WO2023193571A1 - 通信方法和通信装置 - Google Patents

通信方法和通信装置 Download PDF

Info

Publication number
WO2023193571A1
WO2023193571A1 PCT/CN2023/081214 CN2023081214W WO2023193571A1 WO 2023193571 A1 WO2023193571 A1 WO 2023193571A1 CN 2023081214 W CN2023081214 W CN 2023081214W WO 2023193571 A1 WO2023193571 A1 WO 2023193571A1
Authority
WO
WIPO (PCT)
Prior art keywords
qos flow
correlation information
qos
correlation
information
Prior art date
Application number
PCT/CN2023/081214
Other languages
English (en)
French (fr)
Inventor
陈二凯
秦熠
曹佑龙
徐瑞
Original Assignee
华为技术有限公司
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 华为技术有限公司 filed Critical 华为技术有限公司
Publication of WO2023193571A1 publication Critical patent/WO2023193571A1/zh

Links

Classifications

    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04WWIRELESS COMMUNICATION NETWORKS
    • H04W28/00Network traffic management; Network resource management
    • H04W28/02Traffic management, e.g. flow control or congestion control
    • H04W28/0268Traffic management, e.g. flow control or congestion control using specific QoS parameters for wireless networks, e.g. QoS class identifier [QCI] or guaranteed bit rate [GBR]
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04LTRANSMISSION OF DIGITAL INFORMATION, e.g. TELEGRAPHIC COMMUNICATION
    • H04L5/00Arrangements affording multiple use of the transmission path
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04WWIRELESS COMMUNICATION NETWORKS
    • H04W28/00Network traffic management; Network resource management
    • H04W28/02Traffic management, e.g. flow control or congestion control
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04WWIRELESS COMMUNICATION NETWORKS
    • H04W28/00Network traffic management; Network resource management
    • H04W28/16Central resource management; Negotiation of resources or communication parameters, e.g. negotiating bandwidth or QoS [Quality of Service]
    • H04W28/24Negotiating SLA [Service Level Agreement]; Negotiating QoS [Quality of Service]

Definitions

  • the present application relates to the field of communication, and more specifically, to communication methods and communication devices in the field of communication.
  • XR fifth generation mobile communications technology
  • 5G fifth generation mobile networks
  • XR includes virtual reality (VR) and augmented reality (AR).
  • Multimodal business as a new business, adds the dimension of tactile experience based on XR, which can realize visual, auditory, tactile, kinesthetic and other aspects of remote perception. It has great application in industrial automation, medical care, distance education and other related fields. It has huge development space, provides users with a comprehensive interactive experience, and has great application value.
  • QoS quality of service
  • Data streams with different QoS requirements are usually used to transmit different signals to ensure that the QoS requirements of each signal can be met.
  • the QoS mechanism in existing 5G networks cannot carry multi-modal services well.
  • Embodiments of the present application provide a communication method and device that can better carry multi-modal services.
  • a communication method is provided.
  • the method can be executed by an access network device, or by a component of the access network device (such as a processor, a chip or a chip system). It can also be executed by a device that can realize all or Logical modules or software implementation of some access network equipment functions.
  • the method includes: receiving first correlation information from a first network element, the first correlation information being used to indicate correlation between a first quality of service QoS flow and one or more second QoS flows within a first period. property; according to the first correlation information, the terminal device performs transmission of data of the first QoS stream and data of one or more second QoS streams within the above-mentioned first period.
  • the transmission of data of the first QoS flow and data of one or more second QoS flows includes:
  • the data carried by one or more second QoS flows is transmitted, and the data carried by the first QoS flow is not transmitted; or the data carried by the first QoS flow and one or more second QoS flows are transmitted.
  • the access network device can learn the correlation of the QoS flow based on the first correlation information, and schedule and configure the QoS flow when transmitting data with the terminal device, so as to better carry multi-modal services.
  • the above-mentioned first QoS flow and the above-mentioned one or more second QoS flows may belong to the same terminal device or may belong to different terminal devices, which is not limited in this application.
  • the above-mentioned first correlation information is specifically used to indicate the above The first QoS flow and the one or more second QoS flows are related within the first period.
  • the first QoS flow is related to the one or more second QoS flows, which means that part or all of the data of the first QoS flow can be recovered based on the data of the one or more second QoS flows.
  • one bit is used to indicate whether the first QoS flow and the above-mentioned one or more second QoS flows are related. If the value of a bit is 0, it indicates that the first QoS flow and the above-mentioned one or more second QoS flows are related. Not relevant; if a bit has a value of 1, it means that the first QoS flow is related to one or more of the above second QoS flows. Alternatively, when the value of the above-mentioned bit is 0, it indicates that the first QoS flow is related to the above-mentioned one or more second QoS flows.
  • the first correlation information indicates that the above-mentioned first QoS flow is related to the above-mentioned one or more second QoS flows.
  • the QoS flows are not related to each other, no indication is needed, which can save the signaling overhead of the first correlation information.
  • the above-mentioned first correlation information is specifically used to indicate the probability that the data of the above-mentioned first QoS flow can be recovered based on the data of the above-mentioned one or more second QoS flows. .
  • the first correlation information may specifically indicate the probability or proportion that the first QoS flow can be restored based on the second QoS flow, so the access network device can perform more precise scheduling and configuration optimization of the QoS flow based on this specific probability or proportion.
  • the access network device may discard some data packets of the first QoS flow, and in the second case, the access network device may discard all data packets of the first QoS flow.
  • the first correlation information may also be used to indicate the degree of correlation between the above-mentioned first QoS flow and the above-mentioned one or more second QoS flows.
  • the degree of correlation is calculated as a percentage. If in the first case, the degree of correlation between the first QoS flow and the second QoS flow is 50%, in the second case, the degree of correlation between the first QoS flow and the second QoS flow is 50%. The degree of correlation is 100%. Then when network congestion occurs, in the first case, the access network device can discard part of the data packets of the first QoS flow. In the second case, the access network device can discard part of the first QoS flow. All packets.
  • the first correlation information can specifically indicate the degree of correlation between the first QoS flow and one or more second QoS flows, which is helpful for the access network device to perform more accurate scheduling and configuration optimization operations on the QoS flow.
  • the first correlation information includes the indication information of the first period.
  • the first correlation information may indicate the specific interval of the first period or the length of the first period, and the correlation of the QoS flow is valid only within the specific interval of the first period or the length of the first period.
  • the method further includes: receiving QoS flow configuration information from the session management network element, the QoS flow The configuration information includes the above-mentioned first correlation information.
  • the first correlation information is indicated to the access network device through control plane signaling.
  • This method has low update frequency and low signaling overhead.
  • the method further includes: receiving the above-mentioned first correlation information from the user plane functional network element through an extension header of the General Packet Radio System Tunnel User Protocol GTP-U.
  • the first correlation information is transmitted to the access network device through the application layer data.
  • This method is fast and effective and can quickly adapt to changes in the correlation information of the application layer QoS flow.
  • the data of the first QoS flow and the data of one or more second QoS flows are transmitted within the first period according to the first correlation information and the terminal device. Including at least one of the following: discarding part or all of the data of the first QoS flow in the first period according to the first correlation information; or reducing the time of the first QoS flow in the first period according to the first correlation information.
  • the RAN will use some or all of the data packets in the first QoS flow. Active discarding can also mean that the RAN stops data transmission of the first QoS flow, thereby reducing the pressure on the network air interface.
  • the RAN can lower the scheduling priority of the first QoS flow.
  • the data transmission of QoS flows with high scheduling priority can be prioritized to ensure the data transmission of other QoS flows with higher priority and improve the service quality of the business.
  • the RAN will compare the related first QoS flow with the second QoS flow. They are respectively mapped on different data radio bearers (DRBs), which can improve the robustness of the first QoS flow data transmission and the second QoS flow data transmission.
  • DRBs data radio bearers
  • the second aspect provides a communication method.
  • the method can be executed by the first network element, or by a component of the first network element (such as a processor, a chip or a chip system). It can also be executed by a device that can realize all or Logic modules or software implementation of some first network element functions.
  • the method includes: sending first correlation information to an access network device, the first correlation information being used to indicate correlation between a first quality of service QoS flow and one or more second QoS flows within a first period. .
  • the first network element transmits the first correlation information to the access network device, so that the access network device can learn the correlation of the QoS flow based on the first correlation information.
  • the access network device performs QoS inspection when transmitting data with the terminal device. Flow scheduling and configuration optimization can better carry multi-modal services.
  • the above-mentioned first QoS flow and the above-mentioned one or more second QoS flows may belong to the same terminal device or may belong to different terminal devices, which is not limited in this application.
  • the first correlation information is specifically used to indicate that the first QoS flow and the one or more second QoS flows are related within the first period.
  • the first QoS flow is related to the one or more second QoS flows, which means that part or all of the data of the first QoS flow can be recovered based on the data of the one or more second QoS flows.
  • one bit is used to indicate whether the first QoS flow and the above-mentioned one or more second QoS flows are related. If the value of a bit is 0, it indicates that the first QoS flow and the above-mentioned one or more second QoS flows are related. Not relevant; if a bit has a value of 1, it means that the first QoS flow is related to one or more of the above second QoS flows. Alternatively, when the value of the above-mentioned bit is 0, it indicates that the first QoS flow is related to the above-mentioned one or more second QoS flows.
  • the first correlation information indicates that the above-mentioned first QoS flow is related to the above-mentioned one or more second QoS flows.
  • the indication may not be needed. This can save the signaling overhead of the first correlation information.
  • the above-mentioned first correlation information is specifically used to indicate the probability that the data of the above-mentioned first QoS flow can be recovered based on the data of the above-mentioned one or more second QoS flows. .
  • the first correlation information may specifically indicate the probability or proportion that the first QoS flow can be restored based on the second QoS flow, so the access network device can perform more precise scheduling and configuration optimization of the QoS flow based on this specific probability or proportion.
  • the access network device may discard some data packets of the first QoS flow, and in the second case, the access network device may discard all data packets of the first QoS flow.
  • the first correlation information may also be used to indicate the degree of correlation between the above-mentioned first QoS flow and the above-mentioned one or more second QoS flows.
  • the degree of correlation is calculated as a percentage. If in the first case, the degree of correlation between the first QoS flow and the second QoS flow is 50%, in the second case, the degree of correlation between the first QoS flow and the second QoS flow is 50%. The degree of correlation is 100%. Then when network congestion occurs, in the first case, the access network device can discard part of the data packets of the first QoS flow. In the second case, the access network device can discard part of the first QoS flow. All packets.
  • the first correlation information can specifically indicate the degree of correlation between the first QoS flow and one or more second QoS flows, which is helpful for the access network device to perform more accurate scheduling and configuration optimization operations on the QoS flow.
  • the first correlation information includes the indication information of the first period.
  • the first correlation information may indicate the specific interval of the first period or the length of the first period, and the correlation of the QoS flow is valid only within the specific interval of the first period or the length of the first period.
  • the method further includes: sending QoS flow configuration information to the above-mentioned access network device, where the QoS flow configuration information includes the above-mentioned first correlation information.
  • the first correlation information is indicated to the access network device through control plane signaling.
  • This method has low update frequency and low signaling overhead.
  • the method further includes: sending the first correlation information to the access network device through an extension header of the General Packet Wireless System Tunnel User Protocol GTP-U.
  • the first correlation information is transmitted to the access network device through the application layer data.
  • This method is fast and effective and can quickly adapt to changes in the correlation information of the application layer QoS flow.
  • the method further includes: sending QoS flow rule information to the terminal device, where the QoS flow rule information includes the above-mentioned first correlation information.
  • the above-mentioned first correlation information is sent to the terminal device.
  • the terminal device can actively discard some or all data packets in the QoS flow with higher correlation based on the first correlation information to alleviate uplink network congestion.
  • a communication method is provided.
  • the method can be executed by a terminal device, or by a component of the terminal device (such as a processor, a chip or a chip system), or by a device that can realize all or part of the functions of the terminal device.
  • the method includes: receiving first correlation information from a first network element, the first correlation information being used to indicate correlation between a first quality of service QoS flow and one or more second QoS flows within a first period. property; according to the first correlation information and the access network equipment, the data of the first QoS flow and the data of one or more second QoS flows are transmitted within the above-mentioned first period.
  • transmitting the data of the first QoS flow and the data of one or more second QoS flows includes: transmitting the data carried by one or more second QoS flows and not transmitting the data carried by the first QoS flow; or the first Both the QoS flow and the data carried by one or more secondary QoS flows are transmitted.
  • the terminal device can learn the correlation of the QoS flow based on the first correlation information, and proactively discard some or all data packets in the QoS flow with higher correlation when transmitting uplink data with the access network device to alleviate uplink network congestion.
  • the above-mentioned first QoS flow and the above-mentioned one or more second QoS flows may belong to the same terminal device or may belong to different terminal devices, which is not limited in this application.
  • the first correlation information is specifically used to indicate that the first QoS flow and the one or more second QoS flows are related within the first period.
  • the first QoS flow is related to the one or more second QoS flows, which means that part or all of the data of the first QoS flow can be recovered based on the data of the one or more second QoS flows.
  • one bit is used to indicate whether the first QoS flow and the above-mentioned one or more second QoS flows are related. If the value of a bit is 0, it indicates that the first QoS flow and the above-mentioned one or more second QoS flows are related. Not relevant; if a bit has a value of 1, it means that the first QoS flow is related to one or more of the above second QoS flows. Alternatively, when the value of the above-mentioned bit is 0, it indicates that the first QoS flow is related to the above-mentioned one or more second QoS flows.
  • the first correlation information indicates that the above-mentioned first QoS flow is related to the above-mentioned one or more second QoS flows.
  • the indication may not be needed. This can save the signaling overhead of the first correlation information.
  • the above-mentioned first correlation information is specifically used to indicate the probability that the data of the above-mentioned first QoS flow can be recovered based on the data of the above-mentioned one or more second QoS flows. .
  • the first correlation information may specifically indicate the probability or proportion that the first QoS flow can be restored based on the second QoS flow. Therefore, the terminal device may discard data packets based on this specific probability or proportion to prevent the QoS flow with low correlation from being discarded. Packets in are dropped.
  • the terminal device may discard part of the data packets of the first QoS flow, and in the second case, the terminal device may discard all the data packets of the first QoS flow.
  • the first correlation information may also be used to indicate the degree of correlation between the above-mentioned first QoS flow and the above-mentioned one or more second QoS flows.
  • the degree of correlation is calculated as a percentage. If in the first case, the degree of correlation between the first QoS flow and the second QoS flow is 50%, in the second case, the degree of correlation between the first QoS flow and the second QoS flow is 50%. The degree of correlation is 100%. Then when network congestion occurs, in the first case, the access network device can discard part of the data packets of the first QoS flow. In the second case, the access network device can discard part of the first QoS flow. All packets.
  • the first correlation information can specifically indicate the degree of correlation between the first QoS flow and one or more second QoS flows, which is helpful for the access network device to perform more accurate scheduling and configuration optimization operations on the QoS flow.
  • the first correlation information includes the indication information of the first period.
  • the first correlation information may indicate the specific interval of the first period or the length of the first period, and the correlation of the QoS flow is valid only within the specific interval of the first period or the length of the first period.
  • the method further includes: receiving QoS flow rule information sent by the session management network element, the QoS flow rule The information includes first correlation information.
  • the first correlation information is indicated to the terminal device through control plane signaling, which has low update frequency and low signaling overhead.
  • the method further includes: receiving scheduling information from the access network device, the scheduling information being used to schedule a third QoS flow for the uplink data transmission of the terminal device, the third QoS flow
  • the three QoS flows belong to the above-mentioned first QoS flow and the above-mentioned one or more second QoS flows.
  • the terminal device Only through the scheduling information sent by the access network device can the terminal device know which QoS flows that can transmit data after scheduling and configuration optimization by the access network device according to the first correlation information, so that the UE can schedule and configure them through the access network device. Configure optimized QoS flows to carry upstream data.
  • a communication device may be an access network device, or a component of the access network device (such as a processor, a chip or a chip system), or may be a device that can realize all or part of the access network device.
  • the device has the function of realizing the above first aspect and various possible implementation modes. This function can be implemented by hardware, or it can be implemented by hardware executing corresponding software.
  • the hardware or software includes one or more modules corresponding to the above functions.
  • the device includes: an interface unit and a processing unit.
  • the interface unit may be at least one of a transceiver, a receiver, and a transmitter.
  • the interface unit may include a radio frequency circuit or an antenna.
  • the processing unit may be a processor.
  • the device further includes a storage unit, which may be a memory, for example. When a storage unit is included, the storage unit is used to store programs or instructions.
  • the processing unit is connected to the storage unit, and the processing unit can execute programs, instructions or instructions from other sources stored in the storage unit, so that the device performs the above-mentioned first aspect and the communication methods of various possible implementations.
  • the device can be access network equipment.
  • the chip when the device is a chip, the chip includes: an interface unit and a processing unit.
  • the interface unit may be, for example, an input/output interface, pins or circuits on the chip.
  • the processing unit may be a processor, for example.
  • the processing unit can execute instructions to cause the chip in the access network device to perform the above-mentioned first aspect, as well as any possible implemented communication method.
  • the processing unit can execute instructions in the storage unit, and the storage unit can be a storage module within the chip, such as a register, cache, etc.
  • the storage unit can also be located within the communication device but outside the chip, such as read-only memory (ROM) or other types of static storage devices that can store static information and instructions, random access memory (random access memory) memory, RAM), etc.
  • ROM read-only memory
  • RAM random access memory
  • the processor mentioned in any of the above places can be a general central processing unit (CPU), a microprocessor, an application-specific integrated circuit (ASIC), or one or more for controlling the above-mentioned
  • CPU central processing unit
  • ASIC application-specific integrated circuit
  • Various aspects of communication methods are programmed for execution on integrated circuits.
  • a communication device may be a first network element, or a component of the first network element (such as a processor, a chip or a chip system), or may be capable of realizing all or part of the first network element.
  • a logical module or software for a network element function The device has the function of realizing the above second aspect and various possible implementation modes. This function can be Through hardware implementation, the corresponding software implementation can also be executed through hardware.
  • the hardware or software includes one or more modules corresponding to the above functions.
  • the device includes: an interface unit.
  • the device further includes a processing unit.
  • the interface unit may be, for example, at least one of a transceiver, a receiver, and a transmitter, and the interface unit may include a radio frequency circuit or an antenna.
  • the processing unit may be a processor.
  • the device further includes a storage unit, which may be a memory, for example.
  • a storage unit is used to store programs or instructions.
  • the processing unit is connected to the storage unit, and the processing unit can execute programs, instructions, or instructions from other sources stored in the storage unit, so that the device performs the above-mentioned second aspect, or the method of any one thereof.
  • the chip when the device is a chip, the chip includes: an interface unit, and optionally, the chip also includes a processing unit.
  • the interface unit may be, for example, an input/output interface, a pin or a circuit on the chip.
  • the processing unit may be a processor, for example.
  • the processing module can execute programs or instructions to cause the chip in the first network element to execute the above-mentioned second aspect, as well as any possible implemented communication method.
  • the processing unit can execute instructions in the storage unit, and the storage unit can be a storage module within the chip, such as a register, cache, etc.
  • the storage unit can also be located within the communication device but outside the chip, such as read-only memory (ROM) or other types of static storage devices that can store static information and instructions, random access memory (random access memory) memory, RAM), etc.
  • ROM read-only memory
  • RAM random access memory
  • the processor mentioned in any of the above places can be a general central processing unit (CPU), a microprocessor, an application-specific integrated circuit (ASIC), or one or more for controlling the above-mentioned
  • CPU central processing unit
  • ASIC application-specific integrated circuit
  • Various aspects of communication methods are programmed for execution on integrated circuits.
  • a communication device may be a terminal device, or a component of the terminal device (such as a processor, a chip or a chip system), or may be logic that can realize all or part of the functions of the terminal device.
  • module or software The device has the function of realizing the above third aspect and various possible implementation methods. This function can be implemented by hardware, or it can be implemented by hardware executing corresponding software.
  • the hardware or software includes one or more modules corresponding to the above functions.
  • the device includes: an interface unit.
  • the device further includes a processing unit.
  • the interface unit may be, for example, at least one of a transceiver, a receiver, and a transmitter, and the interface unit may include a radio frequency circuit or an antenna.
  • the processing unit may be a processor.
  • the device further includes a storage unit, which may be a memory, for example.
  • a storage unit is used to store programs or instructions.
  • the processing unit is connected to the storage unit, and the processing unit can execute programs, instructions, or instructions from other sources stored in the storage unit, so that the device performs the above-mentioned third aspect, or the method of any one thereof.
  • the chip when the device is a chip, the chip includes: an interface unit, and optionally, the chip also includes a processing unit.
  • the interface unit may be, for example, an input/output interface, a pin or a circuit on the chip.
  • the processing unit may be a processor, for example.
  • the processing module can execute programs or instructions to cause the chip in the terminal device to execute the above third aspect, as well as any possible implemented communication method.
  • the processing unit can execute instructions in the storage unit, and the storage unit can be a storage module within the chip, such as a register, cache, etc.
  • the storage unit can also be located within the communication device but outside the chip, such as a read-only memory (ROM) or other types of static storage devices that can store static information and instructions, random access memory (random access memory) memory, RAM), etc.
  • ROM read-only memory
  • RAM random access memory
  • the processor mentioned in any of the above places can be a general central processing unit (CPU), a microprocessor, an application-specific integrated circuit (ASIC), or one or more for controlling the above-mentioned
  • CPU central processing unit
  • ASIC application-specific integrated circuit
  • Various aspects of communication methods are programmed for execution on integrated circuits.
  • a computer storage medium is provided.
  • Program code is stored in the computer storage medium.
  • the program code is used to instruct execution of the above-mentioned first aspect, second aspect, third aspect, first aspect, second aspect, Instructions for methods in any possible implementation of the third aspect.
  • a computer program product containing computer instructions or computer codes is provided, which when run on a computer causes the computer to execute the above-mentioned first aspect, second aspect, third aspect and first aspect, second aspect, Methods in any possible implementation of the third aspect.
  • a communication system includes a device having functions to implement the methods and various possible designs of the above-mentioned first aspect, and a device having functions to implement the methods and various possible designs of the above-mentioned second aspect.
  • the device having the functions of implementing the methods and various possible designs of the above-mentioned first aspect may be an access network device
  • the device having the functions of implementing the methods and various possible designs of the above-mentioned second aspect may be the first network device.
  • the device having the functions of implementing the methods of the third aspect and various possible designs may be a terminal device.
  • the access network device can learn the correlation of the QoS flow based on the first correlation information, and schedule and configure the QoS flow when transmitting data with the terminal device, so as to better carry multi-modal services. .
  • Figure 1 is an example of a communication system architecture suitable for embodiments of the present application.
  • Figure 2 is an application scenario diagram applicable to the embodiment of the present application.
  • Figure 3 is a schematic diagram of the relationship between RBs and QoS flows in the PDU session provided by this application.
  • Figure 4 is a schematic diagram of correlation information provided by this application.
  • Figure 5 is a schematic flow chart of a method for configuring and scheduling QoS flows provided by this application.
  • Figure 6 is a schematic flow chart of a method for obtaining correlation information of QoS flows through control plane signaling provided by this application.
  • Figure 7 is a schematic flow chart of another method provided by this application for obtaining correlation information of QoS flows through control plane signaling.
  • Figure 8 is a schematic flow chart of a method for obtaining correlation information of QoS flows through the data plane provided by this application.
  • Figure 9 shows a schematic diagram of the protocol stack in which the correlation information of the QoS flow is encapsulated between the UDP layer and the RTP layer.
  • Figure 10 shows a schematic block diagram of a device 100 for sending correlation information according to an embodiment of the present invention.
  • Figure 11 shows a schematic block diagram of a device 200 for receiving correlation information according to an embodiment of the present invention.
  • GSM global system for mobile communications
  • CDMA code division multiple access
  • WCDMA wideband code division multiple access
  • GPRS general packet radio service
  • LTE long term evolution
  • LTE frequency division duplex frequency division duplex
  • TDD time division duplex
  • UMTS universal mobile telecommunication system
  • WiMAX global interoperability for microwave access
  • 5G fifth generation
  • NR new radio
  • next generation mobile communication network architecture (next generation system), called 5G network architecture.
  • This architecture not only supports wireless technologies defined by the 3GPP standards group (such as LTE, etc.) to access the 5G core network (5GC), but also supports non-3GPP access technologies through the non-3GPP interworking function (non-3GPP interworking function, N3IWF), trusted non-3GPP gateway function (TNGF), trusted WLAN interworking function (TWIF) or next generation packet data gateway (NG-PDG) ) access to 5GC.
  • the core network functions are divided into user plane function (UPF) and control plane function (CPF).
  • UPF is mainly responsible for the forwarding of packet data packets, quality of service (QoS) control, and accounting information statistics.
  • CPF is mainly responsible for user registration authentication, mobility management and issuing data packet forwarding strategies, QoS control strategies, etc. to UPF. It can be further divided into access and mobility management function (AMF) and session management function. (session management function, SMF).
  • AMF access and mobility management function
  • SMF session management function
  • Core network equipment includes, for example, mobility management entity (MME), broadcast multicast service center (BMSC), etc., or may also include corresponding functional entities in the 5G system, such as core network control plane (control plane, CP) or user plane (user plan, UP) network functions, etc., such as: SMF, AMF, etc.
  • control plane control plane
  • UP user plan, UP
  • SMF SMF
  • AMF AMF
  • CPF core network control plane function
  • QoS refers to the ability of a network to use various basic technologies to provide better service capabilities for designated network communications. It is a security mechanism of the network and a technology used to solve problems such as network delay and congestion.
  • Guaranteed bit rate means that the bit rate required by the radio bearer (RB) is "permanently" allocated by the network and is used for services with high real-time requirements, even if the network Even when resources are tight, the corresponding bit rate can be maintained.
  • the maximum bit rate (MBR) parameter defines the upper limit of the rate that GBR can achieve when resources are sufficient. The value of MBR is greater than or equal to the value of GBR.
  • Non-GBR non-guaranteed bit rate
  • Allocation and retention priority Indicates the priority of data flows with different QoS requirements on the wireless access network and core network interfaces. When the network is congested, the level of ARP for data flows with different QoS requirements of the terminal device will determine whether the data flows with different QoS requirements of the terminal device replace the existing data flows with different QoS requirements with lower ARP priorities, or whether the terminal device Data flows with different QoS requirements are configured Data flows with different QoS requirements with higher ARP priorities are replaced.
  • MPLR Maximum packet loss rate
  • Reflection QoS attributes Indicates that certain services of a certain QoS flow can be affected by reflection QoS.
  • RQA Reflection QoS attributes
  • Notification control For the QoS flow of the GBR, the core network uses the notification control parameter to control whether the wireless access network reports when the guaranteed flow bit rate (guranteed flow bit rate, GFBR) of the GBR QoS flow cannot be met. The message notifies the core network.
  • GFBR guranteed flow bit rate
  • Figure 1 is an example of a communication system architecture suitable for embodiments of the present application. Among them, the functions of user equipment and each network entity are as described below.
  • Terminal equipment can be called terminal, terminal equipment unit (subscriber unit), terminal equipment station, terminal equipment agent, terminal equipment device, access terminal, terminal in V2X communication, user unit, user equipment (user equipment, UE), user station, mobile station, mobile station (MS), remote station, remote terminal, mobile device, user terminal, wireless communication equipment, user agent or user device.
  • terminal equipment unit subscriber unit
  • terminal equipment station terminal equipment agent
  • terminal equipment device access terminal
  • terminal in V2X communication user unit
  • user equipment user equipment
  • UE user equipment
  • MS mobile station
  • remote station remote terminal
  • mobile device user terminal, wireless communication equipment, user agent or user device.
  • the user equipment in the embodiments of the present application may also be a mobile phone (mobile phone), tablet computer (pad), computer with wireless transceiver function, holographic projector, video player, virtual reality (VR) terminal, enhanced Augmented reality (AR) terminals, wireless terminals in industrial control (industrial control), tactile terminal equipment, vehicle-mounted terminal equipment, wireless terminals in self-driving (self driving), wireless terminals in remote medical (remote medical) , wireless terminals in smart grid, wireless terminals in transportation safety, wireless terminals in transportation safety, wireless terminals in smart city, wireless terminals in smart home Terminals, cellular phones, cordless phones, session initiation protocol (SIP) phones, wireless local loop (WLL) stations, personal digital assistants (PDA), handheld devices with wireless communication capabilities Devices, computing devices or other processing devices connected to wireless modems, vehicle-mounted devices, wearable devices, terminals in 5G networks or terminals in future evolution networks, etc.
  • mobile phone mobile phone
  • tablet computer tablet computer
  • computer with wireless transceiver function holographic project
  • wearable devices can also be called wearable smart devices. It is a general term for applying wearable technology to intelligently design daily wear and develop wearable devices, such as head-mounted XR glasses, gloves, watches, clothing and shoes, etc. .
  • a wearable device is a portable device that is worn directly on the body or integrated into the user's clothing or accessories. Wearable devices are not just hardware devices, but also achieve powerful functions through software support, data interaction, and cloud interaction. Broadly defined wearable smart devices include full-featured, large-sized devices that can achieve complete or partial functions without relying on smartphones, such as smart watches or smart glasses, as well as those that focus on a certain type of application function and need to be used in conjunction with other devices such as smartphones. , such as various smart bracelets and smart jewelry for physical sign monitoring.
  • Radio access network A network composed of multiple 5G-RAN nodes that implements wireless physical layer functions, resource scheduling and wireless resource management, wireless access control, and mobility management functions.
  • 5G-RAN is connected to UPF through user plane interface N3, which is used to transmit data of terminal equipment;
  • 5G-RAN establishes a control plane signaling connection with AMF through control plane interface N2, which is used to implement functions such as wireless access bearer control.
  • RAN can be any device with wireless transceiver functions, including but not limited to 5G base station (5G node base, gNB), evolved base station, etc. Station (evolutionalnode base, eNB), wireless access point (WiFi AP), world interoperability for microwave access base station (WiMAX BS), transmission receiving point, TRP), wireless relay nodes, wireless backhaul nodes, etc.
  • the access network device in the embodiment of the present application may also be a device used to communicate with a terminal device.
  • the access network device may be a global system of mobile communication (GSM) system or a code division multiple access (code division) system.
  • GSM global system of mobile communication
  • code division code division
  • the base station (base transceiver station, BTS) in multiple access, CDMA) can also be the base station (nodeB, NB) in the wideband code division multiple access (WCDMA) system, or it can be the base station in the LTE system.
  • An evolutionary node base can also be a wireless controller in a cloud radio access network (CRAN) scenario, or the access network equipment can be a relay station, access point, or vehicle-mounted equipment , wearable devices, access network equipment in future 5G networks or access network equipment in future evolved PLMN networks, etc., are not limited by the embodiments of this application.
  • CRAN cloud radio access network
  • CU centralized unit
  • DU distributed unit
  • CU includes the RRC layer and PDCP layer of the LTE base station
  • DU includes the radio link control (RLC) layer and media access control (MAC) layer of the LTE base station. and physical (PHY) layer.
  • RLC radio link control
  • MAC media access control
  • PHY physical
  • CU and DU can be physically connected through optical fiber, and logically there is a specially defined F1 interface for communication between CU and DU.
  • CU is mainly responsible for radio resource control and configuration, cross-cell mobility management, bearer management, etc.
  • DU is mainly responsible for scheduling, physical signal generation and transmission.
  • the above-mentioned base station may be a macro base station, a micro base station, a pico base station, a small station, a relay station, a balloon station, etc.
  • Access and mobility management function Mainly responsible for terminal device authentication, terminal device mobility management, network slice selection, SMF selection and other functions; in addition, it is also responsible for terminal device and policy control functions (Pass user policies between policy control functions (PCF).
  • AMF Access and mobility management function
  • SMF Mainly responsible for the control plane functions of terminal device session management, including selection and control of user plane function (UPF), Internet Protocol (internet protocol, IP) address allocation, session QoS management, (obtained from PCF) Policy and charging control (PCC) policies, etc.
  • UPF user plane function
  • IP Internet Protocol
  • PICC Policy and charging control
  • UPF As the anchor point of the protocol data unit (PDU) session connection, it is responsible for data packet filtering, data transmission/forwarding, rate control, generation of accounting information, etc. for terminal devices, and provides communication with the data network. , DN) connection.
  • PDU protocol data unit
  • DN refers to a specific data service network that the terminal device is connected to.
  • DN is responsible for providing operator services, Internet access or third-party services.
  • DN includes servers that enable video source encoding, rendering, etc.
  • Typical DNs include the Internet, IP multimedia service (IP multi-media service, IMS) network, etc.
  • DN is identified by data network name (DNN) in the 5G network.
  • Unified data management Mainly used to manage and control user data, such as contract information management, including obtaining contract information from the unified data repository (UDR) and providing it to other network elements (such as AMF ); generate certification credentials for the third generation partnership project (3GPP) for terminal equipment; register and maintain the network elements currently serving the terminal equipment, for example, the AMF currently serving the terminal equipment (i.e. serving AMF) ; When the contract data is modified, it is responsible for notifying the corresponding network element.
  • contract information management including obtaining contract information from the unified data repository (UDR) and providing it to other network elements (such as AMF ); generate certification credentials for the third generation partnership project (3GPP) for terminal equipment; register and maintain the network elements currently serving the terminal equipment, for example, the AMF currently serving the terminal equipment (i.e. serving AMF) ;
  • 3GPP third generation partnership project
  • Network exposure function to application function (application function, AF) exposes the services and capabilities of 3GPP network functions, and also allows AF to provide information to 3GPP network functions.
  • AF Interacts with core network elements to provide some services, for example, interacts with PCF for business policy control, interacts with NEF to obtain some network capability information or provide some application information to the network, and provide some data network access point information. Give PCF to generate routing information for corresponding data services.
  • AUSF Authentication server function
  • the network slice selection function selects a set of slice instances for the terminal device and determines the AMF set and allowed NSSAI for the terminal device.
  • PCF Provides configuration policy information for terminal devices, provides policy information for managing and controlling terminal devices for network control plane elements (for example, AMF, SMF); generates terminal device access policies and QoS flow control policies.
  • network control plane elements for example, AMF, SMF
  • the terminal equipment in the embodiment of the present application is connected to the RAN equipment through wireless means, and the RAN network element is connected to the 5GC equipment through wireless or wired means.
  • the 5GC equipment and the RAN network element can be independent and different physical devices, or the functions of the 5GC equipment and the logical functions of the RAN network element can be integrated on the same physical device, or some 5GC equipment can be integrated into one physical device. functions and some functions of RAN network elements.
  • Terminal equipment can be fixed or movable.
  • 5GC equipment mainly includes the above-mentioned NEF network elements, PCF network elements, AF network elements, AMF network elements, SMF network elements and UPF network elements.
  • network element can also be called an entity, equipment, device or module, etc., and is not specifically limited in this application.
  • the description of "network element” is omitted in some descriptions.
  • the NEF network element is referred to as NEF for short.
  • the “NEF” should be understood as the NEF network element. or NEF entities, below, description of the same or similar situations is omitted.
  • each network element included in Figure 1 is only a name, and the name does not limit the function of the network element itself.
  • each of the above network elements may also have other names, which are not specifically limited in the embodiments of this application.
  • some or all of the above-mentioned network elements may use the terminology used in 5G, or may be named by other names, etc., which will be described uniformly here and will not be described in detail below.
  • each network element in Figure 1 does not have to exist at the same time, and which network elements are needed can be determined according to requirements.
  • the connection relationship between each network element in Figure 1 is not unique and can be adjusted according to needs.
  • network elements or functions can be network elements in hardware devices, software functions running on dedicated hardware, or virtualization functions instantiated on a platform (for example, a cloud platform).
  • FIG 2 is a schematic diagram of an application scenario provided by this application and suitable for this application.
  • the embodiment of the present application can be applied to multi-modal business scenarios.
  • the tactile user in the main domain interfaces with the artificial system, and the controlled domain at the other end is a remote control robot or remote operator.
  • the main domain receives image, audio, video and other information flows from the controlled domain.
  • the main domain and the controlled domain interact with various commands and feedback signals through communication links in the network architecture, forming a global control loop.
  • multiple data streams are required to transmit different data types such as images, haptics, instructions, and feedback data.
  • data types such as images, haptics, instructions, and feedback data.
  • the touch sensation is also different.
  • the tactile signal and the object surface image, which is also a specific form of correlation. Exploiting this correlation between different signal streams can assist in signal reconstruction.
  • Correlation information between multi-modal service signals can be used to restore and reconstruct damaged signals. Use image signals to restore tactile signals to ensure user experience in multi-modal services.
  • the application scenarios of this application can also be constructed by an application server and a terminal device.
  • the construction of application scenarios of this application is not limited to the above two scenarios, and application scenarios that can be applied to the technical solution of this application are within the protection scope of this application.
  • a multi-modal service corresponds to the establishment of a PDU session.
  • a PDU session can correspond to multiple radio bearers (RBs), and a PDU session can have multiple data streams with different QoS requirements.
  • RBs radio bearers
  • Figure 3 is a schematic diagram of the relationship between RBs and QoS flows in the PDU session provided by this application.
  • SMF selects a UPF as the anchor point for the PDU session connection, and establishes the PDU session between the selected UPF and the UE.
  • One PDU session includes at least one RB, and one RB includes at least one QoS flow.
  • QoS flow identifiers are used in network communication systems to identify QoS flows, and a QoS flow is identified by a unique QFI.
  • QoS flows mapped on the same RB can also use different QoS scheduling priorities, and the QoS scheduling priorities can be expressed in the form of QoS configuration.
  • QoS flows with the same QFI use the same service forwarding processing method.
  • This processing method includes scheduling, optimization, etc.
  • the RB is established between the RAN and the UE, and the RAN and the UPF of the 5GC communicate through other channel interface connections.
  • communication between RAN and 5GC’s UPF occurs through the N3 interface.
  • a PDU session can have multiple QoS flows, and the data carried between multiple QoS flows has a certain correlation.
  • the network system can better carry multi-modal services.
  • QoS flow 1 and QoS flow 2 are any two data flows among the M data flows of the UE.
  • W 1,2 represents the correlation of application layer data transmitted between QoS flow 1 and QoS flow 2.
  • W 1,2 represents the degree of correlation between the data of QoS flow 1 and the data of QoS flow 2.
  • W 1,2 can also represent the probability or proportion that QoS flow 1 can recover the information carried by its own data based on the data of QoS flow 2.
  • the value range of W 1,2 may be 0 ⁇ W 1,2 ⁇ 1; the value range of W 1,2 may also be a preconfigured or predefined set W. This application applies to W 1
  • the value range of ,2 is not limited.
  • S 1,2 indicates whether QoS flow 1 has an association or dependency relationship with QoS flow 2.
  • S 1,2 can also indicate whether QoS flow 1 needs to be based on the data in QoS flow 2 to recover the information carried by its own data.
  • the value of S 1,2 can be 1; if QoS flow 1 does not need to be based on the data in QoS flow 2 If the data recovers the information carried by its own data, the value of S 1,2 can be 0. This application does not limit the value of S 1,2 .
  • correlation/dependence indicator value S 1,2 can be regarded as a special case of the above-mentioned correlation coefficient W 1,2 .
  • T 1,2 indicates that the correlation of application layer data transmitted between QoS flow 1 and QoS flow 2 is only valid within the time window T 1,2 .
  • the value range of T 1,2 may be T 1,2 ⁇ 0; the value range of T 1,2 may also be a set T that is preconfigured or predefined in advance.
  • QoS flow 1 and QoS flow 2 may be the same QoS flow or different QoS flows, which is not limited in this application.
  • T 1,2 indicates that the data packets of QoS flow 1 and the data packets of QoS flow 2 can remain relevant for a period of time; when QoS flow 1 and QoS flow 2 are different When QoS flow, T 1,2 indicates the time period during which QoS flow 1 and QoS flow 2 can remain relevant.
  • the correlation information of the QoS flow of QoS flow 1 may not only represent the correlation information of QoS flow 1 and QoS flow 2 listed above, but may also represent the correlation information of QoS flow 1 and other two or more Correlation information of QoS flows.
  • the correlation coefficient W 1,23 represents the correlation of the application layer data transmitted between QoS flow 1 and QoS flow 2 and QoS flow 3. The larger the correlation coefficient is, the more similar the meaning and semantics of the data transmitted between QoS flow 1, QoS flow 2, and QoS flow 3 are expressed at the application layer;
  • W 1,23 represents the degree of correlation between the data of QoS flow 1 and the data of QoS flow 2 and QoS flow 3;
  • W 1,23 can also represent the probability or proportion that QoS flow 1 can recover the information carried by its own data based on the data of QoS flow 2 and QoS flow 3.
  • W 1,2 indicates the probability or proportion that QoS flow 1 can recover the information carried by its own data based on the data of QoS flow 2
  • W 2,1 indicates that QoS flow 2 can recover the information carried by its own data based on the data of QoS flow 1.
  • the probability or proportion of information, W 1,2 and W 2,1 are not necessarily equal.
  • the correlation information of the QoS flow described below includes at least one of the above-mentioned correlation coefficient, correlation/dependency indication, and correlation time window.
  • the UE has M QoS flows.
  • Table 1 shows an example of correlation information of a certain QoS flow.
  • the identifier of the certain QoS flow is recorded as QFI1.
  • the correlation information of the QoS flow of QFI1 includes the correlation coefficient and correlation time window between the QoS flow of QFI1 and any one of the other M-1 QoS flows.
  • the values of the correlation coefficient and the correlation time window can be selected from the above-mentioned sets.
  • Table 2 shows another example of the correlation information of a certain QoS flow, and the identifier of the certain QoS flow is recorded as QFI1.
  • the correlation information of the QoS flow of QFI1 includes the correlation/dependence indication and the relevant time window between the QoS flow of QFI1 and any one of the other M-1 QoS flows.
  • the values of the association/dependence indication and the relevant time window can be selected from the respective above-mentioned sets.
  • Table 3 shows another example of the correlation information of a certain QoS flow.
  • the identifier of the certain QoS flow is recorded as QFI1.
  • the correlation information of the QoS flow of QFI1 includes the correlation coefficient between the QoS flow of QFI1 and any one of the other M-1 QoS flows.
  • the value of the correlation coefficient can be selected from the above corresponding set.
  • the correlation information includes a correlation coefficient
  • the correlation between the QoS flow of QFI1 and any one of the other M-1 QoS flows is not limited by the time window, and this correlation is always valid.
  • Table 4 shows another example of the correlation information of a certain QoS flow.
  • the identifier of the certain QoS flow is recorded as QFI1.
  • the correlation information of the QoS flow of QFI1 includes an association/dependency indication between the QoS flow of QFI1 and any one of the other M-1 QoS flows.
  • the value of the association/dependency indication can be selected from the corresponding set mentioned above.
  • the correlation information includes correlation/dependence indication, it can also be considered that the correlation between the QoS flow of QFI1 and any one of the other M-1 QoS flows is not limited by the time window. This correlation Always valid.
  • Table 5 shows another example of the correlation information of a certain QoS flow.
  • the identifier of the certain QoS flow is recorded as QFI1.
  • the correlation information of the QoS flow of QFI1 includes the correlation time window between the QoS flow of QFI1 and any one of the other M-1 QoS flows.
  • the value of the relevant time window can be selected from the above corresponding set.
  • the correlation information includes the relevant time window, it can be considered that the correlation coefficient or association/dependence indication between the QoS flow of QFI1 and any one of the other M-1 QoS flows is a constant, which The constants may be specified by standards or industry consensus, and are not limited in this application.
  • the above embodiments describe the correlation parameters between different QoS flows and the representation method of QoS flow correlation, which can clearly and effectively reflect the meaning and semantic similarity of QoS flows in multi-modal services expressed at the application layer. sex.
  • Figure 5 is a schematic flow chart of a scheduling and configuration optimization method provided by this application.
  • the application server, first network element, access network equipment and terminal equipment in Figure 5 may also be chips, chip systems or processors that support the implementation of the method, or may implement all or part of its functions. logic module or software.
  • the application server can identify and obtain the correlation information of the QoS flow of multi-modal services based on artificial intelligence (artificial intelligence, AI), multi-modal information fusion and other technologies.
  • artificial intelligence artificial intelligence, AI
  • multi-modal information fusion and other technologies.
  • Step S510 The application server sends correlation information between QoS flows to the first network element.
  • the first network element may be a 5GC network element, such as SMF, UPF, etc.
  • the application server can deliver the correlation information of the QoS flow through the control plane signaling of the core network.
  • the application server can deliver the correlation information of the QoS flow through the application layer data plane.
  • Step S512 The first network element obtains the correlation information between the above QoS flows.
  • the SMF can obtain the correlation information between QoS flows through 5G network control plane signaling; when the first network element is a UPF, the UPF can also obtain the correlation information between the QoS flows through the application layer data plane. Data packet transmission to obtain correlation information between QoS flows.
  • Step S514 The first network element sends the correlation information of the QoS flow to the access network device.
  • the access network device receives the correlation information of the QoS flow from the first network element.
  • Step S516 Based on the correlation information of the above-mentioned QoS flow, the access network device may schedule and configure the optimization of the relevant QoS flow or the data packets of the relevant QoS flow when transmitting data with the terminal device.
  • the above scheduling and configuration optimization actions can be: when the network channel is congested, QoS flow 1 is related to QoS flow 2, or QoS flow 1 can be restored based on QoS flow 2, then the access network device will Some or all of the data packets in 1 are actively discarded, or the access network device stops transmitting data for QoS flow 1, thereby reducing the pressure on the network air interface.
  • the above scheduling and configuration optimization actions can also be: when the network channel is congested, QoS flow 1 is related to QoS flow 2, or QoS flow 1 can be restored based on QoS flow 2, then the access network device can The scheduling priority of QoS flow 1 is reduced.
  • the data transmission of the QoS flow with high scheduling priority is given priority. This can prioritize the data transmission of other QoS flows with higher priority and improve business services. quality.
  • the above scheduling and configuration optimization actions can also be: when the network channel is congested, QoS flow 1 is related to QoS flow 2, or QoS flow 1 can be restored based on QoS flow 2, then the access network device will be related QoS flow 1 and QoS flow 2 are mapped on different data radio bearers (DRB) respectively, which can improve the robustness of QoS flow 1 data transmission and QoS flow 2 data transmission.
  • DRB data radio bearers
  • the above is the case of scheduling and configuration optimization when QoS flow 1 and QoS flow 2 are related. It can also be the case where QoS flow 1 is related to two or more other QoS flows.
  • scheduling and configuration optimization action depends on the degree of correlation between QoS flow 1 and QoS flow 2 or other two or more QoS flows, and the congestion status of the network.
  • Step S518 In the downlink data transmission stage, the data packets sent by the access network device to the terminal device are carried and transmitted by the QoS flow determined by the access network device after the above-mentioned scheduling and configuration optimization.
  • Figure 6 takes the first network element as the SMF and the terminal device as the UE as an example to introduce the technical solution of the present application in detail.
  • Figure 6 is a schematic flow chart of a method for obtaining correlation information of QoS flows through control plane signaling provided by this application.
  • the application server, AF, PCF, NEF, SMF, AMF, access network equipment and UE in Figure 6 may also be chips, chip systems or processors that support the implementation of the method, or may be all or logic modules or software that are part of its functionality.
  • the application server can identify and obtain the correlation information of the QoS flow of multi-modal services based on technologies such as AI and multi-modal information fusion.
  • Step S610 The application server sends the identified and acquired correlation information of the QoS flow of the multi-modal service to the AF, and the AF receives the correlation information of the QoS flow of the multi-modal service from the application server.
  • the application server is mainly responsible for video source encoding, decoding, rendering, etc.
  • AF can send the obtained correlation information of the above QoS flow to SMF through the following two information methods:
  • Step S612 AF sends the obtained correlation information of the QoS flow to the PCF through the N5 interface;
  • Step S614 Further, the PCF sends the received correlation information of the QoS flow to the SMF through the N7 interface.
  • Step S616, AF sends the obtained correlation information of the QoS flow to NEF through the N33 interface;
  • Step S618 Further, NEF sends the received correlation information of the QoS flow to SMF through the N29 interface.
  • the information transmission of the above-mentioned N5 interface, N7 interface, N33 interface, and N29 interface all adopts the application layer protocol HTTP/2.
  • Step S620 SMF establishes a corresponding PDU session based on the requirements of the multi-modal service, and adds the correlation between the QoS flows mapped in the PDU session as a new QoS feature to the QoS profile (QoS profile). SMF can add the new QoS characteristics to the QoS configuration file in the form of QoS flow correlation information.
  • Step S622 The SMF sends the above-mentioned QoS configuration file carrying the correlation information of the QoS flow to the AMF.
  • Step S624 The AMF functions as a transparent transmission between the SMF and the access network device, and delivers the received QoS configuration file carrying the correlation information of the QoS flow to the access network device.
  • the correlation information of the QoS flow in the QoS configuration file received by the above access network device is received from the SMF, while the correlation information of the QoS flow in the QoS configuration file on the SMF side is extracted by the SMF from the application server. Therefore, the form of the correlation information of the QoS flow in the QoS configuration file received by the access network device is not exactly the same as the form of the correlation information of the QoS flow on the application server side.
  • the QoS configuration file includes the following parameters:
  • the fifth generation quality of service requirement identifier (5G QoS identifier, 5QI), ARP, correlation information, RQA, indication control, MPLR, GFBR, maximum guaranteed flow bit rate (maximum guranteed flow bit rate, MFBR), etc.
  • 5QI, ARP, and correlation information are included in the QoS flow configuration file;
  • RQA is only included in the configuration file of Non-GBR QoS flow;
  • indication control, MPLR, GFBR, and MFBR are GBR QoS flows. will be included in the configuration file.
  • the QoS configuration file received by the access network device may be provided by the SMF to the RAN through the AMF, or may be pre-configured in the RAN, which is not limited in this application.
  • Step S626 After the access network device obtains the QoS configuration file carrying the correlation information of the QoS flow, during the data transmission phase, the access network device performs QoS flow scheduling and configuration optimization based on the QoS flow correlation information.
  • the above scheduling and configuration optimization actions can be: when the network channel is congested, QoS flow 1 is related to QoS flow 2, or QoS flow 1 can be restored based on QoS flow 2, then the access network device will Some or all of the data packets in 1 are actively discarded, or the access network device stops transmitting data for QoS flow 1, thereby reducing the pressure on the network air interface.
  • the above scheduling and configuration optimization actions can also be: when the network channel is congested, QoS flow 1 is related to QoS flow 2, or QoS flow 1 can be restored based on QoS flow 2, then the access network device can The scheduling priority of QoS flow 1 is reduced.
  • the data transmission of the QoS flow with high scheduling priority is given priority. This can prioritize the data transmission of other QoS flows with higher priority and improve business services. quality.
  • the above scheduling and configuration optimization actions can also be: when the network channel is congested, QoS flow 1 is related to QoS flow 2, or QoS flow 1 can be restored based on QoS flow 2, then the access network device will be related QoS flow 1 and QoS flow 2 are mapped on different data radio bearers (DRB) respectively, which can improve the robustness of QoS flow 1 data transmission and QoS flow 2 data transmission.
  • DRB data radio bearers
  • the above is the case of scheduling and configuration optimization when QoS flow 1 and QoS flow 2 are related. It can also be the case where QoS flow 1 is related to two or more other QoS flows.
  • scheduling and configuration optimization action depends on the degree of correlation between QoS flow 1 and QoS flow 2 or other two or more QoS flows, and the congestion status of the network.
  • the reason why the data packets of QoS flow 1 are partially discarded, or the scheduling priority of QoS flow 1 is reduced, or QoS flow 1 and QoS flow 2 or QoS flow 1 and two or more other QoS flows Mapping to different DRBs is because the data of QoS flow 1 can be quickly restored based on the correlation with QoS flow 2 or the data of QoS flow 1 can be quickly restored based on the correlation with two or more other QoS flows without affecting the authenticity of the data. .
  • Step 628 In the downlink data transmission stage, the access network device carries the downlink data sent to the UE through scheduling and configuring the optimized QoS flow.
  • FIG. 6 This method of obtaining QoS flow correlation information through control plane signaling has low update frequency and low overhead for the core network control plane signaling.
  • the access network equipment schedules and configures the QoS flow based on the correlation information of the QoS flow, thereby improving the transmission efficiency and user experience of multi-modal services.
  • Figure 7 is a schematic flow chart of another method provided by this application for obtaining correlation information of QoS flows through control plane signaling.
  • the SMF, AMF, access network equipment and UE in Figure 7 can also be chips, chip systems or processors that support the implementation of the method, or can also be logic modules or software that implement all or part of their functions. .
  • Step S710 The UE side identifies the correlation information of the QoS flow at the application layer level, transmits it to the access network device through the uplink request information, and the access network device transmits it to the SMF.
  • Step S720 The SMF establishes a corresponding PDU session based on the requirements of the multi-modal service, and adds the correlation between the QoS flows mapped in the PDU session as a new QoS feature to the configuration of the QoS flow. SMF can add the new QoS feature to the configuration of the QoS flow in the form of correlation information of the QoS flow.
  • the configuration of QoS flow includes the following two parts:
  • the first part is the QoS profile of the above-mentioned access network equipment, and the second part is the QoS rule on the UE side.
  • the correlation information of the QoS flow can be included in the above two parts respectively.
  • the correlation information of the QoS flow included in the above two parts is obtained from the configuration of the QoS flow, and the correlation information in the configuration of the QoS flow is extracted by the SMF from the correlation information of the QoS flow sent by the UE. Therefore, the access network equipment and the UE respectively receive the correlation information of the QoS flow in the QoS configuration file and the QoS rules.
  • the form of the correlation information of the QoS flow is not exactly the same as the form of the correlation information of the QoS flow sent by the UE to the SMF.
  • steps S722 to S726, refer to the above-mentioned steps S622 to S626, which will not be described again here.
  • step S728 the SMF sends the above QoS rules to the AMF.
  • the AMF plays a transparent transmission role between the SMF and the UE, and delivers the received QoS rules to the UE side.
  • the QoS rule may include the following information:
  • the QoS rule identifier is used to identify the QoS rule, and the QoS rule is used for traffic detection and routing of data packets transmitted in the QoS flow;
  • QFI is used to identify the QoS flow;
  • the priority value of the QoS rule is used to determine the evaluation order of the QoS rule , QoS rules are evaluated in order of increasing priority value.
  • the above QoS rules also include a data packet filtering set.
  • Step S732 After the access network device performs scheduling and configuration optimization of the QoS flow according to the correlation information of the QoS flow, it sends scheduling information to the UE.
  • the scheduling information is used to schedule the QoS flow for the UE to transmit uplink data so that the UE can transmit the uplink data through the access network device.
  • the QoS flow optimized by network access equipment scheduling and configuration carries uplink data.
  • the access network device schedules the QoS flow used to carry the UE's uplink data through the scheduling information; if the SMF sends the QoS rules to the UE, the UE can based on the QoS rules carried in the QoS rules. Correlation information of QoS flows proactively discards some or all data packets in QoS flows with higher correlation.
  • the UE can perform some simple optimization actions based on the correlation information of the QoS flow in the QoS rules. For example, the UE can actively discard some or all data packets in highly relevant QoS flows during uplink data transmission.
  • the difference between the embodiment of Figure 7 and the embodiment of Figure 6 is that the correlation information of the QoS flow transmitted in Figure 6 is mainly used for the scheduling of QoS flows during the downlink data transmission process of the access network device to the UE side, while Figure The correlation information of the QoS flow transmitted in 7 is mainly used for the scheduling of the QoS flow during the uplink data transmission from the UE to the access network device.
  • the SMF in Figure 7 not only indicates the correlation information of the QoS flow to the access network device, but also indicates the correlation information of the QoS flow to the UE side.
  • the RAN side can learn the correlation information of the QoS flow, but also the UE side can learn the correlation information of the QoS flow. In this way, the UE side can autonomously discard some or all data packets in the highly relevant QoS flow during the uplink transmission phase to reduce network congestion.
  • Figures 6 and 7 above describe the method of obtaining the correlation information of the QoS flow through control plane signaling.
  • Figure 8 is a method provided by this application for obtaining the correlation information of the QoS flow through data plane data transmission. Schematic flow chart.
  • Figure 8 is an embodiment suitable for the scheduling of the QoS flow during downlink data transmission from the RAN to the UE side.
  • the application server, UPF, and access network equipment in Figure 7 may also be chips, chip systems, or processors that support the implementation of the method, or may be logic modules or software that implement all or part of their functions.
  • the application server can obtain QoS for multi-modal services based on technologies such as AI recognition and multi-modal information fusion. Correlation information between streams.
  • Step S810 The application server identifies and extracts the correlation information of the QoS flow of the multi-modal service from the application layer.
  • the application server encapsulates the correlation information of the QoS flow, and then transmits it to the UPF through the N6 interface along with the data packet.
  • the application server can encapsulate the correlation information of the QoS flow of the multi-modal service in the transport layer.
  • the correlation information of the QoS flow can also be encapsulated in the extension header field of the IPv4 or IPv6 protocol.
  • the correlation information of the QoS flow can also be encapsulated in the real-time transport protocol (RTP) layer.
  • RTP real-time transport protocol
  • the correlation information of the QoS flow can also be encapsulated in a newly defined protocol layer between the user datagram protocol (UDP) layer of the transport layer and the RTP layer of the application layer, as shown in Figure 9.
  • UDP user datagram protocol
  • the UPF receives the correlation information of the QoS flow and transmits it to the access network device through the extension header of the general packet radio system tunneling protocol for the user (GTP-U).
  • the access network device receives the correlation information of the QoS flow through the GTP-U extension header and optimizes the scheduling mechanism during the data transmission phase.
  • the correlation information of the QoS flow carried by the extension header of GTP-U is extracted by UPF from the application server. Therefore, the correlation information of the QoS flow carried by the extension header of GTP-U is related to the QoS flow of the application server. Sexual messages do not come in all the same forms.
  • Step S814 After the access network device obtains the correlation information of the QoS flow, during the downlink data transmission phase, the access network device schedules and configures the QoS flow according to the correlation information of the QoS flow.
  • the access network device can send the scheduling and configuration information of the QoS flow to the UE, so that the UE can carry the uplink data through the optimized QoS flow scheduled and configured by the RAN during the uplink data transmission stage.
  • the above scheduling and configuration optimization actions can be: when the network channel is congested, QoS flow 1 is related to QoS flow 2, or QoS flow 1 can be restored based on QoS flow 2, then the access network device will Some or all of the data packets in 1 are actively discarded, or the access network device stops transmitting data for QoS flow 1, thereby reducing the pressure on the network air interface.
  • the above scheduling and configuration optimization actions can also be: when the network channel is congested, QoS flow 1 is related to QoS flow 2, or QoS flow 1 can be restored based on QoS flow 2, then the access network device can The scheduling priority of QoS flow 1 is reduced.
  • the data transmission of the QoS flow with high scheduling priority is given priority. This can prioritize the data transmission of other QoS flows with higher priority and improve business services. quality.
  • the above scheduling and configuration optimization actions can also be: when the network channel is congested, QoS flow 1 is related to QoS flow 2, or QoS flow 1 can be restored based on QoS flow 2, then the access network device will be related QoS flow 1 and QoS flow 2 are mapped on different data radio bearers (DRB) respectively, which can improve the robustness of QoS flow 1 data transmission and QoS flow 2 data transmission.
  • DRB data radio bearers
  • the above is the case of scheduling and configuration optimization when QoS flow 1 and QoS flow 2 are related. It can also be the case where QoS flow 1 is related to two or more other QoS flows.
  • the data transmission in Figure 8 enables the access network device to obtain the correlation information of the QoS flow through the data plane.
  • the method will be faster and more effective, and can quickly adapt to changes in application layer information.
  • the method of transmitting the correlation information of the QoS flow through the data plane data in Figure 8 is suitable for scenarios where the correlation of the QoS flow changes frequently in time.
  • the system can transmit the correlation information of the QoS flow through the data plane, so that the access network device can transmit the correlation information of the QoS flow based on the correlation.
  • Information can be used to quickly and effectively schedule and configure relevant QoS flows. Among them, 10 milliseconds and 20 milliseconds are used to illustrate that the correlation information of the QoS flow changes quickly.
  • the specific time change frequency can change accordingly according to different business requirements, and this application does not limit this.
  • the system can transmit the correlation information of the QoS flow by indicating the correlation information of the QoS flow through control plane signaling.
  • This method has a low update frequency and Signaling overhead is low.
  • 1min and 2min are used to illustrate that the correlation information of the QoS flow changes slowly.
  • the specific time change frequency can be changed accordingly according to different business requirements. This application does not limit this.
  • Figure 10 shows a schematic block diagram of a device 100 for sending correlation information according to an embodiment of the present invention.
  • the device 500 for sending correlation information can correspond to (for example, can be configured in or itself) the above-mentioned Figures 5, 6,
  • the first network element, application server, AF, PCF, NEF, SMF and UE described in the embodiments of Figures 7 and 8, and each module or unit in the device 100 for sending correlation information is respectively used to execute the above-mentioned Figures 5 and 8. 6.
  • Each action or process performed by the first network element, application server, AF, PCF, NEF, SMF and UE described in the embodiments of Figures 7 and 8 is omitted here to avoid redundancy.
  • the device 100 can be the first network element, application server, AF, PCF, NEF, SMF and UE described in the embodiments of Figures 5, 6, 7 and 8.
  • the The device 100 may include: a processor and a transceiver, and the processor and the transceiver are communicatively connected.
  • the device further includes a memory, and the memory is communicatively connected with the processor.
  • the processor, the memory and the transceiver can be communicatively connected, the memory can be used to store programs or instructions, and the processor can be used to execute the programs or instructions stored in the memory to control the transceiver to send information or signals.
  • the interface unit in the device 100 shown in FIG. 10 may correspond to the transceiver, and the processing unit in the device 100 shown in FIG. 10 may correspond to the processor.
  • the device 100 may be a chip ( Or, chip system), in this case, the device 100 may include: a processor and an input and output interface.
  • the processor may communicate with the first network described in the embodiments of FIG. 5, FIG. 6, FIG. 7, and FIG. 8 through the input and output interface.
  • the device is communicatively connected with the transceiver of the element, application server, AF, PCF, NEF, SMF and UE.
  • the device also includes a memory, and the memory is communicatively connected with the processor.
  • the processor, the memory and the transceiver can be communicatively connected, the memory can be used to store programs or instructions, and the processor can be used to execute the programs or instructions stored in the memory to control the transceiver to send information or signals.
  • the interface unit in the device 100 shown in FIG. 10 may correspond to the input and output interface
  • the processing unit in the device 100 shown in FIG. 10 may correspond to the processor
  • Figure 11 shows a schematic block diagram of a device 200 for receiving correlation information according to an embodiment of the present invention.
  • the device 200 for receiving correlation information can correspond to (for example, can be configured to implement) the above-mentioned Figures 5, 6, and 7 , the first network element, AF, PCF, NEF, SMF, access network equipment and UE described in the embodiment of Figure 8, and each module or unit in the device 200 for receiving correlation information is respectively used to execute the above-mentioned Figure 5, Figure 6.
  • Each action or process performed by the first network element, AF, PCF, NEF, SMF, access network equipment, and UE described in the embodiments of Figures 7 and 8 is omitted here to avoid redundancy.
  • the device 200 can be the first network element, AF, PCF, NEF, SMF, access network equipment and UE described in the embodiments of Figure 5, Figure 6, Figure 7 and Figure 8.
  • the device 200 may include: The processor and the transceiver are communicatively connected, and the processor is communicatively connected with the transceiver.
  • the device also includes a memory, and the memory is communicatively connected with the processor.
  • the processor, the memory and the transceiver can be communicatively connected, the memory can be used to store programs or instructions, and the processor can be used to execute the programs or instructions stored in the memory to control the transceiver to receive information or signals.
  • the interface unit in the device 200 shown in FIG. 11 may correspond to the transceiver, and the processing unit in the device 200 shown in FIG. 11 may correspond to the processor.
  • the device 200 may be installed in the first network element, AF, PCF, NEF, SMF, access network equipment and UE described in the embodiments of Figures 5, 6, 7 and 8. chip (or chip system).
  • the device 200 may include: a processor and an input/output interface.
  • the processor may communicate with the third embodiment described in the embodiments of FIG. 5, FIG. 6, FIG. 7, and FIG. 8 through the input/output interface.
  • a network element, AF, PCF, NEF, SMF, access network equipment and the transceiver of the UE are communicatively connected.
  • the device also includes a memory, and the memory is communicatively connected to the processor.
  • the processor, the memory and the transceiver can be communicatively connected, the memory can be used to store programs or instructions, and the processor can be used to execute the programs or instructions stored in the memory to control the transceiver to receive information or signals.
  • the interface unit in the device 200 shown in FIG. 11 may correspond to the input interface
  • the processing unit in the device 200 shown in FIG. 11 may correspond to the processor
  • the disclosed systems, devices and methods can be implemented in other ways.
  • the device embodiments described above are only illustrative.
  • the division of the units is only a logical function division. In actual implementation, there may be other division methods.
  • multiple units or components may be combined or can be integrated into another system, or some features can be ignored, or not implemented.
  • the coupling or direct coupling or communication connection between each other shown or discussed may be through some interfaces, and the indirect coupling or communication connection of the devices or units may be in electrical, mechanical or other forms.
  • the units described as separate components may or may not be physically separated, and the components shown as units may or may not be physical units, that is, they may be located in one place, or they may be distributed to multiple network units. Some or all of the units can be selected according to actual needs to achieve the purpose of the solution of this embodiment.
  • each functional unit in various embodiments of the present invention can be integrated into one processing unit, or each unit can exist physically alone, or two or more units can be integrated into one unit.
  • the functions are implemented in the form of software functional units and sold or used as independent products, they can be stored in a computer-readable storage medium.
  • the technical solution of the present invention essentially or the part that contributes to the existing technology or the part of the technical solution can be embodied in the form of a software product.
  • the computer software product is stored in a storage medium, including Several instructions are used to cause a computer device (which may be a personal computer, a server, or a network device, etc.) to execute all or part of the steps of the methods described in various embodiments of the present invention.
  • the aforementioned storage media include: U disk, mobile hard disk, read-only memory (ROM), random access memory (RAM), magnetic disk or optical disk and other media that can store program code. .

Landscapes

  • Engineering & Computer Science (AREA)
  • Signal Processing (AREA)
  • Computer Networks & Wireless Communication (AREA)
  • Quality & Reliability (AREA)
  • Mobile Radio Communication Systems (AREA)

Abstract

本申请提供了一种通信方法和通信装置,该方法包括:接入网设备接收来自第一网元的相关性信息,所述相关性信息用于指示第一QoS流和一个或多个第二QoS流之间在第一时段内的相关性;所述接入网设备根据所述相关性信息与终端设备在上述第一时间段内进行所述第一QoS流的数据和所述一个或多个第二QoS流的数据的传输。本申请实施例能够考虑到QoS流之间的相关性,因此可以更好地承载网络中的多模态业务。

Description

通信方法和通信装置
本申请要求于2022年04月06日提交中国专利局、申请号为202210356644.9、申请名称为“通信方法和通信装置”的中国专利申请的优先权,其全部内容通过引用结合在本申请中。
技术领域
本申请涉及通信领域,更具体地,涉及通信领域中的通信方法和通信装置。
背景技术
近年来,随着第五代移动通信技术(5th generation mobile networks,5G)的不断发展,在第五代通信系统中逐渐渗入一些实时性强、数据容量要求大的多媒体业务,例如,视频传输、云游戏和扩展现实(extended reality,XR)等。其中XR包括虚拟现实(virtual reality,VR)和增强现实(augmented reality,AR)。
多模态业务作为一种新业务,在XR的基础上增加了触觉体验维度,可以实现视觉、听觉、触觉、动觉等多方面远程感知,在工业自动化、医疗保健、远程教育等相关领域具有极大的发展空间,为用户提供了一种全方位的交互体验,具有极大的应用价值。多模态业务中各个数据流的服务质量(quality of service,QoS)需求不同,通常会采用不同QoS需求的数据流去传输不同的信号,以保证各个信号的QoS需求能够得到满足。然而,现有5G网络中的QoS机制不能很好地承载多模态业务。
发明内容
本申请实施例提供一种通信的方法和装置,能够更好地承载多模态业务。
第一方面,提供了一种通信的方法,该方法可以由接入网设备执行,也可以由接入网设备的部件(例如处理器、芯片或芯片系统)执行,还可以由能实现全部或部分接入网设备功能的逻辑模块或软件实现。该方法包括:接收来自第一网元的第一相关性信息,该第一相关性信息用于指示第一服务质量QoS流和一条或多条第二QoS流之间在第一时段内的相关性;根据该第一相关性信息与终端设备在上述第一时段内进行第一QoS流的数据和一条或多条第二QoS流的数据的传输。
其中,进行第一QoS流的数据和一条或多条第二QoS流的数据的传输包括:
传输一条或多条第二QoS流承载的数据,不传输第一QoS流承载的数据;或者第一QoS流和一条或多条第二QoS流承载的数据均传输。
接入网设备可以根据第一相关性信息得知QoS流的相关性,在与终端设备传输数据时对QoS流进行调度和配置优化,从而可以更好地承载多模态业务。
上述第一QoS流和上述一条或多条第二QoS流可以属于同一终端设备,也可以属于不同的终端设备,本申请对此不作限定。
结合第一方面,在第一方面的某些实现方式中,上述第一相关性信息具体用于指示上 述第一QoS流和上述一条或多条第二QoS流在上述第一时段内相关。
第一QoS流和上述一条或多条第二QoS流相关,则表示第一QoS流的数据的部分或全部可以被基于上述一条或多条第二QoS流的数据恢复。
示例性地,用一个比特表示第一QoS流和上述一条或多条第二QoS流是否相关,若一个比特取值为0时,则表示第一QoS流和上述一条或多条第二QoS流不相关;若一个比特取值为1时,则表示第一QoS流和上述一条或多条第二QoS流相关。或者,上述一个比特取值为0时表示第一QoS流和上述一条或多条第二QoS流相关,上述一个比特取值为1时表示第一QoS流和上述一条或多条第二QoS流不相关。该一个比特取值代表的具体含义可以根据系统的设定来确定,本申请对此不作限定。
第一相关性信息指示上述第一QoS流和上述一条或多条第二QoS流相关。当QoS流之间不相关时可以不用指示,这样可以节省第一相关性信息的信令开销。
结合第一方面,在第一方面的某些实现方式中,上述第一相关性信息具体用于指示上述第一QoS流的数据能够被基于上述一条或多条第二QoS流的数据恢复的概率。
第一相关性信息可以具体指示第一QoS流能够被基于第二QoS流恢复的概率或者比例,因此接入网设备可以基于这个具体的概率或者比例对QoS流进行更精确的调度和配置优化。
示例性地,若第一种情况是第一QoS流能够被基于第二QoS流恢复的概率是0.5,第二种情况是第一QoS流能够被基于第二QoS流恢复的概率是1,那么在网络发生拥塞时,第一种情况下接入网设备可以丢弃第一QoS流的部分数据包,第二种情况下接入网设备可以丢弃第一QoS流的全部数据包。
结合第一方面,在第一方面的某些实现方式中,第一相关性信息还可以用于指示上述第一QoS流和上述一条或多条第二QoS流的相关的程度。
示例性地,该相关的程度按照百分比计,若第一种情况下第一QoS流与第二QoS流的相关的程度是50%,第二种情况下第一QoS流与第二QoS流的相关的程度是100%,那么在网络发生拥塞时,第一种情况下接入网设备可以丢弃第一QoS流的部分数据包,第二种情况下接入网设备可以丢弃第一QoS流的全部数据包。
第一相关性信息可以具体指示出第一QoS流与一条或多条第二QoS流相关的程度高低,有利于接入网设备对QoS流做出更准确的调度和配置优化操作。
结合第一方面,在第一方面的某些实现方式中,上述第一相关性信息包括上述第一时段的指示信息。
第一相关性信息可以指示上述第一时段的具体区间或者第一时段的长度,在该第一时段的具体区间或者第一时段的长度内QoS流的相关性才有效。
通过指示第一QoS流与一条或多条第二QoS流相关的时间段,防止在不相关的时间段内丢弃关键的数据。
结合第一方面,在第一方面的某些实现方式中,当上述第一网元是会话管理网元时,该方法还包括:接收来自该会话管理网元的QoS流配置信息,该QoS流配置信息包括上述第一相关性信息。
通过控制面信令向接入网设备指示第一相关性信息,这种方式更新频率低、信令开销小。
结合第一方面,在第一方面的某些实现方式中,当上述第一网元是用户面功能网元时, 该方法还包括:通过通用分组无线系统隧道用户协议GTP-U的扩展头接收来自该用户面功能网元的上述第一相关性信息。
通过应用层数据面向接入网设备传输第一相关性信息,这种方式快速有效,能够快速适应应用层QoS流的相关性信息的变化。
结合第一方面,在第一方面的某些实现方式中,根据第一相关性信息与终端设备在第一时段内进行第一QoS流的数据和一条或多条第二QoS流的数据的传输包括以下至少一项:根据上述第一相关性信息在上述第一时段内丢弃上述第一QoS流的部分或全部数据;或,根据上述第一相关性信息降低上述第一QoS流在上述第一时段内的调度优先级;或,根据上述第一相关性信息将上述第一QoS流和上述一条或多条第二QoS流分别映射到不同的数据无线承载上。
示例性地,当网络信道拥塞时,第一QoS流与第二QoS流相关,或者说第一QoS流可以被基于第二QoS流恢复,那么RAN将第一QoS流中的部分或全部数据包主动丢弃,也可以是RAN停止进行第一QoS流的数据传输,从而降低网络空口的压力。
示例性地,当网络信道拥塞时,第一QoS流与第二QoS流相关,或者说第一QoS流可以被基于第二QoS流恢复,那么RAN可以将第一QoS流的调度优先级降低,在上下行数据传输的过程中优先进行调度优先级高的QoS流的数据传输,这样可以优先保证其它优先级较高的QoS流的数据传输,提升业务的服务质量。
示例性地,当网络信道拥塞时,第一QoS流与第二QoS流相关,或者说第一QoS流可以被基于第二QoS流恢复,那么RAN将相关的第一QoS流与第二QoS流分别映射在不同的数据无线承载(data radio bearer,DRB)上,这样可以提升第一QoS流数据传输与第二QoS流数据传输的鲁棒性。
第二方面,提供了一种通信的方法,该方法可以由第一网元执行,也可以由第一网元的部件(例如处理器、芯片或芯片系统)执行,还可以由能实现全部或部分第一网元功能的逻辑模块或软件实现。该方法包括:向接入网设备发送第一相关性信息,该第一相关性信息用于指示第一服务质量QoS流和一条或多条第二QoS流之间在第一时段内的相关性。
第一网元将第一相关性信息传输给接入网设备,以供接入网设备根据第一相关性信息得知QoS流的相关性,接入网设备在与终端设备传输数据时对QoS流进行调度和配置优化,从而可以更好地承载多模态业务。
上述第一QoS流和上述一条或多条第二QoS流可以属于同一终端设备,也可以属于不同的终端设备,本申请对此不作限定。
结合第二方面,在第二方面的某些实现方式中,上述第一相关性信息具体用于指示上述第一QoS流和上述一条或多条第二QoS流在上述第一时段内相关。
第一QoS流和上述一条或多条第二QoS流相关,则表示第一QoS流的数据的部分或全部可以被基于上述一条或多条第二QoS流的数据恢复。
示例性地,用一个比特表示第一QoS流和上述一条或多条第二QoS流是否相关,若一个比特取值为0时,则表示第一QoS流和上述一条或多条第二QoS流不相关;若一个比特取值为1时,则表示第一QoS流和上述一条或多条第二QoS流相关。或者,上述一个比特取值为0时表示第一QoS流和上述一条或多条第二QoS流相关,上述一个比特取值为1时表示第一QoS流和上述一条或多条第二QoS流不相关。该一个比特取值代表的具体含义可以根据系统的设定来确定,本申请对此不作限定。
第一相关性信息指示上述第一QoS流和上述一条或多条第二QoS流相关,当QoS流之间不相关时可以不用指示,这样可以节省第一相关性信息的信令开销。
结合第二方面,在第二方面的某些实现方式中,上述第一相关性信息具体用于指示上述第一QoS流的数据能够被基于上述一条或多条第二QoS流的数据恢复的概率。
第一相关性信息可以具体指示第一QoS流能够被基于第二QoS流恢复的概率或者比例,因此接入网设备可以基于这个具体的概率或者比例对QoS流进行更精确的调度和配置优化。
示例性地,若第一种情况是第一QoS流能够被基于第二QoS流恢复的概率是0.5,第二种情况是第一QoS流能够被基于第二QoS流恢复的概率是1,那么在网络发生拥塞时,第一种情况下接入网设备可以丢弃第一QoS流的部分数据包,第二种情况下接入网设备可以丢弃第一QoS流的全部数据包。
结合第一方面,在第一方面的某些实现方式中,第一相关性信息还可以用于指示上述第一QoS流和上述一条或多条第二QoS流的相关的程度。
示例性地,该相关的程度按照百分比计,若第一种情况下第一QoS流与第二QoS流的相关的程度是50%,第二种情况下第一QoS流与第二QoS流的相关的程度是100%,那么在网络发生拥塞时,第一种情况下接入网设备可以丢弃第一QoS流的部分数据包,第二种情况下接入网设备可以丢弃第一QoS流的全部数据包。
第一相关性信息可以具体指示出第一QoS流与一条或多条第二QoS流相关的程度高低,有利于接入网设备对QoS流做出更准确的调度和配置优化操作。
结合第二方面,在第二方面的某些实现方式中,上述第一相关性信息包括上述第一时段的指示信息。
第一相关性信息可以指示上述第一时段的具体区间或者第一时段的长度,在该第一时段的具体区间或者第一时段的长度内QoS流的相关性才有效。
通过指示第一QoS流与一条或多条第二QoS流相关的时间段,防止在不相关的时间段内丢弃关键的数据。
结合第二方面,在第二方面的某些实现方式中,该方法还包括:向上述接入网设备发送QoS流配置信息,该QoS流配置信息包括上述第一相关性信息。
通过控制面信令向接入网设备指示第一相关性信息,这种方式更新频率低、信令开销小。
结合第二方面,在第二方面的某些实现方式中,该方法还包括:通过通用分组无线系统隧道用户协议GTP-U的扩展头向上述接入网设备发送上述第一相关性信息。
通过应用层数据面向接入网设备传输第一相关性信息,这种方式快速有效,能够快速适应应用层QoS流的相关性信息的变化。
结合第二方面,在第二方面的某些实现方式中,该方法还包括:向终端设备发送QoS流规则信息,该QoS流规则信息包括上述第一相关性信息。
将上述第一相关性信息发送给终端设备,在上行数据传输阶段,终端设备可以基于第一相关性信息主动丢弃相关性较高的QoS流中的部分或者全部数据包,以减轻上行网络拥塞。
第三方面,提供一种通信的方法,该方法可以由终端设备执行,也可以由终端设备的部件(例如处理器、芯片或芯片系统)执行,还可以由能实现全部或部分终端设备功能的 逻辑模块或软件实现。该方法包括:接收来自第一网元的第一相关性信息,该第一相关性信息用于指示第一服务质量QoS流和一条或多条第二QoS流之间在第一时段内的相关性;根据该第一相关性信息与接入网设备在上述第一时段内进行第一QoS流的数据和一条或多条第二QoS流的数据的传输。
其中,进行第一QoS流的数据和一条或多条第二QoS流的数据的传输包括:传输一条或多条第二QoS流承载的数据,不传输第一QoS流承载的数据;或者第一QoS流和一条或多条第二QoS流承载的数据均传输。
终端设备可以根据第一相关性信息得知QoS流的相关性,在与接入网设备传输上行数据时主动丢弃相关性较高的QoS流中的部分或者全部数据包,以减轻上行网络拥塞。
上述第一QoS流和上述一条或多条第二QoS流可以属于同一终端设备,也可以属于不同的终端设备,本申请对此不作限定。
结合第三方面,在第三方面的某些实现方式中,上述第一相关性信息具体用于指示上述第一QoS流和上述一条或多条第二QoS流在上述第一时段内相关。
第一QoS流和上述一条或多条第二QoS流相关,则表示第一QoS流的数据的部分或全部可以被基于上述一条或多条第二QoS流的数据恢复。
示例性地,用一个比特表示第一QoS流和上述一条或多条第二QoS流是否相关,若一个比特取值为0时,则表示第一QoS流和上述一条或多条第二QoS流不相关;若一个比特取值为1时,则表示第一QoS流和上述一条或多条第二QoS流相关。或者,上述一个比特取值为0时表示第一QoS流和上述一条或多条第二QoS流相关,上述一个比特取值为1时表示第一QoS流和上述一条或多条第二QoS流不相关。该一个比特取值代表的具体含义可以根据系统的设定来确定,本申请对此不作限定。第一相关性信息指示上述第一QoS流和上述一条或多条第二QoS流相关,当QoS流之间不相关时可以不用指示,这样可以节省第一相关性信息的信令开销。
结合第三方面,在第三方面的某些实现方式中,上述第一相关性信息具体用于指示上述第一QoS流的数据能够被基于上述一条或多条第二QoS流的数据恢复的概率。
第一相关性信息可以具体指示第一QoS流能够被基于第二QoS流恢复的概率或者比例,因此终端设备可以基于这个具体的概率或者比例进行数据包的丢弃,防止将相关性低的QoS流中的数据包丢弃。
示例性地,若第一种情况是第一QoS流能够被基于第二QoS流恢复的概率是0.5,第二种情况是第一QoS流能够被基于第二QoS流恢复的概率是1,那么在网络发生拥塞时,第一种情况下终端设备可以丢弃第一QoS流的部分数据包,第二种情况下终端设备可以丢弃第一QoS流的全部数据包。
结合第一方面,在第一方面的某些实现方式中,第一相关性信息还可以用于指示上述第一QoS流和上述一条或多条第二QoS流的相关的程度。
示例性地,该相关的程度按照百分比计,若第一种情况下第一QoS流与第二QoS流的相关的程度是50%,第二种情况下第一QoS流与第二QoS流的相关的程度是100%,那么在网络发生拥塞时,第一种情况下接入网设备可以丢弃第一QoS流的部分数据包,第二种情况下接入网设备可以丢弃第一QoS流的全部数据包。
第一相关性信息可以具体指示出第一QoS流与一条或多条第二QoS流相关的程度高低,有利于接入网设备对QoS流做出更准确的调度和配置优化操作。
结合第三方面,在第三方面的某些实现方式中,上述第一相关性信息包括上述第一时段的指示信息。
第一相关性信息可以指示上述第一时段的具体区间或者第一时段的长度,在该第一时段的具体区间或者第一时段的长度内QoS流的相关性才有效。
通过指示第一QoS流与一条或多条第二QoS流相关的时间段,防止在不相关的时间段内丢弃关键的数据。
结合第三方面,在第三方面的某些实现方式中,当上述第一网元是会话管理网元时,该方法还包括:接收该会话管理网元发送的QoS流规则信息,QoS流规则信息包括第一相关性信息。
通过控制面信令向终端设备指示第一相关性信息,这种方式更新频率低、信令开销小。
结合第三方面,在第三方面的某些实现方式中,方法还包括:接收来自接入网设备的调度信息,该调度信息用于调度该终端设备上行数据传输的第三QoS流,该第三QoS流属于上述第一QoS流和上述一条或多条第二QoS流。
终端设备通过接入网设备发送的调度信息,才能够知晓接入网设备根据第一相关性信息调度和配置优化后的能够传输数据的QoS流是哪些,以供UE通过接入网设备调度和配置优化后的QoS流承载上行数据。
第四方面,提供了一种通信的装置,该装置可以是接入网设备,也可以是接入网设备的部件(例如处理器、芯片或芯片系统),还可以是能实现全部或部分接入网设备功能的逻辑模块或软件。该装置具有实现上述第一方面,及各种可能的实现方式的功能。该功能可以通过硬件实现,也可以通过硬件执行相应的软件实现。该硬件或软件包括一个或多个与上述功能相对应的模块。
在一种可能的设计中,该装置包括:接口单元和处理单元,接口单元可以是收发器、接收器、发射器中的至少一种,该接口单元可以包括射频电路或天线。该处理单元可以是处理器。可选地,装置还包括存储单元,该存储单元例如可以是存储器。当包括存储单元时,该存储单元用于存储程序或指令。该处理单元与该存储单元连接,该处理单元可以执行该存储单元存储的程序、指令或源自其他的指令,以使该装置执行上述第一方面,及各种可能的实现方式的通信方法。在本设计中,该装置可以为接入网设备。
在另一种可能的设计中,当该装置为芯片时,该芯片包括:接口单元和处理单元,接口单元例如可以是该芯片上的输入/输出接口、管脚或电路等。处理单元例如可以是处理器。该处理单元可执行指令,以使该接入网设备内的芯片执行上述第一方面,以及任意可能的实现的通信方法。可选地,该处理单元可以执行存储单元中的指令,该存储单元可以为芯片内的存储模块,如寄存器、缓存等。该存储单元还可以是位于通信设备内,但位于芯片外部,如只读存储器(read-only memory,ROM)或可存储静态信息和指令的其他类型的静态存储设备,随机存取存储器(random access memory,RAM)等。
其中,上述任一处提到的处理器,可以是一个通用中央处理器(CPU),微处理器,特定应用集成电路(application-specific integrated circuit,ASIC),或一个或多个用于控制上述各方面通信方法的程序执行的集成电路。
第五方面,提供了一种通信的装置,该装置可以是第一网元,也可以是第一网元的部件(例如处理器、芯片或芯片系统),还可以是能实现全部或部分第一网元功能的逻辑模块或软件。该装置具有实现上述第二方面,及各种可能的实现方式的功能。该功能可以通 过硬件实现,也可以通过硬件执行相应的软件实现。该硬件或软件包括一个或多个与上述功能相对应的模块。
在一种可能的设计中,该装置包括:接口单元。可选地,该装置还包括处理单元。接口单元例如可以是收发器、接收器、发射器中的至少一种,该接口单元可以包括射频电路或天线。该处理单元可以是处理器。
可选地,装置还包括存储单元,该存储单元例如可以是存储器。当包括存储单元时,该存储单元用于存储程序或指令。该处理单元与该存储单元连接,该处理单元可以执行该存储单元存储的程序、指令或源自其他的指令,以使该装置执行上述第二方面,或其任意一项的方法。
在另一种可能的设计中,当该装置为芯片时,该芯片包括:接口单元,可选地,该芯片还包括处理单元。接口单元例如可以是该芯片上的输入/输出接口、管脚或电路等。处理单元例如可以是处理器。该处理模块可执行程序或指令,以使该第一网元内的芯片执行上述第二方面,以及任意可能的实现的通信方法。
可选地,该处理单元可以执行存储单元中的指令,该存储单元可以为芯片内的存储模块,如寄存器、缓存等。该存储单元还可以是位于通信设备内,但位于芯片外部,如只读存储器(read-only memory,ROM)或可存储静态信息和指令的其他类型的静态存储设备,随机存取存储器(random access memory,RAM)等。
其中,上述任一处提到的处理器,可以是一个通用中央处理器(CPU),微处理器,特定应用集成电路(application-specific integrated circuit,ASIC),或一个或多个用于控制上述各方面通信方法的程序执行的集成电路。
第六方面,提供了一种通信的装置,该装置可以是终端设备,也可以是终端设备的部件(例如处理器、芯片或芯片系统),还可以是能实现全部或部分终端设备功能的逻辑模块或软件。该装置具有实现上述第三方面,及各种可能的实现方式的功能。该功能可以通过硬件实现,也可以通过硬件执行相应的软件实现。该硬件或软件包括一个或多个与上述功能相对应的模块。
在一种可能的设计中,该装置包括:接口单元。可选地,该装置还包括处理单元。接口单元例如可以是收发器、接收器、发射器中的至少一种,该接口单元可以包括射频电路或天线。该处理单元可以是处理器。
可选地,装置还包括存储单元,该存储单元例如可以是存储器。当包括存储单元时,该存储单元用于存储程序或指令。该处理单元与该存储单元连接,该处理单元可以执行该存储单元存储的程序、指令或源自其他的指令,以使该装置执行上述第三方面,或其任意一项的方法。
在另一种可能的设计中,当该装置为芯片时,该芯片包括:接口单元,可选地,该芯片还包括处理单元。接口单元例如可以是该芯片上的输入/输出接口、管脚或电路等。处理单元例如可以是处理器。该处理模块可执行程序或指令,以使该终端设备内的芯片执行上述第三方面,以及任意可能的实现的通信方法。
可选地,该处理单元可以执行存储单元中的指令,该存储单元可以为芯片内的存储模块,如寄存器、缓存等。该存储单元还可以是位于通信设备内,但位于芯片外部,如只读存储器(read-only memory,ROM)或可存储静态信息和指令的其他类型的静态存储设备,随机存取存储器(random access memory,RAM)等。
其中,上述任一处提到的处理器,可以是一个通用中央处理器(CPU),微处理器,特定应用集成电路(application-specific integrated circuit,ASIC),或一个或多个用于控制上述各方面通信方法的程序执行的集成电路。
第七方面,提供了一种计算机存储介质,该计算机存储介质中存储有程序代码,该程序代码用于指示执行上述第一方面、第二方面、第三方面及第一方面、第二方面、第三方面任意可能的实现方式中的方法的指令。
第八方面,提供了一种包含计算机指令或计算机代码的计算机程序产品,其在计算机上运行时,使得计算机执行上述第一方面、第二方面、第三方面及第一方面、第二方面、第三方面任意可能的实现方式中的方法。
第九方面,提供了一种通信系统,该通信系统包括具有实现上述第一方面的各方法及各种可能设计的功能的装置、具有实现上述第二方面的各方法及各种可能设计的功能的装置和具有实现上述第三方面的各方法及各种可能设计的功能的装置。其中,具有实现上述第一方面的各方法及各种可能设计的功能的装置可以是接入网设备,具有实现上述第二方面的各方法及各种可能设计的功能的装置可以是第一网元,具有实现上述第三方面的各方法及各种可能设计的功能的装置可以是终端设备。
具体地,其他方面的有益效果可以参考第一方面、第二方面以及第三方面描述的有益效果。
基于上述技术方案,接入网设备可以根据第一相关性信息得知QoS流的相关性,在与终端设备传输数据时对QoS流进行调度和配置优化,从而可以更好地承载多模态业务。
附图说明
图1为适用于本申请实施例的一种通信系统架构的示例。
图2为适用于本申请实施例的一种应用场景图。
图3为本申请提供的PDU会话中的RB与QoS流之间的关系示意图。
图4为本申请提供的一种相关性信息的示意图。
图5为本申请提供的一种对QoS流进行配置和调度的方法的示意性流程图。
图6是本申请提供的一种通过控制面信令获取QoS流的相关性信息的方法的示意性流程图。
图7是本申请提供的另一种通过控制面信令获取QoS流的相关性信息的方法的示意性流程图。
图8是本申请提供的一种通过数据面获取QoS流的相关性信息的方法的示意性流程图。
图9示出了QoS流的相关性信息封装在UDP层和RTP层之间的协议栈示意图。
图10示出了本发明实施例的发送相关性信息的装置100的示意性框图。
图11示出了本发明实施例的接收相关性信息的装置200的示意性框图。
具体实施方式
下面将结合附图,对本申请中的技术方案进行描述。
本申请实施例的技术方案可以应用于各种通信系统,例如:全球移动通信(global system for mobile communications,GSM)系统、码分多址(code division multiple access, CDMA)系统、宽带码分多址(wideband code division multiple access,WCDMA)系统、通用分组无线业务(general packet radio service,GPRS)、长期演进(long term evolution,LTE)系统、LTE频分双工(frequency division duplex,FDD)系统、LTE时分双工(time division duplex,TDD)、通用移动通信系统(universal mobile telecommunication system,UMTS)、全球互联微波接入(worldwide interoperability for microwave access,WiMAX)通信系统、第五代(5th generation,5G)系统或新无线(new radio,NR),以及未来通信系统中。
为了应对无线宽带技术的挑战,保持3GPP网络的领先优势,3GPP标准组制定了下一代移动通信网络架构(next generation system),称为5G网络架构。该架构不但支持3GPP标准组定义的无线技术(如LTE等)接入5G核心网(5G core network,5GC),而且支持non-3GPP接入技术通过non-3GPP交互功能(non-3GPP interworking function,N3IWF)、可信任non-3GPP网关功能(trusted non-3GPP gateway function,TNGF)、可信任WLAN交互功能(trusted WLAN interworking function,TWIF)或下一代接入网关(next generation packet data gateway,NG-PDG)接入5GC。其中核心网功能分为用户面网元功能(user plane function,UPF)与控制面网元功能(control plane function,CPF)。UPF主要负责分组数据包的转发、服务质量(quality of service,QoS)控制、计费信息统计等。CPF主要负责用户注册认证、移动性管理及向UPF下发数据包转发策略、QoS控制策略等,可进一步细分为接入与移动性管理功能(access and mobility management function,AMF)与会话管理功能(session management function,SMF)。
核心网设备例如包括移动管理实体(mobility management entity,MME)、广播多播服务中心(broadcast multicast service center,BMSC)等,或者也可以包括5G系统中的相应功能实体,例如核心网控制面(control plane,CP)或用户面(user plan,UP)网络功能等,例如:SMF、AMF等。其中,核心网控制面也可以理解为核心网控制面功能(control plane function,CPF)实体。
下面将本申请涉及的术语进行介绍:
1、QoS:指一个网络能够利用各种基础技术,为指定的网络通信提供更好的服务能力,是网络的一种安全机制,是用来解决网络延迟和阻塞等问题的一种技术。
2、保障比特速率(guranteed bit rate,GBR):是指无线承载(radio bearer,RB)要求的比特速率被网络“永久”恒定的分配,用于对实时性要求较高的业务,即使在网络资源紧张的情况下,相应的比特速率也能够保持。最大比特速率(maximum bit rate,MBR)参数定义了GBR承载在资源充足的条件下,能够达到的速率上限。MBR的值大于或等于GBR的值。
相反地,非保障比特速率(non-guranteed bit rate,Non-GBR)指的是在网络拥塞时,业务(或者承载)需要承受降低速率的要求,用于对实时性要求不高的业务,由于Non-GBR承载不需要占用固定的网络资源,因而可以长时间地建立。而GBR承载一般在需要时才建立。
3、分配和保留优先级(allocation and retention priority,ARP):指示不同QoS需求的数据流在无线接入网和核心网接口上的优先级。在网络拥塞时,终端设备的不同QoS需求的数据流ARP的高低将决定终端设备的不同QoS需求的数据流是否替换现有的具有较低ARP优先级的不同QoS需求的数据流,或者终端设备的不同QoS需求的数据流被具 有更高ARP优先级的不同QoS需求的数据流替换掉。
下文中,为了方便起见,我们将不同QoS需求的数据流称为QoS流。
4、最大的丢包率(maximum packet loss rate,MPLR):表示一条QoS流可以忍受的最大丢包率,MPLR一般会在GBR的QoS流提供。
5、反射QoS属性(reflectionQoS attributes,RQA):指示了某一QoS流的某些业务可以受到反射QoS的影响。在没有核心网信令为终端设备提供QoS规则的情况下,对于支持反射QoS功能的终端设备,如果核心网对下行数据使用反射QoS功能,终端设备要从接收到的下行数据包中推导出上行数据的QoS规则。
6、指示控制(notification control):对于GBR的QoS流,核心网通过指示控制参数控制无线接入网是否在该GBR的QoS流的保障流比特速率(guranteed flow bit rate,GFBR)无法满足时上报消息通知核心网。
图1为适用于本申请实施例的一种通信系统架构的示例。其中,用户设备以及各网络实体的功能如下面的说明。
终端设备:可以称为终端(terminal)、终端设备单元(subscriber unit)、终端设备站、终端设备代理、终端设备装置、接入终端、V2X通信中的终端、用户单元、用户设备(user equipment,UE)、用户站、移动站、移动台(mobile station,MS)、远方站、远程终端、移动设备、用户终端、无线通信设备、用户代理或用户装置。
本申请的实施例中的用户设备也可以是手机(mobile phone)、平板电脑(pad)、带无线收发功能的电脑、全息投影仪、视频播放器、虚拟现实(virtual reality,VR)终端、增强现实(augmented reality,AR)终端、工业控制(industrial control)中的无线终端、触觉终端设备、车载终端设备、无人驾驶(self driving)中的无线终端、远程医疗(remote medical)中的无线终端、智能电网(smart grid)中的无线终端、运输安全(transportation safety)中的无线终端、运输安全中的无线终端、智慧城市(smart city)中的无线终端、智慧家庭(smart home)中的无线终端、蜂窝电话、无绳电话、会话启动协议(session initiation protocol,SIP)电话、无线本地环路(wireless local loop,WLL)站、个人数字助理(personal digital assistant,PDA)、具有无线通信功能的手持设备、计算设备或连接到无线调制解调器的其它处理设备、车载设备、可穿戴设备,5G网络中的终端或者未来演进网络中的终端等。
其中,可穿戴设备也可以称为穿戴式智能设备,是应用穿戴式技术对日常穿戴进行智能化设计、开发出可以穿戴的设备的总称,如头显XR眼镜、手套、手表、服饰及鞋等。可穿戴设备即直接穿在身上,或是整合到用户的衣服或配件的一种便携式设备。可穿戴设备不仅仅是一种硬件设备,更是通过软件支持以及数据交互、云端交互来实现强大的功能。广义穿戴式智能设备包括功能全、尺寸大、可不依赖智能手机实现完整或者部分的功能,例如:智能手表或智能眼镜等,以及专注于某一类应用功能,需要和其它设备如智能手机配合使用,如各类进行体征监测的智能手环、智能首饰等。
无线接入网(radio access network,RAN):由多个5G-RAN节点组成的网络,实现无线物理层功能、资源调度和无线资源管理、无线接入控制以及移动性管理功能。5G-RAN通过用户面接口N3和UPF相连,用于传输终端设备的数据;5G-RAN通过控制面接口N2和AMF建立控制面信令连接,用于实现无线接入承载控制等功能。RAN可以是任意一种具有无线收发功能的设备,包括但不限于5G基站(5G node base,gNB)、演进型基 站(evolutionalnode base,eNB)、无线接入点(wireless access point,WiFi AP)、全球微波接入互操作性基站(world interoperability for microwave access base station,WiMAX BS)、传输接收点(transmission receiving point,TRP)、无线中继节点、无线回传节点等。
本申请实施例中的接入网设备还可以是用于与终端设备通信的设备,该接入网设备可以是全球移动通讯(global system of mobile communication,GSM)系统或码分多址(code division multiple access,CDMA)中的基站(base transceiver station,BTS),也可以是宽带码分多址(wideband code division multiple access,WCDMA)系统中的基站(nodeB,NB),还可以是LTE系统中的演进型基站(evolutional node base,eNB),还可以是云无线接入网络(cloud radio access network,CRAN)场景下的无线控制器,或者该接入网设备可以为中继站、接入点、车载设备、可穿戴设备以及未来5G网络中的接入网设备或者未来演进的PLMN网络中的接入网设备等,本申请实施例并不限定。
在NR中,基站的功能被分为两部分,称为集中式单元(centralized unit,CU)-分布式单元(distributed unit,DU)分离。从协议栈的角度来看,CU包括了LTE基站的RRC层和PDCP层,DU包括了LTE基站的无线链路控制(radio link control,RLC)层、媒体访问控制(media access control,MAC)层和物理(physical,PHY)层。在普通的5G基站部署中,CU和DU物理上可以通过光纤连接,逻辑上存在一个专门定义的F1接口,用于CU与DU之间进行通信。从功能的角度来看,CU主要负责无线资源控制与配置,跨小区移动性管理,承载管理等。DU主要负责调度,物理信号生成与发送。
其中,上述基站可以是宏基站、微基站、微微基站、小站、中继站、气球站等。
接入和移动管理功能(access and mobility management function,AMF):主要负责终端设备的认证、终端设备移动性管理、网络切片选择以及SMF选择等功能;此外,还负责在终端设备和策略控制功能(policy control function,PCF)间传递用户策略。
SMF:主要负责终端设备会话管理的控制面功能,包括用户面功能(user plane function,UPF)的选择和控制,网际协议(internet protocol,IP)地址分配,会话的QoS管理,(从PCF)获取策略和计费控制(policy and charging control,PCC)策略等。
UPF:作为协议数据单元(protocol data unit,PDU)会话连接的锚定点,负责对终端设备的数据报文过滤、数据传输/转发、速率控制、生成计费信息等,提供与数据网络(data network,DN)的连接。
DN:指终端设备接入的某个特定的数据服务网络。DN负责提供运营商服务、互联网接入或第三方服务。DN包括服务器,该服务器可以实现视频源编码、渲染等。典型的DN包括因特网络、IP多媒体业务(IP multi-media service,IMS)网络等。DN在5G网络中由数据网络名称(data network name,DNN)进行标识。
统一数据管理(unified data management,UDM):主要用于管控用户数据,例如,签约信息的管理,包括从统一数据存储库(unified data repository,UDR)获取签约信息并提供给其它网元(例如AMF);为终端设备生成第三代合作伙伴计划(the third generation partnership project,3GPP)的认证凭证;登记维护当前为终端设备服务的网元,例如,当前为终端设备服务的AMF(即serving AMF);当签约数据修改的时候,负责通知相应的网元。
网络能力开放功能(network exposure function,NEF):向应用功能(application function, AF)暴露3GPP网络功能的业务和能力,同时也可以让AF向3GPP网络功能提供信息。
AF:与核心网网元交互以提供一些服务,例如,与PCF交互以进行业务策略控制,与NEF交互以获取一些网络能力信息或提供应一些应用信息给网络,提供一些数据网络接入点信息给PCF以生成相应的数据业务的路由信息。
认证服务器功能(authentication server function,AUSF),用于终端设备接入网络时对终端设备进行安全认证。
网络切片选择功能(network slice selection function,NSSF),为终端设备选择切片实例集合,为终端设备确定AMF集合、允许的NSSAI。
PCF:为终端设备提供配置策略信息,为网络的控制面网元(例如,AMF、SMF)提供管控终端设备的策略信息;生成终端设备接入策略和QoS流控制策略。
本申请实施例中的终端设备通过无线的方式与RAN设备相连,RAN网元通过无线或有线方式与5GC设备连接。5GC设备与RAN网元可以是独立的不同的物理设备,也可以是将5GC设备的功能与RAN网元的逻辑功能集成在同一个物理设备上,还可以是一个物理设备上集成了部分5GC设备的功能和部分的RAN网元的功能。终端设备可以是固定位置的,也可以是可移动的。
5GC设备主要包括上述的NEF网元、PCF网元、AF网元、AMF网元、SMF网元以及UPF网元等。
需要说明的是,上述“网元”也可以称为实体、设备、装置或模块等,本申请并未特别限定。并且,在本申请中,为了便于理解和说明,在对部分描述中省略“网元”这一描述,例如,将NEF网元简称NEF,此情况下,该“NEF”应理解为NEF网元或NEF实体,以下,省略对相同或相似情况的说明。
需要说明的是,图1中包括的各个网元的命名仅是一个名字,名字对网元本身的功能不构成限定。在5G网络以及未来其它的网络中,上述各个网元也可以是其他的名字,本申请实施例对此不作具体限定。例如,在6G网络中,上述各个网元中的部分或全部可以沿用5G中的术语,也可能是其他命名,等等,在此进行统一说明,以下不再赘述。
需要说明的是,图1中的各个网元不是必须同时存在的,可以根据需求确定需要哪些网元。图1中的各个网元之间的连接关系也不是唯一确定的,可以根据需求进行调整。
可以理解的是,上述网元或者功能既可以是硬件设备中的网络元件,也可以是在专用硬件上运行软件功能,或者是平台(例如,云平台)上实例化的虚拟化功能。
图2是本申请提供的适用于本申请的一种应用场景示意图。如图2所示,本申请实施例可以应用于多模态业务场景。该多模态业务场景中的主域的触觉用户与人工系统接口,另一端受控域为远程控制机器人或远程操作员。主域从受控域接收图像、音频、视频等信息流,主域和受控域通过网络架构中的通信链路交互各种命令和反馈信号,形成一个全局控制环。
在多模态业务应用场景中,需要多个数据流分别传输图像、触觉、指令以及反馈数据等不同的数据类型。各个信息流之间在空间、时间上具有相关性。
示例性地,当人体触摸表面纹理不同、材质不同的物体时,触感也不同。触觉信号与物体表面图像有一定的关联关系,该关联关系也是一种相关性的具体形式。利用不同信号流之间的这种相关性,可以辅助进行信号重建。
例如,当触觉信号经过网络传输时,由于信道波动或网络拥塞,部分数据包丢失,此 时可以利用多模态业务信号间的相关性信息对损伤的信号进行恢复重建。利用图像信号恢复触觉信号,保证多模态业务的用户体验。
除了上述两个终端设备之间架构的应用场景外,本申请的应用场景也可以由应用服务器和终端设备构建。本申请应用场景的构建并不限于上述两种场景,能够适用于本申请技术方案的应用场景都在本申请的保护范围之内。
当网络系统中有多模态业务需求时,SMF会建立相应的PDU会话。一般情况下,一种多模态业务对应建立一个PDU会话。一个PDU会话可以对应多个无线承载(radio bearer,RB),一个PDU会话可以有多条不同QoS需求的数据流。
图3是本申请提供的PDU会话中的RB与QoS流之间的关系示意图。
如图3所示,SMF选择一个UPF作为PDU会话连接的锚定点,将PDU会话建立在选定的UPF与UE之间。一个PDU会话包括至少一个RB,一个RB包括至少一个QoS流。网络通信系统中使用QoS流标识符(QoS flow identifier,QFI)标识QoS流,并且一个QoS流有唯一的QFI进行标识。
应理解,同一个RB上映射的QoS流也能使用不同的QoS调度优先级,QoS调度优先级可以以QoS配置的形式表示出来。
一个PDU会话中,具有相同QFI的QoS流使用相同的业务转发处理方式。该处理方式包括调度、优化等。
另外地,RB是建立在RAN与UE之间的,而RAN与5GC的UPF之间则通过其它的通道接口连接进行通信。例如,RAN与5GC的UPF之间通过N3接口进行通信。
一个PDU会话可以有多条QoS流,多条QoS流之间承载的数据是有一定的相关性的。当考虑到多条QoS流之间承载的数据的相关性时,网络系统可以更好地承载多模态业务。
下面介绍一下用于描述不同QoS流之间的相关性的参数。
示例性地,QoS流1和QoS流2是UE的M条数据流中的任意两条数据流。
1.相关系数W1,2
W1,2表示QoS流1和QoS流2之间传输的应用层数据的相关性。该相关系数越大,表示QoS流1和QoS流2之间传输的数据在应用层表达的含义、语义越相似。
也可以说,W1,2表示QoS流1的数据和QoS流2的数据之间的关联程度。
或者,W1,2也可以表示QoS流1基于QoS流2的数据能够恢复自身数据所承载的信息的概率或比例。
示例性地,W1,2的取值范围可以是0≤W1,2≤1;W1,2的取值范围也可以是一个提前预配置或预定义的集合W,本申请对W1,2的取值范围不作限定。
2.关联/依赖指示S1,2
S1,2表示QoS流1对QoS流2是否具有关联或依赖关系。
示例性地,若QoS流1对QoS流2具有关联/依赖关系,S1,2的取值可以为1;若QoS流1对QoS流2不具有依赖关系,S1,2的取值可以为0,本申请对S1,2的取值不作限定。
或者,S1,2也可以表示QoS流1是否需要基于QoS流2中的数据才能够恢复自身数据所承载的信息。
示例性地,若QoS流1需要基于QoS流2中的数据才能够恢复自身数据所承载的信息,则S1,2的取值可以为1;若QoS流1不需要基于QoS流2中的数据恢复自身数据所承载的信息,则S1,2的取值可以为0,本申请对S1,2的取值不作限定。
应理解,关联/依赖指示值S1,2可以看做是上述相关系数W1,2的一种特例。
3.相关时间窗T1,2
T1,2表示在时间窗口T1,2内,QoS流1和QoS流2之间传输的应用层数据的相关性才有效。
如图4所示,在上行或者下行数据传输的过程中,若QoS流2的数据包2最先到达的时间与QoS流1的数据包1最后到达的时间的间隔不超过T1,2,则QoS流2的数据包2与QoS流1的数据包1可以认为仍然相关。
另外地,图4中QoS流2的数据包3最先到达的时间与QoS流1的数据包1最后到达的时间的间隔明显超过T1,2,故QoS流2的数据包3与QoS流1的数据包1就没法保证相关。
示例性地,T1,2的取值范围可以是T1,2≥0;T1,2的取值范围也可以是一个提前预配置或预定义的集合T。
应理解,上述QoS流1和QoS流2可以是同一个QoS流,也可以是不同的QoS流,本申请对此不作限定。
当QoS流1和QoS流2是同一个QoS流时,T1,2表示QoS流1的数据包和QoS流2的数据包可以保持相关的时间段;当QoS流1和QoS流2是不同的QoS流时,T1,2表示QoS流1和QoS流2可以保持相关的时间段。
另外地,作为示例而非限定,QoS流1的QoS流的相关性信息不仅可以表示上述列举的QoS流1与QoS流2的相关性信息,也可以表示QoS流1与其他两条或者更多条QoS流的相关性信息。比如,相关系数W1,23表示QoS流1与QoS流2和QoS流3之间传输的应用层数据的相关性。该相关系数越大,表示QoS流1与QoS流2和QoS流3之间传输的数据在应用层表达的含义、语义越相似;
或者,W1,23表示QoS流1的数据与QoS流2和QoS流3的数据之间的相关的程度;
或者,W1,23也可以表示QoS流1基于QoS流2和QoS流3的数据能够恢复自身数据所承载的信息的概率或比例。
另外地,不同QoS流的相关性参数并不是可以互换的。例如,W1,2表示QoS流1基于QoS流2的数据能够恢复自身数据所承载的信息的概率或比例,而W2,1表示QoS流2基于QoS流1的数据能够恢复自身数据所承载的信息的概率或比例,W1,2和W2,1不一定是相等的。
下文中所述的QoS流的相关性信息包括上述相关系数、关联/依赖指示以及相关时间窗中的至少一个。
作为示例而非限定,可以认为UE有M条QoS流,以下表1示出了某一QoS流的相关性信息的一例,该某一QoS流的标识符记为QFI1。
表1

在上述表1的情况下,QFI1的QoS流的相关性信息包括QFI1的QoS流与其他M-1条QoS流中的任意一条QoS流之间的相关系数和相关时间窗。
其中,相关系数和相关时间窗的取值可以从各自上述的集合中选取即可。
作为示例而非限定,以下表2示出了某一QoS流的相关性信息的另一例,该某一QoS流的标识符记为QFI1。
表2
在上述表2的情况下,QFI1的QoS流的相关性信息包括QFI1的QoS流与其他M-1条QoS流中的任意一条QoS流之间的关联/依赖指示和相关时间窗。
其中,关联/依赖指示和相关时间窗的取值可以从各自上述的集合中选取即可。
作为示例而非限定,以下表3示出了某一QoS流的相关性信息的另一例,该某一QoS流的标识符记为QFI1。
表3
在上述表3的情况下,QFI1的QoS流的相关性信息包括QFI1的QoS流与其他M-1条QoS流中的任意一条QoS流之间的相关系数。
其中,相关系数的取值可以从上述对应的集合中选取即可。
应理解,在相关性信息包括相关系数的情况下,可以认为QFI1的QoS流与其他M-1条QoS流中的任意一条QoS流之间相关不受时间窗口的限制,这种相关一直有效。
作为示例而非限定,以下表4示出了某一QoS流的相关性信息的另一例,该某一QoS流的标识符记为QFI1。
表4
在上述表4的情况下,QFI1的QoS流的相关性信息包括QFI1的QoS流与其他M-1条QoS流中的任意一条QoS流之间的关联/依赖指示。
其中,关联/依赖指示的取值可以从上述对应的集合中选取即可。
应理解,在相关性信息包括关联/依赖指示的情况下,也可以认为QFI1的QoS流与其他M-1条QoS流中的任意一条QoS流之间相关不受时间窗口的限制,这种相关一直有效。
作为示例而非限定,以下表5示出了某一QoS流的相关性信息的另一例,该某一QoS流的标识符记为QFI1。
表5
在上述表5的情况下,QFI1的QoS流的相关性信息包括QFI1的QoS流与其他M-1条QoS流中的任意一条QoS流之间的相关时间窗。
其中,相关时间窗的取值可以从上述对应的集合中选取即可。
应理解,在相关性信息包括相关时间窗的情况下,可以认为QFI1的QoS流与其他M-1条QoS流中的任意一条QoS流之间的相关系数或关联/依赖指示是一个常数,该常数可以由标准或行业共识规定,本申请对此不作限定。
上述实施例描述了用于表征不同QoS流之间的相关性参数、QoS流相关性的表示方法,这样能够清晰、有效地反映多模态业务内QoS流在应用层表达的含义、语义的相似性。
引入上述QoS流的相关性信息,可以使网络系统在调度QoS流时,考虑到QoS流之间的相关性,从而更好地承载多模态业务。
下文的实施例主要描述QoS流的相关性信息如何在网络系统中传输,以及利用QoS流之间的相关性如何进行QoS流的调度和配置优化。图5是本申请提供的一种调度和配置优化方法的示意性流程图。
需要说明的是,图5中以应用服务器、第一网元、接入网设备和终端设备作为该交互性示意的执行主体来示意该方法,但本申请并不限制该交互示意的执行主体。
示例性地,图5中的应用服务器、第一网元、接入网设备和终端设备也可以是支持其实现该方法的芯片、芯片系统或处理器等,还可以是实现全部或部分其功能的逻辑模块或软件。
应用服务器可以基于人工智能(artificial intelligence,AI)、多模态信息融合等技术识别并获取多模态业务的QoS流的相关性信息。
步骤S510,应用服务器向第一网元发送QoS流之间的相关性信息。
具体地,该第一网元可以是5GC网元,例如SMF、UPF等。
若第一网元是SMF,则应用服务器可以通过核心网的控制面信令下发QoS流的相关性信息。
若第一网元是UPF,则应用服务器可以通过应用层数据面下发QoS流的相关性信息。
下文中的图6、图7、图8会分别详细介绍应用服务器通过核心网的控制面信令以及应用层数据面下发QoS流的相关性信息的具体方案,这里先不作介绍。
步骤S512,第一网元获取上述QoS流之间的相关性信息。
相应地,当第一网元为SMF时,SMF可以通过5G网络控制面信令来获取QoS流之间的相关性信息;当第一网元是UPF时,UPF也可以通过应用层数据面的数据包传输来获取QoS流之间的相关性信息。
步骤S514,第一网元向接入网设备发送上述QoS流的相关性信息。接入网设备接收来自第一网元的QoS流的相关性信息。
步骤S516,接入网设备基于上述QoS流的相关性信息,与终端设备进行数据的传输时,可以对相关的QoS流或相关的QoS流的数据包进行调度和配置优化。
示例性地,上述调度和配置优化的动作可以为:当网络信道拥塞时,QoS流1与QoS流2相关,或者说QoS流1可以被基于QoS流2恢复,那么接入网设备将QoS流1中的部分或全部数据包主动丢弃,也可以是接入网设备停止进行QoS流1的数据传输,从而降低网络空口的压力。
示例性地,上述调度和配置优化的动作还可以为:当网络信道拥塞时,QoS流1与QoS流2相关,或者说QoS流1可以被基于QoS流2恢复,那么接入网设备可以将QoS流1的调度优先级降低,在上下行数据传输的过程中优先进行调度优先级高的QoS流的数据传输,这样可以优先保证其它优先级较高的QoS流的数据传输,提升业务的服务质量。
示例性地,上述调度和配置优化的动作还可以为:当网络信道拥塞时,QoS流1与QoS流2相关,或者说QoS流1可以被基于QoS流2恢复,那么接入网设备将相关的QoS流1与QoS流2分别映射在不同的数据无线承载(data radio bearer,DRB)上,这样可以提升QoS流1数据传输与QoS流2数据传输的鲁棒性。
作为示例而非限定,上述是QoS流1与QoS流2具有相关性时调度和配置优化的情况,也可以是QoS流1与其他两条或者多条QoS流具有相关性的情况。
另外地,选取哪种调度和配置优化的动作取决于QoS流1与QoS流2或者其他两条或者多条QoS流的相关性的大小以及网络的拥挤状况等。
总的来说,之所以将QoS流1的数据包进行部分丢弃、或者降低QoS流1的调度优先级、或者将QoS流1与QoS流2或者其他两条或者多条QoS流映射到不同的DRB中,是因为QoS流1的数据可以基于与QoS流2或者其他两条或者多条QoS流相关而得到快速恢复,不会影响数据的真实性。
步骤S518,在下行数据传输阶段,接入网设备向终端设备发送的数据包是接入网设备经过上述调度和配置优化之后确定的QoS流承载传输的。
接下来,作为示例而非限定,图6以第一网元为SMF、终端设备为UE作为示例详细介绍本申请的技术方案。
图6是本申请提供的一种通过控制面信令获取QoS流的相关性信息的方法的示意性流程图。
需要说明的是,图6中以应用服务器、AF、PCF、NEF、SMF、AMF、接入网设备和UE作为该交互性示意的执行主体来示意该方法,但本申请并不限制该交互示意的执行主体。
示例性地,图6中的应用服务器、AF、PCF、NEF、SMF、AMF、接入网设备和UE也可以是支持其实现该方法的芯片、芯片系统或处理器等,还可以是实现全部或部分其功能的逻辑模块或软件。
应用服务器可以基于AI、多模态信息融合等技术识别并获取多模态业务的QoS流的相关性信息。
步骤S610,应用服务器将识别并获取到的多模态业务的QoS流的相关性信息发送给AF,AF接收来自应用服务器的多模态业务的QoS流的相关性信息。
该应用服务器主要负责视频源编解码、渲染等。
接下来,AF可以将获取的上述QoS流的相关性信息通过以下两种信息方式发送给SMF:
第一种方式:步骤S612,AF将获取的QoS流的相关性信息通过N5接口发送给PCF;
步骤S614,进一步地,PCF将接收的QoS流的相关性信息通过N7接口发送给SMF。
第二种方式:步骤S616,AF将获取的QoS流的相关性信息通过N33接口发送给NEF;
步骤S618,进一步地,NEF将接收的QoS流的相关性信息通过N29接口发送给SMF。
具体地,上述N5接口、N7接口、N33接口、N29接口的信息传递均采用应用层协议HTTP/2。
步骤S620,SMF基于多模态业务的需求建立相对应的PDU会话,并将PDU会话中映射的QoS流之间的相关性作为一个新的QoS特征加入到QoS配置文件(QoS profile)中。SMF可以将该新的QoS特征以QoS流的相关性信息的形式加入到QoS配置文件中。
步骤S622,SMF将上述携带有QoS流的相关性信息的QoS配置文件发送给AMF。
步骤S624,AMF起到SMF与接入网设备之间的透传作用,将接收到的携带有QoS流的相关性信息的QoS配置文件下发到接入网设备。
应注意,上述接入网设备接收到的QoS配置文件中的QoS流的相关性信息是从SMF接收的,而SMF侧的QoS配置文件中的QoS流的相关性信息是SMF从应用服务器端提取得到的,因此接入网设备接收到的QoS配置文件中的QoS流的相关性信息的形式与应用服务器端的QoS流的相关性信息的形式不完全相同。
示例性地,该QoS配置文件包括以下一些参数:
第五代服务质量需求标识符(5G QoS identifier,5QI)、ARP、相关性信息、RQA、指示控制、MPLR、GFBR、最大保障流比特速率(maximum guranteed flow bit rate,MFBR)等。
其中,5QI、ARP、相关性信息是QoS流的配置文件中都会包含的;RQA是Non-GBR的QoS流的配置文件中才会包含的;指示控制、MPLR、GFBR、MFBR是GBR的QoS流的配置文件中才会包含的。
所以,某条QoS流是属于GBR的QoS流还是Non-GBR的QoS流取决于它的QoS配置文件。
接入网设备接收到的QoS配置文件可以是SMF通过AMF提供给RAN的,也可以在RAN中预配置,本申请对此不作限定。
步骤S626,接入网设备获得携带有QoS流的相关性信息的QoS配置文件之后,在数据传输阶段,接入网设备根据QoS流的相关性信息进行QoS流的调度和配置优化。
示例性地,上述调度和配置优化的动作可以为:当网络信道拥塞时,QoS流1与QoS流2相关,或者说QoS流1可以被基于QoS流2恢复,那么接入网设备将QoS流1中的部分或全部数据包主动丢弃,也可以是接入网设备停止进行QoS流1的数据传输,从而降低网络空口的压力。
示例性地,上述调度和配置优化的动作还可以为:当网络信道拥塞时,QoS流1与QoS流2相关,或者说QoS流1可以被基于QoS流2恢复,那么接入网设备可以将QoS流1的调度优先级降低,在上下行数据传输的过程中优先进行调度优先级高的QoS流的数据传输,这样可以优先保证其它优先级较高的QoS流的数据传输,提升业务的服务质量。
示例性地,上述调度和配置优化的动作还可以为:当网络信道拥塞时,QoS流1与QoS流2相关,或者说QoS流1可以被基于QoS流2恢复,那么接入网设备将相关的QoS流1与QoS流2分别映射在不同的数据无线承载(data radio bearer,DRB)上,这样可以提升QoS流1数据传输与QoS流2数据传输的鲁棒性。
作为示例而非限定,上述是QoS流1与QoS流2具有相关性时调度和配置优化的情况,也可以是QoS流1与其他两条或者多条QoS流具有相关性的情况。
另外地,选取哪种调度和配置优化的动作取决于QoS流1与QoS流2或者其他两条或者多条QoS流的相关性的大小以及网络的拥挤状况等。
总的来说,之所以将QoS流1的数据包进行部分丢弃、或者降低QoS流1的调度优先级、或者将QoS流1与QoS流2或者QoS流1与其他两条或者多条QoS流映射到不同的DRB中,是因为QoS流1的数据可以基于与QoS流2或者QoS流1的数据可以基于其他两条或者多条QoS流的相关性得到快速恢复,不会影响数据的真实性。
步骤628,在下行数据传输阶段,接入网设备通过调度和配置优化后的QoS流承载向UE发送的下行数据。
图6通过控制面信令获取QoS流的相关性信息的这种方法,核心网控制面信令的更新频率低、开销少。同时接入网设备基于QoS流的相关性信息对QoS流做调度和配置优化,从而提升多模态业务的传输效率和用户体验。
图7是本申请提供的另一种通过控制面信令获取QoS流的相关性信息的方法的示意性流程图。
需要说明的是,图7中以SMF、AMF、接入网设备和UE作为该交互性示意的执行主体来示意该方法,但本申请并不限制该交互示意的执行主体。
示例性地,图7中的SMF、AMF、接入网设备和UE也可以是支持其实现该方法的芯片、芯片系统或处理器等,还可以是实现全部或部分其功能的逻辑模块或软件。
步骤S710,UE侧识别应用层层面的QoS流的相关性信息,通过上行请求信息传送给接入网设备,由接入网设备传输给SMF。
步骤S720,SMF基于多模态业务的需求建立相对应的PDU会话,并将PDU会话中映射的QoS流之间的相关性作为一个新的QoS特征加入到QoS流的配置中。SMF可以将该新的QoS特征以QoS流的相关性信息的形式加入到QoS流的配置中。
具体地,QoS流的配置包括以下两部分:
第一部分为上述接入网设备的QoS配置文件(QoS profile),第二部分为UE侧的QoS规则(QoS rule)。QoS流的相关性信息可以分别包括在上述两部分中。
应注意,上述两部分中分别包括的QoS流的相关性信息是从QoS流的配置中获得的,而QoS流的配置中的相关性信息是SMF从UE发送的QoS流的相关性信息提取得到的,因此接入网设备、UE分别接收到的QoS配置文件中的QoS流的相关性信息、QoS规则中 的QoS流的相关性信息的形式与UE发送给SMF的QoS流的相关性信息的形式不完全相同。
步骤S722~步骤S726参照上述步骤S622~步骤S626,此处不再赘述。
可选地,步骤S728,SMF将上述QoS规则发送给AMF。
可选地,步骤S730,AMF起到SMF与UE之间的透传作用,将接收到的QoS规则下发到UE侧。
示例性地,该QoS规则可以包括以下一些信息:
该QoS规则是否是默认QoS规则的指示信息、QoS规则标识(QoS rule identifier,QRI)、QFI、QoS规则的优先级值、QoS流的相关性信息。
具体地,QoS规则标识用于标识QoS规则,QoS规则用于QoS流中传输的数据包的流量检测和路由;QFI用于标识QoS流;QoS规则的优先级值用于确定QoS规则的评估顺序,QoS规则的评估按照优先级值递增的顺序进行。
可选地,上述QoS规则还包括数据包滤波集合。
步骤S732,接入网设备根据QoS流的相关性信息进行QoS流的调度和配置优化后,向UE发送调度信息,该调度信息用于调度UE传输上行数据的QoS流,以供UE可以通过接入网设备调度和配置优化后的QoS流承载上行数据。
具体地,若SMF没有将QoS规则发送给UE,则由接入网设备通过调度信息调度用于承载UE上行数据的QoS流;若SMF将QoS规则发送给UE,则UE可以基于QoS规则中携带的QoS流的相关性信息主动丢弃相关性较高QoS流中的部分或者全部数据包。
也就是说,UE在接受到SMF指示的QoS规则之后,根据QoS规则中的QoS流的相关性信息可以做一些简单的优化动作。比如,UE在上行数据传输的过程中可以主动丢弃相关性较高的QoS流中的部分或者全部数据包。
图7的实施例与图6的实施例的不同之处在于,图6中传输的QoS流的相关性信息主要用于接入网设备向UE侧下行数据传输过程中QoS流的调度,而图7中传输的QoS流的相关性信息主要用于UE向接入网设备上行数据传输过程中QoS流的调度。图7中的SMF将QoS流的相关性信息不仅指示给接入网设备,同时也将QoS流的相关性信息指示给UE侧。
通过图7的实施例,不仅RAN侧可以获知QoS流的相关性信息,而且,UE侧也可以获知QoS流的相关性信息。这样UE侧在上行传输阶段可以自主地丢弃相关性较高的QoS流中的部分或者全部数据包,以减轻网络拥塞。
上文中的图6和图7描述的是通过控制面信令获取QoS流的相关性信息的方法,图8是本申请提供的一种通过数据面数据传输获取QoS流的相关性信息的方法的示意性流程图。
当通过数据面数据传输QoS流的相关性信息时,图8是一个适用于RAN向UE侧下行数据传输过程中QoS流的调度的实施例。
需要说明的是,图8中以应用服务器、UPF、接入网设备作为该交互性示意的执行主体来示意该方法,但本申请并不限制该交互示意的执行主体。
示例性地,图7中的应用服务器、UPF、接入网设备也可以是支持其实现该方法的芯片、芯片系统或处理器等,还可以是实现全部或部分其功能的逻辑模块或软件。
首先,应用服务器可以基于AI识别、多模态信息融合等技术获取多模态业务的QoS 流之间的相关性信息。
步骤S810,应用服务器从应用层识别并提取多模态业务的QoS流的相关性信息,应用服务器将该QoS流的相关性信息进行封装,然后随数据包通过N6接口传输给UPF。
具体地,应用服务器可以将多模态业务的QoS流的相关性信息封装在传输层。
可选地,QoS流的相关性信息也可以封装在IPv4或IPv6协议的扩展头字段。
可选地,QoS流的相关性信息也可以封装在实时传输协议(real-time transport protocol,RTP)层。
可选地,QoS流的相关性信息也可以封装在传输层的用户数据报协议(user datagram protocol,UDP)层和应用层的RTP层之间新定义的协议层,如图9所示。
步骤S812,UPF接收到QoS流的相关性信息,并通过通用分组无线系统隧道用户协议(general packet radio system tunnelling protocol for the user,GTP-U)的扩展头传输给接入网设备。接入网设备通过GTP-U的扩展头接收QoS流的相关性信息,在数据传输阶段进行调度机制的优化。
应注意,GTP-U的扩展头携带的QoS流的相关性信息是UPF从应用服务器端提取得到的,因此GTP-U的扩展头携带的QoS流的相关性信息与应用服务器端的QoS流的相关性信息的形式不完全相同。
步骤S814,接入网设备获得QoS流的相关性信息之后,在下行数据的传输阶段,接入网设备根据QoS流的相关性信息对QoS流进行调度和配置优化。
在上行数据传输时,接入网设备可以向UE发送QoS流的调度和配置信息,以供UE在上行数据传输阶段可以通过RAN调度和配置优化后的QoS流承载上行数据。
示例性地,上述调度和配置优化的动作可以为:当网络信道拥塞时,QoS流1与QoS流2相关,或者说QoS流1可以被基于QoS流2恢复,那么接入网设备将QoS流1中的部分或全部数据包主动丢弃,也可以是接入网设备停止进行QoS流1的数据传输,从而降低网络空口的压力。
示例性地,上述调度和配置优化的动作还可以为:当网络信道拥塞时,QoS流1与QoS流2相关,或者说QoS流1可以被基于QoS流2恢复,那么接入网设备可以将QoS流1的调度优先级降低,在上下行数据传输的过程中优先进行调度优先级高的QoS流的数据传输,这样可以优先保证其它优先级较高的QoS流的数据传输,提升业务的服务质量。
示例性地,上述调度和配置优化的动作还可以为:当网络信道拥塞时,QoS流1与QoS流2相关,或者说QoS流1可以被基于QoS流2恢复,那么接入网设备将相关的QoS流1与QoS流2分别映射在不同的数据无线承载(data radio bearer,DRB)上,这样可以提升QoS流1数据传输与QoS流2数据传输的鲁棒性。
作为示例而非限定,上述是QoS流1与QoS流2具有相关性时调度和配置优化的情况,也可以是QoS流1与其他两条或者多条QoS流具有相关性的情况。
需要注意的是,相比于图6和图7通过控制面信令指示QoS流的相关性信息的方法,图8的通过数据面的数据传输使接入网设备获得QoS流的相关性信息的方法会更加快速有效、能够迅速适应应用层信息的变化。
另外地,图8中通过数据面数据传输QoS流的相关性信息的方法适用于QoS流的相关性的时间变化频率快的场景。
示例性地,当QoS流的相关性信息每10毫秒、20毫秒变化一次时,系统可以通过数据面传输QoS流的相关性信息的方法传递QoS流的相关性信息,以便接入网设备基于相关性信息快速、有效地对具有相关性的QoS流做出调度和配置优化。其中,10毫秒、20毫秒是为了说明QoS流的相关性信息变化快,具体的时间变化频率可以依据不同的业务需求相应地变化,本申请对此不作限定。
示例性地,当QoS流的相关性信息每1min、2min变化一次时,系统可以通过控制面信令指示QoS流的相关性信息的方法传递QoS流的相关性信息,这种方法更新频率低、信令开销少。其中,1min、2min是为了说明QoS流的相关性信息变化慢,具体的时间变化频率可以依据不同的业务需求相应地变化,本申请对此不作限定。
图10示出了本发明实施例的发送相关性信息的装置100的示意性框图,该发送相关性信息的装置500可以对应(例如,可以配置于或本身即为)上述图5、图6、图7、图8实施例描述的第一网元、应用服务器、AF、PCF、NEF、SMF以及UE,并且,发送相关性信息的装置100中各模块或单元分别用于执行上述图5、图6、图7、图8实施例描述的第一网元、应用服务器、AF、PCF、NEF、SMF以及UE所执行的各动作或处理过程,这里,为了避免赘述,省略其详细说明。
在本发明实施例中,该装置100可以为图5、图6、图7、图8实施例描述的第一网元、应用服务器、AF、PCF、NEF、SMF以及UE,此情况下,该装置100可以包括:处理器和收发器,处理器和收发器通信连接。
可选地,该装置还包括存储器,存储器与处理器通信连接。可选地,处理器、存储器和收发器可以通信连接,该存储器可以用于存储程序或指令,该处理器用于执行该存储器存储的程序或指令,以控制收发器发送信息或信号。
此情况下,图10所示的装置100中的接口单元可以对应该收发器,图10所示的装置100中的处理单元可以对应该处理器。
在本发明实施例中,该装置100可以为安装在图5、图6、图7、图8实施例描述的第一网元、应用服务器、AF、PCF、NEF、SMF以及UE中的芯片(或者说,芯片系统),此情况下,该装置100可以包括:处理器和输入输出接口,处理器可以通过输入输出接口与图5、图6、图7、图8实施例描述的第一网元、应用服务器、AF、PCF、NEF、SMF以及UE的收发器通信连接,可选地,该装置还包括存储器,存储器与处理器通信连接。可选地,处理器、存储器和收发器可以通信连接,该存储器可以用于存储程序或指令,该处理器用于执行该存储器存储的程序或指令,以控制收发器发送信息或信号。
此情况下,图10所示的装置100中的接口单元可以对应该输入输出接口,图10所示的装置100中的处理单元可以对应该处理器。
图11示出了本发明实施例的接收相关性信息的装置200的示意性框图,该接收相关性信息的装置200可以对应(例如,可以配置用于实现)上述图5、图6、图7、图8实施例描述的第一网元、AF、PCF、NEF、SMF、接入网设备以及UE,并且,接收相关性信息的装置200中各模块或单元分别用于执行上述图5、图6、图7、图8实施例描述的第一网元、AF、PCF、NEF、SMF、接入网设备以及UE所执行的各动作或处理过程,这里,为了避免赘述,省略其详细说明。
在本发明实施例中,该装置200可以为图5、图6、图7、图8实施例描述的第一网元、AF、PCF、NEF、SMF、接入网设备以及UE,此情况下,该装置200可以包括:处 理器和收发器,处理器和收发器通信连接,可选地,该装置还包括存储器,存储器与处理器通信连接。可选地,处理器、存储器和收发器可以通信连接,该存储器可以用于存储程序或指令,该处理器用于执行该存储器存储的程序或指令,以控制收发器接收信息或信号。
此情况下,图11所示的装置200中的接口单元可以对应该收发器,图11所示的装置200中的处理单元可以对应该处理器。
在本发明实施例中,该装置200可以为安装在图5、图6、图7、图8实施例描述的第一网元、AF、PCF、NEF、SMF、接入网设备以及UE中的芯片(或者说,芯片系统),此情况下,该装置200可以包括:处理器和输入输出接口,处理器可以通过输入输出接口与图5、图6、图7、图8实施例描述的第一网元、AF、PCF、NEF、SMF、接入网设备以及UE的收发器通信连接,可选地,该装置还包括存储器,存储器与处理器通信连接。可选地,处理器、存储器和收发器可以通信连接,该存储器可以用于存储程序或指令,该处理器用于执行该存储器存储的程序或指令,以控制收发器接收信息或信号。
此情况下,图11所示的装置200中的接口单元可以对应输入接口,图11所示的装置200中的处理单元可以对应该处理器。
本领域普通技术人员可以意识到,结合本文中所公开的实施例描述的各示例的单元及算法步骤,能够以电子硬件、或者计算机软件和电子硬件的结合来实现。这些功能究竟以硬件还是软件方式来执行,取决于技术方案的特定应用和设计约束条件。专业技术人员可以对特定的应用来使用不同方法来实现所描述的功能,但是这种实现不应认为超出本发明的范围。
所属领域的技术人员可以清楚地了解到,为描述的方便和简洁,上述描述的系统、装置和单元的具体工作过程,可以参考前述方法实施例中的对应过程,在此不再赘述。
在本申请所提供的几个实施例中,应该理解到,所揭露的系统、装置和方法,可以通过其它的方式实现。例如,以上所描述的装置实施例仅是示意性的,例如,所述单元的划分,仅仅为一种逻辑功能划分,实际实现时可以有另外的划分方式,例如多个单元或组件可以结合或者可以集成到另一个系统,或一些特征可以忽略,或不执行。另一点,所显示或讨论的相互之间的耦合或直接耦合或通信连接可以是通过一些接口,装置或单元的间接耦合或通信连接,可以是电性,机械或其它的形式。
所述作为分离部件说明的单元可以是或者也可以不是物理上分开的,作为单元显示的部件可以是或者也可以不是物理单元,即可以位于一个地方,或者也可以分布到多个网络单元上。可以根据实际的需要选择其中的部分或者全部单元来实现本实施例方案的目的。
另外,在本发明各个实施例中的各功能单元可以集成在一个处理单元中,也可以是各个单元单独物理存在,也可以两个或两个以上单元集成在一个单元中。
所述功能如果以软件功能单元的形式实现并作为独立的产品销售或使用时,可以存储在一个计算机可读取存储介质中。基于这样的理解,本发明的技术方案本质上或者说对现有技术做出贡献的部分或者该技术方案的部分可以以软件产品的形式体现出来,该计算机软件产品存储在一个存储介质中,包括若干指令用以使得一台计算机设备(可以是个人计算机,服务器,或者网络设备等)执行本发明各个实施例所述方法的全部或部分步骤。而前述的存储介质包括:U盘、移动硬盘、只读存储器(Read-Only Memory,ROM)、随机存取存储器(Random Access Memory,RAM)、磁碟或者光盘等各种可以存储程序代码的介质。
以上所述,仅为本发明的具体实施方式,但本发明的保护范围并不局限于此,任何熟悉本技术领域的技术人员在本发明揭露的技术范围内,可轻易想到变化或替换,都应涵盖在本发明的保护范围之内。因此,本发明的保护范围应所述以权利要求的保护范围为准。

Claims (39)

  1. 一种通信的方法,其特征在于,包括:
    接收来自第一网元的第一相关性信息,所述第一相关性信息用于指示第一服务质量QoS流和一条或多条第二QoS流之间在第一时段内的相关性;
    根据所述第一相关性信息与终端设备在所述第一时段内进行所述第一QoS流的数据和所述一条或多条第二QoS流的数据的传输。
  2. 根据权利要求1所述的方法,其特征在于,所述第一相关性信息具体用于指示所述第一QoS流和所述一条或多条第二QoS流在所述第一时段内相关。
  3. 根据权利要求1所述的方法,其特征在于,所述第一相关性信息具体用于指示所述第一QoS流与所述一条或多条第二QoS流的相关的程度。
  4. 根据权利要求1至3中任一项所述的方法,其特征在于,所述第一相关性信息包括所述第一时段的指示信息。
  5. 根据权利要求1至4中任一项所述的方法,其特征在于,所述第一网元是会话管理网元。
  6. 根据权利要求5所述的方法,其特征在于,接收来自所述会话管理网元的所述第一相关性信息包括:
    接收来自所述会话管理网元的QoS流配置信息,所述QoS流配置信息包括所述第一相关性信息。
  7. 根据权利要求1至4中任一项所述的方法,其特征在于,所述第一网元是用户面功能网元。
  8. 根据权利要求7所述的方法,其特征在于,接收来自所述用户面功能网元的所述第一相关性信息包括:
    通过通用分组无线系统隧道用户协议GTP-U的扩展头接收来自所述用户面功能网元的所述第一相关性信息。
  9. 根据权利要求1至8中任一项所述的方法,其特征在于,根据所述第一相关性信息与终端设备在所述第一时段内进行所述第一QoS流的数据和所述一条或多条第二QoS流的数据的传输包括以下至少一项:
    根据所述第一相关性信息在所述第一时段内丢弃所述第一QoS流的部分或全部数据,或,
    根据所述第一相关性信息降低所述第一QoS流在所述第一时段内的调度优先级,或,
    根据所述第一相关性信息将所述第一QoS流和所述一条或多条第二QoS流分别映射到不同的数据无线承载上。
  10. 一种通信的方法,其特征在于,所述方法包括:
    向接入网设备发送第一相关性信息,所述第一相关性信息用于指示第一服务质量QoS流和一条或多条第二QoS流之间在第一时段内的相关性。
  11. 根据权利要求10所述的方法,其特征在于,所述第一相关性信息具体用于指示所述第一QoS流和所述一条或多条第二QoS流在所述第一时段内相关。
  12. 根据权利要求10所述的方法,其特征在于,所述第一相关性信息具体用于指示所 述第一QoS流与所述一条或多条第二QoS流的相关的程度。
  13. 根据权利要求10至12中任一项所述的方法,其特征在于,所述第一相关性信息包括所述第一时段的指示信息。
  14. 根据权利要求10至13中任一项所述的方法,其特征在于,所述向接入网设备发送第一相关性信息包括:
    向所述接入网设备发送QoS流配置信息,所述QoS流配置信息包括所述第一相关性信息。
  15. 根据权利要求10至13中任一项所述的方法,其特征在于,所述向接入网设备发送第一相关性信息包括:
    通过通用分组无线系统隧道用户协议GTP-U的扩展头向所述接入网设备发送所述第一相关性信息。
  16. 根据权利要求10至14中任一项所述的方法,其特征在于,所述方法还包括:
    向终端设备发送QoS流规则信息,所述QoS流规则信息包括所述第一相关性信息。
  17. 一种通信的装置,其特征在于,所述装置包括:
    接口单元,用于接收来自第一网元的第一相关性信息,所述第一相关性信息用于指示第一服务质量QoS流和一条或多条第二QoS流之间在第一时段内的相关性;
    处理单元,用于根据所述第一相关性信息控制所述装置与终端设备在所述第一时段内进行所述第一QoS流的数据和所述一条或多条第二QoS流的数据的传输。
  18. 根据权利要求17所述的装置,其特征在于,所述第一相关性信息具体用于指示所述第一QoS流和所述一条或多条第二QoS流在所述第一时段内相关。
  19. 根据权利要求17所述的装置,其特征在于,所述第一相关性信息具体用于指示所述第一QoS流与所述一条或多条第二QoS流的相关的程度。
  20. 根据权利要求17至19中任一项所述的装置,其特征在于,所述第一相关性信息还包括所述第一时段的指示信息。
  21. 根据权利要求17至20中任一项所述的装置,其特征在于,所述第一网元是会话管理网元。
  22. 根据权利要求21所述的装置,其特征在于,所述接口单元还用于接收来自所述会话管理网元的QoS流配置信息,所述QoS流配置信息包括所述第一相关性信息。
  23. 根据权利要求17至20中任一项所述的装置,其特征在于,所述第一网元是用户面功能网元。
  24. 根据权利要求23所述的装置,其特征在于,所述接口单元还用于通过通用分组无线系统隧道用户协议GTP-U的扩展头接收来自所述用户面功能网元的所述第一相关性信息。
  25. 根据权利要求17至24中任一项所述的装置,其特征在于,所述处理单元用于根据所述第一相关性信息控制所述装置与终端设备在所述第一时段内进行所述第一QoS流的数据和所述一条或多条第二QoS流的数据的传输包括以下至少一项:
    所述处理单元根据所述第一相关性信息在所述第一时段内丢弃所述第一QoS流的部分或全部数据,或,
    所述处理单元根据所述第一相关性信息降低所述第一QoS流在所述第一时段内的调度优先级,或,
    所述处理单元根据所述第一相关性信息将所述第一QoS流和所述一条或多条第二QoS流分别映射到不同的数据无线承载上。
  26. 一种通信的方法,其特征在于,包括:
    第一网元发送第一相关性信息,所述第一相关性信息用于指示第一服务质量QoS流和一条或多条第二QoS流之间在第一时段内的相关性;
    接入网设备接收所述第一相关性信息,并根据所述第一相关性信息与终端设备在所述第一时段内进行所述第一QoS流的数据和所述一条或多条第二QoS流的数据的传输。
  27. 根据权利要求26所述的方法,其特征在于,所述第一相关性信息具体用于指示所述第一QoS流和所述一条或多条第二QoS流在所述第一时段内相关。
  28. 根据权利要求26所述的方法,其特征在于,所述第一相关性信息具体用于指示所述第一QoS流与所述一条或多条第二QoS流的相关的程度。
  29. 根据权利要求26至28中任一项所述的方法,其特征在于,所述第一相关性信息包括所述第一时段的指示信息。
  30. 根据权利要求26至29中任一项所述的方法,其特征在于,所述第一网元是会话管理网元。
  31. 根据权利要求30所述的方法,其特征在于,所述接入网设备接收所述第一相关性信息包括:
    所述接入网设备接收来自所述会话管理网元的QoS流配置信息,所述QoS流配置信息包括所述第一相关性信息。
  32. 根据权利要求26至29中任一项所述的方法,其特征在于,所述第一网元是用户面功能网元。
  33. 根据权利要求32所述的方法,其特征在于,所述接入网设备接收所述第一相关性信息包括:
    所述接入网设备通过通用分组无线系统隧道用户协议GTP-U的扩展头接收来自所述用户面功能网元的所述第一相关性信息。
  34. 根据权利要求26至33中任一项所述的方法,其特征在于,所述第一网元发送第一相关性信息包括:
    所述第一网元向所述终端设备发送QoS流规则信息,所述QoS流规则信息包括所述第一相关性信息。
  35. 根据权利要求26至34中任一项所述的方法,其特征在于,所述接入网设备根据所述第一相关性信息与终端设备在所述第一时段内进行所述第一QoS流的数据和所述一条或多条第二QoS流的数据的传输包括以下至少一项:
    所述接入网设备根据所述第一相关性信息在所述第一时段内丢弃所述第一QoS流的部分或全部数据,或,
    所述接入网设备根据所述第一相关性信息降低所述第一QoS流在所述第一时段内的调度优先级,或,
    所述接入网设备根据所述第一相关性信息将所述第一QoS流和所述一条或多条第二QoS流分别映射到不同的数据无线承载上。
  36. 一种通信系统,其特征在于,包括第一网元、接入网设备以及终端设备,所述接入网设备用于执行如权利要求1至9中任一项所述的通信方法,所述第一网元用于执行如 权利要求10至16中任一项所述的通信方法。
  37. 一种通信装置,其特征在于,包括:
    处理器,所述处理器与存储器耦合,所述存储器用于存储程序或指令,当所述程序或指令被所述处理器执行时,使得所述装置执行如权利要求1至16中任一项所述的通信的方法。
  38. 一种计算机可读存储介质,其特征在于,所述计算机可读存储介质上存储有计算机程序,当所述计算机程序在计算机上运行时,使得所述计算机执行如权利要求1至16中任一项所述的通信的方法。
  39. 一种计算机程序产品,其特征在于,包括计算机程序代码,当所述计算机程序代码被运行时,实现如权利要求1至16中任一项所述的通信方法。
PCT/CN2023/081214 2022-04-06 2023-03-14 通信方法和通信装置 WO2023193571A1 (zh)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
CN202210356644.9 2022-04-06
CN202210356644.9A CN116939700A (zh) 2022-04-06 2022-04-06 通信方法和通信装置

Publications (1)

Publication Number Publication Date
WO2023193571A1 true WO2023193571A1 (zh) 2023-10-12

Family

ID=88243955

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2023/081214 WO2023193571A1 (zh) 2022-04-06 2023-03-14 通信方法和通信装置

Country Status (2)

Country Link
CN (1) CN116939700A (zh)
WO (1) WO2023193571A1 (zh)

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20200260457A1 (en) * 2017-10-30 2020-08-13 Huawei Technologies Co., Ltd. Method for Improving Service Reliability, Device, and System
JP2020156084A (ja) * 2019-03-19 2020-09-24 ノキア テクノロジーズ オーユー Urllc触覚フィードバック使用例に応じた対応付けられた無線ベアラ間の動的なqos対応付け
WO2021136636A1 (en) * 2020-01-03 2021-07-08 Nokia Technologies Oy Grouping qos flow for user equipment to user equipment communications
WO2021138807A1 (zh) * 2020-01-07 2021-07-15 Oppo广东移动通信有限公司 服务质量QoS参数配置方法及相关装置
CN113676924A (zh) * 2020-05-15 2021-11-19 华为技术有限公司 通信方法、装置及系统

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20200260457A1 (en) * 2017-10-30 2020-08-13 Huawei Technologies Co., Ltd. Method for Improving Service Reliability, Device, and System
JP2020156084A (ja) * 2019-03-19 2020-09-24 ノキア テクノロジーズ オーユー Urllc触覚フィードバック使用例に応じた対応付けられた無線ベアラ間の動的なqos対応付け
WO2021136636A1 (en) * 2020-01-03 2021-07-08 Nokia Technologies Oy Grouping qos flow for user equipment to user equipment communications
WO2021138807A1 (zh) * 2020-01-07 2021-07-15 Oppo广东移动通信有限公司 服务质量QoS参数配置方法及相关装置
CN113676924A (zh) * 2020-05-15 2021-11-19 华为技术有限公司 通信方法、装置及系统

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
HUAWEI, HISILICON: "Solution for KI1: Small Data transmission based on independently suspended and resumed PDU sessions", 3GPP DRAFT; S2-186737 WAS 5338 SMALL DATA TRANSMISSION ENHANCEMENT_V2, 3RD GENERATION PARTNERSHIP PROJECT (3GPP), MOBILE COMPETENCE CENTRE ; 650, ROUTE DES LUCIOLES ; F-06921 SOPHIA-ANTIPOLIS CEDEX ; FRANCE, vol. SA WG2, no. Vilnius, Lithuania; 20180702 - 20180706, 26 June 2018 (2018-06-26), Mobile Competence Centre ; 650, route des Lucioles ; F-06921 Sophia-Antipolis Cedex ; France , XP051538203 *

Also Published As

Publication number Publication date
CN116939700A (zh) 2023-10-24

Similar Documents

Publication Publication Date Title
WO2019029643A1 (zh) 通信方法、基站、终端设备和系统
WO2021244218A1 (zh) 一种通信方法及装置
WO2019029642A1 (zh) 通信方法、基站、终端设备和系统
US20230188472A1 (en) Data transmission method and apparatus
US20230379747A1 (en) Method and apparatus to synchronize radio bearers
US20240031870A1 (en) Media data transmission method and communication apparatus
EP4175356A1 (en) Wireless communication method, terminal device, and network device
US20230354334A1 (en) Communication method and apparatus
WO2023088009A1 (zh) 一种数据传输的方法及通信装置
WO2023193571A1 (zh) 通信方法和通信装置
US20220286899A1 (en) Interface between a radio access network and an application
CN117882385A (zh) 用于调制解调器功率感知扩展现实(xr)和游戏软件应用的系统和方法
WO2021062700A1 (zh) 数据传输的方法、装置及计算机可读存储介质
CA3190818A1 (en) Method and communications apparatus for configuring assistance information
WO2023213139A1 (zh) 通信方法和通信装置
US20230422087A1 (en) Communication method and apparatus
WO2023185608A1 (zh) 一种数据传输的方法及通信装置
WO2024032531A1 (zh) 一种通信的方法、装置和系统
WO2024065524A1 (zh) 分组数据汇聚协议实体建立、分组数据汇聚协议实体建立指示装置以及方法
WO2024092725A1 (zh) 数据映射装置以及方法
WO2023185621A1 (zh) 通信方法及通信装置
WO2023179322A1 (zh) 一种通信方法及装置
WO2024098267A1 (zh) 数据传输装置、数据发送装置以及方法
WO2023070392A1 (zh) 数据传输方法、设备及存储介质
WO2024021853A1 (zh) 通信方法和通信装置

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 23784135

Country of ref document: EP

Kind code of ref document: A1