WO2023065987A1 - 一种传输信息的方法及装置 - Google Patents

一种传输信息的方法及装置 Download PDF

Info

Publication number
WO2023065987A1
WO2023065987A1 PCT/CN2022/121576 CN2022121576W WO2023065987A1 WO 2023065987 A1 WO2023065987 A1 WO 2023065987A1 CN 2022121576 W CN2022121576 W CN 2022121576W WO 2023065987 A1 WO2023065987 A1 WO 2023065987A1
Authority
WO
WIPO (PCT)
Prior art keywords
message
qos
resource scheduling
qos configuration
configuration
Prior art date
Application number
PCT/CN2022/121576
Other languages
English (en)
French (fr)
Inventor
朱锦涛
丁辉
周凯
韩文勇
Original Assignee
华为技术有限公司
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 华为技术有限公司 filed Critical 华为技术有限公司
Publication of WO2023065987A1 publication Critical patent/WO2023065987A1/zh

Links

Images

Classifications

    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04WWIRELESS COMMUNICATION NETWORKS
    • H04W24/00Supervisory, monitoring or testing arrangements
    • H04W24/02Arrangements for optimising operational condition
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04WWIRELESS COMMUNICATION NETWORKS
    • H04W72/00Local resource management
    • H04W72/12Wireless traffic scheduling
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04WWIRELESS COMMUNICATION NETWORKS
    • H04W72/00Local resource management
    • H04W72/50Allocation or scheduling criteria for wireless resources
    • H04W72/54Allocation or scheduling criteria for wireless resources based on quality criteria
    • H04W72/542Allocation or scheduling criteria for wireless resources based on quality criteria using measured or perceived quality

Definitions

  • This application relates to the field of communication. In particular, it relates to a method and device for transmitting information.
  • the present application provides a method and device for transmitting information, which can detect the transmission status of information in time, and quickly adjust resources when information is lost.
  • the method can guarantee the reliable transmission of information, and improves the efficiency of information transmission.
  • a method for transmitting information may include: configuring a detection parameter by a first device, where the detection parameter includes a first threshold; the first device has not received the message in M cycles, and the When M is greater than or equal to the first threshold, QoS resource scheduling is started, where M is a positive integer.
  • This solution detects messages by configuring detection parameters, and performs resource scheduling in a timely manner after message loss reaches certain conditions to ensure reliable transmission of messages, avoid machine downtime that may be caused by packet loss, and ensure production efficiency.
  • the first device may be a core network device, may also be an access network device, or may be a terminal device.
  • the detection parameters may also include message source address, corresponding message and bus cycle.
  • the above-mentioned starting QoS resource scheduling may be that the first device sends a request message to the access network device to request the access network device to schedule resources; when the first device is an access network When the device is connected, the first device does not need to wait for the request message, and can start QoS resource scheduling by itself.
  • the corresponding message may be indicated by a message identifier, which is not limited in this application.
  • the first device may detect periodic messages or non-periodic messages, which is not limited in this application.
  • the periodic message may be a service message
  • the aperiodic message may be a functional safety message.
  • the M periods may be M consecutive periods.
  • M may be 3, and when messages are lost for 3 consecutive periods, the first device may start QoS resource scheduling.
  • the M periods may also be M discontinuous periods in the first period.
  • the M periods may also be discontinuous.
  • the above-mentioned first period of time may be preset.
  • M may be 3, and the preset first period is 10 seconds, and when 3 cycles of message loss occur within the 10 seconds, the first device may start QoS resource scheduling.
  • the M cycles may also be M consecutive cycles in the preset period. This application is not limited to this.
  • the first device receives the detection parameter from the second device.
  • the first device is an access network device or a terminal device
  • the second device is a core network device, such as a session management function network element or a user plane function network element.
  • the detection parameter may be received from the core network device before the detection parameter is configured.
  • the first device sends a request message, where the request information is used to request the access network device to start the QoS resource scheduling.
  • the first device when the first device is a core network device or a terminal device, it may request the access network device to perform resource scheduling.
  • the first device may send the first request information to the access network device through an industrial field support service network element.
  • adding industrial field support service network elements to forward information can improve the communication between user plane functional network elements and other network elements.
  • Information transmission efficiency improves the success rate of resource scheduling.
  • the above resource scheduling may be that the first device switches from the first QoS configuration to the second QoS configuration, where the packet loss rate included in the second QoS configuration is smaller than the packet loss rate included in the first QoS configuration.
  • the packet loss rate of the message is lower than the packet loss rate of the message when the message is scheduled with the first QoS configuration.
  • the above-mentioned resource scheduling may be switching QoS configuration.
  • the above-mentioned QoS resource scheduling may be that the first device sends a request message to the access network device to request the access network
  • the access network device can request the session management function network element to reconfigure QoS resources; when the first device accesses the network device, it can directly report to the session management function network element to request QoS resource reconfiguration without waiting for the request.
  • the first device does not receive the message within a period, and records one loss times.
  • the first device may set the detection time through a timer, and the timing period of the timer may be determined according to the above-mentioned bus period, for example, the bus period is 1 second, and the timing period of the timer may be 1 second. It should be understood that the above numerical values are only examples and not limitations.
  • the first device when it does not receive the message within M periods, it determines that M times of missing times have been recorded.
  • the timer can be reset after recording the number of times of loss to carry out the detection of the next cycle.
  • the first device continues to detect; when the accumulated message is lost
  • the first device may start resource scheduling.
  • the detection parameter further includes the period of the message.
  • the detection parameter may include a message transmission period used to determine the timing period of the above-mentioned timer, and when the first device is an access network device or a terminal device, the period may be received when receiving the detection parameter.
  • the first device receives the message in Y consecutive periods, and when Y is greater than or equal to a second threshold, the QoS resource scheduling is canceled .
  • the second threshold and the first threshold may be the same or different in value, which is not limited in the present application.
  • releasing the QoS resource scheduling may be that the first device switches from the second QoS configuration to the first QoS configuration, where the packet loss rate of the second QoS configuration is smaller than the packet loss rate of the first QoS configuration Rate.
  • releasing resource scheduling may also be that the first device switches the second QoS configuration to a third QoS configuration, where the packet loss rate included in the second QoS configuration is smaller than the packet loss rate included in the third QoS configuration. That is to say, when the first device releases the QoS resource scheduling, it may release to a configuration with a packet loss rate greater than the second QoS configuration but not necessarily equal to the original first QoS configuration.
  • the detection parameter further includes a second threshold.
  • the second threshold may be pre-configured. It should be understood that the second threshold may also be preset, which is not limited in the present application.
  • a method for transmitting information may include: a third device periodically receives a safety message, where the safety message includes a first identification; the third device determines that a safety event occurs according to the first identification; the The third device starts QoS resource scheduling.
  • the method can respond in time when safety events are found, and perform resource scheduling to ensure reliable transmission of information and avoid business interruption caused by safety failures and seriously affect production efficiency.
  • the third device may be a core network device, for example, may be a user plane functional network element.
  • the QoS resource scheduling may be to adjust the priority of the security message, for example, after the third device determines that a security event has occurred, switch the QoS configuration, and the priority of the security message corresponding to the QoS configuration is higher.
  • the switched QoS configuration may also be a configuration capable of reducing the message packet loss rate. That is to say, the switched QoS configuration can also reduce the packet loss rate of the safety messages on the basis of ensuring the priority of the safety messages, so that the safety messages can be transmitted reliably and preferentially.
  • the third device may start QoS resource scheduling by sending a request message to the access network device to request the access network device to schedule resources.
  • the first identifier includes a control bit or a status bit indicating the occurrence of a security event.
  • the first identifier includes a command value indicating that a security event occurs.
  • the QoS resource scheduling includes uplink QoS resource scheduling and downlink QoS resource scheduling.
  • the resource scheduling of the master station and the slave station is carried out at the same time, which can provide reliable guarantee of information transmission for the complete production line in the industrial network.
  • starting the QoS resource scheduling by the third device may be that the third device switches from the third QoS configuration to the fourth QoS configuration, where the security message of the fourth QoS configuration has a higher priority than the first QoS configuration. Priority of security messages for three QoS configurations.
  • the third device when the third device is a user plane functional network element, the third device sends a scheduling request to the access network device, and the access network device may request the session management functional network element to reconfigure the QoS configuration.
  • the third device after the third device completes the QoS resource scheduling, the third device periodically receives a safety message, where the safety message includes the second identifier; the third device records the number of times of receiving the second identifier continuously; When the number of times of receiving the second identifier continuously is greater than or equal to a third threshold, the third device releases the QoS resource scheduling.
  • the second identifier may be of the same type as the first identifier, but differ in the indicated content, or the second identifier may be another identifier indicating recovery of the security event, which is not limited in this application.
  • the third threshold may be preconfigured by the user plane functional network element, or may be preset, which is not limited in this application.
  • releasing the QoS resource scheduling by the third device may be that the third device switches from the fourth QoS configuration to the third QoS configuration.
  • releasing the resource scheduling may also be that the first device switches from the fourth QoS configuration to the fifth QoS configuration, where the priority included in the fifth QoS configuration is lower than the priority included in the fourth QoS configuration. That is to say, when the first device releases the QoS resource scheduling, it may release to a configuration whose priority is lower than the fourth QoS configuration but not necessarily equal to the original third QoS configuration.
  • the QoS resource scheduling is released, which can reduce the load of the device and save the power consumption of the device.
  • a communication device may include: a processing unit configured to configure a detection parameter, the detection parameter includes a first threshold, and the first threshold is used to detect whether a message is lost; a transceiver unit configured to The message is received periodically; the processing unit is further configured to start QoS resource scheduling when the message is not received in M periods and the M is greater than or equal to the first threshold, wherein M is a positive integer.
  • the M periods may be M consecutive periods.
  • the M periods may also be M discontinuous periods in the first period.
  • the transceiver unit is further configured to receive the detection parameter from the second device.
  • the communication device is an access network device or a terminal device
  • the second device is a core network device, such as a session management function network element or a user plane function network element.
  • the transceiver unit is further configured to send a request message, where the request message is used to request the access network device to start the QoS resource scheduling.
  • the transceiving unit is specifically configured to send the first request information to the access network device through an industrial field support service network element.
  • the processing unit is configured to switch from the first QoS configuration to the second QoS configuration, where the packet loss rate included in the second QoS configuration is smaller than the packet loss rate included in the first QoS configuration.
  • the processing unit is further configured to, when the sending and receiving unit does not receive the message within one period, record the number of times of one loss.
  • the processing unit determines that M times of missing times have been recorded.
  • the detection parameter further includes the period of the message.
  • the processing unit After the processing unit completes the QoS resource scheduling, when the transceiver unit receives the message for N consecutive periods, and the N is greater than or equal to the second threshold, the processing unit is also used to release the QoS resource scheduling.
  • releasing the QoS resource scheduling may be that the first device switches from the second QoS configuration to the first QoS configuration, where the packet loss rate of the second QoS configuration is smaller than the packet loss rate of the first QoS configuration Rate.
  • the detection parameter further includes a second threshold.
  • the third aspect is a device embodiment corresponding to the method embodiment of the first aspect, and the explanations, supplements, and descriptions of beneficial effects of the various implementations in the first aspect are also applicable to the third aspect, and are not repeated here repeat.
  • a communication device configured to include: a transceiver unit configured to periodically receive a safety message, where the safety message includes a first identification; a processing unit configured to determine that a safety event has occurred according to the first identification, It is also used to start QoS resource scheduling.
  • the first identifier includes a control bit or a status bit indicating the occurrence of a security event.
  • the first identifier includes a command value indicating that a security event occurs.
  • the QoS resource scheduling includes uplink QoS resource scheduling and downlink QoS resource scheduling.
  • the processing unit is configured to switch from the third QoS configuration to the fourth QoS configuration, where the priority included in the fourth QoS configuration is higher than the priority included in the third QoS configuration.
  • the transceiver unit is further configured to periodically receive a safety message, where the safety message includes a second identifier; the processing unit is configured to record the number of times the second identifier is continuously received ; when the number of times of receiving the second identifier continuously is greater than or equal to a third threshold, the processing unit is further configured to release the QoS resource scheduling.
  • the processing unit is configured to switch from the fourth QoS configuration to the third QoS configuration.
  • the fourth aspect is a device embodiment corresponding to the method embodiment of the second aspect, and the explanations, supplements, and descriptions of beneficial effects of each implementation mode in the second aspect are also applicable to the fourth aspect, and are not repeated here. repeat.
  • a computer-readable medium stores program code for execution by a communication device, and the program code includes a program code for executing the first aspect or the second aspect, or, the first aspect or the second aspect An instruction of the communication method in any possible implementation of the aspect or any one of the possible implementations of the first aspect or the second aspect.
  • a computer program product containing instructions, which, when running on a computer, causes the computer to execute the above first aspect or the second aspect, or any possible implementation of the first aspect or the second aspect , or, the methods of all possible implementations in the first aspect or the second aspect.
  • a communication system in a seventh aspect, includes a communication system that implements the first aspect or the second aspect or the third aspect or the fourth aspect, or, the first aspect or the second aspect or the third aspect or the fourth aspect Any possible implementation manner in the aspect, or, the method and the functional device of various possible designs in the first aspect or the second aspect or the third aspect or the fourth aspect in all possible implementation manners.
  • a processor configured to be coupled with a memory, for executing the above-mentioned first aspect or the second aspect or the third aspect or the fourth aspect, or, the first aspect or the second aspect or the third aspect Or any possible implementation manner in the fourth aspect, or, the method in all possible implementation manners in the first aspect or the second aspect or the third aspect or the fourth aspect.
  • a ninth aspect provides a chip, the chip includes a processor and a communication interface, the communication interface is used to communicate with external devices or internal devices, and the processor is used to implement the first or second aspect above, or, the first A method in any possible implementation manner of the first aspect or the second aspect, or, a method in all possible implementation manners of the first aspect or the second aspect.
  • the chip may further include a memory, the memory stores instructions, and the processor is used to execute the instructions stored in the memory or other instructions.
  • the processor is used to implement the method in the first aspect or the second aspect or any possible implementation manners thereof.
  • the chip can be integrated on the terminal.
  • Fig. 1 shows a schematic diagram of an example of communication architecture applicable to this application.
  • Fig. 2 shows a schematic diagram of a method for transmitting information provided by an embodiment of the present application.
  • Fig. 3 shows a schematic flowchart of a method for transmitting information provided by an embodiment of the present application.
  • Fig. 4 shows a schematic flow chart of another method for transmitting information provided by an embodiment of the present application.
  • FIG. 5 shows a schematic flow chart of another method for transmitting information provided by an embodiment of the present application.
  • FIG. 6 shows a schematic flow chart of another method for transmitting information provided by an embodiment of the present application.
  • FIG. 7 shows a schematic diagram of another method for transmitting information provided by an embodiment of the present application.
  • FIG. 8 shows a schematic flow chart of another method for transmitting information provided by an embodiment of the present application.
  • Fig. 9 shows a schematic block diagram of a communication device applicable to this application.
  • Fig. 10 shows a schematic block diagram of another communication device applicable to the present application.
  • FIG. 1 is a schematic diagram of a network architecture applicable to an embodiment of the present application. Each part involved in the network architecture shown in FIG. 1 will be described separately below.
  • User equipment (UE) 110 may include various handheld devices with wireless communication functions, vehicle-mounted devices, wearable devices, computing devices or other processing devices connected to wireless modems, as well as various forms of terminals, Mobile station (mobile station, MS), terminal (terminal) or soft terminal, etc. For example, water meters, electricity meters, sensors, etc.
  • the user equipment in this embodiment of the present application may refer to an access terminal, a subscriber unit, a user station, a mobile station, a mobile station, a relay station, a remote station, a remote terminal, a mobile device, a user terminal (user terminal), a terminal device (terminal equipment), wireless communication equipment, user agent or user device.
  • the user equipment can also be a cellular phone, a cordless phone, a session initiation protocol (SIP) phone, a wireless local loop (WLL) station, a personal digital assistant (PDA), a wireless communication Functional handheld devices, computing devices or other processing devices connected to wireless modems, vehicle-mounted devices, wearable devices, user equipment in 5G networks or users in future evolved public land mobile networks (PLMN) Devices or user equipment in the future Internet of Vehicles, etc., are not limited in this embodiment of the present application.
  • SIP session initiation protocol
  • WLL wireless local loop
  • PDA personal digital assistant
  • PLMN public land mobile networks
  • the user equipment may be customer premise equipment (customer premise equipment, CPE).
  • CPE customer premise equipment
  • wearable devices can also be referred to as wearable smart devices, which is a general term for intelligently designing daily wear and developing wearable devices by applying wearable technology, such as glasses, Gloves, watches, clothing and shoes, etc.
  • a wearable device is a portable device that is worn directly on the body or integrated into the user's clothing or accessories. Wearable devices are not only a hardware device, but also achieve powerful functions through software support, data interaction, and cloud interaction.
  • Generalized wearable smart devices include full-featured, large-sized, complete or partial functions without relying on smart phones, such as smart watches or smart glasses, etc., and only focus on a certain type of application functions, and need to cooperate with other devices such as smart phones Use, such as various smart bracelets and smart jewelry for physical sign monitoring.
  • the user equipment can also be the user equipment in the Internet of Things (Internet of Things, IoT) system.
  • IoT Internet of Things
  • the IOT technology can achieve massive connections, deep coverage, and terminal power saving through, for example, narrow band (NB) technology.
  • the user equipment may also include sensors such as smart printers, train detectors, and gas stations, and its main functions include collecting data (part of user equipment), receiving control information and downlink data of access network equipment, and Send electromagnetic waves to transmit uplink data to access network equipment.
  • (wireless) access network equipment (radio access network, (R)AN) 120 used to provide network access functions for authorized user equipment in a specific area, and can use different quality radios according to the level of user equipment and service requirements, etc. transport tunnel.
  • radio access network radio access network
  • (R)AN can manage wireless resources, provide access services for user equipment, and then complete the forwarding of control signals and user equipment data between user equipment and the core network.
  • (R)AN can also be understood as a base station in a traditional network.
  • the access network device in the embodiment of the present application may be any communication device with a wireless transceiver function for communicating with the user equipment.
  • the access network equipment includes but not limited to: evolved Node B (evolved Node B, eNB), radio network controller (radio network controller, RNC), Node B (Node B, NB), base station controller (base station controller) , BSC), base transceiver station (base transceiver station, BTS), home base station (home evolved NodeB, HeNB, or home Node B, HNB), baseband unit (baseBand unit, BBU), wireless fidelity (wireless fidelity, WIFI)
  • the access point (access point, AP), wireless relay node, wireless backhaul node, transmission point (transmission point, TP) or transmission and reception point (transmission and reception point, TRP) in the system can also be 5G, For example, NR, gNB in the system, or, transmission point (TRP or TP), one or a group (including multiple antenna panels) antenna
  • a gNB may include a centralized unit (CU) and a DU.
  • the gNB may also include an active antenna unit (AAU).
  • the CU implements some functions of the gNB, and the DU implements some functions of the gNB.
  • the CU is responsible for processing non-real-time protocols and services, and realizing the functions of radio resource control (radio resource control, RRC) and packet data convergence protocol (packet data convergence protocol, PDCP) layer.
  • the DU is responsible for processing physical layer protocols and real-time services, realizing the functions of the radio link control (radio link control, RLC) layer, media access control (media access control, MAC) layer and physical (physical, PHY) layer.
  • the AAU implements some physical layer processing functions, radio frequency processing and related functions of active antennas. Since the information of the RRC layer will eventually become the information of the PHY layer, or be transformed from the information of the PHY layer, under this architecture, high-level signaling, such as RRC layer signaling, can also be considered to be sent by the DU , or, sent by DU+AAU.
  • the access network device may be a device including one or more of a CU node, a DU node, and an AAU node.
  • the CU can be divided into access network devices in the access network (radio access network, RAN), and the CU can also be divided into access network devices in the core network (core network, CN), which is not covered by this application. Do limited.
  • User plane network element 130 used for packet routing and forwarding, and user plane data quality of service (quality of service, QoS) processing, etc.
  • the user plane network element may be a user plane function (user plane function, UPF) network element.
  • UPF user plane function
  • the user plane network element may still be a UPF network element, or may have other names, which are not limited in this application.
  • Data network element 140 used to provide a network for transmitting data.
  • the data network element may be a data network (data network, DN) network element.
  • the data network element may still be a DN network element, or may have other names, which are not limited in this application.
  • Access management network element 150 mainly used for mobility management and access management, etc., and can be used to implement functions other than session management in mobility management entity (mobility management entity, MME) functions, for example, legal functions such as monitoring and access authorization/authentication.
  • mobility management entity mobility management entity, MME
  • the access management network element may be an access and mobility management function (access and mobility management function, AMF) network element.
  • AMF access and mobility management function
  • the access management network element may still be an AMF network element, or may have other names, which are not limited in this application.
  • Session management network element 160 mainly used for session management, network interconnection protocol (internet protocol, IP) address allocation and management of terminal equipment, selection of manageable user plane functions, termination points of policy control and charging function interfaces, and downlink Data Notification etc.
  • IP network interconnection protocol
  • the session management network element may be a session management function (session management function, SMF) network element.
  • SMF session management function
  • the session management network element may still be an SMF network element, or may have other names, which are not limited in this application.
  • Policy control network element 170 a unified policy framework for guiding network behavior, providing policy rule information and the like for control plane functional network elements (such as AMF, SMF network elements, etc.).
  • the policy control network element may be a policy and charging rules function (policy and charging rules function, PCRF) network element.
  • policy control network element may be a policy control function (policy control function, PCF) network element.
  • policy control network element may still be a PCF network element, or may have other names, which are not limited in this application.
  • the above-mentioned network element or function may be a network element in a hardware device, or a software function running on dedicated hardware, or a virtualization function instantiated on a platform (for example, a cloud platform).
  • the terminal device is connected to the AMF through the N1 interface
  • the RAN is connected to the AMF through the N2 interface
  • the RAN is connected to the UPF through the N3 interface.
  • the UPF is interconnected with the data network (data network, DN) through the N6 interface.
  • the SMF controls the UPF through the N4 interface.
  • the AMF interfaces with the SMF through the N11 interface.
  • the AMF obtains the terminal device subscription data from the unified data management (UDM) unit through the N8 interface; the SMF obtains the terminal device subscription data from the UDM unit through the N10 interface.
  • UDM unified data management
  • AMF obtains policy data from PCF through N15 interface
  • SMF obtains policy data from PCF through N7 interface.
  • the network architecture applicable to the embodiment of the present application shown in Figure 1 above is only an example, and the network architecture applicable to the embodiment of the present application is not limited to this, and any network architecture that can realize the functions of the above-mentioned network elements is applicable In the embodiment of this application.
  • network functional network element entities such as AMF network elements and SMF network elements are called network function network elements (network function, NF) network elements; or, in other network architectures, AMF network elements
  • AMF network elements A collection of network elements such as SMF network elements can be referred to as control plane function network elements.
  • the technical solution of the embodiment of the present application can be applied to various communication systems, for example: long term evolution (long term evolution, LTE) system, LTE frequency division duplex (frequency division duplex, FDD) system, LTE time division duplex (time division duplex) , TDD) system, universal mobile telecommunications system (UMTS), worldwide interconnection microwave access (worldwide interoperability for microwave access, WiMAX) communication system, fifth generation (5th generation, 5G) system, new wireless (new radio, NR) or future network, etc.
  • LTE long term evolution
  • LTE frequency division duplex frequency division duplex
  • TDD time division duplex
  • UMTS universal mobile telecommunications system
  • WiMAX worldwide interconnection microwave access
  • 5G fifth generation
  • new wireless new radio, NR
  • future network etc.
  • the technical solution provided by this application can also be applied to future communication systems, such as the sixth generation mobile communication system.
  • the communication system may also be a public land mobile network (PLMN) network, a device-to-device (D2D) communication system, a machine-to-machine (M2M) communication system, an object Internet of Things (IoT) communication system or other communication systems.
  • PLMN public land mobile network
  • D2D device-to-device
  • M2M machine-to-machine
  • IoT object Internet of Things
  • the method provided in the embodiment of the present application may be applied to a 5G communication system, for example, the communication system shown in FIG. 1 .
  • the embodiments shown below do not specifically limit the specific structure of the execution subject of the method provided by the embodiment of the present application, as long as the program that records the code of the method provided by the embodiment of the present application can be run to provide the method according to the embodiment of the present application.
  • the execution subject of the method provided by the embodiment of the present application may be a terminal device or a core network device, or a functional module in a terminal device or a core network device that can call a program and execute the program.
  • preset may include pre-definition, for example, protocol definition.
  • predefined can be realized by pre-saving corresponding codes, tables or other methods that can be used to indicate relevant information in devices (for example, including terminal devices or core network devices). Do limited.
  • the "protocols" involved in the embodiments of this application may refer to standard protocols in the communication field, such as 5G protocols, new radio (new radio, NR) protocols, and related protocols applied to future communication systems. Applications are not limited to this.
  • enabling may include direct enabling and indirect enabling.
  • information When describing a certain information for enabling A, it may include that the information directly enables A or indirectly enables A, but it does not mean that A must be carried in the information.
  • the information enabled by the information is called the information to be enabled.
  • the information to be enabled can be directly enabled.
  • the to-be-enabled information may also be indirectly enabled by enabling other information, where there is an association relationship between the other information and the to-be-enabled information.
  • specific information can also be enabled by means of a pre-agreed (for example, protocol-specified) arrangement order of each information, thereby reducing the enabling overhead to a certain extent. At the same time, it can also identify the common parts of each information and enable them uniformly, so as to reduce the enabling overhead caused by enabling the same information separately.
  • the first device configures detection parameters.
  • the detection parameter may include a first threshold.
  • the first device starts QoS resource scheduling when no message is received in M periods and M is greater than or equal to a first threshold.
  • the first device detects the message, and performs resource scheduling in a timely manner after judging that the message loss reaches a certain condition, so as to ensure the reliable transmission of the message, avoid machine downtime caused by packet loss, and ensure production efficiency.
  • the first device in 201 may be a core network device, may also be an access network device, or may be a terminal device.
  • the first device when the detected message is an uplink message, the first device may be a core network device, such as a UPF, or SMF; when the detected message is a downlink message, the first device may be an access network device, such as a RAN, It can also be UE or CPE.
  • a core network device such as a UPF, or SMF
  • the first device when the detected message is a downlink message, the first device may be an access network device, such as a RAN, It can also be UE or CPE.
  • the first device when the first device is a RAN or a terminal device (UE or CPE), before 201, the first device may also receive detection parameters from a second device, and the second device may be a core network device, such as UPF or SMF. That is, the core network device pre-configures (also referred to as preset) detection parameters, sends the detection parameters to the RAN or terminal equipment (UE or CPE), and the RAN or terminal equipment configures the detection parameters.
  • the core network device pre-configures (also referred to as preset) detection parameters, sends the detection parameters to the RAN or terminal equipment (UE or CPE), and the RAN or terminal equipment configures the detection parameters.
  • the detected message in FIG. 2 may be a service message.
  • it may be a message sent by a controller to indicate an operation behavior of a device; it may also be a functional safety message, Exemplarily, in an industrial network, it may be a message warning whether a security incident occurs. This application is not limited to this.
  • the preset condition in 202 may be a preset condition according to a detection parameter.
  • the detection parameter may include a preset threshold, which may be a threshold for the number of times messages are lost (also called timeout times), and the preset condition may be Yes: the number of message loss times is greater than the threshold.
  • the message loss number threshold is 3, and the first device detects that the message loss times are 4 times, it can determine that the number of message loss times meets the preset condition, so as to execute the subsequent process. It can be understood that, when the first device detects that the message is lost, it can record the number of times of loss.
  • the first device detects messages, which may be periodic messages, and the first device accumulates the number of times the messages are lost for further judgment.
  • the first device may also detect aperiodic messages once, and start QoS resource scheduling if the messages are lost, which is not limited in this application.
  • the message type of the aperiodic message and the periodic message may be different, and the format of the message may also be different.
  • the first device may determine whether the message is a periodic message according to the message type and/or message format.
  • the core network device may store network topology information and the corresponding communication relationship, and if the message transmitted in the industrial network is not included in the network topology information and the corresponding communication relationship, the first device may determine the The messages are acyclic messages.
  • the first device when the first device detects a periodic message, correspondingly, the first device periodically receives the message. If the first device does not receive a message within M periods and M is greater than or equal to a preset threshold, it starts QoS resource scheduling.
  • the value of the above M may be a positive integer.
  • the starting quality of service QoS resource scheduling in 202 may be: the RAN can schedule the QoS resources by itself; when the first device is the UPF, the UPF sends a request message to the RAN to request the RAN to schedule the QoS resources; When the first device is a CPE, it can report message loss to the UPF, and then the UPF requests the RAN to schedule QoS resources.
  • the foregoing scheduling of QoS resources may be reconfiguration of QoS resources.
  • the QoS resource may be a QoS configuration (QoS profile).
  • the reconfigured QoS resource has better performance, for example, it can reduce the message packet loss rate and improve the message transmission success rate.
  • the packet loss rate is only used as an example rather than limitation, and other parameters affecting performance are also applicable, such as signal-to-noise ratio, channel utilization rate and/or bandwidth, and so on.
  • reconfiguring the QoS resource may be that the RAN requests the control plane functional network element, such as SMF and/or PCF, to reconfigure the QoS resource for the RAN.
  • the devices participating in the interaction in the communication system may update the QoS resources synchronously, that is, the SMF reconfigures the QoS resources, and all the devices participating in the interaction use the reconfigured QoS resource scheduling message.
  • the first device in Fig. 2 is UPF, and UPF detects periodic uplink messages, and starts QoS resource scheduling after detecting message loss.
  • UPF detects periodic uplink messages, and starts QoS resource scheduling after detecting message loss.
  • Figure 3 A possible implementation is shown in Figure 3:
  • the detection parameters may include a message source address a, a corresponding message m, a bus cycle c, and a threshold N.
  • This message m may be an example of a periodic message. It should be understood that the detection parameter may include the identifier of the message m, which is used to indicate the periodic message to be detected.
  • the IO controller periodically sends a message, and the UPF periodically receives the message.
  • the IO controller is only an example of a message sending device, and other devices that can send periodic messages are also applicable to this solution, for example, or an IO device.
  • the UPF If the UPF does not receive the message, the UPF record loss times + 1(n).
  • UPF When n ⁇ N, UPF resets its internal timer and counts again; if n>N, UPF judges to start resource scheduling.
  • UPF can use the timing period as the period for judging the magnitude relationship between n and N. For example, UPF can judge the magnitude relationship between n and N at the end of each timing period; UPF can also use a certain time range as the judgment period to judge
  • the size relationship between n and N the judgment cycle can be an integer multiple of the message transmission cycle, for example, the message transmission cycle is 2s, the judgment cycle can be 10s, UPF judges the size relationship between n and N every 10s. It can be understood that the timing period of the UPF is the same as the transmission period of the message, and the timer is reset after each message transmission period ends.
  • the judging period may be preset.
  • the UPF starts resource scheduling.
  • the UPF may send a request message to RAN1 to request RAN1 to schedule resources.
  • the UPF may also execute the unscheduling process.
  • the UPF may send a recovery indication to RAN1, instructing the RAN to recover to the pre-scheduled QoS configuration.
  • the UPF can also send a request message to RAN1 to request to update the QoS configuration, and RAN1 can request the SMF to reconfigure the QoS configuration. It is understandable that the performance of the QoS configuration is lower than the QoS configuration before the update. For example, the QoS configuration of the QoS configuration The packet loss rate is greater than the QoS configuration before the update.
  • the detection parameters in 301 can be determined by UPF according to the relevant information pre-acquired in the configuration stage, for example, the relevant information can be messages such as network topology relationship, communication relationship between IO controller and IO device, and/or communication cycle .
  • the threshold N can be used as the threshold for judging the transmission state of the data packet, and the bus cycle c can be used as the timing period of the internal timer.
  • the detection of the uplink message may be carried out all the time, or may be detection of message transmission within a period of time, which is not limited in this application.
  • UPF performs resource scheduling, which may be scheduling QoS resources, for example, it may be bandwidth, it may be transmission priority of messages, and so on.
  • UPF can be based on the existing QoS configuration on the RAN, or negotiate a new set of QoS configuration with RAN1, and then schedule subsequent messages according to the new QoS configuration to ensure the success of the transmission.
  • the release of resource scheduling in 306 can be restored to the QoS configuration before scheduling, or a set of QoS configuration can be replaced after the QoS configuration completed by UPF scheduling.
  • the QoS configuration for UPF scheduling for example, can be replaced with a set of QoS configuration with smaller bandwidth, which can reduce the power consumption of communication devices.
  • the first device in FIG. 2 is a user equipment, for example, it may be a CPE.
  • the CPE detects periodic downlink messages, and starts QoS resource scheduling after detecting message loss.
  • a possible implementation is shown in Figure 4:
  • the UPF sends a request message to the CPE to request configuration of detection parameters.
  • the request may include the destination address a of the downlink message, the corresponding message m, the bus cycle c, the packet loss threshold N times, and the address (IP or MAC address) of the UPF itself.
  • SMF can also be used to execute the UPF process.
  • the CPE configures the detection parameter.
  • the CPE can start a timer.
  • the CPE sends a configuration response to the UPF.
  • the configuration response is used to report the successful configuration of detection parameters.
  • a programmable logic controller (programmable logic controller, PLC) sends the MAC address of the downlink message to the device.
  • PLC is only used as an example of a device that transmits periodic messages, and other devices that can transmit periodic messages in an industrial network are also applicable.
  • the downlink message is an example of the message shown in FIG. 2 . Similar places will not be repeated below.
  • the MAC address can be forwarded to the CPE via UPF and RAN.
  • the detection may be, if the CPE successfully receives the message, resetting an internal timer for the message. If the CPE does not receive the message, the CPE records the number of timeouts + 1, and when the number of timeouts n ⁇ N, resets its internal corresponding timer; otherwise, the CPE judges that the downlink message needs resource scheduling.
  • step 303 For this step, reference may be made to the description of step 303 in the method shown in FIG. 3 , and details are not repeated here.
  • the CPE After the CPE detects that the number of message loss is greater than or equal to N, it can perform the following steps:
  • the CPE reports the downlink packet timeout information to the UPF.
  • the CPE may report information to the UPF according to the address obtained in 401 .
  • the downlink packet timeout information may be: m messages sent to a are lost n times.
  • the UPF sends a request message to the RAN.
  • the request message is used to request the RAN to schedule resources.
  • the receiver of the downlink message may also be PLC2, that is, PLC2 may be used to execute related actions of the device.
  • the CPE may keep detecting after the resource scheduling is completed.
  • the CPE can restore the QoS configuration before scheduling, or replace a QoS configuration after the QoS configuration completed by UPF scheduling.
  • the performance of the QoS configuration before scheduling or the QoS configuration that is replaced again can be lower than the QoS configuration completed by CPE scheduling. Example Therefore, a set of QoS configuration with smaller bandwidth can be replaced, which can reduce the power consumption of communication equipment.
  • the CPE may also send a release indication to the RAN via the UPF, instructing the RAN to release resource scheduling.
  • the CPE detects the transmission status of downlink messages and starts QoS resource scheduling in time, which can ensure reliable transmission of information and improve production efficiency.
  • the first device in Fig. 2 is RAN, which detects periodic messages, and starts QoS resource scheduling after detecting message loss.
  • the UPF sends a request message to the RAN to request configuration of detection parameters.
  • the request may include the destination address a of the downlink message, the corresponding message m, the bus cycle c, the packet loss threshold N times, and the address (IP/MAC) of the UPF itself.
  • SMF can also be used to execute the UPF process.
  • the RAN configures the detection parameter.
  • RAN may start a timer.
  • the RAN sends a configuration response to the UPF.
  • the configuration response is used to report the successful configuration of detection parameters.
  • the PLC sends a downlink message to the device.
  • the downlink message may include the MAC address of the PLC.
  • This MAC address can be forwarded to the device via UPF, RAN and CPE.
  • the RAN If the RAN successfully receives the message, it resets the internal timer for the message; if the UE does not receive the message, first the UE records the number of timeouts + 1, and if the number of timeouts n ⁇ N, then resets its internal corresponding timer Otherwise, the UE judges that the downlink message needs resource scheduling.
  • step 303 For this step, reference may be made to the description of step 303 in the method shown in FIG. 3 , and details are not repeated here.
  • the following steps may be performed:
  • the RAN reports downlink packet timeout information to the UPF.
  • the UE may report information to the UPF according to the address acquired in 501 .
  • the downlink packet timeout information may be: m messages sent to a are lost n times.
  • the RAN starts resource scheduling.
  • the RAN may keep detecting after the resource scheduling is completed.
  • the RAN can restore the QoS configuration before scheduling, or replace a set of QoS configurations after the QoS configuration is scheduled.
  • the performance of the QoS configuration before scheduling or the QoS configuration that is replaced again can be lower than the QoS configuration that is scheduled by the UE. For example , a set of QoS configurations with smaller bandwidth can be replaced, which can reduce the power consumption of communication devices.
  • RAN detects messages, and resource scheduling can be started directly after message loss is detected, which saves signaling interaction, further reduces the delay in resource adjustment, and ensures the reliability of information transmission.
  • this application proposes a possible way, considering the possibility that the UPF address is unreachable, the UE can report the message to the industrial field enablement service network element (industrial field enablement service, IFES), Then the IFES forwards the relevant messages to the UPF through the interface/internal interface with the UPF, for example, as shown in Figure 6:
  • industrial field enablement service IFES
  • the UPF sends a request message to the CPE.
  • the request message is used to request the CPE to configure detection parameters.
  • the request may include the destination address a of the message, the corresponding message m, the bus cycle c, and the packet loss threshold N times, and may also include the address (IP/MAC) of the UPF.
  • the request may also include the address of the device connected to the CPE MAC address and/or IFES address (IP or MAC).
  • SMF can also be used to execute the UPF process.
  • the CPE configures the detection parameter.
  • the UE sends a configuration response to the UPF, which is used to report that the configuration of the downlink packet loss detection parameter is successful.
  • PLC sends a downlink message to the device
  • the downlink message may include the MAC address of the PLC.
  • This MAC address can be forwarded to the device via UPF, RAN and CPE.
  • the CPE detects a message.
  • the CPE If the CPE does not receive the message, the CPE records the timeout times n+1, and if n ⁇ N, resets its internal corresponding timer; otherwise, the CPE judges that the message needs resource scheduling.
  • step 303 For this step, reference may be made to the description of step 303 in the method shown in FIG. 3 , and details are not repeated here.
  • the CPE After the CPE detects that the number of message loss is greater than or equal to N, it can perform the following steps:
  • the CPE reports the downlink packet timeout information to the IFES.
  • the CPE may report the downlink packet timeout information to the IFES according to the address obtained in 601.
  • the message may be: the m message sent to a is lost n times.
  • the IFES reports the timeout information of the downlink packet sent by the CPE to the UPF.
  • the UPF sends a request message to the RAN to request the RAN to perform resource scheduling.
  • the receiver of the downlink message may also be PLC2, that is, PLC2 may be used to execute related actions of the device.
  • the CPE can report the message to the IFES, and then the IFES forwards the relevant message to the UPF through the interface/internal interface with the UPF.
  • the application layer can provide OT on-site communication enabling services through IFES.
  • the configuration information sent by the IFES to the CPE can be forwarded through the UPF.
  • UPF and IFES may usually be deployed in the same physical device, which can communicate with each other.
  • the CPE may also continue detection.
  • the CPE can request the RAN to restore the QoS configuration before scheduling, or replace a set of QoS configuration after the scheduled QoS configuration.
  • the performance of the QoS configuration before scheduling or the replaced QoS configuration can be lower than the QoS configuration completed by the CPE scheduling. For example, a set of QoS configurations with smaller bandwidth can be replaced, which can reduce the power consumption of the communication device.
  • an IFES may also be added to the solution in FIG. 5 above, and the RAN detects the message, and the IFES sends related configuration information to the RAN through the UPF. After the RAN performs detection and finds packet loss, it can directly perform air interface resource scheduling, and UPF does not have to command and schedule. There is no further statement here.
  • the third device periodically receives a safety message from the master station or the slave station, where the safety message may include the first identifier.
  • the third device may be a user plane functional network element.
  • the first identifier may be an identifier used to indicate the occurrence of a security event, for example, it may be a status bit or a control bit used to indicate the occurrence of a security event in a functional safety trigger identifier (Fail-safe values, FV), and may be a data status security PDU
  • FV functional safety trigger identifier
  • the field carried in which is used to indicate the occurrence of a security event, may also be other identifiers, for example, it may be a preset field, which is not limited in this application.
  • the third device determines that a security event occurs according to the first identifier.
  • the third device starts QoS resource scheduling.
  • the third device when it is a functional network element of the user plane, it may send a request message to the fourth device to request the RAN to start QoS resource scheduling, and the fourth device may be an access network device.
  • the QoS resource scheduling may be that the third device switches the third QoS configuration to the fourth QoS configuration, where the priority of the security message scheduled with the fourth QoS configuration is higher than that of the security message scheduled with the third QoS configuration class.
  • the fourth QoS configuration may also be a configuration capable of reducing the message packet loss rate. That is to say, the packet loss rate of the safety messages scheduled by the fourth QoS configuration is smaller than the packet loss rate of the safety messages scheduled by the third QoS configuration.
  • the switched QoS configuration can also reduce the packet loss rate of safety messages on the basis of ensuring the priority of safety messages, so that safety messages can be transmitted reliably and preferentially.
  • the method may also include:
  • the third device detects the security message.
  • the security message may include the second identification.
  • the second identifier may be an identifier used to indicate the recovery of a security event, for example, it may be a functional safety trigger identifier (Fail-safe values, FV), it may be a field carried in a data status security PDU for indicating the occurrence of a security event, or It may be other identifiers, for example, it may be a preset field, which is not limited in this application.
  • the third device detects the security message, and may record the number of occurrences of the second identifier, and when the number of times meets a preset threshold, the third device may cancel resource scheduling.
  • the preset threshold may be determined based on experience, or based on machine learning results.
  • the preset threshold can also be adjusted dynamically. For example, the preset threshold is determined to be 3 according to the machine learning result, and the preset threshold may also be adjusted to 4 according to the new learning result as the machine learning continues to advance. This application is not limited to this. It should be understood that the above numbers are only used as an example rather than limitation.
  • the third device releases resource scheduling.
  • releasing the resource scheduling may be that the third device may request the RAN to restore to the QoS configuration before scheduling, for example, the third QoS configuration. Or replace a set of QoS configurations after the scheduled QoS configurations.
  • the performance of the QoS configurations before scheduling or the replaced QoS configurations may be lower than the QoS configurations scheduled by the UE. For example, a set of QoS with smaller bandwidth can be replaced. configuration, it is possible to reduce the power consumption of the communication device.
  • the method can respond in time when safety events are found, and perform resource scheduling to ensure reliable transmission of information and avoid business interruption caused by safety failures and seriously affect production efficiency.
  • the first mark in Figure 7 may be a functional safety trigger mark, and a possible implementation is shown in Figure 8:
  • the master station sends security information to the UPF.
  • the security information includes a first identifier, the first identifier is a functional safety trigger identifier, wherein the functional safety trigger identifier (control byte bit4, CB4) on the host side has a value of 1, which is used to indicate that a security event has occurred.
  • the functional safety trigger identifier control byte bit4, CB4
  • the UPF requests RAN1 to start resource scheduling.
  • RAN1 sends a resource scheduling response to the UPF.
  • RAN2 sends a resource scheduling response to the UPF.
  • UPF sends a security message, and forwards it to the secondary station via RAN2 and CPE2.
  • the slave station feeds back the security event response to the UPF via CPE2 and RAN2.
  • the response fed back by the slave station can include a value of 1 for the functional safety trigger flag (status byte bit4, SB4) on the device side, which is used to indicate that a security event has occurred.
  • SB4 functional safety trigger flag
  • the corresponding relationship may be preset, and the above is only an example and not a limitation. For example, it may also be that when the value of SB4 is preset to be 0, it indicates that a security event has occurred, which is not limited in this application;
  • the UPF records SB4 1, and establishes a record as a safe channel.
  • the UPF forwards the security event response to the master station via RAN1 and CPE1.
  • the master station sends a security event release message to the UPF via RAN1 and CPE1.
  • SB4 is still 1 at this time.
  • the UPF forwards the security event release message to the secondary station via RAN2 and CPE2.
  • the slave station sends a security event release response to the UPF via CPE2 and RAN2.
  • the UPF notifies RAN1 to release resource scheduling.
  • the UPF notifies RAN2 to release resource scheduling.
  • the UPF may request the RANs respectively corresponding to the secondary station and the primary station to release resource scheduling for uplink and downlink messages at the same time.
  • the meaning of releasing resource scheduling is similar to that in FIG. 8 , and will not be repeated here.
  • RAN1 sends a dispatch release response to the UPF.
  • RAN2 sends a dispatch release response to the UPF.
  • FIG. 8 is only used as a possible example.
  • the security event in FIG. 8 is triggered by the master station (F-HOST), and in other possible implementation manners, it may also be triggered by the slave station (F-DEVICE) Triggering, for example, step 801 may be that the slave station sends security information to the UPF, where the first identifier included in the security message indicates that a security event has occurred, and the rest of the steps are similar to those in FIG. 8 , and will not be described here.
  • the first identifier in FIG. 7 may be a command value (command) carried in a security message.
  • the command value can be command 0*36, which can be used to indicate that no security incident has occurred.
  • the command value can be command 0*08, which can be used to indicate that a security event has occurred.
  • Other steps are similar to those in Figure 8, and will not be repeated here.
  • the network device or the terminal device may include a hardware structure and/or a software module, and realize the above-mentioned functions in the form of a hardware structure, a software module, or a hardware structure plus a software module . Whether one of the above-mentioned functions is executed in the form of a hardware structure, a software module, or a hardware structure plus a software module depends on the specific application and design constraints of the technical solution.
  • each functional module in each embodiment of the present application may be integrated into one processor, or physically exist separately, or two or more modules may be integrated into one module.
  • the above-mentioned integrated modules can be implemented in the form of hardware or in the form of software function modules.
  • the embodiment of the present application further provides an apparatus 900 for realizing the function of the session management function network element in the above method.
  • the device may be a software module or a system on a chip.
  • the system-on-a-chip may be composed of chips, or may include chips and other discrete devices.
  • the apparatus 900 may include: a processing unit 910 and a communication unit 920 .
  • the communication unit may also be referred to as a transceiver unit, and may include a sending unit and/or a receiving unit, which are respectively used to perform the steps of sending and receiving by the session management function network element in the method embodiment above.
  • a communication unit may also be referred to as a transceiver, transceiver, transceiving device, or the like.
  • a processing unit may also be called a processor, a processing board, a processing module, a processing device, and the like.
  • the device in the communication unit 920 for realizing the receiving function may be regarded as a receiving unit
  • the device in the communication unit 920 for realizing the sending function may be regarded as a sending unit, that is, the communication unit 920 includes a receiving unit and a sending unit.
  • the communication unit may sometimes be called a transceiver, a transceiver, or an interface circuit, etc.
  • the receiving unit may sometimes be called a receiver, a receiver, or a receiving circuit, etc.
  • the sending unit may sometimes be called a transmitter, a transmitter, or a transmitting circuit, etc.
  • Processing unit for detecting messages For detecting messages.
  • the communication unit is used for sending and receiving information.
  • a processing unit configured to schedule QoS resources.
  • the communication unit is used for sending and receiving information.
  • processing unit 910 and the communication unit 920 may also perform other functions.
  • processing unit 910 and the communication unit 920 may also perform other functions.
  • FIG. 10 shows an apparatus 1000 provided in the embodiment of the present application.
  • the apparatus shown in FIG. 10 may be a hardware circuit implementation manner of the apparatus shown in FIG. 9 .
  • the communication device may be applicable to the flow chart shown above, and execute the functions of the terminal device or the network device in the above method embodiments. For ease of illustration, FIG. 10 only shows the main components of the communication device.
  • a communication device 1000 includes a processor 1010 and an interface circuit 1020 .
  • the processor 1010 and the interface circuit 1020 are coupled to each other.
  • the interface circuit 1020 may be a transceiver or an input-output interface.
  • the communication device 1000 may further include a memory 1030 for storing instructions executed by the processor 1010 or storing input data required by the processor 1010 to execute the instructions or storing data generated by the processor 1010 after executing the instructions.
  • the processor 1010 is used to implement the functions of the above-mentioned processing unit 910
  • the interface circuit 1020 is used to implement the functions of the above-mentioned communication unit 920 .
  • the terminal device chip implements the functions of the terminal device in the above method embodiment.
  • the terminal device chip receives information from other modules in the terminal device (such as radio frequency modules or antennas), and the information is sent to the terminal device by the network device; or, the terminal device chip sends information to other modules in the terminal device (such as radio frequency modules or antenna) to send information, which is sent by the terminal device to the network device.
  • the network device chip When the above communication device is a chip applied to a network device, the network device chip implements the functions of the network device in the above method embodiment.
  • the network device chip receives information from other modules in the network device (such as radio frequency modules or antennas), and the information is sent to the network device by the terminal device; or, the network device chip sends information to other modules in the network device (such as radio frequency modules or antenna) to send information, which is sent by the network device to the terminal device.
  • the embodiment of the present application also includes a communication system, and the communication system may include the communication device 900 or the communication device 1000 described above.
  • the processor in the embodiments of the present application can be a central processing unit (Central Processing Unit, CPU), and can also be other general-purpose processors, digital signal processors (Digital Signal Processor, DSP), application-specific integrated circuits (Application Specific Integrated Circuit, ASIC), Field Programmable Gate Array (Field Programmable Gate Array, FPGA) or other programmable logic devices, transistor logic devices, hardware components or any combination thereof.
  • a general-purpose processor can be a microprocessor, or any conventional processor.
  • the processor can be random access memory (Random Access Memory, RAM), flash memory, read-only memory (Read-Only Memory, ROM), programmable read-only memory (Programmable ROM, PROM), erasable In addition to programmable read-only memory (Erasable PROM, EPROM), electrically erasable programmable read-only memory (Electrically EPROM, EEPROM), registers, hard disk, mobile hard disk, CD-ROM or any other form of storage medium known in the art middle.
  • An exemplary storage medium is coupled to the processor such the processor can read information from, and write information to, the storage medium.
  • the storage medium may also be a component of the processor.
  • the processor and storage medium can be located in the ASIC.
  • the ASIC can be located in a network device or a terminal device. Certainly, the processor and the storage medium may also exist in the network device or the terminal device as discrete components.
  • the embodiments of the present application may be provided as methods, systems, or computer program products. Accordingly, the present application may take the form of an entirely hardware embodiment, an entirely software embodiment, or an embodiment combining software and hardware aspects. Furthermore, the present application may take the form of a computer program product embodied on one or more computer-usable storage media (including but not limited to disk storage, optical storage, etc.) having computer-usable program code embodied therein.
  • These computer program instructions may also be stored in a computer-readable memory capable of directing a computer or other programmable data processing apparatus to operate in a specific manner, such that the instructions stored in the computer-readable memory produce an article of manufacture comprising instruction means, the instructions
  • the device realizes the function specified in one or more procedures of the flowchart and/or one or more blocks of the block diagram.
  • the term "and/or” in this application is only an association relationship describing associated objects, indicating that there may be three relationships, for example, A and/or B may indicate: A exists alone, and A and B exist simultaneously , there are three cases of B alone.
  • the character "/" in this article generally means that the contextual objects are an "or” relationship; the term “at least one” in this application can mean “one” and "two or more", for example, A At least one of , B, and C can mean: A exists alone, B exists alone, C exists alone, A and B exist simultaneously, A and C exist simultaneously, C and B exist simultaneously, and A, B, and C exist simultaneously, which Seven situations.
  • the user equipment or the access network equipment includes a hardware layer, an operating system layer running on the hardware layer, and an application layer running on the operating system layer.
  • the hardware layer includes hardware such as a central processing unit (CPU), a memory management unit (MMU), and memory (also called main memory).
  • the operating system may be any one or more computer operating systems that implement business processing through processes, for example, Linux operating system, Unix operating system, Android operating system, iOS operating system, or windows operating system.
  • the application layer includes applications such as browsers, address books, word processing software, and instant messaging software.
  • the embodiment of the present application does not specifically limit the specific structure of the execution subject of the method provided by the embodiment of the present application, as long as the program that records the code of the method provided by the embodiment of the present application can be run to provide the method according to the embodiment of the present application.
  • the execution subject of the method provided in the embodiment of the present application may be a user equipment or an access network device, or a functional module in the user equipment or access network device that can call a program and execute the program.
  • various aspects or features of the present application may be implemented as a method, apparatus, or article of manufacture using standard programming and/or engineering techniques.
  • article of manufacture covers a computer program accessible from any computer readable device, carrier or media.
  • computer-readable media may include, but are not limited to: magnetic storage devices (e.g., hard disk, floppy disk, or tape, etc.), optical disks (e.g., compact disc (compact disc, CD), digital versatile disc (digital versatile disc, DVD) etc.), smart cards and flash memory devices (for example, erasable programmable read-only memory (EPROM), card, stick or key drive, etc.).
  • magnetic storage devices e.g., hard disk, floppy disk, or tape, etc.
  • optical disks e.g., compact disc (compact disc, CD), digital versatile disc (digital versatile disc, DVD) etc.
  • smart cards and flash memory devices for example, erasable programmable read-only memory (EPROM), card, stick or key drive, etc.
  • various storage media described herein can represent one or more devices and/or other machine-readable media for storing information.
  • the term "machine-readable storage medium” may include, but is not limited to, wireless channels and various other media capable of storing, containing and/or carrying instructions and/or data.

Landscapes

  • Engineering & Computer Science (AREA)
  • Computer Networks & Wireless Communication (AREA)
  • Signal Processing (AREA)
  • Quality & Reliability (AREA)
  • Mobile Radio Communication Systems (AREA)

Abstract

本申请提供了一种传输信息的方法和装置,该传输信息的方法包括:第一设备配置检测参数,检测参数包括第一阈值,第一阈值用于检测消息是否丢失;第一设备在M个周期中未收到消息,且M大于或者等于第一阈值时,启动服务质量QoS资源调度。该方案通过配置检测参数,对通信系统中交互的消息进行检测,在判断消息丢失达到一定条件后及时进行资源调度,能够保障消息的可靠传输,避免因丢包可能导致的机器宕机,从而保障生产效率。

Description

一种传输信息的方法及装置
本申请要求于2021年10月19日提交中国专利局、申请号为202111213266.0、申请名称为“一种传输信息的方法及装置”的中国专利申请的优先权,其全部内容通过引用结合在本申请中。
技术领域
本申请涉及通信领域。尤其涉及一种传输信息的方法及装置。
背景技术
随着5G工业互联网技术的不断发展,目前工业现场网中的设备通信正在从基于有线的通信向基于无线的通信方式转换。而无线通信的工业现场网中的空口可能发生信息丢失的状况,这会造成设备宕机,使业务强制中断,严重影响生产效率。因此,如何保障信息的可靠传输是亟待解决的问题。
发明内容
本申请提供一种传输信息的方法及装置,能够及时检测信息的传输状态,当信息发生丢失的状况时,快速调整资源。该方法能够保障信息的可靠传输,提高了信息传输的效率。
第一方面,提供了一种传输信息的方法,该方法可以包括:第一设备配置检测参数,该检测参数包括第一阈值;该第一设备在M个周期中未收到该消息,且该M大于或者等于该第一阈值时,启动服务质量QoS资源调度,其中,所述M为正整数。
该方案通过配置检测参数对消息进行检测,在消息丢失达到一定条件后及时进行资源调度,以保障消息的可靠传输,避免因丢包可能导致的机器宕机,能够保障生产效率。
应理解,第一设备可以是核心网设备,也可以是接入网设备,也可以是终端设备。
该检测参数中还可以包括消息源地址、对应的消息和总线周期。当第一设备为核心网设备或终端设备时,上述启动QoS资源调度可以是第一设备向接入网设备发送请求消息,用于请求接入网设备调度资源;当第一设备为接入网设备时,第一设备无需等待请求消息,可以自行启动QoS资源调度。
其中,对应的消息可以通过消息标识指示,本申请对此不作限定。
还应理解,第一设备可以检测周期性消息,也可以检测非周期性消息,本申请对此不作限定。示例地,周期性消息可以是业务消息,非周期性消息可以是功能安全消息。
一种可能的实施方式,该M个周期可以是连续的M个周期。
示例地,M可以是3,当出现连续3个周期的消息都丢失时,第一设备可以启动QoS资源调度。
一种可能的实施方式,该M个周期也可以是在第一时段中的非连续的M个周期。
也就是说,该M个周期也可以是不连续的。上述第一时段可以是预设的。示例地,M可以为3,预设的第一时段为10秒,在该10秒中出现3个周期的消息丢失的情况时, 第一设备可以启动QoS资源调度。
可以理解的是,该M个周期也可以是在预设时段中的连续的M个周期。本申请对此不作限定。
一种可能的实施方式,该第一设备接收来自第二设备的该检测参数。
一种可能的实施方式,该第一设备为接入网设备或者终端设备,该第二设备为核心网设备,比如可以是会话管理功能网元或者用户面功能网元。
也即,当第一设备为接入网设备或者终端设备时,在配置检测参数前可以从核心网设备接收该检测参数。
一种可能的实施方式,该第一设备发送请求消息,该请求信息用于请求接入网设备启动该QoS资源调度。
可以理解的是,当第一设备为核心网设备或者终端设备时,可以请求接入网设备进行资源调度。
一种可能的实施方式,该第一设备可以通过工业现场支持服务网元向该接入网设备发送该第一请求信息。
考虑到在不同的架构中用户面功能网元与其他网元之间的信息存在不可达的可能,加入工业现场支持服务网元转发信息,能够提高用户面功能网元与其他网元之间的信息传输效率,提升资源调度的成功率。
一种可能的实施方式,上述资源调度可以是该第一设备从第一QoS配置切换至第二QoS配置,其中,该第二QoS配置包括的丢包率小于该第一QoS配置包括的丢包率,也就是说,以第二QoS配置调度消息时,该消息的丢包率小于以第一QoS配置调度消息时消息的丢包率。下文类似3不再赘述。
也就是说,上述资源调度可以是切换QoS配置,当第一设备为核心网设备或终端设备时,上述QoS资源调度可以是第一设备向接入网设备发送请求消息,用于请求接入网设备调度资源,接入网设备可以请求会话管理功能网元重配QoS资源;当第一设备接入网设备时,无需等待请求,可以直接上报会话管理功能网元请求重配QoS资源。
应理解,上述请求会话管理功能网元重配QoS资源只作为一种示例而非限定,其他QoS资源调度的方法同样适用本方案。
一种可能的实施方式,该第一设备在一个周期内未收到该消息,记录1次丢失次数。
第一设备可以通过计时器设置检测时间,该计时器的计时周期可以是根据上述总线周期确定的,比如,总线周期为1秒,计时器的计时周期可以是1秒。应理解,上述数值只作为示例而非限定。
一种可能的实施方式,该第一设备在M个周期中未收到该消息时,确定记录了M次丢失次数。
第一设备在一个周期中未收到消息时,记录丢失次数后可以重置计时器以进行下一周期的检测,当累计的消息丢失次数小于M,第一设备继续检测;当累计的消息丢失次数大于或等于M时,则第一设备可以启动资源调度。
一种可能的实施方式,该检测参数还包括该消息的该周期。
可以理解的是,检测参数可以包括用于上述计时器确定计时周期的消息传输周期,当第一设备为接入网设备或者终端设备时,接收检测参数时就可以接收到周期。
一种可能的实施方式,在该第一设备完成该QoS资源调度后,该第一设备在连续Y个周期中收到该消息,且该Y大于或者等于第二阈值时,解除该QoS资源调度。
应理解,第二阈值与第一阈值在数值上可以相同,也可以不同,本申请对此不作限定。
一种可能的实施方式,解除该QoS资源调度可以是该第一设备从第二QoS配置切换至第一QoS配置,其中,该第二QoS配置的丢包率小于该第一QoS配置的丢包率。
可替换地,解除资源调度也可以是第一设备将第二QoS配置切换到第三QoS配置,其中,该第二QoS配置包括的丢包率小于该第三QoS配置包括的丢包率。也就是说,第一设备解除QoS资源调度,可解除至一个丢包率大于第二QoS配置但不一定等于原始的第一QoS配置的配置上。
该方案在检测到消息传输恢复正常后,将QoS配置切换为调度前的QoS配置或者重新配置一个丢包率大于第二QoS配置的配置,能够降低设备的负载,节省设备功耗。
一种可能的实施方式,该检测参数还包括第二阈值。
也即,第二阈值可以是预先配置的。应理解,第二阈值也可以是预设的,本申请对此不作限定。
第二方面,提供了一种传输信息的方法,该方法可以包括:第三设备周期性地接收安全消息,该安全消息包括第一标识;该第三设备根据第一标识确定发生安全事件;该第三设备启动QoS资源调度。
该方法通过对功能安全消息的检测,发现安全事件时能够及时作出响应,进行资源调度,以保障信息的可靠传输,避免安全故障造成业务中断而严重影响生产效率。
应理解,第三设备可以是核心网设备,比如,可以是用户面功能网元。
还应理解,该QoS资源调度可以是调整安全消息的优先级,比如,当第三设备确定安全事件发生了之后,切换QoS配置,该QoS配置对应的安全消息的优先级更高。
应理解,切换后的QoS配置也可以是能够降低消息丢包率的配置。也就是说,切换后的QoS配置在保证安全消息的优先级的基础上,也能够降低安全消息的丢包率,以使安全消息可靠地、优先地传输。
还应理解,第三设备为用户面功能网元时,第三设备启动QoS资源调度可以是第三设备向接入网设备发送请求消息,用于请求接入网设备调度资源。
一种可能的实施方式,第一标识包括指示安全事件发生的控制位或者状态位。
一种可能的实施方式,第一标识包括指示安全事件发生的命令值。
一种可能的实施方式,该QoS资源调度包括上行QoS资源调度和下行QoS资源调度。
在功能安全消息的传输中,主站和从站的资源调度同时进行,能够对工业网络中完整的产线提供信息传输的可靠保障。
一种可能的实施方式,该第三设备启动QoS资源调度可以是该第三设备从第三QoS配置切换至第四QoS配置,其中,该第四QoS配置的安全消息的优先级高于该第三QoS配置的安全消息的优先级。
可以理解的是,当第三设备为用户面功能网元时,第三设备向接入网设备发送调度请求,接入网设备可以请求会话管理功能网元重新配置QoS配置。
一种可能的实施方式,该第三设备完成该QoS资源调度后,该第三设备周期性接收安全消息,该安全消息包括第二标识;该第三设备记录连续接收该第二标识的次数;当该 连续接收该第二标识的次数大于或等于第三阈值时,该第三设备解除该QoS资源调度。
应理解,第二标识可以是与第一标识为同类型的标识,在指示的内容上有区别,又或者,第二标识可以是指示安全事件恢复的其他标识,本申请对此不作限定。
还应理解,第三阈值可以用户面功能网元预配置的,也可以是预设的,本申请对此不作限定。
一种可能的实施方式,第三设备解除该QoS资源调度可以是该第三设备从第四QoS配置切换至第三QoS配置。
可替换地,解除资源调度也可以是第一设备从第四QoS配置切换到第五QoS配置,其中,该第五QoS配置包括的优先级低于该第四QoS配置包括的优先级。也就是说,第一设备解除QoS资源调度,可解除至一个优先级低于第四QoS配置但不一定等于原始的第三QoS配置的配置上。
该方案在检测到安全事件恢复后,解除QoS资源调度,能够降低设备的负载,节省设备功耗。
第三方面,提供了一种通信装置,该通信装置可以包括:处理单元,用于配置检测参数,该检测参数包括第一阈值,该第一阈值用于检测消息是否丢失;收发单元,用于周期性地接收消息;处理单元还用于在M个周期中未收到该消息,且该M大于或者等于该第一阈值时,启动服务质量QoS资源调度,其中,所述M为正整数。
一种可能的实施方式,该M个周期可以是连续的M个周期。
一种可能的实施方式,该M个周期也可以是在第一时段中的非连续的M个周期。
一种可能的实施方式,收发单元还用于接收来自第二设备的该检测参数。
一种可能的实施方式,该通信装置为接入网设备或者终端设备,该第二设备为核心网设备,比如可以是会话管理功能网元或者用户面功能网元。
一种可能的实施方式,收发单元还用于发送请求消息,该请求信息用于请求接入网设备启动该QoS资源调度。
一种可能的实施方式,该收发单元具体用于通过工业现场支持服务网元向该接入网设备发送该第一请求信息。
一种可能的实施方式,处理单元用于从第一QoS配置切换至第二QoS配置,其中,该第二QoS配置包括的丢包率小于该第一QoS配置包括的丢包率。
一种可能的实施方式,处理单元还用于,收发单元一个周期内未收到该消息时,记录1次丢失次数。
一种可能的实施方式,收发单元在M个周期中未收到该消息时,处理单元确定记录了M次丢失次数。
一种可能的实施方式,该检测参数还包括该消息的该周期。
一种可能的实施方式,在处理单元完成QoS资源调度后,在收发单元连续N个周期中收到该消息,且该N大于或者等于第二阈值时,该处理单元还用于解除该QoS资源调度。
一种可能的实施方式,解除该QoS资源调度可以是该第一设备从第二QoS配置切换至第一QoS配置,其中,该第二QoS配置的丢包率小于该第一QoS配置的丢包率。
一种可能的实施方式,该检测参数还包括第二阈值。
应理解,第三方面是与第一方面的方法实施例相对应的装置实施例,第一方面中对于各实施方式的解释、补充和有益效果的描述对第三方面同样适用,此处不再赘述。
第四方面,提供一种通信装置,该通信装置可以包括:收发单元,用于周期性地接收安全消息,该安全消息包括第一标识;处理单元,用于根据第一标识确定发生安全事件,还用于启动QoS资源调度。
一种可能的实施方式,第一标识包括指示安全事件发生的控制位或者状态位。
一种可能的实施方式,第一标识包括指示安全事件发生的命令值。
一种可能的实施方式,该QoS资源调度包括上行QoS资源调度和下行QoS资源调度。
一种可能的实施方式,处理单元用于从第三QoS配置切换至第四QoS配置,其中,该第四QoS配置包括的优先级高于该第三QoS配置包括的优先级。
一种可能的实施方式,处理单元完成该QoS资源调度后,收发单元还用于周期性地接收安全消息,该安全消息包括第二标识;该处理单元用于记录连续接收该第二标识的次数;当该连续接收该第二标识的次数大于或等于第三阈值时,处理单元还用于解除该QoS资源调度。
一种可能的实施方式,处理单元用于从第四QoS配置切换至第三QoS配置。
应理解,第四方面是与第二方面的方法实施例相对应的装置实施例,第二方面中对于各实施方式的解释、补充和有益效果的描述对第四方面同样适用,此处不再赘述。
第五方面,提供一种计算机可读介质,该计算机可读介质存储用于通信装置执行的程序代码,该程序代码包括用于执行第一方面或第二方面,或,第一方面或第二方面或中任一可能的实现方式,或,第一方面或第二方面中所有可能的实现方式的方法中的通信方法的指令。
第六方面,提供了一种包含指令的计算机程序产品,其在计算机上运行时,使得计算机执行上述第一方面或第二方面,或,第一方面或第二方面中任一可能的实现方式,或,第一方面或第二方面中所有可能的实现方式的方法。
第七方面,提供了一种通信系统,该通信系统包括具有实现上述第一方面或第二方面或第三方面或第四方面,或,第一方面或第二方面或第三方面或第四方面中任一可能的实现方式,或,第一方面或第二方面或第三方面或第四方面中所有可能的实现方式的方法及各种可能设计的功能的装置。
第八方面,提供了一种处理器,用于与存储器耦合,用于执行上述第一方面或第二方面或第三方面或第四方面,或,第一方面或第二方面或第三方面或第四方面中任一可能的实现方式,或,第一方面或第二方面或第三方面或第四方面中所有可能的实现方式中的方法。
第九方面,提供了一种芯片,芯片包括处理器和通信接口,该通信接口用于与外部器件或内部器件进行通信,该处理器用于实现上述第一方面或第二方面,或,第一方面或第二方面中任一可能的实现方式,或,第一方面或第二方面中所有可能的实现方式中的方法。
可选地,该芯片还可以包括存储器,该存储器中存储有指令,处理器用于执行存储器中存储的指令或源于其他的指令。当该指令被执行时,处理器用于实现上述第一方面或第二方面或其任意可能的实现方式中的方法。
可选地,该芯片可以集成在终端上。
附图说明
图1示出了适用于本申请的一例通信架构的示意图。
图2示出了本申请实施例提供的一种传输信息的方法的示意图。
图3示出了本申请实施例提供的一种传输信息的方法的流程示意图。
图4示出了本申请实施例提供的又一种传输信息的方法的流程示意图。
图5示出了本申请实施例提供的又一种传输信息的方法的流程示意图。
图6示出了本申请实施例提供的又一种传输信息的方法的流程示意图。
图7示出了本申请实施例提供的又一种传输信息的方法的示意图。
图8示出了本申请实施例提供的又一种传输信息的方法的流程示意图。
图9示出了适用于本申请的一种通信装置的示意性框图。
图10示出了适用于本申请的又一种通信装置的示意性框图。
具体实施方式
下面将结合附图,对本申请中的技术方案进行描述。
图1是本申请实施例适用的一种网络架构示意图。下面对该图1所示的网络架构中涉及的各个部分分别进行说明。
1、用户设备(user equipment,UE)110:可以包括各种具有无线通信功能的手持设备、车载设备、可穿戴设备、计算设备或连接到无线调制解调器的其它处理设备,以及各种形式的终端、移动台(mobile station,MS)、终端(terminal)或软终端等等。例如,水表、电表、传感器等。
示例性地,本申请实施例中的用户设备可以指接入终端、用户单元、用户站、移动站、移动台、中继站、远方站、远程终端、移动设备、用户终端(user terminal)、终端设备(terminal equipment)、无线通信设备、用户代理或用户装置。用户设备还可以是蜂窝电话、无绳电话、会话启动协议(session initiation protocol,SIP)电话、无线本地环路(wireless local loop,WLL)站、个人数字助理(personal digital assistant,PDA)、具有无线通信功能的手持设备、计算设备或连接到无线调制解调器的其它处理设备、车载设备、可穿戴设备,5G网络中的用户设备或者未来演进的公用陆地移动通信网络(public land mobile network,PLMN)中的用户设备或者未来车联网中的用户设备等,本申请实施例对此并不限定。
示例地,在工业网络中,用户设备可以是客户终端设备(customer premise equipment,CPE)。
作为示例而非限定,在本申请实施例中,可穿戴设备也可以称为穿戴式智能设备,是应用穿戴式技术对日常穿戴进行智能化设计、开发出可以穿戴的设备的总称,如眼镜、手套、手表、服饰及鞋等。可穿戴设备即直接穿在身上,或是整合到用户的衣服或配件的一种便携式设备。可穿戴设备不仅仅是一种硬件设备,更是通过软件支持以及数据交互、云端交互来实现强大的功能。广义穿戴式智能设备包括功能全、尺寸大、可不依赖智能手机实现完整或者部分的功能,例如:智能手表或智能眼镜等,以及只专注于某一类应用功能,需要和其它设备如智能手机配合使用,如各类进行体征监测的智能手环、智能首饰等。
此外,在本申请实施例中,用户设备还可以是物联网(internet of things,IoT)系统中的用户设备,IoT是未来信息技术发展的重要组成部分,其主要技术特点是将物品通过通信技术与网络连接,从而实现人机互连,物物互连的智能化网络。在本申请实施例中,IOT技术可以通过例如窄带(narrow band,NB)技术,做到海量连接,深度覆盖,终端省电。此外,在本申请实施例中,用户设备还可以包括智能打印机、火车探测器、加油站等传感器,主要功能包括收集数据(部分用户设备)、接收接入网设备的控制信息与下行数据,并发送电磁波,向接入网设备传输上行数据。
2、(无线)接入网设备(radio access network,(R)AN)120:用于为特定区域的授权用户设备提供入网功能,并能够根据用户设备的级别,业务的需求等使用不同质量的传输隧道。
(R)AN能够管理无线资源,为用户设备提供接入服务,进而完成控制信号和用户设备数据在用户设备和核心网之间的转发,(R)AN也可以理解为传统网络中的基站。
示例性地,本申请实施例中的接入网设备可以是用于与用户设备通信的任意一种具有无线收发功能的通信设备。该接入网设备包括但不限于:演进型节点B(evolved Node B,eNB)、无线网络控制器(radio network controller,RNC)、节点B(Node B,NB)、基站控制器(base station controller,BSC)、基站收发台(base transceiver station,BTS)、家庭基站(home evolved NodeB,HeNB,或home Node B,HNB)、基带单元(baseBand unit,BBU),无线保真(wireless fidelity,WIFI)系统中的接入点(access point,AP)、无线中继节点、无线回传节点、传输点(transmission point,TP)或者发送接收点(transmission and reception point,TRP)等,还可以为5G,如,NR,系统中的gNB,或,传输点(TRP或TP),5G系统中的基站的一个或一组(包括多个天线面板)天线面板,或者,还可以为构成gNB或传输点的网络节点,如基带单元(BBU),或,分布式单元(distributed unit,DU)等。
在一些部署中,gNB可以包括集中式单元(centralized unit,CU)和DU。gNB还可以包括有源天线单元(active antenna unit,AAU)。CU实现gNB的部分功能,DU实现gNB的部分功能。比如,CU负责处理非实时协议和服务,实现无线资源控制(radio resource control,RRC),分组数据汇聚层协议(packet data convergence protocol,PDCP)层的功能。DU负责处理物理层协议和实时服务,实现无线链路控制(radio link control,RLC)层、媒体接入控制(media access control,MAC)层和物理(physical,PHY)层的功能。AAU实现部分物理层处理功能、射频处理及有源天线的相关功能。由于RRC层的信息最终会变成PHY层的信息,或者,由PHY层的信息转变而来,因而,在这种架构下,高层信令,如RRC层信令,也可以认为是由DU发送的,或者,由DU+AAU发送的。可以理解的是,接入网设备可以为包括CU节点、DU节点、AAU节点中一项或多项的设备。此外,可以将CU划分为接入网(radio access network,RAN)中的接入网设备,也可以将CU划分为核心网(core network,CN)中的接入网设备,本申请对此不做限定。
3、用户面网元130:用于分组路由和转发以及用户面数据的服务质量(quality of service,QoS)处理等。
在5G通信系统中,该用户面网元可以是用户面功能(user plane function,UPF)网元。在未来通信系统中,用户面网元仍可以是UPF网元,或者,还可以有其它的名称,本申 请不做限定。
4、数据网络网元140:用于提供传输数据的网络。
在5G通信系统中,该数据网络网元可以是数据网络(data network,DN)网元。在未来通信系统中,数据网络网元仍可以是DN网元,或者,还可以有其它的名称,本申请不做限定。
5、接入管理网元150:主要用于移动性管理和接入管理等,可以用于实现移动性管理实体(mobility management entity,MME)功能中除会话管理之外的其它功能,例如,合法监听以及接入授权/鉴权等功能。
在5G通信系统中,该接入管理网元可以是接入管理功能(access and mobility management function,AMF)网元。在未来通信系统中,接入管理网元仍可以是AMF网元,或者,还可以有其它的名称,本申请不做限定。
6、会话管理网元160:主要用于会话管理、终端设备的网络互连协议(internet protocol,IP)地址分配和管理、选择可管理用户平面功能、策略控制和收费功能接口的终结点以及下行数据通知等。
在5G通信系统中,该会话管理网元可以是会话管理功能(session management function,SMF)网元。在未来通信系统中,会话管理网元仍可以是SMF网元,或者,还可以有其它的名称,本申请不做限定。
7、策略控制网元170:用于指导网络行为的统一策略框架,为控制面功能网元(例如AMF,SMF网元等)提供策略规则信息等。
在4G通信系统中,该策略控制网元可以是策略和计费规则功能(policy and charging rules function,PCRF)网元。在5G通信系统中,该策略控制网元可以是策略控制功能(policy control function,PCF)网元。在未来通信系统中,策略控制网元仍可以是PCF网元,或者,还可以有其它的名称,本申请不做限定。
可以理解的是,上述网元或者功能既可以是硬件设备中的网络元件,也可以是在专用硬件上运行软件功能,或者是平台(例如,云平台)上实例化的虚拟化功能。
在图1所示的网络架构中,终端设备通过N1接口与AMF连接,RAN通过N2接口与AMF连接,RAN通过N3接口与UPF连接。
UPF通过N6接口与数据网络(data network,DN)互联。
SMF通过N4接口控制UPF。AMF通过N11接口与SMF接口。
AMF通过N8接口从统一数据管理(unified data management,UDM)单元获取终端设备签约数据;SMF通过N10接口从UDM单元获取终端设备签约数据。
AMF通过N15接口从PCF获取策略数据;SMF通过N7接口从PCF获取策略数据。
需要说明的是,图1中所涉及的各个网元以及网元之间的通信接口的名称是以目前协议中规定的为例进行简单说明的,但并不限定本申请实施例只能够应用于目前已知的通信系统。因此,以目前协议为例描述时出现的标准名称,都是功能性描述,本申请对于网元、接口或信令等的具体名称并不限定,仅表示网元、接口或者信令的功能,可以对应的扩展到其它系统,比如2G、3G、4G或未来通信系统中。
上述图1所示的本申请实施例能够应用的网络架构仅是一种举例说明,适用本申请实施例的网络架构并不局限于此,任何能够实现上述各个网元的功能的网络架构都适用于本 申请实施例。
例如,在某些网络架构中,AMF网元、SMF网元等网络功能网元实体都称为网络功能网元(network function,NF)网元;或者,在另一些网络架构中,AMF网元,SMF网元等网元的集合都可以称为控制面功能网元。
本申请实施例的技术方案可以应用于各种通信系统,例如:长期演进(long term evolution,LTE)系统、LTE频分双工(frequency division duplex,FDD)系统、LTE时分双工(time division duplex,TDD)系统、通用移动通信系统(universal mobile telecommunication system,UMTS)、全球互联微波接入(worldwide interoperability for microwave access,WiMAX)通信系统、第五代(5th generation,5G)系统、新无线(new radio,NR)或未来网络等。本申请提供的技术方案还可以应用于未来的通信系统,如第六代移动通信系统。通信系统还可以是陆上公用移动通信网(public land mobile network,PLMN)网络、设备到设备(device-to-device,D2D)通信系统、机器到机器(machine to machine,M2M)通信系统、物联网(internet of Things,IoT)通信系统或者其他通信系统。
应理解,本申请实施例提供的方法可以应用于5G通信系统,例如,图1中所示的通信系统。
下文示出的实施例并未对本申请实施例提供的方法的执行主体的具体结构特别限定,只要能够通过运行记录有本申请实施例的提供的方法的代码的程序,以根据本申请实施例提供的方法进行通信即可,例如,本申请实施例提供的方法的执行主体可以是终端设备或核心网设备,或者,是终端设备或核心网设备中能够调用程序并执行程序的功能模块。
为了便于理解本申请实施例,提前做出以下几点说明。
第一,在本申请中示出的第一、第二以及各种数字编号(例如,“1”、“2”等)仅为描述方便,用于区分的对象,并不用来限制本申请实施例的范围。例如,区分不同消息等。而不是用于描述特定的顺序或先后次序。应该理解这样描述的对象在适当情况下可以互换,以便能够描述本申请的实施例以外的方案。
第二,在本申请中,“预设”可包括预先定义,例如,协议定义。其中,“预先定义”可以通过在设备(例如,包括终端设备或核心网设备)中预先保存相应的代码、表格或其他可用于指示相关信息的方式来实现,本申请对于其具体的实现方式不做限定。
第三,本申请实施例中涉及的“协议”可以是指通信领域的标准协议,例如可以包括5G协议、新空口(new radio,NR)协议以及应用于未来的通信系统中的相关协议,本申请对此不做限定。
第四,在本申请中,“使能”可以包括直接使能和间接使能。当描述某一信息用于使能A时,可以包括该信息直接使能A或间接使能A,而并不代表该信息中一定携带有A。
将信息所使能的信息称为待使能信息,则具体实现过程中,对待使能信息进行使能的方式有很多种,例如但不限于,可以直接使能待使能信息,如待使能信息本身或者该待使能信息的索引等。也可以通过使能其他信息来间接使能待使能信息,其中该其他信息与待使能信息之间存在关联关系。还可以仅仅使能待使能信息的一部分,而待使能信息的其他部分则是已知的或者提前约定的。例如,还可以借助预先约定(例如协议规定)的各个信息的排列顺序来实现对特定信息的使能,从而在一定程度上降低使能开销。同时,还可以 识别各个信息的通用部分并统一使能,以降低单独使能同样的信息而带来的使能开销。
目前在工业网络中,控制器与设备之间的消息的传输需要经过CPE、RAN和UPF,由于3GPP无线网络的特性,可能会导致CPE与RAN之间的消息丢失。现有的功能安全传输机制也没有可靠性保障,以故障安全(PROFIsafe)为代表的安全消息依赖于下层工业以太网(PROFINET)的轮询机制来实现消息传递,根据现有协议设计,报告安全事件的安全消息和不报告安全事件的安全消息没有消息优先级,难以形成网络保障。如果由于网络原因,消息未能可靠传输,会导致设备进入安全态,使得生产停止。
针对上述问题,本申请提出一种传输信息的方法,如图2所示:
201:第一设备配置检测参数。
其中,该检测参数可以包括第一阈值。
202:第一设备在M个周期中未收到消息,且M大于或者等于第一阈值时,启动QoS资源调度。
该方案通过配置检测参数,第一设备对消息进行检测,在判断消息丢失达到一定条件后及时进行资源调度,以保障消息的可靠传输,避免因丢包可能导致的机器宕机,能够保障生产效率。
其中,201中的第一设备可以是核心网设备,也可以是接入网设备,也可以是终端设备。
示例地,当检测的消息为上行消息时,第一设备可以是核心网设备,比如UPF,或者,SMF;当检测的消息为下行消息时,第一设备可以是接入网设备,比如RAN,也可以是UE或者CPE。
应理解,当第一设备为RAN或者终端设备(UE或者CPE)时,在201之前,第一设备还可以从第二设备接收检测参数,第二设备可以是核心网设备,比如UPF或者SMF。也即,核心网设备预配置(也称预设)检测参数,将该检测参数发送给RAN或者终端设备(UE或者CPE),RAN或者终端设备配置该检测参数。
还应理解,图2中的被检测的消息可以是业务消息,示例地,在工业网络中,可以是控制器发送的用于指示设备(device)操作行为的消息;也可以是功能安全消息,示例地,在工业网络中,可以是警示是否发生安全事件的消息。本申请对此不作限定。
202中的预设条件可以是根据检测参数预设的条件,示例地,检测参数可以包括预设的阈值,该阈值可以是消息丢失的次数(也称超时次数)的阈值,则预设条件可以是:消息丢失次数大于阈值,比如,当消息丢失次数阈值为3时,第一设备检测到消息丢失了4次,则可以确定消息丢失次数满足预设条件,以此执行后续流程。可以理解的是,第一设备可以在检测到消息丢失时记录丢失次数。
另外,第一设备检测消息,可以是检测周期性的消息,第一设备累计消息的丢失次数进行进一步的判断。第一设备也可以对非周期的消息单次检测,消息丢失即可启动QoS资源调度,本申请对此不作限定。
其中,在工业网络中,非周期的消息与周期性的消息的消息类型可以不同,消息的格式也可以不同。第一设备可以根据消息类型和/或消息格式判断该消息是否为周期性消息。又或者,在工业网络中,核心网设备可以存储网络拓扑信息和对应的通信关系,如果工业网络中传输的消息不被包括在该网络拓扑信息和对应的通信关系中,第一设备可以确定该 消息为非周期性消息。
其中,第一设备检测周期性的消息时,对应地,第一设备周期性地接收消息。第一设备如果在M个周期中未收到消息,且M大于或者等于预设阈值时,启动QoS资源调度。
应理解,第一设备在M个周期中未收到消息,该M个周期可以是连续的,示例地,M=3,当第一设备在连续的3个周期中未收到消息,则可以判断满足预设条件,启动QoS资源调度;
该M个周期也可以是非连续的,比如,可以是在一定范围内的M个周期,示例地,M=3,在10秒的时间范围内,第一设备在任意3个周期中未收到消息,则第一设备可以判断满足预设条件,启动QoS资源调度。本申请对此不做限定。上述M的取值可以是正整数。
当第一设备为RAN时,202中的启动服务质量QoS资源调度可以是:RAN可以自行调度QoS资源;当第一设备为UPF时,UPF向RAN发送请求消息,用于请求RAN调度QoS资源;当第一设备为CPE时,可以向UPF报告消息丢失,再由UPF请求RAN调度QoS资源。
上述调度QoS资源,可以是重新配置QoS资源。示例地,QoS资源可以是QoS配置(QoS profile)。该重新配置的QoS资源相较于被替换的QoS资源而言,性能更优,比如,能够降低消息的丢包率,提升消息的传输成功率。应理解,丢包率只作为一种示例而非限定,其他影响性能的参数同样适用,比如信噪比、信道利用率和/或带宽等等。
其中,重新配置QoS资源可以是RAN请求控制面功能网元,比如,SMF和/或PCF,为RAN重新配置QoS资源。可选地,通信系统中参与交互的设备可以同步更新QoS资源,也即,SMF重新配置QoS资源,参与交互的设备都使用重新配置的QoS资源调度消息。
应理解,上述解释适用于本申请各实施例及其可能的实现方法,下文类似的地方不再赘述。
在图2的方案的基础上,本申请提出一个实施例,图2中的第一设备为UPF,UPF对周期性的上行消息进行检测,检测到消息丢失后启动QoS资源调度。一种可能的实现方式如图3所示:
301:UPF配置检测参数。
其中,该检测参数中可以包括消息源地址a、对应消息m、总线周期c和阈值N。
该消息m可以是周期性消息的一例。应理解,检测参数中可以包括该消息m的标识,用于指示待检测的周期性消息。
还应理解,上述对消息m的解释适用于各实施例及其可能的实现方法,下文类似的地方不再赘述。
302:IO控制器周期性地发送消息,UPF周期性接收该消息。
应理解,IO控制器只作为消息发送设备的一例,其他可以发送周期性消息的设备也适用于本方案,比如,或IO设备。
303:UPF检测消息。
若UPF成功接收到该消息,则重置对于该消息的内部定时器。
若UPF没有收到该消息,UPF记录丢失次数+1(n)。当n<N时,UPF重置其内部的定时器,重新计时;若当n>N时,UPF判断启动资源调度。其中,UPF可以以计时周 期为判断n和N的大小关系的周期,比如,UPF可以在每次计时周期结束时判断n和N的大小关系;UPF也可以是以一定时间范围为判断周期,判断n和N的大小关系,该判断周期可以是消息传输周期的整数倍,比如,消息的传输周期为2s,该判断周期可以是10s,UPF每10s判断一次n和N的大小关系。可以理解的是,UPF的计时周期与消息的传输周期相同,在每一个的消息传输周期结束后重置计时器。该判断周期可以是预设的。
还应理解,上述数字举例仅为示例而非限定。
UPF检测到消息丢失次数大于或等于N后,可以执行以下步骤:
304:UPF启动资源调度。
可选地,UPF可以向RAN1发送请求消息,用于请求RAN1调度资源。
可选地,UPF在资源调度完成后也可以执行解除调度流程。
305:UPF检测消息。
306:当消息丢失次数小于预设阈值时,UPF启动解除资源调度流程。
应理解,UPF可以向RAN1发送恢复指示,指示RAN恢复为调度前的QoS配置。
UPF也可以向RAN1发送请求消息,用于请求更新QoS配置,RAN1可以请求SMF重新配置QoS配置,可以理解的是,该QoS配置的性能低于更新前的QoS配置,示例地,该QoS配置的丢包率大于更新前的QoS配置。
其中,301中的检测参数可以是UPF根据在组态阶段预先获取的相关信息确定的,比如,相关信息可以是网络拓扑关系、IO控制器和IO设备间的通信关系和/或通信周期等消息。阈值N可以作为判断数据包传输状态的阈值,总线周期c可以作为内部定时器的计时周期。
应理解,对该上行消息的检测可以是一直在进行的,也可以是对一段时间内的消息传输进行检测,本申请对此不作限定。
UPF进行资源调度,可以是调度QoS资源,比如,可以是带宽,可以是消息的传输优先级等等。UPF可以是根据RAN上已经有的QoS配置,或者与RAN1协商一套新的QoS配置,然后根据新的QoS配置对后续消息进行调度,以确保传输的成功。
其中,306中的解除资源调度可以是恢复为调度之前的QoS配置,或者在UPF调度完成的QoS配置之后再更换一套QoS配置,调度之前的QoS配置或者再次更换的QoS配置的性能可以低于UPF调度的QoS配置,示例地,可以更换一套带宽更小的QoS配置,能够降低通信设备的功耗。
在图2的方案的基础上,本申请提出一个实施例,图2中的第一设备为用户设备,示例地,可以是CPE。CPE对周期性的下行消息进行检测,检测到消息丢失后启动QoS资源调度,一种可能的实现方式如图4所示:
401:UPF向CPE发送请求消息,用于请求配置检测参数。
示例地,该请求中可以包括下行消息的目的地址a、对应消息m、总线周期c、丢包阈值N次和UPF自身的地址(IP或者MAC地址)。
可替代地,SMF也可以用于执行UPF的流程。
402:CPE配置该检测参数。
可选地,CPE可以启动定时器。
403:CPE向UPF发送配置响应。
该配置响应用于上报检测参数配置成功。
404:可编程逻辑控制器(programmable logic controller,PLC)向设备发送下行报文的MAC地址。
应理解,PLC只作为传输周期性消息的设备的一个示例,工业网络中其他可以传输周期性消息的设备同样适用。下行报文为图2中的消息的一例。下文类似的地方不再赘述。
该MAC地址可以经由UPF和RAN向CPE转发。
405:CPE检测消息。
该检测可以是,若CPE成功接收到消息,则重置对于该消息的内部定时器。若CPE没有收到消息,CPE记录超时次数+1,当超时次数n<N时,则重置其内部对应的定时器;否则,CPE判断该下行消息需要资源调度。
该步骤可以参考图3所示的方法中步骤303的描述,不再赘述。
CPE检测到消息丢失次数大于或等于N后,可以执行以下步骤:
406:CPE向UPF上报下行报文超时信息。
应理解,CPE可以是根据401中获取的地址向UPF上报信息。
示例地,该下行报文超时的信息可以是:发往a的m消息丢包n次。
407:UPF向RAN发送请求消息。
该请求消息用于请求RAN调度资源。
应理解,下行消息的接收方也可以是PLC2,即PLC2可以用于执行设备的相关动作。
还应理解,前文对类似内容的解释适用于本方案,此处不再赘述。
可选地,CPE在资源调度完成后可以保持检测。
408:当消息丢失次数小于预设阈值时,CPE启动解除资源调度。
CPE可以恢复为调度之前的QoS配置,或者在UPF调度完成的QoS配置之后再更换一套QoS配置,调度之前的QoS配置或者再次更换的QoS配置的性能可以低于CPE调度完成的QoS配置,示例地,可以更换一套带宽更小的QoS配置,能够降低通信设备的功耗。
应理解,CPE也可以经由UPF向RAN发送解除指示,指示RAN解除资源调度。
该方案中通过CPE检测下行消息的传输状态,及时启动QoS资源调度,能够保障信息的可靠传输,提高生产效率。
在图2的方案的基础上,本申请提出又一个实施例。图2中的第一设备为RAN,RAN对周期性的消息进行检测,检测到消息丢失后启动QoS资源调度。一种可能的实现方式,如图5所示:
501:UPF向RAN发送请求消息,用于请求配置检测参数。
示例地,该请求中可以包括下行消息的目的地址a、对应消息m、总线周期c、丢包阈值N次和UPF自身的地址(IP/MAC)。
可替代地,SMF也可以用于执行UPF的流程。
502:RAN配置该检测参数。
可选地,RAN可以启动定时器。
503:RAN向UPF发送配置响应。
该配置响应用于上报检测参数配置成功。
504:PLC向设备发送下行报文。
该下行报文中可以包括PLC的MAC地址。
该MAC地址可以经由UPF、RAN和CPE向设备转发。
505:RAN检测消息。
若RAN成功接收到消息,则重置对于该消息的内部定时器;若UE没有收到消息,首先UE记录超时次数+1,若当超时次数n<N时,则重置其内部对应的定时器,否则,UE判断该下行消息需要资源调度。
该步骤可以参考图3所示的方法中步骤303的描述,不再赘述。
RAN检测到消息丢失次数大于或等于N后,可以执行以下步骤:
506:RAN向UPF上报下行报文超时信息。
应理解,UE可以是根据501中获取的地址向UPF上报信息。
示例地,该下行报文超时的信息可以是:发往a的m消息丢包n次。
507:RAN启动资源调度。
应理解,前文对类似内容的解释适用于本方案,此处不再赘述。
可选地,RAN在资源调度完成后可以保持检测。
508:当消息丢失次数小于预设阈值时,启动解除资源调度。
RAN可以恢复为调度之前的QoS配置,或者在调度完成的QoS配置之后再更换一套QoS配置,调度之前的QoS配置或者再次更换的QoS配置的性能可以低于UE调度完成的QoS配置,示例地,可以更换一套带宽更小的QoS配置,能够降低通信设备的功耗。
该方案中通过RAN检测消息,在检测到消息丢失后可以直接启动资源调度,节省信令交互,进一步降低调整资源的时延,保障信息传输的可靠度。
在图4的方案的基础上,本申请提出一种可能的方式,考虑到UPF地址存在不可达的可能性,UE可以将消息上报到工业现场支持服务网元(industrial field enablement service,IFES),再由IFES通过和UPF的接口/内部接口将相关消息转送至UPF,示例地,如图6所示:
601:UPF向CPE发送请求消息。
该请求消息用于请求CPE配置检测参数。
该请求中可以包括该消息的目的地址a、对应消息m、总线周期c和丢包阈值N次,还可以包括UPF的地址(IP/MAC),该请求中还可以包括接入CPE的设备的MAC地址和/或IFES地址(IP或MAC)。
可替代地,SMF也可以用于执行UPF的流程。
602:CPE配置该检测参数。
603:UE向UPF发送配置响应,用于上报下行丢包检测参数配置成功。
604:PLC向设备发送下行报文
该下行报文中可以包括PLC的MAC地址。
该MAC地址可以经由UPF、RAN和CPE向设备转发。
605:CPE检测消息。
若CPE没有收到消息,CPE记录超时次数n+1,若当n<N时,则重置其内部对应的定时器,否则,CPE判断该消息需要资源调度。
应理解,若CPE成功接收到消息,则重置对于该消息的内部定时器。
该步骤可以参考图3所示的方法中步骤303的描述,不再赘述。
CPE检测到消息丢失次数大于或等于N后,可以执行以下步骤:
606:CPE向IFES上报下行报文超时信息。
CPE可以是根据601中获取的地址向IFES上报下行报文超时的信息,示例地,该消息可以是:发往a的m消息丢包n次。
607:IFES向UPF上报CPE发来的下行报文超时信息。
608:UPF向RAN发送请求消息,用于请求RAN进行资源调度。
应理解,下行消息的接收方也可以是PLC2,即PLC2可以用于执行设备的相关动作。
应理解,CPE可以将消息上报到IFES,再由IFES通过和UPF的接口/内部接口将相关消息转送至UPF。
另外,应用层可以通过IFES提供OT现场通信的使能服务。IFES发往CPE的配置信息可以是通过UPF转发出去的。UPF和IFES通常可能部署于同一个物理设备内,其内部可以通信。
可选地,在完成资源调度后,CPE也可以继续检测。
609:当消息丢失次数小于N时,启动解除资源调度。
CPE可以请求RAN恢复为调度之前的QoS配置,或者在调度完成的QoS配置之后再更换一套QoS配置,调度之前的QoS配置或者再次更换的QoS配置的性能可以低于CPE调度完成的QoS配置,示例地,可以更换一套带宽更小的QoS配置,能够降低通信设备的功耗。
该方案中考虑了不同架构中消息的可达性,加入IFES,进一步确保UPF与其他网元在资源调整过程中信令能够完整传输,以保障顺利完成资源调整。
应理解,一种可能的方式,在上述图5的方案中也可以加入IFES,由RAN检测消息,IFES将相关的配置信息通过UPF下发给RAN。RAN执行检测发现丢包后,可以直接执行空口资源调度,非必须由UPF指挥调度。此处不再展开陈述。
本申请提供另外一种传输信息的方法,如图7所示:
701:第三设备从主站或者从站周期性地接收安全消息,该安全消息可以包括第一标识。
其中,第三设备可以是用户面功能网元。第一标识可以是用于指示安全事件发生的标识,比如,可以是功能安全触发标识(Fail-safe values,FV)中用于指示安全事件发生的状态位或控制位,可以是数据状态安全PDU中携带的用于指示安全事件发生的字段,也可以是其他标识,比如,可以是预设的字段,本申请对此不作限定。
702:第三设备根据第一标识确定发生安全事件。
703:第三设备启动QoS资源调度。
可选地,当第三设备为用户面功能网元时,可以向第四设备发送请求消息,用于请求RAN启动QoS资源调度,第四设备可以是接入网设备。
应理解,QoS资源调度可以是第三设备将第三QoS配置切换为第四QoS配置,其中,以第四QoS配置调度的安全消息的优先级高于以第三QoS配置调度的安全消息的优先级。
应理解,第四QoS配置也可以是能够降低消息丢包率的配置。也就是说,第四QoS 配置调度的安全消息的丢包率小于第三QoS配置调度的安全消息的丢包率。切换后的QoS配置在保证安全消息的优先级的基础上,也能够降低安全消息的丢包率,以使安全消息可靠地、优先地传输。
可选地,该方法还可以包括:
704:第三设备检测安全消息。
该安全消息可以包括第二标识。第二标识可以是用于指示安全事件恢复的标识,比如,可以是功能安全触发标识(Fail-safe values,FV),可以是数据状态安全PDU中携带的用于指示安全事件发生的字段,也可以是其他标识,比如,可以是预设的字段,本申请对此不作限定。
第三设备检测安全消息,可以记录第二标识出现的次数,当该次数满足预设阈值时,第三设备可以解除资源调度。
应理解,该预设阈值可以根据经验确定,也可以是根据机器学习的结果确定。该预设阈值也可以动态调整。示例地,根据机器学习的结果确定该预设阈值为3,随着机器学习的继续推进,该预设阈值也可以根据新的学习结果调整为4。本申请对此不作限定。应理解,上述数字只作为一种示例而非限定。
705:第三设备解除资源调度。
其中,解除资源调度可以是可以第三设备请求RAN恢复为调度之前的QoS配置,比如,第三QoS配置。或者在调度完成的QoS配置之后再更换一套QoS配置,调度之前的QoS配置或者再次更换的QoS配置的性能可以低于UE调度完成的QoS配置,示例地,可以更换一套带宽更小的QoS配置,能够降低通信设备的功耗。
该方法通过对功能安全消息的检测,发现安全事件时能够及时作出响应,进行资源调度,以保障信息的可靠传输,避免安全故障造成业务中断而严重影响生产效率。
在图7的方案的基础上,本申请提出一个实施例,图7中的第一标识可以是功能安全触发标识,一种可能的实现方式如图8所示:
801:主站向UPF发送安全信息。
该安全信息中包括第一标识,该第一标识为功能安全触发标识,其中主机侧的功能安全触发标识(control byte bit4,CB4)取值为1,用于指示发生了安全事件。
应理解,字段的取值与其指示内容之间的对应关系可以是预设的,上述只作为示例而非限定,比如,也可以是预设CB4取值为0时指示发生了安全事件,本申请对此不作限定;
802:UPF根据CB4=1判断主机侧触发安全事件,并记录CB4=1。
CB4=1为图7中的第一标识的一例。
803:UPF请求RAN2启动资源调度
804:UPF请求RAN1启动资源调度。
805:RAN1向UPF发送资源调度响应。
806:RAN2向UPF发送资源调度响应。
807~808:UPF发送安全消息,经由RAN2、CPE2转发至从站。
809~810:从站经由CPE2、RAN2向UPF反馈安全事件响应。
从站反馈的响应中可以包括设备侧的功能安全触发标识(status byte bit4,SB4)取值 为1,用于指示发生了安全事件,应理解,字段的取值与其对应的指示内容之间的对应关系可以是预设的,上述只作为示例而非限定,比如,也可以是预设SB4取值为0时指示发生了安全事件,本申请对此不作限定;
811:UPF记录SB4=1,作为安全通道建立记录。
812~813:UPF将安全事件响应经由RAN1、CPE1转发至主站。
814~815:主站经由RAN1、CPE1向UPF发送安全事件解除消息。
该安全事件解除消息可以是CB4=0。CB4=0为图7中的第二标识的一例。
816:UPF记录CB4=0。
应理解,此时的SB4仍为1。
817~818:UPF经由RAN2、CPE2将安全事件解除消息转发至从站。
819~820:从站经由CPE2、RAN2向UPF发送安全事件解除响应。
该安全事件解除响应可以是SB4=0。
821:UPF记录SB4=0,CB4=0。
822:UPF通知RAN1解除资源调度。
823:UPF通知RAN2解除资源调度。
可选地,RAN解除资源调度的条件可以是SB4=CB4=0达到连续的一定次数,该次数可以是大于或等于3。
示例地,UPF可以请求从站和主站分别对应的RAN同时对上下行的消息解除资源调度。其中,解除资源调度的含义与图8类似,此处不再赘述。
824:RAN1向UPF发送调度解除响应。
825:RAN2向UPF发送调度解除响应。
应理解,图8只作为一种可能的示例,图8中的安全事件是由主站(F-HOST)触发的,在其他可能的实施方式中,也可以是由从站(F-DEVICE)触发,示例地,步骤801可以是从站向UPF发送安全信息,其中安全消息包括的第一标识指示发生了安全事件,其余步骤与图8类似,此处不再展开陈述。
在图8的方案的基础上,本申请提出又一个实施例,图7中的第一标识可以是安全消息中携带的命令值(command)。比如,该命令值可以是command 0*36,可以用于指示未发生安全事件。该命令值可以是command 0*08,可以用于指示发生了安全事件,其他步骤与图8类似,此处不再赘述。
本文中描述的各个实施例可以为独立的方案,也可以根据内在逻辑进行组合,这些方案都落入本申请的保护范围中。
上述本申请提供的实施例中,分别从各个设备之间交互的角度对本申请实施例提供的方法进行了介绍。为了实现上述本申请实施例提供的方法中的各功能,网络设备或终端设备可以包括硬件结构和/或软件模块,以硬件结构、软件模块、或硬件结构加软件模块的形式来实现上述各功能。上述各功能中的某个功能以硬件结构、软件模块、还是硬件结构加软件模块的方式来执行,取决于技术方案的特定应用和设计约束条件。
本申请实施例中对模块的划分是示意性的,仅仅为一种逻辑功能划分,实际实现时可以有另外的划分方式。另外,在本申请各个实施例中的各功能模块可以集成在一个处理器中,也可以是单独物理存在,也可以两个或两个以上模块集成在一个模块中。上述集成的 模块既可以采用硬件的形式实现,也可以采用软件功能模块的形式实现。
与上述构思相同,如图9所示,本申请实施例还提供一种装置900用于实现上述方法中会话管理功能网元的功能。例如,该装置可以为软件模块或者芯片系统。本申请实施例中,芯片系统可以由芯片构成,也可以包含芯片和其他分立器件。该装置900可以包括:处理单元910和通信单元920。
本申请实施例中,通信单元也可以称为收发单元,可以包括发送单元和/或接收单元,分别用于执行上文方法实施例中会话管理功能网元发送和接收的步骤。
以下,结合图9至图10详细说明本申请实施例提供的通信装置。应理解,装置实施例的描述与方法实施例的描述相互对应,因此,未详细描述的内容可以参见上文方法实施例,为了简洁,这里不再赘述。
通信单元也可以称为收发器、收发机、收发装置等。处理单元也可以称为处理器,处理单板,处理模块、处理装置等。可选的,可以将通信单元920中用于实现接收功能的器件视为接收单元,将通信单元920中用于实现发送功能的器件视为发送单元,即通信单元920包括接收单元和发送单元。通信单元有时也可以称为收发机、收发器、或接口电路等。接收单元有时也可以称为接收机、接收器、或接收电路等。发送单元有时也可以称为发射机、发射器或者发射电路等。
通信装置900执行上面实施例中图2至8任一所示的流程中用户面功能网元的功能时:
处理单元,用于检测消息。
通信单元用于信息的收发。
通信装置900执行上面实施例中图2至8任一所示的流程中接入网设备的功能时:
处理单元,用于调度QoS资源。
通信单元用于信息的收发。
以上只是示例,处理单元910和通信单元920还可以执行其他功能,更详细的描述可以参考图2至8所示的方法实施例或其他方法实施例中的相关描述,这里不加赘述。
如图10所示为本申请实施例提供的装置1000,图10所示的装置可以为图9所示的装置的一种硬件电路的实现方式。该通信装置可适用于前面所示出的流程图中,执行上述方法实施例中终端设备或者网络设备的功能。为了便于说明,图10仅示出了该通信装置的主要部件。
如图10所示,通信装置1000包括处理器1010和接口电路1020。处理器1010和接口电路1020之间相互耦合。可以理解的是,接口电路1020可以为收发器或输入输出接口。可选的,通信装置1000还可以包括存储器1030,用于存储处理器1010执行的指令或存储处理器1010运行指令所需要的输入数据或存储处理器1010运行指令后产生的数据。
当通信装置1000用于实现图2至8所示的方法时,处理器1010用于实现上述处理单元910的功能,接口电路1020用于实现上述通信单元920的功能。
当上述通信装置为应用于终端设备的芯片时,该终端设备芯片实现上述方法实施例中终端设备的功能。该终端设备芯片从终端设备中的其它模块(如射频模块或天线)接收信息,该信息是网络设备发送给终端设备的;或者,该终端设备芯片向终端设备中的其它模块(如射频模块或天线)发送信息,该信息是终端设备发送给网络设备的。
当上述通信装置为应用于网络设备的芯片时,该网络设备芯片实现上述方法实施例中 网络设备的功能。该网络设备芯片从网络设备中的其它模块(如射频模块或天线)接收信息,该信息是终端设备发送给网络设备的;或者,该网络设备芯片向网络设备中的其它模块(如射频模块或天线)发送信息,该信息是网络设备发送给终端设备的。
本申请实施例还包括一种通信系统,该通信系统可以包括上述通信装置900或者通信装置1000。
可以理解的是,本申请的实施例中的处理器可以是中央处理单元(Central Processing Unit,CPU),还可以是其它通用处理器、数字信号处理器(Digital Signal Processor,DSP)、专用集成电路(Application Specific Integrated Circuit,ASIC)、现场可编程门阵列(Field Programmable Gate Array,FPGA)或者其它可编程逻辑器件、晶体管逻辑器件,硬件部件或者其任意组合。通用处理器可以是微处理器,也可以是任何常规的处理器。
本申请的实施例中处理器可以是随机存取存储器(Random Access Memory,RAM)、闪存、只读存储器(Read-Only Memory,ROM)、可编程只读存储器(Programmable ROM,PROM)、可擦除可编程只读存储器(Erasable PROM,EPROM)、电可擦除可编程只读存储器(Electrically EPROM,EEPROM)、寄存器、硬盘、移动硬盘、CD-ROM或者本领域熟知的任何其它形式的存储介质中。一种示例性的存储介质耦合至处理器,从而使处理器能够从该存储介质读取信息,且可向该存储介质写入信息。当然,存储介质也可以是处理器的组成部分。处理器和存储介质可以位于ASIC中。另外,该ASIC可以位于网络设备或终端设备中。当然,处理器和存储介质也可以作为分立组件存在于网络设备或终端设备中。
本领域内的技术人员应明白,本申请的实施例可提供为方法、系统、或计算机程序产品。因此,本申请可采用完全硬件实施例、完全软件实施例、或结合软件和硬件方面的实施例的形式。而且,本申请可采用在一个或多个其中包含有计算机可用程序代码的计算机可用存储介质(包括但不限于磁盘存储器、光学存储器等)上实施的计算机程序产品的形式。
本申请是参照根据本申请的方法、设备(系统)、和计算机程序产品的流程图和/或方框图来描述的。应理解可由计算机程序指令实现流程图和/或方框图中的每一流程和/或方框、以及流程图和/或方框图中的流程和/或方框的结合。可提供这些计算机程序指令到通用计算机、专用计算机、嵌入式处理机或其他可编程数据处理设备的处理器以产生一个机器,使得通过计算机或其他可编程数据处理设备的处理器执行的指令产生用于实现在流程图一个流程或多个流程和/或方框图一个方框或多个方框中指定的功能的装置。
这些计算机程序指令也可存储在能引导计算机或其他可编程数据处理设备以特定方式工作的计算机可读存储器中,使得存储在该计算机可读存储器中的指令产生包括指令装置的制造品,该指令装置实现在流程图一个流程或多个流程和/或方框图一个方框或多个方框中指定的功能。
显然,本领域的技术人员可以对本申请进行各种改动和变型而不脱离本申请的范围。这样,倘若本申请的这些修改和变型属于本申请权利要求及其等同技术的范围之内,则本申请也意图包含这些改动和变型在内。
另外,本申请中术语“和/或”,仅仅是一种描述关联对象的关联关系,表示可以存在三种关系,例如,A和/或B,可以表示:单独存在A,同时存在A和B,单独存在B 这三种情况。另外,本文中字符“/”,一般表示前后关联对象是一种“或”的关系;本申请中术语“至少一个”,可以表示“一个”和“两个或两个以上”,例如,A、B和C中至少一个,可以表示:单独存在A,单独存在B,单独存在C、同时存在A和B,同时存在A和C,同时存在C和B,同时存在A和B和C,这七种情况。
以上所述,仅为本申请的具体实施方式,但本申请的保护范围并不局限于此,任何熟悉本技术领域的技术人员在本申请揭露的技术范围内,可轻易想到变化或替换,都应涵盖在本申请的保护范围之内。因此,本申请的保护范围应以所述权利要求的保护范围为准。
在本申请实施例中,用户设备或接入网设备包括硬件层、运行在硬件层之上的操作系统层,以及运行在操作系统层上的应用层。该硬件层包括中央处理器(central processing unit,CPU)、内存管理单元(memory management unit,MMU)和内存(也称为主存)等硬件。该操作系统可以是任意一种或多种通过进程(process)实现业务处理的计算机操作系统,例如,Linux操作系统、Unix操作系统、Android操作系统、iOS操作系统或windows操作系统等。该应用层包含浏览器、通讯录、文字处理软件、即时通信软件等应用。并且,本申请实施例并未对本申请实施例提供的方法的执行主体的具体结构特别限定,只要能够通过运行记录有本申请实施例的提供的方法的代码的程序,以根据本申请实施例提供的方法进行通信即可,例如,本申请实施例提供的方法的执行主体可以是用户设备或接入网设备,或者,是用户设备或接入网设备中能够调用程序并执行程序的功能模块。
另外,本申请的各个方面或特征可以实现成方法、装置或使用标准编程和/或工程技术的制品。本申请中使用的术语“制品”涵盖可从任何计算机可读器件、载体或介质访问的计算机程序。例如,计算机可读介质可以包括,但不限于:磁存储器件(例如,硬盘、软盘或磁带等),光盘(例如,压缩盘(compact disc,CD)、数字通用盘(digital versatile disc,DVD)等),智能卡和闪存器件(例如,可擦写可编程只读存储器(erasable programmable read-only memory,EPROM)、卡、棒或钥匙驱动器等)。另外,本文描述的各种存储介质可代表用于存储信息的一个或多个设备和/或其它机器可读介质。术语“机器可读存储介质”可包括但不限于,无线信道和能够存储、包含和/或承载指令和/或数据的各种其它介质。
以上所述,仅为本申请的具体实施方式,但本申请的保护范围并不局限于此,任何熟悉本技术领域的技术人员在本申请揭露的技术范围内,可轻易想到变化或替换,都应涵盖在本申请的保护范围之内。因此,本申请的保护范围应以所述权利要求的保护范围为准。

Claims (26)

  1. 一种传输信息的方法,其特征在于,包括:
    第一设备配置检测参数,所述检测参数包括第一阈值;
    所述第一设备在M个周期中未收到所述消息,且所述M大于或者等于所述第一阈值时,启动服务质量QoS资源调度,其中,所述M为正整数。
  2. 根据权利要求1所述的方法,其特征在于,所述M个周期为连续的M个周期。
  3. 根据权利要求1所述的方法,其特征在于,所述M个周期为第一时段中的任意M个非连续的周期。
  4. 根据权利要求1至3中任一项所述的方法,其特征在于,在第一设备配置检测参数之前,所述方法还包括:
    所述第一设备接收来自第二设备的所述检测参数。
  5. 根据权利要求4所述的方法,其特征在于,所述第一设备为接入网设备或者终端设备,所述第二设备为核心网设备。
  6. 根据权利要求1至3中任一项所述的方法,其特征在于,当所述第一设备为核心网设备时,所述第一设备启动服务质量QoS资源调度包括:
    所述第一设备发送请求消息,所述请求信息用于请求接入网设备启动所述QoS资源调度。
  7. 根据权利要求6所述的方法,其特征在于,所述第一设备发送请求消息包括:
    所述第一设备通过工业现场支持服务网元向所述接入网设备发送所述请求信息。
  8. 根据权利要求1至7中任一项所述的方法,其特征在于,所述第一设备启动QoS资源调度包括:
    所述第一设备从第一QoS配置切换至第二QoS配置,
    其中,所述第二QoS配置包括的丢包率小于所述第一QoS配置包括的丢包率。
  9. 根据权利要求1至8中任一项所述的方法,其特征在于,所述方法还包括:
    所述第一设备在一个周期内未收到所述消息,记录1次丢失次数。
  10. 根据权利要求9所述的方法,其特征在于,所述第一设备在M个周期中未收到所述消息包括:
    所述第一设备确定记录了M次丢失次数。
  11. 根据权利要求1至10中任一项所述的方法,其特征在于,所述检测参数还包括接收所述消息的周期参数。
  12. 根据权利要求1至11中任一项所述的方法,其特征在于,在所述第一设备完成所述QoS资源调度后,所述方法还包括:
    所述第一设备在连续Y个周期中收到所述消息,且所述Y大于或者等于第二阈值时,解除所述QoS资源调度。
  13. 根据权利要求12所述的方法,其特征在于,解除所述QoS资源调度包括:
    所述第一设备从第二QoS配置切换至第一QoS配置,其中,所述第二QoS配置的丢包率小于所述第一QoS配置的丢包率。
  14. 根据权利要求12或13所述的方法,其特征在于,所述检测参数还包括第二阈值。
  15. 一种传输信息的方法,其特征在于,包括:
    第三设备周期性地接收安全消息,所述安全消息包括第一标识;
    所述第三设备根据第一标识确定发生安全事件;
    所述第三设备启动QoS资源调度。
  16. 根据权利要求15所述的方法,其特征在于,所述第一标识包括指示安全事件发生的控制位或者状态位。
  17. 根据权利要求16所述的方法,其特征在于,所述第一标识包括指示安全事件发生的命令值。
  18. 根据权利要求15至17中任一项所述的方法,其特征在于,所述QoS资源调度包括上行QoS资源调度和下行QoS资源调度。
  19. 根据权利要求15至18中任一项所述的方法,其特征在于,所述第三设备启动QoS资源调度包括:
    所述第三设备从第三QoS配置切换至第四QoS配置,
    其中,所述第四QoS配置包括的优先级高于所述第三QoS配置包括的优先级。
  20. 根据权利要求15至19中任一项所述的方法,其特征在于,所述第三设备完成所述QoS资源调度后,所述方法还包括:
    所述第三设备周期性接收安全消息,所述安全消息包括第二标识;
    所述第三设备记录连续接收所述第二标识的次数;
    当所述连续接收所述第二标识的次数大于或等于第三阈值时,所述第三设备解除所述QoS资源调度。
  21. 根据权利要求20所述的方法,其特征在于,所述第三设备解除所述QoS资源调度包括:
    所述第三设备从第四QoS配置切换至第三QoS配置,其中,所述第四QoS配置包括的优先级高于所述第三QoS配置包括的优先级。
  22. 一种通信装置,其特征在于,包括收发单元和处理单元,所述通信装置用于执行如权利要求1至14中任一项所述的方法。
  23. 一种通信装置,其特征在于,包括收发单元和处理单元,所述通信装置用于执行如权利要求15至21中任一项所述的方法。
  24. 一种计算机可读存储介质,其特征在于,所述计算机可读存储介质用于存储计算机程序,当所述计算机程序在计算机上运行时,使得所述计算机执行如权利要求1至14中任一项所述的方法,或,权利要求15至21中任一项所述的方法。
  25. 一种芯片,其特征在于,包括处理器和通信接口,所述处理器用于读取指令以执行如权利要求1至14中任一项所述的方法,使得所述计算机执行如权利要求15至21中任一项所述的方法。
  26. 一种通信系统,其特征在于,所述通信系统包括如权利要求22或23所述的通信装置。
PCT/CN2022/121576 2021-10-19 2022-09-27 一种传输信息的方法及装置 WO2023065987A1 (zh)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
CN202111213266.0A CN116017489A (zh) 2021-10-19 2021-10-19 一种传输信息的方法及装置
CN202111213266.0 2021-10-19

Publications (1)

Publication Number Publication Date
WO2023065987A1 true WO2023065987A1 (zh) 2023-04-27

Family

ID=86019726

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2022/121576 WO2023065987A1 (zh) 2021-10-19 2022-09-27 一种传输信息的方法及装置

Country Status (2)

Country Link
CN (1) CN116017489A (zh)
WO (1) WO2023065987A1 (zh)

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN117692347A (zh) * 2023-05-05 2024-03-12 荣耀终端有限公司 服务质量QoS的控制方法和设备

Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN101009647A (zh) * 2006-12-22 2007-08-01 北京交通大学 一种ip dslam中基于qos要求的自适应调度方法
US20080222154A1 (en) * 2007-03-08 2008-09-11 Xerox Corporation Decentralized Adaptive Management of Distributed Resource Replicas in a Peer-to-Peer Network Based on QoS
CN105791027A (zh) * 2016-04-25 2016-07-20 北京威努特技术有限公司 一种工业网络异常中断的检测方法
US9857825B1 (en) * 2012-10-29 2018-01-02 Washington State University Rate based failure detection
US20190116197A1 (en) * 2016-04-19 2019-04-18 Nagravision S.A. Method and system to detect abnormal message transactions on a network
US20210306926A1 (en) * 2020-02-17 2021-09-30 Wipro Limited Method and system for managing user application level quality-of-service aware handover in wireless network

Patent Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN101009647A (zh) * 2006-12-22 2007-08-01 北京交通大学 一种ip dslam中基于qos要求的自适应调度方法
US20080222154A1 (en) * 2007-03-08 2008-09-11 Xerox Corporation Decentralized Adaptive Management of Distributed Resource Replicas in a Peer-to-Peer Network Based on QoS
US9857825B1 (en) * 2012-10-29 2018-01-02 Washington State University Rate based failure detection
US20190116197A1 (en) * 2016-04-19 2019-04-18 Nagravision S.A. Method and system to detect abnormal message transactions on a network
CN105791027A (zh) * 2016-04-25 2016-07-20 北京威努特技术有限公司 一种工业网络异常中断的检测方法
US20210306926A1 (en) * 2020-02-17 2021-09-30 Wipro Limited Method and system for managing user application level quality-of-service aware handover in wireless network

Also Published As

Publication number Publication date
CN116017489A (zh) 2023-04-25

Similar Documents

Publication Publication Date Title
CN110876183B (zh) Rrc连接释放方法、相关设备及系统
RU2578666C2 (ru) Уменьшение избыточной сигнализации при переходах между состояниями управления радиоресурсами (rrc)
US20210120528A1 (en) Communication Method, Apparatus, And Storage Medium
EP3138336B1 (en) Communications via multiple access points
WO2017193766A1 (zh) 一种下行数据传输的方法及设备
WO2020103807A1 (zh) 一种通信方法及装置
WO2021023215A1 (zh) 无线通信的方法和装置
US20210251032A1 (en) Communication method, apparatus, and system
CN113473541A (zh) 一种通信方法及装置
WO2017133295A1 (zh) 数据传输方法、装置和系统
WO2021114104A1 (zh) 数据传输方法、设备及存储介质
WO2021026915A1 (zh) 无线通信方法、装置及系统
US20230262557A1 (en) Methods and devices for enhancing integrated access backhaul networks for new radio
WO2015131407A1 (zh) 一种中继节点RN、宿主基站DeNB及一种通信方法
WO2023065987A1 (zh) 一种传输信息的方法及装置
WO2019076347A1 (zh) 通信方法和通信装置
WO2021081696A1 (zh) 传输数据的方法和通信装置
WO2020238596A1 (zh) 切换的方法、装置和通信系统
JP2024519220A (ja) ユーザ機器、スケジューリングノード、ユーザ機器のための方法、スケジューリングノードのための方法および集積回路
CN114845318A (zh) 信息指示方法、装置及终端
CN116171538A (zh) 通信方法、设备和系统
WO2021043386A1 (en) Communication of terminal with multiple access nodes
WO2023185621A1 (zh) 通信方法及通信装置
WO2022188677A1 (zh) 通信方法和通信装置
WO2023051195A1 (zh) 通信方法和通信装置

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 22882598

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE