WO2023185621A1 - 通信方法及通信装置 - Google Patents
通信方法及通信装置 Download PDFInfo
- Publication number
- WO2023185621A1 WO2023185621A1 PCT/CN2023/083364 CN2023083364W WO2023185621A1 WO 2023185621 A1 WO2023185621 A1 WO 2023185621A1 CN 2023083364 W CN2023083364 W CN 2023083364W WO 2023185621 A1 WO2023185621 A1 WO 2023185621A1
- Authority
- WO
- WIPO (PCT)
- Prior art keywords
- information
- network device
- access network
- service
- quality
- Prior art date
Links
- 238000004891 communication Methods 0.000 title claims abstract description 150
- 238000000034 method Methods 0.000 title claims abstract description 147
- 230000006870 function Effects 0.000 claims description 267
- 238000004590 computer program Methods 0.000 claims description 22
- 230000015654 memory Effects 0.000 claims description 14
- 230000008859 change Effects 0.000 claims description 9
- 230000005540 biological transmission Effects 0.000 abstract description 46
- 230000004044 response Effects 0.000 description 24
- 238000005516 engineering process Methods 0.000 description 17
- 230000011664 signaling Effects 0.000 description 16
- 230000006835 compression Effects 0.000 description 9
- 238000007906 compression Methods 0.000 description 9
- 230000008569 process Effects 0.000 description 9
- 238000012545 processing Methods 0.000 description 9
- 238000012986 modification Methods 0.000 description 7
- 230000004048 modification Effects 0.000 description 7
- 230000000694 effects Effects 0.000 description 6
- 238000010586 diagram Methods 0.000 description 5
- 238000013475 authorization Methods 0.000 description 4
- 230000001934 delay Effects 0.000 description 4
- 238000010295 mobile communication Methods 0.000 description 4
- 230000008878 coupling Effects 0.000 description 3
- 238000010168 coupling process Methods 0.000 description 3
- 238000005859 coupling reaction Methods 0.000 description 3
- 230000003993 interaction Effects 0.000 description 3
- 230000003190 augmentative effect Effects 0.000 description 2
- 238000013461 design Methods 0.000 description 2
- 238000011161 development Methods 0.000 description 2
- 230000007774 longterm Effects 0.000 description 2
- 230000014759 maintenance of location Effects 0.000 description 2
- 229920001690 polydopamine Polymers 0.000 description 2
- 238000012546 transfer Methods 0.000 description 2
- 230000006978 adaptation Effects 0.000 description 1
- 230000009286 beneficial effect Effects 0.000 description 1
- 230000001413 cellular effect Effects 0.000 description 1
- 230000007423 decrease Effects 0.000 description 1
- 230000006866 deterioration Effects 0.000 description 1
- 230000004069 differentiation Effects 0.000 description 1
- 239000011521 glass Substances 0.000 description 1
- 230000000977 initiatory effect Effects 0.000 description 1
- 238000012423 maintenance Methods 0.000 description 1
- 238000012544 monitoring process Methods 0.000 description 1
- 230000003287 optical effect Effects 0.000 description 1
- 239000004984 smart glass Substances 0.000 description 1
- 238000006467 substitution reaction Methods 0.000 description 1
- 238000001356 surgical procedure Methods 0.000 description 1
Classifications
-
- H—ELECTRICITY
- H04—ELECTRIC COMMUNICATION TECHNIQUE
- H04L—TRANSMISSION OF DIGITAL INFORMATION, e.g. TELEGRAPHIC COMMUNICATION
- H04L12/00—Data switching networks
- H04L12/02—Details
- H04L12/14—Charging, metering or billing arrangements for data wireline or wireless communications
-
- H—ELECTRICITY
- H04—ELECTRIC COMMUNICATION TECHNIQUE
- H04W—WIRELESS COMMUNICATION NETWORKS
- H04W28/00—Network traffic management; Network resource management
- H04W28/02—Traffic management, e.g. flow control or congestion control
Definitions
- the embodiments of the present application relate to the field of communication technology, and more specifically, to a communication method and a communication device.
- the access network device feeds back to the application function device through the protocol data unit (PDU) session resource notification (session resource notify) message that the value of the service quality parameter corresponding to its data flow does not meet the network configuration.
- PDU protocol data unit
- session resource notify session resource notify
- the value requirement is to realize the application function device to obtain the guaranteed rate capability that the access network device can provide for the service quality flow.
- the application function device can adjust the output rate of its own data stream to ensure real-time or low-latency transmission of the data stream.
- the access network device In order to prevent the access network device from frequently feeding back PDU session resource notification messages to the application function device, the access network device will add a delay between feeding back PDU session resource notification messages twice.
- the delay time (which can be called the second delay time) is determined by the access network equipment. However, if the delay time is long, the application function device will not be able to obtain the guaranteed data flow rate provided by the access network equipment in a timely manner, causing the application function device to be unable to obtain the data flow rate guaranteed by the access network equipment in a timely manner. Rate capability.
- the data flow corresponding to the service has high requirements for real-time performance and low latency, and the data flow corresponding to the service has a short cycle and a large amount of data, it is easy for the access network equipment to interfere with the data flow corresponding to the service.
- the guaranteed rate decreases, but the data flow corresponding to the service is still transmitted to the access network equipment at the original rate, which leads to congestion and ultimately causes delays in the transmission of the data flow.
- this application provides a communication method and communication device.
- the first delay time involved in the communication method is determined based on the first parameter of the data flow. Compared with the above-mentioned second delay time, it is more in line with the low delay or real-time requirements of the business corresponding to the data flow. In this way, the access network equipment can transmit data streams with high real-time or low-latency requirements within the delay budget, thereby avoiding the problem of transmission delays in data streams.
- a communication method includes: the access network device obtains a first delay time based on the received first information, where the first delay time is the time interval for the access network device to feed back the second information to the core network device, and the first delay time is:
- the second information is used to indicate the ability of the access network equipment to support quality of service parameters.
- the quality of service parameters are configured by the core network equipment for the quality of service flow.
- the first delay time is determined based on the first parameter of the data flow.
- the data flow and the quality of service flow Correspondingly: when the notification control parameter is obtained and the access network device's ability to support the service quality parameter changes, the second information is sent to the core network device according to the first delay time, so The notification control parameters correspond to the service quality parameters.
- the communication method may be performed by the access network device.
- it may also be performed by a chip or circuit used in the access network equipment. This application does not limit this.
- the following description takes execution by the access network device as an example.
- the access network device obtains the first delay time based on the received first information, and when the notification control parameter is obtained and the access network device's ability to support the quality of service parameter changes, the access network device sends a notification to the core according to the first delay time.
- Network equipment indicates the access network equipment's ability to support quality of service parameters.
- the access network equipment can promptly Provides feedback to the core network equipment on its ability to support quality of service parameters, so that the core network equipment can promptly obtain the guaranteed rate that the access network equipment can provide for the quality of service flow. Furthermore, the core network equipment can promptly feedback to the application function equipment the guaranteed rate that the access network equipment can provide for the service quality flow, so that the application function equipment can adjust the output rate of its own data flow to ensure the service data flow.
- the generated rate is within the guaranteed rate range of the access network equipment, thereby meeting the real-time or low-latency transmission of data flows.
- the first information comes from a core network device or an application function device, and the first information includes a first parameter or a first delay time.
- the first parameter includes at least one of the following: data packet delay budget, data packet arrival period, and data packet size.
- the data packet is part of the data stream.
- the data flow is the data flow sent by the application function device to the access network device through the core network device.
- the access network device obtains the first delay time according to the received first information, including: The access network device obtains the first delay time based on the received first information.
- the first information in the case where the first information includes the first delay time, the first information is determined by the application function device and is sent to the access via the core network device. network equipment; or, in the case where the first information includes the first delay time, the first information is determined by the core network equipment and then sent to the access network equipment.
- the method further includes: the application function device receives second information via the core network device; and the application function device adjusts the rate of the data stream output by the application function device according to the second information.
- the service quality parameters include the notification control parameters.
- the data flow is sent by the application function device to the access network device via the core network device, and/or the quality of service flow is used to manage the data flow.
- the second aspect provides a communication method.
- the method includes: at the first moment, determining that the access network device's ability to support the service quality parameter corresponding to the service quality flow changes at the third moment; at the second moment, sending fourth information to the core network device; wherein, the third moment The time is later than the first time; the second time is later than the first time or the second time is the first time, and the second time is earlier than the third time; the fourth information is used to indicate: the access network device responds to the request at the third time Service quality parameters Changes in data support capabilities, and the guaranteed output rate of the data flow corresponding to the quality of service flow supported by the access network equipment at the third moment.
- the communication method may be performed by the access network device. Alternatively, it may also be performed by a chip or circuit used in the access network equipment. This application does not limit this. For convenience of description, the following description takes execution by the access network device as an example.
- the access network equipment can predict changes in the service quality parameter support capabilities corresponding to the service quality flow in advance, and feedback the access network equipment's service quality support capabilities to the core network equipment before the access network equipment's service quality parameter support capabilities change.
- Parameter support capabilities That is to say, the access network equipment can feedback the changed service quality flow to the core network equipment in advance, as well as the guaranteed rate that the access network equipment can provide for the service quality flow after the change, so that the core network equipment can obtain the change in advance.
- the quality of service flow and the guaranteed rate that the access network equipment can provide for the quality of service flow after changes occur.
- the core network equipment can feedback the changed service quality flow to the application function equipment in advance and the guaranteed rate that the access network equipment can provide for the service quality flow after the change, so that the application function equipment can monitor the service quality when the access network equipment Before the service quality parameter support capability corresponding to the flow changes, the output rate of its own data flow can be adjusted according to the guaranteed rate that the access network equipment can provide for the quality of service flow to ensure that the generation rate of the service data flow is Within the guaranteed rate range of network access equipment, thus meeting the real-time or low-latency transmission of data streams.
- the fourth information format is determined based on the first parameter of the data stream.
- the method before sending the fourth information to the core network device at the second moment, the method further includes: determining the first parameter; according to the first parameter, The fourth information format is determined.
- the method further includes: receiving third information from the core network device, the third information being used to indicate the first parameter; determining the first parameter includes: : Determine the first parameter based on the third information.
- the method further includes: receiving third information from the core network device, the third information being used to indicate the fourth information format; at the second moment, Before the core network device sends the fourth information, the method further includes: determining the fourth information format according to the third information.
- the first parameter includes at least one of the following: data packet delay budget, data packet arrival period, and data packet size.
- the third aspect provides a communication method.
- the method includes: receiving third information from an application function device, the third information being used to indicate a fourth information format; wherein the third moment is the moment when the access network device's ability to support quality of service parameters changes; and sending the request to the access network device.
- Send third information receive fourth information from the access network device, the fourth information is used to indicate changes in the access network device's ability to support quality of service parameters corresponding to the quality of service flow at the third moment, and the access network device in The output guaranteed rate of the data stream corresponding to the quality of service flow supported at the third moment, the fourth information is sent by the access network device at the second moment, and the second moment is earlier than the third moment; sending the third moment to the application function device Four messages.
- This communication method can be performed by core network equipment. Alternatively, it may be performed by chips or circuits used in core network equipment. This application does not limit this. For convenience of description, the following takes the execution of core network equipment as an example for description.
- the fourth information format is determined based on the first parameter of the data stream.
- the third information includes the first parameter
- the method also includes Includes: determining the fourth information format according to the third information.
- the first parameter includes at least one of the following: data packet delay budget, data packet arrival period, and data packet size.
- the fourth aspect provides a communication method.
- the method includes: sending third information to the core network device, the third information being used to indicate a fourth information format; receiving fourth information from the core network device, the fourth information being sent by the access network device to the core network at the second moment of the device, the second moment is earlier than the third moment; and the output data flow rate of the application function device is adjusted according to the output guaranteed rate indicated by the fourth information.
- the fourth information is used to indicate: changes in the access network device's ability to support quality of service parameters corresponding to the quality of service flow at the third moment, and changes in the access network device's ability to support the quality of service parameter corresponding to the quality of service flow at the third moment.
- the third moment is the moment when the access network equipment's ability to support service quality parameters changes.
- This communication method can be performed by the application functional device. Alternatively, it may be performed by a chip or circuit used in the application functional device. This application does not limit this. For convenience of description, the following description takes the execution of the application function device as an example.
- the fourth information format is determined based on the first parameter of the data stream.
- the third information includes the first parameter
- the method further includes: determining the fourth information format according to the first parameter.
- the first parameter includes at least one of the following: data packet delay budget, data packet arrival period, and data packet size.
- a communication device configured to perform the communication method in any of the above-mentioned first aspects and possible implementations of the first aspect.
- the communication device may include a unit and/or module, such as a processor and/or a transceiver, for executing the communication method provided by the first aspect or any one of the above implementations of the first aspect.
- the communication device is access network equipment, core network equipment and/or application function equipment.
- the transceiver may also be a transceiver circuit, an input/output interface, or an input/output circuit.
- the communication device is a chip, chip system or circuit configured in access network equipment, core network equipment and/or application function equipment.
- the transceiver may be an input/output interface, interface on the chip, chip system or circuit circuit, output circuit, input circuit, pin or related circuit, etc.
- the processor may be at least one processor, processing circuit, logic circuit, etc.
- a communication device configured to perform the communication method in any of the above-mentioned first aspects and possible implementations of the first aspect.
- the communication device may include a unit and/or module, such as a processor and/or a transceiver, for executing the communication method provided by the first aspect or any one of the above implementations of the first aspect.
- the communication device is an access network device.
- the transceiver may also be a transceiver circuit, an input/output interface, or an input/output circuit.
- the communication device is a chip, chip system or circuit configured in the access network equipment.
- the transceiver may be an input/output interface, interface circuit, output circuit, input circuit or pin on the chip, chip system or circuit. or related circuits wait.
- the processor may be at least one processor, processing circuit, logic circuit, etc.
- a communication device configured to perform the communication method in any of the above-mentioned first aspects and possible implementations of the first aspect.
- the communication device may include a unit and/or module, such as a processor and/or a transceiver, for executing the communication method provided by the first aspect or any one of the above implementations of the first aspect.
- the communication device is core network equipment.
- the transceiver may also be a transceiver circuit, an input/output interface, or an input/output circuit.
- the communication device is a chip, chip system or circuit configured in core network equipment.
- the transceiver may be an input/output interface, interface circuit, output circuit, input circuit, pin or Related circuits, etc.
- the processor may be at least one processor, processing circuit, logic circuit, etc.
- a communication device configured to perform the communication method in any of the above-mentioned first aspects and possible implementations of the first aspect.
- the communication device may include a unit and/or module, such as a processor and/or a transceiver, for executing the communication method provided by the first aspect or any one of the above implementations of the first aspect.
- the communication device is an application function device.
- the transceiver may also be a transceiver circuit, an input/output interface, or an input/output circuit.
- the communication device is a chip, chip system or circuit configured in an application functional device.
- the transceiver may be an input/output interface, interface circuit, output circuit, input circuit, pin or Related circuits, etc.
- the processor may be at least one processor, processing circuit, logic circuit, etc.
- a ninth aspect provides a processor for executing the communication method in any one of the possible implementations of the first to sixth aspects.
- processor output, reception, input and other operations can be understood as processor output, reception, input and other operations.
- transmitting and receiving operations performed by the radio frequency circuit and the antenna, which is not limited in this application.
- a computer program product includes a computer program (which may also be called a code, or an instruction).
- a computer program which may also be called a code, or an instruction.
- the computer program When the computer program is run, it causes the computer to perform the communication method in any of the possible implementations of the first to fourth aspects.
- a computer-readable storage medium stores a computer program (which may also be called a code, or an instruction), which, when run on a computer, causes the computer to perform the communication method in any of the possible implementations of the first to fourth aspects. .
- a chip including: a processor for calling and running a computer program from a memory, so that a communication device installed with the chip executes any one of the above first to fourth aspects, which may be implemented method of communication.
- the chip also includes a memory, in which computer programs or instructions are stored.
- the processor is used to execute the computer programs or instructions stored in the memory.
- the processor is used to execute The communication method in any possible implementation manner of the above-mentioned first to fourth aspects.
- a communication system including access network equipment, core network equipment and/or application function equipment.
- the access network device is configured to perform the communication method in any possible implementation manner of the above second aspect; or, the core network device is configured to perform the communication method in any possible implementation manner of the above third aspect. communication method; or, The core network device is configured to perform the communication method in any possible implementation manner of the fourth aspect.
- Figure 1 is an architectural diagram of an example communication system provided by this application.
- Figure 2 is a schematic diagram of an example of the output data flow rate of the access network device and the output data flow rate of the application function device provided by this application.
- Figure 3 is a schematic flow chart of an example communication method provided by an embodiment of the present application.
- Figure 4 is a schematic flow chart of another communication method provided by an embodiment of the present application.
- FIG. 5 is a schematic block diagram of an example of a communication device provided by an embodiment of the present application.
- "instruction” may include direct instruction and indirect instruction, and may also include explicit instruction and implicit instruction.
- the information indicated by a certain piece of information (such as the first information described below) is called information to be indicated.
- the information to be indicated may be directly indicated, such as the information to be indicated itself or the index of the information to be indicated, etc.
- the information to be indicated may also be indirectly indicated by indicating other information, where there is an association relationship between the other information and the information to be indicated. It is also possible to indicate only a part of the information to be indicated, while other parts of the information to be indicated are known or agreed in advance.
- the indication of specific information can also be achieved by means of a pre-agreed (for example, protocol stipulated) arrangement order of each piece of information, thereby reducing the indication overhead to a certain extent.
- pre-configuration can be achieved by pre-saving corresponding codes, tables or other instructions in the device (for example, application function device, core network device or access network device). It is implemented in the form of information, and this application does not limit its specific implementation manner.
- GSM global system of mobile communication
- CDMA code division multiple access
- WCDMA broadband code division multiple access
- GPRS general packet radio service
- LTE long term evolution
- FDD frequency division duplex
- TDD LTE Time division duplex
- UMTS universal mobile telecommunication system
- WiMAX global interoperability for microwave access
- V2V vehicle to vehicle
- V2I Vehicle to infrastructure
- V2P vehicle to pedestrian
- V2N vehicle to network
- FIG. 1 is a schematic diagram of the architecture of a communication system suitable for embodiments of the present application.
- the architecture is, for example, the 5h generation system (5GS).
- the 5GS includes terminal equipment, radio access network (RAN) equipment, access and mobility management function (AMF) equipment, session management function (SMF) equipment, and policies Control function (policy control function, PCF) equipment, network exposure function (NEF) equipment, application function (AF) equipment, and some equipment not shown in Figure 1, such as network function storage function (network function storage function) function repository function, NRF) equipment, etc.
- RAN radio access network
- AMF access and mobility management function
- SMF session management function
- policy control function policy control function
- NEF network exposure function
- AF application function
- NRF network function storage function repository function
- NRF network function storage function repository function
- the equipment shown in Figure 1 can also be called a network element, which is not limited in this embodiment of the present application.
- a network element which is not limited in this embodiment of the present application.
- the embodiments of this application are all described using equipment as an example.
- Terminal equipment It can also be called user equipment (UE), access terminal, user unit, user station, mobile station, mobile station, remote station, remote terminal, mobile device, user terminal, terminal, wireless communication device, user agent, or user device.
- UE user equipment
- An end device may be a device that provides voice/data connectivity to a user.
- handheld devices vehicle-mounted devices, etc. with wireless connection capabilities.
- terminals are: mobile phones, tablets, laptops, PDAs, mobile internet devices (MID), wearable devices, virtual reality (VR) devices, augmented reality (augmented reality, AR) equipment, wireless terminals in industrial control, wireless terminals in self-driving, wireless terminals in remote medical surgery, smart grid Wireless terminals in transportation safety (transportation safety), wireless terminals in smart city (smart city), wireless terminals in smart home (smart home), cellular phones, cordless phones, session initiation protocols protocol (SIP) telephones, wireless local loop (WLL) stations, personal digital assistants (personal digital assistants, PDAs), handheld devices with wireless communications capabilities, computing devices or other processing devices connected to wireless modems, Vehicle-mounted devices, wearable devices, terminal devices in the 5G network or terminal devices in the future evolved public land mobile communication network (public land mobile network, PLMN), etc., are not
- the terminal device may also be a wearable device.
- Wearable devices can also be called wearable smart devices. It is a general term for applying wearable technology to intelligently design daily wear and develop wearable devices, such as glasses, gloves, watches, clothing and shoes, etc.
- a wearable device is a portable device that is worn directly on the body or integrated into the user's clothing or accessories. Wearable devices are not just hardware devices, but also achieve powerful functions through software support, data interaction, and cloud interaction.
- wearable smart devices include full-featured, large-sized devices that can achieve complete or partial functions without relying on smartphones. For example: smart watches or smart glasses, etc., and those that only focus on a certain type of application function and need to be used in conjunction with other devices such as smartphones, such as various types of sports activities. Smart bracelets, smart jewelry, etc. for levy monitoring.
- the terminal device may also be a terminal device in the Internet of things (IoT) system.
- IoT Internet of things
- Its main technical feature is to transfer items through communication technology. Connect with the network to realize an intelligent network of human-computer interconnection and physical-object interconnection.
- RAN Provides network access functions for terminal devices, and can use transmission tunnels of different qualities according to user levels, business needs, etc.
- the access network may be an access network using different access technologies.
- 3GPP access technologies such as those used in 3G, 4G or 5G systems
- non-3GPP (non-3GPP) access technologies 3GPP access technology refers to access technology that complies with 3GPP standard specifications.
- the access network equipment in the 5G system is called next generation node base station (gNB).
- gNB next generation node base station
- Non-3GPP access technology refers to access technology that does not comply with 3GPP standard specifications, such as the air interface technology represented by the access point (AP) in wireless fidelity (WiFi).
- AP access point
- WiFi wireless fidelity
- Wireless access network equipment can manage wireless resources, provide access services to terminal equipment, and then complete the forwarding of control signals and user data between terminal equipment and core network equipment.
- a message indicating the access is sent to the session management function device.
- Access network equipment includes, for example, but is not limited to: next-generation base stations in 5G, evolved node B (evolved node B, eNB), radio network controller (radio network controller, RNC), node B (node B, NB), Base station controller (BSC), base transceiver station (BTS), home base station (for example, home evolved nodeB, or home node B, HNB), baseband unit (baseBand unit, BBU), transmission point (transmitting and receiving point, TRP), transmitting point (TP), mobile switching center, etc.
- next-generation base stations in 5G evolved node B (evolved node B, eNB), radio network controller (radio network controller, RNC), node B (node B, NB), Base station controller (BSC), base transceiver station (BTS), home base station (for example, home evolved nodeB, or home node B, HNB), baseband unit (baseBand unit, BBU), transmission point (transmitting and receiving point, TRP
- the access network device can also be a wireless controller in a cloud radio access network (CRAN) scenario, or the access network device can be a relay station, access point, vehicle-mounted device, wearable device, and future 5G Network equipment in the network or network equipment in the future evolved PLMN network, etc.
- CRAN cloud radio access network
- the embodiments of this application do not limit the specific technology and specific equipment form used by the wireless access network equipment.
- Access and mobility management function equipment mainly used for mobility management and access management, such as user location update, user registration network, user switching, etc.
- access and mobility management function equipment can receive non-access stratum (NAS) signaling (including mobility management (MM) signaling and session management (SM) of the terminal device) Signaling) and related signaling of access network equipment (for example, N2 signaling at the base station granularity that interacts with mobility management network elements) to complete the user registration process and forwarding of SM signaling and mobility management.
- NAS non-access stratum
- MM mobility management
- SM session management
- Access and mobility management functional equipment can also be used to implement other functions in the mobility management entity (MME) in addition to session management. For example, functions such as lawful interception or access authorization (or authentication).
- the access and mobility management function device may be responsible for forwarding messages sent from the session management function device to the RAN.
- Session management function device It is a control plane network element provided by the operator network and is responsible for managing the PDU session of the terminal device.
- the PDU session is a channel for publishing PDUs.
- the terminal device needs to transmit PDUs to each other through the PDU session and the data network (DN) device.
- the PDU session is established and maintained by the session management function device. and delete etc.
- Session management function equipment includes session management (such as session establishment, modification and release, including tunnel maintenance between user plane network elements and access network equipment), user plane network element selection and control, business and session management continuity (service and session continuity (SSC) mode selection, roaming and other session shutdown functions.
- session management such as session establishment, modification and release, including tunnel maintenance between user plane network elements and access network equipment
- SSC service and session continuity
- the session management function device is responsible for forwarding the quality of service configuration file and managing the quality of service flow.
- Policy control function equipment Mainly responsible for policy control functions such as session and business flow level billing, service quality bandwidth guarantee and mobility management, terminal device policy decision-making, etc.
- the policy control function device is responsible for formulating a service quality configuration file and forwarding it to the session management function device.
- Network opening function equipment used to safely open services and capabilities provided by 3GPP network functions to the outside world.
- Application function equipment responsible for providing services to the 3GPP network, such as affecting service routing, interacting with policy control (policy control) network elements for policy control, etc.
- the application function device can provide service quality requirements (for example, QoSreference information), pass the service quality requirements to the policy control function device, and subscribe to one or more service quality profiles.
- the application function device can also receive the PDU session resource notification message fed back by the policy control function device.
- the PDU session resource notification message is used to indicate the access network device's ability to support quality of service parameters and adjust its output data flow in real time. s speed.
- the application function device may be a third-party functional entity, that is to say, the application function device may be an application function device external to the 3GPP network.
- the application function device may be an application service deployed by an operator, that is to say, the application function device may be an application function device within the 3GPP network.
- the application function device may refer to the application server associated with the application function network element.
- the above network elements or functions can be network elements in hardware devices, software functions running on dedicated hardware, or virtualization functions instantiated on a platform (for example, a cloud platform).
- a platform for example, a cloud platform.
- the above network element or function can be implemented by one device, can be implemented by multiple devices, or can be a functional module in one device, which is not specifically limited in the embodiments of this application.
- next generation network (next generation, NG) 1 interface (referred to as the N1 interface) is the interface between the terminal equipment and the access and mobility management function equipment; the N2 interface is the (R)AN and access and mobility management function equipment.
- the interface of the mobility management function device is used for sending non-access stratum (NAS) messages, etc.
- the N11 interface is the interface between the access and mobility management function device and the session management function device
- the N7 interface It is the interface between the session management function device and the policy control function device
- the N30 interface is the interface between the policy control function device and the network opening function device
- the N5 interface is the interface between the policy control function device and the application function device
- the N33 interface Open interfaces between functional devices and application functional devices for the network.
- N1, N2, N11, N7, N30, N5, and N33 are interface serial numbers.
- the meaning of these interface serial numbers can be found in the meaning defined in the 3rd generation partnership project (3GPP) standard protocol, which is not limited here.
- 3GPP 3rd generation partnership project
- the architecture that can be applied to the embodiment of the present application shown in Figure 1 is only an example.
- the architecture applicable to the embodiment of the present application is not limited to this. Any architecture that can realize the functions of each of the above devices is suitable for the implementation of the present application. example.
- Service quality a description of the overall requirements in the data flow service process. Different service qualities can be provided for different data flow services.
- QoS flow Mainly used to manage data flow. Each data flow has a quality of service flow corresponding to the data flow. It is the minimum granularity at which the 5G system provides differentiated QoS within a PDU session.
- This QoS flow is mainly generated based on the quality of service profile.
- the English corresponding to the quality of service flow can be QoS flow or other English names, which is not limited in this application.
- Service quality reference It can be understood as an example of service quality requirements. It is mainly customized by the application function device for different data flows.
- the English corresponding to the quality of service reference may be QoSreference or other English names, which is not limited in this application.
- Service quality configuration file includes the value of at least one service quality parameter corresponding to the service quality flow.
- the English corresponding to the quality of service profile may be QoSprofile or other English names, which is not limited in this application.
- the policy control function device may generate at least one quality of service profile based on the quality of service reference.
- the service quality reference parameters include but are not limited to at least one of the following: 5G QoS Identifier (5G QoS Identifier, 5QI), allocation and retention priority (allocation and retention priority, ARP), reflective QoS attribute (reflective qos attribute) , RQA), guaranteed flow bit rate (guaranteed flow bit rate, GFBR), guaranteed bit rate (guaranteed bit rate, GBR), maximum flow bit rate (MFBR), maximum packet loss rate (maximum packet loss rate , MPLR), packet delay budget (packet delay budget, PDB), packet error rate (packet error rate, PER).
- 5G QoS Identifier 5G QoS Identifier, 5QI
- allocation and retention priority allocation and retention priority
- ARP allocation and retention priority
- reflective QoS attribute reflective qos attribute
- the service quality parameters may also include notification control (notification control).
- the policy control function device After the policy control function device generates the service quality configuration file, it will transmit the service quality configuration file to the access network device through the session management function device and the access and mobility management function device, so that the access network device can, according to the service quality configuration file, Transmit the data stream corresponding to this quality of service profile.
- the service corresponding to the data flow may be affected.
- the value of the quality parameter does not meet the value requirements configured by the network.
- the access network device can first adjust the rate of its own output data stream, that is, the access network device first adjusts the rate of the data stream it transmits to the terminal device.
- the access network device then feeds back to the application function device that the value of the service quality parameter corresponding to the data stream it outputs does not meet the value requirements configured by the network.
- the access network device For example, if the application-enabled device does not subscribe to an alternative quality of service profile from the network. That is to say, the access network device only receives one quality of service profile corresponding to the quality of service flow.
- the access network device sends a notification to the application function device through the access and mobility management function device, session management function device and policy control function device Control, which means "GFBR can no longer be guaranteed (GFBR can no longer be guaranteed)".
- GFBR can no longer be guaranteed (GFBR can no longer be guaranteed)
- the access network device will still retain the service quality flow and try its best to satisfy the service quality profile until the core network device notifies the access network device to release the resources of the service quality flow.
- the access network device receives multiple QoS profiles corresponding to the QoS flow.
- the access network device can select a quality of service profile that can satisfy the current stream bit rate among multiple quality of service profiles. Then, the access network device sends notification control to the application function device through the access and mobility management function device, session management function device and policy control function device, indicating that "GFBR of the QoS Flow can no longer be guaranteed)” and “The reference to the Alternative QoS parameter set”.
- the notification control sent by the access network equipment to the application function equipment indicates that "GFBR of the QoS Flow can no longer (or can again) be guaranteed" and "minimum optional service” The lowest alternative QoS profile cannot be fulfilled.”
- the application function device can change the output rate of its own data flow according to the guaranteed rate that the access network device can provide for the quality of service flow. Ensure that the generation of service data flows is within the guaranteed rate range that the access network can provide, and ultimately meet the real-time or low-latency transmission of data flows.
- the quality of service parameters corresponding to a certain quality of service flow may not meet the value requirements configured by the network or fail to meet the value configured by the network. Switch frequently between requirements.
- the access network device adds a second delay time between two feedbacks of PDU session resource messages.
- the second delay time is determined by the access network equipment.
- the delay time (hysteresis) of the access network equipment time) may be based on the coherence time of the channel. For example, if the carrier frequency is 4GHz and the terminal device moves at a speed of 3km/h, the coherence time is about 38ms, and the delay time can be 38ms.
- the application function device will not be able to obtain the support capability of the access network device for quality of service parameters in time, so that the input data flow rate of the access network device will not be adjusted in time.
- the transmission may not be completed within the delay budget during the transmission process, and the data stream will suffer from transmission delays.
- Figure 2 is a schematic diagram of an example of the output data flow rate of the access network device and the output data flow rate of the application function device provided by this application.
- the output data flow rate s(t) of the access network device and the output data flow rate r(t) of the application function device are maintained at v1.
- the access network device will first lower the rate s(t) of its own output data stream. For example, the access network device lowers the rate of its own output data flow from v1 to v2 between time t1 and time t2, and maintains the rate of its own output data flow at v2.
- the access network device determines the second delay time according to the quality and/or congestion of the wireless link, and feeds back the PDU session resource message to the application function device.
- the application function device After the application function device receives the PDU session resource message fed back by the access network device, the application function device will accordingly lower the rate of its own output data stream. For example, the access network device lowers the rate of its own output data flow from v1 to v2 between time t3 and time t4, and maintains the rate of its own output data flow at v2.
- the delay time is 38ms and the service corresponding to the transmitted data stream is an extended reality (XR) service
- the video frame rate corresponding to the XR service is 60 frames per second (frame per second, fps)
- the interval between each frame is 16.7ms.
- the application function device will adjust the rate of its own output data stream at the earliest time (t1+38ms), that is, t4 ⁇ (t1+38ms). In this way, at least two frames of data cannot follow the adjustment of the wireless link status on the access network device side in time. In this way, the delay required for data transmission of these two frames may become longer. Since some services, such as XR services, have high real-time requirements, if the data transmission delay is too long and exceeds the delay budget, it will lead to frame loss.
- XR extended reality
- the access network device can use the access network in the IP multimedia subsystem (ip multimedia subsystem, IMS).
- IP multimedia subsystem ip multimedia subsystem, IMS.
- Access network bitrate recommendation (ANBR) signaling Recommend a bit rate value to the terminal device, which is passed to the application layer after removing redundancy, thereby changing the application layer's selection of the codec type (codec type) of the source end (application function device end).
- codec type codec type of the source end (application function device end).
- the access network device can notify the application function device through the data packet header of the real-time transport protocol (RTP) protocol.
- RTP real-time transport protocol
- the implementation of ANBR signaling mainly relies on the medium access control (MAC) layer signaling between the terminal device and the access network device.
- the MAC layer signaling can be a recommended bit rate control element (control element, CE) (recommended bit rate MAC CE).
- ANBR signaling relies on air interface interaction and consumes air interface resources.
- the embodiment of the present application provides a communication method.
- the first delay time is determined based on the first parameter of the data flow.
- it is more in line with the low delay or real-time requirements of the business corresponding to the data flow.
- the generation rate of the service data flows is within the range required by the access network equipment. It can provide a guaranteed rate within the range to meet the real-time or low-latency transmission of data streams.
- the transmission of data streams in this communication method does not depend on the IMS, and the consumption of air interface resources of the IMS is also avoided.
- Figure 3 is a schematic flow chart of an example communication method 200 provided by an embodiment of the present application.
- the communication method 200 includes S210 to S260.
- the following introduces S210 to S260 in detail.
- S210 The application function device obtains the first delay time.
- the first delay time is a time interval for the access network device to feed back the second information to the core network device, and the second information is used to indicate the access network device's ability to support quality of service parameters.
- the first delay time may also be called a first delay window, a first delay delay, a first delay time, etc.
- the embodiment of the present application does not limit the name of the first delay time.
- the access network device's ability to support quality of service parameters corresponding to the quality of service flow may include: the access network device cannot support the quality of service parameters; or the access network device can support the quality of service parameters. Therefore, the second information may be used to indicate that the access network device cannot support the quality of service parameter; or the second information may be used to indicate that the access network device can support the quality of service parameter.
- the application function device obtains the first delay time according to the first parameter of the data flow.
- the first parameter may include at least one of the following: PDB, data packet arrival period, and data packet size.
- the data packet is part of the data flow.
- the data flow is the data flow sent by the application function device to the access network device through the core network device.
- the first delay time may be N times the data packet arrival period or PDB. Among them, 0 ⁇ N ⁇ 1.
- N can be 1/10, 1/8, 1/4, 1/2, etc.
- the first delay time may be inversely proportional to the size of the data packet.
- the application function device obtains the first delay time according to the communication protocol.
- the communication protocol may stipulate that the first delay time is a preset value.
- the embodiment of the present application does not limit the value of the preset value described in this embodiment.
- the preset value is smaller than the second delay time determined by the access network device itself.
- the second delay time can be obtained based on a large amount of experimental data.
- the delay time corresponding to the XR service determined by the access network equipment is 38ms
- the delay time corresponding to the XR service determined in the embodiment of this application may be 1/4 or 1/2 of the data packet arrival period, such as 4ms ⁇ 8ms, which is far less than 38ms.
- S220 The application function management device sends the first information to the core network device.
- the core network device receives the first information sent by the application function device.
- the first information is used to indicate the first delay time.
- the core network equipment includes policy control function equipment, session management function equipment, and access and mobility management function equipment
- the specific process of S220 includes S221 to S223. Below, S221 to S223 will be introduced in detail.
- the application function device sends the first information to the policy control function device.
- the policy control function device receives the first information sent by the application function device.
- the application function device directly sends the first information to the policy control function device.
- the application function device may send the first information to the policy control function device through the network opening function device. Specifically, the application function device may first transmit the first information to the network opening function device, and then the network opening function device forwards the first information to the policy control function device.
- This embodiment of the present application does not limit the transmission method of the first information described in S221.
- the first information involved in S221 may be carried in an existing policy authorization creation request message (Npcf_PolicyAuthoriza-tion_Create Request).
- S222 The policy control function device sends the first information to the session management function device.
- the session management function device receives the first information sent by the policy control function device.
- the embodiment of the present application does not limit the transmission method of the first information described in S222.
- the first information described in S222 may be carried in an existing policy association establishment (SM_PolicyAssociation Establishment) message or in a policy association modification (SMF initiated SM Policy Association Modification) initiated by the session management function device.
- SM_PolicyAssociation Establishment SM_PolicyAssociation Establishment
- SMF initiated SM Policy Association Modification SM Policy Association Modification
- the session management function device sends the first information to the access and mobility management function. Accordingly, the access and mobility management function receives the first information sent by the session management function device.
- the embodiment of the present application does not limit the transmission method of the first information described in S223.
- the first information described in S223 may be carried in an existing N1N2 message transfer container message (Namf_Communication_N1N2MessageTransfer).
- the core network device sends the first information to the access network device.
- the access network device sends the first information to the core network device.
- the core network equipment includes policy control function equipment, session management function equipment, and access and mobility management functions
- the core network equipment described in S230 refers to the access and mobility management functions.
- the embodiment of the present application does not limit the transmission method of the first information described in S230.
- the first information described in S230 may be carried in an existing N2 PDU session request (N2 PDU session request) message.
- N2 PDU session request N2 PDU session request
- S240 After obtaining the notification control parameter and the access network device's ability to support the service quality parameter changes, send the second information to the core network device according to the first delay time. Correspondingly, the core network device receives the second information sent by the access network device.
- the service quality parameters include corresponding notification control parameters.
- the change in the access network equipment's ability to support the quality of service parameters may include: the access network equipment changes from being unable to support the quality of service parameters to being able to support the quality of service parameters; or, the access network equipment changes from being able to support the quality of service parameters to being able to support the quality of service parameters. Parameter changes are unable to support quality of service parameter changes.
- the second information is used to indicate that the access network device is able to support the change of the quality of service parameter.
- the second information is used to indicate that the access network equipment is unable to support the quality of service parameters. Support changes in service quality parameters.
- the embodiment of the present application does not limit the transmission method of the second information described in S240.
- the second information described in S240 may be carried in an existing PDU session resource notification message.
- the core network equipment includes policy control function equipment, session management function equipment, and access and mobility management functions
- the core network equipment described in S240 refers to the access and mobility management functions.
- the core network device sends the second information to the application function device.
- the application function device receives the second information sent by the core network device.
- the core network equipment includes policy control function equipment, session management function equipment, and access and mobility management functions
- the specific process of S250 includes S251 to S253. Below, S251 to S253 will be introduced in detail.
- the access and mobility management function sends second information to the session management function device.
- the session management function device receives the second information sent by the access and mobility management function.
- the embodiment of the present application does not limit the transmission method of the second information described in S251.
- the second information described in S251 may be carried in an existing PDU session update context (Namf_PDUsession_update SM context) message.
- Namf_PDUsession_update SM context existing PDU session update context
- the session management function device may also send the first response information to the access and mobility management function.
- the access and mobility management function receives the first response information sent by the session management function device.
- the first response information is used to indicate that the session management function device has received the second information sent by the access and mobility management function.
- the embodiment of the present application does not limit the transmission method of the first response information.
- the first response information may be carried in an existing PDU session update context response (Response of Nsmf_PDUsession_update SM context) message.
- PDU session update context response Response of Nsmf_PDUsession_update SM context
- S252 The session management function device sends the second information to the policy control function device.
- the policy control function device receives the second information sent by the session management function device.
- This embodiment of the present application does not limit the transmission method of the second information described in S252.
- the second information described in S252 may be carried in a policy association modification response (SMF initiated SM Policy Association Modification Response) message initiated by an existing session management function device.
- SMF initiated SM Policy Association Modification Response SM Policy Association Modification Response
- the policy control function device may also send second response information to the session management function device.
- the session management function device receives the second response information sent by the policy control function device.
- the second response information is used to indicate that the policy control function device has received the second information sent by the session management function device.
- the embodiment of the present application does not limit the transmission method of the second response information.
- the second response information may be carried in an existing policy association establishment response (Response of SM_PolicyAssociation Establishment) message or in a policy association modification response (Response of SMF initiated SM Policy Association Modification) initiated by the session management function device.
- S253 The policy control function device sends the second information to the application function device.
- the application function device receives the second information sent by the policy control function device.
- This embodiment of the present application does not limit the transmission method of the second information described in S253.
- the second information may be carried in an existing policy authorization update service operation (Npcf_PolicyAuthorization_update service operation) message or a policy authorization creation response message. (Npcf_PolicyAuthorization_Create Response).
- the policy control function device directly sends the second information to the application function device.
- the application function device may send the second information to the policy control function device through the network opening function device.
- the policy control function device may first transmit the second information to the network opening function device, and then the network opening function device forwards the second information to the application function device.
- the application function device may also send third response information to the policy control function device.
- the policy control function device receives the third response information sent by the application function device.
- the third response information is used to indicate that the application function device has received the second information sent by the policy control function device.
- the embodiment of the present application does not limit the transmission method of the third response information.
- the application function device adjusts the rate of the output data stream.
- the application function device can increase the rate of the output data flow.
- the application function device can reduce the rate of the output data flow.
- the embodiments of the present application do not limit the manner in which the application function device adjusts the rate of the output data stream.
- the application function device can directly adjust the rate of the output data stream.
- the application function device can adjust the rate of the output data stream by adjusting the codec type.
- the application function device can use a simple codec type to encode the data. In this way, the rate of the output data stream of the application function device will be increased.
- the application function device can use a complex codec type to encode the data. In this way, the output data stream rate of the application function device will be reduced.
- the application functionality device may adjust the rate of the output data stream by adjusting the size of the data volume.
- the application function device can use a compression algorithm with a higher compression rate or resolution to compress data, so that the total size of the compressed data becomes smaller, and thus the output data stream rate of the application function device will be reduced.
- the application function device can also feed back the codec type or compression algorithm corresponding to the data stream to the terminal device.
- the terminal device can use the same codec type or compression algorithm to decode or decompress the data stream sent by the access network device.
- the embodiments of this application do not limit the way in which the application function device feeds back the codec type or compression algorithm corresponding to the data stream to the terminal device.
- the application function device can feed back the codec type or compression algorithm corresponding to the data stream to the terminal device through the policy control function device, session management function device, access and mobility management function device, and access network device respectively.
- the first delay time is determined by the application function device, and the application function device carries the first delay time in the first information and transmits it to the access network device via the core network device.
- the first delay time may also be determined by the core network device, and the core network device carries the first delay time in the first information and transmits it to the access network device.
- it specifically includes S220, S211, S230 to S260.
- S220 described in this embodiment is that the first information involved in S220 described in this embodiment is used to indicate the first parameter, not the first delay time.
- the core network device obtains the first delay time according to the first information. That is to say, the core network device obtains the first delay time according to the first parameter. Regarding how the core network equipment obtains the first delay time based on the first parameter, please refer to the above The relevant descriptions in document S210 will not be repeated here.
- the first delay time may also be determined by the access network device.
- S220, S230, S212, S240 to S260 are specifically included.
- S220 and S230 described in this embodiment are used to indicate the first parameter, not Used to indicate the first lag time.
- the access network device obtains the first delay time according to the first information. That is to say, the access network device obtains the first delay time according to the first parameter.
- the access network device obtains the first delay time according to the first parameter.
- the embodiment of the present application also provides another communication method.
- the application function can obtain in advance the support capability of the access network device for the service quality parameters, and the access network device's support capability for the service quality parameters occurs.
- the guaranteed rate that the access network equipment can provide for the quality of service flow (corresponding to the quality of service parameters).
- the output rate of its own data flow can be adjusted based on the guaranteed rate that the access network equipment can provide for the quality of service flow to ensure the service data flow.
- the generation rate is within the guaranteed rate range of the access network equipment, thereby meeting the real-time or low-latency transmission of data flows. In this way, for data streams with high real-time or low-latency requirements, the access network equipment can complete the transmission within the delay budget, thereby avoiding the problem of transmission delays in the data stream.
- the transmission of data streams in this communication method does not depend on the IMS, and the consumption of air interface resources of the IMS is also avoided.
- Figure 4 is a schematic flow chart of an example communication method 300 provided by an embodiment of the present application.
- the communication method 300 includes S310 to S370.
- the following introduces S310 to S370 in detail.
- the application function device obtains the information format.
- the information format when the information format is the first format, the information includes two parts of content.
- the first part of the content includes the content of the access network device's ability to support quality of service parameters at the third moment
- the second part of the content includes The quality of service flow output supported by the access network equipment at the third moment guarantees the content of the rate.
- the information format when the information format is the second format, the information only includes part of the content, and the part of the content includes content of the access network device's support capability for quality of service parameters.
- the application function device may determine the information format according to the first parameter.
- the information format is the first format. Otherwise, the information format is the second format.
- the information format is the first format. Otherwise, the information format is the second format.
- the embodiments of the present application do not limit the specific values of the fourth preset value to the seventh preset value mentioned above.
- the fourth to seventh preset values may be set to different values based on the type of data flow. For example, if the type of data stream is an 38ms.
- the application function device may determine the information format according to the communication protocol. For example, it can be pre-configured: if the access network device can predict in advance changes in the service quality parameter support capabilities corresponding to the quality of service flow, the information format is the first format, that is, the information in the first format is used preferentially. Otherwise, the information format is the second format.
- the communication protocol can be pre-configured: if the access network device can predict in advance changes in the service quality parameters corresponding to the service quality flow in a short period of time, the information format will be the first format, that is, the first format will be used first. information, otherwise, the information format is the second format.
- short time can be understood as a time interval smaller than a preset interval.
- the preset interval may be related to the first parameter of the data stream.
- S320 The application function management device sends the third information to the core network device.
- the core network device receives the third information sent by the application function device.
- the third information is used to indicate the information format described in S310.
- the embodiment of this application does not limit the transmission method of the third information involved in S320.
- the core network device sends the third information to the access network device.
- the access network device sends the third information to the core network device.
- the embodiment of this application does not limit the transmission method of the third information involved in S330.
- the access network device determines at the first moment that the access network device's ability to support the service quality parameter changes at the third moment. Among them, the third moment is later than the first moment. That is, the access network equipment predicts in advance the moment when the access network equipment's ability to support service quality parameters changes.
- the embodiments of this application do not limit how the access network device predicts the moment when the access network device's ability to support service quality parameters changes.
- the access network device can predict the moment when the access network device's ability to support quality of service parameters changes by detecting the rate of data packets transmitted within the target time.
- the access network device can predict the moment when the access network device's ability to support service quality parameters changes based on the rate of data packets transmitted within the target time and the prediction algorithm.
- S350 The access network device sends fourth information to the core network device at the second moment.
- the access network device sends a message to the core network device according to the information format indicated by the third information in S330 and the value of the output guaranteed rate of the quality of service flow supported by the access network device at the third moment.
- Fourth information is used to indicate: the ability of the access network device to support the quality of service parameter at the third moment, and the value of the output guaranteed rate of the quality of service flow supported by the access network device at the third moment.
- This embodiment of the present application does not limit the transmission method of the fourth information described in S350.
- the transmission method of the fourth information refers to the relevant description of the transmission method of the second information in S240 above. I won’t go into details here.
- S360 The core network device sends fourth information to the application function device.
- the application function device receives the fourth information sent by the core network device.
- the embodiment of this application does not limit the transmission method of the fourth information described in S360.
- the application function device adjusts the rate of the output data stream.
- the application function device may set the rate of the output data stream of the application function device. Adjust to the output guaranteed rate of the quality of service flow supported by the access network equipment at the third moment.
- the application function device can use the output data stream of the application function device. The rate is adjusted to be less than the output guaranteed rate of the quality of service flow supported by the access network equipment at the third moment.
- the application function device can also feed back the codec type or compression algorithm corresponding to the data stream to the terminal device, so that the terminal device can use the same codec type or compression algorithm for access. Decode or decompress the data stream sent by the network device.
- the information format is determined by the application function device, and the application function device carries the information format in the third information and transmits it to the access network device via the core network device.
- the information format may also be determined by the core network device, and the core network device carries the information format in the third information and transmits it to the access network device.
- it specifically includes S320, S311, S330 to S370.
- S320 described in this embodiment is that the third information involved in S320 described in this embodiment is used to indicate the first parameter and is not used to indicate the information format.
- the core network device determines the information format according to the first information. That is to say, the core network device obtains the information format according to the first parameter. Regarding how the core network device obtains the information format according to the first parameter, please refer to the relevant description in S310 above, which will not be described again here.
- the information format may also be determined by the access network device.
- it specifically includes S320, S330, S312, S340 to S370.
- S320 and S330 described in this embodiment The difference between S320 and S330 described in this embodiment and S320 and S330 described above respectively is that the third information involved in S320 and S330 described in this embodiment is used to indicate the first parameter, not Used to indicate the fourth information.
- the access network device obtains the information format according to the third information. That is to say, the access network device obtains the information format according to the first parameter.
- the access network device obtains the information format according to the first parameter.
- the communication method provided by the embodiment of the present application is described in detail based on FIG. 3 and FIG. 4 .
- the communication device involved in executing the communication method in FIGS. 3 to 4 will be described in detail below based on FIG. 5 .
- an embodiment of the present application also provides a communication device 500.
- the communication device 500 includes a processor 510.
- the processor 510 is coupled to a memory 520.
- the memory 520 is used to store computer programs or instructions and/or data.
- the processor 510 is used to execute the computer programs or instructions and/or data stored in the memory 520. , so that the method in the above method embodiment is executed.
- the communication device 500 includes one or more processors 510 .
- the communication device 500 may further include a memory 520 .
- the communication device 500 may include one or more memories 520 .
- the memory 520 can be integrated with the processor 510 or provided separately.
- the wireless communication device 500 may also include a transceiver 530 , which is used for receiving and/or transmitting signals.
- the processor 510 is used to control the transceiver 530 to receive and/or transmit signals.
- the communication device 500 is used to implement the operations performed by the access network device in the above method embodiment.
- the processor 510 is used to implement the processing-related operations performed by the access network device in the above method embodiment
- the transceiver 530 is used to implement the transceiver-related operations performed by the access network device in the above method embodiment.
- the communication device 500 is used to implement the operations performed by the core network device in the above method embodiment.
- the processor 510 is used to implement the processing-related operations performed by the core network device in the above method embodiment
- the transceiver 530 is used to implement the transceiver-related operations performed by the core network device in the above method embodiment.
- the communication device 500 is used to implement the operations performed by the application function device in the above method embodiment.
- the processor 510 is used to implement the processing-related operations performed by the application function device in the above method embodiment
- the transceiver 530 is used to implement the transceiver-related operations performed by the application function device in the above method embodiment.
- Embodiments of the present application also provide a computer-readable storage medium on which are stored computer instructions for implementing the method executed by the access network device in the above method embodiment, or the computer instructions of the method executed by the core network device, or Computer instructions for a method performed by an application functional device.
- the computer when the computer program is executed by a computer, the computer can implement the method executed by the access network device, the method executed by the core network device, or the method executed by the application function device in the above method embodiment.
- Embodiments of the present application also provide a computer program product containing instructions.
- the computer implements the method executed by the access network device in the above method embodiment, or the method executed by the core network device, or the method executed by the core network device.
- Embodiments of the present application also provide a communication system, which includes access network equipment, core network equipment, and application function equipment.
- the embodiments of this application do not specifically limit the specific structure of the execution body of the method provided by the embodiments of this application, as long as the program recorded in the code of the method provided by the embodiments of this application can be used according to the method provided by the embodiments of this application.
- the execution subject of the method provided by the embodiment of this application may be an access network device or
- the location management functional device is, alternatively, a functional module in the access network device or the location management functional device that can call a program and execute the program.
- the disclosed systems, devices and methods can be implemented in other ways.
- the device embodiments described above are only illustrative.
- the division of the units is only a logical function division. In actual implementation, there may be other division methods.
- multiple units or components may be combined or can be integrated into another system, or some features can be ignored, or not implemented.
- the coupling or direct coupling or communication connection between each other shown or discussed may be through some interfaces, and the indirect coupling or communication connection of the devices or units may be in electrical, mechanical or other forms.
- the units described as separate components may or may not be physically separated, and the components shown as units may or may not be physical units, that is, they may be located in one place, or they may be distributed to multiple network units. Some or all of the units can be selected according to actual needs to achieve the purpose of the solution of this embodiment.
- each functional unit in each embodiment of the present application can be integrated into one processing unit, each unit can exist physically alone, or two or more units can be integrated into one unit.
- the functions are implemented in the form of software functional units and sold or used as independent products, they can be stored in a computer-readable storage medium.
- the technical solution of the present application is essentially or the part that contributes to the existing technology or the part of the technical solution can be embodied in the form of a software product.
- the computer software product is stored in a storage medium, including Several instructions are used to cause a computer device (which may be a personal computer, a server, or a network device, etc.) to execute all or part of the steps of the methods described in various embodiments of this application.
- the aforementioned storage media include: U disk, mobile hard disk, read-only memory (ROM), random access memory (Random Access Memory, RAM), magnetic disk or optical disk and other media that can store program code. .
Landscapes
- Engineering & Computer Science (AREA)
- Computer Networks & Wireless Communication (AREA)
- Signal Processing (AREA)
- Mobile Radio Communication Systems (AREA)
Abstract
本申请提供一种通信方法及通信装置。该方法包括:接入网设备根据接收的第一信息,获取第一迟滞时间,第一迟滞时间为接入网设备向核心网设备反馈第二信息的时间间隔,第二信息用于指示接入网设备对服务质量参数的支持能力,第一迟滞时间基于数据流的第一参数确定,数据流与服务质量流对应。在获取到通知控制参数,且在接入网设备对所述服务质量参数支持能力变化的情况下,根据第一迟滞时间,向核心网设备发送第二信息。在本申请中,第一迟滞时间基于第一参数确定,相对于上述的第二迟滞时间,更符合数据流对应的业务对低延时或实时性的需求,避免数据流出现传输迟滞的问题。
Description
本申请要求于2022年4月1日提交中国专利局、申请号为202210349271.2、申请名称为“一种针对XR业务的Qos profile的增强方法、网络设备、终端设备”的中国专利申请的优先权,其全部内容通过引用结合在本申请中。
本申请要求于2022年4月29日提交中国专利局、申请号为202210468968.1、申请名称为“通信方法及通信装置”的中国专利申请的优先权,其全部内容通过引用结合在本申请中。
本申请实施例涉及通信技术领域,更具体地,涉及一种通信方法及通信装置。
接入网设备在传输数据流的过程中,由于接入网设备的无线链路的状态和网络拥塞的状态会发生变化,可能会出现接入网无法满足数据流对应的服务质量参数的情景。
通常来说,接入网设备通过协议数据单元(protocol data unit,PDU)会话资源通知(session resource notify)消息向应用功能设备反馈其数据流对应的服务质量参数的取值不满足网络为其配置的取值要求,来实现应用功能设备获取接入网设备对该服务质量流所能提供的保障速率能力。进而,应用功能设备可以对自身数据流的输出速率进行调整,以确保数据流的实时或低延时传输。
为了避免接入网设备频繁地向应用功能设备反馈PDU会话资源通知消息,接入网设备会在两次反馈PDU会话资源消息之间增加迟滞。该迟滞时间(可称为第二迟滞时间)由接入网设备自行决定。但是,如果迟滞时间较长,会使得应用功能设备不能够及时地获取接入网设备所能提供的数据流的保障速率,使得应用功能设备产生数据流的速率不能及时获取接入网设备的保障速率能力。这样,若业务对应的数据流对实时性和低延时性有较高要求,业务对应的数据流产生的周期短、数据量大,就容易出现接入网设备对该业务对应的数据流的保障速率下降,而业务对应的数据流依然以原速率传给接入网设备,进而导致拥塞,最终使得该数据流传输出现迟滞的现象。
发明内容
为了解决上述的技术问题,本申请提供了一种通信方法及通信装置。该通信方法中涉及的第一迟滞时间基于数据流的第一参数确定,相对于上述的第二迟滞时间,更符合数据流对应的业务对低延时或实时性的需求。这样,接入网设备能够在延时预算内传完实时性或低时延要求高的数据流,进而可以避免数据流出现传输迟滞的问题。
第一方面,提供了一种通信方法。该方法包括:接入网设备根据接收的第一信息,获取第一迟滞时间,第一迟滞时间为接入网设备向核心网设备反馈第二信息的时间间隔,第
二信息用于指示接入网设备对服务质量参数的支持能力,服务质量参数是核心网设备为服务质量流配置的,第一迟滞时间基于数据流的第一参数确定,数据流与服务质量流对应;在获取到通知控制参数,且在所述接入网设备对所述服务质量参数支持能力变化的情况下,根据所述第一迟滞时间,向核心网设备发送所述第二信息,所述通知控制参数与所述服务质量参数相对应。
可选地,该通信方法可以由接入网设备执行。或者,也可以由用于接入网设备的芯片或电路执行。本申请对此不作限定,为了便于描述,下面以由接入网设备执行为例进行说明。
这样,接入网设备根据接收的第一信息获取第一迟滞时间,并在获取到通知控制参数,且接入网设备对服务质量参数支持能力变化的情况下,根据第一迟滞时间,向核心网设备指示接入网设备对服务质量参数的支持能力。由于该第一迟滞时间基于数据流的第一参数确定,相比于上述的第二迟滞时间,更符合数据流对应的业务对低延时或实时性的需求,进而接入网设备便可及时地向核心网设备反馈其对服务质量参数支持能力,以便核心网设备及时获取接入网设备对该服务质量流所能提供的保障速率。进而,核心网设备可以及时向应用功能设备反馈接入网设备的对该服务质量流所能提供的保障速率,以便应用功能设备可以对自身数据流的输出速率进行调整,以确保业务数据流的产生速率在接入网设备的保障速率范围内,从而满足数据流的实时或低延时传输。
结合第一方面,在第一方面的某些实现方式中,第一信息来自于核心网设备或应用功能设备,第一信息包括第一参数或第一迟滞时间。
结合第一方面,在第一方面的某些实现方式中,第一参数包括以下至少一项:数据包延时预算、数据包到达周期、数据包的大小。
可选地,数据包为数据流的一部分。数据流是由应用功能设备经核心网设备发送给接入网设备的数据流。
结合第一方面,在第一方面的某些实现方式中,在第一信息包括第一参数的情形下,所述接入网设备根据接收的第一信息,获取第一迟滞时间,包括:所述接入网设备根据接收的第一信息,获取第一迟滞时间。
结合第一方面,在第一方面的某些实现方式中,在所述第一信息包括第一迟滞时间的情形下,第一信息由应用功能设备确定后,并经由核心网设备发送给接入网设备;或者,在所述第一信息包括所述第一迟滞时间的情形下,所述第一信息由所述核心网设备确定后,并发送该所述接入网设备。
结合第一方面,在第一方面的某些实现方式中,该方法还包括:应用功能设备经核心网设备接收第二信息;应用功能设备根据第二信息,调整应用功能设备输出数据流的速率。结合第一方面,在第一方面的某些实现方式中,所述服务质量参数包括所述通知控制参数。
结合第一方面,在第一方面的某些实现方式中,数据流是应用功能设备经核心网设备发送给接入网设备的,和/或,服务质量流用于对数据流进行管理。
第二方面,提供了一种通信方法。该方法包括:在第一时刻,确定在第三时刻接入网设备对服务质量流对应的服务质量参数支持能力发生变化;在第二时刻,向核心网设备发送第四信息;其中,第三时刻晚于第一时刻;第二时刻晚于第一时刻或第二时刻为第一时刻,且第二时刻早于第三时刻;第四信息用于指示:接入网设备在第三时刻对服务质量参
数支持能力的变化,以及接入网设备在第三时刻支持的与服务质量流对应的数据流的输出保障速率。
该通信方法可以由接入网设备执行。或者,也可以由用于接入网设备的芯片或电路执行。本申请对此不作限定,为了便于描述,下面以由接入网设备执行为例进行说明。
这样,接入网设备可以提前预测服务质量流对应的服务质量参数支持能力的变化,并在接入网设备对服务质量参数支持能力发生变化之前,向核心网设备反馈接入网设备对服务质量参数的支持能力。也就是说,接入网设备可以提前向核心网设备反馈发生变化的服务质量流,以及发生变化后接入网设备对该服务质量流所能提供的保障速率,以便核心网设备提前获取发生变化的服务质量流和发生变化后接入网设备对该服务质量流所能提供的保障速率。进而,核心网设备可以提前向应用功能设备反馈发生变化的服务质量流和发生变化后接入网设备对该服务质量流所能提供的保障速率,以便应用功能设备在接入网设备对服务质量流对应的服务质量参数支持能力发生变化之前,便可以根据接入网设备对该服务质量流所能提供的保障速率对自身数据流的输出速率进行调整,以确保业务数据流的产生速率在接入网设备的保障速率范围之内,从而满足数据流的实时或低延时传输。
结合第二方面,在第二方面的某些实现方式中,所述第四信息格式基于数据流的第一参数确定。
结合第二方面,在第二方面的某些实现方式中,在第二时刻,向核心网设备发送第四信息之前,该方法还包括:确定所述第一参数;根据所述第一参数,确定所述第四信息格式。
结合第二方面,在第二方面的某些实现方式中,该方法还包括:接收来自核心网设备的第三信息,第三信息用于指示所述第一参数;确定所述第一参数包括:根据第三信息,确定所述第一参数。
结合第二方面,在第二方面的某些实现方式中,该方法还包括:接收来自核心网设备的第三信息,第三信息用于指示所述第四信息格式;在第二时刻,向核心网设备发送第四信息之前,该方法还包括:根据第三信息,确定所述第四信息格式。
结合第二方面,在第二方面的某些实现方式中,所述第一参数包括以下至少一项:数据包延时预算、数据包到达周期、数据包的大小。
第三方面,提供了一种通信方法。该方法包括:接收来自应用功能设备的第三信息,第三信息用于指示第四信息格式;其中第三时刻为接入网设备对服务质量参数支持能力发生变化的时刻;向接入网设备发送第三信息;接收来自接入网设备的第四信息,第四信息用于指示接入网设备在第三时刻对服务质量流对应的服务质量参数支持能力的变化,以及接入网设备在第三时刻支持的与服务质量流对应的数据流的输出保障速率,所述第四信息为接入网设备在第二时刻发送的,第二时刻早于第三时刻;向应用功能设备发送第四信息。
该通信方法可以由于核心网设备执行。或者,也可以由用于核心网设备的芯片或电路执行。本申请对此不作限定,为了便于描述,下面以由于核心网设备执行为例进行说明。
该第三方面的技术效果可以参考第二方面的技术效果,这里不再赘述。
结合第三方面,在第三方面的某些实现方式中,所述第四信息格式基于数据流的第一参数确定。
结合第三方面,在第三方面的某些实现方式中,第三信息包括第一参数,该方法还包
括:根据第三信息,确定所述第四信息格式。
结合第三方面,在第三方面的某些实现方式中,第一参数征包括以下至少一项:数据包延时预算、数据包到达周期、数据包的大小。
第四方面,提供了一种通信方法。该方法包括:向核心网设备发送第三信息,第三信息用于指示第四信息格式;接收来自核心网设备的第四信息,第四信息为接入网设备在第二时刻发送给核心网设备的,第二时刻早于第三时刻;根据第四信息指示的输出保障速率,调整应用功能设备输出数据流的速率。其中,第四信息用于指示:接入网设备在第三时刻对服务质量流对应的服务质量参数支持能力的变化,以及接入网设备在第三时刻支持的与所述服务质量流对应的数据流的输出保障速率。其中第三时刻为接入网设备对服务质量参数支持能力发生变化的时刻。
该通信方法可以由于应用功能设备执行。或者,也可以由用于应用功能设备的芯片或电路执行。本申请对此不作限定,为了便于描述,下面以由于应用功能设备执行为例进行说明。
第四方面的技术效果可以参考第二方面的技术效果,这里不再赘述。
结合第四方面,在第四方面的某些实现方式中,所述第四信息格式基于数据流的第一参数确定。
结合第四方面,在第四方面的某些实现方式中,第三信息包括所述第一参数,该方法还包括:根据所述第一参数,确定所述第四信息格式。
结合第四方面,在第四方面的某些实现方式中,第一参数征包括以下至少一项:数据包延时预算、数据包到达周期、数据包的大小。
第五方面,提供了一种通信装置。通信装置用于执行上述第一方面及第一方面中任一种可能实现方式中的通信方法。具体地,该通信装置可以包括用于执行第一方面或第一方面的上述任意一种实现方式提供的通信方法的单元和/或模块,如处理器和/或收发器。
在一种可实现的方式中,该通信装置为接入网设备、核心网设备和/或应用功能设备。当该通信装置为接入网设备、核心网设备和/或应用功能设备时,收发器还可以是收发电路、输入/输出接口、或输入/输出电路。
在另一种实现方式中,该通信装置为配置于接入网设备、核心网设备和/或应用功能设备中的芯片、芯片系统或电路。当该通信装置为配置于接入网设备、核心网设备和/或应用功能设备中的芯片、芯片系统或电路时,收发器可以是该芯片、芯片系统或电路上的输入/输出接口、接口电路、输出电路、输入电路、管脚或相关电路等。处理器可以是至少一个处理器、处理电路或逻辑电路等。
第六方面,提供了一种通信装置。通信装置用于执行上述第一方面及第一方面中任一种可能实现方式中的通信方法。具体地,该通信装置可以包括用于执行第一方面或第一方面的上述任意一种实现方式提供的通信方法的单元和/或模块,如处理器和/或收发器。
在一种可实现的方式中,该通信装置为接入网设备。当该通信装置为接入网设备时,所述收发器还可以是收发电路、输入/输出接口、或输入/输出电路。
在另一种实现方式中,该通信装置为配置于接入网设备中的芯片、芯片系统或电路。当该通信装置为配置于接入网设备中的芯片、芯片系统或电路时,收发器可以是该芯片、芯片系统或电路上的输入/输出接口、接口电路、输出电路、输入电路、管脚或相关电路
等。处理器可以是至少一个处理器、处理电路或逻辑电路等。
第七方面,提供了一种通信装置。通信装置用于执行上述第一方面及第一方面中任一种可能实现方式中的通信方法。具体地,该通信装置可以包括用于执行第一方面或第一方面的上述任意一种实现方式提供的通信方法的单元和/或模块,如处理器和/或收发器。
在一种可实现的方式中,该通信装置为核心网设备。当该通信装置为核心网设备时,收发器还可以是收发电路、输入/输出接口、或输入/输出电路。
在另一种实现方式中,该通信装置为配置于核心网设备中的芯片、芯片系统或电路。当该通信装置为配置于核心网设备中的芯片、芯片系统或电路时,收发器可以是该芯片、芯片系统或电路上的输入/输出接口、接口电路、输出电路、输入电路、管脚或相关电路等。处理器可以是至少一个处理器、处理电路或逻辑电路等。
第八方面,提供了一种通信装置。通信装置用于执行上述第一方面及第一方面中任一种可能实现方式中的通信方法。具体地,该通信装置可以包括用于执行第一方面或第一方面的上述任意一种实现方式提供的通信方法的单元和/或模块,如处理器和/或收发器。
在一种可实现的方式中,该通信装置为应用功能设备。当该通信装置为应用功能设备时,收发器还可以是收发电路、输入/输出接口、或输入/输出电路。
在另一种实现方式中,该通信装置为配置于应用功能设备中的芯片、芯片系统或电路。当该通信装置为配置于应用功能设备中的芯片、芯片系统或电路时,收发器可以是该芯片、芯片系统或电路上的输入/输出接口、接口电路、输出电路、输入电路、管脚或相关电路等。处理器可以是至少一个处理器、处理电路或逻辑电路等。
第九方面,提供了一种处理器,用于执行第一方面至第六方面中任一种可能实现方式中的通信方法。
对于处理器所涉及的发送和获取/接收等操作,如果没有特殊说明,或者,如果未与其在相关描述中的实际作用或者内在逻辑相抵触,则可以理解为处理器输出和接收、输入等操作,也可以理解为由射频电路和天线所进行的发送和接收操作,本申请对此不做限定。
第十方面,提供了一种计算机程序产品。计算机程序产品包括计算机程序(也可以称为代码,或指令),当所述计算机程序被运行时,使得计算机执行上述第一方面至第四方面中任一种可能实现方式中的通信方法。
第十一方面,提供了一种计算机可读存储介质。计算机可读存储介质存储有计算机程序(也可以称为代码,或指令),当其在计算机上运行时,使得计算机执行上述第一方面至第四方面中任一种可能实现方式中的通信方法。
第十二方面,提供一种芯片,包括:处理器,用于从存储器中调用并运行计算机程序,使得安装有所述芯片地通信装置执行上述第一方面至第四方面中任一种可能实现方式中的通信方法。
可选地,作为一种实现方式,芯片还包括存储器,存储器中存储有计算机程序或指令,处理器用于执行存储器上存储的计算机程序或指令,当计算机程序或指令被执行时,处理器用于执行上述第一方面至第四方面中任一种可能实现方式中的通信方法。
第十三方面,提供了一种通信系统,包括接入网设备、核心网设备和/或应用功能设备。其中,所述接入网设备用于执行上述第二方面中任一种可能实现方式中的通信方法;或者,所述核心网设备用于执行上述第三方面中任一种可能实现方式中的通信方法;或者,
所述核心网设备用于执行上述第四方面中任一种可能实现方式中的通信方法。
图1是本申请提供的一例通信系统的架构图。
图2是本申请提供的一例接入网设备的输出数据流速率和应用功能设备的输出数据流速率的示意图。
图3是本申请实施例提供的一例通信方法的示意性流程图。
图4是本申请实施例提供的另一例通信方法的示意性流程图。
图5为本申请实施例提供的一例通信装置的示意性框图。
下面将结合附图,对本申请实施例中的技术方案进行描述。
为了便于理解本申请实施例,在介绍本申请实施例之前,先作出以下几点说明。
第一,在本申请实施例中,“指示”可以包括直接指示和间接指示,也可以包括显式指示和隐式指示。将某一信息(如下文所述的第一信息)所指示的信息称为待指示信息,则具体实现过程中,对待指示信息进行指示的方式有很多种。例如但不限于,可以直接指示待指示信息,如待指示信息本身或者该待指示信息的索引等。也可以通过指示其他信息来间接指示待指示信息,其中该其他信息与待指示信息之间存在关联关系。还可以仅仅指示待指示信息的一部分,而待指示信息的其他部分则是已知的或者提前约定的。例如,还可以借助预先约定(例如协议规定)的各个信息的排列顺序来实现对特定信息的指示,从而在一定程度上降低指示开销。
第二,在下文示出的实施例中第一、第二以及各种数字编号仅为描述方便进行的区分,并不用来限制本申请实施例的范围。例如,区分不同的参数信息等。
第三,在下文示出的实施例中,“预先配置”可以通过在设备(例如,应用功能设备、核心网设备或接入网设备)中预先保存相应的代码、表格或其他可用于指示相关信息的方式来实现,本申请对于其具体的实现方式不做限定。
本申请实施例的技术方案可以应用于各种通信系统,例如:全球移动通讯(global system of mobile communication,GSM)系统、码分多址(code division multiple access,CDMA)系统、宽带码分多址(wideband code division multiple access,WCDMA)系统、通用分组无线业务(general packet radio service,GPRS)、长期演进(long term evolution,LTE)系统、LTE频分双工(frequency division duplex,FDD)系统、LTE时分双工(time division duplex,TDD)、通用移动通信系统(universal mobile telecommunication system,UMTS)、全球互联微波接入(worldwide interoperability for microwave access,WiMAX)通信系统、未来的第五代(5th generation,5G)系统或新无线(new radio,NR)等。
本申请提供的技术方案还可以应用于未来的通信系统,如第六代移动通信系统等。本申请对此不作限定。
通常来说,传统的通信系统支持的连接数有限,也易于实现,然而,随着通信技术的发展,移动通信系统将不仅支持传统的通信,还将支持例如,设备到设备(device to device,D2D)通信,机器到机器(machine to machine,M2M)通信,机器类型通信(machine type
communication,MTC),车辆与万物(vehicle to everything,V2X)通信(也可以称为车辆网通信),例如,车辆与车辆(vehicle to vehicle,V2V)通信(也可以称为车到车通信)、车辆与基础设施(vehicle to infrastructure,V2I)通信(也可以称为车到基础设施通信),车辆与行人(vehicle to pedestrian,V2P)通信(也可以称为车到人通信),车辆与网络(vehicle to network,V2N)通信(也可以称为车到网络通信)。
图1是适用于本申请实施例的一种通信系统的架构的示意图。
例如,如图1所示,该架构例如是第五代系统(the 5h generation system,5GS)。该5GS包括终端设备、无线接入网(radio access network,RAN)设备、接入和移动性管理功能(access and mobility management function,AMF)设备、会话管理功能(session management function,SMF)设备、策略控制功能(policy control function,PCF)设备、网络开放功能(network exposure function,NEF)设备、应用功能(application function,AF)设备,以及一些图1未示出的设备,如网络功能存储功能(network function repository function,NRF)设备等。上述5GS中的设备或也可以称为5G核心网设备。
需要说明的是,如图1所示的设备还可以称为网元,本申请实施例对此不作限定。为了方便描述,本申请实施例中均以设备为例进行描述。
下面对图1中示出的各设备做简单介绍:
1、终端设备:还可以称为用户设备(user equipment,UE)、接入终端、用户单元、用户站、移动站、移动台、远方站、远程终端、移动设备、用户终端、终端、无线通信装置、用户代理或用户装置。
终端设备可以是一种向用户提供语音/数据连通性的设备。例如,具有无线连接功能的手持式设备、车载设备等。目前,一些终端的举例为:手机(mobile phone)、平板电脑、笔记本电脑、掌上电脑、移动互联网设备(mobile internet device,MID)、可穿戴设备,虚拟现实(virtual reality,VR)设备、增强现实(augmented reality,AR)设备、工业控制(industrial control)中的无线终端、无人驾驶(self-driving)中的无线终端、远程手术(remote medical surgery)中的无线终端、智能电网(smart grid)中的无线终端、运输安全(transportation safety)中的无线终端、智慧城市(smart city)中的无线终端、智慧家庭(smart home)中的无线终端、蜂窝电话、无绳电话、会话启动协议(session initiation protocol,SIP)电话、无线本地环路(wireless local loop,WLL)站、个人数字助理(personal digital assistant,PDA)、具有无线通信功能的手持设备、计算设备或连接到无线调制解调器的其它处理设备、车载设备、可穿戴设备,5G网络中的终端设备或者未来演进的公用陆地移动通信网络(public land mobile network,PLMN)中的终端设备等,本申请实施例对此并不限定。
作为示例而非限定,在本申请实施例中,该终端设备还可以是可穿戴设备。可穿戴设备也可以称为穿戴式智能设备,是应用穿戴式技术对日常穿戴进行智能化设计、开发出可以穿戴的设备的总称,如眼镜、手套、手表、服饰及鞋等。可穿戴设备即直接穿在身上,或是整合到用户的衣服或配件的一种便携式设备。可穿戴设备不仅仅是一种硬件设备,更是通过软件支持以及数据交互、云端交互来实现强大的功能。广义穿戴式智能设备包括功能全、尺寸大、可不依赖智能手机实现完整或者部分的功能。例如:智能手表或智能眼镜等,以及只专注于某一类应用功能,需要和其它设备如智能手机配合使用,如各类进行体
征监测的智能手环、智能首饰等。
此外,在本申请实施例中,终端设备还可以是物联网(internet of things,IoT)系统中的终端设备,IoT是未来信息技术发展的重要组成部分,其主要技术特点是将物品通过通信技术与网络连接,从而实现人机互连,物物互连的智能化网络。
2、RAN:为终端设备提供入网功能,并能够根据用户的级别、业务的需求等使用不同质量的传输隧道。接入网络可以为采用不同接入技术的接入网络。目前的无线接入技术有两种类型:3GPP接入技术(例如3G、4G或5G系统中采用的无线接入技术)和非3GPP(non-3GPP)接入技术。3GPP接入技术是指符合3GPP标准规范的接入技术,例如,5G系统中的接入网设备称为下一代基站节点(next generation node base station,gNB)。非3GPP接入技术是指不符合3GPP标准规范的接入技术,例如,以无线保真(wireless fidelity,WiFi)中的接入点(access point,AP)为代表的空口技术。
基于无线通信技术实现接入网络功能的接入网可以称为无线接入网设备。无线接入网设备能够管理无线资源,为终端设备提供接入服务,进而完成控制信号和用户数据在终端设备和核心网设备之间的转发。
此外,在本申请实施例中,当RAN与终端设备之间的传输的空口不足以支持当前的服务质量流对应的服务质量参数的情况下,向会话管理功能设备发送用于指示所述接入网设备对服务质量流对应的服务质量参数支持能力的变化的信息。
接入网设备例如包括但不限于:5G中的下一代基站、演进型节点B(evolved node B,eNB)、无线网络控制器(radio network controller,RNC)、节点B(node B,NB)、基站控制器(base station controller,BSC)、基站收发台(base transceiver station,BTS)、家庭基站(例如,home evolved nodeB,或home node B,HNB)、基带单元(baseBand unit,BBU)、传输点(transmitting and receiving point,TRP)、发射点(transmitting point,TP)、移动交换中心等。接入网设备还可以是云无线接入网络(cloud radio access network,CRAN)场景下的无线控制器,或者该接入网设备可以为中继站、接入点、车载设备、可穿戴设备以及未来5G网络中的网络设备或者未来演进的PLMN网络中的网络设备等。本申请的实施例对无线接入网设备所采用的具体技术和具体设备形态不做限定。
3、接入和移动性管理功能设备:主要用于移动性管理和接入管理等,如用户位置更新、用户注册网络、用户切换等。例如,接入和移动性管理功能设备可以接收终端设备的非接入层(non-access stratum,NAS)信令(包括移动管理(mobility management,MM)信令和会话管理(session management,SM)信令)和接入网设备的相关信令(例如,与移动性管理网元交互的基站粒度的N2信令),完成用户的注册流程和SM信令的转发以及移动性管理。接入和移动性管理功能设备还可用于实现移动性管理实体(mobility management entity,MME)中除会话管理之外的其它功能。例如,合法监听、或接入授权(或鉴权)等功能。
例如,在本申请实施例中,接入和移动性管理功能设备可以负责将来自会话管理功能设备发送的消息转发给RAN。
4、会话管理功能设备:是由运营商网络提供的控制面网元,负责管理终端设备的PDU会话。PDU会话是一个用于出书PDU的通道,终端设备需要通过PDU会话与数据网络(data network,DN)设备相互传输PDU。PDU会话由会话管理功能设备负责建立、维护
和删除等。会话管理功能设备包括会话管理(如会话建立、修改和释放,包含用户面网元和接入网设备之间的隧道维护)、用户面网元的选择和控制、业务和会话管理连续性(service and session continuity,SSC)模式选择、漫游等会话先关的功能。
例如,在本申请实施例中,会话管理功能设备负责转发服务质量配置文件以及管理服务质量流。
5、策略控制功能设备:主要负责针对会话、业务流级别进行计费、服务质量带宽保障及移动性管理、终端设备策略决策等策略控制功能。
例如,在本申请实施例中,该策略控制功能设备负责制定服务质量配置文件,并转发给会话管理功能设备。
6、网络开放功能设备:用于安全地向外部开放由3GPP网络功能提供的业务和能力等。
7、应用功能设备:负责向3GPP网络提供业务,如影响业务路由、与策略控制(policy control)网元之间交互以进行策略控制等。
例如,在本申请实施例中,应用功能设备可以提供服务质量需求(例如,QoSreference信息),并将服务质量需求传给策略控制功能设备,订阅一个或多个服务质量配置文件。此外,应用功能设备还可以接收策略控制功能设备反馈的PDU会话资源通知消息,该PDU会话资源通知消息用于指示接入网设备对服务质量参数的支持能力,并实时地调整其输出的数据流的速率。
在一些实施例中,该应用功能设备可以是第三方功能实体,也就是说该应用功能设备可以为3GPP网络外部的应用功能设备。在另一些实施例中,该应用功能设备可以是运营商部署的应用服务,也就是说该应用功能设备可以为3GPP网络内部的应用功能设备。
需要说明的是,对于用户面而言,该应用功能设备可指与应用功能网元关联的应用服务器。
可以理解的是,上述网元或者功能既可以是硬件设备中的网络元件,也可以是在专用硬件上运行软件功能,或者是平台(例如,云平台)上实例化的虚拟化功能。作为一种可能的实现方法,上述网元或者功能可以由一个设备实现,也可以由多个设备共同实现,还可以是一个设备内的一个功能模块,本申请实施例对此不作具体限定。
在图1所示的架构中,各设备之间可以通过图中所示的接口通信。如图1所示,下一代网络(next generation,NG)1接口(简称N1接口)为终端设备与接入和移动性管理功能设备之间的接口;N2接口为(R)AN和接入和移动性管理功能设备的接口,用于非接入层(non-access stratum,NAS)消息的发送等;N11接口为接入和移动性管理功能设备和会话管理功能设备之间的接口;N7接口为会话管理功能设备和策略控制功能设备之间的接口;N30接口为策略控制功能设备和网络开放功能设备之间的接口;N5接口为策略控制功能设备和应用功能设备之间的接口;N33接口为网络开放功能设备和应用功能设备之间的接口。
图1中N1、N2、N11、N7、N30、N5、N33为接口序列号。这些接口序列号的含义可参见第三代合作伙伴计划(3rd generation partnership project,3GPP)标准协议中定义的含义,在此不做限制。
需要说明的是,图1中所涉及的各个设备以及设备之间的通信接口的名称是以目前协
议中规定的为例进行简单说明的,但并不限定本申请实施例只能够应用于目前已知的通信系统。因此,以目前协议为例描述时出现的标准名称,都是功能性描述,本申请对于设备、接口或信令等的具体名称并不限定,仅表示设备、接口或者信令的功能,可以对应的扩展到其它系统,比如2G、3G、4G或未来通信系统中。
上述图1所示的本申请实施例能够应用的架构仅是一种举例说明,适用本申请实施例的架构并不局限于此,任何能够实现上述各个设备的功能的架构都适用于本申请实施例。
还应理解,上述命名仅为便于区分不同的功能而定义,不应对本申请构成任何限定。本申请并不排除在5G网络以及未来其它的网络中采用其他命名的可能。例如,在6G网络中,上述各个设备中的部分或全部可以沿用5G中的术语,也可能采用其他名称等。图1中的各个设备之间的接口名称只是一个示例,具体实现中接口的名称可能为其他的名称,本申请对此不作具体限定。此外,上述各个设备之间的所传输的消息(或信令)的名称也仅仅是一个示例,对消息本身的功能不构成任何限定。
为便于理解本申请实施例,首先对本申请中涉及的术语做简单说明。
1、服务质量:对数据流服务过程中总体要求的描述。针对不同的数据流服务可以提供不同的服务质量。
2、服务质量(quality of service,QoS)流:主要用于管理数据流,每个数据流都有与该数据流对应的服务质量流。其是5G系统在PDU会话中提供差异化QoS的最小粒度。
该QoS流主要是根据服务质量配置文件生成。
需要说明的是,该服务质量流对应的英文可以为QoS flow或者其它英文名称,本申请对此不作限定。
3、服务质量参考:其可以理解为服务质量要求的一例。其主要是由应用功能设备针对不同数据流进行定制的。
需要说明的是,该服务质量参考对应的英文可以为QoSreference或者其它英文名称,本申请对此不作限定。
4、服务质量配置文件:包括至少一个与服务质量流对应的服务质量参数的取值。
需要说明的是,该服务质量配置文件对应的英文可以为QoSprofile或者其它英文名称,本申请对此不作限定。
示例性地,在PDU会话建立的过程中,策略控制功能设备可以基于服务质量参考生成至少一个服务质量配置文件。
例如,该服务质量参考参数包括但不限于包括以下至少一项:5G QoS标识符(5G QoS Identifier,5QI)、分配和保留优先级(allocation and retention priority,ARP)、反射QoS属性(reflective qos attribute,RQA)、保证流比特率(guaranteed flow bit rate,GFBR)、保证比特率(保证比特率,GBR)、最大流比特率(maximum flow bit rate,MFBR)、最大丢包率(maximum packet loss rate,MPLR)、数据包延时预算(packet delay budget,PDB)、数据包错误率(packet error rate,PER)。
根据上文对本申请中涉及的术语的说明可知,数据流、服务质量流、服务质量参数三者之间均具有对应关系。
可选地,若应用功能设备具备速率自适应的能力,即应用功能设备具有对自己输出的数据流的速率进行调整的能力,该服务质量参数还可以包括通知控制(notification control)
策略控制功能设备在生成服务质量配置文件之后,会将服务质量配置文件通过会话管理功能设备和接入和移动性管理功能设备传输给接入网设备,以便接入网设备根据服务质量配置文件,对与该服务质量配置文件对应的数据流进行传输。
接入网设备在传输数据流的过程,由于接入网设备的无线链路的状态(例如,无线链路的质量、无线链路的拥塞情况)会发生变化,可能会使得数据流对应的服务质量参数的取值不满足网络为其配置的取值要求。
首先,接入网设备可以先调整自己的输出数据流的速率,即接入网设备先调整自己传输给终端设备的数据流的速率。
其次,接入网设备再向应用功能设备反馈其输出的数据流对应的服务质量参数的取值不满足网络为其配置的取值要求。
例如,若应用功能设备没有向网络订阅可替换的服务质量配置文件。也就是说,接入网设备仅收到一个与该服务质量流对应的服务质量配置文件。当接入网设备当前的流比特率不能满足服务质量配置文件所指示的GFBR,接入网设备通过接入和移动性管理功能设备、会话管理功能设备和策略控制功能设备向应用功能设备发送通知控制,表示“GFBR不能被保证(GFBR can no longer be guaranteed)”。此时,接入网设备仍然会保留该服务质量流,并尽力满足该服务质量配置文件,直到核心网设备通知接入网设备释放该服务质量流的资源。
又例如,若应用功能设备向同时网络订阅了可替换的多个服务质量配置文件,也就是说,接入网设备收到与该服务质量流对应的多个服务质量配置文件。当接入网设备当前的流比特率不能满足当前服务质量配置文件所指示的GFBR,接入网设备可以在多个服务质量配置文件中选择一个可以满足当前的流比特率的服务质量配置文件。然后,接入网设备通过接入和移动性管理功能设备、会话管理功能设备和策略控制功能设备向应用功能设备发送通知控制,表示“数据流的GFBR不能被保证(GFBR of the QoS Flow can no longer be guaranteed)”以及“引用了可选择的服务质量参数集(The reference to the Alternative QoS parameter set)”。若接入网设备未在多个服务质量配置文件中选择一个可以满足当前的流比特率的服务质量配置文件。接入网设备向应用功能设备发送的通知控制表示“数据流的GFBR不能(能再次)被保证(GFBR of the QoS Flow can no longer(or can again)be guaranteed)”以及“最低可选择的服务质量配置文件也不能被满足(the lowest alternative QoS profile cannot be fulfilled)”。
最后,应用功能设备在接收到接入网设备反馈的PDU会话资源消息后,应用功能设备可以根据接入网设备对该服务质量流所能提供的保障速率,改变自身数据流的输出速率,以确保业务数据流的产生在接入网所能提供的保障速率范围之内,最终满足数据流的实时或低延时传输。
但是,由于接入网设备的无线链路的状态具有时变性,某一服务质量流对应的服务质量参数,可能会在满足网络为其配置的取值要求和不能满足网络为其配置的取值要求之间频繁切换。
在一种可实现的方式中,为了避免接入网设备频繁地向应用功能设备反馈PDU会话资源消息,接入网设备会在两次反馈PDU会话资源消息之间增加第二迟滞时间。该第二迟滞时间由接入网设备自行决定。示例性地,接入网设备的延迟时间(迟滞(hysteresis)
时间)可以是基于信道的相干时间。例如,若载波频率为4GHz,终端设备以3km/h的速度移动,相干时间约为38ms,该迟滞时间可以为38ms。
但是,如果第二迟滞时间较长,会使得应用功能设备不能够及时地获取接入网设备对服务质量参数的支持能力,使得接入网设备的输入数据流的速率不能够及时被调整。这样,对于实时性或低时延要求高的数据流而言,在传输的过程中可能会无法在延时预算内传完,进而数据流出现传输迟滞的问题。
图2为本申请提供的一例接入网设备的输出数据流速率和应用功能设备的输出数据流速率的示意图。
例如,如图2所示,在t1时刻之前,接入网设备的输出数据流的速率s(t)和应用功能设备的输出数据流的速率r(t)维持在v1。在t1时刻,由于接入网设备的无线链路的质量变差和/或出现拥塞情况,接入网设备会将自己的输出数据流的速率s(t)先下调。例如,接入网设备在t1时刻至t2时刻之间,将自己的输出数据流的速率由v1下调至v2,并将自己的输出数据流的速率维持在v2。
此外,在t1时刻之后,接入网设备根据无线链路的质量和/或拥塞情况确定第二迟滞时间,向应用功能设备反馈PDU会话资源消息。应用功能设备在接收到接入网设备的反馈的PDU会话资源消息后,应用功能设备会相应地对自己的输出数据流的速率进行下调。例如,接入网设备在t3时刻至t4时刻之间,将自己的输出数据流的速率由v1下调至v2,并将自己的输出数据流的速率维持在v2。
这样,在t4时刻之后,接入网设备的输出数据流的速率s(t)和应用功能设备的输出数据流的速率r(t)维持在v2。
在图2所述的示例中,若迟滞时间为38ms,且传输的数据流对应的业务为扩展现实(extended reality,XR)业务,该XR业务对应的视频帧率为60帧每秒(frame per second,fps),每帧间隔16.7ms。由于迟滞时间为38ms,所以应用功能设备最早在(t1+38ms)时刻,也即t4≥(t1+38ms),才会对自身的输出数据流的速率进行调整。这样,至少有两帧的数据量不能及时跟随接入网设备侧无线链路状态的调整。这样,可以会造成这两帧数据传输所需延时变长,鉴于有些业务例如XR业务,对实时性要求高,数据传输延时过长超过延时预算,就会导致丢帧。
在另一种可实现的方式中,为了避免接入网设备频繁地向应用功能设备反馈PDU会话资源消息,接入网设备可以通过IP多媒体子系统(ip multimedia subsystem,IMS)中的接入网码率推荐(access network bitrate recommendation,ANBR)信令。向终端设备推荐一个比特速率值,该比特速率值在去除冗余后传递至应用层,进而改变应用层对源端(应用功能设备端)的编解码类型(codec type)的选择。该选择结果,接入网设备可以通过实时传输协议(real-time transport protocol,RTP)协议的数据包报头通知应用功能设备。其中,ANBR信令的实现主要依赖终端设备与接入网设备之间的媒体接入控制(medium access control,MAC)层信令,例如,该MAC层信令可以是推荐比特率控制元件(control element,CE)(recommended bit rate MAC CE)。
但是,对于依赖于IMS的ANBR信令来实现应用功能设备获取接入网设备的接入网设备对服务质量参数的支持能力的方案,若传输的数据流不使用IMS,则ANBR信令难以发挥作用。此外,ANBR信令依赖空口的交互,消耗了空口的资源。
因此,本申请实施例提供了一种通信方法。在该通信方法中,第一迟滞时间是基于数据流的第一参数确定的,相比于上述的第二迟滞时间,更符合数据流对应的业务对低延时或实时性的需求。这样,对于实时性或低时延要求高的数据流(例如,基于XR业务的数据流或基于实时视频通话业务的数据流)而言,可以确保业务数据流的产生速率在接入网设备所能提供的保障速率的范围之内,从而满足数据流的实时或低延时传输。
此外,该通信方法中数据流的传输也不依赖于IMS,也避免了对IMS的空口资源的消耗。
下面,结合具体的附图,对本申请实施例提供的通信方法进行描述。
基于图1的通信系统的结构,图3为本申请实施例提供的一例通信方法200的示意性流程图。
例如,如图3所述,该通信方法200包括S210至S260。下面详细介绍S210至S260。
S210,应用功能设备获取第一迟滞时间。
其中,第一迟滞时间为接入网设备向核心网设备反馈第二信息的时间间隔,第二信息用于指示接入网设备对服务质量参数的支持能力。
需要说明的是,该第一迟滞时间还可以称为第一迟滞窗口、第一迟滞时延、第一时延时间等。本申请实施例对该第一迟滞时间的名称不作限定。
需要说明的是,接入网设备对服务质量流对应的服务质量参数支持能力可以包括:接入网设备不能够支持服务质量参数;或,接入网设备能够支持服务质量参数。因此,第二信息可以用于指示接入网设备不能够支持服务质量参数;或,第二信息可以用于指示接入网设备能够支持服务质量参数。
关于服务质量参数的相关描述可以参考上文的描述,这里不再赘述。
在一些实施例中,应用功能设备根据数据流的第一参数,获取第一迟滞时间。
本申请实施例对第一参数不作限定。示例性地,第一参数可以包括以下至少一项:PDB、数据包到达周期、数据包的大小。
需要说明的是,数据包为数据流的一部分。数据流是由应用功能设备经核心网设备发送给接入网设备的数据流。
在一个示例中,该第一迟滞时间可以是数据包到达周期或PDB的N倍。其中,0<N<1。例如,该N可以取1/10或1/8或1/4或1/2等。
在另一个示例中,该第一迟滞时间可以与数据包的大小成反比关系。
在另一些实施例,应用功能设备根据通信协议,获取第一迟滞时间。
示例性地,该通信协议可以规定第一迟滞时间为预设值。
本申请实施例对该实施例中所述的预设值的取值不作限定。例如,该预设值小于接入网设备自行确定的第二迟滞时间。其中,第二迟滞时间可以是基于大量的实验数据得到的。
例如,以XR业务为例,若该XR业务的产生速率为60fps,数据包到达周期为16.7ms。若接入网设备自行决定的该XR业务对应的迟滞时间为38ms,本申请实施例确定的该XR业务对应的迟滞时间可以是该数据包到达周期的1/4或1/2,如可以是4ms~8ms,其远远小于38ms。
S220,应用功能管理设备向核心网设备发送第一信息。相应地,核心网设备接收应用功能设备发送的第一信息。其中,第一信息用于指示第一迟滞时间。
若核心网设备包括策略控制功能设备、会话管理功能设备和接入和移动性管理功能设备,S220具体过程包括S221至S223,下面,详细介绍S221至S223。
S221,应用功能设备向策略控制功能设备发送第一信息。相应地,策略控制功能设备接收应用功能设备发送的第一信息。
在一个示例中,应用功能设备直接向策略控制功能设备发送第一信息。
在另一个示例中,应用功能设备可以通过网络开放功能设备向策略控制功能设备发送第一信息。具体地,应用功能设备可以先将第一信息传输给网络开放功能设备,然后网络开放功能设备再将第一信息转发给策略控制功能设备。
本申请实施例对S221中所述的第一信息的传输方式不作限定。
例如,该S221涉及的第一信息可以是携带在已有的策略授权创建请求消息(Npcf_PolicyAuthoriza-tion_Create Request)中。
S222,策略控制功能设备向会话管理功能设备发送第一信息。相应地,会话管理功能设备接收策略控制功能设备发送的第一信息。
本申请实施例对S222中所述的第一信息的传输方式不作限定。
例如,该S222中所述的第一信息可以是携带在已有的策略关联建立(SM_PolicyAssociation Establishment)消息中或会话管理功能设备发起的策略关联修改(SMF initiated SM Policy Association Modification)中。
S223,会话管理功能设备向接入和移动性管理功能发送第一信息。相应地,接入和移动性管理功能接收会话管理功能设备发送的第一信息。
本申请实施例对S223中所述的第一信息的传输方式不作限定。
例如,该S223中所述的第一信息可以是携带在已有的N1N2消息传输容器消息(Namf_Communication_N1N2MessageTransfer)中。
S230,核心网设备向接入网设备发送第一信息。相应地,接入网设备向核心网设备发送第一信息。
若核心网设备包括策略控制功能设备、会话管理功能设备和接入和移动性管理功能,S230中所述的核心网设备指的是接入和移动性管理功能。
本申请实施例对S230中所述的第一信息的传输方式不作限定。
例如,该S230中所述的第一信息可以是携带在已有的N2 PDU会话请求(N2 PDU session request)消息中。
S240,在获取到通知控制参数,且在接入网设备对服务质量参数支持能力变化的情况下,根据第一迟滞时间向核心网设备发送第二信息。相应地,核心网设备接入网设备发送的第二信息。
其中,服务质量参数包括通知控制参数相对应。
需要说明的是,接入网设备对服务质量参数支持能力的变化可以包括:接入网设备由不能够支持服务质量参数变化为能够支持服务质量参数;或,接入网设备由能够支持服务质量参数变化为不能够支持服务质量参数变化。
在接入网设备由不能够支持服务质量参数变化为能够支持服务质量参数的情况下,第二信息用于指示接入网设备能够支持服务质量参数变化。在接入网设备由能够支持服务质量参数变化为不能够支持服务质量参数的情况下,第二信息用于指示接入网设备不能够支
持服务质量参数变化。
本申请实施例对S240中所述的第二信息的传输方式不作限定。
例如,该S240中所述的第二信息可以是携带在已有的PDU会话资源通知消息中。
若核心网设备包括策略控制功能设备、会话管理功能设备和接入和移动性管理功能,该S240中所述的核心网设备指的是接入和移动性管理功能。
S250,核心网设备向应用功能设备发送第二信息。相应地,应用功能设备接收核心网设备发送的第二信息。
若核心网设备包括策略控制功能设备、会话管理功能设备和接入和移动性管理功能,S250具体过程包括S251至S253,下面,详细介绍S251至S253。
S251,接入和移动性管理功能向会话管理功能设备发送第二信息。相应地,会话管理功能设备接收接入和移动性管理功能发送的第二信息。
本申请实施例对S251中所述的第二信息的传输方式不作限定。
例如,该S251中所述的第二信息可以是携带在已有的PDU会话更新上下文(Namf_PDUsession_update SM context)消息中。
可选地,在一些实施例中,在S251之后,会话管理功能设备还可以向接入和移动性管理功能发送第一响应信息。相应地,接入和移动性管理功能接收会话管理功能设备发送的第一响应信息。其中,第一响应信息用于指示会话管理功能设备已收到接入和移动性管理功能发送的第二信息。
本申请实施例对第一响应信息的传输方式不作限定。
例如,该第一响应信息可以是携带在已有的PDU会话更新上下文响应(Response of Nsmf_PDUsession_update SM context)消息中。
S252,会话管理功能设备向策略控制功能设备发送第二信息。相应地,策略控制功能设备接收会话管理功能设备发送的第二信息。
本申请实施例对S252中所述的第二信息的传输方式不作限定。
例如,该S252中所述的第二信息可以是携带在已有的会话管理功能设备发起的策略关联修改响应(SMF initiated SM Policy Association Modification Response)消息中。
可选地,在一些实施例中,在S252之后,策略控制功能设备还可以向会话管理功能设备发送第二响应信息。相应地,会话管理功能设备接收策略控制功能设备发送的第二响应信息。其中,第二响应信息用于指示策略控制功能设备已收到会话管理功能设备发送的第二信息。
本申请实施例对第二响应信息的传输方式不作限定。
例如,该第二响应信息可以是携带在已有的策略关联建立响应(Response of SM_PolicyAssociation Establishment)消息中或会话管理功能设备发起的策略关联修改响应(Response of SMF initiated SM Policy Association Modification)中。
S253,策略控制功能设备向应用功能设备发送第二信息。相应地,应用功能设备接收策略控制功能设备发送的第二信息。
本申请实施例对S253中所述的第二信息的传输方式不作限定。
例如,该第二信息可以是携带在已有的策略授权更新服务操作(Npcf_PolicyAuthorization_update service operation)消息中或策略授权创建响应消息
(Npcf_PolicyAuthorization_Create Response)中。
在一个示例中,策略控制功能设备直接向应用功能设备发送第二信息。
在另一个示例中,应用功能设备可以通过网络开放功能设备向策略控制功能设备发送第二信息。具体地,策略控制功能设备可以先将第二信息传输给网络开放功能设备,然后网络开放功能设备再将第二信息转发给应用功能设备。
可选地,在一些实施例中,在S253之后,应用功能设备还可以向策略控制功能设备发送第三响应信息。相应地,策略控制功能设备接收应用功能设备发送的第三响应信息。其中,第三响应信息用于指示应用功能设备已收到策略控制功能设备发送的第二信息。
本申请实施例对第三响应信息的传输方式不作限定。
S260,应用功能设备调整输出数据流的速率。
若第二信息用于指示接入网设备能够支持服务质量流对应的服务质量参数;应用功能设备可以提高输出数据流的速率。
若第二信息可以用于指示接入网设备不能够支持服务质量流对应的服务质量参数;应用功能设备可以降低输出数据流的速率。
本申请实施例对应用功能设备调整输出数据流的速率的方式不作限定。
在一个示例中,应用功能设备可以直接调整输出数据流的速率。
在另一个示例中,应用功能设备可以通过调节codec type来调整输出数据流的速率。
例如,应用功能设备可以采用压缩简单的codec type对数据进行编码,这样,应用功能设备的输出数据流的速率就会提升。又例如,应用功能设备可以采用压缩复杂的codec type对数据进行编码,这样,应用功能设备的输出数据流的速率就会减小。
在又一个示例中,应用功能设备可以通过调整数据量的大小来调整输出数据流的速率。
例如,应用功能设备可以采用更高压缩率或分辨率的压缩算法压缩数据,这样压缩后的总的数据的大小变小了,这样,应用功能设备的输出数据流的速率就会减小。
可选地,在一些实施例中,在S260之后,应用功能设备还可以向终端设备反馈该数据流对应的codec type或压缩算法。这样,终端设备可以采用相同的codec type或压缩算法对接入网设备发送的数据流进行解码或解压缩。
本申请实施例对应用功能设备向终端设备反馈该数据流对应的codec type或压缩算法的方式不作限定。例如,应用功能设备可以分别依次通过策略控制功能设备、会话管理功能设备、接入和移动性管理功能设备和接入网设备,向终端设备反馈该数据流对应的codec type或压缩算法。
根据上文所述的通信方法200可知,第一迟滞时间是应用功能设备确定的,并且应用功能设备将第一迟滞时间携带在第一信息中,经由核心网设备传输给接入网设备。
可选地,在一些实施例中,第一迟滞时间还可以是核心网设备确定,并且核心网设备将第一迟滞时间携带在第一信息中,传输给接入网设备。
在该实施例中,具体包括S220、S211、S230至S260。
其中,该实施例中所述的S220和上文所述的S220的区别在于:该实施例中所述的S220涉及的第一信息用于指示第一参数,不是用于指示第一迟滞时间。
S211,核心网设备根据第一信息获取第一迟滞时间,也就是说,核心网设备根据第一参数获取第一迟滞时间。关于核心网设备如何根据第一参数获取第一迟滞时间可以参考上
文S210中的相关描述,这里不再赘述。
S230至S260可以参见上文的描述,这里不再赘述。
可选地,在另一些实施例中,第一迟滞时间还可以是接入网设备确定。
在该实施例中,具体包括S220、S230、S212、S240至S260。
其中,该实施例中所述的S220和S230,分别与上文所述的S220和S230的区别在于:该实施例中所述的S220和S230涉及的第一信息用于指示第一参数,不是用于指示第一迟滞时间。
S212,接入网设备根据第一信息获取第一迟滞时间,也就是说,接入网设备根据第一参数获取第一迟滞时间。关于接入网设备如何根据第一参数获取第一迟滞时间可以参考上文S210中的相关描述,这里不再赘述。
S240至S260可以参见上文的描述,这里不再赘述。
本申请实施例还提供了另一种通信方法,在该通信方法中,应用功能可以提前获取接入网设备对服务质量参数的支持能力,以及,接入网设备对服务质量参数的支持能力发生变化后,接入网设备对该服务质量流(与服务质量参数对应)所能提供的保障速率。并在接入网设备对服务质量参数支持能力发生变化之前,便可以根据接入网设备对该服务质量流所能提供的保障速率,对自身数据流的输出速率进行调整,以确保业务数据流的产生速率在接入网设备的保障速率的范围之内,从而满足数据流的实时或低延时传输。这样,对于实时性或低时延要求高的数据流而言,接入网设备能够在延时预算内传完,进而可以避免数据流出现传输迟滞的问题。
此外,该通信方法中数据流的传输也不依赖于IMS,也避免了对IMS的空口资源的消耗。
基于图1的通信系统的结构,图4为本申请实施例提供的一例通信方法300的示意性流程图。
例如,如图4所述,该通信方法300包括S310至S370。下面详细介绍S310至S370。
S310,应用功能设备获取信息格式。
在一个示例中,在信息格式为第一格式的情况下,该信息包括两部分内容,第一部分内容包括接入网设备在第三时刻对服务质量参数的支持能力的内容,第二部分内容包括接入网设备在第三时刻支持的服务质量流的输出保障速率的内容。第三时刻的描述参见下文的描述,这里先不赘述。
在另一示例中,在信息格式为第二格式的情况下,该信息仅包括一部分内容,且该一部分内容包括接入网设备对服务质量参数的支持能力内容。
需要说明的是,关于接入网设备对服务质量参数的支持能力变化的描述可以参考上文方法200中的相关描述,这里不再赘述。
在一些实施例中,应用功能设备可以根据第一参数确定信息格式。
关于第一参数的描述可以参见上文方法200中的相关描述,这里不再赘述。
例如,若数据包的大小大于或等于第六预设值,且服务质量流对应的数据包到达周期小于或等于第四预设值,则该信息格式为第一格式。反之,该信息格式为第二格式。
又例如,若数据包的大小大于或等于第七预设值,且服务质量流对应的PDB小于或等于第五预设值,则该信息格式为第一格式。反之,该信息格式为第二格式。
本申请实施例对上文所述的第四预设值至第七预设值的具体取值不作限定。示例性地,该第四预设值至第七预设值可以是基于数据流的类型而设定不同的值。例如,若数据流的类型是XR类型,则第六预设值和第七预设值可以取25kbits~75kbits之间的值,第四预设值可以取16.7ms,第五预设值可以取38ms。
在另一些实施例中,应用功能设备可以根据通信协议确定该信息格式。例如,可以预先配置:若接入网设备可以提前预测服务质量流对应的服务质量参数支持能力的变化,则该信息格式为第一格式,即优先使用第一格式的信息,反之,该信息格式为第二格式。
又例如,通信协议可以预先配置:若接入网设备可以提前预测服务质量流对应的服务质量参数在短时间内支持能力的变化,则该信息格式为第一格式,即优先使用第一格式的信息,反之,该信息格式为第二格式。其中,短时间可以理解为时间间隔小于预设间隔的时间。
本申请实施例对预设间隔具体的取值不作限定。示例性地,该预设间隔可以和数据流的第一参数相关。
S320,应用功能管理设备向核心网设备发送第三信息。相应地,核心网设备接收应用功能设备发送的第三信息。其中,第三信息用于指示S310中所述的信息格式。
本申请实施例对S320涉及的第三信息的传输方式不作限定。
例如,该S330涉及的第三信息的传输方式参考上文S220中第一信息的传输方式的相关描述,这里不再赘述。
S330,核心网设备向接入网设备发送第三信息。相应地,接入网设备向核心网设备发送第三信息。
本申请实施例对S330涉及的第三信息的传输方式不作限定。
例如,该S330涉及的第三信息的传输方式参考上文S230中第一信息的传输方式的相关描述,这里不再赘述。
S340,接入网设备在第一时刻,确定在第三时刻接入网设备对服务质量参数支持能力发生变化。其中,第三时刻晚于第一时刻。即接入网设备提前预测到了接入网设备对服务质量参数支持能力发生变化的时刻。
本申请实施例对接入网设备如何预测接入网设备对服务质量参数支持能力发生变化的时刻的方式不作限定。
例如,接入网设备可以通过检测在目标时间内传输的数据包的速率,预测接入网设备对服务质量参数支持能力发生变化的时刻。
又例如,接入网设备可以基于目标时间内传输的数据包的速率和预测算法,预测接入网设备对服务质量参数支持能力发生变化的时刻。
S350,接入网设备在第二时刻,向核心网设备发送第四信息。
具体地,接入网设备在第二时刻,根据S330中第三信息指示的信息格式,以及接入网设备在第三时刻支持的服务质量流的输出保障速率的取值,向核心网设备发送第四信息。其中,第四信息用于指示:接入网设备在第三时刻对服务质量参数的支持能力,以及接入网设备在第三时刻支持的服务质量流的输出保障速率的取值。
本申请实施例对S350中所述的第四信息的传输方式不作限定。
例如,该第四信息的传输方式参考上文S240中第二信息的传输方式的相关描述,这
里不再赘述。
S360,核心网设备向应用功能设备发送第四信息。相应地,应用功能设备接收核心网设备发送的第四信息。
本申请实施例对S360中所述的第四信息的传输方式不作限定。
例如,该第四信息的传输方式参考上文S250中第二信息的传输方式的相关描述,这里不再赘述。
S370,应用功能设备调整输出数据流的速率。
若第四信息用于指示接入网设备能够支持服务质量参数,以及接入网设备在第三时刻支持的服务质量流的输出保障速率;应用功能设备可以将应用功能设备的输出数据流的速率调到接入网设备在第三时刻支持的服务质量流的输出保障速率。
若第四信息可以用于指示接入网设备不能够支持服务质量参数,以及接入网设备在第三时刻支持的服务质量流的输出保障速率;应用功能设备可以将应用功能设备的输出数据流的速率调到小于接入网设备在第三时刻支持的服务质量流的输出保障速率。
关于应用功能设备调整输出数据流的速率的描述可以参见上文方法200中的相关描述,这里不再赘述。
可选地,在一些实施例中,在S370之后,应用功能设备还可以向终端设备反馈该数据流对应的codec type或压缩算法,这样,终端设备可以采用相同的codec type或压缩算法对接入网设备发送的数据流进行解码或解压缩。
关于用设备向终端设备反馈该数据流对应的codec type或压缩算法的描述可以参见上文方法200中的相关描述,这里不再赘述。
根据上文所述的通信方法300可知,信息格式是应用功能设备确定的,并且应用功能设备将信息格式携带在第三信息中,经由核心网设备传输给接入网设备。
可选地,在一些实施例中,信息格式还可以是核心网设备确定,并且核心网设备将信息格式携带在第三信息中,传输给接入网设备。
在该实施例中,具体包括S320、S311、S330至S370。
其中,该实施例中所述的S320和上文所述的S320的区别在于:该实施例中所述的S320涉及的第三信息用于指示第一参数,不是用于指示信息格式。
S311,核心网设备根据第一信息确定信息格式,也就是说,核心网设备根据第一参数获取信息格式。关于核心网设备如何根据第一参数获取信息格式可以参考上文S310中的相关描述,这里不再赘述。
S330至S370可以参见上文的描述,这里不再赘述。
可选地,在另一些实施例中,信息格式还可以是接入网设备确定。
在该实施例中,具体包括S320、S330、S312、S340至S370。
其中,该实施例中所述的S320和S330,分别与上文所述的S320和S330的区别在于:该实施例中所述的S320和S330涉及的第三信息用于指示第一参数,不是用于指示第四信息。
S312,接入网设备根据第三信息获取信息格式,也就是说,接入网设备根据第一参数获取信息格式。关于接入网设备如何根据第一参数获取信息格式可以参考上文S210中的相关描述,这里不再赘述。
S340至S370可以参见上文的描述,这里不再赘述。
上面基于图3和图4,对本申请实施例提供的通信方法进行了详细的描述。下面基于图5,对图3至图4中涉及执行通信方法的通信装置进行详细描述。
如图5所示,本申请实施例还提供一种通信装置500。该通信装置500包括处理器510,处理器510与存储器520耦合,存储器520用于存储计算机程序或指令或者和/或数据,处理器510用于执行存储器520存储的计算机程序或指令和/或者数据,使得上文方法实施例中的方法被执行。
可选地,该通信装置500包括的处理器510为一个或多个。
可选地,如图5所示,该通信装置500还可以包括存储器520。
可选地,该通信装置500包括的存储器520可以为一个或多个。
可选地,该存储器520可以与该处理器510集成在一起,或者分离设置。
可选地,如图5所示,该无线通信装置500还可以包括收发器530,收发器530用于信号的接收和/或发送。例如,处理器510用于控制收发器530进行信号的接收和/或发送。
作为一种方案,该通信装置500用于实现上文方法实施例中由接入网设备执行的操作。
例如,处理器510用于实现上文方法实施例中由接入网设备执行的处理相关的操作,收发器530用于实现上文方法实施例中由接入网设备执行的收发相关的操作。
作为另一种方案,该通信装置500用于实现上文方法实施例中由核心网设备执行的操作。
例如,处理器510用于实现上文方法实施例中由核心网设备执行的处理相关的操作,收发器530用于实现上文方法实施例中由核心网设备执行的收发相关的操作。
作为又一种方案,该通信装置500用于实现上文方法实施例中由应用功能设备执行的操作。
例如,处理器510用于实现上文方法实施例中由应用功能设备执行的处理相关的操作,收发器530用于实现上文方法实施例中由应用功能设备执行的收发相关的操作。
本申请实施例还提供一种计算机可读存储介质,其上存储有用于实现上述方法实施例中由接入网设备执行的方法的计算机指令,或由核心网设备执行的方法的计算机指令,或由应用功能设备执行的方法的计算机指令。
例如,该计算机程序被计算机执行时,使得该计算机可以实现上述方法实施例中由接入网设备执行的方法,或由核心网设备执行的方法,或由应用功能设备执行的方法。
本申请实施例还提供一种包含指令的计算机程序产品,该指令被计算机执行时使得该计算机实现上述方法实施例中由接入网设备执行的方法,或由核心网设备执行的方法,或由应用功能设备执行的方法。
本申请实施例还提供一种通信系统,该通信系统包括接入网设备、核心网设备和应用功能设备。
上述提供的任一种无线通信装置中相关内容的解释及有益效果均可参考上文提供的对应的方法实施例,此处不再赘述。
本申请实施例并未对本申请实施例提供的方法的执行主体的具体结构进行特别限定,只要能够通过运行记录有本申请实施例提供的方法的代码的程序,以根据本申请实施例提供的方法进行通信即可。例如,本申请实施例提供的方法的执行主体可以是接入网设备或
位置管理功能设备,或者,是接入网设备或位置管理功能设备中能够调用程序并执行程序的功能模块。
本领域普通技术人员可以意识到,结合本文中所公开的实施例描述的各示例的单元及算法步骤,能够以电子硬件、或者计算机软件和电子硬件的结合来实现。这些功能究竟以硬件还是软件方式来执行,取决于技术方案的特定应用和设计约束条件。专业技术人员可以对每个特定的应用来使用不同方法来实现所描述的功能,但是这种实现不应认为超出本申请的范围。
所属领域的技术人员可以清楚地了解到,为描述的方便和简洁,上述描述的系统、装置和单元的具体工作过程,可以参考前述方法实施例中的对应过程,在此不再赘述。
在本申请所提供的几个实施例中,应该理解到,所揭露的系统、装置和方法,可以通过其它的方式实现。例如,以上所描述的装置实施例仅仅是示意性的,例如,所述单元的划分,仅仅为一种逻辑功能划分,实际实现时可以有另外的划分方式,例如多个单元或组件可以结合或者可以集成到另一个系统,或一些特征可以忽略,或不执行。另一点,所显示或讨论的相互之间的耦合或直接耦合或通信连接可以是通过一些接口,装置或单元的间接耦合或通信连接,可以是电性,机械或其它的形式。
所述作为分离部件说明的单元可以是或者也可以不是物理上分开的,作为单元显示的部件可以是或者也可以不是物理单元,即可以位于一个地方,或者也可以分布到多个网络单元上。可以根据实际的需要选择其中的部分或者全部单元来实现本实施例方案的目的。
另外,在本申请各个实施例中的各功能单元可以集成在一个处理单元中,也可以是各个单元单独物理存在,也可以两个或两个以上单元集成在一个单元中。
所述功能如果以软件功能单元的形式实现并作为独立的产品销售或使用时,可以存储在一个计算机可读取存储介质中。基于这样的理解,本申请的技术方案本质上或者说对现有技术做出贡献的部分或者该技术方案的部分可以以软件产品的形式体现出来,该计算机软件产品存储在一个存储介质中,包括若干指令用以使得一台计算机设备(可以是个人计算机,服务器,或者网络设备等)执行本申请各个实施例所述方法的全部或部分步骤。而前述的存储介质包括:U盘、移动硬盘、只读存储器(Read-Only Memory,ROM)、随机存取存储器(Random Access Memory,RAM)、磁碟或者光盘等各种可以存储程序代码的介质。
以上所述,仅为本申请的具体实施方式,但本申请的保护范围并不局限于此,任何熟悉本技术领域的技术人员在本申请揭露的技术范围内,可轻易想到变化或替换,都应涵盖在本申请的保护范围之内。因此,本申请的保护范围应以所述权利要求的保护范围为准。
Claims (12)
- 一种通信方法,其特征在于,所述方法包括:接入网设备根据接收的第一信息,获取第一迟滞时间,所述第一迟滞时间为所述接入网设备向核心网设备反馈第二信息的时间间隔,所述第二信息用于指示所述接入网设备对服务质量参数的支持能力,所述服务质量参数是所述核心网设备为服务质量流配置的,所述第一迟滞时间基于数据流的第一参数确定,所述数据流与所述服务质量流对应;在获取到通知控制参数,且在所述接入网设备对所述服务质量参数支持能力变化的情况下,根据所述第一迟滞时间,向核心网设备发送所述第二信息。
- 根据权利要求1所述的通信方法,其特征在于,所述第一信息来自于所述核心网设备或应用功能设备,所述第一信息包括所述第一参数或所述第一迟滞时间。
- 根据权利要求1或2所述的通信方法,其特征在于,所述第一参数包括以下的至少一项:数据包延时预算、数据包到达周期、数据包的大小。
- 根据权利要求1至3中任意一项所述的通信方法,其特征在于,在所述第一信息包括所述第一参数的情形下,所述接入网设备根据接收的第一信息,获取第一迟滞时间,包括:所述接入网设备根据接收的所述第一信息,确定所述第一迟滞时间。
- 根据权利要求2或3所述的通信方法,其特征在于,在所述第一信息包括所述第一迟滞时间的情形下,所述第一信息由所述应用功能设备确定后,并经由所述核心网设备发送给所述接入网设备;或者,在所述第一信息包括所述第一迟滞时间的情形下,所述第一信息由所述核心网设备确定后,并发送该所述接入网设备。
- 根据权利要求2至5中任意一项所述的通信方法,其特征在于,所述方法还包括:所述应用功能设备经所述核心网设备接收所述第二信息;所述应用功能设备根据所述第二信息,调整所述应用功能设备输出所述数据流的速率。
- 根据权利要求1至6中任意一项所述的通信方法,其特征在于,所述数据流是所述应用功能设备经所述核心网设备发送给所述接入网设备的,所述服务质量流用于对所述数据流进行管理。
- 根据权利要求1至7中任意一项所述的通信方法,其特征在于,所述服务质量参数包括所述通知控制参数。
- 一种通信装置,其特征在于,所述通信装置包括:处理器和存储器;所述存储器,用于存储计算机程序;所述处理器,用于执行所述存储器中存储的计算机程序,以使得所述通信装置执行如权利要求1至8中任一项所述的通信方法。
- 一种计算机可读存储介质,其特征在于,所述计算机可读存储介质上存储有计算机程序,当所述计算机程序在计算机上运行时,使得所述计算机执行如权利要求1至8中任一项所述的通信方法。
- 一种芯片,其特征在于,包括:处理器,用于从存储器中调用并运行计算机程序,使得安装有所述芯片地通信装置执行如权利要求1至8中任一项所述的通信方法。
- 一种计算机程序产品,其特征在于,所述计算机程序产品包括:计算机程序,当所述计算机程序被计算机运行时,使得所述计算机执行如权利要求1至8中任一项所述的通信方法。
Applications Claiming Priority (4)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
CN202210349271 | 2022-04-01 | ||
CN202210349271.2 | 2022-04-01 | ||
CN202210468968.1 | 2022-04-29 | ||
CN202210468968.1A CN116939718A (zh) | 2022-04-01 | 2022-04-29 | 通信方法及通信装置 |
Publications (1)
Publication Number | Publication Date |
---|---|
WO2023185621A1 true WO2023185621A1 (zh) | 2023-10-05 |
Family
ID=88199222
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
PCT/CN2023/083364 WO2023185621A1 (zh) | 2022-04-01 | 2023-03-23 | 通信方法及通信装置 |
Country Status (1)
Country | Link |
---|---|
WO (1) | WO2023185621A1 (zh) |
Citations (2)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US20160234756A1 (en) * | 2015-02-06 | 2016-08-11 | Nokia Technologies Oy | Method, apparatus, and computer program product for signaling transmission delay |
CN113852566A (zh) * | 2018-01-12 | 2021-12-28 | 华为技术有限公司 | 确定网络服务质量流的方法、网元和系统 |
-
2023
- 2023-03-23 WO PCT/CN2023/083364 patent/WO2023185621A1/zh unknown
Patent Citations (2)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US20160234756A1 (en) * | 2015-02-06 | 2016-08-11 | Nokia Technologies Oy | Method, apparatus, and computer program product for signaling transmission delay |
CN113852566A (zh) * | 2018-01-12 | 2021-12-28 | 华为技术有限公司 | 确定网络服务质量流的方法、网元和系统 |
Non-Patent Citations (1)
Title |
---|
SAMSUNG: "QoS parameter - Packet Delay Budget", SA WG2 MEETING #116, S2-163704, 5 July 2016 (2016-07-05), XP051121382 * |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
EP3493591B1 (en) | Service transmission control method and related device | |
US20230090232A1 (en) | Terminal device and network device | |
WO2021218563A1 (zh) | 用于传输数据的方法与装置 | |
US20240031870A1 (en) | Media data transmission method and communication apparatus | |
US20240163719A1 (en) | Network optimization method and communication apparatus | |
AU2021308253A1 (en) | Communication method and communication apparatus | |
US20240314637A1 (en) | Data transmission method and communication apparatus | |
WO2021258766A1 (zh) | 一种配置终端设备的方法及设备 | |
WO2023065987A1 (zh) | 一种传输信息的方法及装置 | |
WO2024065307A1 (en) | Method, device, and system for data transmission | |
US12047806B2 (en) | Interface between a radio access network and an application | |
WO2023273880A1 (zh) | 传输方式切换的方法和相关装置 | |
WO2023185621A1 (zh) | 通信方法及通信装置 | |
WO2021027786A1 (zh) | 一种ue上报udc信息方法及设备 | |
CN116939718A (zh) | 通信方法及通信装置 | |
WO2023213139A1 (zh) | 通信方法和通信装置 | |
WO2023185608A1 (zh) | 一种数据传输的方法及通信装置 | |
WO2023213132A1 (zh) | 一种网络切片的通信方法、通信装置、接入网设备和终端设备 | |
WO2023185769A1 (zh) | 通信方法、通信装置和通信系统 | |
WO2023116873A1 (zh) | 应用层测量收集方法和通信装置 | |
EP4351209A1 (en) | Session management method and apparatus | |
WO2023011279A1 (zh) | 一种周期业务的传输方法及通信装置 | |
WO2023207850A1 (zh) | 通信方法及通信装置 | |
WO2023070392A1 (zh) | 数据传输方法、设备及存储介质 | |
WO2024140600A1 (zh) | 通信方法、通信装置及通信系统 |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
121 | Ep: the epo has been informed by wipo that ep was designated in this application |
Ref document number: 23777991 Country of ref document: EP Kind code of ref document: A1 |