据304生成的分类规则对接收到的数据报文进行分类处理后返回给相应的部件。
其中,304部件是对301部件的分类规则进行编辑,完成后发送给301部件,301部件执行304部件下发的规则;304部件,产生的规则,基于5G基站ngNB和5GC核心网UPF以及SMF/AMF所需求的应用以及当前互联应用OTT所具有的特殊性质所呈现。
计算和计费处理的步骤包括:302部件接受来自203部件、204部件、301部件中的一个以上的IP数据报文,进行MEC边缘计算处理或者计费CDR接口处理后返回给相应部件,满足当前边缘计算/特殊计算/专用数据报文分类识别 处理等。
以上仅为说明本发明的实施方式,并不用于限制本发明,对于本领域的技术人员来说,凡在本发明的精神和原则之内,不经过创造性劳动所作的任何修改、等同替换、改进等,均应包含在本发明的保护范围之内。

Claims (9)

  1. 一种部署了UPF的5G基站,其特征在于:包括硬件平台、用户面功能单元、逻辑单元和功能单元,其中:
    硬件平台是X86/FPGA平台,对外通过空中接口与用户终端进行数据交互,通过网络端口与互联网进行数据交互;对内与逻辑单元和用户面功能单元连接;
    用户面功能单元,部署在5G基站上,分别与硬件平台和逻辑单元进行数据交互;
    逻辑单元,用于无线资源管理以及无线资源管理的算法实现,以及无线资源的控制和PDCP用户数据的处理;
    功能单元,包括但不限于对数据报文进行分类处理、边缘计算处理、应用服务平台处理和计费CDR接口处理。
  2. 根据权利要求1所述的一种部署了UPF的5G基站,其特征在于:所述的逻辑单元包括PDCP模块,所述PDCP模块根据PDCP协议对接收到的数据报文进行处理。
  3. 根据权利要求2所述的一种部署了UPF的5G基站,其特征在于:所述的逻辑单元还包括基站GTP-U编码解码器,所述的基站GTP-U编码解码器对数据报文进行GTP-U的隧道编码或解封装处理。
  4. 根据权利要求3所述的一种部署了UPF的5G基站,其特征在于:所述的用户面功能单元包括核心网GTP编码解码器,所述的核心网GTP编码解码器对报文数据进行封装或解码处理。
  5. 根据权利要求2所述的一种部署了UPF的5G基站,其特征在于:所述的功能单元包括分类处理模块、分类规则生成器、MEC边缘计算模块和计费 CDR统计处理模块,其中:
    分类规则生成器:用于编辑和生成数据报文的分类规则;
    分类处理模块:接收来自PDCP模块或用户面功能单元的数据报文,并根据分类规则生成器生成的分类规则对该数据报文进行分类;
    MEC边缘计算模块:对数据报文进行边缘计算处理;
    计费CDR统计处理模块:对数据报文进行计费CDR接口处理。
  6. 一种部署了UPF的5G基站的数据报文处理方法,其特征在于:包括上行数据报文处理的步骤和下行数据报文处理的步骤:
    所述上行数据报文处理的步骤包括:
    步骤S101、硬件平台的L2物理层收到来自无线空口用户终端的数据报文,经过处理后发给PDCP模块;
    步骤S102、PDCP模块接收到数据报文,根据PDCP协议对该数据报文进行处理后交给基站GTP编码解码器;
    步骤S103、基站GTP编码解码器接收到的数据报文进行GTP-U的隧道编码处理后发送给核心网GTP编码解码器,交给N3接口模块完成网络接口协议处理,发送5G核心网的N3网络接口单元;
    步骤S104、5G核心网N3网络接口单元,收到来自5G基站的GTP-U数据报文,核心网GTP编码解码器对接收到的数据报文进行解码处理,获得内层IP的数据报文,再将该内层IP的数据报文发送给用户面功能单元;
    步骤S105、用户面功能单元做该数据报文的QoS、常规计费、PFCP节点管理,将由该数据报文产生的管理信息和状态新信息通过N4接口上报给5GC核 心网SMF网元;用户面功能单元的接口模块按照N6接口将数据报文发送到硬件平台;
    步骤S106、硬件平台按照N6接口的要求进行网络层处理,通过以太网网络接口将数据报文发送网络侧。
    所述的下行数据报文处理步骤包括:
    步骤S201、硬件平台接收到网络侧的数据报文,交给用户面功能单元;
    步骤S202、用户面功能单元接收到数据报文,做QoS、常规计费、PFCP节点管理,将由该数据报文产生的管理信息和状态新信息通过N4接口上报给5GC核心网SMF网元;并将该数据报文交给核心网GTP编码解码器;
    步骤S203、核心网GTP编码解码器对接收到的数据报文进行GTP-U封装处理,再交给用户面功能单元的接口模块,由所述接口模块按照N3接口将该数据报文发送到基站GTP编码解码器;
    步骤S204、基站GTP编码解码器通过N3接口接收数据报文,对接收到数据报文进行GTP-U的解封装处理,获得独立的IP数据报文,再将该独立的IP数据报文交给PDCP模块;
    步骤S205、PDCP模块收到IP数据报文,根据PDCP协议进行处理后发送硬件平台的物理层L2处理;
    步骤S206、硬件平台的物理层L2处理完成后,将该数据报文通过空中接口发送用户终端。
  7. 一种部署了UPF的5G基站的数据报文处理方法,其特征在于:包括上行数据报文处理的步骤和下行数据报文处理的步骤:
    所述上行数据报文处理的步骤包括:
    步骤S101’、硬件平台的L2物理层收到来自无线空口用户终端的数据报文,经过处理后发给PDCP模块;
    步骤S102’、PDCP模块接收到数据报文,根据PDCP协议对该数据报文进行处理后交给用户面功能单元;
    步骤S103’、用户面功能单元对接收到的数据报文做QoS、常规计费、PFCP节点管理,将由该数据报文产生的管理信息和状态新信息通过N4接口上报给5GC核心网SMF网元;用户面功能单元的接口模块按照N6接口将数据报文发送到硬件平台;
    步骤S104’、硬件平台按照N6接口的要求进行网络层处理,通过以太网网络接口将数据报文发送网络侧。
    所述的下行数据报文处理的步骤包括:
    步骤S201’、硬件平台接收到网络侧的数据报文,交给用户面功能单元;
    步骤S202’、用户面功能单元接收到数据报文,做QoS、常规计费、PFCP节点管理,将由该数据报文产生的管理信息和状态新信息通过N4接口上报给5GC核心网SMF网元;并将该数据报文交给PDCP模块;
    步骤S203’、PDCP模块通过N3接口接收数据报文,并根据PDCP协议进行处理后发送给硬件平台的物理层L2进行处理;
    步骤S204’、硬件平台的物理层L2处理完成后,将该数据报文通过空中接口发送到用户终端。
  8. 根据权利要求6或7所述的一种部署了UPF的5G基站的数据报文处理方法,其特征在于:还包括分类的步骤、计算和计费处理的步骤,其中:
    所述的分类的步骤包括:分类处理模块收到来自PDCP模块的上行数据报 文或者用户面功能单元的下行数据报文,并根据分类规则生成器生成的分类规则对接收到的数据报文进行分类处理后返回给对应的PDCP模块或用户面功能单元;
    所述的计算和计费处理的步骤包括:计算和计费处理模块接受来自PDCP模块、用户面功能单元、分类处理模块中的一个以上的数据报文,进行MEC边缘计算处理或者计费CDR接口处理后返回给对应的PDCP模块、用户面功能单元或分类处理模块。
  9. 根据权利要求8所述的一种部署了UPF的5G基站的数据报文处理方法,其特征在于:分类规则生成器编辑和生成分类规则后发送给分类处理模块。
PCT/CN2019/127147 2019-11-25 2019-12-20 一种部署了upf的5g基站及其数据报文处理方法 WO2021103224A1 (zh)

Priority Applications (1)

Application Number Priority Date Filing Date Title
EP19953768.9A EP4027752A4 (en) 2019-11-25 2019-12-20 5G BASE STATION WITH UPF DEPLOYED AND DATA MESSAGE PROCESSING METHOD THEREOF

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
CN201911162502.3A CN110913508B (zh) 2019-11-25 2019-11-25 一种部署了upf的5g基站的数据报文处理方法
CN201911162502.3 2019-11-25

Publications (1)

Publication Number Publication Date
WO2021103224A1 true WO2021103224A1 (zh) 2021-06-03

Family

ID=69819053

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2019/127147 WO2021103224A1 (zh) 2019-11-25 2019-12-20 一种部署了upf的5g基站及其数据报文处理方法

Country Status (3)

Country Link
EP (1) EP4027752A4 (zh)
CN (1) CN110913508B (zh)
WO (1) WO2021103224A1 (zh)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN113543152A (zh) * 2021-07-09 2021-10-22 大唐网络有限公司 5g通信系统及数据通信方法、非易失性存储介质

Families Citing this family (10)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN114071791B (zh) * 2020-08-06 2024-01-26 北京佰才邦技术股份有限公司 用户面功能信息上报方法、接入网设备及核心网设备
CN114079674B (zh) * 2020-08-10 2023-02-21 大唐移动通信设备有限公司 一种数据处理方法、用户面功能及装置
CN114630342B (zh) * 2020-12-10 2023-08-08 中盈优创资讯科技有限公司 一种通过upf探测mec状态的方法及装置
CN113079109B (zh) * 2021-04-07 2022-10-04 鹏城实验室 一种数据报文处理方法、系统、智能终端及存储介质
CN113242560B (zh) * 2021-04-21 2022-11-01 南通大学 一种upf部署与ue调度多阶段规划方法、装置及设备
CN113225257B (zh) * 2021-04-27 2022-04-12 深圳星耀智能计算技术有限公司 一种upf数据处理的方法、系统及存储介质
CN113852990A (zh) * 2021-07-20 2021-12-28 浪潮软件科技有限公司 一种网元控制系统及方法
CN114205814B (zh) * 2021-12-03 2023-11-21 中国联合网络通信集团有限公司 一种数据传输方法、装置、系统、电子设备及存储介质
CN116801263A (zh) * 2022-03-18 2023-09-22 中兴通讯股份有限公司 一种网络节点、方法及存储介质
CN115567975B (zh) * 2022-12-05 2023-03-31 北京思朗东芯科技有限责任公司 一种数据报文的处理方法、装置、电子设备及存储介质

Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN102640525A (zh) 2009-12-04 2012-08-15 高通股份有限公司 用于根据用户位置来管理选定的ip业务卸载以进行移动通信的方法和装置
CN105634980A (zh) 2016-01-07 2016-06-01 北京佰才邦技术有限公司 数据报文处理方法及基站
CN107333267A (zh) 2017-06-23 2017-11-07 电子科技大学 一种用于5g超密集组网场景的边缘计算方法
CN109672549A (zh) * 2017-10-16 2019-04-23 中兴通讯股份有限公司 管理方法及装置、网关控制面网元、通信系统及存储介质
US20190215740A1 (en) * 2018-01-11 2019-07-11 Htc Corporation Method and Device of Handling Mobility to a NR Standalone Network
CN110012437A (zh) * 2018-01-05 2019-07-12 华为技术有限公司 一种组播报文的发送方法、装置及系统

Family Cites Families (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN104935422B (zh) * 2015-06-15 2018-03-02 武汉邮电科学研究院 一种基于单模lte实现共模lte基站的方法和系统
KR20180034632A (ko) * 2015-08-17 2018-04-04 후아웨이 테크놀러지 컴퍼니 리미티드 Gtp-u 다운링크 패킷 전송 방법 및 장치
CN109246765B (zh) * 2017-06-13 2023-12-29 中兴通讯股份有限公司 一种用户面数据会话的管理方法和装置
CN112911583A (zh) * 2017-07-11 2021-06-04 华为技术有限公司 设备接入方法、设备及系统
US10785817B2 (en) * 2017-09-28 2020-09-22 Apple Inc. Signaling radio bearer type 3 (SRB3) and secondary cell group (SCG) failure handling
US10797894B2 (en) * 2017-12-28 2020-10-06 Ofinno, Llc Service type and device type-based policy and charging control
CN108174421B (zh) * 2018-03-05 2020-07-31 重庆邮电大学 一种5g网络中基于mec辅助的数据分流方法
CN109151817B (zh) * 2018-07-27 2020-04-07 西安电子科技大学 一种面向5G用户的uRLLC切片及请求方法
CN109617865B (zh) * 2018-11-29 2021-04-13 中国电子科技集团公司第三十研究所 一种基于移动边缘计算的网络安全监测与防御方法

Patent Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN102640525A (zh) 2009-12-04 2012-08-15 高通股份有限公司 用于根据用户位置来管理选定的ip业务卸载以进行移动通信的方法和装置
CN105634980A (zh) 2016-01-07 2016-06-01 北京佰才邦技术有限公司 数据报文处理方法及基站
CN107333267A (zh) 2017-06-23 2017-11-07 电子科技大学 一种用于5g超密集组网场景的边缘计算方法
CN109672549A (zh) * 2017-10-16 2019-04-23 中兴通讯股份有限公司 管理方法及装置、网关控制面网元、通信系统及存储介质
CN110012437A (zh) * 2018-01-05 2019-07-12 华为技术有限公司 一种组播报文的发送方法、装置及系统
US20190215740A1 (en) * 2018-01-11 2019-07-11 Htc Corporation Method and Device of Handling Mobility to a NR Standalone Network

Non-Patent Citations (3)

* Cited by examiner, † Cited by third party
Title
HUAWEI, HISILICON: "Discussion on the Higher Layer Multi-Connectivity", 3GPP DRAFT; R2-1817508, 3RD GENERATION PARTNERSHIP PROJECT (3GPP), MOBILE COMPETENCE CENTRE ; 650, ROUTE DES LUCIOLES ; F-06921 SOPHIA-ANTIPOLIS CEDEX ; FRANCE, 16 December 2018 (2018-12-16), Mobile Competence Centre ; 650, route des Lucioles ; F-06921 Sophia-Antipolis Cedex ; France, pages 1 - 6, XP051481408 *
HUAWEI: "Impacts of higher layer multi-connection for IIoT", 3GPP DRAFT; R3-185811, 3RD GENERATION PARTNERSHIP PROJECT (3GPP), MOBILE COMPETENCE CENTRE ; 650, ROUTE DES LUCIOLES ; F-06921 SOPHIA-ANTIPOLIS CEDEX ; FRANCE, vol. RAN WG3, no. Chengdu, China; 20181008 - 20181012, 29 September 2018 (2018-09-29), Mobile Competence Centre ; 650, route des Lucioles ; F-06921 Sophia-Antipolis Cedex ; France, XP051529080 *
See also references of EP4027752A4

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN113543152A (zh) * 2021-07-09 2021-10-22 大唐网络有限公司 5g通信系统及数据通信方法、非易失性存储介质

Also Published As

Publication number Publication date
EP4027752A1 (en) 2022-07-13
CN110913508A (zh) 2020-03-24
CN110913508B (zh) 2021-07-20
EP4027752A4 (en) 2023-07-19

Similar Documents

Publication Publication Date Title
WO2021103224A1 (zh) 一种部署了upf的5g基站及其数据报文处理方法
US11765686B2 (en) Packet transmission method and apparatus for communicating between terminals of a same 5G LAN group
CN111225420B (zh) 一种用户接入控制方法、信息发送方法及装置
WO2020019764A1 (zh) 信息传输方法、设备及计算机可读存储介质
WO2017181779A1 (zh) 一种无线接入网切片的生成方法、无线接入网及切片管理器
WO2020221266A1 (zh) 一种通信方法及装置
US11553546B2 (en) Methods and systems for radio access network aggregation and uniform control of multi-RAT networks
WO2021088564A1 (zh) 一种广播业务的模式切换方法以及相关设备
CN109842639A (zh) 实现切换过程中业务连续性的方法、设备及系统
WO2020103807A1 (zh) 一种通信方法及装置
US20230189309A1 (en) Deterministic transmission method, communication apparatus, and storage medium
CN103379546B (zh) 数据分流的方法和装置
WO2022134908A1 (zh) 一种通信方法、模型处理方法及相关设备
US20230013500A1 (en) Radio bearer configuration method, apparatus, and system
WO2021160164A1 (zh) 信息控制方法及通信设备
WO2022047803A1 (zh) 通信方法及装置
WO2022041285A1 (zh) 一种模型数据传输方法及通信装置
WO2020248709A1 (zh) 一种mdbv的确定方法、装置及系统
CN106937331B (zh) 一种基带处理方法及装置
WO2014127633A1 (zh) Lldp报文传输方法及dcb设备
WO2021208813A1 (zh) 一种通信方法及通信装置
WO2019213856A1 (zh) Drb完整性保护的配置方法及装置、计算机存储介质
WO2022027653A1 (zh) 信息传输方法、通信装置及存储介质
WO2023193571A1 (zh) 通信方法和通信装置
WO2024037256A1 (zh) 一种业务流路由方法及装置

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 19953768

Country of ref document: EP

Kind code of ref document: A1

ENP Entry into the national phase

Ref document number: 2019953768

Country of ref document: EP

Effective date: 20220405

NENP Non-entry into the national phase

Ref country code: DE