WO2024021853A1 - 通信方法和通信装置 - Google Patents

通信方法和通信装置 Download PDF

Info

Publication number
WO2024021853A1
WO2024021853A1 PCT/CN2023/097694 CN2023097694W WO2024021853A1 WO 2024021853 A1 WO2024021853 A1 WO 2024021853A1 CN 2023097694 W CN2023097694 W CN 2023097694W WO 2024021853 A1 WO2024021853 A1 WO 2024021853A1
Authority
WO
WIPO (PCT)
Prior art keywords
ranging
terminal device
parameter
accuracy
positioning
Prior art date
Application number
PCT/CN2023/097694
Other languages
English (en)
French (fr)
Inventor
许胜锋
Original Assignee
华为技术有限公司
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 华为技术有限公司 filed Critical 华为技术有限公司
Publication of WO2024021853A1 publication Critical patent/WO2024021853A1/zh

Links

Classifications

    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04WWIRELESS COMMUNICATION NETWORKS
    • H04W4/00Services specially adapted for wireless communication networks; Facilities therefor
    • H04W4/02Services making use of location information
    • H04W4/023Services making use of location information using mutual or relative location information between multiple location based services [LBS] targets or of distance thresholds
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04WWIRELESS COMMUNICATION NETWORKS
    • H04W4/00Services specially adapted for wireless communication networks; Facilities therefor
    • H04W4/02Services making use of location information

Definitions

  • the present application relates to the field of communication, and more specifically, to communication methods and communication devices in the field of communication.
  • D2D communication allows direct communication between user equipment (UE).
  • UE user equipment
  • the sender UE and the receiver UE are within a short range and can communicate directly after mutual discovery.
  • Communication between UEs can be based on the proximity-based services communication 5 (PC5) interface, which can be used for information transmission on the data plane and control plane.
  • PC5 interface proximity-based services communication 5
  • the distance between UEs can also be measured through the PC5 interface to obtain the relative distance between UEs.
  • distance measurement between UEs is required.
  • the distance measurement methods between UEs include single-side two-way ranging (single-side two-way ranging), bilateral two-way ranging (double-side two-way ranging), etc.
  • single-side two-way ranging single-side two-way ranging
  • bilateral two-way ranging double-side two-way ranging
  • the embodiments of the present application provide a communication method and device, which can better meet the requirements of positioning services.
  • a communication method is provided.
  • the method can be executed by a first terminal device, or by a component of the first terminal device (such as a processor, a chip or a chip system). It can also be executed by a device that can realize all or Logic modules or software implementation of part of the first terminal equipment functions.
  • the method includes: the first terminal device obtains a first parameter, the first parameter includes at least one of a first ranging accuracy, a first ranging time, and a ranging service quality category, and the first parameter is used for Ranging between the first terminal device and the second terminal device; the first terminal device determines a first ranging method from a plurality of ranging methods according to the first parameter; the first terminal The device performs distance measurement with the second terminal device according to the first distance measurement method.
  • the first terminal device may determine the first ranging method according to the mapping table or corresponding relationship between accuracy, time, service quality category and ranging method included in the first parameter.
  • the corresponding relationship or mapping table can be pre-configured locally or obtained from a core network element (for example, a policy control function (PCF) network element).
  • PCF policy control function
  • the above-mentioned service quality category may be a positioning service quality level, and the positioning service quality level includes strict Level, non-strict level, best effort level, guaranteed level, etc.
  • the above "the first terminal device performs ranging with the second terminal device according to the first ranging mode” may represent the ranging process corresponding to the first terminal device according to the first ranging mode. Transmitting and receiving ranging signals or collecting relevant ranging information (such as flight time information) during the ranging process.
  • the relevant ranging information can be used by the first terminal device to calculate the distance between the first terminal device and the second terminal device,
  • the related ranging information can also be used by other network elements to calculate the distance between the first terminal device and the second terminal device.
  • the above-mentioned various ranging methods may include single-side two-way ranging (single-side two-way ranging), bilateral two-way ranging (double-side two-way ranging), etc.
  • the first terminal device can perform ranging using a ranging method that is more in line with the requirements of the ranging service.
  • the above method further includes: the first terminal device receiving a first message, the first message including the above first parameter.
  • the first terminal device may obtain the above-mentioned first parameter from the application layer of the first terminal device, may include the above-mentioned first parameter in the first message obtained from the location management network element, or may obtain it from other terminal devices.
  • the first message includes the above-mentioned first parameter.
  • the above-mentioned first message may be a ranging request message.
  • the first terminal device determining the first ranging method from a plurality of ranging methods according to the first parameter further includes: the first The terminal device obtains a second parameter, the second parameter includes a ranging method authorized by the network to the first terminal device, a ranging method authorized by the network to the second terminal device, and a ranging mode supported by the first terminal device. , at least one of the ranging modes supported by the second terminal device; the first terminal device determines the first ranging mode according to the first parameter and the second parameter.
  • the ranging mode supported by the first terminal device can be expressed as the ranging capability of the first terminal device
  • the ranging mode supported by the second terminal device can be expressed as the ranging capability of the second terminal device
  • the first terminal device may determine the ranging mode that is authorized by both the first terminal device and the second terminal device as the first ranging mode, or the first terminal device may also determine the ranging mode between the first terminal device and the second terminal device.
  • the ranging method supported by all devices is determined as the first ranging method.
  • the first terminal device can not only select a ranging method according to the requirements of the first parameter, but also use a ranging method that is more in line with the requirements based on the distance measurement method authorized by the terminal device and the ranging method supported by the terminal device. distance, reducing the delay and signaling overhead of reselection due to the selected ranging method not meeting the requirements.
  • the method when the second parameter includes the ranging mode authorized by the network for the first terminal device, the method further includes: the first terminal The device receives a second message, the second message including the second parameter.
  • the first terminal device may receive a second message from the mobility management network element, where the second message includes the above-mentioned second parameter; the mobility management network element receives the above-mentioned second parameter from the policy control network element through other messages.
  • the first terminal device can obtain the ranging method authorized by the network from the policy control network element.
  • the ranging method authorized by the network can be used as a reference for the first terminal device to determine the first ranging method, thereby assisting
  • the first terminal device selects a ranging method authorized by the network to perform ranging, which reduces the delay and signaling overhead of reselection due to the selected ranging method not meeting the requirements.
  • the method when the second parameter includes the second terminal device When the ranging mode is supported by the network and/or the network authorizes the ranging mode of the second terminal device, the method further includes: the first terminal device receives a third message from the second terminal device, so The third message includes the second parameter.
  • the second terminal device may obtain the ranging method of the network authorizing the second terminal device from the policy control network element.
  • the second terminal device may send the ranging mode authorized by the network to the second terminal device and the ranging mode supported by the second terminal device to the first terminal device as a reference for the first terminal device to determine the first ranging mode, thereby assisting the third terminal device.
  • a terminal device selects a ranging method authorized by the network to perform ranging, which reduces the delay and signaling overhead of reselection due to the selected ranging method not meeting the requirements.
  • the above-mentioned first message may come from a first location management network element, and the first location management network element is a location management network serving the first terminal device. Yuan.
  • the first message may be sent to the first terminal device when the first location management network element locates the first terminal device, and may be used for ranging between the first terminal device and the second terminal device.
  • the first location management network element can assist the first location management network element in positioning the first terminal device by sending the first message used for ranging between the first terminal device and the second terminal device to the first terminal device.
  • the second aspect provides a communication method.
  • the method can be executed by the first terminal device, or by a component of the first terminal device (such as a processor, a chip or a chip system). It can also be executed by a device that can realize all or Logic modules or software implementation of part of the first terminal equipment functions.
  • the method includes: the first terminal device obtains a third parameter, the third parameter includes at least one of a second ranging accuracy, a second ranging time, and a ranging service quality category, and the third parameter is used for Ranging between the first terminal device and the third terminal device; the first terminal device determines a fourth parameter or a third ranging method according to the third parameter, and the fourth parameter is used to determine the The third ranging method is used for ranging between the second terminal device and the third terminal device; the first terminal device transmits data to the second terminal device or the third terminal device. The third terminal device sends the third ranging method or the fourth parameter.
  • the first terminal device may determine the third ranging method according to the mapping table or corresponding relationship between accuracy, time, service quality category and ranging method included in the third parameter.
  • the corresponding relationship or mapping table can be preconfigured locally or obtained from a core network element (for example, PCF).
  • the above-mentioned service quality category may be a positioning service quality level, which includes a strict level, a non-strict level, a best-effort level, a guaranteed level, etc.
  • the above "the third ranging method is used for ranging between the second terminal device and the third terminal device” may mean that the second terminal device or the third terminal device determines the distance between the second terminal device and the third terminal device according to the third ranging method.
  • the ranging process corresponding to the method sends and receives ranging signals or collects related ranging information (such as flight time information) during the ranging process.
  • the related ranging information can be used by the second terminal device or the third terminal device to calculate the second terminal.
  • the distance between the device and the third terminal device, the relevant ranging information can also be used by the first terminal device or other network elements to calculate the distance between the second terminal device and the third terminal device.
  • the first terminal device can select a ranging method that is more in line with the requirements of the ranging service to perform ranging between the second terminal device and the third terminal device.
  • the method further includes: the first terminal device receiving a fourth message, the fourth message including the third parameter.
  • the first terminal device may obtain the above third parameter from the application layer of the first terminal device, or may obtain the third parameter from the application layer of the first terminal device.
  • the fourth message obtained by the location management network element includes the above third parameter, and the fourth message obtained from other terminal devices may also include the above third parameter.
  • the above-mentioned fourth message may be a ranging request message.
  • the first terminal device determines the third ranging accuracy according to the third parameter.
  • the distance method includes: the first terminal device determines a third distance measurement accuracy based on the second distance measurement accuracy; the first terminal device determines the third distance measurement method from a plurality of distance measurement methods based on the third distance measurement accuracy. Three ranging modes.
  • the above-mentioned third ranging accuracy may be higher than the above-mentioned second ranging accuracy, which is not limited in this application.
  • the above-mentioned various ranging methods may include single-side two-way ranging (single-side two-way ranging), bilateral two-way ranging (double-side two-way ranging), etc.
  • the first terminal device determines a higher-precision third ranging accuracy according to the second ranging accuracy in the third parameter, and the third ranging accuracy is used for ranging between the second terminal device and the third terminal device.
  • the determination of the method can ensure that the ranging accuracy between the second terminal device and the third terminal device meets the ranging service requirements as much as possible.
  • the first terminal device determines the third ranging time according to the third parameter.
  • the distance method includes: the first terminal device determines a third distance measurement time based on the second distance measurement time; the first terminal device determines the third distance measurement method from a plurality of distance measurement methods based on the third distance measurement time. Three ranging modes.
  • the third ranging time may be earlier than the second ranging time, which is not limited in this application.
  • the first terminal device determines a third ranging time with stricter time requirements based on the second ranging time in the third parameter.
  • the third ranging time is used for the measurement between the second terminal device and the third terminal device.
  • the determination of the distance method can ensure that the ranging time between the second terminal device and the third terminal device meets the ranging service requirements as much as possible.
  • the method further includes: the first terminal device determines a fifth parameter or a fourth ranging method according to the third parameter, and the fifth parameter is used to determine the fourth ranging method, and the fourth ranging method is used for ranging between the first terminal device and the second terminal device.
  • the fourth ranging method is used for ranging between the first terminal device and the second terminal device
  • the ranging process sends and receives ranging signals or collects related ranging information (such as flight time information) during the ranging process.
  • the related ranging information can be used by the first terminal device to calculate the relationship between the first terminal device and the second terminal device.
  • distance, and the relevant ranging information can also be used by other network elements to calculate the distance between the first terminal device and the second terminal device.
  • the first terminal device can select a ranging method that is more in line with the requirements of the ranging service to perform ranging between the first terminal device and the second terminal device.
  • the method further includes: the first terminal device sending the fifth parameter or the fourth ranging method to the second terminal device; The first terminal device receives the ranging result obtained by the second terminal device according to the fifth parameter or the fourth ranging method.
  • the first terminal device may send the fifth parameter used to determine the fourth ranging method to the second terminal device, or may directly send the fourth ranging method to the second terminal device, and the second terminal device may perform the third step based on this. a terminal device and the second terminal device to obtain more accurate ranging results.
  • the first terminal device determines the fourth ranging accuracy according to the third parameter.
  • the distance method includes: the first terminal device determines the fourth distance measurement accuracy according to the second distance measurement accuracy; the first terminal device determines the third distance measurement method from a plurality of distance measurement methods according to the fourth distance measurement accuracy.
  • the fourth ranging accuracy may be higher than the second ranging accuracy, which is not limited in this application.
  • the above-mentioned various ranging methods may include single-side two-way ranging (single-side two-way ranging), bilateral two-way ranging (double-side two-way ranging), etc.
  • the first terminal device determines a higher-precision fourth ranging accuracy based on the second ranging accuracy in the third parameter.
  • the fourth ranging accuracy is used for ranging between the first terminal device and the second terminal device.
  • the determination of the method can ensure that the ranging accuracy between the first terminal device and the second terminal device meets the ranging service requirements as much as possible.
  • the first terminal device determines the fourth ranging time based on the third parameter.
  • the distance method includes: the first terminal device determines the fourth distance measurement method from a plurality of distance measurement methods according to the second distance measurement time.
  • the first terminal device directly uses the second ranging time in the third parameter to determine the ranging mode between the first terminal device and the second terminal device, which can reduce the operational complexity of the first terminal device.
  • the first terminal device determines the fourth ranging mode according to the third parameter: the first terminal device determines the fourth ranging mode according to the The second ranging time determines a fifth ranging time; the first terminal device determines the fourth ranging mode from a plurality of ranging modes according to the fifth ranging time.
  • the fifth ranging time may be earlier than the second ranging time, which is not limited in this application.
  • the first terminal device determines a fifth ranging time with stricter time requirements based on the second ranging time in the third parameter.
  • the fifth ranging time is used for the measurement between the first terminal device and the second terminal device.
  • the determination of the distance mode can ensure that the ranging time between the first terminal device and the second terminal device meets the ranging service requirements as much as possible.
  • the method further includes: the first terminal device obtains a fifth ranging accuracy and a sixth ranging accuracy, the fifth ranging accuracy is the The actual ranging accuracy of the distance measurement between the first terminal device and the second terminal device, and the sixth ranging accuracy is the actual distance measurement accuracy of the distance measurement between the second terminal device and the third terminal device. distance accuracy; the first terminal device calculates a seventh distance accuracy based on the fifth distance accuracy and the sixth distance accuracy, and the seventh distance accuracy is the sum of the first terminal device and the sixth distance accuracy. Actual ranging accuracy of ranging between third terminal devices.
  • the fifth ranging accuracy may be determined based on the actual ranging results between the first terminal device and the second terminal device
  • the sixth ranging accuracy may be determined based on the actual ranging results between the second terminal device and the third terminal device. determined by the actual ranging results.
  • the first terminal device can flexibly adjust the ranging accuracy or the allocation of ranging modes according to the actual ranging accuracy between the first terminal device and the third terminal device, so that the final ranging accuracy meets the requirements of the positioning service as much as possible.
  • the above-mentioned first terminal device obtaining the fifth ranging accuracy and the sixth ranging accuracy includes: the first terminal device receiving all the data of the second terminal device. the fifth ranging accuracy, and/or the first terminal device receives the sixth ranging accuracy of the second terminal device or the third terminal device.
  • the second terminal device can determine the fifth ranging accuracy based on the actual ranging result between the first terminal device and the second terminal device, and send it to the first terminal device; and the second terminal device or the third terminal device can be based on the The actual ranging result between the second terminal device and the third terminal device determines the sixth ranging accuracy and sends it to the first terminal device. This can reduce the operational complexity for the first terminal device to calculate the actual ranging accuracy between the first terminal device and the third terminal device.
  • a communication method is provided.
  • the method can be executed by the first location management network element, or can be executed by a component of the first location management network element (such as a processor, a chip or a chip system). It can also be executed by a capable A logical module or software implementation that implements all or part of the first location management network element functions.
  • the method includes: the first location management network element obtains a sixth parameter, the sixth parameter includes at least one of a first positioning accuracy, a first positioning time, and a positioning service quality category, and the sixth parameter is used for The first terminal device performs positioning; the first location management network element determines a seventh parameter or a first ranging method according to the sixth parameter, and the seventh parameter is used to determine the first ranging method, so The first ranging method is used for ranging between the first terminal device and the second terminal device, and the second terminal device is used to assist the positioning of the first terminal device; the first location management The network element sends the first ranging method or the seventh parameter.
  • the first location management network element may determine the first ranging method according to the mapping table or corresponding relationship between accuracy, time, service quality category and ranging method included in the sixth parameter.
  • the corresponding relationship or mapping table can be preconfigured locally or obtained from a core network element (for example, PCF).
  • the above-mentioned service quality category may be a positioning service quality level, which includes a strict level, a non-strict level, a best-effort level, a guaranteed level, etc.
  • the above "the first ranging method is used for ranging between the first terminal device and the second terminal device” may mean that the first terminal device or the second terminal device determines the distance between the first terminal device and the second terminal device according to the first ranging method.
  • the ranging process corresponding to the method sends and receives ranging signals or collects related ranging information (such as flight time information) during the ranging process.
  • the related ranging information can be used by the first terminal device or the second terminal device to calculate the first terminal
  • the distance between the device and the second terminal device, the relevant ranging information can also be used by the first location management network element to calculate the distance between the first terminal device and the second terminal device.
  • the first terminal device can send and receive the measurement data according to the ranging process corresponding to the first ranging method.
  • distance signal or collect relevant ranging information such as flight time information
  • the second terminal device can The terminal device sends and receives ranging signals according to the ranging process corresponding to the first ranging method or collects relevant ranging information (such as flight time information) during the ranging process.
  • the first location management network element can use a hybrid positioning method to position the first terminal device.
  • a terminal device performs positioning.
  • the hybrid positioning method may include positioning of the second terminal device and ranging of the first terminal device and the second terminal device.
  • the first location management network element can use a ranging method that is more in line with ranging service requirements to perform ranging between the first terminal device and the second terminal device.
  • the method further includes: the first location management network element receiving a fifth message, where the fifth message includes the sixth parameter.
  • the first location management network element may include the above-mentioned sixth parameter in the fifth message received from the mobility management network element, or may include the sixth parameter in the fifth message received from the gateway mobile location center (GMLC). Including the sixth parameter mentioned above.
  • GMLC gateway mobile location center
  • the fifth message may be a positioning request message.
  • the first location management network element determines the first positioning accuracy based on the sixth parameter.
  • the ranging method includes: the first location management network element determines an eighth ranging accuracy based on the first positioning accuracy; the first location management network element selects from a plurality of ranging methods based on the eighth ranging accuracy. Determine the first ranging method.
  • the eighth ranging accuracy may be higher than the first positioning accuracy, which is not limited in this application.
  • the above-mentioned various ranging methods may include single-side two-way ranging (single-side two-way ranging), bilateral two-way ranging (double-side two-way ranging), etc.
  • the first location management network element determines a higher-precision eighth ranging accuracy based on the first positioning accuracy in the sixth parameter.
  • the eighth ranging accuracy is used for measurement between the first terminal device and the second terminal device.
  • the determination of the distance method can ensure that the ranging accuracy between the first terminal device and the second terminal device meets the positioning service requirements as much as possible.
  • the first location management network element determines the first positioning time based on the sixth parameter.
  • the ranging method includes: the first location management network element determines a fourth ranging time based on the first positioning time; the first location management network element selects from multiple ranging methods based on the fourth ranging time. Determine the first ranging method.
  • the fourth ranging time may be earlier than the first positioning time, which is not limited in this application.
  • the first location management network element determines a fourth ranging time with stricter time requirements based on the first positioning time in the sixth parameter.
  • the fourth ranging time is used for the communication between the first terminal device and the second terminal device.
  • the determination of the ranging method can ensure that the ranging time between the first terminal device and the second terminal device meets the positioning service requirements as much as possible.
  • the method further includes: the first location management network element determines an eighth parameter or a first positioning method based on the sixth parameter, and the eighth parameter Parameters are used to determine the first positioning method, and the first positioning method is used to position the second terminal device; the first location management network element sends the eighth parameter or the first Positioning method.
  • the above "the first positioning method is used to position the second terminal device” may mean that the second terminal device collects relevant measurement information (such as flight time information) during the positioning process, and the relevant measurement information may be It is used by the second terminal device to estimate its own position, and the related ranging information can also be used by the second location management network element serving the second terminal device to estimate the position of the second terminal device.
  • relevant measurement information such as flight time information
  • the first location management network element can use a hybrid positioning method to position the first terminal device.
  • a terminal device performs positioning.
  • the hybrid positioning method may include positioning of the second terminal device and ranging of the first terminal device and the second terminal device.
  • the second terminal device can be positioned using a positioning method that is more in line with positioning service requirements.
  • the method further includes: when the sixth parameter includes the first positioning accuracy, the first location management network element performs the following steps according to the sixth parameter: Parameter determination of the first positioning method includes: the first location management network element determines a second positioning accuracy based on the first positioning accuracy; the first location management network element selects from multiple positioning accuracy based on the second positioning accuracy. The first positioning method is determined in the method.
  • the second positioning accuracy may be higher than the first positioning accuracy, which is not limited in this application.
  • the above-mentioned multiple positioning methods may include multi-cell round trip time (Multi-Round Trip Time, Multi-RTT), Downlink time difference of arrival (DL-TDOA), Uplink time difference of arrival (UL-TDOA), etc.
  • Multi-Round Trip Time Multi-RTT
  • DL-TDOA Downlink time difference of arrival
  • UL-TDOA Uplink time difference of arrival
  • the first location management network element determines a higher-precision second positioning accuracy based on the first positioning accuracy in the sixth parameter.
  • the second positioning accuracy is used to determine the positioning method of the second terminal device, which can ensure that the second terminal The positioning accuracy of the device meets the needs of positioning services as much as possible.
  • the first location management network element determines the first positioning time based on the sixth parameter.
  • the positioning method includes: the first location management network element determines the first positioning method from multiple positioning methods according to the first positioning time.
  • the first location management network element directly uses the first positioning time in the sixth parameter to determine the positioning method of the second terminal device, which can reduce the operational complexity of the first location management network element.
  • the first location management network element determines the first positioning method according to the sixth parameter including: the first location management network element The second positioning time is determined according to the first positioning time; the first terminal device determines the first positioning method from multiple positioning methods according to the second positioning time.
  • the second positioning time may be earlier than the first positioning time, which is not limited in this application.
  • the first location management network element determines a second positioning time with stricter time requirements based on the first positioning time in the sixth parameter.
  • the second positioning time is used to determine the positioning method of the second terminal device, which can ensure that the second positioning time is used to determine the positioning method of the second terminal device.
  • the terminal equipment meets the positioning business needs as much as possible.
  • the method further includes: the first location management network element obtains a ninth ranging accuracy and a third positioning accuracy, and the ninth ranging accuracy is The actual ranging accuracy of distance measurement between the first terminal device and the second terminal device, the third positioning accuracy is the actual positioning accuracy of the second terminal device; the first location management network element is based on The ninth ranging accuracy and the third positioning accuracy are used to calculate a fourth positioning accuracy, and the fourth positioning accuracy is the actual positioning accuracy of the first terminal device.
  • the first location management network element sends the fourth positioning accuracy to a first mobility management network element, which is a mobility management network element serving the first terminal device.
  • the ninth ranging accuracy may be determined based on the actual ranging results between the first terminal device and the second terminal device, and the third positioning accuracy may be determined based on the actual positioning results of the second terminal device.
  • the first location management network element can flexibly adjust the ranging accuracy, positioning accuracy, ranging method and positioning method allocation according to the actual positioning accuracy of the first terminal device, so that the final positioning accuracy of the first terminal device meets the positioning accuracy as much as possible. business needs.
  • the above-mentioned first location management network element obtaining the ninth ranging accuracy and the third positioning accuracy includes: the first location management network element receives the the ninth ranging accuracy of the first terminal device or the second terminal device, and/or the first location management network element receiving the third positioning accuracy of the second location management network element,
  • the second location management network element is a location management network element serving the second terminal device.
  • the first terminal device or the second terminal device can determine the ninth ranging accuracy based on the actual ranging results between the first terminal device and the second terminal device, and send it to the first location management network element; and the second The terminal device may determine the third positioning accuracy based on the actual positioning result of the second terminal device and send it to the first location management network element. This can reduce the operational complexity of the first location management network element in calculating the actual positioning accuracy of the first terminal device.
  • a communication device may be a first terminal device, or a component of the terminal device (such as a processor, a chip or a chip system), or may be capable of realizing all or part of the functions of the terminal device.
  • logic modules or software The device has the function of realizing the first aspect, the second aspect and various possible implementation modes of the first aspect and the second aspect. This function can be implemented by hardware, or it can be implemented by hardware executing corresponding software.
  • the hardware or software includes one or more modules corresponding to the above functions.
  • the device includes: an interface unit and a processing unit.
  • the interface unit may be at least one of a transceiver, a receiver, and a transmitter.
  • the interface unit may include a radio frequency circuit or an antenna.
  • the processing unit may be a processor.
  • the device further includes a storage unit, which may be a memory, for example. When a storage unit is included, the storage unit is used to store programs or instructions.
  • the processing unit is connected to the storage unit, and the processing unit can execute programs, instructions or instructions from other sources stored in the storage unit, so that the device executes the above-mentioned first aspect, the second aspect, the first aspect, and the second aspect. Communication methods for various possible implementations.
  • the device may be the first terminal device.
  • the chip when the device is a chip, the chip includes: an interface unit and a processing unit.
  • the interface unit may be, for example, an input/output interface, pins or circuits on the chip.
  • the processing unit may be a processor, for example.
  • the processing unit can execute instructions to cause the chip in the first terminal device to execute the communication method of the first aspect, the second aspect and any possible implementation of the first aspect and the second aspect.
  • the processing unit can execute instructions in the storage unit, and the storage unit can be a storage module within the chip, such as a register, cache, etc.
  • the storage unit can also be located within the communication device but outside the chip, such as read-only memory (ROM) or other types of static storage devices that can store static information and instructions, random access memory (random access memory) memory, RAM), etc.
  • ROM read-only memory
  • RAM random access memory
  • the processor mentioned in any of the above places can be a general central processing unit (CPU), a microprocessor, an application-specific integrated circuit (ASIC), or one or more for controlling the above-mentioned
  • CPU central processing unit
  • ASIC application-specific integrated circuit
  • Various aspects of communication methods are programmed for execution on integrated circuits.
  • a communication device may be a first location management network element, or may be a component of the first location management network element (such as a processor, a chip or a chip system), or may be capable of implementing Logical modules or software that manage all or part of the first-location network element functions.
  • the device has the function of realizing the above third aspect and various possible implementation methods of the third aspect. This function can be implemented by hardware, or it can be implemented by hardware executing corresponding software.
  • the hardware or software includes one or more modules corresponding to the above functions.
  • the device includes: an interface unit and a processing unit.
  • the interface unit may be at least one of a transceiver, a receiver, and a transmitter.
  • the interface unit may include a radio frequency circuit or an antenna.
  • the processing unit may be a processor.
  • the device further includes a storage unit, which may be a memory, for example. When a storage unit is included, the storage unit is used to store programs or instructions.
  • the processing unit is connected to the storage unit, and the processing unit can execute programs, instructions or instructions from other sources stored in the storage unit, so that the device performs the communication of the above-mentioned third aspect and various possible implementations of the third aspect. method.
  • the device can manage network elements for the first location.
  • the chip when the device is a chip, the chip includes: an interface unit and a processing unit.
  • the interface unit may be, for example, an input/output interface, pins or circuits on the chip.
  • the processing unit may be a processor, for example.
  • the processing unit can execute instructions to cause the chip in the first location management network element to execute the communication method of the third aspect and any possible implementation of the third aspect.
  • the processing unit can execute instructions in the storage unit, and the storage unit can be a storage module within the chip, such as a register, cache, etc.
  • the storage unit may also be located in the communication equipment Within the device, but located outside the chip, such as read-only memory (ROM) or other types of static storage devices that can store static information and instructions, random access memory (random access memory, RAM), etc.
  • ROM read-only memory
  • RAM random access memory
  • the processor mentioned in any of the above places can be a general central processing unit (CPU), a microprocessor, an application-specific integrated circuit (ASIC), or one or more for controlling the above-mentioned
  • CPU central processing unit
  • ASIC application-specific integrated circuit
  • Various aspects of communication methods are implemented on integrated circuits.
  • a computer storage medium is provided.
  • Program code is stored in the computer storage medium.
  • the program code is used to instruct execution of the above-mentioned first aspect, second aspect, third aspect and first aspect, second aspect, Instructions for methods in any possible implementation of the third aspect.
  • a seventh aspect provides a computer program product containing computer instructions or computer code, which when run on a computer causes the computer to execute the above-mentioned first aspect, second aspect, third aspect and first aspect, second aspect, Methods in any possible implementation of the third aspect.
  • a communication system in an eighth aspect, includes a device having functions to implement the methods and various possible designs of the above-mentioned first aspect, and a device having functions to implement the methods and various possible designs of the above-mentioned second aspect.
  • the device and the device having the functions of realizing the methods of the third aspect and various possible designs.
  • the device having the functions of realizing the methods of the first aspect and the second aspect and various possible designs of the first aspect and the second aspect may be a first terminal device, and having the function of realizing the various methods of the above third aspect and the third aspect.
  • a possible designed functional device may be a first location management network element.
  • Figure 1 is an example of a communication system architecture suitable for this application.
  • Figure 2 is a schematic diagram of a network service-oriented architecture for supporting positioning applicable to this application.
  • FIG. 3 is a schematic flow chart of a ranging method provided by this application.
  • Figure 4 is a schematic flow chart of another ranging method provided by this application.
  • Figure 5 is a schematic flow chart of yet another ranging method provided by this application.
  • Figure 6 is a schematic flow chart of another ranging method provided by this application.
  • Figure 7 is a schematic flow chart of yet another ranging method provided by this application.
  • Figure 8 is a schematic block diagram of the information sending device 100 of the present application.
  • FIG. 9 is a schematic block diagram of an information receiving device 200 of the present application.
  • GSM global system for mobile communications
  • CDMA code division multiple access
  • WCDMA wideband code division multiple access
  • GPRS General packet radio service
  • LTE long term evolution
  • FDD frequency division duplex
  • TDD LTE time division duplex
  • UMTS Universal mobile telecommunication system
  • WiMAX global interoperability for microwave access
  • 5G fifth generation
  • NR new radio
  • Figure 1 is an example of a communication system architecture suitable for embodiments of the present application. Among them, the functions of the terminal equipment and each network entity are as described below.
  • Terminal equipment can be called terminal, terminal equipment unit (subscriber unit), terminal equipment station, terminal equipment agent, terminal equipment device, access terminal, terminal in V2X communication, user unit, user equipment (user equipment, UE), user station, mobile station, mobile station (MS), remote station, remote terminal, mobile device, user terminal, wireless communication equipment, user agent or user device.
  • terminal equipment unit subscriber unit
  • terminal equipment station terminal equipment agent
  • terminal equipment device access terminal
  • terminal in V2X communication user unit
  • user equipment user equipment
  • UE user equipment
  • MS mobile station
  • remote station remote terminal
  • mobile device user terminal, wireless communication equipment, user agent or user device.
  • the terminal device in the embodiment of the present application may also be a mobile phone (mobile phone), tablet computer (pad), computer with wireless transceiver function, holographic projector, video player, virtual reality (VR) terminal, enhanced Augmented reality (AR) terminals, wireless terminals in industrial control (industrial control), tactile terminal equipment, vehicle-mounted terminal equipment, road side units (RSU), wireless terminals in self-driving (self-driving) , communication terminals in drones, wireless terminals in remote medical, wireless terminals in smart grids, wireless terminals in transportation safety, wireless terminals in transportation safety, wisdom Wireless terminals in smart cities, wireless terminals in smart homes, cellular phones, cordless phones, session initiation protocol (SIP) phones, wireless local loop (WLL) stations, personal digital assistants (PDAs), handheld devices with wireless communication capabilities, computing devices or other processing devices connected to wireless modems, vehicle-mounted devices, wearable devices, terminals in 5G networks or future evolution networks terminal etc.
  • mobile phone mobile phone
  • tablet computer tablet computer
  • PDAs personal digital
  • wearable devices can also be called wearable smart devices. It is a general term for applying wearable technology to intelligently design daily wear and develop wearable devices, such as head-mounted XR glasses, gloves, watches, clothing and shoes, etc. .
  • a wearable device is a portable device that is worn directly on the body or integrated into the user's clothing or accessories. Wearable devices are not just hardware devices, but also achieve powerful functions through software support, data interaction, and cloud interaction. Broadly defined wearable smart devices include full-featured, large-sized devices that can achieve complete or partial functions without relying on smartphones, such as smart watches or smart glasses, as well as those that focus on a certain type of application function and need to be used in conjunction with other devices such as smartphones. , such as various smart bracelets and smart jewelry for physical sign monitoring.
  • Radio access network (RAN) equipment a network composed of multiple 5G-RAN nodes that implements wireless physical layer functions, resource scheduling and wireless resource management, service quality management, data compression and encryption, and wireless access control and mobility management capabilities.
  • 5G-RAN is connected to the user plane function (UPF) network element through the user plane interface N3 and is used to transmit data of terminal equipment;
  • 5G-RAN is connected to the access and mobility management function (access and mobility management function) through the control plane interface N2.
  • Management function (AMF) network element establishes a control plane signaling connection and is used to implement functions such as wireless access bearer control.
  • UPF user plane function
  • AMF Management function
  • RAN can be any device with wireless transceiver functions, including but not limited to 5G base station (5G node base, gNB), evolutionary base station (evolutionary node base, eNB), wireless access point (wireless access point, WiFi AP), World interoperability for microwave access base station (WiMAX BS), transmission reception point receiving point (TRP), wireless relay node, wireless backhaul node, etc.
  • 5G base station 5G node base, gNB
  • evolutionary base station evolutionary node base, eNB
  • wireless access point wireless access point
  • WiFi AP World interoperability for microwave access base station
  • TRP transmission reception point receiving point
  • wireless relay node wireless backhaul node, etc.
  • the access network device in the embodiment of the present application may also be a device used to communicate with a terminal device.
  • the access network device may be a global system of mobile communication (GSM) system or a code division multiple access (code division) system.
  • GSM global system of mobile communication
  • code division code division
  • the base station (base transceiver station, BTS) in multiple access, CDMA) can also be the base station (nodeB, NB) in the wideband code division multiple access (WCDMA) system, or it can be the base station in the LTE system.
  • An evolutionary node base can also be a wireless controller in a cloud radio access network (CRAN) scenario, or the access network equipment can be a relay station, access point, or vehicle-mounted equipment , wearable devices, access network equipment in future 5G networks or access network equipment in future evolved PLMN networks, etc., are not limited by the embodiments of this application.
  • CRAN cloud radio access network
  • CU centralized unit
  • DU distributed unit
  • CU includes the RRC layer and PDCP layer of the LTE base station
  • DU includes the radio link control (RLC) layer and media access control (MAC) layer of the LTE base station. and physical (PHY) layer.
  • RLC radio link control
  • MAC media access control
  • PHY physical
  • CU and DU can be physically connected through optical fiber, and logically there is a specially defined F1 interface for communication between CU and DU.
  • CU is mainly responsible for radio resource control and configuration, cross-cell mobility management, bearer management, etc.
  • DU is mainly responsible for scheduling, physical signal generation and transmission.
  • the above-mentioned base station may be a macro base station, a micro base station, a pico base station, a small station, a relay station, a balloon station, etc.
  • Access and mobility management function It belongs to the core network element and is mainly responsible for signaling processing, such as access control, mobility management, attachment and detachment, and gateway selection.
  • AMF Access and mobility management function
  • the AMF network element When the AMF network element provides services for a session in a terminal device, it will provide control plane storage resources for the session to store the session identifier and the session management function (SMF) network element identifier associated with the session identifier. ; In addition, it is also responsible for transmitting user policies between the terminal device and the policy control function (PCF).
  • PCF policy control function
  • SMF Mainly responsible for the control plane functions of terminal device session management, including the selection and redirection of user plane function (UPF) network elements, Internet protocol (internet protocol, IP) address allocation, and bearer establishment, modification, and release As well as quality of service (QoS) control, QoS management of sessions, obtaining policy and charging control (PCC) policies (from PCF), etc.
  • UPF user plane function
  • IP Internet protocol
  • QoS quality of service
  • PCC policy and charging control
  • UPF network element As the anchor point of the protocol data unit (PDU) session connection, it is responsible for data packet filtering, data transmission/forwarding, rate control, and generation of billing information for terminal devices, etc., and provides communication with the data network ( data network, DN) connection.
  • PDU protocol data unit
  • DN refers to a specific data service network that the terminal device is connected to.
  • DN is responsible for providing operator services, Internet access or third-party services.
  • DN includes servers that enable video source encoding, rendering, etc.
  • Typical DNs include the Internet, IP multimedia service (IP multi-media service, IMS) network, etc.
  • DN is identified by data network name (DNN) in the 5G network.
  • Unified data management (UDM) network element mainly used to manage and control user data, for example, management of contract information, including obtaining contract information from the unified data repository (UDR) and providing it to other network elements ( For example, AMF); generate certification certificates for the third generation partnership project (3GPP) for terminal equipment; register and maintain network elements currently serving terminal equipment, for example, the AMF currently serving terminal equipment (i.e. serving AMF); when the contract data is modified, it is responsible for communicating Know the corresponding network element.
  • 3GPP third generation partnership project
  • Network repository function (NRF) network element mainly used to support the registration and discovery of network functions.
  • Network exposure function (NEF) network element exposes the services and capabilities of the 3GPP network function to the application function (AF), and also allows the AF to provide information to the 3GPP network function.
  • AF application function
  • AF Interacts with core network elements to provide some services, for example, interacts with PCF for business policy control, interacts with NEF to obtain some network capability information or provide some application information to the network, and provides some data network access point information to PCF to generate corresponding routing information for data services.
  • AUSF Authentication server function
  • Network slice selection function (NSSF) network element selects a set of slice instances for the terminal device. Determine the network slice instances that the terminal device is allowed to access based on the network slice selection assistance information (NSSAI) and contract information of the terminal device.
  • NSSAI network slice selection assistance information
  • PCF Provides configuration policy information for terminal devices, provides policy information for managing and controlling terminal devices for network control plane elements (for example, AMF, SMF); generates terminal device access policies and QoS flow control policies.
  • network control plane elements for example, AMF, SMF
  • the terminal equipment in the embodiment of the present application is connected to the RAN equipment through wireless means, and the RAN equipment is connected to the 5G core network equipment through wireless or wired means.
  • the 5G core network equipment and the RAN equipment can be independent and different physical devices, or the functions of the 5G core network equipment and the logical functions of the RAN equipment can be integrated on the same physical device, or some of them can be integrated into one physical device.
  • Terminal equipment can be fixed or movable.
  • 5G core network equipment mainly includes the above-mentioned NEF network elements, PCF network elements, AF network elements, AMF network elements, SMF network elements and UPF network elements.
  • network element can also be called an entity, equipment, device or module, etc., and is not specifically limited in this application.
  • the description of "network element” is omitted in some descriptions.
  • the NEF network element is referred to as NEF for short.
  • the “NEF” should be understood as the NEF network element. or NEF entities, below, description of the same or similar situations is omitted.
  • each network element included in Figure 1 is only a name, and the name does not limit the function of the network element itself.
  • each of the above network elements may also have other names, which are not specifically limited in the embodiments of this application.
  • some or all of the above-mentioned network elements may use the terminology used in 5G, or may be named by other names, etc., which will be described uniformly here and will not be described in detail below.
  • each network element in Figure 1 does not have to exist at the same time, and which network elements are needed can be determined according to requirements.
  • the connection relationship between each network element in Figure 1 is not unique and can be adjusted according to needs.
  • network elements or functions can be network elements in hardware devices, software functions running on dedicated hardware, or virtualization functions instantiated on a platform (for example, a cloud platform).
  • FIG 2 is a schematic diagram of a network service-oriented architecture used to support positioning. As shown in Figure 2, this architecture is extended based on the architecture shown in Figure 1. For example, the gateway mobile location center (GMLC), location retrieval function (LRF), location service client (LCS client) and location management function (LMF) are added ) and other functional entities are used to support positioning service functions.
  • GMLC gateway mobile location center
  • LRF location retrieval function
  • LCS client location service client
  • LMF location management function
  • N1 The interface between AMF and terminal equipment, which can be used to transmit QoS control rules to the terminal.
  • N2 The interface between AMF and RAN, which can be used to transmit wireless bearer control information from the core network side to the RAN.
  • N3 The interface between RAN and UPF, mainly used to transmit uplink and downlink user plane data between RAN and UPF.
  • N4 The interface between SMF and UPF can be used to transfer information between the control plane and the user plane, including controlling the delivery of forwarding rules, QoS control rules, traffic statistics rules, etc. for the user plane, as well as user plane information. Report.
  • N5 The interface between AF and PCF, which can be used to issue application service requests and report network events.
  • N6 The interface between UPF and DN, used to transmit uplink and downlink user data flows between UPF and DN.
  • N7 The interface between PCF and SMF, which can be used to deliver PDU session granularity and service data flow granularity control policies.
  • N8 The interface between AMF and UDM can be used by AMF to obtain subscription data and authentication data related to access and mobility management from UDM, and for AMF to obtain current mobility management related information of registered terminals from UDM.
  • N9 The user plane interface between UPF and UPF, used to transmit uplink and downlink user data flows between UPF.
  • N10 The interface between SMF and UDM can be used for SMF to obtain session management-related contract data from UDM, and for SMF to obtain current session-related information of registered terminals from UDM.
  • N11 The interface between SMF and AMF can be used to transfer PDU session tunnel information between RAN and UPF, transfer control messages sent to terminals, transfer radio resource control information sent to RAN, etc.
  • N12 The interface between AMF and AUSF can be used by AMF to initiate the authentication process to AUSF, which can carry the user concealed identifier (subscription conceaaled identifier, SUCI) as the signing identifier.
  • AMF user concealed identifier
  • SUCI subscription conceaaled identifier
  • N13 The interface between UDM and AUSF can be used by AUSF to obtain the user authentication vector from UDM to perform the authentication process.
  • N15 The interface between PCF and AMF, which can be used to deliver terminal policies and access control related policies.
  • N17 The control plane interface between LMF and LMF, used to transmit interactive signaling between LMFs.
  • NL1 The interface between AMF and LMF can be used to transfer mobility management-related information and control policies.
  • NL2 The interface between AMF and GMLC can be used to deliver client policies and access control related policies.
  • the interface between the LCS client and GMLC can be used to transmit client policies and access control-related policies issued by the core network, or upload client location service-related request signaling.
  • PC5 The interface between terminal devices can be used for information transmission on the data plane and control plane.
  • the PC5 interface can also be used to measure the relative distance and/or relative angle between terminal devices.
  • the above network elements or functions may be network elements in hardware devices, software functions running on dedicated hardware, or virtualization functions instantiated on a platform (for example, a cloud platform).
  • a platform for example, a cloud platform.
  • the above network element or function can be implemented by one device, or can be implemented by multiple devices together, or can be a functional module in one device, which is not specifically limited in the embodiments of this application.
  • the access network device in the embodiment of this application may be a wireless access network device.
  • network element in this article can also be called a network function instance (network function instance), network Functions (network function, NF), equipment, devices or modules are not particularly limited in this application.
  • network function entities such as AMF, LMF, and UDM are called network function (NF) network elements; or in other network architectures, network elements such as AMF, LMF, and UDM are The collection can be called a control plane function (CPF) network element.
  • CPF control plane function
  • Figures 1 and 2 are only exemplary network architectures, and the network architecture applicable to the embodiments of the present application is not limited thereto. Any network architecture that can realize the functions of each of the above network elements is applicable to the embodiments of the present application.
  • D2D communication allows direct communication between terminal equipment (user equipment, UE).
  • the sender UE and the receiver UE are within a short range and can communicate directly after mutual discovery.
  • the relative distance between UEs needs to be measured. Determining the relative distance between terminal devices can be achieved through relative positioning, which requires the terminal device to have sidelink positioning capabilities. The relative positioning between terminal devices may be determining the relative distance and/or relative angle between the terminal devices.
  • the relative distance between terminal devices can be obtained through ranging, and the relative angle between terminal devices can be obtained through angle measurement.
  • Measurement methods for the relative distance between terminal devices include: single-side two-way ranging (single-side two-way ranging), bilateral two-way ranging (double-side two-way ranging), etc.
  • the one-sided and two-way ranging method is: terminal equipment A sends an initial ranging signal 1, and terminal equipment B sends a feedback ranging signal 2 for feedback to terminal equipment A after receiving the initial ranging signal 1. After receiving the feedback ranging signal 2, the terminal device A calculates the time difference 1 between sending the initial ranging signal 1 and receiving the feedback ranging signal 2. Terminal device B calculates the time difference 2 between receiving the initial ranging signal 1 and sending the feedback ranging signal 2.
  • time of flight (TOF) (time difference 1-time difference 2)/2.
  • the bilateral two-way ranging method is: terminal equipment A sends an initial ranging signal 1, and terminal equipment B sends a feedback ranging signal 2 for feedback to terminal equipment A after receiving the initial ranging signal 1. After receiving the feedback ranging signal 2, terminal device A then sends a response ranging signal 3 to terminal device B. Terminal device A calculates the time difference 1 between sending the initial ranging signal 1 and receiving the feedback ranging signal 2, and the time difference 3 between sending the response ranging signal 3 and receiving the feedback ranging signal 2. Terminal device B calculates the time difference 2 between receiving the initial ranging signal 1 and sending the feedback ranging signal 2, and the time difference 4 between sending the feedback ranging signal 2 and receiving the response ranging signal 3.
  • the distance between terminal device A and terminal device B flight time ⁇ speed of light.
  • TOF (Time difference 1 ⁇ Time difference 4-Time difference 2 ⁇ Time difference 3)/(Time difference 1+Time difference 2+Time difference 3+Time difference 4).
  • the bilateral two-way ranging method is an extended ranging method of the unilateral two-way ranging method. It measures the timestamps of two round-trips and finally obtains the flight time. Although the bilateral two-way ranging method increases the response time of ranging, it will reduce the error of ranging.
  • This application provides a method for determining the ranging mode, as shown in Figure 3.
  • the terminal equipment involved in the embodiment of this application may be represented by UE.
  • the UE mentioned below can be replaced by any terminal device among all the terminal devices described above, and this application does not limit this.
  • This embodiment can be applied to the scenario of ranging between terminals.
  • Step S311 UE1 receives message #1 from the AMF.
  • the message #1 includes the ranging method authorized by UE1.
  • PCF can send message #1A to AMF, which message #1A includes the ranging method authorized by UE1, as shown in step S310 in Figure 3; after receiving message #1A, AMF can send message #1 to UE1, which message #1 includes the ranging method authorized by UE1.
  • the above-mentioned ranging methods authorized by UE1 may include unilateral two-way ranging, bilateral two-way ranging, etc.
  • the above ranging method authorized by UEl may be determined based on the subscription information of UEl.
  • step S310 is optional.
  • step S310 may also be replaced by a ranging method in which UEl receives UEl authorization from the PCF.
  • Step S313 UE2 receives message #2 from the AMF.
  • the message #2 includes the ranging method authorized by UE2.
  • PCF can send message #2A to AMF, which message #2A includes the ranging method authorized by UE2, as shown in step S312 in Figure 3; after receiving message #2A, AMF can send message #2 to UE2, which message #2 includes the ranging method authorized by UE2.
  • the above ranging methods authorized by UE2 may include unilateral two-way ranging, bilateral two-way ranging, etc.
  • the above ranging method authorized by UE2 can be determined according to the subscription information of UE2.
  • step S312 is optional.
  • step S312 may also be replaced by a ranging method in which UE2 receives UE2 authorization from the PCF.
  • Step S314 UE1 receives a ranging request message, which is used to request to measure the distance between UE1 and UE2.
  • the ranging request message may include at least one of ranging accuracy #1, response time #1, and ranging service quality category #1.
  • the ranging accuracy #1 represents the ranging between UE1 and UE2.
  • the accuracy requirement, the response time #1 represents the time requirement for ranging between UE1 and UE2.
  • the ranging accuracy #1 can be regarded as a threshold value #1, which represents the minimum value required for the accuracy of ranging between UE1 and UE2;
  • the response time #1 can be regarded as a threshold value #2, which Threshold #2 represents the maximum value of the delay time of ranging between UE1 and UE2.
  • the above ranging request message may also be sent to UE1 by the application layer of UE1, or may be sent by other UE3 to UE1, or may be sent by the LMF to UE1, which is not limited in this application.
  • step S314 may be replaced by: UEl receiving a ranging request from the application layer of UEl, where the ranging request is used to request to measure the distance between UEl and UE2.
  • UEl receives the ranging request from the application layer of UEl. It can be understood that the network layer of UEl receives the ranging request from the application layer of UEl, and subsequent steps S316-S322 are executed by the network layer of UEl.
  • the above ranging request message may also be a relative positioning request message, which is used to request the relative position between terminal devices, that is, including relative distance and relative angle.
  • Step S316 UE1 obtains the ranging capability of UE2 and/or the ranging method authorized by UE2.
  • the ranging capability of UE2 indicates the ranging mode supported by UE2.
  • the ranging capability of UE2 may include unilateral and bidirectional ranging, bilateral bidirectional ranging, etc.
  • the above ranging method authorized by UE2 and the above ranging method supported by UE2 may be partially the same, may be completely the same, or may be completely different, and this application does not limit this.
  • the above ranging method authorized by UEl and the ranging method supported by UEl may be partially the same, may be completely the same, or may be completely different, and this application does not limit this.
  • step S316 is not limited.
  • step S316 is optional.
  • Step S318 UE1 determines ranging mode #1.
  • UE1 can determine ranging mode #1 according to multiple methods:
  • Method 1 UE1 determines ranging method #1 based on at least one of ranging accuracy #1, response time #1, and ranging service quality category #1.
  • ranging accuracy can be expressed as a certain distance range (such as less than 1 meter), which is used to constrain the difference between the distance value obtained through the ranging operation and the actual distance.
  • Response time can represent a low-latency response or a high-latency response, or a specific delay time (for example, performing ranging or obtaining ranging results within a specific delayed time), or it can be a specific response time point (such as , ranging results are obtained at or before the response time point), and the response time is used to constrain the ranging time consumption.
  • the ranging quality of service class can be the best effort class (best effort class), guaranteed class (assured class), high latency class (high latency class), and low latency class (low latency class).
  • the ranging accuracy #1 is 1 meter (1m) and the specific delay time of the response time #1 is 5s, it can be determined that the ranging method #1 is one-sided and two-way ranging; if the ranging accuracy #1 is 0.5 meters (0.5m), and the response time #1 is 6s, then it can be determined that the ranging method #1 is bilateral two-way ranging.
  • the ranging method #1 can be determined to be one-sided and two-way ranging; if the ranging accuracy #1 is 0.5 meters (0.5m), then the ranging method can be determined #1 is bilateral two-way ranging.
  • ranging method #1 is unilateral and bidirectional ranging; if the specific delay time of response time #1 is 6s, then it can be determined that ranging method #1 is Bilateral and two-way ranging.
  • the ranging service quality category #1 is the low latency class, it can be determined that the ranging method #1 is unilateral and two-way ranging; if the ranging service quality category #1 is the guaranteed category, it can be determined that the ranging method #1 is a guaranteed category.
  • Distance mode #1 is bilateral two-way ranging.
  • Method 2 UE1 determines ranging method #1 based on the ranging capability of UE1 and the ranging capability of UE2.
  • the ranging capability of UE1 represents the ranging mode supported by UE1
  • the ranging capability of UE2 represents the ranging mode supported by UE2.
  • the ranging method #1 can be determined to be unilateral and bidirectional. Ranging.
  • Method 3 UE1 determines ranging method #1 based on the ranging method authorized by UE1 and the ranging method authorized by UE2.
  • ranging method #1 is unilateral two-way ranging.
  • UE1 may determine ranging mode #1 according to at least one of the above modes 1, 2, and 3.
  • the above ranging accuracy #1, response time #1, and ranging service quality category #1 may include multiple different levels of ranging accuracy #1, response time #1, and ranging service quality category #1.
  • the ranging method will be determined based on higher accuracy, faster response time or higher service quality category.
  • response time #1 or ranging service quality category #1 to at least one of the ranging accuracy, response time, or ranging quality of service categories.
  • Step S320 UE1 sends the determined ranging method #1 to UE2.
  • step S320 is optional.
  • UE1 sends a PC5 signaling message or PC5 radio resource control message to UE2, and the PC5 signaling message or PC5 radio resource control message includes ranging mode #1.
  • Step S322 UE1 and UE2 perform ranging based on ranging method #1.
  • UE1 and UE2 perform ranging in different ranging modes, and the ranging operations performed are different.
  • UE1 sends the initial ranging signal 1, and UE2 sends a feedback ranging signal for feedback to UE1 after receiving the initial ranging signal 1. 2.
  • UE1 calculates the time difference 1 between sending the initial ranging signal 1 and receiving the feedback ranging signal 2.
  • UE2 calculates the time difference 2 between receiving the initial ranging signal 1 and sending the feedback ranging signal 2, and feeds back the time difference 2 information to UE1.
  • UE1 sends an initial ranging signal 1, and UE2 sends a feedback ranging signal 2 for feedback to UE1 after receiving the initial ranging signal 1. .
  • UE1 After receiving the feedback ranging signal 2, UE1 then sends a response ranging signal 3 to UE2.
  • UE1 calculates the time difference 1 between sending the initial ranging signal 1 and receiving the feedback ranging signal 2, and the time difference 3 between sending the response ranging signal 3 and receiving the feedback ranging signal 2.
  • UE2 calculates the time difference 2 between receiving the initial ranging signal 1 and sending the feedback ranging signal 2, and the time difference 4 between sending the feedback ranging signal 2 and receiving the response ranging signal 3, and combines the time difference 2 and the time difference 4 The information is fed back to UE1.
  • the above-mentioned ranging accuracy #1 may include multiple different levels of ranging accuracy and/or response time. If the measurement results of the ranging method determined by UE1 based on the high accuracy level or fast response time cannot meet the measurement results adopted, If the ranging accuracy or response time is insufficient, UE1 can continue to determine a ranging method with a lower accuracy level or a slower response time to perform ranging until the measurement results of the determined ranging method can meet the ranging accuracy or response time used.
  • UE1 can efficiently determine a ranging method that meets the requirements based on the actual needs of the positioning service or based on the authorization information of the ranging parties or the capability information of the ranging parties.
  • this application provides another method of determining the ranging method, as shown in Figure 4. This embodiment can be applied to a scenario where the UE assists UE1 and UE2 in ranging.
  • Step S411 UE1 receives message #1 from the AMF.
  • the message #1 includes the ranging method authorized by UE1.
  • the PCF can send message #1A to the AMF, which message #1A includes the ranging method authorized by UE1, as shown in step S410 in Figure 4; after receiving the message #1A, the AMF can send message #1 to UE1, which message #1 includes the ranging method authorized by UE1.
  • the above-mentioned ranging methods authorized by UE1 may include unilateral two-way ranging, bilateral two-way ranging, etc.
  • the above ranging method authorized by UEl may be determined based on the subscription information of UEl.
  • step S410 is optional.
  • step S410 may also be replaced by a ranging method in which UEl receives UEl authorization from the PCF.
  • Step S413 UE2 receives message #2 from the AMF.
  • the message #2 includes the ranging method authorized by UE2.
  • PCF can send message #2A to AMF, which message #2A includes the ranging method authorized by UE2, as shown in step S412 in Figure 4; after receiving message #2A, AMF can send message #2 to UE2, which message #2 includes the ranging method authorized by UE2.
  • the above ranging methods authorized by UE2 may include unilateral two-way ranging, bilateral two-way ranging, etc.
  • the above ranging method authorized by UE2 can be determined according to the subscription information of UE2.
  • step S412 is optional.
  • step S412 may also be replaced by a ranging method in which UE2 receives UE2 authorization from the PCF.
  • Step S415 The auxiliary UE receives message #3 from the AMF.
  • the message #3 includes the ranging method authorized by the auxiliary UE.
  • the PCF can send message #3A to the AMF, which message #3A includes the ranging method authorized by the auxiliary UE, as shown in step S414 in Figure 4; after receiving the message #3A, the AMF can send message #3 to the auxiliary UE, This message #3 includes the ranging method authorized by the auxiliary UE.
  • the above ranging method for auxiliary UE authorization may include unilateral two-way ranging, bilateral two-way ranging, etc.
  • the ranging method authorized by the auxiliary UE may be determined according to the subscription information of the auxiliary UE.
  • step S414 is optional.
  • step S414 may also be replaced by a ranging method in which the auxiliary UE receives the auxiliary UE authorization from the PCF.
  • step S410, step S412, and step S414 are optional.
  • Step S416 UE1 receives a ranging request message, which is used to request to measure the distance between UE1 and UE2.
  • the ranging request message may include at least one of ranging accuracy #1, response time #1, and ranging service quality category #1.
  • the ranging accuracy #1 represents the distance between UE1 and UE2.
  • the response time #1 represents the time requirement for ranging between UE1 and UE2.
  • the above-mentioned ranging service quality category #1 may be a positioning service quality level, which includes a strict level, a non-strict level, a best-effort level, a guaranteed level, etc.
  • the ranging accuracy #1 can be regarded as a threshold value #1, which represents the minimum value required for the accuracy of ranging between UE1 and UE2;
  • the response time #1 can be regarded as a threshold value #2, which Threshold #2 represents the maximum value of the delay time of ranging between UE1 and UE2.
  • the above ranging request message may also be sent to UE1 by the application layer of UE1, or may be sent by other UE3 to UE1, or may be sent by the LMF to UE1, which is not limited in this application.
  • step S416 may be replaced by: UEl receiving a ranging request from the application layer of UEl, where the ranging request is used to request to measure the distance between UEl and UE2.
  • UEl receives the ranging request from the application layer of UEl. It can be understood that the network layer of UEl receives the ranging request from the application layer of UEl, and subsequent steps S418-S430 are performed by the network layer of UEl.
  • the above ranging request message may also be a relative positioning request message, which is used to request the relative position between terminal devices, that is, including relative distance and relative angle.
  • UE1 executes the process of discovering an auxiliary UE, which is used to assist in ranging between UE1 and UE2.
  • Step S418 UE1 obtains the ranging capability of the auxiliary UE and/or the ranging mode authorized by the auxiliary UE.
  • the ranging capability of the auxiliary UE represents the ranging mode supported by the auxiliary UE.
  • the ranging capabilities of the auxiliary UE may include unilateral and bidirectional ranging, bilateral bidirectional ranging, and so on.
  • the ranging method authorized by the above-mentioned auxiliary UE and the ranging method supported by the above-mentioned auxiliary UE may be partially the same, may be completely the same, or may be completely different, and this application does not limit this.
  • the above ranging method authorized by UE1 and the ranging method supported by UE1 may be partially the same, may be completely the same, or may be completely different, and this application does not limit this.
  • step S418 is optional.
  • the ranging capability of UE2 indicates the ranging mode supported by UE2.
  • the ranging capability of UE2 may include a single Side-by-side two-way ranging, bilateral two-way ranging, etc.
  • the above ranging method authorized by UE2 and the above ranging method supported by UE2 may be partially the same, may be completely the same, or may be completely different, and this application does not limit this.
  • step S420 and steps S410, S412, S414, S416, and S418 is not limited.
  • step S420 is optional.
  • Step S422 UE1 determines ranging mode #2 and ranging mode #3 based on at least one of ranging accuracy #1, response time #1, and ranging service quality category #1.
  • the ranging method #2 represents the ranging method between UE1 and the auxiliary UE
  • the ranging method #3 represents the ranging method between UE2 and the auxiliary UE.
  • ranging accuracy can be expressed as a certain distance range (such as less than 1 meter), which is used to constrain the difference between the distance value obtained through the ranging operation and the actual distance.
  • Response time can represent a low-latency response or a high-latency response, or a specific delay time (for example, performing ranging or obtaining ranging results within a specific delayed time), or it can be a specific response time point (such as , ranging results are obtained at or before the response time point), and the response time is used to constrain the ranging time consumption.
  • the ranging quality of service class can be the best effort class (best effort class), guaranteed class (assured class), high latency class (high latency class), and low latency class (low latency class).
  • UE1 can determine ranging mode #2 and ranging mode #3 according to multiple methods:
  • Method 1 UE1 determines ranging method #2 and ranging method #3 based on at least one of ranging accuracy #1, response time #1, and ranging service quality category #1.
  • UE1 may determine ranging based on the correspondence or mapping table between at least one of ranging accuracy #1, response time #1, ranging service quality category #1 and the required ranging method.
  • Method #2 and ranging method #3 the corresponding relationship may be preconfigured by UE1, as shown in Table 1.
  • the corresponding relationship or mapping table can be preconfigured locally or obtained from a core network element (for example, PCF).
  • a core network element for example, PCF
  • Method 2 UE1 determines ranging method #2 based on the ranging capabilities of UE1 and the ranging capabilities of the auxiliary UE, and UE1 determines ranging method #3 based on the ranging capabilities of UE2 and the ranging capabilities of the auxiliary UE.
  • the ranging capability of UE1 represents the ranging mode supported by UE1
  • the ranging capability of UE2 represents the ranging mode supported by UE2
  • the ranging capability of the auxiliary UE represents the ranging mode supported by the auxiliary UE.
  • ranging method #2 can be determined to be unilateral. Two-way ranging.
  • ranging methods supported by UE2 include unilateral and bidirectional ranging and bilateral bidirectional ranging
  • the ranging methods supported by the auxiliary UE include unilateral and bidirectional ranging
  • Method 3 UE1 determines ranging method #2 based on the ranging method authorized by UE1 and the ranging method authorized by the auxiliary UE. UE1 determines ranging mode #3 based on the ranging mode authorized by UE2 and the ranging mode authorized by the auxiliary UE.
  • ranging method #2 is unilateral two-way ranging. distance.
  • ranging method #3 is unilateral two-way ranging.
  • UE1 may determine ranging method #2 and ranging method #3 according to at least one of the above methods 1, 2, and 3.
  • Step S424 UE1 sends the determined ranging method #2 to the auxiliary UE.
  • Step S426 UE1 and the auxiliary UE perform ranging based on ranging method #2.
  • UE1 sends the initial ranging signal 1, and the auxiliary UE sends feedback ranging for feedback to UE1 after receiving the initial ranging signal 1.
  • UE1 calculates the time difference 1 between sending the initial ranging signal 1 and receiving the feedback ranging signal 2.
  • the auxiliary UE calculates the time difference 2 between receiving the initial ranging signal 1 and sending the feedback ranging signal 2, and feeds back the time difference 2 information to UE1.
  • UE1 sends the initial ranging signal 1, and the auxiliary UE sends a feedback ranging signal for feedback to UE1 after receiving the initial ranging signal 1. 2.
  • UE1 After receiving the feedback ranging signal 2, UE1 then sends a response ranging signal 3 to the auxiliary UE.
  • UE1 calculates the time difference 1 between sending the initial ranging signal 1 and receiving the feedback ranging signal 2, and the time difference 3 between sending the response ranging signal 3 and receiving the feedback ranging signal 2.
  • the auxiliary UE calculates the time difference 2 between receiving the initial ranging signal 1 and sending the feedback ranging signal 2, and the time difference 4 between sending the feedback ranging signal 2 and receiving the response ranging signal 3, and combines the time difference 2 and the time difference 4 The information is fed back to UE1.
  • steps S424 and S426 are optional.
  • steps S424 and S426 may not be performed.
  • step S422 UE1 does not need to determine ranging mode #2 or parameter #2 (that is, step S422 can be replaced by determining ranging mode #3 or parameter #3).
  • Step S428 UE1 sends the determined ranging method #3 to UE2.
  • UE1 may also send the identification information of the auxiliary UE to UE2.
  • step S430 UE1 sends the determined ranging method #3 to the auxiliary UE.
  • UE1 may also send the identification information of UE2 to the auxiliary UE.
  • Step S432 UE2 and the auxiliary UE perform ranging based on ranging method #3.
  • UE2 sends the initial ranging signal 1, and the auxiliary UE sends feedback ranging for feedback to UE2 after receiving the initial ranging signal 1.
  • UE2 calculates the time difference 1 between sending the initial ranging signal 1 and receiving the feedback ranging signal 2.
  • the auxiliary UE calculates the time difference 2 between receiving the initial ranging signal 1 and sending the feedback ranging signal 2, and feeds back the time difference 2 information to the UE2.
  • UE2 sends the initial ranging signal 1, and the auxiliary UE sends a feedback ranging signal for feedback to UE2 after receiving the initial ranging signal 1. 2.
  • UE2 sends a response ranging signal 3 to the auxiliary UE.
  • UE2 calculates the time difference 1 between sending the initial ranging signal 1 and receiving the feedback ranging signal 2, as well as sending the response ranging signal 3 and receiving the feedback ranging signal 2 The time difference between 3.
  • the auxiliary UE calculates the time difference 2 between receiving the initial ranging signal 1 and sending the feedback ranging signal 2, and the time difference 4 between sending the feedback ranging signal 2 and receiving the response ranging signal 3, and combines the time difference 2 and the time difference 4 The information is fed back to UE2.
  • UE1 can determine the relative position of UE1 and the auxiliary UE based on the relative position of UE1 and the auxiliary UE (i.e., the ranging result obtained in step S426 above) and the relative position of UE2 and the auxiliary UE (i.e., the ranging result obtained in step S432 above). ) calculates the relative position between UE1 and UE2 and feeds it back to the sender of the ranging request message (such as LMF, UE3 or the application layer of UE1).
  • the sender of the ranging request message such as LMF, UE3 or the application layer of UE1.
  • UE1 can also calculate the actual ranging accuracy of the ranging between UE1 and UE2 based on the actual ranging accuracy of the above ranging method #2 and the actual ranging accuracy of the above ranging method #3.
  • the actual ranging accuracy Can be used to adjust distance measurement methods.
  • the actual ranging accuracy of ranging method #2 can be calculated based on the ranging results obtained in step S426, and the actual ranging accuracy of ranging method #3 can be calculated based on the ranging results obtained in step S432.
  • UE1 can also feed back the actual ranging accuracy of the ranging between UE1 and UE2 to the application layer of LMF, UE3 or UE1.
  • UE1 can obtain the actual ranging accuracy of the above ranging method #3 from UE2 or the auxiliary UE, and UE1 can also obtain the actual ranging accuracy of the above ranging method #2 from the auxiliary UE.
  • UE1 can perform step S422 again, and UE1 determines ranging mode #2 and ranging mode #3. It should be understood that UE1 selects a new ranging method and tries its best to satisfy ranging accuracy #1.
  • the above step S422 can be replaced by: UE1 determines parameter #2 and ranging mode #3 based on at least one of ranging accuracy #1, response time #1, and ranging service quality category #1; or, UE1 Determine ranging method #2 and parameter #3 based on at least one of ranging accuracy #1, response time #1, and ranging service quality category #1; or, UE1 determines ranging method #2 and parameter #3 based on ranging accuracy #1, response time #1, Ranging at least one of quality of service category #1 determines parameter #2 and parameter #3.
  • the parameter #2 can be used to determine the ranging mode #2, and the parameter #3 can be used to determine the ranging mode #3.
  • the above parameter #2 may include at least one of ranging accuracy #2, response time #2, and ranging service quality category #2; the above parameter #3 may include ranging accuracy #3, response time #3, Ranging at least one of Quality of Service Category #3.
  • ranging accuracy #2 and ranging accuracy #3 can be higher than ranging accuracy #1
  • the delay time of response time #2 and response time #3 can be lower than response time #1
  • ranging service quality category #2 the service quality level of ranging service quality category #3 may be higher than the service quality level of ranging service quality category #1.
  • UE1 does not need to determine ranging mode #2 or parameter #2 in step S422.
  • step S424 may be replaced by: UE1 determines the parameters #2 is sent to the auxiliary UE, and the auxiliary UE determines ranging method #2 based on parameter #2.
  • step S428 may be replaced by: UE1 determines the parameters #3 is sent to UE2, and UE2 determines ranging method #3 based on parameter #3.
  • step S424 may be replaced with parameter #2 determined by UE1 is sent to the auxiliary UE, and the auxiliary UE determines the ranging mode #2 based on the parameter #2.
  • Step S428 can be replaced by: UE1 sends the determined parameter #3 to UE2, and the UE2 determines the ranging mode #3 based on the parameter #3.
  • UE1 can be based on the actual needs of the ranging service or based on the ranging method authorized by the auxiliary UE and UE2 or the ranging capability information of the auxiliary UE and UE2. , efficiently determine the distance measurement method that meets the requirements.
  • this application can also provide another method of determining the ranging method when there are obstacles between UE1 and UE2 that cannot support direct ranging, as shown in Figure 5 .
  • This embodiment can also be applied to a scenario where the UE assists UE1 and UE2 in ranging.
  • steps S510 to S520 reference may be made to the above-mentioned steps S410 to S420, which will not be described again here.
  • steps S510 to S514 and steps S518 to S520 are optional.
  • Step S522 UE1 determines ranging accuracy #2 and ranging accuracy #3 based on ranging accuracy #1.
  • the ranging accuracy #2 and the ranging accuracy #3 are higher than the ranging accuracy #1.
  • the ranging accuracy #2 can be regarded as the threshold value #3, and the threshold value #3 represents the minimum value required for the accuracy of ranging between UE1 and the auxiliary UE; the ranging accuracy #3 can be regarded as the threshold value #4 , the threshold #4 represents the minimum value required for the accuracy of ranging between UE2 and the auxiliary UE.
  • UE1 may determine response time #3 based on response time #1, and the delay time of response time #3 is lower than the delay time of response time #1.
  • the response time #3 can be regarded as the threshold #5, and the threshold #5 can represent the maximum value of the delay time of ranging between UE2 and the auxiliary UE.
  • UE1 may determine response time #2 and response time #3 based on response time #1, and the delay time of response time #2 and the delay time of response time #3 are smaller than the delay time of response time #1.
  • the response time #2 can be regarded as a threshold #6, and the threshold #6 can represent the maximum value of the delay time of ranging between UE1 and the auxiliary UE.
  • UE1 may determine the ranging service quality category #2 and the ranging service quality category #3 according to the ranging service quality category #1, and the service quality levels of the ranging service quality category #2 and the ranging service quality category #3. A quality of service level higher than ranging quality of service category #1.
  • Step S524 UE1 determines ranging mode #2 based on at least one of ranging accuracy #2, response time #1, and ranging service quality category #2.
  • UE1 may send at least one of the above ranging accuracy #2, response time #1, and ranging service quality category #2 to the auxiliary UE, and the auxiliary UE determines ranging mode #2.
  • UE1 may send at least one of the above ranging accuracy #2, response time #2, and ranging service quality category #2 to the auxiliary UE, and the auxiliary UE determines the ranging mode #2.
  • UE1 or the auxiliary UE determines based on the corresponding relationship or mapping table between at least one of ranging accuracy #2, response time #1, ranging service quality category #2 and the required ranging method.
  • Ranging mode #2 the corresponding relationship can be pre-configured by UE1 or the auxiliary UE, as shown in Table 2.
  • the corresponding relationship or mapping table can be preconfigured locally or obtained from a core network element (for example, PCF).
  • a core network element for example, PCF
  • Step S526 UE1 and the auxiliary UE perform ranging based on ranging method #2.
  • UE1 sends the initial ranging signal 1, and the auxiliary UE sends a feedback ranging signal for feedback to UE1 after receiving the initial ranging signal 1. 2.
  • UE1 calculates the time difference 1 between sending the initial ranging signal 1 and receiving the feedback ranging signal 2.
  • the auxiliary UE calculates the time difference 2 between receiving the initial ranging signal 1 and sending the feedback ranging signal 2, and feeds back the time difference 2 information to UE1.
  • UE1 sends an initial ranging signal 1, and the auxiliary UE sends a feedback ranging signal 2 for feedback to UE1 after receiving the initial ranging signal 1. .
  • UE1 After receiving the feedback ranging signal 2, UE1 then sends a response ranging signal 3 to the auxiliary UE.
  • UE1 calculates the time difference 1 between sending the initial ranging signal 1 and receiving the feedback ranging signal 2, and the time difference 3 between sending the response ranging signal 3 and receiving the feedback ranging signal 2.
  • the auxiliary UE calculates the time difference 2 between receiving the initial ranging signal 1 and sending the feedback ranging signal 2, and the time difference 4 between sending the feedback ranging signal 2 and receiving the response ranging signal 3, and combines the time difference 2 and the time difference 4 The information is fed back to UE1.
  • steps S524 and S526 are optional.
  • steps S524 and S526 may not be performed.
  • step S522 UE1 does not need to determine ranging accuracy #2 or ranging service quality category #2 (that is, step S522 can be replaced by determining ranging accuracy #3 or response time #3 or ranging service quality category #2). 3).
  • Step S528 UE1 sends at least one of the determined ranging accuracy #3, response time #3, and ranging service quality category #3 to UE2.
  • UE1 may also send the identification information of the auxiliary UE to UE2.
  • Step S530 UE2 determines ranging mode #3 based on at least one of ranging accuracy #3, response time #3, and ranging service quality category #3.
  • UE2 may determine ranging based on the correspondence or mapping table between at least one of ranging accuracy #3, response time #3, ranging service quality category #3, and the required ranging method. Way #3.
  • the corresponding relationship or mapping table can be preconfigured locally or obtained from a core network element (for example, PCF).
  • step S532 UE1 sends at least one of the determined ranging accuracy #3, response time #3, and ranging service quality category #3 to the auxiliary UE.
  • UE1 may also send the identification information of UE2 to the auxiliary UE.
  • the auxiliary UE determines ranging mode #3 based on at least one of ranging accuracy #3, response time #3, and ranging service quality category #3.
  • the auxiliary UE or UE2 may determine the distance based on the corresponding relationship or mapping table between at least one of ranging accuracy #3, response time #3, ranging service quality category #3 and the required ranging method. Determine ranging method #3.
  • the corresponding relationship may be preconfigured by UE2 or the auxiliary UE, as shown in Table 3.
  • the corresponding relationship or mapping table can be preconfigured locally or obtained from a core network element (for example, PCF).
  • a core network element for example, PCF
  • UE1 may also determine ranging method #3 based on at least one of ranging accuracy #3, response time #3, and ranging service quality category #3, and send ranging method #3 to UE2 and/or or auxiliary UE.
  • Step S536 UE2 and the auxiliary UE perform ranging based on ranging method #3.
  • UE2 sends the initial ranging signal 1, and the auxiliary UE sends a feedback ranging signal for feedback to UE2 after receiving the initial ranging signal 1. 2.
  • UE2 calculates the time difference 1 between sending the initial ranging signal 1 and receiving the feedback ranging signal 2.
  • the auxiliary UE calculates the time difference 2 between receiving the initial ranging signal 1 and sending the feedback ranging signal 2, and feeds back the time difference 2 information to the UE2.
  • UE2 sends an initial ranging signal 1, and the auxiliary UE sends a feedback ranging signal 2 for feedback to UE2 after receiving the initial ranging signal 1. .
  • UE2 sends a response ranging signal 3 to the auxiliary UE.
  • UE2 calculates the time difference 1 between sending the initial ranging signal 1 and receiving the feedback ranging signal 2, and the time difference 3 between sending the response ranging signal 3 and receiving the feedback ranging signal 2.
  • the auxiliary UE calculates the time difference 2 between receiving the initial ranging signal 1 and sending the feedback ranging signal 2, and the time difference 4 between sending the feedback ranging signal 2 and receiving the response ranging signal 3, and combines the time difference 2 and the time difference 4 The information is fed back to UE2.
  • UE1 can determine the relative position of UE1 and the auxiliary UE based on the relative position of UE1 and the auxiliary UE (i.e., the ranging result obtained in step S526 above) and the relative position of UE2 and the auxiliary UE (i.e., the ranging result obtained in step S536 above). ) calculates the relative position between UE1 and UE2 and feeds it back to the sender of the ranging request message (such as LMF, UE3 or UE1 application layer).
  • the sender of the ranging request message such as LMF, UE3 or UE1 application layer
  • UE1 can also calculate the actual ranging accuracy of the ranging between UE1 and UE2 based on the actual ranging accuracy of the above ranging method #2 and the actual ranging accuracy of the above ranging method #3.
  • the actual ranging accuracy Can be used to adjust distance measurement methods.
  • the actual ranging accuracy of ranging method #2 can be calculated based on the ranging results obtained in step S526, and the actual ranging accuracy of ranging method #3 can be calculated based on the ranging results obtained in step S536.
  • UE1 can obtain the actual ranging accuracy of the above ranging method #3 from UE2 or the auxiliary UE, and UE1 can also obtain the actual ranging accuracy of the above ranging method #2 from the auxiliary UE.
  • UE1 can then perform step S522, and UE1 determines the ranging accuracy #2 and the ranging accuracy #3. It should be understood that UE1 reconfigures ranging accuracy #2 and ranging accuracy #3 to try its best to satisfy ranging accuracy #1.
  • UE1 can reasonably set the ranging accuracy and response time of the two terminal devices and the auxiliary terminal device respectively, so that the final ranging method is as possible as possible. Meet the needs of positioning services.
  • the above ranging scenario between two terminal devices can also be applied to the positioning scenario of a target terminal device.
  • the location service client (LCS client) or the target terminal device determines that the LCS service quality is not satisfactory based on the measurement data obtained from the target terminal device or the number of cells measured during positioning is insufficient, it is determined to use hybrid positioning. method to locate the target terminal device.
  • the above hybrid positioning method includes locating the auxiliary terminal device discovered by the target terminal device and measuring the distance between the target terminal device and the auxiliary terminal device, and then calculating the position of the target terminal device.
  • auxiliary terminal equipment may also be called a located terminal equipment (located UE) or a reference terminal equipment (reference UE).
  • located UE located terminal equipment
  • reference UE reference terminal equipment
  • This application provides a method for positioning the above-mentioned target terminal equipment (hereinafter referred to as target UE).
  • the method includes a ranging method between the target UE and the above-mentioned auxiliary terminal equipment (hereinafter referred to as auxiliary UE), as shown in Figure 6 .
  • This embodiment can be applied in network assisted sidelink positioning scenarios.
  • Step S610 LMF#1 obtains at least one of positioning accuracy #4, response time #4, and positioning service quality category #4 (LCS quality of service class, LCS QoS Class).
  • This LMF#1 is the LMF serving the target UE.
  • the above positioning service quality category may be a positioning service quality level, which includes a strict level, a non-strict level, a best effort class, an assured class, etc.
  • the above-mentioned positioning accuracy #4 can be regarded as a threshold value #7, which represents the minimum value required for the positioning accuracy of the target UE; the response time #4 can be regarded as a threshold value #8, which represents the minimum value required by the target UE.
  • LMF#1 receives a Determine Location Request message from AMF#1, which includes positioning accuracy #4 and/or response time #4.
  • AMF#1 is the access and mobility of the target UE. Manage network elements.
  • Step S612 LMF#1 determines the positioning of the assisting UE to assist the target UE.
  • LMF#1 determines that the LCS service quality is not satisfactory or the number of cells measured during positioning is insufficient based on the measurement data obtained from the target UE, it determines to assist the UE in positioning the target UE, or adopts a hybrid positioning method. Position the target UE.
  • LMF#1 requests the target UE to obtain/discover the auxiliary UE, or LMF#1 notifies the target UE to adopt a hybrid positioning method.
  • the target UE executes the auxiliary UE discovery process and determines to select the auxiliary UE. In the discovery process, the target UE learns the identification information of the auxiliary UE.
  • the target UE sends the identification information of the auxiliary UE to LMF#1.
  • the identification information of the above-mentioned auxiliary UE may be a user concealed identifier (subscription conceaaled identifier, SUCI) or a general public user identity (generic public subscription identity, GPSI) or an application layer identifier.
  • step S612 is optional.
  • Step S614 LMF#1 determines ranging method #4 and positioning method #1 based on at least one of positioning accuracy #4, response time #4, and positioning service quality category #4.
  • the ranging method #4 is used for ranging between the target UE and the auxiliary UE, and the positioning method #1 is used for positioning the auxiliary UE.
  • the above-mentioned multiple positioning methods can include multi-cell round trip time (Multi-Round Trip Time, Multi-RTT), downlink time difference of arrival (Downlink time difference of arrival, DL-TDOA), and uplink time difference of arrival (Uplink time difference of arrival). , UL-TDOA), etc.
  • Multi-Round Trip Time Multi-RTT
  • Downlink time difference of arrival Downlink time difference of arrival
  • Uplink time difference of arrival Uplink time difference of arrival
  • UL-TDOA uplink time difference of arrival
  • LMF#1 can determine ranging method #4 and positioning method #1 according to multiple methods:
  • LMF#1 can determine ranging method #4 and positioning method #1 based on at least one of positioning accuracy #4, response time #4, and positioning service quality category #4.
  • LMF #1 can be based on the corresponding relationship or mapping table between at least one of positioning accuracy #4, response time #4, positioning service quality category #4 and the ranging method and positioning method to be used. Determine ranging method #4 and positioning method #1.
  • the corresponding relationship can be preconfigured by LMF#1, as shown in Table 4.
  • the corresponding relationship or mapping table can be preconfigured locally or obtained from a core network element (for example, PCF).
  • a core network element for example, PCF
  • the ranging accuracy #1 is 1 meter (1m) and the delay time of the response time #1 is 6s, it can be determined that the ranging method #4 is one-sided and two-way ranging; if the ranging accuracy #1 is 0.5 meters (0.5m), and the delay time of response time #1 is 7s, then it can be determined that ranging method #4 is bilateral two-way ranging.
  • the ranging method #4 can be determined to be unilateral and bidirectional ranging; if the ranging accuracy #1 is 0.5 meters (0.5m), then the ranging method can be determined #4 is bilateral two-way ranging.
  • ranging mode #4 is unilateral and bidirectional ranging; if the delay time of response time #4 is 7s, then it can be determined that ranging mode #4 is bilateral and bidirectional. Ranging.
  • the ranging method #4 can be determined to be unilateral and bidirectional ranging; if the positioning service quality level #1 is a strict level, then the ranging method #4 can be determined to be bilateral. Two-way ranging.
  • Method 2 LMF#1 determines ranging method #4 based on the ranging capability of the target UE and the ranging capability of the auxiliary UE.
  • the ranging capability of the target UE represents the ranging mode supported by the target UE
  • the ranging capability of the auxiliary UE represents the ranging mode supported by the auxiliary UE
  • ranging method #4 can be determined to be single-sided. Edge bidirectional ranging.
  • Method 3 LMF#1 determines ranging method #4 based on the ranging method authorized by the target UE and the ranging method authorized by the auxiliary UE.
  • the ranging method #4 can be determined to be unilateral two-way ranging. Ranging.
  • LMF#1 may determine ranging mode #4 according to at least one of the above modes 1, 2, and 3.
  • LMF#1 may determine positioning method #1 based on ranging accuracy #4 and/or response time #4 and/or LCS QoS Class.
  • Step S616 LMF#1 sends the determined ranging method #4 to the target UE.
  • LMF#1 may also send the identification information of the auxiliary UE to the target UE.
  • the above ranging method #4 can be carried in the downlink positioning message (downlink positioning message) sent by LMF #1 to the target UE or can also be carried in the LCS period-triggered invoke request message (LCS period-triggered invoke request message). )middle.
  • step S618 LMF#1 sends the determined ranging method #4 to the auxiliary UE.
  • LMF#1 may also send the identification information of the target UE to the auxiliary UE.
  • Step S620 The target UE and the auxiliary UE perform ranging based on ranging method #4.
  • the target UE sends the initial ranging signal 1, and the auxiliary UE sends a feedback signal to the target UE after receiving the initial ranging signal 1.
  • the target UE calculates and sends the initial ranging signal 1 and receives the feedback ranging signal 2
  • the time difference between them is 1.
  • the auxiliary UE calculates the time difference 2 between receiving the initial ranging signal 1 and sending the feedback ranging signal 2, and feeds back the time difference 2 information to the target UE.
  • the target UE sends the initial ranging signal 1, and the auxiliary UE sends a feedback signal to the target UE after receiving the initial ranging signal 1.
  • Feedback ranging signal 2 After receiving the feedback ranging signal 2, the target UE sends a response ranging signal 3 to the auxiliary UE.
  • the target UE calculates the time difference 1 between sending the initial ranging signal 1 and receiving the feedback ranging signal 2, and the time difference 3 between sending the response ranging signal 3 and receiving the feedback ranging signal 2.
  • the auxiliary UE calculates the time difference 2 between receiving the initial ranging signal 1 and sending the feedback ranging signal 2, and the time difference 4 between sending the feedback ranging signal 2 and receiving the response ranging signal 3, and combines the time difference 2 and the time difference 4 The information is fed back to the target UE.
  • Step S622 The target UE feeds back the above ranging result or ranging measurement data to LMF#1.
  • Step S624, LMF#1 sends the determined positioning method #1 to LMF#2.
  • This LMF#2 is the LMF serving the secondary UE.
  • LMF#1 may first send positioning method #1 to the AMF serving the auxiliary UE, and then the AMF serving the auxiliary UE sends positioning method #1 to LMF#2.
  • LMF#1 may first send positioning method #1 to GMLC, GMLC then sends positioning method #1 to the AMF serving the auxiliary UE, and then the AMF serving the auxiliary UE sends positioning method #1 to LMF#2.
  • LMF#2 may position the auxiliary UE based on the positioning method #1 and calculate the location data of the auxiliary UE.
  • the auxiliary UE may also be deployed by the operator with a fixed location. Therefore, the location of the auxiliary UE is known to LMF#1, and there is no need to locate the auxiliary UE.
  • Step S626 LMF#2 feeds back the positioning result of the auxiliary UE to LMF#1.
  • steps S624 and S626 are optional.
  • steps S624 and S626 may not be performed.
  • step S614 LMF#1 does not need to determine positioning method #1 or parameter #5 (that is, step S614 can be replaced by determining ranging method #4 or parameter #4).
  • Step S628, LMF#1 calculates the location of the target UE based on the ranging result fed back in step S622 and the positioning result fed back in step S626, and feeds back the calculation result to the location service client (LCS client) or AMF#1 .
  • LMF#1 calculates the location of the target UE based on the ranging result fed back in step S622 and the positioning result fed back in step S626, and feeds back the calculation result to the location service client (LCS client) or AMF#1 .
  • LMF #1 can also calculate the actual positioning accuracy of the target UE based on the actual ranging accuracy of the above ranging method #4 and the actual ranging accuracy of the above positioning method #1, and the actual positioning accuracy can be used in the ranging method. and adjustments to positioning methods.
  • LMF#1 can perform step S614 again, where LMF#1 determines ranging mode #4 and positioning method #1. It should be understood that LMF#1 updates ranging method #4 and positioning method #1 to try its best to meet positioning accuracy #4.
  • LMF#1 can perform step S612 again to trigger the target UE to reselect the auxiliary UE, and then perform steps S614-S628.
  • LMF#1 can obtain the actual ranging accuracy of the above-mentioned ranging method #4 from the target UE or the auxiliary UE, and LMF#1 can also obtain the actual positioning accuracy of the above-mentioned positioning method #1 from the auxiliary UE or LMF#2. .
  • LMF #1 in the above step S614 can be based on positioning accuracy #4, response time #4, positioning service Determine parameter #4 and positioning method #1 based on at least one of quality category #4; alternatively, LMF#1 can determine ranging based on at least one of positioning accuracy #4, response time #4, and positioning service quality category #4 Method #4 and parameter #5; alternatively, LMF#1 may determine parameter #4 and parameter #5 based on at least one of positioning accuracy #4, response time #4, and positioning service quality category #4.
  • the parameter #4 can be used to determine the ranging method #4, and the parameter #5 can be used to determine the positioning method #1.
  • the above parameter #4 may include at least one of ranging accuracy #5, response time #5, and ranging service quality category #5; the above parameter #5 may include positioning accuracy #6, response time #5, positioning At least one of Quality of Service Category #6.
  • ranging accuracy #5 and positioning accuracy #6 can be higher than positioning accuracy #4, response time #5 and delay time of response time #5 can be lower than response time #4, ranging service quality category #5 and positioning
  • the service quality level of service quality category #6 may be higher than the service quality level of positioning service quality category #4.
  • LMF#1 knows the location of the auxiliary UE (for example, LMF#1 pre-configures the location of the auxiliary UE, or LMF#1 performs the positioning process of the auxiliary UE before step S516)
  • LMF#1 does not Positioning method #1 or parameter #5 needs to be determined (that is, step S614 can be replaced by determining ranging method #4 or parameter #4).
  • step S616 may be replaced by: LMF#1 changes parameter #4 4 is sent to the target UE, and the target UE determines the ranging method #4 based on the parameter #4.
  • Step S618 can be replaced by: LMF#1 sends the parameter #4 to the auxiliary UE, and the auxiliary UE determines the ranging method # based on the parameter #4. 4.
  • step S624 may be replaced by: LMF#1 changes the parameter #5 is sent to LMF#2, and LMF#2 determines positioning method #1 based on parameter #5.
  • step S616 may be replaced by: LMF#1 determines parameter #4 is sent to the target UE, and the target UE determines the ranging method #4 based on the parameter #4.
  • Step S618 can be replaced by: LMF#1 sends the parameter #4 to the auxiliary UE, and the auxiliary UE determines the ranging method #4 based on the parameter #4.
  • step S624 can be replaced by: LMF#1 sends parameter #5 to LMF#2, and LMF#2 determines positioning method #1 based on parameter #5.
  • the LMF network element can be based on the actual needs of the positioning service or based on the ranging method authorized by the target UE and the auxiliary UE or the target UE and the auxiliary UE.
  • the ranging capability information of the UE can be used to efficiently determine the ranging method that meets the requirements.
  • this application can also provide another method for determining the ranging method when the location measurement result of the target UE cannot meet the requirements of the location service, as shown in Figure 7 .
  • This embodiment can be applied in network assisted sidelink positioning scenarios.
  • steps S710 to S712 reference may be made to steps S610 to S612, which will not be described again here.
  • Step S714 LMF#1 determines ranging accuracy #5 and positioning accuracy #6 based on positioning accuracy #4.
  • the ranging accuracy #5 and the positioning accuracy #6 are higher than the positioning accuracy #4.
  • the ranging accuracy #5 can be regarded as the threshold value #9, which represents the minimum value required for the accuracy of ranging between the target UE and the auxiliary UE;
  • the positioning accuracy #6 can be regarded as the threshold value #10 , the threshold #10 represents the minimum value required for the positioning accuracy of the auxiliary UE.
  • LMF#1 may determine response time #5 based on response time #4, which has a lower delay time than response time #4.
  • the response time #5 can be regarded as the threshold #11, and the threshold #11 can represent the maximum value of the delay time of ranging between the target UE and the auxiliary UE.
  • LMF#1 may determine response time #5 and response time #6 based on response time #4, the delay time of response time #5 and the delay time of response time #6 being smaller than the delay time of response time #4.
  • the response time #6 can be regarded as a threshold #12, and the threshold #12 can represent the maximum value of the delay time for the positioning time of the auxiliary UE.
  • UE1 may determine ranging service quality category #5 and positioning service quality category #6 based on positioning service quality category #4, and ranging service quality category #5 and positioning service quality category #6 have higher service quality levels than positioning service quality category #5. Service Quality Level for Service Quality Category #4.
  • Step S716 LMF#1 sends at least one of the determined ranging accuracy #5, response time #5, and ranging service quality category #5 to the target UE.
  • LMF#1 may also send the identification information of the auxiliary UE to the target UE.
  • LMF#1 may also send at least one of the determined ranging accuracy #5, response time #5, and ranging service quality category #5 to the auxiliary UE, and the auxiliary UE will determine the ranging accuracy #5, At least one of response time #5 and ranging service quality category #5 determines ranging mode #4.
  • LMF#1 may also send the identification information of the target UE to the auxiliary UE.
  • LMF#1 may also determine ranging method #4 based on at least one of ranging accuracy #5, response time #5, and ranging service quality category #5, and send ranging method #4 to the target.
  • Step S718 The target UE determines ranging mode #4 based on at least one of ranging accuracy #5, response time #5, and ranging service quality category #5.
  • the target UE may determine the ranging method # based on the corresponding relationship between at least one of ranging accuracy #5, response time #5, ranging service quality category #5 and the required ranging method #5. 4.
  • the corresponding relationship may be preconfigured by the target UE, the auxiliary UE, or LMF#1, as shown in Table 5.
  • the corresponding relationship or mapping table can be preconfigured locally or obtained from a core network element (for example, PCF).
  • a core network element for example, PCF
  • Step S724 The target UE and the auxiliary UE perform ranging based on ranging method #4.
  • the target UE sends the initial ranging signal 1, and the auxiliary UE sends a feedback signal to the target UE after receiving the initial ranging signal 1.
  • the target UE calculates the time difference 1 between sending the initial ranging signal 1 and receiving the feedback ranging signal 2.
  • the auxiliary UE calculates the time difference 2 between receiving the initial ranging signal 1 and sending the feedback ranging signal 2, and feeds back the time difference 2 information to the target UE.
  • the target UE sends the initial ranging signal 1, and the auxiliary UE sends a feedback signal to the target UE after receiving the initial ranging signal 1.
  • Feedback ranging signal 2 After receiving the feedback ranging signal 2, the target UE sends a response ranging signal 3 to the auxiliary UE.
  • the target UE calculates the time difference 1 between sending the initial ranging signal 1 and receiving the feedback ranging signal 2, and the time difference 3 between sending the response ranging signal 3 and receiving the feedback ranging signal 2. Assist the UE to calculate the received initial ranging signal 1 and send feedback ranging Time difference 2 between signals 2, and time difference 4 between sending feedback ranging signal 2 and receiving response ranging signal 3, and feeding back the information of time difference 2 and time difference 4 to the target UE.
  • Step S726 The target UE feeds back the above ranging result or ranging measurement data to LMF#1.
  • Step S728 LMF#1 sends at least one of positioning accuracy #6, response time #6, and positioning service quality category #6 to LMF#2.
  • Step S730 LMF#2 may determine positioning method #1 based on at least one of positioning accuracy #6, response time #6, and positioning service quality category #6.
  • LMF#2 may determine the positioning based on the corresponding relationship or mapping table between at least one of positioning accuracy #6, response time #6, positioning service quality category #6 and the required positioning method #1 Method #1, the corresponding relationship can be pre-configured by LMF#1 or LMF#2, as shown in Table 6.
  • the corresponding relationship or mapping table can be preconfigured locally or obtained from a core network element (for example, PCF).
  • a core network element for example, PCF
  • the auxiliary UE may also be deployed by the operator with a fixed location. Therefore, the location of the auxiliary UE is known to LMF#1, and there is no need to locate the auxiliary UE.
  • LMF#2 may position the auxiliary UE based on the positioning method #1 and calculate the location data of the auxiliary UE.
  • Step S732 LMF#2 feeds back the positioning result of the auxiliary UE to LMF#1.
  • steps S728, S730 and S732 are optional.
  • steps S728, S730 and S732 may not be performed.
  • step S714 LMF#1 does not need to determine ranging accuracy #6, response time #6 or ranging quality of service category #6 (that is, step S714 can be replaced by, determine ranging accuracy #5, response time #5 or ranging quality of service category #5).
  • Step S734 LMF#1 calculates the location of the target UE based on the ranging result or ranging measurement data fed back in step S726 and the positioning result fed back in step S732, and reports it to the location service client (LCS client) or AMF. #1Feedback calculation results.
  • LMF#1 can also calculate the actual positioning accuracy of UE1 based on the actual ranging accuracy of the above ranging method #4 and the actual ranging accuracy of the above positioning method #1.
  • the actual positioning accuracy can be used for ranging methods and Adjustments to positioning methods.
  • LMF#1 can perform steps S714 to S728 again to re-determine ranging method #4 and positioning method #1. It should be understood that LMF#1 updates ranging method #4 and positioning method #1 to try its best to meet positioning accuracy #4.
  • LMF#1 can perform step S712 again to trigger the target UE to reselect the auxiliary UE, and then perform steps S714-S728.
  • LMF#1 may obtain the actual ranging accuracy of the above-mentioned ranging method #4 from the target UE or the auxiliary UE, and LMF#1 may also obtain the actual positioning accuracy of the above-mentioned positioning method #1 from the auxiliary UE.
  • the LMF network element can reasonably set the positioning accuracy and response time for the auxiliary UE, as well as the positioning accuracy and response time between the target UE and the auxiliary UE.
  • the ranging accuracy and response time of ranging enable the final ranging method and positioning method to meet the needs of the positioning business as much as possible.
  • Figure 8 shows a schematic block diagram of a device 100 for sending information according to an embodiment of the present application.
  • the device 100 for sending information can correspond to (for example, can be configured in or itself) the above-mentioned Figures 3, 4, 5 and 5. 6.
  • the device 100 may be the PCF, UE1, UE2, auxiliary UE, target UE, LMF#1, LMF#2 and LMF/UE3/UE1 application layer, in this case, the device 100 may include: a processor and a transceiver, and the processor and the transceiver are connected for communication.
  • the device further includes a memory, and the memory is communicatively connected with the processor.
  • the processor, the memory and the transceiver can be communicatively connected, the memory can be used to store programs or instructions, and the processor can be used to execute the programs or instructions stored in the memory to control the transceiver to send information or signals.
  • the interface unit in the device 100 shown in FIG. 8 may correspond to the transceiver, and the processing unit in the device 100 shown in FIG. 8 may correspond to the processor.
  • the device 100 may be the PCF, UE1, UE2, auxiliary UE, target UE, LMF#1, and LMF# installed in the embodiments described in Figures 3, 4, 5, 6, and 7. 2 and the chip (or chip system) in the LMF/UE3/UE1 application layer.
  • the device 100 can include: a processor and an input and output interface.
  • the processor can communicate with Figure 3 and Figure 4 through the input and output interface.
  • the device also includes a memory that is communicatively connected to the processor.
  • the processor, the memory and the transceiver can be communicatively connected, the memory can be used to store programs or instructions, and the processor can be used to execute the programs or instructions stored in the memory to control the transceiver to send information or signals.
  • the interface unit in the device 100 shown in FIG. 8 may correspond to the input and output interface
  • the processing unit in the device 100 shown in FIG. 8 may correspond to the processor
  • Figure 9 shows a schematic block diagram of a device 200 for receiving information according to an embodiment of the present application.
  • the device 200 for receiving information can correspond to (for example, can be configured to implement) the above-mentioned Figures 3, 4, 5, 6,
  • the detailed description of the action or processing process is omitted here to avoid redundancy.
  • the device 200 may be the PCF, UE1, UE2, auxiliary UE, target UE, LMF#1, LMF#2 and LMF/UE3/UE1 application layer, in this case, the device 200 may include: a processor and a transceiver, the processor and the transceiver are communication connected, optionally, the The device also includes a memory, which is communicatively connected to the processor.
  • the processor, the memory and the transceiver can be communicatively connected, the memory can be used to store programs or instructions, and the processor can be used to execute the programs or instructions stored in the memory to control the transceiver to receive information or signals.
  • the interface unit in the device 200 shown in FIG. 9 may correspond to the transceiver, and the processing unit in the device 200 shown in FIG. 9 may correspond to the processor.
  • the device 200 may be the PCF, UE1, UE2, auxiliary UE, target UE, LMF#1, and LMF# installed in the embodiments described in Figures 3, 4, 5, 6, and 7. 2 and the chip (or chip system) in the LMF/UE3/UE1 application layer.
  • the device 200 can include: a processor and an input and output interface.
  • the processor can communicate with Figure 3 and Figure 4 through the input and output interface.
  • the device also includes a memory that is communicatively connected to the processor.
  • the processor, the memory and the transceiver can be communicatively connected, the memory can be used to store programs or instructions, and the processor can be used to execute the programs or instructions stored in the memory to control the transceiver to receive information or signals.
  • the interface unit in the device 200 shown in FIG. 9 may correspond to the input interface
  • the processing unit in the device 200 shown in FIG. 9 may correspond to the processor
  • the disclosed systems, devices and methods can be implemented in other ways.
  • the device embodiments described above are only illustrative.
  • the division of the units is only a logical function division. In actual implementation, there may be other division methods.
  • multiple units or components may be combined or can be integrated into another system, or some features can be ignored, or not implemented.
  • the coupling or direct coupling or communication connection between each other shown or discussed may be through some interfaces, and the indirect coupling or communication connection of the devices or units may be in electrical, mechanical or other forms.
  • the units described as separate components may or may not be physically separated, and the components shown as units may or may not be physical units, that is, they may be located in one place, or they may be distributed to multiple network units. Some or all of the units can be selected according to actual needs to achieve the purpose of the solution of this embodiment.
  • each functional unit in each embodiment of the present application can be integrated into one processing unit, each unit can exist physically alone, or two or more units can be integrated into one unit.
  • the functions are implemented in the form of software functional units and sold or used as independent products, they can be stored in a computer-readable storage medium.
  • the technical solution of the present application is essentially or the part that contributes to the existing technology or the part of the technical solution can be embodied in the form of a software product.
  • the computer software product is stored in a storage medium, including Several instructions are used to cause a computer device (which may be a personal computer, a server, or a network device, etc.) to execute all or part of the steps of the methods described in various embodiments of this application.
  • the aforementioned storage media include: U disk, mobile hard disk, read-only memory (Read-Only Memory, ROM), random Various media that can store program code such as Random Access Memory (RAM), magnetic disks or optical disks.

Landscapes

  • Engineering & Computer Science (AREA)
  • Computer Networks & Wireless Communication (AREA)
  • Signal Processing (AREA)
  • Mobile Radio Communication Systems (AREA)
  • Radar Systems Or Details Thereof (AREA)
  • Telephone Function (AREA)

Abstract

本申请提供了一种通信方法和通信装置,该方法包括:第一终端设备获取第一参数,所述第一参数包括所述第一终端设备和所述第二终端设备之间的测距对应的第一测距精度、第一测距时间、测距服务质量类别中的至少一种;所述第一终端设备根据所述第一参数从多种测距方式中确定第一测距方式;所述第一终端设备根据所述第一测距方式进行与所述第二终端设备之间的测距。通过本申请实施例的方法,终端设备进行测距的测距方式可以更符合测距业务的需求。

Description

通信方法和通信装置
本申请要求于2022年07月28日提交中国国家知识产权局、申请号为202210896861.7、申请名称为“通信方法和通信装置”的中国专利申请的优先权,其全部内容通过引用结合在本申请中。
技术领域
本申请涉及通信领域,更具体地,涉及通信领域中的通信方法和通信装置。
背景技术
随着移动通信的高速发展,新业务类型,如视频聊天、虚拟现实(virtual reality,VR)和增强现实(augmented reality,AR)等数据业务的普遍使用提高了用户对带宽的需求。设备到设备(device to device,D2D)通信允许用户设备(user equipment,UE)之间直接进行通信。发送方UE与接收方UE在近距离范围内,通过相互发现后可以直接通信。UE之间可以基于邻近的服务通信5(proximity-based services communication 5,PC5)接口进行的通信,可用于数据面和控制面的信息传输。UE之间还可以通过PC5接口进行UE之间的距离测量,获取UE之间的相对距离。
在部分的定位场景中需进行UE之间的距离测量。其中,UE之间距离测量的方式包括单边双向测距(single-side two-way ranging)、双边双向测距(double-side two-way ranging)等。如何确定合适的测距方式目前还没有相关的技术方案,因此不能更好地满足定位业务的需求。
发明内容
本申请实施例提供一种通信的方法和装置,能够更好地满足定位业务的需求。
第一方面,提供了一种通信的方法,该方法可以由第一终端设备执行,也可以由第一终端设备的部件(例如处理器、芯片或芯片系统)执行,还可以由能实现全部或部分第一终端设备功能的逻辑模块或软件实现。该方法包括:第一终端设备获取第一参数,所述第一参数包括第一测距精度、第一测距时间、测距服务质量类别中的至少一种,所述第一参数被用于所述第一终端设备和所述第二终端设备之间的测距;所述第一终端设备根据所述第一参数从多种测距方式中确定第一测距方式;所述第一终端设备根据所述第一测距方式进行与所述第二终端设备之间的测距。
具体地,上述第一终端设备可以根据所述第一参数中包括的精度、时间、服务质量类别与测距方式的映射表或者对应关系来确定第一测距方式。其中,该对应关系或映射表可以本地预配置或从核心网网元(例如,策略控制功能网元(policy control function,PCF)网元)处获取。
具体地,上述服务质量类别可以是定位服务质量等级,该定位服务质量等级包括严格 等级、非严格等级、尽力而为等级、可保障等级等。
具体地,上述“第一终端设备根据所述第一测距方式进行与所述第二终端设备之间的测距”可以表示第一终端设备根据所述第一测距方式对应的测距流程收发测距信号或收集测距过程中的相关测距信息(如飞行时间信息),该相关测距信息可以被用于第一终端设备计算第一终端设备和第二终端设备之间的距离,该相关测距信息还可以被用于其它网元计算第一终端设备和第二终端设备之间的距离。
其中,上述多种测距方法可以包括单边双向测距(single-side two-way ranging)、双边双向测距(double-side two-way ranging)等。
通过上述的方法,第一终端设备可以采用更加符合测距业务要求的测距方式进行测距。
结合第一方面,在第一方面的某些实现方式中,上述方法还包括:第一终端设备接收第一消息,该第一消息包括上述第一参数。
具体地,第一终端设备可以从第一终端设备的应用层获取上述第一参数,也可以在从位置管理网元获取的第一消息中包括上述第一参数,也可以在从其它终端设备获取的第一消息中包括上述第一参数。
具体地,上述第一消息可以是测距请求消息。
通过将上述第一参数携带在第一消息中,减少了单独发送第一参数的信令开销。
结合第一方面,在第一方面的某些实现方式中,所述第一终端设备根据所述第一参数从多种测距方式中确定所述第一测距方式还包括:所述第一终端设备获取第二参数,所述第二参数包括网络授权所述第一终端设备的测距方式、网络授权所述第二终端设备的测距方式、所述第一终端设备支持的测距方式、所述第二终端设备支持的测距方式中的至少一种;所述第一终端设备根据所述第一参数和所述第二参数确定所述第一测距方式。
具体地,上述第一终端设备支持的测距方式可以表示为第一终端设备的测距能力,上述第二终端设备支持的测距方式可以表示为第二终端设备的测距能力。
具体地,第一终端设备可以将第一终端设备与第二终端设备均被授权的测距方式确定为第一测距方式,或者,第一终端设备也可以将第一终端设备与第二终端设备均支持的测距方式确定为第一测距方式。
通过上述方法,第一终端设备不仅可以根据第一参数的要求选用测距方式,还可以结合终端设备被授权的测距方式以及终端设备支持的测距方式采用更加符合要求的测距方式进行测距,减少了因选择的测距方式不满足要求而需重新选择的时延以及信令开销。
结合第一方面,在第一方面的某些实现方式中,当所述第二参数包括所述网络授权所述第一终端设备的测距方式时,所述方法还包括:所述第一终端设备接收第二消息,所述第二消息包括所述第二参数。
具体地,第一终端设备可以是从移动管理网元接收第二消息,该第二消息包括上述第二参数;移动管理网元通过其它消息从策略控制网元接收上述第二参数。
第一终端设备可以从策略控制网元获取网络授权第一终端设备的测距方式,该网络授权第一终端设备的测距方式可以作为第一终端设备确定第一测距方式的参考,进而辅助第一终端设备选出网络授权的测距方式进行测距,减少了因选择的测距方式不满足要求而需重新选择的时延以及信令开销。
结合第一方面,在第一方面的某些实现方式中,当所述第二参数包括所述第二终端设 备支持的测距方式和/或所述网络授权所述第二终端设备的测距方式时,所述方法还包括:所述第一终端设备接收所述第二终端设备的第三消息,所述第三消息包括所述第二参数。
具体地,第二终端设备可以从策略控制网元获取网络授权第二终端设备的测距方式。
第二终端设备可以将网络授权第二终端设备的测距方式、第二终端设备支持的测距方式发送给第一终端设备,作为第一终端设备确定第一测距方式的参考,进而辅助第一终端设备选出网络授权的测距方式进行测距,减少了因选择的测距方式不满足要求而需重新选择的时延以及信令开销。
结合第一方面,在第一方面的某些实现方式中,上述第一消息可以来自于第一位置管理网元,该第一位置管理网元是为所述第一终端设备服务的位置管理网元。
具体地,该第一消息可以是第一位置管理网元对第一终端设备定位时发送给第一终端设备的,被用于第一终端设备和第二终端设备之间的测距。
第一位置管理网元通过向第一终端设备发送被用于第一终端设备与第二终端设备之间测距的第一消息,可以辅助第一位置管理网元对第一终端设备的定位。
第二方面,提供了一种通信的方法,该方法可以由第一终端设备执行,也可以由第一终端设备的部件(例如处理器、芯片或芯片系统)执行,还可以由能实现全部或部分第一终端设备功能的逻辑模块或软件实现。该方法包括:第一终端设备获取第三参数,所述第三参数包括第二测距精度、第二测距时间、测距服务质量类别中的至少一种,所述第三参数被用于所述第一终端设备和第三终端设备之间的测距;所述第一终端设备根据所述第三参数确定第四参数或第三测距方式,所述第四参数被用于确定所述第三测距方式,所述第三测距方式被用于第二终端设备和所述第三终端设备之间的测距;所述第一终端设备向所述第二终端设备或所述第三终端设备发送所述第三测距方式或所述第四参数。
具体地,上述第一终端设备可以根据所述第三参数中包括的精度、时间、服务质量类别与测距方式的映射表或者对应关系来确定第三测距方式。其中,该对应关系或映射表可以本地预配置或从核心网网元(例如,PCF)处获取。
具体地,上述服务质量类别可以是定位服务质量等级,该定位服务质量等级包括严格等级、非严格等级、尽力而为等级、可保障等级等。
具体地,上述“所述第三测距方式被用于第二终端设备和所述第三终端设备之间的测距”可以表示第二终端设备或第三终端设备根据所述第三测距方式对应的测距流程收发测距信号或收集测距过程中的相关测距信息(如飞行时间信息),该相关测距信息可以被用于第二终端设备或第三终端设备计算第二终端设备与第三终端设备之间的距离,该相关测距信息还可以被用于第一终端设备或其它网元计算第二终端设备与第三终端设备之间的距离。
应理解,上述的方法可以应用于第一终端设备与第三终端设备之间存在障碍物等导致不能支持直接测距(direct ranging)时,需要第二终端设备辅助测距的场景。
通过上述的方法,第一终端设备可以选用更加符合测距业务要求的测距方式进行第二终端设备与第三终端设备之间的测距。
结合第二方面,在第二方面的某些实现方式中,所述方法还包括:所述第一终端设备接收第四消息,所述第四消息包括所述第三参数。
具体地,第一终端设备可以从第一终端设备的应用层获取上述第三参数,也可以在从 位置管理网元获取的第四消息中包括上述第三参数,也可以在从其它终端设备获取的第四消息中包括上述第三参数。
具体地,上述第四消息可以是测距请求消息。
通过将上述第三参数携带在第四消息中,减少了单独发送第三参数的信令开销。
结合第二方面,在第二方面的某些实现方式中,当所述第三参数包括所述第二测距精度时,所述第一终端设备根据所述第三参数确定所述第三测距方式包括:所述第一终端设备根据所述第二测距精度确定第三测距精度;所述第一终端设备根据所述第三测距精度从多种测距方式中确定所述第三测距方式。
具体地,上述第三测距精度可以高于上述第二测距精度,本申请对此不作限定。
其中,上述多种测距方法可以包括单边双向测距(single-side two-way ranging)、双边双向测距(double-side two-way ranging)等。
第一终端设备根据第三参数中的第二测距精度确定出更高精度的第三测距精度,该第三测距精度被用于第二终端设备与第三终端设备之间的测距方式的确定,可以确保第二终端设备与第三终端设备之间的测距精度尽可能地满足测距业务需求。
结合第二方面,在第二方面的某些实现方式中,当所述第三参数包括所述第二测距时间时,所述第一终端设备根据所述第三参数确定所述第三测距方式包括:所述第一终端设备根据所述第二测距时间确定第三测距时间;所述第一终端设备根据所述第三测距时间从多种测距方式中确定所述第三测距方式。
具体地,上述第三测距时间可以早于上述第二测距时间,本申请对此不作限定。
第一终端设备根据第三参数中的第二测距时间确定出时间要求更严格的第三测距时间,该第三测距时间被用于第二终端设备与第三终端设备之间的测距方式的确定,可以确保第二终端设备与第三终端设备之间的测距时间尽可能地满足测距业务需求。
结合第二方面,在第二方面的某些实现方式中,所述方法还包括:所述第一终端设备根据所述第三参数确定第五参数或第四测距方式,所述第五参数被用于确定所述第四测距方式,所述第四测距方式被用于所述第一终端设备和所述第二终端设备之间的测距。
具体地,上述“所述第四测距方式被用于所述第一终端设备和所述第二终端设备之间的测距”可以表示第一终端设备根据所述第四测距方式对应的测距流程收发测距信号或收集测距过程中的相关测距信息(如飞行时间信息),该相关测距信息可以被用于第一终端设备计算第一终端设备与第二终端设备之间的距离,该相关测距信息还可以被用于其它网元计算第一终端设备与第二终端设备之间的距离。
应理解,上述的方法可以应用于第一终端设备与第三终端设备之间存在障碍物等导致不能支持直接测距(direct ranging)时,需要第二终端设备辅助测距的场景。
通过上述的方法,第一终端设备可以选用更加符合测距业务要求的测距方式进行第一终端设备与第二终端设备之间的测距。
结合第二方面,在第二方面的某些实现方式中,所述方法还包括:所述第一终端设备向所述第二终端设备发送所述第五参数或所述第四测距方式;所述第一终端设备接收所述第二终端设备根据所述第五参数或所述第四测距方式得到的测距结果。
第一终端设备可以将用于确定第四测距方式的第五参数发送第二终端设备,或者也可以直接将第四测距方式发送给第二终端设备,第二终端设备基于此可以进行第一终端设备 与第二终端设备之间的测距,从而得到更加精确的测距结果。
结合第二方面,在第二方面的某些实现方式中,当所述第三参数包括所述第二测距精度时,所述第一终端设备根据所述第三参数确定所述第四测距方式包括:所述第一终端设备根据所述第二测距精度确定第四测距精度;所述第一终端设备根据所述第四测距精度从多种测距方式中确定所述第四测距方式。
具体地,上述第四测距精度可以高于上述第二测距精度,本申请对此不作限定。
其中,上述多种测距方法可以包括单边双向测距(single-side two-way ranging)、双边双向测距(double-side two-way ranging)等。
第一终端设备根据第三参数中的第二测距精度确定出更高精度的第四测距精度,该第四测距精度被用于第一终端设备与第二终端设备之间的测距方式的确定,可以确保第一终端设备与第二终端设备之间的测距精度尽可能地满足测距业务需求。
结合第二方面,在第二方面的某些实现方式中,当所述第三参数包括所述第二测距时间时,所述第一终端设备根据所述第三参数确定所述第四测距方式包括:所述第一终端设备根据所述第二测距时间从多种测距方式中确定所述第四测距方式。
第一终端设备直接将第三参数中的第二测距时间用于第一终端设备与第二终端设备之间的测距方式的确定,可以降低第一终端设备的操作复杂度。
可选地,当所述第三参数包括所述第二测距时间时,所述第一终端设备根据所述第三参数确定所述第四测距方式包括:所述第一终端设备根据所述第二测距时间确定第五测距时间;所述第一终端设备根据所述第五测距时间从多种测距方式中确定所述第四测距方式。
具体地,上述第五测距时间可以早于上述第二测距时间,本申请对此不作限定。
第一终端设备根据第三参数中的第二测距时间确定出时间要求更严格的第五测距时间,该第五测距时间被用于第一终端设备与第二终端设备之间的测距方式的确定,可以确保第一终端设备与第二终端设备之间的测距时间尽可能地满足测距业务需求。
结合第二方面,在第二方面的某些实现方式中,所述方法还包括:所述第一终端设备获取第五测距精度和第六测距精度,所述第五测距精度是所述第一终端设备和所述第二终端设备之间测距的实际测距精度,所述第六测距精度是所述第二终端设备和所述第三终端设备之间测距的实际测距精度;所述第一终端设备根据所述第五测距精度和所述第六测距精度,计算第七测距精度,所述第七测距精度是所述第一终端设备和所述第三终端设备之间测距的实际测距精度。
具体地,第五测距精度可以是根据第一终端设备与第二终端设备之间的实际测距结果确定出来的,第六测距精度可以是根据第二终端设备与第三终端设备之间的实际测距结果确定出来的。
第一终端设备可以根据第一终端设备和第三终端设备之间的实际测距精度灵活地调整测距精度或测距方式的分配,使得最终的测距精度尽可能地满足定位业务的需求。
结合第二方面,在第二方面的某些实现方式中,上述第一终端设备获取第五测距精度和第六测距精度包括:所述第一终端设备接收所述第二终端设备的所述第五测距精度,和/或,所述第一终端设备接收所述第二终端设备或所述第三终端设备的所述第六测距精度。
具体地,第二终端设备可以根据第一终端设备和第二终端设备之间的实际测距结果确定第五测距精度,并发送给第一终端设备;以及第二终端设备或第三终端设备可以根据第 二终端设备和第三终端设备之间的实际测距结果确定第六测距精度,并发送给第一终端设备。这样可以降低第一终端设备计算第一终端设备和第三终端设备之间的实际测距精度的操作复杂度。
第三方面,提供一种通信的方法,该方法可以由第一位置管理网元执行,也可以由第一位置管理网元的部件(例如处理器、芯片或芯片系统)执行,还可以由能实现全部或部分第一位置管理网元功能的逻辑模块或软件实现。该方法包括:第一位置管理网元获取第六参数,所述第六参数包括第一定位精度、第一定位时间、定位服务质量类别中的至少一种,所述第六参数被用于对第一终端设备进行定位;所述第一位置管理网元根据所述第六参数确定第七参数或第一测距方式,所述第七参数被用于确定所述第一测距方式,所述第一测距方式被用于所述第一终端设备与第二终端设备之间的测距,所述第二终端设备用于辅助所述第一终端设备的定位;所述第一位置管理网元发送所述第一测距方式或所述第七参数。
具体地,上述第一位置管理网元可以根据所述第六参数中包括的精度、时间、服务质量类别与测距方式的映射表或者对应关系来确定第一测距方式。其中,该对应关系或映射表可以本地预配置或从核心网网元(例如,PCF)处获取。
具体地,上述服务质量类别可以是定位服务质量等级,该定位服务质量等级包括严格等级、非严格等级、尽力而为等级、可保障等级等。
具体地,上述“所述第一测距方式被用于所述第一终端设备与第二终端设备之间的测距”可以表示第一终端设备或第二终端设备根据所述第一测距方式对应的测距流程收发测距信号或收集测距过程中的相关测距信息(如飞行时间信息),该相关测距信息可以被用于第一终端设备或第二终端设备计算第一终端设备和第二终端设备之间的距离,该相关测距信息还可以被用于第一位置管理网元计算第一终端设备和第二终端设备之间的距离。
应理解,若第一位置管理网元将上述第七参数或第一测距方式发送给第一终端设备,则可以由第一终端设备根据所述第一测距方式对应的测距流程收发测距信号或收集测距过程中的相关测距信息(如飞行时间信息);若第一位置管理网元将上述第七参数或第一测距方式发送给第二终端设备,则可以由第二终端设备根据所述第一测距方式对应的测距流程收发测距信号或收集测距过程中的相关测距信息(如飞行时间信息)。
应理解,上述的方法可以应用于第一位置管理网元发起对第一终端设备的定位,但是定位精度不能满足定为业务的要求时,第一位置管理网元可以采用混合定位的方式对第一终端设备进行定位。该混合定位的方式可以包括对第二终端设备的定位、对第一终端设备和第二终端设备的测距。
通过上述的方法,第一位置管理网元可以采用更加符合测距业务要求的测距方式进行第一终端设备和第二终端设备之间的测距。
结合第三方面,在第三方面的某些实现方式中,所述方法还包括:所述第一位置管理网元接收第五消息,所述第五消息包括所述第六参数。
具体地,第一位置管理网元可以在从移动管理网元接收的第五消息中包括上述第六参数,也可以在从网关移动定位中心(gateway mobile location center,GMLC)接收的第五消息中包括上述第六参数。
具体地,上述第五消息可以是定位请求消息。
通过将上述第六参数携带在第五消息中,减少了单独发送第六参数的信令开销。
结合第三方面,在第三方面的某些实现方式中,当所述第六参数包括所述第一定位精度时,所述第一位置管理网元根据所述第六参数确定所述第一测距方式包括:所述第一位置管理网元根据所述第一定位精度确定第八测距精度;所述第一位置管理网元根据所述第八测距精度从多种测距方式中确定所述第一测距方式。
具体地,上述第八测距精度可以高于上述第一定位精度,本申请对此不作限定。
其中,上述多种测距方法可以包括单边双向测距(single-side two-way ranging)、双边双向测距(double-side two-way ranging)等。
第一位置管理网元根据第六参数中的第一定位精度确定出更高精度的第八测距精度,该第八测距精度被用于第一终端设备与第二终端设备之间的测距方式的确定,可以确保第一终端设备与第二终端设备之间的测距精度尽可能地满足定位业务需求。
结合第三方面,在第三方面的某些实现方式中,当所述第六参数包括所述第一定位时间时,所述第一位置管理网元根据所述第六参数确定所述第一测距方式包括:所述第一位置管理网元根据所述第一定位时间确定第四测距时间;所述第一位置管理网元根据所述第四测距时间从多种测距方式中确定所述第一测距方式。
具体地,上述第四测距时间可以早于上述第一定位时间,本申请对此不作限定。
第一位置管理网元根据第六参数中的第一定位时间确定出时间要求更严格的第四测距时间,该第四测距时间被用于第一终端设备与第二终端设备之间的测距方式的确定,可以确保第一终端设备与第二终端设备之间的测距时间尽可能地满足定位业务需求。
结合第三方面,在第三方面的某些实现方式中,所述方法还包括:所述第一位置管理网元根据所述第六参数确定第八参数或第一定位方法,所述第八参数被用于确定所述第一定位方法,所述第一定位方法被用于对所述第二终端设备进行定位;所述第一位置管理网元发送所述第八参数或所述第一定位方法。
具体地,上述“所述第一定位方法被用于对所述第二终端设备进行定位”可以表示第二终端设备收集定位过程中的相关测量信息(如飞行时间信息),该相关测量信息可以被用于第二终端设备估算自身的位置,该相关测距信息还可以被用于为第二终端设备服务的第二位置管理网元估算第二终端设备的位置。
应理解,上述的方法可以应用于第一位置管理网元发起对第一终端设备的定位,但是定位精度不能满足定为业务的要求时,第一位置管理网元可以采用混合定位的方式对第一终端设备进行定位。该混合定位的方式可以包括对第二终端设备的定位、对第一终端设备和第二终端设备的测距。
通过上述的方法,可以使用更加符合定位业务要求的定位方法对第二终端设备进行定位。
结合第三方面,在第三方面的某些实现方式中,所述方法还包括:当所述第六参数包括所述第一定位精度时,所述第一位置管理网元根据所述第六参数确定所述第一定位方法包括:所述第一位置管理网元根据所述第一定位精度确定第二定位精度;所述第一位置管理网元根据所述第二定位精度从多种定位方法中确定所述第一定位方法。
具体地,上述第二定位精度可以高于上述第一定位精度,本申请对此不作限定。
其中,上述多种定位方法可以包括多小区往返时延(Multi-Round Trip Time, Multi-RTT)、下行到达时间差(Downlink time difference of arrival,DL-TDOA)、上行到达时间差(Uplink time difference of arrival,UL-TDOA)等。
第一位置管理网元根据第六参数中的第一定位精度确定出更高精度的第二定位精度,该第二定位精度被用于第二终端设备的定位方法的确定,可以确保第二终端设备的定位精度尽可能地满足定位业务需求。
结合第三方面,在第三方面的某些实现方式中,当所述第六参数包括所述第一定位时间时,所述第一位置管理网元根据所述第六参数确定所述第一定位方法包括:所述第一位置管理网元根据所述第一定位时间从多种定位方法中确定所述第一定位方法。
第一位置管理网元直接将第六参数中的第一定位时间用于第二终端设备的定位方法的确定,可以降低第一位置管理网元的操作复杂度。
可选地,当所述第六参数包括所述第一定位时间时,所述第一位置管理网元根据所述第六参数确定所述第一定位方法包括:所述第一位置管理网元根据所述第一定位时间确定第二定位时间;所述第一终端设备根据所述第二定位时间从多种定位方式中确定所述第一定位方法。
具体地,上述第二定位时间可以早于上述第一定位时间,本申请对此不作限定。
第一位置管理网元根据第六参数中的第一定位时间确定出时间要求更严格的第二定位时间,该第二定位时间被用于第二终端设备的定位方法的确定,可以确保第二终端设备尽可能地满足定位业务需求。
结合第三方面,在第三方面的某些实现方式中,所述方法还包括:所述第一位置管理网元获取第九测距精度和第三定位精度,所述第九测距精度是所述第一终端设备和所述第二终端设备之间测距的实际测距精度,所述第三定位精度是所述第二终端设备的实际定位精度;所述第一位置管理网元根据所述第九测距精度和所述第三定位精度,计算第四定位精度,所述第四定位精度是所述第一终端设备的实际定位精度。所述第一位置管理网元向第一移动管理网元发送所述第四定位精度,所述第一移动管理网元是为所述第一终端设备服务的移动管理网元。
具体地,第九测距精度可以是根据第一终端设备与第二终端设备之间的实际测距结果确定出来的,第三定位精度可以是根据第二终端设备的实际定位结果确定出来的。
第一位置管理网元可以根据第一终端设备的实际定位精度灵活地调整测距精度、定位精度、测距方式以及定位方法的分配,使得最终的第一终端设备的定位精度尽可能地满足定位业务的需求。
结合第三方面,在第三方面的某些实现方式中,上述第一位置管理网元获取所述第九测距精度和所述第三定位精度包括:所述第一位置管理网元接收所述第一终端设备或所述第二终端设备的所述第九测距精度,和/或,所述第一位置管理网元接收所述第二位置管理网元的所述第三定位精度,所述第二位置管理网元是为所述第二终端设备服务的位置管理网元。
具体地,第一终端设备或第二终端设备可以根据第一终端设备和第二终端设备之间的实际测距结果确定第九测距精度,并发送给第一位置管理网元;以及第二终端设备可以根据第二终端设备的实际定位结果确定第三定位精度,并发送给第一位置管理网元。这样可以降低第一位置管理网元计算第一终端设备的实际定位精度的操作复杂度。
第四方面,提供了一种通信的装置,该装置可以是第一终端设备,也可以是终端设备的部件(例如处理器、芯片或芯片系统),还可以是能实现全部或部分终端设备功能的逻辑模块或软件。该装置具有实现上述第一方面,第二方面及第一方面,第二方面各种可能的实现方式的功能。该功能可以通过硬件实现,也可以通过硬件执行相应的软件实现。该硬件或软件包括一个或多个与上述功能相对应的模块。
在一种可能的设计中,该装置包括:接口单元和处理单元,接口单元可以是收发器、接收器、发射器中的至少一种,该接口单元可以包括射频电路或天线。该处理单元可以是处理器。可选地,装置还包括存储单元,该存储单元例如可以是存储器。当包括存储单元时,该存储单元用于存储程序或指令。该处理单元与该存储单元连接,该处理单元可以执行该存储单元存储的程序、指令或源自其他的指令,以使该装置执行上述第一方面,第二方面及第一方面,第二方面各种可能的实现方式的通信方法。在本设计中,该装置可以为第一终端设备。
在另一种可能的设计中,当该装置为芯片时,该芯片包括:接口单元和处理单元,接口单元例如可以是该芯片上的输入/输出接口、管脚或电路等。处理单元例如可以是处理器。该处理单元可执行指令,以使该第一终端设备内的芯片执行上述第一方面,第二方面以及第一方面,第二方面任意可能的实现的通信方法。可选地,该处理单元可以执行存储单元中的指令,该存储单元可以为芯片内的存储模块,如寄存器、缓存等。该存储单元还可以是位于通信设备内,但位于芯片外部,如只读存储器(read-only memory,ROM)或可存储静态信息和指令的其他类型的静态存储设备,随机存取存储器(random access memory,RAM)等。
其中,上述任一处提到的处理器,可以是一个通用中央处理器(CPU),微处理器,特定应用集成电路(application-specific integrated circuit,ASIC),或一个或多个用于控制上述各方面通信方法的程序执行的集成电路。
第五方面,提供了一种通信的装置,该装置可以是第一位置管理网元,也可以是第一位置管理网元的部件(例如处理器、芯片或芯片系统),还可以是能实现全部或部分第一位置管理网元功能的逻辑模块或软件。该装置具有实现上述第三方面及第三方面各种可能的实现方式的功能。该功能可以通过硬件实现,也可以通过硬件执行相应的软件实现。该硬件或软件包括一个或多个与上述功能相对应的模块。
在一种可能的设计中,该装置包括:接口单元和处理单元,接口单元可以是收发器、接收器、发射器中的至少一种,该接口单元可以包括射频电路或天线。该处理单元可以是处理器。可选地,装置还包括存储单元,该存储单元例如可以是存储器。当包括存储单元时,该存储单元用于存储程序或指令。该处理单元与该存储单元连接,该处理单元可以执行该存储单元存储的程序、指令或源自其他的指令,以使该装置执行上述第三方面及第三方面各种可能的实现方式的通信方法。在本设计中,该装置可以为第一位置管理网元。
在另一种可能的设计中,当该装置为芯片时,该芯片包括:接口单元和处理单元,接口单元例如可以是该芯片上的输入/输出接口、管脚或电路等。处理单元例如可以是处理器。该处理单元可执行指令,以使该第一位置管理网元内的芯片执行上述第三方面以及第三方面任意可能的实现的通信方法。可选地,该处理单元可以执行存储单元中的指令,该存储单元可以为芯片内的存储模块,如寄存器、缓存等。该存储单元还可以是位于通信设 备内,但位于芯片外部,如只读存储器(read-only memory,ROM)或可存储静态信息和指令的其他类型的静态存储设备,随机存取存储器(random access memory,RAM)等。
其中,上述任一处提到的处理器,可以是一个通用中央处理器(CPU),微处理器,特定应用集成电路(application-specific integrated circuit,ASIC),或一个或多个用于控制上述各方面通信方法的程序执行的集成电路。
第六方面,提供了一种计算机存储介质,该计算机存储介质中存储有程序代码,该程序代码用于指示执行上述第一方面、第二方面、第三方面及第一方面、第二方面、第三方面任意可能的实现方式中的方法的指令。
第七方面,提供了一种包含计算机指令或计算机代码的计算机程序产品,其在计算机上运行时,使得计算机执行上述第一方面、第二方面、第三方面及第一方面、第二方面、第三方面任意可能的实现方式中的方法。
第八方面,提供了一种通信系统,该通信系统包括具有实现上述第一方面的各方法及各种可能设计的功能的装置、具有实现上述第二方面的各方法及各种可能设计的功能的装置和具有实现上述第三方面的各方法及各种可能设计的功能的装置。其中,具有实现上述第一方面、第二方面的各方法及第一方面、第二方面各种可能设计的功能的装置可以是第一终端设备,具有实现上述第三方面及第三方面各种可能设计的功能的装置可以是第一位置管理网元。
具体地,其他方面的有益效果可以参考第一方面、第二方面以及第三方面描述的有益效果。
基于上述技术方案,通过合理分配测距精度或合理设置测距方式,可以采用更加符合测距业务要求的测距方式进行测距,得到更高精度的测距结果,从而尽可能满足测距或定位业务的需求。
附图说明
图1为适用于本申请的一种通信系统架构的示例。
图2为适用于本申请的一种用于支撑定位的网络服务化架构示意图。
图3为本申请提供的一种确定测距方法的示意性流程图。
图4为本申请提供的另一种确定测距方法的示意性流程图。
图5为本申请提供的又一种确定测距方法的示意性流程图。
图6为本申请提供的另一种确定测距方法的示意性流程图。
图7为本申请提供的又一种确定测距方法的示意性流程图。
图8为本申请的发送信息的装置100的示意性框图。
图9为本申请的接收信息的装置200的示意性框图。
具体实施方式
下面将结合附图,对本申请中的技术方案进行描述。
本申请实施例的技术方案可以应用于各种通信系统,例如:全球移动通信(global system for mobile communications,GSM)系统、码分多址(code division multiple access,CDMA)系统、宽带码分多址(wideband code division multiple access,WCDMA)系统、 通用分组无线业务(general packet radio service,GPRS)、长期演进(long term evolution,LTE)系统、LTE频分双工(frequency division duplex,FDD)系统、LTE时分双工(time division duplex,TDD)、通用移动通信系统(universal mobile telecommunication system,UMTS)、全球互联微波接入(worldwide interoperability for microwave access,WiMAX)通信系统、第五代(5th generation,5G)系统或新无线(new radio,NR),以及未来通信系统中。
图1为适用于本申请实施例的一种通信系统架构的示例。其中,终端设备以及各网络实体的功能如下面的说明。
终端设备:可以称为终端(terminal)、终端设备单元(subscriber unit)、终端设备站、终端设备代理、终端设备装置、接入终端、V2X通信中的终端、用户单元、用户设备(user equipment,UE)、用户站、移动站、移动台(mobile station,MS)、远方站、远程终端、移动设备、用户终端、无线通信设备、用户代理或用户装置。
本申请的实施例中的终端设备也可以是手机(mobile phone)、平板电脑(pad)、带无线收发功能的电脑、全息投影仪、视频播放器、虚拟现实(virtual reality,VR)终端、增强现实(augmented reality,AR)终端、工业控制(industrial control)中的无线终端、触觉终端设备、车载终端设备、路边单元(road side unit,RSU)、无人驾驶(self driving)中的无线终端、无人机中的通信终端、远程医疗(remote medical)中的无线终端、智能电网(smart grid)中的无线终端、运输安全(transportation safety)中的无线终端、运输安全中的无线终端、智慧城市(smart city)中的无线终端、智慧家庭(smart home)中的无线终端、蜂窝电话、无绳电话、会话启动协议(session initiation protocol,SIP)电话、无线本地环路(wireless local loop,WLL)站、个人数字助理(personal digital assistant,PDA)、具有无线通信功能的手持设备、计算设备或连接到无线调制解调器的其它处理设备、车载设备、可穿戴设备,5G网络中的终端或者未来演进网络中的终端等。
其中,可穿戴设备也可以称为穿戴式智能设备,是应用穿戴式技术对日常穿戴进行智能化设计、开发出可以穿戴的设备的总称,如头显XR眼镜、手套、手表、服饰及鞋等。可穿戴设备即直接穿在身上,或是整合到用户的衣服或配件的一种便携式设备。可穿戴设备不仅仅是一种硬件设备,更是通过软件支持以及数据交互、云端交互来实现强大的功能。广义穿戴式智能设备包括功能全、尺寸大、可不依赖智能手机实现完整或者部分的功能,例如:智能手表或智能眼镜等,以及专注于某一类应用功能,需要和其它设备如智能手机配合使用,如各类进行体征监测的智能手环、智能首饰等。
无线接入网(radio access network,RAN)设备:由多个5G-RAN节点组成的网络,实现无线物理层功能、资源调度和无线资源管理、服务质量管理、数据压缩和加密、无线接入控制以及移动性管理功能。5G-RAN通过用户面接口N3和用户面功能(user plane function,UPF)网元相连,用于传输终端设备的数据;5G-RAN通过控制面接口N2和接入和移动管理功能(access and mobility management function,AMF)网元建立控制面信令连接,用于实现无线接入承载控制等功能。RAN可以是任意一种具有无线收发功能的设备,包括但不限于5G基站(5G node base,gNB)、演进型基站(evolutionalnode base,eNB)、无线接入点(wireless access point,WiFi AP)、全球微波接入互操作性基站(world interoperability for microwave access base station,WiMAX BS)、传输接收点(transmission  receiving point,TRP)、无线中继节点、无线回传节点等。
本申请实施例中的接入网设备还可以是用于与终端设备通信的设备,该接入网设备可以是全球移动通讯(global system of mobile communication,GSM)系统或码分多址(code division multiple access,CDMA)中的基站(base transceiver station,BTS),也可以是宽带码分多址(wideband code division multiple access,WCDMA)系统中的基站(nodeB,NB),还可以是LTE系统中的演进型基站(evolutional node base,eNB),还可以是云无线接入网络(cloud radio access network,CRAN)场景下的无线控制器,或者该接入网设备可以为中继站、接入点、车载设备、可穿戴设备以及未来5G网络中的接入网设备或者未来演进的PLMN网络中的接入网设备等,本申请实施例并不限定。
在NR中,基站的功能被分为两部分,称为集中式单元(centralized unit,CU)-分布式单元(distributed unit,DU)分离。从协议栈的角度来看,CU包括了LTE基站的RRC层和PDCP层,DU包括了LTE基站的无线链路控制(radio link control,RLC)层、媒体访问控制(media access control,MAC)层和物理(physical,PHY)层。在普通的5G基站部署中,CU和DU物理上可以通过光纤连接,逻辑上存在一个专门定义的F1接口,用于CU与DU之间进行通信。从功能的角度来看,CU主要负责无线资源控制与配置,跨小区移动性管理,承载管理等。DU主要负责调度,物理信号生成与发送。
其中,上述基站可以是宏基站、微基站、微微基站、小站、中继站、气球站等。
接入和移动管理功能(access and mobility management function,AMF):属于核心网网元,主要负责信令处理部分,例如,接入控制、移动性管理、附着与去附着以及网关选择等功能。AMF网元为终端设备中的会话提供服务的情况下,会为该会话提供控制面的存储资源,以存储会话标识、与会话标识关联的会话管理网元(session management function,SMF)网元标识;此外,还负责在终端设备和策略控制功能(policy control function,PCF)间传递用户策略。
SMF:主要负责终端设备会话管理的控制面功能,包括用户面功能(user plane function,UPF)网元的选择和重定向,因特网协议(internet protocol,IP)地址分配,承载的建立、修改、释放以及服务质量(quality of service,QoS)控制,会话的QoS管理,(从PCF)获取策略和计费控制(policy and charging control,PCC)策略等。
UPF网元:作为协议数据单元(protocol data unit,PDU)会话连接的锚定点,负责对终端设备的数据报文过滤、数据传输/转发、速率控制、生成计费信息等,提供与数据网络(data network,DN)的连接。
DN:指终端设备接入的某个特定的数据服务网络。DN负责提供运营商服务、互联网接入或第三方服务。DN包括服务器,该服务器可以实现视频源编码、渲染等。典型的DN包括因特网络、IP多媒体业务(IP multi-media service,IMS)网络等。DN在5G网络中由数据网络名称(data network name,DNN)进行标识。
统一数据管理(unified data management,UDM)网元:主要用于管控用户数据,例如,签约信息的管理,包括从统一数据存储库(unified data repository,UDR)获取签约信息并提供给其它网元(例如AMF);为终端设备生成第三代合作伙伴计划(the third generation partnership project,3GPP)的认证凭证;登记维护当前为终端设备服务的网元,例如,当前为终端设备服务的AMF(即serving AMF);当签约数据修改的时候,负责通 知相应的网元。
网络存储功能(network repository function,NRF)网元:主要用于支持网络功能的注册和发现。
网络开放功能(network exposure function,NEF)网元:向应用功能(application function,AF)暴露3GPP网络功能的业务和能力,同时也可以让AF向3GPP网络功能提供信息。
AF:与核心网网元交互以提供一些服务,例如,与PCF交互以进行业务策略控制,与NEF交互以获取一些网络能力信息或提供一些应用信息给网络,提供一些数据网络接入点信息给PCF以生成相应的数据业务的路由信息。
认证服务器功能(authentication server function,AUSF):用于终端设备接入网络时对终端设备进行安全认证。
网络切片选择功能(network slice selection function,NSSF)网元:为终端设备选择切片实例集合。根据终端设备的网络切片选择辅助信息(network slice selection assistance information,NSSAI)、签约信息等确定终端设备允许接入的网络切片实例。
PCF:为终端设备提供配置策略信息,为网络的控制面网元(例如,AMF、SMF)提供管控终端设备的策略信息;生成终端设备接入策略和QoS流控制策略。
本申请实施例中的终端设备通过无线的方式与RAN设备相连,RAN设备通过无线或有线方式与5G核心网设备连接。5G核心网设备与RAN设备可以是独立的不同的物理设备,也可以是将5G核心网设备的功能与RAN设备的逻辑功能集成在同一个物理设备上,还可以是一个物理设备上集成了部分5G核心网设备的功能和部分的RAN设备的功能。终端设备可以是固定位置的,也可以是可移动的。
5G核心网设备主要包括上述的NEF网元、PCF网元、AF网元、AMF网元、SMF网元以及UPF网元等。
需要说明的是,上述“网元”也可以称为实体、设备、装置或模块等,本申请并未特别限定。并且,在本申请中,为了便于理解和说明,在对部分描述中省略“网元”这一描述,例如,将NEF网元简称NEF,此情况下,该“NEF”应理解为NEF网元或NEF实体,以下,省略对相同或相似情况的说明。
需要说明的是,图1中包括的各个网元的命名仅是一个名字,名字对网元本身的功能不构成限定。在5G网络以及未来其它的网络中,上述各个网元也可以是其他的名字,本申请实施例对此不作具体限定。例如,在6G网络中,上述各个网元中的部分或全部可以沿用5G中的术语,也可能是其他命名,等等,在此进行统一说明,以下不再赘述。
需要说明的是,图1中的各个网元不是必须同时存在的,可以根据需求确定需要哪些网元。图1中的各个网元之间的连接关系也不是唯一确定的,可以根据需求进行调整。
可以理解的是,上述网元或者功能既可以是硬件设备中的网络元件,也可以是在专用硬件上运行软件功能,或者是平台(例如,云平台)上实例化的虚拟化功能。
图2为一种用于支撑定位的网络服务化架构示意图。如图2所示,该架构是在图1所示架构的基础上扩展出来的。例如,增加了网关移动定位中心(gateway mobile location center,GMLC)、位置提取功能(location retrieval function,LRF)、位置服务客户端(location service client,LCS client)以及位置管理功能(location management function,LMF)等多个功能实体,用于支持定位的服务功能。
在上述图1和图2中,各个网元之间的接口名称及功能如下:
1)N1:AMF与终端设备之间的接口,可以用于向终端传递QoS控制规则等。
2)N2:AMF与RAN之间的接口,可以用于传递核心网侧至RAN的无线承载控制信息等。
3)N3:RAN与UPF之间的接口,主要用于传递RAN与UPF间的上下行用户面数据。
4)N4:SMF与UPF之间的接口,可以用于控制面与用户面之间传递信息,包括控制面向用户面的转发规则、QoS控制规则、流量统计规则等的下发以及用户面的信息上报。
5)N5:AF与PCF之间的接口,可以用于应用业务请求下发以及网络事件上报。
6)N6:UPF与DN的接口,用于传递UPF与DN之间的上下行用户数据流。
7)N7:PCF与SMF之间的接口,可以用于下发PDU会话粒度以及业务数据流粒度控制策略。
8)N8:AMF与UDM间的接口,可以用于AMF向UDM获取接入与移动性管理相关签约数据与鉴权数据,以及AMF向UDM获取注册终端当前移动性管理相关信息等。
9)N9:UPF和UPF之间的用户面接口,用于传递UPF间的上下行用户数据流。
10)N10:SMF与UDM间的接口,可以用于SMF向UDM获取会话管理相关签约数据,以及SMF向UDM获取注册终端当前会话相关信息等。
11)N11:SMF与AMF之间的接口,可以用于传递RAN和UPF之间的PDU会话隧道信息、传递发送给终端的控制消息、传递发送给RAN的无线资源控制信息等。
12)N12:AMF和AUSF间的接口,可以用于AMF向AUSF发起鉴权流程,其中可携带用户隐藏标识(subscription concealed identifier,SUCI)作为签约标识。
13)N13:UDM与AUSF间的接口,可以用于AUSF向UDM获取用户鉴权向量,以执行鉴权流程。
14)N15:PCF与AMF之间的接口,可以用于下发终端策略及接入控制相关策略。
15)N17:LMF和LMF之间控制面接口,用于传递LMF间的交互信令。
16)NL1:AMF和LMF之间的接口,可以用于传递移动性管理相关的信息以及控制策略。
17)NL2:AMF与GMLC之间的接口,可以用于下发客户端策略及接入控制相关策略。
18)Le:LCS客户端与GMLC之间的接口,可以用于传输核心网下发的客户端策略及接入控制相关策略,或上传客户端位置服务相关的请求信令。
19)PC5:终端设备与终端设备之间的接口,可以用于数据面和控制面的信息传输,还可以通过PC5接口测量终端设备和终端设备之间的相对距离和/或相对角度。
上述网元或者功能既可以是硬件设备中的网络元件,也可以是在专用硬件上运行软件功能,或者是平台(例如,云平台)上实例化的虚拟化功能。可选的,上述网元或者功能可以由一个设备实现,也可以由多个设备共同实现,还可以是一个设备内的一个功能模块,本申请实施例对此不作具体限定。
本申请实施例中的接入网设备可以是无线接入网设备。
此外,本文的“网元”也可以称为网络功能实例(network function instance)、网络 功能(network function,NF)、设备、装置或模块等,本申请并未特别限定。
例如,在某些网络架构中,AMF、LMF以及UDM等网络功能实体都称为网络功能(network function,NF)网元;或者,在另一些网络架构中,AMF、LMF及UDM等网元的集合都可以称为控制面功能(control Plane function,CPF)网元。
应理解,图1和图2仅是示例性的网络架构,适用本申请实施例的网络架构并不局限于此,任何能够实现上述各个网元的功能的网络架构都适用于本申请实施例。
随着移动通信的高速发展,D2D通信允许终端设备(user equipment,UE)之间直接进行通信。发送方UE与接收方UE在近距离范围内,通过相互发现后可以直接通信。
在部分的定位场景中需进行UE之间相对距离的测量。确定终端设备之间的相对距离可以通过相对定位实现,需要终端设备具有侧行链路(sidelink)定位能力。终端设备之间的相对定位可以是确定终端设备之间的相对距离和/或相对角度。
通过测距可以获得终端设备之间的相对距离,通过测角可以获得终端设备之间的相对角度。
终端设备之间的相对距离的测量方法包括:单边双向测距(single-side two-way ranging)、双边双向测距(double-side two-way ranging)等。
单边双向测距方法为:终端设备A发送初始测距信号1,终端设备B在接收到初始测距信号1后向终端设备A发送用于反馈的反馈测距信号2。终端设备A在接收到该反馈测距信号2后,计算发送初始测距信号1和接收反馈测距信号2之间的时差1。终端设备B计算接收到初始测距信号1和发送反馈测距信号2之间的时差2。
具体地,终端设备A和终端设备B之间的距离=飞行时间×光速。其中,飞行时间(time of flight,TOF)=(时差1-时差2)/2。
双边双向测距方法为:终端设备A发送初始测距信号1,终端设备B在接收到初始测距信号1后向终端设备A发送用于反馈的反馈测距信号2。终端设备A在接收到该反馈测距信号2后,再向终端设备B发送响应测距信号3。终端设备A计算发送初始测距信号1和接收反馈测距信号2之间的时差1,以及发送响应测距信号3和接收反馈测距信号2之间的时差3。终端设备B计算接收到初始测距信号1和发送反馈测距信号2之间的时差2,以及发送反馈测距信号2和接收响应测距信号3之间的时差4。
具体地,终端设备A和终端设备B之间的距离=飞行时间×光速。其中,TOF=(时差1×时差4-时差2×时差3)/(时差1+时差2+时差3+时差4)。
双边双向测距方法是单边双向测距方法的一种扩展测距方法,测量了两个往返的时间戳,最后得到飞行时间。双边双向测距方法虽然增加了测距的响应时间,但是会降低测距的误差。
如何确定合适的测距方式目前还没有相关的技术方案,因此不能更好地满足定位业务的需求。
本申请提供一种确定测距方式的方法,如图3所示。本申请实施例涉及到的终端设备可以用UE表示。但应理解,下文的UE可以被替代为上文所述的所有终端设备中的任意终端设备,本申请对此不作限定。
该实施例可以应用于终端之间测距的场景。
步骤S311,UE1从AMF接收消息#1,该消息#1包括UE1授权的测距方式。
具体地,PCF可以向AMF发送消息#1A,该消息#1A包括UE1授权的测距方式,如图3中步骤S310所示;AMF接收到消息#1A后可以向UE1发送消息#1,该消息#1包括UE1授权的测距方式。
具体地,上述UE1授权的测距方式可以包括单边双向测距、双边双向测距等。
作为示例而非限定,上述UE1授权的测距方式可以根据UE1的签约信息确定。
其中,步骤S310为可选的。
可选地,该步骤S310还可以替换为UE1从PCF接收UE1授权的测距方式。
步骤S313,UE2从AMF接收消息#2,该消息#2包括UE2授权的测距方式。
具体地,PCF可以向AMF发送消息#2A,该消息#2A包括UE2授权的测距方式,如图3中步骤S312所示;AMF接收到消息#2A后可以向UE2发送消息#2,该消息#2包括UE2授权的测距方式。
具体地,上述UE2授权的测距方式可以包括单边双向测距、双边双向测距等。
作为示例而非限定,上述UE2授权的测距方式可以根据UE2的签约信息确定。
其中,步骤S312是可选的。
可选地,该步骤S312还可以替换为UE2从PCF接收UE2授权的测距方式。
步骤S314,UE1接收测距请求消息,该测距请求消息用于请求测量UE1和UE2之间的距离。
具体地,该测距请求消息中可以包括测距精度#1和、响应时间#1、测距服务质量类别#1中的至少一种,该测距精度#1表示UE1和UE2之间测距的精度要求,该响应时间#1表示UE1和UE2之间测距的时间要求。
另外地,该测距精度#1可以看作是阈值#1,该阈值#1表示UE1和UE2之间测距的精度要求的最低值;该响应时间#1可以看作是阈值#2,该阈值#2表示UE1和UE2之间测距的延迟时间的最大值。
具体地,上述测距请求消息也可以是UE1的应用层发送给UE1的,或者也可以是其它的UE3发送给UE1的,或者也可以是LMF发送给UE1的,本申请对此不作限定。
可选地,该步骤S314可替换为,UE1从UE1的应用层接收测距请求,该测距请求用于请求测量UE1和UE2之间的距离。UE1从UE1的应用层接收测距请求,可以理解为,UE1的网络层从UE1的应用层接收测距请求,后续步骤S316-S322由UE1的网络层执行。
可选地,上述测距请求消息也可以是相对定位请求消息,该相对定位请求消息用于请求终端设备之间的相对位置,即包括相对距离和相对角度。
步骤S316,UE1获取UE2的测距能力和/或UE2授权的测距方式。
具体地,UE2的测距能力表示UE2所支持的测距方式,UE2的测距能力可以包括单边双向测距、双边双向测距等。
应理解,上述UE2授权的测距方式和上述UE2所支持的测距方式可能是部分相同,也可能是全部相同,也可能全部不相同,本申请对此不作限定。
类似地,上述UE1授权的测距方式和UE1所支持的测距方式可能是部分相同,也可能是全部相同,也可能全部不相同,本申请对此不作限定。
其中,步骤S316和步骤S310、S312、S314的先后顺序关系不做限定。
其中,步骤S316为可选的。
步骤S318,UE1确定测距方式#1。
具体地,UE1可以根据多种方法确定测距方式#1:
方式1:UE1根据测距精度#1、响应时间#1、测距服务质量类别#1中的至少一种确定测距方式#1。
其中,测距精度(ranging accuracy)可以表示为一定距离范围(如小于1米),用于约束通过测距操作所得距离值与实际距离之间的差值。响应时间(response time)可以表示低延迟响应或高延迟响应,或者是具体延迟的时间(例如,在具体延迟的时间内执行测距或获得测距结果),也可以是具体响应时间点(例如,在响应时间点或时间点之前获得测距结果),响应时间用于约束测距时间消耗。测距服务质量类别(rangingQoS class)可以是尽力而为类别(best effort class)、可保障类别(assured class)、高延迟类别(high latency class)、低延迟类别(low latency class)。
示例性地,若测距精度#1为1米(1m),响应时间#1的具体延迟时间为5s,则可以确定测距方式#1为单边双向测距;若测距精度#1为0.5米(0.5m),响应时间#1为6s点,则可以确定测距方式#1为双边双向测距。
或者,若测距精度#1为1米(1m),则可以确定测距方式#1为单边双向测距;若测距精度#1为0.5米(0.5m),则可以确定测距方式#1为双边双向测距。
或者,若响应时间#1的具体延迟时间为5s,则可以确定测距方式#1为单边双向测距;若响应时间#1的具体延迟时间为6s,则可以确定测距方式#1为双边双向测距。
或者,若测距服务质量类别#1为低延迟类别low latency class,则可以确定测距方式#1为单边双向测距;若测距服务质量类别#1为可保障类别,则可以确定测距方式#1为双边双向测距。
方式2:UE1根据UE1的测距能力和UE2的测距能力确定测距方式#1。
具体地,UE1的测距能力表示UE1所支持的测距方式,UE2的测距能力表示UE2所支持的测距方式。
示例性地,若UE1所支持的测距方式包括单边双向测距、双边双向测距,UE2所支持的测距方式包括单边双向测距,则可以确定测距方式#1为单边双向测距。
方式3:UE1根据UE1授权的测距方式和UE2授权的测距方式确定测距方式#1。
示例性地,若UE1授权的测距方式包括单边双向测距、双边双向测距,UE2授权的测距方式包括单边双向测距,则可以确定测距方式#1为单边双向测距。
具体地,UE1可以根据上述方式1、方式2、方式3中的至少一种方式确定测距方式#1。
另外地,上述测距精度#1、响应时间#1、测距服务质量类别#1可以包括多个不同等级的测距精度#1、响应时间#1、测距服务质量类别#1。当根据高测距精度、快响应时间或高服务质量类别确定的测距方式得到的测距结果不能满足测距业务的需求时,再根据较高精度、较快响应时间或较高服务质量类别来确定测距方式进行测距,以此类推,直到确定的测距方式的测距结果可以满足上述测距精度#1、响应时间#1或测距服务质量类别#1包括的多个不同等级的测距精度、响应时间或测距服务质量类别中的至少一种为止。
步骤S320,UE1将确定的测距方式#1发送给UE2。
其中,步骤S320为可选的。
可选地,UE1向UE2发送PC5信令消息或PC5无线资源控制消息,PC5信令消息或PC5无线资源控制消息中包括测距方式#1。
步骤S322,UE1与UE2基于测距方式#1进行测距。
应理解,UE1与UE2在不同的测距方式下进行测距,所执行的测距操作是不同的。
示例性地,若UE1确定的测距方式#1为单边双向测距,则UE1发送初始测距信号1,UE2在接收到初始测距信号1后向UE1发送用于反馈的反馈测距信号2。UE1在接收到该反馈测距信号2后,计算发送初始测距信号1和接收反馈测距信号2之间的时差1。UE2计算接收到初始测距信号1和发送反馈测距信号2之间的时差2,并将时差2的信息反馈给UE1。
示例性地,若UE1确定的测距方式#1为双边双向测距,则UE1发送初始测距信号1,UE2在接收到初始测距信号1后向UE1发送用于反馈的反馈测距信号2。UE1在接收到该反馈测距信号2后,再向UE2发送响应测距信号3。UE1计算发送初始测距信号1和接收反馈测距信号2之间的时差1,以及发送响应测距信号3和接收反馈测距信号2之间的时差3。UE2计算接收到初始测距信号1和发送反馈测距信号2之间的时差2,以及发送反馈测距信号2和接收响应测距信号3之间的时差4,并将时差2和时差4的信息反馈给与UE1。
应理解,上述测距精度#1中可以包括多个不同等级的测距精度和/或响应时间,若UE1根据高精度等级或快响应时间确定的测距方式的测量结果不能满足所采用的测距精度或响应时间,则UE1可以继续确定较低精度等级或较慢响应时间的测距方式进行测距,直到所确定的测距方式的测量结果能够满足所采用的测距精度或响应时间。
通过上述的方法,UE1可以根据定位业务的实际需求或者根据测距双方的授权信息或者测距双方的能力信息,高效率地确定出符合要求的测距方式。
当UE1与UE2之间存在障碍物等不能支持直接测距时,本申请提供另一种确定测距方式的方法,如图4所示。该实施例可以应用于辅助UE辅助UE1和UE2测距的场景。
步骤S411,UE1从AMF接收消息#1,该消息#1包括UE1授权的测距方式。
具体地,PCF可以向AMF发送消息#1A,该消息#1A包括UE1授权的测距方式,如图4中步骤S410所示;AMF接收到消息#1A后可以向UE1发送消息#1,该消息#1包括UE1授权的测距方式。
具体地,上述UE1授权的测距方式可以包括单边双向测距、双边双向测距等。
作为示例而非限定,上述UE1授权的测距方式可以根据UE1的签约信息确定。
其中,步骤S410为可选的。
可选地,该步骤S410还可以替换为UE1从PCF接收UE1授权的测距方式。
步骤S413,UE2从AMF接收消息#2,该消息#2包括UE2授权的测距方式。
具体地,PCF可以向AMF发送消息#2A,该消息#2A包括UE2授权的测距方式,如图4中步骤S412所示;AMF接收到消息#2A后可以向UE2发送消息#2,该消息#2包括UE2授权的测距方式。
具体地,上述UE2授权的测距方式可以包括单边双向测距、双边双向测距等。
作为示例而非限定,上述UE2授权的测距方式可以根据UE2的签约信息确定。
其中,步骤S412是可选的。
可选地,该步骤S412还可以替换为UE2从PCF接收UE2授权的测距方式。
步骤S415,辅助UE从AMF接收消息#3,该消息#3包括辅助UE授权的测距方式。
具体地,PCF可以向AMF发送消息#3A,该消息#3A包括辅助UE授权的测距方式,如图4中步骤S414所示;AMF接收到消息#3A后可以向辅助UE发送消息#3,该消息#3包括辅助UE授权的测距方式。
具体地,上述辅助UE授权的测距方式可以包括单边双向测距、双边双向测距等。
作为示例而非限定,上述辅助UE授权的测距方式可以根据辅助UE的签约信息确定。
其中,步骤S414是可选的。
可选地,该步骤S414还可以替换为辅助UE从PCF接收辅助UE授权的测距方式。
其中,步骤S410、步骤S412、步骤S414为可选的。
步骤S416,UE1接收测距请求消息,该测距请求消息用于请求测量UE1和UE2之间的距离。
具体地,该测距请求消息中可以包括测距精度#1、响应时间#1、测距服务质量类别#1中的至少一种,该测距精度#1表示UE1和UE2之间测距的精度要求,该响应时间#1表示UE1和UE2之间测距的时间要求。
具体地,上述测距服务质量类别#1可以是定位服务质量等级,该定位服务质量等级包括严格等级、非严格等级、尽力而为等级、可保障等级等。
另外地,该测距精度#1可以看作是阈值#1,该阈值#1表示UE1和UE2之间测距的精度要求的最低值;该响应时间#1可以看作是阈值#2,该阈值#2表示UE1和UE2之间测距的延迟时间的最大值。
具体地,上述测距请求消息也可以是UE1的应用层发送给UE1的,或者也可以是其它的UE3发送给UE1的,或者也可以是LMF发送给UE1的,本申请对此不作限定。
可选地,该步骤S416可替换为,UE1从UE1的应用层接收测距请求,该测距请求用于请求测量UE1和UE2之间的距离。UE1从UE1的应用层接收测距请求,可以理解为,UE1的网络层从UE1的应用层接收测距请求,后续步骤S418-S430由UE1的网络层执行。
可选地,上述测距请求消息也可以是相对定位请求消息,该相对定位请求消息用于请求终端设备之间的相对位置,即包括相对距离和相对角度。
当UE1接收上述测距请求消息,但是UE1和UE2的直接测距(direct ranging)不能支持时,UE1执行发现辅助UE的流程,该辅助UE用于辅助UE1和UE2之间的测距。
步骤S418,UE1获取辅助UE的测距能力和/或辅助UE授权的测距方式。
具体地,辅助UE的测距能力表示辅助UE所支持的测距方式,辅助UE的测距能力可以包括单边双向测距、双边双向测距等。
应理解,上述辅助UE授权的测距方式和上述辅助UE所支持的测距方式可能是部分相同,也可能是全部相同,也可能全部不相同,本申请对此不作限定。
类似地,上述UE1授权的测距方式和UE1所支持的测距方式可能是部分相同,也可能是全部相同,也可能全部不相同,本申请对此不作限定。
其中,步骤S418为可选的。
步骤S420,UE1获取UE2的测距能力和/或UE2授权的测距方式。
具体地,UE2的测距能力表示UE2所支持的测距方式,UE2的测距能力可以包括单 边双向测距、双边双向测距等。
应理解,上述UE2授权的测距方式和上述UE2所支持的测距方式可能是部分相同,也可能是全部相同,也可能全部不相同,本申请对此不作限定。
其中,步骤S420和步骤S410、S412、S414、S416、S418的先后顺序关系不做限定。
其中,步骤S420为可选的。
步骤S422,UE1根据测距精度#1、响应时间#1、测距服务质量类别#1中的至少一种确定测距方式#2和测距方式#3。该测距方式#2表示UE1与辅助UE之间的测距方式,该测距方式#3表示UE2与辅助UE之间的测距方式。
其中,测距精度(ranging accuracy)可以表示为一定距离范围(如小于1米),用于约束通过测距操作所得距离值与实际距离之间的差值。响应时间(response time)可以表示低延迟响应或高延迟响应,或者是具体延迟的时间(例如,在具体延迟的时间内执行测距或获得测距结果),也可以是具体响应时间点(例如,在响应时间点或时间点之前获得测距结果),响应时间用于约束测距时间消耗。测距服务质量类别(rangingQoS class)可以是尽力而为类别(best effort class)、可保障类别(assured class)、高延迟类别(high latency class)、低延迟类别(low latency class)。
示例性地,UE1可以根据多种方法确定测距方式#2和测距方式#3:
方式1:UE1根据测距精度#1、响应时间#1、测距服务质量类别#1中的至少一种确定测距方式#2和测距方式#3。
示例性地,UE1可以根据测距精度#1、响应时间#1、测距服务质量类别#1中的至少一种与所需采用的测距方式之间的对应关系或映射表来确定测距方式#2和测距方式#3,该对应关系可以是UE1预配置的,如表1所示。
表1
其中,该对应关系或映射表可以本地预配置或从核心网网元(例如,PCF)处获取。
方式2:UE1根据UE1的测距能力和辅助UE的测距能力确定测距方式#2,UE1根据UE2的测距能力和辅助UE的测距能力确定测距方式#3。
具体地,UE1的测距能力表示UE1所支持的测距方式,UE2的测距能力表示UE2缩尺吃的测距方式,辅助UE的测距能力表示辅助UE所支持的测距方式。
示例性地,若UE1所支持的测距方式包括单边双向测距、双边双向测距,辅助UE所支持的测距方式包括单边双向测距,则可以确定测距方式#2为单边双向测距。
类似地,若UE2所支持的测距方式包括单边双向测距、双边双向测距,辅助UE所支持的测距方式包括单边双向测距,则可以确定测距方式#3为单边双向测距。
方式3:UE1根据UE1授权的测距方式和辅助UE授权的测距方式确定测距方式#2, UE1根据UE2授权的测距方式和辅助UE授权的测距方式确定测距方式#3。
示例性地,若UE1授权的测距方式包括单边双向测距、双边双向测距,辅助UE授权的测距方式包括单边双向测距,则可以确定测距方式#2为单边双向测距。
类似地,若UE2授权的测距方式包括单边双向测距、双边双向测距,辅助UE授权的测距方式包括单边双向测距,则可以确定测距方式#3为单边双向测距。
具体地,UE1可以根据上述方式1、方式2、方式3中的至少一种方式确定测距方式#2和测距方式#3。
步骤S424,UE1将确定的测距方式#2发送给辅助UE。
步骤S426,UE1与辅助UE基于测距方式#2进行测距。
示例性地,若UE1确定的测距方式#2为单边双向测距,则UE1发送初始测距信号1,辅助UE在接收到初始测距信号1后向UE1发送用于反馈的反馈测距信号2。UE1在接收到该反馈测距信号2后,计算发送初始测距信号1和接收反馈测距信号2之间的时差1。辅助UE计算接收到初始测距信号1和发送反馈测距信号2之间的时差2,并将时差2的信息反馈给UE1。
示例性地,若UE1确定的测距方式#2为双边双向测距,则UE1发送初始测距信号1,辅助UE在接收到初始测距信号1后向UE1发送用于反馈的反馈测距信号2。UE1在接收到该反馈测距信号2后,再向辅助UE发送响应测距信号3。UE1计算发送初始测距信号1和接收反馈测距信号2之间的时差1,以及发送响应测距信号3和接收反馈测距信号2之间的时差3。辅助UE计算接收到初始测距信号1和发送反馈测距信号2之间的时差2,以及发送反馈测距信号2和接收响应测距信号3之间的时差4,并将时差2和时差4的信息反馈给与UE1。
应理解的是,步骤S424和S426为可选的。在UE1已知UE1与辅助UE之间的测距结果情况下(例如,UE1与辅助UE在步骤S416之前执行测距操作),可不执行步骤S424和S426。相应地,在步骤S422中UE1不需要确定测距方式#2或参数#2(即步骤S422可替换为,确定测距方式#3或参数#3)。
步骤S428,UE1将确定的测距方式#3发送给UE2。
具体地,UE1还可以将辅助UE的标识信息发送给UE2。
可选地,步骤S430,UE1将确定的测距方式#3发送给辅助UE。
具体地,UE1还可以将UE2的标识信息发送给辅助UE。
步骤S432,UE2与辅助UE基于测距方式#3进行测距。
示例性地,若UE1确定的测距方式#3为单边双向测距,则UE2发送初始测距信号1,辅助UE在接收到初始测距信号1后向UE2发送用于反馈的反馈测距信号2。UE2在接收到该反馈测距信号2后,计算发送初始测距信号1和接收反馈测距信号2之间的时差1。辅助UE计算接收到初始测距信号1和发送反馈测距信号2之间的时差2,并将时差2的信息反馈给UE2。
示例性地,若UE1确定的测距方式#3为双边双向测距,则UE2发送初始测距信号1,辅助UE在接收到初始测距信号1后向UE2发送用于反馈的反馈测距信号2。UE2在接收到该反馈测距信号2后,再向辅助UE发送响应测距信号3。UE2计算发送初始测距信号1和接收反馈测距信号2之间的时差1,以及发送响应测距信号3和接收反馈测距信号2 之间的时差3。辅助UE计算接收到初始测距信号1和发送反馈测距信号2之间的时差2,以及发送反馈测距信号2和接收响应测距信号3之间的时差4,并将时差2和时差4的信息反馈给与UE2。
可选地,在步骤S426和S432之后,UE1可以基于UE1与辅助UE的相对位置(即上述步骤S426获得的测距结果)和UE2与辅助UE的相对位置(即上述步骤S432获得的测距结果)计算UE1与UE2之间的相对位置,并反馈给测距请求消息的发送方(如LMF、UE3或UE1的应用层)。另外地,UE1还可以根据上述测距方式#2的实际测距精度和上述测距方式#3的实际测距精度计算出UE1与UE2之间测距的实际测距精度,该实际测距精度可以用于测距方式的调整。其中,测距方式#2的实际测距精度可以根据步骤S426获得的测距结果进行计算得到,测距方式#3的实际测距精度可以根据步骤S432获得的测距结果进行计算得到。UE1还可以将UE1与UE2之间测距的实际测距精度向LMF、UE3或UE1的应用层反馈。
另外地,UE1可以从UE2或辅助UE处获取上述测距方式#3的实际测距精度,UE1也可以从辅助UE处获取上述测距方式#2的实际测距精度。
可选地,若UE1与UE2之间测距的实际测距精度不能满足测距精度#1,则UE1可以再执行步骤S422,UE1确定测距方式#2和测距方式#3。应理解的是,UE1选择新的测距方式,尽力满足测距精度#1。
可选地,上述步骤S422可以替换为,UE1根据测距精度#1、响应时间#1、测距服务质量类别#1中的至少一种确定参数#2和测距方式#3;或者,UE1根据测距精度#1、响应时间#1、测距服务质量类别#1中的至少一种确定测距方式#2和参数#3;或者,UE1根据测距精度#1、响应时间#1、测距服务质量类别#1中的至少一种确定参数#2和参数#3。该参数#2可以被用于确定测距方式#2,该参数#3可以被用于确定测距方式#3。
具体地,上述参数#2可以包括测距精度#2、响应时间#2、测距服务质量类别#2中的至少一种;上述参数#3可以包括测距精度#3、响应时间#3、测距服务质量类别#3中的至少一种。具体地,测距精度#2、测距精度#3可以高于测距精度#1,响应时间#2、响应时间#3的延迟时间可以低于响应时间#1,测距服务质量类别#2、测距服务质量类别#3的服务质量等级可以高于测距服务质量类别#1的服务质量等级。
应理解的是,在UE1已知UE1与辅助UE之间的测距结果情况下,在步骤S422中UE1不需要确定测距方式#2或参数#2。
在UE1根据测距精度#1、响应时间#1、测距服务质量类别#1中的至少一种确定参数#2和测距方式#3情况下,步骤S424可替换为,UE1将确定的参数#2发送给辅助UE,由辅助UE根据参数#2确定测距方式#2。
在UE1根据测距精度#1、响应时间#1、测距服务质量类别#1中的至少一种确定测距方式#2和参数#3情况下,步骤S428可替换为,UE1将确定的参数#3发送给UE2,由UE2根据参数#3确定测距方式#3。
在UE1根据测距精度#1、响应时间#1、测距服务质量类别#1中的至少一种确定参数#2和参数#3情况下,步骤S424可替换为,UE1将确定的参数#2发送给辅助UE,由辅助UE根据参数#2确定测距方式#2,步骤S428可替换为,UE1将确定的参数#3发送给UE2,由UE2根据参数#3确定测距方式#3。
在两个终端设备不能直接通信的场景下,通过上述引入辅助UE的方法,UE1可以根据测距业务的实际需求或者根据辅助UE、UE2授权的测距方式或者辅助UE、UE2的测距能力信息,高效率地确定出符合要求的测距方式。
除了上述图4所示的方法外,本申请还可以提供另外一种UE1与UE2之间存在障碍物等不能支持直接测距时的确定测距方式的方法,如图5所示。该实施例也可以应用于辅助UE辅助UE1和UE2测距的场景。
步骤S510~步骤S520可以参照上述步骤S410~步骤S420,此处不再赘述。
其中,步骤S510~步骤S514,步骤S518~步骤S520为可选的。
步骤S522,UE1根据测距精度#1确定测距精度#2和测距精度#3。
可选地,该测距精度#2和测距精度#3高于测距精度#1。
具体地,该测距精度#2可以看作是阈值#3,该阈值#3表示UE1和辅助UE之间测距的精度要求的最低值;该测距精度#3可以看作是阈值#4,该阈值#4表示UE2和辅助UE之间测距的精度要求的最低值。
可替换地,UE1可以根据响应时间#1确定响应时间#3,该响应时间#3的延迟时间低于响应时间#1的延迟时间。该响应时间#3可以看作是阈值#5,该阈值#5可以表示UE2和辅助UE之间测距的延迟时间的最大值。
可替换地,UE1可以根据响应时间#1确定响应时间#2和响应时间#3,该响应时间#2的延迟时间和该响应时间#3的延迟时间小于响应时间#1的延迟时间。该响应时间#2可以看作是阈值#6,该阈值#6可以表示UE1和辅助UE之间测距的延迟时间的最大值。
可替换地,UE1可以根据测距服务质量类别#1确定测距服务质量类别#2和测距服务质量类别#3,测距服务质量类别#2和测距服务质量类别#3的服务质量等级高于测距服务质量类别#1的服务质量等级。
步骤S524,UE1根据测距精度#2、响应时间#1、测距服务质量类别#2中的至少一种确定测距方式#2。
可选地,UE1可以将上述测距精度#2、响应时间#1、测距服务质量类别#2中的至少一种发送给辅助UE,由辅助UE来确定测距方式#2。
可选地,UE1可以将上述测距精度#2、响应时间#2、测距服务质量类别#2中的至少一种发送给辅助UE,由辅助UE来确定测距方式#2。
示例性地,UE1或辅助UE根据测距精度#2、响应时间#1、测距服务质量类别#2中的至少一种与所需采用的测距方式之间的对应关系或映射表来确定测距方式#2,该对应关系可以是UE1或辅助UE预配置的,如表2所示。
表2
其中,该对应关系或映射表可以本地预配置或从核心网网元(例如,PCF)处获取。
步骤S526,UE1与辅助UE基于测距方式#2进行测距。
示例性地,若确定的测距方式#2为单边双向测距,则UE1发送初始测距信号1,辅助UE在接收到初始测距信号1后向UE1发送用于反馈的反馈测距信号2。UE1在接收到该反馈测距信号2后,计算发送初始测距信号1和接收反馈测距信号2之间的时差1。辅助UE计算接收到初始测距信号1和发送反馈测距信号2之间的时差2,并将时差2的信息反馈给UE1。
示例性地,若确定的测距方式#2为双边双向测距,则UE1发送初始测距信号1,辅助UE在接收到初始测距信号1后向UE1发送用于反馈的反馈测距信号2。UE1在接收到该反馈测距信号2后,再向辅助UE发送响应测距信号3。UE1计算发送初始测距信号1和接收反馈测距信号2之间的时差1,以及发送响应测距信号3和接收反馈测距信号2之间的时差3。辅助UE计算接收到初始测距信号1和发送反馈测距信号2之间的时差2,以及发送反馈测距信号2和接收响应测距信号3之间的时差4,并将时差2和时差4的信息反馈给与UE1。
应理解的是,步骤S524和S526为可选的。在UE1已知UE1与辅助UE之间的测距结果情况下(例如,UE1与辅助UE在步骤S516之前执行测距操作),可不执行步骤S524和S526。相应地,在步骤S522中UE1不需要确定测距精度#2或测距服务质量类别#2(即步骤S522可替换为,确定测距精度#3或响应时间#3或测距服务质量类别#3)。
步骤S528,UE1将确定的测距精度#3、响应时间#3、测距服务质量类别#3中的至少一种发送给UE2。
具体地,UE1还可以将辅助UE的标识信息发送给UE2。
步骤S530,UE2根据测距精度#3、响应时间#3、测距服务质量类别#3中的至少一种确定测距方式#3。
示例性地,UE2可以根据测距精度#3、响应时间#3、测距服务质量类别#3中的至少一种与所需采用的测距方式之间的对应关系或映射表来确定测距方式#3。其中,该对应关系或映射表可以本地预配置或从核心网网元(例如,PCF)处获取。
可选地,步骤S532,UE1将确定的测距精度#3、响应时间#3、测距服务质量类别#3中的至少一种发送给辅助UE。
具体地,UE1还可以将UE2的标识信息发送给辅助UE。
可选地,步骤S534,辅助UE根据测距精度#3、响应时间#3、测距服务质量类别#3中的至少一种确定测距方式#3。
示例性地,辅助UE或UE2可以根据测距精度#3、响应时间#3、测距服务质量类别#3中的至少一种与所需采用的测距方式之间的对应关系或映射表来确定测距方式#3。该对应关系可以是UE2或辅助UE预配置的,如表3所示。
表3
其中,该对应关系或映射表可以本地预配置或从核心网网元(例如,PCF)处获取。
可选地,UE1也可以基于测距精度#3、响应时间#3、测距服务质量类别#3中的至少一种确定测距方式#3,并将测距方式#3发送给UE2和/或辅助UE。
步骤S536,UE2与辅助UE基于测距方式#3进行测距。
示例性地,若确定的测距方式#3为单边双向测距,则UE2发送初始测距信号1,辅助UE在接收到初始测距信号1后向UE2发送用于反馈的反馈测距信号2。UE2在接收到该反馈测距信号2后,计算发送初始测距信号1和接收反馈测距信号2之间的时差1。辅助UE计算接收到初始测距信号1和发送反馈测距信号2之间的时差2,并将时差2的信息反馈给UE2。
示例性地,若确定的测距方式#3为双边双向测距,则UE2发送初始测距信号1,辅助UE在接收到初始测距信号1后向UE2发送用于反馈的反馈测距信号2。UE2在接收到该反馈测距信号2后,再向辅助UE发送响应测距信号3。UE2计算发送初始测距信号1和接收反馈测距信号2之间的时差1,以及发送响应测距信号3和接收反馈测距信号2之间的时差3。辅助UE计算接收到初始测距信号1和发送反馈测距信号2之间的时差2,以及发送反馈测距信号2和接收响应测距信号3之间的时差4,并将时差2和时差4的信息反馈给UE2。
可选地,在步骤S526和S536之后,UE1可以基于UE1与辅助UE的相对位置(即上述步骤S526获得的测距结果)和UE2与辅助UE的相对位置(即上述步骤S536获得的测距结果)计算UE1与UE2之间的相对位置,并反馈给测距请求消息的发送方(如LMF,UE3或UE1应用层)。
另外地,UE1还可以根据上述测距方式#2的实际测距精度和上述测距方式#3的实际测距精度计算出UE1与UE2之间测距的实际测距精度,该实际测距精度可以用于测距方式的调整。其中,测距方式#2的实际测距精度可以根据步骤S526获得的测距结果进行计算得到,测距方式#3的实际测距精度可以根据步骤S536获得的测距结果进行计算得到。
另外地,UE1可以从UE2或辅助UE处获取上述测距方式#3的实际测距精度,UE1也可以从辅助UE处获取上述测距方式#2的实际测距精度。
可选地,若UE1与UE2之间测距的实际测距精度不能满足测距精度#1,则UE1可以再执行步骤S522,UE1确定测距精度#2和测距精度#3。应理解的是,UE1对测距精度#2和测距精度#3进行重新配置,尽力满足测距精度#1。
在两个终端设备不能直接通信的场景下,通过上述引入辅助UE的方法,UE1可以合理设置两个终端设备分别与辅助终端设备的测距精度和响应时间,使得最终确定的测距方式尽可能满足定位业务的需求。
上述两个终端设备之间测距的场景还可以应用于一个目标终端设备的定位场景中。例如,当位置服务客户端(location service client,LCS client)或目标终端设备根据从该目标终端设备获取的测量数据确定LCS服务质量不满足或定位时测量的小区数目不足时,则确定采用混合定位的方式对该目标终端设备进行定位。
具体地,上述混合定位的方式包括对目标终端设备发现的辅助终端设备进行定位以及对该目标终端设备和该辅助终端设备进行测距,进而计算出目标终端设备的位置。
具体地,上述辅助终端设备也可以称为定位终端设备(located UE)或参考终端设备(reference UE)。
本申请提供一种对上述目标终端设备(下文简称目标UE)进行定位的方法。其中,该方法中包括目标UE和上述辅助终端设备(下文简称辅助UE)之间的测距方式的方法,如图6所示。该实施例可以应用于网络辅助的侧链定位(network assisted sidelink positioning)场景中。
步骤S610,LMF#1获取定位精度#4、响应时间#4、定位服务质量类别#4(LCS quality of service class,LCS QoS Class)中的至少一种。该LMF#1是为目标UE服务的LMF。
具体地,上述定位服务质量类别可以是定位服务质量等级,该定位服务质量等级包括严格等级、非严格等级、尽力而为(best effort class)等级、可保障等级(assured class)等。
具体地,上述定位精度#4可以看作是阈值#7,该阈值#7表示目标UE的定位精度要求的最低值;该响应时间#4可以看作是阈值#8,该阈值#8表示目标UE的定位时间的延迟时间的最大值。
可选地,LMF#1从AMF#1接收确定位置请求(Determine Location Request)消息,该消息中包括定位精度#4和/或响应时间#4,AMF#1是目标UE的接入和移动性管理网元。
步骤S612,LMF#1确定辅助UE辅助目标UE的定位。
可选地,当LMF#1可以根据从该目标UE获取的测量数据确定LCS服务质量不满足或定位时测量的小区数目不足时,则确定辅助UE辅助目标UE的定位,或采用混合定位的方式对该目标UE进行定位。
可选地,LMF#1向目标UE请求获取/发现辅助UE,或者LMF#1通知目标UE采用混合定位的方式。目标UE执行辅助UE发现流程,确定选择辅助UE。在发现流程中,目标UE获知辅助UE的标识信息。目标UE向LMF#1发送辅助UE的标识信息。
具体地,上述辅助UE的标识信息可以是用户隐藏标识(subscription concealed identifier,SUCI)或者通用公共用户标识(generic public subscription identity,GPSI)或者应用层标识。
其中,步骤S612为可选的。
步骤S614,LMF#1根据定位精度#4、响应时间#4、定位服务质量类别#4中的至少一种确定测距方式#4和定位方法#1。该测距方式#4被用于目标UE和辅助UE之间的测距,该定位方法#1被用于对辅助UE进行定位。
其中,上述多种定位方法可以包括多小区往返时延(Multi-Round Trip Time,Multi-RTT)、下行到达时间差(Downlink time difference of arrival,DL-TDOA)、上行到达时间差(Uplink time difference of arrival,UL-TDOA)等。
具体地,LMF#1可以根据多种方法确定测距方式#4和定位方法#1:
方式1:LMF#1可以根据定位精度#4、响应时间#4、定位服务质量类别#4中的至少一种确定测距方式#4和定位方法#1。
示例性地,LMF#1可以根据定位精度#4、响应时间#4、定位服务质量类别#4中的至少一种与所需采用的测距方式、定位方法之间的对应关系或映射表来确定测距方式#4和定位方法#1,该对应关系可以是LMF#1预配置的,如表4所示。
表4

其中,该对应关系或映射表可以本地预配置或从核心网网元(例如,PCF)处获取。
示例性地,若测距精度#1为1米(1m),响应时间#1的延迟时间为6s,则可以确定测距方式#4为单边双向测距;若测距精度#1为0.5米(0.5m),响应时间#1的延迟时间为7s,则可以确定测距方式#4为双边双向测距。
或者,若测距精度#1为1米(1m),则可以确定测距方式#4为单边双向测距;若测距精度#1为0.5米(0.5m),则可以确定测距方式#4为双边双向测距。
或者,若响应时间#1的延迟时间为6s,则可以确定测距方式#4为单边双向测距;若响应时间#4的延迟时间为7s,则可以确定测距方式#4为双边双向测距。
或者,若定位服务质量等级#1为非严格等级,则可以确定测距方式#4为单边双向测距;若定位服务质量等级#1为严格等级,则可以确定测距方式#4为双边双向测距。
方式2:LMF#1根据目标UE的测距能力和辅助UE的测距能力确定测距方式#4。
具体地,目标UE的测距能力表示目标UE所支持的测距方式,辅助UE的测距能力表示辅助UE所支持的测距方式。
示例性地,若目标UE所支持的测距方式包括单边双向测距、双边双向测距,辅助UE所支持的测距方式包括单边双向测距,则可以确定测距方式#4为单边双向测距。
方式3:LMF#1根据目标UE授权的测距方式和辅助UE授权的测距方式确定测距方式#4。
示例性地,若目标UE授权的测距方式包括单边双向测距、双边双向测距,辅助UE授权的测距方式包括单边双向测距,则可以确定测距方式#4为单边双向测距。
具体地,LMF#1可以根据上述方式1、方式2、方式3中的至少一种方式确定测距方式#4。
具体地,LMF#1可以根据测距精度#4和/或响应时间#4和/或LCS QoS Class确定定位方法#1。
步骤S616,LMF#1将确定的测距方式#4发送给目标UE。
具体地,LMF#1还可以将辅助UE的标识信息发送给目标UE。
具体地,上述测距方式#4可以携带在LMF#1向目标UE发送的下行定位消息(downlink positioning message)中或者也可以携带在LCS周期性触发的调用请求消息(LCS period-triggered invoke request message)中。
可选地,步骤S618,LMF#1将确定的测距方式#4发送给辅助UE。
具体地,LMF#1还可以将目标UE的标识信息发送给辅助UE。
步骤S620,目标UE与辅助UE基于测距方式#4进行测距。
示例性地,若LMF#1确定的测距方式#4为单边双向测距,则目标UE发送初始测距信号1,辅助UE在接收到初始测距信号1后向目标UE发送用于反馈的反馈测距信号2。目标UE在接收到该反馈测距信号2后,计算发送初始测距信号1和接收反馈测距信号2 之间的时差1。辅助UE计算接收到初始测距信号1和发送反馈测距信号2之间的时差2,并将时差2的信息反馈给目标UE。
示例性地,若LMF#1确定的测距方式#4为双边双向测距,则目标UE发送初始测距信号1,辅助UE在接收到初始测距信号1后向目标UE发送用于反馈的反馈测距信号2。目标UE在接收到该反馈测距信号2后,再向辅助UE发送响应测距信号3。目标UE计算发送初始测距信号1和接收反馈测距信号2之间的时差1,以及发送响应测距信号3和接收反馈测距信号2之间的时差3。辅助UE计算接收到初始测距信号1和发送反馈测距信号2之间的时差2,以及发送反馈测距信号2和接收响应测距信号3之间的时差4,并将时差2和时差4的信息反馈给目标UE。
步骤S622,目标UE将上述的测距结果或测距测量数据反馈给LMF#1。
步骤S624,LMF#1将确定的定位方法#1发送给LMF#2。该LMF#2是为辅助UE服务的LMF。
具体地,LMF#1可以将定位方法#1先发送给为辅助UE服务的AMF,然后由为辅助UE服务的AMF将定位方法#1发送给LMF#2。或者,LMF#1可以将定位方法#1先发送给GMLC,GMLC再将定位方法#1发送给辅助UE服务的AMF,然后由为辅助UE服务的AMF将定位方法#1发送给LMF#2。LMF#2可基于该定位方法#1对辅助UE进行定位并计算辅助UE的位置数据。
可选地,辅助UE也可以是运营商部署的,位置固定,因此辅助UE的位置是LMF#1已知的,不需要再去对辅助UE进行定位。
步骤S626,LMF#2将辅助UE的定位结果反馈给LMF#1。
应理解的是,步骤S624和S626为可选的。在LMF#1已知辅助UE的位置情况下(例如,LMF#1预配置辅助UE的位置,或LMF#1在步骤S612之前执行辅助UE的定位流程),可不执行步骤S624和S626。相应地,在步骤S614中LMF#1不需要确定定位方法#1或参数#5(即步骤S614可替换为,确定测距方式#4或参数#4)。
步骤S628,LMF#1根据上述步骤S622反馈的测距结果和上述步骤S626反馈的定位结果计算目标UE的位置,并向位置服务客户端(location service client,LCS client)或AMF#1反馈计算结果。
另外地,LMF#1还可以根据上述测距方式#4的实际测距精度和上述定位方法#1的实际测距精度计算出目标UE的实际定位精度,该实际定位精度可以用于测距方式和定位方法的调整。
可选地,目标UE的实际定位精度不能满足定位精度#4,则LMF#1可以再执行步骤S614,LMF#1确定测距方式#4和定位方法#1。应理解的是,LMF#1更新测距方式#4和定位方法#1,尽力满足定位精度#4。
可选地,目标UE的实际定位精度不能满足定位精度#4,则LMF#1可以再执行步骤S612,触发目标UE重新选择辅助UE,再执行步骤S614-S628。
另外地,LMF#1可以从目标UE或辅助UE处获取上述测距方式#4的实际测距精度,LMF#1也可以从辅助UE或LMF#2处获取上述定位方法#1的实际定位精度。
可替换地,上述步骤S614中的LMF#1可以根据定位精度#4、响应时间#4、定位服务 质量类别#4中的至少一种确定参数#4和定位方法#1;或者,LMF#1可以根据定位精度#4、响应时间#4、定位服务质量类别#4中的至少一种确定测距方式#4和参数#5;或者,LMF#1可以根据定位精度#4、响应时间#4、定位服务质量类别#4中的至少一种确定参数#4和参数#5。该参数#4可以被用于确定测距方式#4,该参数#5可以被用于确定定位方法#1。具体地,上述参数#4可以包括测距精度#5、响应时间#5、测距服务质量类别#5中的至少一种;上述参数#5可以包括定位精度#6、响应时间#5、定位服务质量类别#6中的至少一种。
具体地,测距精度#5、定位精度#6可以高于定位精度#4,响应时间#5、响应时间#5的延迟时间可以低于响应时间#4,测距服务质量类别#5、定位服务质量类别#6的服务质量等级可以高于定位服务质量类别#4的服务质量等级。
应理解的是,在LMF#1已知辅助UE的位置情况下(例如,LMF#1预配置辅助UE的位置,或LMF#1在步骤S516之前执行辅助UE的定位流程),LMF#1不需要确定定位方法#1或参数#5(即步骤S614可替换为,确定测距方式#4或参数#4)。
在LMF#1根据定位精度#4、响应时间#4、定位服务质量类别#4中的至少一种确定参数#4和定位方法#1情况下,步骤S616可替换为,LMF#1将参数#4发送给目标UE,由目标UE根据参数#4确定测距方式#4,步骤S618可替换为,LMF#1将参数#4发送给辅助UE,由辅助UE根据参数#4确定测距方式#4。
在LMF#1根据定位精度#4、响应时间#4、定位服务质量类别#4中的至少一种确定测距方式#4和参数#5情况下,步骤S624可替换为,LMF#1将参数#5发送给LMF#2,由LMF#2根据参数#5确定定位方法#1。
在LMF#1根据定位精度#4、响应时间#4、定位服务质量类别#4中的至少一种确定参数#4和参数#5情况下,步骤S616可替换为,LMF#1将参数#4发送给目标UE,由目标UE根据参数#4确定测距方式#4,步骤S618可替换为,LMF#1将参数#4发送给辅助UE,由辅助UE根据参数#4确定测距方式#4,步骤S624可替换为,LMF#1将参数#5发送给LMF#2,由LMF#2根据参数#5确定定位方法#1。
在目标UE的位置测量结果不能满足位置服务的要求时,通过上述引入辅助UE的方法,LMF网元可以根据定位业务的实际需求或者根据目标UE、辅助UE授权的测距方式或者目标UE、辅助UE的测距能力信息,高效率地确定出符合要求的测距方式。
除了上述图6所示的方法外,本申请还可以提供另外一种目标UE的位置测量结果不能满足位置服务的要求时的确定测距方式的方法,如图7所示。该实施例可以应用于网络辅助的侧链定位(network assisted sidelink positioning)场景中。
步骤S710~步骤S712可以参照步骤S610~步骤S612,此处不再赘述。
步骤S714,LMF#1根据定位精度#4确定测距精度#5和定位精度#6。
具体地,该测距精度#5和定位精度#6高于定位精度#4。
具体地,该测距精度#5可以看作是阈值#9,该阈值#9表示目标UE和辅助UE之间测距的精度要求的最低值;该定位精度#6可以看作是阈值#10,该阈值#10表示对辅助UE的定位精度要求的最低值。
可替换地,LMF#1可以根据响应时间#4确定响应时间#5,该响应时间#5的延迟时间低于响应时间#4。该响应时间#5可以看作是阈值#11,该阈值#11可以表示目标UE和辅助UE之间测距的延迟时间的最大值。
可替换地,LMF#1可以根据响应时间#4确定响应时间#5和响应时间#6,该响应时间#5的延迟时间和该响应时间#6的延迟时间小于响应时间#4的延迟时间。该响应时间#6可以看作是阈值#12,该阈值#12可以表示对辅助UE的定位时间的延迟时间的最大值。
可替换地,UE1可以根据定位服务质量类别#4确定测距服务质量类别#5和定位服务质量类别#6,测距服务质量类别#5和定位服务质量类别#6的服务质量等级高于定位服务质量类别#4的服务质量等级。
步骤S716,LMF#1将确定的测距精度#5、响应时间#5、测距服务质量类别#5中的至少一种发送给目标UE。
具体地,LMF#1还可以将辅助UE的标识信息发送给目标UE。
可选地,LMF#1还可以将确定的测距精度#5、响应时间#5、测距服务质量类别#5中的至少一种发送给辅助UE,由辅助UE根据测距精度#5、响应时间#5、测距服务质量类别#5中的至少一种确定测距方式#4。
可选地,LMF#1还可以将目标UE的标识信息发送给辅助UE。
可选地,LMF#1也可以根据测距精度#5、响应时间#5、测距服务质量类别#5中的至少一种确定测距方式#4,并将测距方式#4发送给目标UE或辅助UE。
步骤S718,目标UE根据测距精度#5、响应时间#5、测距服务质量类别#5中的至少一种确定测距方式#4。
示例性地,目标UE可以根据测距精度#5、响应时间#5、测距服务质量类别#5中的至少一种与所需采用的测距方式之间的对应关系来确定测距方式#4,该对应关系可以是目标UE或辅助UE或LMF#1预配置的,如表5所示。
表5
其中,该对应关系或映射表可以本地预配置或从核心网网元(例如,PCF)处获取。
步骤S724,目标UE与辅助UE基于测距方式#4进行测距。
示例性地,若LMF#1确定的测距方式#4为单边双向测距,则目标UE发送初始测距信号1,辅助UE在接收到初始测距信号1后向目标UE发送用于反馈的反馈测距信号2。目标UE在接收到该反馈测距信号2后,计算发送初始测距信号1和接收反馈测距信号2之间的时差1。辅助UE计算接收到初始测距信号1和发送反馈测距信号2之间的时差2,并将时差2的信息反馈给目标UE。
示例性地,若LMF#1确定的测距方式#4为双边双向测距,则目标UE发送初始测距信号1,辅助UE在接收到初始测距信号1后向目标UE发送用于反馈的反馈测距信号2。目标UE在接收到该反馈测距信号2后,再向辅助UE发送响应测距信号3。目标UE计算发送初始测距信号1和接收反馈测距信号2之间的时差1,以及发送响应测距信号3和接收反馈测距信号2之间的时差3。辅助UE计算接收到初始测距信号1和发送反馈测距 信号2之间的时差2,以及发送反馈测距信号2和接收响应测距信号3之间的时差4,并将时差2和时差4的信息反馈给目标UE。
步骤S726,目标UE将上述的测距结果或测距测量数据反馈给LMF#1。
步骤S728,LMF#1将定位精度#6、响应时间#6、定位服务质量类别#6中的至少一种发送给LMF#2。
步骤S730,LMF#2可以基于定位精度#6、响应时间#6、定位服务质量类别#6中的至少一种确定定位方法#1。
示例性地,LMF#2可以根据定位精度#6、响应时间#6、定位服务质量类别#6中的至少一种与所需采用的定位方法#1之间的对应关系或映射表来确定定位方法#1,该对应关系可以是LMF#1或LMF#2预配置的,如表6所示。
表6
其中,该对应关系或映射表可以本地预配置或从核心网网元(例如,PCF)处获取。
可选地,辅助UE也可以是运营商部署的,位置固定,因此辅助UE的位置是LMF#1已知的,不需要再去对辅助UE进行定位。
LMF#2可基于该定位方法#1对辅助UE进行定位并计算辅助UE的位置数据。
步骤S732,LMF#2将辅助UE的定位结果反馈给LMF#1。
应理解的是,步骤S728、S730和S732为可选的。在LMF#1已知辅助UE的位置情况下(例如,LMF#1预配置辅助UE的位置,或LMF#1在步骤S712之前执行辅助UE的定位流程),可不执行步骤步骤S728、S730和S732。相应地,在步骤S714中LMF#1不需要确定测距精度#6、响应时间#6或测距服务质量类别#6(即步骤S714可替换为,确定测距精度#5、响应时间#5或测距服务质量类别#5)。
步骤S734,LMF#1根据上述步骤S726反馈的测距结果或测距测量数据和上述步骤S732反馈的定位结果计算目标UE的位置,并向位置服务客户端(location service client,LCS client)或AMF#1反馈计算结果。
另外地,LMF#1还可以根据上述测距方式#4的实际测距精度和上述定位方法#1的实际测距精度计算出UE1的实际定位精度,该实际定位精度可以用于测距方式和定位方法的调整。
可选地,目标UE的实际定位精度不能满足定位精度#4,则LMF#1可以再执行步骤S714~步骤S728,重新确定测距方式#4和定位方法#1。应理解的是,LMF#1更新测距方式#4和定位方法#1,尽力满足定位精度#4。
可选地,UE1的实际定位精度不能满足定位精度#4,则LMF#1可以再执行步骤S712,触发目标UE重新选择辅助UE,再执行步骤S714-S728。
另外地,LMF#1可以从目标UE或辅助UE处获取上述测距方式#4的实际测距精度,LMF#1也可以从辅助UE处获取上述定位方法#1的实际定位精度。
在目标UE的位置测量结果不能满足位置服务的要求时,通过上述引入辅助UE的方法,LMF网元可以合理设置用于辅助UE的定位精度和响应时间,以及用于目标UE和辅助UE之间测距的测距精度和响应时间,使得最终确定的测距方式以及定位方法尽可能满足定位业务的需求。
图8示出了本申请实施例的发送信息的装置100的示意性框图,该发送信息的装置100可以对应(例如,可以配置于或本身即为)上述图3、图4、图5、图6、图7实施例描述的PCF、UE1、UE2、辅助UE、目标UE、LMF#1、LMF#2以及LMF/UE3/UE1应用层,并且,发送信息的装置100中各模块或单元分别用于执行上述图3、图4、图5、图6、图7实施例描述的PCF、UE1、UE2、辅助UE、目标UE、LMF#1、LMF#2以及LMF/UE3/UE1应用层所执行的各动作或处理过程,这里,为了避免赘述,省略其详细说明。
在本申请实施例中,该装置100可以为图3、图4、图5、图6、图7实施例描述的PCF、UE1、UE2、辅助UE、目标UE、LMF#1、LMF#2以及LMF/UE3/UE1应用层,此情况下,该装置100可以包括:处理器和收发器,处理器和收发器通信连接。
可选地,该装置还包括存储器,存储器与处理器通信连接。可选地,处理器、存储器和收发器可以通信连接,该存储器可以用于存储程序或指令,该处理器用于执行该存储器存储的程序或指令,以控制收发器发送信息或信号。
此情况下,图8所示的装置100中的接口单元可以对应该收发器,图8所示的装置100中的处理单元可以对应该处理器。
在本申请实施例中,该装置100可以为安装在图3、图4、图5、图6、图7实施例描述的PCF、UE1、UE2、辅助UE、目标UE、LMF#1、LMF#2以及LMF/UE3/UE1应用层中的芯片(或者说,芯片系统),此情况下,该装置100可以包括:处理器和输入输出接口,处理器可以通过输入输出接口与图3、图4、图5、图6、图7实施例描述的PCF、UE1、UE2、辅助UE、目标UE、LMF#1、LMF#2以及LMF/UE3/UE1应用层的收发器通信连接,可选地,该装置还包括存储器,存储器与处理器通信连接。可选地,处理器、存储器和收发器可以通信连接,该存储器可以用于存储程序或指令,该处理器用于执行该存储器存储的程序或指令,以控制收发器发送信息或信号。
此情况下,图8所示的装置100中的接口单元可以对应该输入输出接口,图8所示的装置100中的处理单元可以对应该处理器。
图9示出了本申请实施例的接收信息的装置200的示意性框图,该接收信息的装置200可以对应(例如,可以配置用于实现)上述图3、图4、图5、图6、图7实施例描述的PCF、UE1、UE2、辅助UE、目标UE、LMF#1、LMF#2以及LMF/UE3/UE1应用层,并且,接收信息的装置200中各模块或单元分别用于执行上述图3、图4、图5、图6、图7实施例描述的PCF、UE1、UE2、辅助UE、目标UE、LMF#1、LMF#2以及LMF/UE3/UE1应用层所执行的各动作或处理过程,这里,为了避免赘述,省略其详细说明。
在本申请实施例中,该装置200可以为图3、图4、图5、图6、图7实施例描述的PCF、UE1、UE2、辅助UE、目标UE、LMF#1、LMF#2以及LMF/UE3/UE1应用层,此情况下,该装置200可以包括:处理器和收发器,处理器和收发器通信连接,可选地,该 装置还包括存储器,存储器与处理器通信连接。可选地,处理器、存储器和收发器可以通信连接,该存储器可以用于存储程序或指令,该处理器用于执行该存储器存储的程序或指令,以控制收发器接收信息或信号。
此情况下,图9所示的装置200中的接口单元可以对应该收发器,图9所示的装置200中的处理单元可以对应该处理器。
在本申请实施例中,该装置200可以为安装在图3、图4、图5、图6、图7实施例描述的PCF、UE1、UE2、辅助UE、目标UE、LMF#1、LMF#2以及LMF/UE3/UE1应用层中的芯片(或者说,芯片系统),此情况下,该装置200可以包括:处理器和输入输出接口,处理器可以通过输入输出接口与图3、图4、图5、图6、图7实施例描述的PCF、UE1、UE2、辅助UE、目标UE、LMF#1、LMF#2以及LMF/UE3/UE1应用层的收发器通信连接,可选地,该装置还包括存储器,存储器与处理器通信连接。可选地,处理器、存储器和收发器可以通信连接,该存储器可以用于存储程序或指令,该处理器用于执行该存储器存储的程序或指令,以控制收发器接收信息或信号。
此情况下,图9所示的装置200中的接口单元可以对应输入接口,图9所示的装置200中的处理单元可以对应该处理器。
本领域普通技术人员可以意识到,结合本文中所公开的实施例描述的各示例的单元及算法步骤,能够以电子硬件、或者计算机软件和电子硬件的结合来实现。这些功能究竟以硬件还是软件方式来执行,取决于技术方案的特定应用和设计约束条件。专业技术人员可以对特定的应用来使用不同方法来实现所描述的功能,但是这种实现不应认为超出本申请的范围。
所属领域的技术人员可以清楚地了解到,为描述的方便和简洁,上述描述的系统、装置和单元的具体工作过程,可以参考前述方法实施例中的对应过程,在此不再赘述。
在本申请所提供的几个实施例中,应该理解到,所揭露的系统、装置和方法,可以通过其它的方式实现。例如,以上所描述的装置实施例仅是示意性的,例如,所述单元的划分,仅仅为一种逻辑功能划分,实际实现时可以有另外的划分方式,例如多个单元或组件可以结合或者可以集成到另一个系统,或一些特征可以忽略,或不执行。另一点,所显示或讨论的相互之间的耦合或直接耦合或通信连接可以是通过一些接口,装置或单元的间接耦合或通信连接,可以是电性,机械或其它的形式。
所述作为分离部件说明的单元可以是或者也可以不是物理上分开的,作为单元显示的部件可以是或者也可以不是物理单元,即可以位于一个地方,或者也可以分布到多个网络单元上。可以根据实际的需要选择其中的部分或者全部单元来实现本实施例方案的目的。
另外,在本申请各个实施例中的各功能单元可以集成在一个处理单元中,也可以是各个单元单独物理存在,也可以两个或两个以上单元集成在一个单元中。
所述功能如果以软件功能单元的形式实现并作为独立的产品销售或使用时,可以存储在一个计算机可读取存储介质中。基于这样的理解,本申请的技术方案本质上或者说对现有技术做出贡献的部分或者该技术方案的部分可以以软件产品的形式体现出来,该计算机软件产品存储在一个存储介质中,包括若干指令用以使得一台计算机设备(可以是个人计算机,服务器,或者网络设备等)执行本申请各个实施例所述方法的全部或部分步骤。而前述的存储介质包括:U盘、移动硬盘、只读存储器(Read-Only Memory,ROM)、随 机存取存储器(Random Access Memory,RAM)、磁碟或者光盘等各种可以存储程序代码的介质。
以上所述,仅为本申请的具体实施方式,但本申请的保护范围并不局限于此,任何熟悉本技术领域的技术人员在本申请揭露的技术范围内,可轻易想到变化或替换,都应涵盖在本申请的保护范围之内。因此,本申请的保护范围应所述以权利要求的保护范围为准。

Claims (59)

  1. 一种通信的方法,其特征在于,包括:
    第一终端设备获取第一参数,所述第一参数包括第一测距精度、第一测距时间、测距服务质量类别中的至少一种,所述第一参数被用于所述第一终端设备和所述第二终端设备之间的测距;
    所述第一终端设备根据所述第一参数从多种测距方式中确定第一测距方式;
    所述第一终端设备根据所述第一测距方式进行与所述第二终端设备之间的测距。
  2. 根据权利要求1所述的方法,其特征在于,所述方法还包括:
    所述第一终端设备接收第一消息,所述第一消息包括所述第一参数。
  3. 根据权利要求1或2所述的方法,其特征在于,所述多种测距方式包括单边双向测距、双边双向测距中的至少一种。
  4. 根据权利要求1或2所述的方法,其特征在于,所述第一终端设备根据所述第一参数从多种测距方式中确定所述第一测距方式还包括:
    所述第一终端设备获取第二参数,所述第二参数包括网络授权所述第一终端设备的测距方式、网络授权所述第二终端设备的测距方式、所述第一终端设备支持的测距方式、所述第二终端设备支持的测距方式中的至少一种;
    所述第一终端设备根据所述第一参数和所述第二参数确定所述第一测距方式。
  5. 根据权利要求4所述的方法,其特征在于,当所述第二参数包括所述网络授权所述第一终端设备的测距方式时,所述方法还包括:
    所述第一终端设备接收第二消息,所述第二消息包括所述第二参数。
  6. 根据权利要求4所述的方法,其特征在于,当所述第二参数包括所述第二终端设备支持的测距方式和/或所述网络授权所述第二终端设备的测距方式时,所述方法还包括:
    所述第一终端设备接收所述第二终端设备的第三消息,所述第三消息包括所述第二参数。
  7. 根据权利要求1至6中任一项所述的方法,其特征在于,所述第一终端设备根据所述第一参数从多种测距方式中确定所述第一测距方式还包括:
    所述第一终端设备根据所述第一参数和测距结果从所述多种测距方式中确定所述第一测距方式,所述测距结果是根据第二测距方式获取的,所述第二测距方式是根据所述第一参数确定的。
  8. 一种通信的方法,其特征在于,所述方法包括:
    第一终端设备获取第三参数,所述第三参数包括第二测距精度、第二测距时间、测距服务质量类别中的至少一种,所述第三参数被用于所述第一终端设备和第三终端设备之间的测距;
    所述第一终端设备根据所述第三参数确定第四参数或第三测距方式,所述第四参数被用于确定所述第三测距方式,所述第三测距方式被用于第二终端设备和所述第三终端设备之间的测距;
    所述第一终端设备向所述第二终端设备或所述第三终端设备发送所述第三测距方式 或所述第四参数。
  9. 根据权利要求8所述的方法,其特征在于,所述方法还包括:
    所述第一终端设备接收第四消息,所述第四消息包括所述第三参数。
  10. 根据权利要求8或9所述的方法,其特征在于,当所述第三参数包括所述第二测距精度时,所述第一终端设备根据所述第三参数确定所述第三测距方式包括:
    所述第一终端设备根据所述第二测距精度确定第三测距精度;
    所述第一终端设备根据所述第三测距精度从多种测距方式中确定所述第三测距方式。
  11. 根据权利要求8至10中任一项所述的方法,其特征在于,当所述第三参数包括所述第二测距时间时,所述第一终端设备根据所述第三参数确定所述第三测距方式包括:
    所述第一终端设备根据所述第二测距时间确定第三测距时间;
    所述第一终端设备根据所述第三测距时间从多种测距方式中确定所述第三测距方式。
  12. 根据权利要求8至11中任一项所述的方法,其特征在于,所述方法还包括:
    所述第一终端设备根据所述第三参数确定第五参数或第四测距方式,所述第五参数被用于确定所述第四测距方式,所述第四测距方式被用于所述第一终端设备和所述第二终端设备之间的测距。
  13. 根据权利要求12所述的方法,其特征在于,所述方法还包括:
    所述第一终端设备向所述第二终端设备发送所述第五参数或所述第四测距方式;
    所述第一终端设备接收所述第二终端设备根据所述第五参数或所述第四测距方式得到的测距结果。
  14. 根据权利要求12或13所述的方法,其特征在于,当所述第三参数包括所述第二测距精度时,所述第一终端设备根据所述第三参数确定所述第四测距方式包括:
    所述第一终端设备根据所述第二测距精度确定第四测距精度;
    所述第一终端设备根据所述第四测距精度从多种测距方式中确定所述第四测距方式。
  15. 根据权利要求12至14中任一项所述的方法,其特征在于,当所述第三参数包括所述第二测距时间时,所述第一终端设备根据所述第三参数确定所述第四测距方式包括:
    所述第一终端设备根据所述第二测距时间从多种测距方式中确定所述第四测距方式。
  16. 根据权利要求11或15所述的方法,其特征在于,所述多种测距方式包括单边双向测距、双边双向测距中的至少一种。
  17. 根据权利要求8至16中任一项所述的方法,其特征在于,所述方法还包括:
    所述第一终端设备获取第五测距精度和第六测距精度,所述第五测距精度是所述第一终端设备和所述第二终端设备之间测距的实际测距精度,所述第六测距精度是所述第二终端设备和所述第三终端设备之间测距的实际测距精度;
    所述第一终端设备根据所述第五测距精度和所述第六测距精度,计算第七测距精度,所述第七测距精度是所述第一终端设备和所述第三终端设备之间测距的实际测距精度。
  18. 根据权利要求17所述的方法,其特征在于,所述第一终端设备获取第五测距精度和第六测距精度包括:
    所述第一终端设备接收所述第二终端设备的所述第五测距精度,和/或,所述第一终端设备接收所述第二终端设备或所述第三终端设备的所述第六测距精度。
  19. 一种通信的方法,其特征在于,所述方法包括:
    第一位置管理网元获取第六参数,所述第六参数包括第一定位精度、第一定位时间、定位服务质量类别中的至少一种,所述第六参数被用于对第一终端设备进行定位;
    所述第一位置管理网元根据所述第六参数确定第七参数或第一测距方式,所述第七参数被用于确定所述第一测距方式,所述第一测距方式被用于所述第一终端设备与第二终端设备之间的测距,所述第二终端设备用于辅助所述第一终端设备的定位;
    所述第一位置管理网元发送所述第七参数或所述第一测距方式。
  20. 根据权利要求19所述的方法,其特征在于,所述方法还包括:
    所述第一位置管理网元接收第五消息,所述第五消息包括所述第六参数。
  21. 根据权利要求19或20所述的方法,其特征在于,当所述第六参数包括所述第一定位精度时,所述第一位置管理网元根据所述第六参数确定所述第一测距方式包括:
    所述第一位置管理网元根据所述第一定位精度确定第八测距精度;
    所述第一位置管理网元根据所述第八测距精度从多种测距方式中确定所述第一测距方式。
  22. 根据权利要求19至21中任一项所述的方法,其特征在于,当所述第六参数包括所述第一定位时间时,所述第一位置管理网元根据所述第六参数确定所述第一测距方式包括:
    所述第一位置管理网元根据所述第一定位时间确定第四测距时间;
    所述第一位置管理网元根据所述第四测距时间从多种测距方式中确定所述第一测距方式。
  23. 根据权利要求19至22中任一项所述的方法,其特征在于,所述方法还包括:
    所述第一位置管理网元根据所述第六参数确定第八参数或第一定位方法,所述第八参数被用于确定所述第一定位方法,所述第一定位方法被用于对所述第二终端设备进行定位;
    所述第一位置管理网元发送所述第八参数或所述第一定位方法。
  24. 根据权利要求23所述的方法,其特征在于,当所述第六参数包括所述第一定位精度时,所述第一位置管理网元根据所述第六参数确定所述第一定位方法包括:
    所述第一位置管理网元根据所述第一定位精度确定第二定位精度;
    所述第一位置管理网元根据所述第二定位精度从多种定位方法中确定所述第一定位方法。
  25. 根据权利要求23或24所述的方法,其特征在于,当所述第六参数包括所述第一定位时间时,所述第一位置管理网元根据所述第六参数确定所述第一定位方法包括:
    所述第一位置管理网元根据所述第一定位时间从多种定位方法中确定所述第一定位方法。
  26. 根据权利要求21至25中任一项所述的方法,其特征在于,所述多种测距方式包括单边双向测距、双边双向测距。
  27. 根据权利要求19至26中任一项所述方法,其特征在于,所述方法还包括:
    所述第一位置管理网元获取第九测距精度和第三定位精度,所述第九测距精度是所述第一终端设备和所述第二终端设备之间测距的实际测距精度,所述第三定位精度是所述第二终端设备的实际定位精度;
    所述第一位置管理网元根据所述第九测距精度和所述第三定位精度,计算第四定位精 度,所述第四定位精度是所述第一终端设备的实际定位精度;
    所述第一位置管理网元向第一移动管理网元发送所述第四定位精度,所述第一移动管理网元是为所述第一终端设备服务的移动管理网元。
  28. 根据权利要求27所述的方法,其特征在于,所述第一位置管理网元获取所述第九测距精度和所述第三定位精度包括:
    所述第一位置管理网元接收所述第一终端设备或所述第二终端设备的所述第九测距精度,和/或,所述第一位置管理网元接收所述第二位置管理网元的所述第三定位精度,所述第二位置管理网元是为所述第二终端设备服务的位置管理网元。
  29. 一种通信的装置,其特征在于,包括:
    接口单元,用于获取第一参数,所述第一参数包括第一测距精度、第一测距时间、测距服务质量类别中的至少一种,所述第一参数被用于所述装置和第二终端设备之间的测距;
    处理单元,用于根据所述第一参数从多种测距方式中确定第一测距方式;
    所述处理单元还用于根据所述第一测距方式进行与所述第二终端设备之间的测距。
  30. 根据权利要求29所述的装置,其特征在于,所述接口单元还用于接收第一消息,所述第一消息包括所述第一参数。
  31. 根据权利要求29或30所述的装置,其特征在于,所述多种测距方式包括单边双向测距、双边双向测距中的至少一种。
  32. 根据权利要求29或30所述的装置,其特征在于,所述处理单元用于根据所述第一参数从多种测距方式中确定所述第一测距方式包括:
    所述接口单元还用于获取第二参数,所述第二参数包括网络授权所述装置的测距方式、网络授权所述第二终端设备的测距方式、所述装置支持的测距方式、所述第二终端设备支持的测距方式中的至少一种;
    所述处理单元用于根据所述第一参数和所述第二参数确定所述第一测距方式。
  33. 根据权利要求32所述的装置,其特征在于,当所述第二参数包括所述网络授权所述装置的测距方式时,所述接口单元还用于接收第二消息,所述第二消息包括所述第二参数。
  34. 根据权利要求32所述的装置,其特征在于,当所述第二参数包括所述第二终端设备支持的测距方式和/或所述网络授权所述第二终端设备的测距方式时,所述接口单元还用于接收所述第二终端设备的第三消息,所述第三消息包括所述第二参数。
  35. 根据权利要求29至34中任一项所述的装置,其特征在于,所述处理单元用于根据所述第一参数从多种测距方式中确定所述第一测距方式还包括:
    所述处理单元用于根据所述第一参数和测距结果从所述多种测距方式中确定所述第一测距方式,所述测距结果是根据第二测距方式获取的,所述第二测距方式是根据所述第一参数确定的。
  36. 一种通信的装置,其特征在于,所述装置包括:
    接口单元,用于获取第三参数,所述第三参数包括第二测距精度、第二测距时间、测距服务质量类别中的至少一种,所述第三参数被用于所述装置和第三终端设备之间的测距;
    处理单元,用于根据所述第三参数确定第四参数或第三测距方式,所述第四参数被用于确定所述第三测距方式,所述第三测距方式被用于第二终端设备和所述第三终端设备之 间的测距;
    所述接口单元还用于向所述第二终端设备或所述第三终端设备发送所述第三测距方式或所述第四参数。
  37. 根据权利要求36所述的装置,其特征在于,所述接口单元还用于接收第四消息,所述第四消息包括所述第三参数。
  38. 根据权利要求36或37所述的装置,其特征在于,当所述第三参数包括所述第二测距精度时,所述处理单元用于根据所述第三参数确定所述第三测距方式包括:
    所述处理单元还用于根据所述第二测距精度确定第三测距精度;
    所述处理单元还用于根据所述第三测距精度从多种测距方式中确定所述第三测距方式。
  39. 根据权利要求36至38中任一项所述的装置,其特征在于,当所述第三参数包括所述第二测距时间时,所述处理单元用于根据所述第三参数确定所述第三测距方式包括:
    所述处理单元还用于根据所述第二测距时间确定第三测距时间;
    所述处理单元还用于根据所述第三测距时间从多种测距方式中确定所述第三测距方式。
  40. 根据权利要求36至39中任一项所述的装置,其特征在于,所述处理单元还用于根据所述第三参数确定第五参数或第四测距方式,所述第五参数被用于确定所述第四测距方式,所述第四测距方式被用于所述装置和所述第二终端设备之间的测距。
  41. 根据权利要求40所述的装置,其特征在于,所述接口单元还用于向所述第二终端设备发送所述第五参数或所述第四测距方式;
    所述接口单元还用于接收所述第二终端设备根据所述第五参数或所述第四测距方式得到的测距结果。
  42. 根据权利要求40或41所述的装置,其特征在于,当所述第三参数包括所述第二测距精度时,所述处理单元还用于根据所述第三参数确定所述第四测距方式包括:
    所述处理单元还用于根据所述第二测距精度确定第四测距精度;
    所述处理单元还用于根据所述第四测距精度从多种测距方式中确定所述第四测距方式。
  43. 根据权利要求40至42中任一项所述的装置,其特征在于,当所述第三参数包括所述第二测距时间时,所述处理单元还用于根据所述第三参数确定所述第四测距方式包括:
    所述处理单元还用于根据所述第二测距时间从多种测距方式中确定所述第四测距方式。
  44. 根据权利要求39或43所述的装置,其特征在于,所述多种测距方式包括单边双向测距、双边双向测距中的至少一种。
  45. 根据权利要求36至44中任一项所述的装置,其特征在于,所述接口单元还用于获取第五测距精度和第六测距精度,所述第五测距精度是所述装置和所述第二终端设备之间测距的实际测距精度,所述第六测距精度是所述第二终端设备和所述第三终端设备之间测距的实际测距精度;
    所述处理单元还用于根据所述第五测距精度和所述第六测距精度,计算第七测距精度,所述第七测距精度是所述装置和所述第三终端设备之间测距的实际测距精度。
  46. 根据权利要求45所述的装置,其特征在于,所述接口单元还用于获取所述第五测距精度和所述第六测距精度包括:
    所述接口单元还用于接收所述第二终端设备的所述第五测距精度,和/或,所述接口单元还用于接收所述第二终端设备或所述第三终端设备的所述第六测距精度。
  47. 一种通信的装置,其特征在于,所述装置包括:
    接口单元,用于获取第六参数,所述第六参数包括第一定位精度、第一定位时间、定位服务质量类别中的至少一种,所述第六参数被用于对第一终端设备进行定位;
    处理单元,用于根据所述第六参数确定第七参数或第一测距方式,所述第七参数被用于确定所述第一测距方式,所述第一测距方式被用于所述第一终端设备与第二终端设备之间的测距,所述第二终端设备用于辅助所述第一终端设备的定位;
    所述接口单元还用于发送所述第七参数或所述第一测距方式。
  48. 根据权利要求47所述的装置,其特征在于,所述接口单元还用于接收第五消息,所述第五消息包括所述第六参数。
  49. 根据权利要求47或48所述的装置,其特征在于,当所述第六参数包括所述第一定位精度时,所述处理单元用于根据所述第六参数确定所述第一测距方式包括:
    所述处理单元还用于根据所述第一定位精度确定第八测距精度;
    所述处理单元还用于根据所述第八测距精度从多种测距方式中确定所述第一测距方式。
  50. 根据权利要求47至49中任一项所述的装置,其特征在于,当所述第六参数包括所述第一定位时间时,所述处理单元用于根据所述第六参数确定所述第一测距方式包括:
    所述处理单元用于根据所述第一定位时间确定第四测距时间;
    所述处理单元还用于根据所述第四测距时间从多种测距方式中确定所述第一测距方式。
  51. 根据权利要求47至50中任一项所述的装置,其特征在于,所述处理单元还用于根据所述第六参数确定第八参数或第一定位方法,所述第八参数被用于确定所述第一定位方法,所述第一定位方法被用于对所述第二终端设备进行定位;
    所述接口单元还用于发送所述第八参数或所述第一定位方法。
  52. 根据权利要求51所述的装置,其特征在于,当所述第六参数包括所述第一定位精度时,所述处理单元还用于根据所述第六参数确定所述第一定位方法包括:
    所述处理单元用于根据所述第一定位精度确定第二定位精度;
    所述处理单元还用于根据所述第二定位精度从多种定位方法中确定所述第一定位方法。
  53. 根据权利要求51或52所述的装置,其特征在于,当所述第六参数包括所述第一定位时间时,所述处理单元还用于根据所述第六参数确定所述第一定位方法包括:
    所述处理单元用于根据所述第一定位时间从多种定位方法中确定所述第一定位方法。
  54. 根据权利要求49至53中任一项所述的装置,其特征在于,所述多种测距方式包括单边双向测距、双边双向测距。
  55. 根据权利要求47至54中任一项所述装置,其特征在于,所述接口单元还用于获取第九测距精度和第三定位精度,所述第九测距精度是所述第一终端设备和所述第二终端 设备之间测距的实际测距精度,所述第三定位精度是所述第二终端设备的实际定位精度;
    所述处理单元还用于根据所述第九测距精度和所述第三定位精度,计算第四定位精度,所述第四定位精度是所述第一终端设备的实际定位精度;
    所述接口单元还用于向第一移动管理网元发送所述第四定位精度,所述第一移动管理网元是为所述第一终端设备服务的移动管理网元。
  56. 根据权利要求55所述的装置,其特征在于,所述接口单元还用于获取所述第九测距精度和所述第三定位精度包括:
    所述接口单元还用于接收所述第一终端设备或所述第二终端设备的所述第九测距精度,和/或,所述接口单元还用于接收所述第二位置管理网元的所述第三定位精度,所述第二位置管理网元是为所述第二终端设备服务的位置管理网元。
  57. 一种通信装置,其特征在于,包括:
    处理器,所述处理器与存储器耦合,所述存储器用于存储程序或指令,当所述程序或指令被所述处理器执行时,使得所述装置执行如权利要求1至28中任一项所述的通信的方法。
  58. 一种计算机可读存储介质,其特征在于,所述计算机可读存储介质上存储有计算机程序,当所述计算机程序在计算机上运行时,使得所述计算机执行如权利要求1至28中任一项所述的通信的方法。
  59. 一种计算机程序产品,其特征在于,包括计算机程序代码,当所述计算机程序代码被运行时,实现如权利要求1至28中任一项所述的通信方法。
PCT/CN2023/097694 2022-07-28 2023-06-01 通信方法和通信装置 WO2024021853A1 (zh)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
CN202210896861.7A CN117528395A (zh) 2022-07-28 2022-07-28 通信方法和通信装置
CN202210896861.7 2022-07-28

Publications (1)

Publication Number Publication Date
WO2024021853A1 true WO2024021853A1 (zh) 2024-02-01

Family

ID=89705302

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2023/097694 WO2024021853A1 (zh) 2022-07-28 2023-06-01 通信方法和通信装置

Country Status (3)

Country Link
CN (1) CN117528395A (zh)
TW (1) TW202408261A (zh)
WO (1) WO2024021853A1 (zh)

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20200182996A1 (en) * 2018-12-07 2020-06-11 Samsung Electronics Co., Ltd. Method and device for transmitting and receiving data via uwb in wireless communication system
US20200183000A1 (en) * 2018-12-05 2020-06-11 Samsung Electronics Co., Ltd. Optimized transmission for single/double-sided two-way ranging among many devices
US20210136556A1 (en) * 2019-11-01 2021-05-06 Samsung Electronics Co., Ltd. Electronic device and method for performing ranging through uwb
CN113093101A (zh) * 2021-03-10 2021-07-09 Oppo广东移动通信有限公司 一种测距方法及装置、设备、存储介质

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20200183000A1 (en) * 2018-12-05 2020-06-11 Samsung Electronics Co., Ltd. Optimized transmission for single/double-sided two-way ranging among many devices
US20200182996A1 (en) * 2018-12-07 2020-06-11 Samsung Electronics Co., Ltd. Method and device for transmitting and receiving data via uwb in wireless communication system
US20210136556A1 (en) * 2019-11-01 2021-05-06 Samsung Electronics Co., Ltd. Electronic device and method for performing ranging through uwb
CN113093101A (zh) * 2021-03-10 2021-07-09 Oppo广东移动通信有限公司 一种测距方法及装置、设备、存储介质

Also Published As

Publication number Publication date
TW202408261A (zh) 2024-02-16
CN117528395A (zh) 2024-02-06

Similar Documents

Publication Publication Date Title
TWI688231B (zh) ProSe通訊優先處理
JP2024026269A (ja) スライス可用性に基づく周波数又は無線アクセス技術(rat)選択
TWI745851B (zh) 藉由聯合網路及雲端資源管理之服務傳遞
WO2014063568A1 (zh) 缓存状态报告发送与接收方法、用户设备和基站
WO2021163936A1 (zh) 通信处理方法、装置及计算机存储介质
CN103621114A (zh) 用于触发和同步机器类通信设备的方法和装置
WO2021196214A1 (zh) 传输方法、装置及计算机存储介质
CN104363658B (zh) 直通资源的管理方法和直通资源的管理系统
CN113966592B (zh) 更新后台数据传输策略的方法和装置
JP2023524790A (ja) 電子機器及び無線通信方法
WO2022012506A1 (zh) 通信方法和通信装置
WO2021023139A1 (zh) 一种切换的方法及装置
JP2023531580A (ja) サイドリンク中継通信に関するシグナリング伝送のためのシステムおよび方法
WO2021217595A1 (zh) 数据传输处理方法、装置、通信设备及存储介质
WO2019206026A1 (zh) 一种v2x动态调整视频传输参数的方法和相关产品
WO2024021853A1 (zh) 通信方法和通信装置
WO2022033293A1 (zh) 一种通信方法及装置
US11595286B2 (en) Systems and methods for modifying parameters of a wireless network based on granular energy efficiency metrics
WO2021218563A1 (zh) 用于传输数据的方法与装置
CN116134955A (zh) 在无线通信设备处自主激活特征以满足消费通信服务的应用的生存时间
CN113938985A (zh) 一种通信方法及装置
WO2024067040A1 (zh) 时钟同步方法和时钟同步装置
WO2024032186A1 (zh) 通信方法和通信装置
WO2023179231A1 (zh) 小区信息的配置方法、装置、可读存储介质及芯片系统
WO2023213139A1 (zh) 通信方法和通信装置

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 23845066

Country of ref document: EP

Kind code of ref document: A1