WO2021103200A1 - 一种富集器、富集系统、样本制造系统和样本检测系统 - Google Patents

一种富集器、富集系统、样本制造系统和样本检测系统 Download PDF

Info

Publication number
WO2021103200A1
WO2021103200A1 PCT/CN2019/125838 CN2019125838W WO2021103200A1 WO 2021103200 A1 WO2021103200 A1 WO 2021103200A1 CN 2019125838 W CN2019125838 W CN 2019125838W WO 2021103200 A1 WO2021103200 A1 WO 2021103200A1
Authority
WO
WIPO (PCT)
Prior art keywords
enrichment
sample
enricher
suction
cavity
Prior art date
Application number
PCT/CN2019/125838
Other languages
English (en)
French (fr)
Inventor
丁建文
Original Assignee
爱威科技股份有限公司
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 爱威科技股份有限公司 filed Critical 爱威科技股份有限公司
Priority to US17/779,708 priority Critical patent/US20230038927A1/en
Priority to BR112022010243A priority patent/BR112022010243A2/pt
Priority to AU2019476279A priority patent/AU2019476279A1/en
Priority to EP19953941.2A priority patent/EP4050336A4/en
Publication of WO2021103200A1 publication Critical patent/WO2021103200A1/zh

Links

Images

Classifications

    • GPHYSICS
    • G01MEASURING; TESTING
    • G01NINVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
    • G01N21/00Investigating or analysing materials by the use of optical means, i.e. using sub-millimetre waves, infrared, visible or ultraviolet light
    • G01N21/17Systems in which incident light is modified in accordance with the properties of the material investigated
    • G01N21/25Colour; Spectral properties, i.e. comparison of effect of material on the light at two or more different wavelengths or wavelength bands
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01NINVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
    • G01N33/00Investigating or analysing materials by specific methods not covered by groups G01N1/00 - G01N31/00
    • G01N33/48Biological material, e.g. blood, urine; Haemocytometers
    • G01N33/483Physical analysis of biological material
    • G01N33/487Physical analysis of biological material of liquid biological material
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01NINVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
    • G01N1/00Sampling; Preparing specimens for investigation
    • G01N1/28Preparing specimens for investigation including physical details of (bio-)chemical methods covered elsewhere, e.g. G01N33/50, C12Q
    • G01N1/40Concentrating samples
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01LCHEMICAL OR PHYSICAL LABORATORY APPARATUS FOR GENERAL USE
    • B01L3/00Containers or dishes for laboratory use, e.g. laboratory glassware; Droppers
    • B01L3/50Containers for the purpose of retaining a material to be analysed, e.g. test tubes
    • B01L3/502Containers for the purpose of retaining a material to be analysed, e.g. test tubes with fluid transport, e.g. in multi-compartment structures
    • B01L3/5023Containers for the purpose of retaining a material to be analysed, e.g. test tubes with fluid transport, e.g. in multi-compartment structures with a sample being transported to, and subsequently stored in an absorbent for analysis
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01NINVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
    • G01N1/00Sampling; Preparing specimens for investigation
    • G01N1/28Preparing specimens for investigation including physical details of (bio-)chemical methods covered elsewhere, e.g. G01N33/50, C12Q
    • G01N1/2813Producing thin layers of samples on a substrate, e.g. smearing, spinning-on
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01NINVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
    • G01N1/00Sampling; Preparing specimens for investigation
    • G01N1/28Preparing specimens for investigation including physical details of (bio-)chemical methods covered elsewhere, e.g. G01N33/50, C12Q
    • G01N1/30Staining; Impregnating ; Fixation; Dehydration; Multistep processes for preparing samples of tissue, cell or nucleic acid material and the like for analysis
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01NINVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
    • G01N1/00Sampling; Preparing specimens for investigation
    • G01N1/28Preparing specimens for investigation including physical details of (bio-)chemical methods covered elsewhere, e.g. G01N33/50, C12Q
    • G01N1/34Purifying; Cleaning
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01LCHEMICAL OR PHYSICAL LABORATORY APPARATUS FOR GENERAL USE
    • B01L2300/00Additional constructional details
    • B01L2300/06Auxiliary integrated devices, integrated components
    • B01L2300/0681Filter
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01LCHEMICAL OR PHYSICAL LABORATORY APPARATUS FOR GENERAL USE
    • B01L2300/00Additional constructional details
    • B01L2300/08Geometry, shape and general structure
    • B01L2300/0832Geometry, shape and general structure cylindrical, tube shaped
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01NINVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
    • G01N1/00Sampling; Preparing specimens for investigation
    • G01N1/28Preparing specimens for investigation including physical details of (bio-)chemical methods covered elsewhere, e.g. G01N33/50, C12Q
    • G01N1/40Concentrating samples
    • G01N1/4077Concentrating samples by other techniques involving separation of suspended solids
    • G01N2001/4088Concentrating samples by other techniques involving separation of suspended solids filtration
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01NINVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
    • G01N21/00Investigating or analysing materials by the use of optical means, i.e. using sub-millimetre waves, infrared, visible or ultraviolet light
    • G01N21/75Systems in which material is subjected to a chemical reaction, the progress or the result of the reaction being investigated
    • G01N21/77Systems in which material is subjected to a chemical reaction, the progress or the result of the reaction being investigated by observing the effect on a chemical indicator
    • G01N21/78Systems in which material is subjected to a chemical reaction, the progress or the result of the reaction being investigated by observing the effect on a chemical indicator producing a change of colour

Definitions

  • the invention relates to the technical field of medical detection, and more specifically, to an enricher, an enrichment system, a sample manufacturing system and a sample detection system.
  • Medical testing is to test the collected blood, body fluids, secretions, excrement and fallout samples through visual observation, microscope, physical, chemical, instrumental or molecular biological methods.
  • the sample needs to be enriched.
  • the main enrichment methods include centrifugal precipitation and natural precipitation.
  • the centrifugal precipitation method is to remove the supernatant of the sample after centrifugation and take the precipitate for testing
  • the natural precipitation method is to remove the supernatant and take the precipitate for testing after the sample is allowed to stand for a certain period of time to form a precipitate.
  • the above-mentioned different enrichment methods require respective corresponding sample processing devices to transfer samples or process samples, thereby increasing the cost of enrichment and further increasing the cost of medical testing.
  • the enrichment processing time is relatively long.
  • the technical problem to be solved by the present invention is how to reduce the detection cost of medical testing.
  • the present invention provides an enricher, an enrichment system, a sample manufacturing system and a sample detection system.
  • An enricher including:
  • An enriched shell the enriched shell encloses an enriched cavity for accommodating the suction liquid
  • a suction connection part which is used to communicate a suction mechanism and the enrichment cavity, so that the enrichment cavity forms a negative pressure under the action of the vacuum mechanism;
  • a barrier the barrier is arranged on the enrichment housing, when the enrichment cavity forms a negative pressure, the sample can form the suction liquid through the barrier and enter the enrichment cavity , And there are retentates in the barrier.
  • An enrichment system comprising: a suction mechanism and the enricher as described in any one of the above, the suction mechanism is arranged to be connected to the suction connection part, and the suction mechanism is arranged to enable The enrichment cavity of the enricher generates negative pressure.
  • a sample preparation system includes a sample transfer mechanism and the enrichment system as described above, and the sample transfer mechanism is configured to transfer the retentate on the barrier to a detection carrier.
  • a sample detection system includes a microscope and a sample detection system as described in any one of the above, and the microscope is used for performing microscopic examination of the specimen.
  • the enrichment cavity and the suction mechanism are connected through the suction connection part, and the part of the enrichment shell provided with the barrier is in contact with the sample, and the The operation of the suction mechanism causes the enrichment cavity to form a negative pressure, and the sample passes through the barrier to form a suction liquid into the enrichment cavity under the action of the negative pressure, and retains the retentate on the barrier.
  • the enrichment device can complete the enrichment processing of the sample directly in contact with the sample, and does not require additional transfer of samples or sample processing devices, thereby reducing the cost of sample enrichment and further reducing the cost of medical testing. cost.
  • the use of the enricher does not require transfer of samples or additional processing of samples, the time for sample enrichment processing is shortened.
  • FIGS. 1 to 33 are schematic diagrams of the structure of an enricher provided in Embodiment 1 of the present invention.
  • FIG. 40 to FIG. 43 are structural schematic diagrams of a sample manufacturing system provided in the third embodiment of the present invention.
  • FIG. 44 to FIG. 51 are schematic structural diagrams of a sample detection system provided in Embodiment 4 of the present invention.
  • FIG. 52 is a schematic flowchart of an enrichment method provided in Embodiment 5 of the present invention.
  • FIG. 53 is a schematic flowchart of a sample manufacturing method provided in Embodiment 6 of the present invention.
  • FIG. 54 is a schematic flowchart of a sample detection method provided in Embodiment 7 of the present invention.
  • FIG. 55 is a schematic diagram of a three-dimensional structure of an enricher provided in Embodiment 8 of the present invention.
  • Fig. 56 is a schematic diagram of the explosive structure of an enricher provided in the eighth embodiment of the present invention.
  • 57 and 58 are schematic diagrams of the structure of an enricher provided in the ninth embodiment of the present invention.
  • 10 is the enricher
  • 20 is the suction mechanism
  • 30 is the sample container
  • 40 is the sample transfer mechanism
  • 50 is the detection carrier
  • 60 is the dyeing mechanism
  • 701 is the enricher storage mechanism
  • 702 is the waste recycling mechanism.
  • 80 is a microscope
  • 901 is a sample part
  • 902 is a chromatography column
  • 101 is an enriched shell
  • 102 is a suction connection part
  • 103 is a barrier
  • 104 is a support part
  • 105 is a mounting cavity
  • 106 is a cushion body 107 is the annular support surface
  • 1011 is the side wall
  • 1012 is the bottom wall
  • 1013 is the side wall
  • 1014 is the filtrate suction channel
  • 1015 is the air flow channel
  • 201 is the power mechanism
  • 202 is the controller
  • 104A is a support
  • the core of the present invention is to provide an enricher, an enrichment system, a sample manufacturing system, a sample detection system, an enrichment method, a sample manufacturing method, and a sample detection method, so as to reduce the detection cost of medical detection.
  • the enricher disclosed in the embodiment of the present invention includes:
  • the enrichment housing 101 the enrichment housing 101 encloses an enrichment cavity 1013 for accommodating the suction liquid;
  • the suction connection portion 102 which is used to communicate the suction mechanism 20 and the enrichment cavity 1013, so that the enrichment cavity 1013 forms a negative pressure under the action of the vacuum mechanism;
  • the barrier 103 is arranged on the enrichment housing 101.
  • the sample can form a suction liquid through the barrier 103 to enter the enrichment cavity 1013, and then enter the enrichment cavity 1013. There are remnants remaining.
  • the enrichment cavity 1013 and the suction mechanism 20 are connected through the suction connection portion 102, and the part of the enrichment housing 101 provided with the barrier 103 is in contact with the sample, and the suction mechanism 20
  • the operation causes the enrichment cavity 1013 to form a negative pressure.
  • the sample passes through the barrier 103 to form a suction liquid into the enrichment cavity 1013, and retains the retentate on the barrier 103, according to the selected barrier 103
  • the difference can get different retentate, that is, the preset retentate can be obtained.
  • the enrichment device 10 can complete the enrichment processing of the sample by directly contacting the sample without additional transfer of the sample or sample processing device, thereby reducing the cost of sample enrichment and further reducing medical testing. the cost of.
  • the use of the enricher 10 does not require transfer of samples or additional processing of samples, the time for sample enrichment processing is shortened.
  • the shape of the enrichment shell 101 in the present invention is not specifically limited. It can be a regular structure or an irregular structure, where the regular structure can be a cubic column structure, a cylindrical structure, a conical structure, and so on.
  • the enrichment housing 101 includes a bottom wall 1012 and a side wall 1011 extending from the edge of the bottom wall 1012 in the axial direction.
  • the side wall 1011 rotates in a circumferential direction to form a closed structure.
  • the side wall 1011 has a cylindrical structure, a conical structure, or a cubic column structure.
  • other structure types are not excluded.
  • the side wall 1011 in FIGS. 1 to 9, 14, 16 to 24 and FIGS. 26 to 33 is a cylindrical structure; and the side wall 1011 in FIGS. 10 to 13, 15 and 25 is a conical structure.
  • the side wall 1011 has a conical structure, along the axial direction of the enrichment shell 101, the cross section of the enrichment cavity 1013 gradually becomes smaller from top to bottom. This setting facilitates the installation of subsequent components.
  • the inner surface of the shell wall of the enrichment shell 101 corresponds to the enrichment cavity 1013, and the outer surface of the shell wall of the enrichment shell 101 corresponds to the outside.
  • the enrichment housing 101 includes a bottom wall 1012 and a side wall 1011
  • the side wall 1011 also corresponds to an outer surface and an inner surface
  • the bottom wall 1012 also corresponds to an outer surface and an inner surface.
  • the outer surface includes the bottom wall 1012 The corresponding outer surface and the outer surface corresponding to the side wall 1011.
  • the material of the enrichment shell 101 can be plastic, resin, glass, etc., as long as it has a structure surrounding the enrichment cavity 1013, it is within the protection scope of the present invention.
  • the shell wall of the enrichment housing 101 is provided with the enrichment cavity 1013.
  • the suction channel 1014 can suck the suction liquid in the enriched cavity 1013.
  • the opening of the suction channel 1014 is arranged on the inner surface of the enrichment housing 101 or the outer surface of the enrichment housing 101.
  • an annular support surface 107 is provided at the opening to support subsequent operating components.
  • the function of the suction connection portion 102 is to communicate the suction mechanism 20 and the enrichment cavity 1013, and the holes, openings, joints, etc., which communicate with the enrichment cavity 1013, can be arranged on the shell wall of the enrichment housing 101 on.
  • the specific positions of the enrichment housing 101 of different structures are different, but its overall function is to communicate the suction mechanism 20 with the enrichment cavity 1013, and make the inside of the enrichment cavity 1013 under the action of the suction mechanism 20 Form negative pressure.
  • the position of the suction connecting portion 102 is directly opposite to the blocking member 103. With this arrangement, the actual volume of the enrichment cavity 1013 is the largest, and the ability to contain the suction liquid is the strongest.
  • the function of the barrier 103 is to enrich the sample.
  • the sample can form a suction liquid through the barrier 103 to enter the enrichment cavity 1013, and there are retentates in the barrier 103.
  • the barrier 103 is arranged on the enrichment shell 101 and is connected to the enrichment shell 101 by adhesion, hot melt or ferrule.
  • the barrier 103 is a filter membrane or a filter mesh. According to the sample to be enriched, a filter membrane or a filter screen should be used.
  • the filter membrane when the filter membrane is selected, it is usually used as a microporous filter membrane, and the pore size of the filter hole of the microporous filter membrane is usually determined according to the formed elements to be detected in the sample, and the different formed elements can be compared with the microfiltration based on experience. The corresponding relationship of the pore size of the membrane is classified, and then selected in the specific operation.
  • the barrier 103 is one layer or multiple layers. Referring to Figures 10 to 13, when the multi-layer barrier 103 is provided at one end of the enrichment cavity, the multi-layer barrier is set to have different sizes of pores, and the installation method is that the small-aperture barrier is sheathed Large aperture barrier.
  • the barrier 103 is used to enrich the sample, that is, the retentate is retained on the barrier 103. After the enrichment is completed, the retentate needs to be transferred to the sample carrier to complete further testing. For this reason, in order to prevent the barrier member 103 from rupturing or indenting the cushion member 106 in the enriched cavity under the action of negative pressure, the cushion member 106 is set as an elastic member that can be compressed when subjected to an external force. The sample carrier will come into contact with the barrier 103 during the contact process. Because the cushion member 106 can be compressed under the action of external force, the barrier 103 can be deformed, which can effectively avoid the detection carrier 50 and the barrier 103.
  • the cushion member 106 can be separately connected to the enrichment shell 101 through adhesion, hot melt, ferrule, clamping, etc., or please refer to Figure 3, Figure 7, Figure 12, Figure 16, Figure 18, Figure 20, Figure 22 26, 28, 30 and 32, a mounting cavity 105 is formed on the enrichment shell 101, and the cushion member 106 is arranged in the mounting cavity 105, wherein the part where the mounting cavity 105 is provided is equipped with a barrier The cushion member 106 is arranged to contact the blocking member 103.
  • the barrier 103 When the barrier 103 is arranged as an elastic member and contacts the detection carrier 50 to transfer the retentate to the detection carrier, it is equivalent to elastic extrusion During the process, most of the retentate on the barrier 103 can be transferred to the detection carrier, thereby further improving the transfer effect.
  • the outer surface since the positions of the suction connecting portion 102 and the blocking member 103 on the enrichment housing 101 can be adjusted relatively, the outer surface may be the entire outer surface of the housing wall of the enrichment housing 101 with different structures. The names of different parts of the shell wall are slightly different, and they are all within the scope of this application.
  • the cushion member 106 is set as a sponge, and the sponge has the effect of absorbing moisture.
  • the sponge By providing the sponge, the suction liquid inside the enrichment cavity 101 can be effectively prevented from flowing back and the retentate is moisturized, thereby further improving the retention of the retentate. Enrichment effect.
  • a supporting member 104 is also provided to support the cushion member 106.
  • the supporting member 104 is configured in a sheet, honeycomb, column shape, etc., as long as the structure that can support the cushion member 106 is within the protection scope of the present invention. .
  • the support member 104 is configured to be integrally formed with the enrichment housing 101 or the support member 104 and the enrichment housing 101 are detachable structures. Please refer to FIGS. 2 to 23.
  • the supporting member 104 and the enrichment housing 101 are shown as an integrated structure.
  • the supporting member 104 and the enrichment housing 101 are detachable structures.
  • the support member 104 and the enrichment housing 101 are an integral structure
  • the support member 104 is from the shell wall of the enrichment housing 101 along the radial and/or axial direction of the enrichment housing 101. Extension formation.
  • the cylindrical structure of the enrichment shell 101 please refer to FIG. 2, FIG. 3, FIG. 8 to FIG. 11, FIG. 16, FIG. 17, and FIG. 18 to FIG.
  • the bottom wall 1012 can also be recessed to form the mounting cavity 105.
  • a communicating hole is provided on the supporting member 104. 1041, the enrichment cavity 1013 can be connected through the communication hole 1041.
  • the support member 104 and the enrichment housing 101 are detachable structures, the support member 104 is connected to the shell wall of the enrichment housing 101.
  • the fixing method may be that the supporting member 104 is clamped to the shell wall of the enrichment housing 101 or restricted by other restricting parts. Please refer to Figure 26, Figure 28, Figure 30 and Figure 32.
  • the supporting member When 104 is stuck on the inner wall of the side wall 1011, the installation cavity 105 is formed by the side wall 1011 and the supporting member 104.
  • the bottom wall and the side wall are the shell walls of the enriched shell, wherein the bottom wall and the side wall have an inner surface and an outer surface respectively, or the inner surface of the side wall is called the inner wall, and the outer surface is called the outer wall. And so on, it is also the shell wall referred to in this embodiment.
  • the material can be set to the same material as the cushion member 106, for example
  • the elastic member such as a sponge, is installed on the enrichment shell 101 in a manner similar to the above-described cushion member 106.
  • the support member 104 can also be arranged such that at least a part of it extends beyond the outer portion of the enrichment shell 101. surface.
  • the supporting member 104 and the cushion member 106 are different in this embodiment, when the two are provided at the same time, the supporting member 104 plays a role of supporting the cushion member 106.
  • the names of the two are not consistent, it should be understood that as long as they are used to prevent the barrier 103 from sinking or rupturing, the two are the same member, and their substantial scope is the same.
  • the enrichment system of the present invention includes: a suction mechanism 20 and the enricher 10 as in any one of the first embodiment, the suction mechanism 20 is arranged to be connected to the suction connection part 102, and the suction mechanism 20 is configured to cause the enrichment cavity 1013 of the enricher 10 to generate negative pressure.
  • the enrichment device 10 can directly contact the sample to complete the enrichment processing of the sample, without additional sample transfer or sample processing device, thereby reducing the cost of sample enrichment. Further reduce the cost of medical testing.
  • the use of the enricher 10 does not require transfer of samples or additional processing of samples, the time for sample enrichment processing is shortened.
  • the above-mentioned suction mechanism 20 may be a device capable of generating negative pressure, such as a syringe, a vacuum generator, and the like.
  • the present invention preferably adopts a vacuum generator, which is convenient to realize automatic control.
  • the enrichment system further includes a power mechanism 201 for driving the enrichment device 10 to move.
  • the power mechanism 201 enables the enricher 10 to move below the liquid surface of the sample.
  • the power mechanism 201 enables the enricher 10 to move out of the liquid surface of the sample.
  • the enrichment system also includes:
  • the controller 202 pre-stores the target distance of the enricher 10; when the enricher 10 moves to the target distance, the power mechanism 201 is controlled to stop moving. At this time, a rangefinder for measuring the running distance of the enricher 10 is also included.
  • the target distance can be converted into the target running time of the power mechanism 201 or the target number of steps of the power mechanism 201; when the target distance is converted into the target running time, the target running time of the enricher 10 is stored in advance, And record the running time of the power mechanism 201.
  • the power mechanism 201 is controlled to stop moving; at this time, it also includes an enricher timer for recording the running time of the enricher 10 .
  • the target number of steps of the enricher 10 is stored in advance, and the number of running steps of the power mechanism 201 is recorded.
  • the power mechanism is controlled 201 stopped moving. At this time, it also includes a counter for recording the number of steps of the power mechanism 201.
  • a timer 203 is further included, and the timer 203 is used to record the operating time of the suction mechanism 20;
  • the controller 202 also stores the target operation time of the suction mechanism 20 in advance; when the operation time of the suction mechanism 20 reaches the target operation time, the suction mechanism 20 is controlled to stop operation.
  • the operation of the suction mechanism 20 can be effectively controlled by pre-stored the target operation time, which facilitates automatic control and reduces the work intensity of the operator.
  • a pressure sensor 204 is also included, and the pressure sensor 204 is used to collect the operating pressure of the suction mechanism 20;
  • the controller 202 also stores the target pressure of the suction mechanism 20 in advance; when the operation pressure reaches the target operation pressure, the operation of the suction mechanism 20 is stopped.
  • the suction mechanism 20 When the operating pressure of the suction mechanism 20 exceeds the target pressure, it indicates that the barrier 103 is blocked. At this time, regardless of whether the operation time of the suction mechanism 20 reaches the target operation time, the suction mechanism 20 stops continuing to operate.
  • the sample making system disclosed in the embodiment of the present invention includes a sample transfer mechanism 40 and an enrichment system as in any one of the second embodiment.
  • the sample transfer mechanism 40 is configured to transfer the retentate on the barrier 103 To the detection carrier 50.
  • the sample transfer mechanism 40 transfers the retentate on the enricher 10 enriched by the enrichment system to the detection carrier 50 to prepare a sample specimen. Since the sample manufacturing system of the present invention adopts the samples after the enrichment treatment by the enrichment system, the number of sample transfers during the period is reduced, and the cost is reduced. Since there are fewer intermediate links, the accuracy of sample preparation can be improved, and the detection rate of samples can be improved.
  • sample transfer mechanism 40 is configured to drive the enricher 10 to move in the vertical direction and/or the horizontal direction to contact the detection carrier 50.
  • the sample preparation system in the embodiment of the present invention further includes an elution container, the elution container is set to contain the elution solution to elute the retentate remaining on the barrier 103 of the enricher 10 in the elution solution to form a concentration Suspension; the sample transfer mechanism 40 is configured as a sample suction member to add the concentrated suspension to the detection carrier 50. In this way, samples can be manufactured for different tests.
  • the sample preparation system in the embodiment of the present invention further includes a sample staining mechanism 60, which is used to stain the retentate on the detection carrier 50 .
  • the dyeing mechanism 60 is a dry dyeing mechanism 60 or a wet dyeing mechanism 60. The dry dyeing mechanism 60 can stain the sample, and the wet dyeing mechanism 60 can wet the sample.
  • the sample detection system in the embodiment of the present invention further includes an enricher storage mechanism 701 and/or a waste recovery mechanism 702. Since the enricher 10 is a disposable consumable, multiple enrichers 10 can be stored by setting the enricher storage mechanism 701, and after the use is completed, a new enricher 10 can be replaced, which is convenient for operation.
  • the waste recycling mechanism 702 is used for recycling the used enricher 10, and the problem of medical pollution can be reduced by recycling the used enricher 10.
  • the sample detection system disclosed in the embodiment of the present invention includes a microscope 80 and a sample manufacturing system as in any one of the third embodiment.
  • the microscope 80 is used for microscopic inspection of the specimen.
  • the specimens manufactured by the sample manufacturing system in the third embodiment are subjected to microscopic examination using the microscope 80. Since the samples are enriched, the detection rate of the samples can be improved. In addition, because the number of sample transfers is reduced during the enrichment process, the time for sample detection can be saved, and the shorter the time before the sample microscopy, the higher the detection rate during the microscopy process, the more accurate.
  • the sample detection system in the embodiment of the present invention further includes a sample addition component 901 and a dry chemical detection mechanism.
  • the sample addition component 901 is used to suck the suction liquid or sample liquid in the enrichment cavity 1013, and remove the suction liquid or sample.
  • the liquid is added to the chemical detection carrier; the dry chemical detection mechanism is set to perform color recognition on the chemical detection carrier.
  • the above-mentioned sample adding member 901 can suck the suction liquid in the enrichment cavity 1013 after exiting the suction mechanism 20 after the enrichment processing is completed; or suck the suction liquid in the enrichment cavity 1013 during the enrichment processing.
  • the sample addition piece 901 is docked with the suction connection portion 102 of the enricher 10, the sample addition piece 901 is docked with the suction mechanism 20, and the enrichment device 10 is moved so that The barrier 103 of the enricher 10 is completely immersed below the liquid surface of the sample in the sample container 30, and the suction mechanism 20 operates, so that the internal cavity of the sample adding member 901 forms a negative pressure state, and the sample in the sample container 30 penetrates After passing through the barrier 103, it enters the enrichment cavity 1013, and then enters the internal cavity of the sample addition piece 901.
  • the suction mechanism 20 drives the sample addition member 901 to exit the enricher 10, and then the sample addition member 901 adds the suction liquid in the cavity to the chemical detection carrier 50 for display. Color recognition.
  • the sample addition piece 901 when a suction channel 1014 is provided on the enricher 10, the sample addition piece 901 is butted with the suction connection portion 102 of the enrichment device 10, and the outer surface of the sample addition piece 901 is blocked
  • the suction channel 1014 is located at the opening on the inner surface of the enrichment housing 101, the sample addition piece 901 is connected to the suction mechanism 20, and the enrichment device 10 is moved so that the barrier 103 of the enrichment device 10 is completely immersed in the sample in the sample container 30
  • the suction mechanism 20 operates to make the internal cavity of the sample addition member 901 form a negative pressure state, and the sample in the sample container 30 enters the enrichment cavity 1013 after passing through the barrier 103.
  • the suction mechanism 20 When the enrichment is completed, it is required When sucking the suction liquid, rotate the enricher 10, so that the opening of the suction channel 1014 located on the inner surface of the enrichment housing 101 is connected. At this time, the suction mechanism 20 is running because the enrichment cavity 1013 is connected to the outside, so that the enrichment chamber 1013 is connected to the outside. The suction liquid in the cavity 1013 can smoothly enter the internal cavity of the sample adding member 901. When it is necessary to perform dry chemical detection on the suction liquid, the suction mechanism 20 drives the sample addition member 901 to exit the enricher 10, and then the sample addition member 901 adds the suction liquid in the cavity to the chemical detection carrier 50 for display. Color recognition.
  • the sample detection system in the embodiment of the present invention further includes a chromatography column 902.
  • the chromatography column 902 is used for column chromatography to separate target molecules in the suction liquid. When in use, the chromatography column 902 is placed in the enrichment cavity 1013.
  • the applied enrichment system includes: a suction mechanism 20 and an enricher 10, the suction mechanism 20 is arranged to be connected to the suction connection part 102, the suction mechanism 20 It is set to cause the enrichment cavity 1013 of the enricher 10 to generate negative pressure.
  • the enricher in the enrichment system includes: an enrichment housing 101, which encloses the enrichment housing 101 for containing the suction liquid.
  • the collection cavity 1013; the suction connection portion 102, the suction connection portion 102 is used to communicate the suction mechanism 20 and the enrichment cavity 1013, so that the enrichment cavity 1013 forms a negative pressure under the action of the vacuum mechanism; and a barrier 103.
  • the barrier 103 is arranged on the enrichment housing 101.
  • the enrichment method includes the following steps:
  • the suction connection 102 and the suction mechanism 20 are connected by moving the enricher 10, or the suction connection 102 and the suction mechanism 20 are connected by moving the suction mechanism 20, or the enrichment is moved at the same time.
  • the collector 10 and the suction mechanism 20 realize the docking between the suction connection portion 102 and the suction mechanism 20.
  • the above-mentioned moving process can be performed manually or through the power mechanism 201.
  • the mobile enricher 10 is moved by manual operation and moved by automatic control.
  • the step S2 includes: pre-storing the target distance of the enricher 10; when the enricher 10 moves the target distance, stop moving the enricher 10 continuously.
  • the enrichment system includes a controller 202 and a power mechanism 201.
  • the power mechanism 201 is used to drive the power mechanism 201 of the enricher 10 to move.
  • the power mechanism 201 enables the enricher 10 to move to the sample.
  • the power mechanism 201 When the enrichment is completed, the power mechanism 201 enables the enricher 10 to move out of the liquid surface of the sample; the controller 202 pre-stores the target distance of the enricher 10; when the enrichment When the device 10 moves to the target distance, the power mechanism 201 is controlled to stop moving. At this time, a distance meter for measuring the running distance of the enricher 10 is also included.
  • step S2 includes: pre-storing the content of the enricher 10 Target operating time, and record the operating time of the power mechanism 201.
  • the power mechanism 201 is controlled to stop moving; at this time, the enrichment system includes a device for recording the operating time of the enricher 10 The timer 203.
  • step S2 includes: pre-store the target number of steps of the enricher 10, and record the number of running steps of the power mechanism 201, when the number of running steps moved by the enricher 10 is equal to the target number of steps , Control the power mechanism 201 to stop moving.
  • the enrichment system includes a counter for recording the number of running steps of the power mechanism 201.
  • the operation suction mechanism 20 is operated by manual operation and operated by automatic control.
  • the step S3 includes: pre-storing the target operation time of the suction mechanism 20; when the operation time of the suction mechanism 20 reaches the target operation time, stopping the operation of the suction mechanism 20.
  • the enrichment system includes a timer 203, which is used to record the operation time of the suction mechanism 20; the controller 202 also pre-stores the target operation time of the suction mechanism 20; when the suction mechanism 20 operates When the time reaches the target operating time, the suction mechanism 20 is controlled to stop operating. Since there is no need for unlimited suction processing during the operation of the enrichment system, the operation of the suction mechanism 20 can be effectively controlled by pre-stored the target operation time, which facilitates automatic control and reduces the work intensity of the operator.
  • the step S3 further includes: pre-storing the pre-warning pressure of the suction mechanism 20; collecting the operating pressure of the suction mechanism 20, and when the operating pressure reaches the pre-warning pressure, stopping the operation station The suction mechanism 20.
  • the enrichment system includes a pressure sensor 204, which is used to collect the operating pressure of the suction mechanism 20; the controller 202 also pre-stores the target pressure of the suction mechanism 20; when the operating pressure reaches the At the target operating pressure, the suction mechanism 20 is stopped. When the operating pressure of the suction mechanism 20 exceeds the target pressure, it indicates that the barrier 103 is blocked. At this time, regardless of whether the operation time of the suction mechanism 20 reaches the target operation time, the suction mechanism 20 stops continuing to operate.
  • step S2 and before step S3 it also includes aeration of the sample liquid in the sample container.
  • the clean gas is first blown into the sample liquid through the air generator so that the sample liquid forms convection under the action of the airflow, so that The sample solution becomes a suspension, and the formed components originally deposited on the bottom under the action of gravity are distributed in each layer of the sample solution, so that more formed components can be collected during subsequent enrichment.
  • a separate aeration unit can be inserted into the sample liquid to inflate the air, or it can be the above-mentioned enrichment device, which discharges clean air from the enrichment chamber to the sample liquid through a suction mechanism.
  • the enricher shown in Figure 57-58 can be used, and air is blown through the airflow channel on the enricher.
  • the sample preparation method disclosed in the embodiment of the present invention includes the enrichment method as described in any one of Embodiment 5, and after step S3 of the enrichment method, it further includes:
  • the retentate on the barrier 103 is transferred to the detection carrier 50 by manual operation, or the retentate on the barrier 103 is transferred to the detection carrier 50 by automatic control.
  • the transfer of the retentate is achieved by moving the enricher 10, or the transfer of the retentate is achieved by moving the detection carrier 50.
  • the step S4 includes: moving the enricher 10 in a vertical direction, and making the barrier 103 of the enricher 10 contact the detection carrier 50; and/or in a horizontal direction Move the enricher 10 and make the barrier 103 of the enricher 10 contact the detection carrier 50.
  • the above steps are realized by setting a sample transfer mechanism 40.
  • the step S4 further includes: eluting the retentate remaining on the barrier 103 of the enricher 10 in the eluting solution to form a concentrated suspension;
  • the suspension is added to the detection carrier 50.
  • the corresponding sample manufacturing system is realized by setting the elution container.
  • the elution container is configured to contain an elution solution to elute the retentate remaining on the barrier 103 of the enricher 10 to form a concentrated suspension in the elution solution;
  • the sample transfer mechanism 40 is configured to Aspirate the sample to add the concentrated suspension to the detection carrier 50. In this way, samples can be manufactured for different tests.
  • the sample needs to be stained to facilitate detection, after step S4, it further includes: staining the retentate on the detection carrier 50.
  • the corresponding sample making system is realized by setting a sample staining mechanism 60, and the sample staining mechanism 60 is used to stain the retentate on the pair of detection carriers 50.
  • the dyeing mechanism 60 is a dry dyeing mechanism 60 or a wet dyeing mechanism 60. The dry dyeing mechanism 60 can stain the sample, and the wet dyeing mechanism 60 can wet the sample.
  • the step S4 further includes: discarding the enricher 10 and replacing the enricher 10 with a new one.
  • the discarded enricher 10 is stored in the waste recycling mechanism 702, and the problem of medical pollution can be reduced by recycling the used enricher 10. Furthermore, multiple enrichers 10 can be stored in advance to facilitate replacement of new enrichers 10.
  • the sample detection method disclosed in this embodiment of the present invention includes the specimen manufacturing method as described in any one of Embodiment 6, and after step S4 of the specimen manufacturing method, it further includes:
  • S5 Perform microscopic inspection on the detection carrier 50. Among them, the microscopic examination is performed by the microscope 80.
  • the sample after the enrichment in the fifth embodiment can also be subjected to other tests.
  • the sample detection method further includes: dry chemical test, and the dry chemical test includes: sucking the enrichment cavity 1013 The aspiration liquid or sample liquid is added to the chemical detection carrier 50 for chemical color detection.
  • the suction mechanism 20 is exited and the suction liquid in the enrichment cavity 1013 is sucked; or during the enrichment processing, the suction liquid in the enrichment cavity 1013 is sucked.
  • the sample addition piece 901 when the enrichment process is performed, the sample addition piece 901 is docked with the suction connection portion 102 of the enricher 10, the sample addition piece 901 is docked with the suction mechanism 20, and the enrichment device 10 is moved so that The barrier 103 of the enricher 10 is completely immersed below the liquid surface of the sample in the sample container 30, and the suction mechanism 20 operates, so that the internal cavity of the sample adding member 901 forms a negative pressure state, and the sample in the sample container 30 penetrates After passing through the barrier 103, it enters the enrichment cavity 1013, and then enters the internal cavity of the sample addition piece 901.
  • the suction mechanism 20 drives the sample addition member 901 to exit the enricher 10, and then the sample addition member 901 adds the suction liquid in the cavity to the chemical detection carrier 50 for display. Color recognition.
  • the suction mechanism 20 When the enrichment is completed, it is required When sucking the suction liquid, rotate the enricher 10, so that the opening of the suction channel 1014 located on the inner surface of the enrichment housing 101 is connected. At this time, the suction mechanism 20 is running because the enrichment cavity 1013 is connected to the outside, so that the enrichment chamber 1013 is connected to the outside. The suction liquid in the cavity 1013 can smoothly enter the internal cavity of the sample adding member 901. When it is necessary to perform dry chemical detection on the suction liquid, the suction mechanism 20 drives the sample addition member 901 to exit the enricher 10, and then the sample addition member 901 adds the suction liquid in the cavity to the chemical detection carrier 50 for display. Color recognition.
  • the sample detection method also includes: a chromatography column 902 processing, and the chromatography column 902 processing includes: placing the chromatography column 902 in the enrichment In the suction liquid of the collection cavity 1013, column chromatography separates the target molecules in the suction liquid.
  • the difference between the enricher in this embodiment and the enricher in the first embodiment is that the enrichment housing 101 includes a first housing 101A and a second housing 101B.
  • the connecting portion 102 is arranged on the first housing 101A
  • the second housing 101B is arranged to be detachably connected to the first housing 101A
  • the supporting member 104 is arranged as a supporting column 104A or The limiting protrusion 104B, or in order to better support the cushion member 106, the supporting member 104 includes both the support 104 and the limiting protrusion 104B, wherein the supporting column 104A is arranged to extend from the inner wall of the first housing 101A in the axial direction.
  • the cross-section of the support column 104A is set in a grid shape, specifically similar to the shape of "king" or “well", and the limiting protrusion 104B is set from the inner wall of the second housing 101B along the diameter Extending in the direction to form the middle part for supporting the cushion member 106, it is formed as a ring shape protruding from the inner wall of the second housing 101B for supporting the peripheral part of the cushion member 106.
  • the first housing 101A and The second housing 101B is arranged in a socket connection.
  • the inner wall of the second housing 101B is sleeved with the outer wall of the first housing 101A to form an interference fit to prevent falling off, or the two are prevented from falling off by gluing,
  • the separation of the enrichment shell 101 into multiple parts is beneficial to subsequent processes such as the production, processing, and assembly of the enrichment device.
  • the production of each component The mold structure is simple, so the mold processing cost is low, and the service life is high.
  • the structure of each component is simple and the film is easy to produce, and the yield rate is high, which is convenient for assembly processing.
  • an airflow channel 1015 is provided on the side wall of the enrichment housing 101, and the airflow channel 1015 is connected to the enrichment device.
  • the collecting cavity 1013 is isolated and not connected.
  • the inlet and the outlet of the airflow channel 1015 are both arranged on the enrichment shell.
  • the airflow channel 1015 is arranged to communicate with the air generator. The air generator generates airflow and enters the airflow channel 1015.
  • the inlet of the air flow channel 1015 can be arranged on the top and side walls of the enrichment shell 101, the outlet can be arranged on the side wall or the bottom end of the enrichment shell 101, and the positions of the inlet and the outlet can be combined at any time, and the air flow channel 1015 The inlet and the outlet are connected.
  • the negative pressure generator can be used to blow air through the enrichment cavity, the air flow channel 1015 is provided separately to provide smooth air and a better effect, and it does not damage the connection of the barrier.
  • connection should be understood in a broad sense, for example, it can be a fixed connection, a detachable connection, or an integral connection; it can be a mechanical connection, It can also be an electrical connection; it can be directly connected, or indirectly connected through an intermediate medium, and it can be the internal communication between two components.
  • connection should be understood in a broad sense, for example, it can be a fixed connection, a detachable connection, or an integral connection; it can be a mechanical connection, It can also be an electrical connection; it can be directly connected, or indirectly connected through an intermediate medium, and it can be the internal communication between two components.

Landscapes

  • Health & Medical Sciences (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Chemical & Material Sciences (AREA)
  • Physics & Mathematics (AREA)
  • Analytical Chemistry (AREA)
  • General Health & Medical Sciences (AREA)
  • Biochemistry (AREA)
  • General Physics & Mathematics (AREA)
  • Immunology (AREA)
  • Pathology (AREA)
  • Engineering & Computer Science (AREA)
  • Biomedical Technology (AREA)
  • Molecular Biology (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Hematology (AREA)
  • Spectroscopy & Molecular Physics (AREA)
  • Clinical Laboratory Science (AREA)
  • Plasma & Fusion (AREA)
  • Biophysics (AREA)
  • Urology & Nephrology (AREA)
  • Food Science & Technology (AREA)
  • Medicinal Chemistry (AREA)
  • Sampling And Sample Adjustment (AREA)

Abstract

一种富集器(10)、富集系统、样本制造系统和样本检测系统,其中富集器(10)包括富集壳体(101),富集壳体(101)围成用于容纳抽吸液的富集腔体(1013);抽吸连接部(102),抽吸连接部(102)用于连通抽吸机构(20)与富集腔体(1013),以使富集腔体(1013)在抽真空机构作用下形成负压;以及阻隔件(103),阻隔件(103)设置在富集壳体(101)上,当富集腔体(1013)形成负压时,样本能够通过阻隔件(103)形成抽吸液进入至富集腔体(1013),并在阻隔件(103)滞留有滞留物。

Description

一种富集器、富集系统、样本制造系统和样本检测系统
本申请要求以下中国专利申请的优先权,其全部内容通过引用结合在本申请中。申请号:201911181291.8,申请日:2019年11月27日,发明创造名称:一种富集器、富集系统、样本制造系统和样本检测系统。
技术领域
本发明涉及医疗检测技术领域,更具体地说,涉及一种富集器、富集系统、样本制造系统和样本检测系统。
背景技术
医疗检测是将采集后的血液、体液、分泌物、排泄物和脱落物等样本通过目视观察、显微镜、物理、化学、仪器或分子生物学方法进行检测。为了提高样本中有形成分的检出率,需要对样本进行富集处理。
目前,富集方法主要有离心沉淀法、自然沉淀法等。其中,离心沉淀法是样本经离心后去除上清液取沉淀物进行检测;自然沉淀法是样本静置一定时间形成分沉淀后去除上清液取沉淀物进行检测。上述不同的富集方法需要各自对应的样本处理装置转移样本或处理样本,从而提高了富集的成本,进一步提高的医疗检测的检测成本。另外,上述富集方法中由于需要转移样本或处理样本,富集处理时间比较长。
因此,如何降低医疗检测的检测成本,是目前本领域技术人员亟待解决的问题。
发明内容
有鉴于此,本发明所要解决的技术问题是如何降低医疗检测的检测成本,为此,本发明提供了一种富集器、富集系统、样本制造系统和样本检测系统。
为实现上述目的,本发明提供如下技术方案:
一种富集器,包括:
富集壳体,所述富集壳体围成用于容纳抽吸液的富集腔体;
抽吸连接部,所述抽吸连接部用于连通抽吸机构与所述富集腔体,以使所述富集腔体在所述抽真空机构作用下形成负压;以及
阻隔件,所述阻隔件设置在所述富集壳体上,当所述富集腔体形成负压时,样本能够通过所述阻隔件形成所述抽吸液进入至所述富集腔体,并在所述阻隔件滞留有滞留物。
一种富集系统,包括:抽吸机构和如上述任一项所述的富集器,所述抽吸机构设置为与所述抽吸连接部连接,所述抽吸机构设置为可使得所述富集器的富集腔体产生负压。
一种样本制作系统,包括样本转移机构和如上述任一所述的富集系统,所述样本转移机构设置为将所述阻隔件上的滞留物转移至检测载体上。
一种样本检测系统,包括显微镜和如上述任一项所述的一种样本检测系统,所述显微镜用于对所述标本进行镜检。
从上述的技术方案可以看出,使用本发明的富集器时,通过抽吸连接部连通富集腔体与抽吸机构,并将富集壳体设置有阻隔件的部分与样本接触,抽吸机构作业,使得富集腔体形成负压,样本在负压作用下透过阻隔件形成抽吸液进入富集腔体,并在阻隔件上滞留滞留物。该富集器与现有技术相比,直接与样本接触就能够完成样本的富集处理,不需要额外转移样本或样本处理装置,从而降低了样本富集的成本,进一步的降低了医疗检测的成本。另外,由于采用该富集器无需转移样本或额外处理样本,缩短了样本富集处理的时间。
附图说明
为了更清楚地说明本发明实施例或现有技术中的技术方案,下面将对实施例或现有技术描述中所需要使用的附图作简单地介绍,显而易见地,下面描述 中的附图仅仅是本发明的一些实施例,对于本领域普通技术人员来讲,在不付出创造性劳动的前提下,还可以根据这些附图获得其他的附图。
图1至图33为本发明实施例一中所提供的一种富集器的结构示意图;
图34至图39为本发明实施例二中所提供的一种富集系统的结构示意图;
图40至图43为本发明实施例三中所提供的一种样本制造系统的结构示意图;
图44至图51为本发明实施例四中所提供的一种样本检测系统的结构示意图;
图52为本发明实施例五中所提供的一种富集方法的流程示意图;
图53为本发明实施例六中所提供的一种样本制造方法的流程示意图;
图54为本发明实施例七中所提供的一种样本检测方法的流程示意图;
图55为本发明实施例八中所提供的一种富集器的立体结构示意图;
图56为本发明实施例八中所提供的一种富集器的爆炸结构示意图;
图57和58为本发明实施例九中所提供的一种富集器的结构示意图。
图中,10为富集器、20为抽吸机构、30为样本容纳器、40为样本转移机构、50为检测载体、60为染色机构、701为富集器存储机构、702为废料回收机构、80为显微镜、901为加样件、902为层析柱、101为富集壳体、102为抽吸连接部、103为阻隔件、104为支撑部、105为安装腔、106为垫体件、107为环状支撑面、1011为侧壁、1012为底壁、1013为侧壁、1014为滤液抽吸通道、1015为气流通道、201为动力机构、202为控制器、203为计时器、204为压力传感器、101A为第一壳体与、101B为第二壳体、104A为支撑柱、104B为限位突起。
具体实施方式
本发明的核心在于提供一种富集器、富集系统、样本制造系统、样本检测系统、富集方法、样本制造方法以及样本检测方法,以降低医疗检测的检测成本。
此外,下面所示的实施例不对权利要求所记载的发明内容起任何限定作用。另外,下面实施例所表示的构成的全部内容不限于作为权利要求所记载的发明的解决方案所必需的。
实施例一
请参阅图1至图33,本发明实施例公开的富集器,包括:
富集壳体101,富集壳体101围成用于容纳抽吸液的富集腔体1013;
抽吸连接部102,抽吸连接部102用于连通抽吸机构20与富集腔体1013,以使富集腔体1013在抽真空机构作用下形成负压;以及
阻隔件103,阻隔件103设置在富集壳体101上,当富集腔体1013形成负压时,样本能够通过阻隔件103形成抽吸液进入至富集腔体1013,并在阻隔件103滞留有滞留物。
使用本发明的富集器10时,通过抽吸连接部102连通富集腔体1013与抽吸机构20,并将富集壳体101设置有阻隔件103的部分与样本接触,抽吸机构20作业,使得富集腔体1013形成负压,样本在负压作用下透过阻隔件103形成抽吸液进入富集腔体1013,并在阻隔件103上滞留滞留物,根据选用的阻隔件103的不同可以得到不同的滞留物即可以获取预设的滞留物。该富集器10与现有技术相比,直接与样本接触就能够完成样本的富集处理,不需要额外转移样本或样本处理装置,从而降低了样本富集的成本,进一步的降低了医疗检测的成本。另外,由于采用该富集器10无需转移样本或额外处理样本,缩短了样本富集处理的时间。
需要说明的是,本发明中富集壳体101的形状不作具体限定。其可以为规则结构还可以为不规则结构,其中,规则结构中可以为立方柱结构、圆柱结构、圆锥结构等等。以富集壳体101为柱状结构为例,该富集壳体101包括底壁1012和自底壁1012的边缘沿轴向延伸形成的侧壁1011,侧壁1011沿周向旋转为闭合结构。侧壁1011为圆柱结构、圆锥结构、立方柱结构,当然并不排除其他结构类型,只要具有承载以及围成富集腔体1013的结构均在本发明的保护范围内。其中,图1至图9,图14、图16至图24以及图26至图33中侧壁1011为圆柱结构; 图10至图13、图15以及图25中侧壁1011为圆锥结构。当侧壁1011为圆锥结构时,沿富集壳体101的轴向,富集腔体1013的截面自上而下逐渐变小。如此设置方便后续部件的安装。
富集壳体101的壳壁的内表面与富集腔体1013所对应的,富集壳体101的壳壁的外表面与外界所对应的。当富集壳体101包括底壁1012和侧壁1011时,该侧壁1011也对应有外表面和内表面,底壁1012也对应有外表面和内表面,此时,外表面包括底壁1012对应的外表面和侧壁1011所对应的外表面。
富集壳体101的材质可以塑料、树脂、玻璃等等,只要具备围成富集腔体1013的结构均在本发明的保护范围内。
请参阅图2至图9,为了方便提取富集腔体1013中的抽吸液以进行对应检测,本发明实施例中,富集壳体101的壳壁上设置有与富集腔体1013连通的抽吸通道1014。通过该抽吸通道1014能够吸取富集腔体1013中的抽吸液。该抽吸通道1014的开口设置在富集壳体101的内表面,或者富集壳体101的外表面。当抽吸通道1014的开口设置在富集壳体101的内表面时,为了方便操作,开口处设置有环状支撑面107,以支撑后续操作部件。
抽吸连接部102的作用为连通抽吸机构20与富集腔体1013,其与富集腔体1013连通的孔、开口、接头等等结构,其可以设置在富集壳体101的壳壁上。针对不同结构的富集壳体101其设置的具体位置存在差异,但是其整体功能为连通抽吸机构20与富集腔体1013,并在抽吸机构20的作用下使得富集腔体1013内部形成负压。优选的,抽吸连接部102的位置直接与阻隔件103正对,如此设置,富集腔体1013的实际容积最大,能盛放抽吸液的能力就最强。
阻隔件103的作用是富集样本,当富集腔体1013形成负压时,样本能够通过阻隔件103形成抽吸液进入至富集腔体1013,并在阻隔件103滞留有滞留物。阻隔件103设置在富集壳体101上,其通过粘连、热熔或卡套方式连接至富集壳体101上。阻隔件103为过滤膜或者过滤网。根据需要富集的样本确定采用过滤膜或者过滤网。其中当选取过滤膜时通常采用为微孔过滤膜,而微孔过滤膜的滤孔的孔径的大小通常根据样本中待检测有形成分进行确定,可根据经验将不 同的有形成分与微型过滤膜的孔径对应关系进行分类,然后在具体操作时进行选取。其中,阻隔件103为一层或者多层。请参阅图10至图13,当所述富集腔的一端设置有多层阻隔件103时,所述多层阻隔件设置为具有不同大小的孔径,其安装方式为小孔径的阻隔件外套设大孔径的阻隔件。
请参阅图2至图33,由于阻隔件103的作用为富集样本,即将滞留物滞留在阻隔件103上,当富集完成后,需要将滞留物转移至样本载体上才能够完成进一步检测,为此,为了防止阻隔件103在负压作用下破裂或者内陷富集腔中的垫体件106,该垫体件106设置为在受到外力作用时能够呈压缩状态的弹性件,当转移滞留物时,样本载体会与阻隔件103相接触,接触过程中,由于垫体件106在外力作用下能够呈压缩状态,因此,阻隔件103能够产生形变,可以有效的避免检测载体50与阻隔件103刚性接触造成损伤,方便转移滞留物。该垫体件106可以单独通过粘连、热熔、卡套、卡接等形式连接至富集壳体101或者请参阅图3、图7、图12、图16、图18、图20、图22、图26、图28、图30和图32所示,富集壳体101上形成有安装腔105,垫体件106设置于安装腔105内,其中,设置有安装腔105的部位安装有阻隔件103,垫体件106设置为接触阻隔件103。
请参阅图9,图21、图23、图31和图33,为了进一步方便转移阻隔件103上的滞留物,垫体件106的至少一部分凸出富集壳体101的外表面,当转移阻隔件103上的滞留物时,由于垫体件106的至少一部分凸出富集壳体101的外表面,因此,与垫体件106接触的阻隔件103在垫体件106的凸出作用下,阻隔件103也凸出富集壳体外表面,阻隔件103因此不会内凹,在由于阻隔件103设置为弹性件其与检测载体50接触转移滞留物至检测载体时,其相当于弹性挤压过程,可以将阻隔件103上的绝大部分滞留物转移到检测载体上,从而进一步提高了转移效果。本实施例中由于抽吸连接部102以及阻隔件103设置在富集壳体101上的位置可相对调整,因此,该外表面可以为富集壳体101的壳壁整体的外表面,不同结构中不同部位的壳壁名称略有差异,其均在本申请的范围中。
本实施例中,垫体件106设置为海绵,海绵具有吸附水分的作用,通过设置海绵能够有效防止富集腔体101内部的抽吸液倒流以及对滞留物进行保湿,进一步提高了滞留物的富集效果。
本实施例中,还设置有支撑部件104以支撑垫体件106,该支撑部件104设置为为薄片、蜂窝、柱状等等只要能够达到支撑垫体件106的结构均在本发明的保护范围内。
本实施中,支撑部件104设置为与富集壳体101一体成型或者支撑部件104与富集壳体101为可拆卸结构。请参阅图2至图23,图示中支撑部件104与富集壳体101为一体式结构,请参阅图24至图45,图示中支撑部件104与富集壳体101为可拆卸结构。
请参阅图14至图23,当支撑部件104与富集壳体101为一体式结构时,支撑部件104自富集壳体101的壳壁沿富集壳体101径向和/或轴向方向延伸形成。以富集壳体101为圆柱状结构为例,请参阅图2、图3、图8至图11、图16、图17以及图18至图23所示,支撑部件104可以认定为从富集壳体的侧壁1011沿径向方向延伸形成的底壁1012(富集壳体不具有底壁时),或者可以认定为从底壁1012沿轴向方向延伸(富集壳体具有底壁时),当支撑部件104与富集壳体101为一体成型结构时,安装腔105设置为由支撑部件104与侧壁1011围绕而成,例如支撑部件104延伸为底壁1012或者延伸为支撑筋条或者支撑栅格,其均可以与侧壁1011围绕形成安装腔105,当支撑部件104延伸形成底壁1012时还可以是底壁1012凹进形成安装腔105,此时支撑部件104上设置连通孔1041,通过连通孔1041能够连通富集腔体1013。
请参阅图24至图33,当支撑部件104与富集壳体101为可拆卸结构时,支撑部件104连接至富集壳体101的壳壁。具体的,其固定方式可为支撑部件104卡接于富集壳体101壳壁或者通过其他限位件进行限位,请参阅图26、图28、图30和图32所示,当支撑部件104卡在侧壁1011的内壁时,该安装腔105由侧壁1011以及支撑部件104所形成。
本实施例中底壁、侧壁均为富集壳体的壳壁,其中底壁、侧壁又分别具有内表面、外表面,或者将侧壁的内表面称为内壁,外表面称为外壁等等其同样为本实施例中所称的壳壁。
本实施例中上述描述详细介绍了支撑部件104支撑垫体件106的情况,即上述描述中支撑部件104与垫体件106同时设置,应当说明的是,如图2、图14、图15、图24所示的,也可以单独只设置支撑部件104,此时支撑部件104等同于 垫体件106,其单独也可以实现垫体件106的作用,即防止阻隔件103内陷不利于转移滞留物或者防止阻隔件103在负压吸力作用下受力破裂等情况,尤其是支撑部件104设置为与富集壳体101可拆卸连接时,其材质可以设置为垫体件106同样的材质,例如弹性件,具体地例如海绵,其通过类似上述描述的垫体件106的安装方式安装至富集壳体101上,此时支撑部件104可以同样设置为其至少一部分超出富集壳体101的外表面。
综上所述,本领域技术人员应当理解的为尽管本实施例中支撑部件104与垫体件106名称不同,在两者同时设置的情况下,支撑部件104起到支撑垫体件106的作用,但是单独只设置垫体件106或者支撑部件104时,尽管其两者名称不一致,应当理解为只要起到了防止阻隔件103内陷或者破裂时,两者为同一部件,其实质范围相同。
实施例二
请参阅图34至图39,本发明的富集系统包括:抽吸机构20和如实施例一任一项的富集器10,抽吸机构20设置为与抽吸连接部102连接,抽吸机构20设置为可使得富集器10的富集腔体1013产生负压。
使用该富集系统时,连接抽吸连接部102与抽吸机构20,移动富集器10使得富集器10中的阻隔件103置于样本液面下,运行抽吸机构20,使得富集腔体1013形成负压,样本在负压作用下透过阻隔件103形成抽吸液进入富集腔体1013,并在阻隔件103上滞留滞留物。采用本发明的富集系统与现有技术相比,富集器10直接与样本接触就能够完成样本的富集处理,不需要额外转移样本或样本处理装置,从而降低了样本富集的成本,进一步的降低了医疗检测的成本。另外,由于采用该富集器10无需转移样本或额外处理样本,缩短了样本富集处理的时间。
上述抽吸机构20可以为注射器、真空发生器等等能够产生负压的设备。本发明优选的采用真空发生器,便于实现自动化控制。
为了提高操作精度,富集系统还包括:用于带动富集器10移动的动力机构201。通过该动力机构201使得富集器10能够移动至样本的液面下,当富集完成后,通过该动力机构201使得富集器10能够移出样本的液面。
为了进一步提高操作精度,以及操作的自动化,富集系统还包括:
控制器202,控制器202预先存储富集器10的目标距离;当富集器10移动至目标距离时,控制动力机构201停止移动。此时,还包括用于测量富集器10运行距离的测距器。
此处需要说明的是,该目标距离能够折算为动力机构201的目标运行时间或者动力机构201的目标步数;当目标距离折算为目标运行时间时,预先存储富集器10的目标运行时间,并记录动力机构201的运行时间,当富集器10移动的运行时间等于目标时间时,控制动力机构201停止移动;此时,还包括用于记录富集器10运行时间的富集器计时器。
当目标距离折算为目标步数时,预先存储富集器10的目标步数,并记录动力机构201的运行步数,当富集器10移动的运行步数等于目标步数时,控制动力机构201停止移动。此时,还包括用于记录动力机构201运行步数的计数器。
进一步的,为了进一步优化上述方案,还包括计时器203,计时器203用于记录抽吸机构20的运行时间;
控制器202还预先存储抽吸机构20的目标运行时间;当抽吸机构20的运行时间达到目标运行时间时,控制抽吸机构20停止运行。
由于富集系统运行过程中无需无限制的进行抽吸处理,因此,通过预先存储目标运行时间,能够有效地控制抽吸机构20的运行过程,方便自动化控制,减小操作人员工作强度。
为了保证操作过程中的安全性,还包括压力传感器204,压力传感器204用于采集抽吸机构20的运行压力;
控制器202还预先存储抽吸机构20的目标压力;当运行压力达到目标运行压力时,停止运行抽吸机构20。
当抽吸机构20的运行压力超过目标压力时,说明阻隔件103被封堵,此时,无论抽吸机构20的运行时间是否达到目标运行时间,该抽吸机构20均停止继续运行。
实施例三
请参阅图40至43,本发明实施例公开的样本制作系统,包括样本转移机构40和如实施例二中任一的富集系统,样本转移机构40设置为将阻隔件103上的滞留物转移至检测载体50上。
使用本发明实施例中的样本制作系统时,样本转移机构40将经富集系统富集后的富集器10上的滞留物转移至检测载体50上制备样本标本。由于采用本发明的样本制造系统,采用经过富集系统富集处理后的样本,由于期间减少了样本转移的次数,降低了成本。由于中间环节较少,因此,能够提高样本制作精度,提高样本的检出率。
其中,样本转移机构40设置为带动富集器10沿竖直方向和/或水平方向移动以接触检测载体50。
本发明实施例中的样本制作系统,还包括洗脱容器,洗脱容器设置为盛装洗脱溶液以将滞留在富集器10的阻隔件103上的滞留物洗脱在洗脱溶液中形成浓缩混悬液;样本转移机构40设置为吸样件以将浓缩混悬液添加至检测载体50上。如此,可针对不同的检测进行样本制造。
由于在某些检测过程中,需要对样本进行染色以方便检出,本发明实施例中的样本制作系统还包括样本染色机构60,样本染色机构60用于对对检测载体50上的滞留物染色。该染色机构60干染色机构60或湿染色机构60,通过干染色机构60能够对样本进行感染色,通过湿染色机构60能够对样本进行湿染色。
本发明实施例中的样本检测系统还包括富集器存储机构701和/或废料回收机构702。由于富集器10为一次性耗材,因此,通过设置富集器存储机构701能够存储多个富集器10,待使用完毕后,替换新的富集器10,方便操作。而废料回收机构702用于回收用过的富集器10,通过回收使用后的富集器10能够减少医疗污染的问题。
实施例四
请参阅图44至51,本发明实施例公开的样本检测系统,包括显微镜80和如实施例三中任一项的一种样本制造系统,显微镜80用于对标本进行镜检。
通过实施例三中的样本制造系统制造的标本,并采用显微镜80进行镜检,由于样本经过富集处理,因此,能够提高样本的检出率。另外,由于富集过程中减少了样本转移的次数,因此,能够节省样本检测的时间,且样本镜检之前所经历的时间越短,那么镜检过程中检出率就会越高越准确。
本发明实施例中的样本检测系统,还包括加样件901和干化学检测机构,加样件901用于吸取富集腔体1013中的抽吸液或者样本液,并将抽吸液或者样本液添加至化学检测载体;干化学检测机构设置为对化学检测载体进行显色识别。
上述加样件901可在富集处理完毕后退出抽吸机构20之后吸取富集腔体1013中的抽吸液;或者富集处理过程中,吸取富集腔体1013中的抽吸液。其中,请参阅图46至49,当进行富集处理时,加样件901与富集器10的抽吸连接部102对接,加样件901与抽吸机构20对接,移动富集器10使得富集器10的阻隔件103完全浸入至样本容纳器30中的样本的液面下,抽吸机构20运行,使得加样件901内部腔体形成负压状态,样本容纳器30中的样本透过阻隔件103后进入富集腔体1013后,再进入至加样件901的内部腔体中。当需要对抽吸液进行干化学检测时,抽吸机构20带动加样件901退出富集器10,然后加样件901将腔体内的抽吸液添加至化学检测载体50上,以进行显色识别。
请参阅图48和图49,当富集器10上设置有抽吸通道1014时,加样件901与富集器10的抽吸连接部102对接,并使得加样件901的外表面封堵抽吸通道1014位于富集壳体101内表面的开口,加样件901与抽吸机构20对接,移动富集器10使得富集器10的阻隔件103完全浸入至样本容纳器30中的样本的液面下,抽吸机构20运行,使得加样件901内部腔体形成负压状态,样本容纳器30中的样本透过阻隔件103后进入富集腔体1013,当富集完成后需要吸取抽吸液时,旋转 富集器10,使得抽吸通道1014位于富集壳体101内表面的开口导通,此时抽吸机构20运行由于富集腔体1013与外界导通,富集腔体1013中的抽吸液能够顺利进入至加样件901的内部腔体中。当需要对抽吸液进行干化学检测时,抽吸机构20带动加样件901退出富集器10,然后加样件901将腔体内的抽吸液添加至化学检测载体50上,以进行显色识别。
请参阅图50和图51,本发明实施例中的样本检测系统,还包括层析柱902,层析柱902用于柱层析分离抽吸液中的目标分子。使用时,将层析柱902置于富集腔体1013中。
实施例五
请参阅图52,本发明实施例公开的富集方法,应用的富集系统包括:抽吸机构20和富集器10,抽吸机构20设置为与抽吸连接部102连接,抽吸机构20设置为可使得富集器10的富集腔体1013产生负压,富集系统中的富集器,包括:富集壳体101,富集壳体101围成用于容纳抽吸液的富集腔体1013;抽吸连接部102,抽吸连接部102用于连通抽吸机构20与富集腔体1013,以使富集腔体1013在抽真空机构作用下形成负压;以及阻隔件103,阻隔件103设置在富集壳体101上,当富集腔体1013形成负压时,样本能够通过阻隔件103形成抽吸液进入至富集腔体1013,并在阻隔件103滞留有滞留物。
具体的,所述富集方法包括以下步骤:
S1:对接所述富集器10的抽吸连接部102与所述抽吸机构20。
其中,对接过程中通过移动富集器10实现抽吸连接部102与抽吸机构20的对接,或者通过移动抽吸机构20实现抽吸连接部102与抽吸机构20的对接,或者同时移动富集器10和抽吸机构20实现抽吸连接部102与抽吸机构20的对接。上述移动过程可手动进行还可通过动力机构201进行。
S2:移动所述富集器10使其浸入至样本容纳器30的样本液中。
其中,移动富集器10通过手动操作进行移动,通过自动控制进行移动。当需要自动控制进行移动时:所述步骤S2包括:预先存储所述富集器10的目标距离;当所述富集器10移动目标距离时,停止继续移动所述富集器10。作为结构支持,富集系统包括控制器202和动力机构201,其中,动力机构201用于带动所述富集器10移动的动力机构201,通过该动力机构201使得富集器10能够移动至样本的液面下,当富集完成后,通过该动力机构201使得富集器10能够移出样本的液面;所述控制器202预先存储所述富集器10的目标距离;当所述富集器10移动至目标距离时,控制所述动力机构201停止移动。此时,还包括用于测量富集器10运行距离的测距器。
此处需要说明的是,该目标距离能够折算为动力机构201的目标运行时间或者动力机构201的目标步数;当目标距离折算为目标运行时间时,步骤S2包括:预先存储富集器10的目标运行时间,并记录动力机构201的运行时间,当富集器10移动的运行时间等于目标时间时,控制动力机构201停止移动;此时,富集系统包括用于记录富集器10运行时间的计时器203。
当目标距离折算为目标步数时,步骤S2包括:预先存储富集器10的目标步数,并记录动力机构201的运行步数,当富集器10移动的运行步数等于目标步数时,控制动力机构201停止移动。此时,富集系统包括用于记录动力机构201运行步数的计数器。
S3:运行所述抽吸机构20使得样本液通过所述阻隔件103进入至所述富集腔体1013内。
其中,运行抽吸机构20通过手动操作进行运行,通过自动控制进行运行。当通过自动控制进行运行时,所述步骤S3包括:预先存储抽吸机构20的目标运行时间;当抽吸机构20的运行时间达到所述目标运行时间时,停止运行所述抽吸机构20。富集系统包括计时器203,所述计时器203用于记录所述抽吸机构20的运行时间;所述控制器202还预先存储抽吸机构20的目标运行时间;当抽吸机构20的运行时间达到所述目标运行时间时,控制所述抽吸机构20停止运行。由于富集系统运行过程中无需无限制的进行抽吸处理,因此,通过预先存储目标运行时间,能够有效地控制抽吸机构20的运行过程,方便自动化控制,减小操作人员工作强度。
为了进一步保证设备的安全性,所述步骤S3还包括:预先存储抽吸机构20的预警压力;采集所述抽吸机构20的运行压力,当所述运行压力达到所述预警压力,停止运行所述抽吸机构20。富集系统包括压力传感器204,所述压力传感器204用于采集所述抽吸机构20的运行压力;所述控制器202还预先存储抽吸机构20的目标压力;当所述运行压力达到所述目标运行压力时,停止运行所述抽吸机构20。当抽吸机构20的运行压力超过目标压力时,说明阻隔件103被封堵,此时,无论抽吸机构20的运行时间是否达到目标运行时间,该抽吸机构20均停止继续运行。
本实施中,在S2步骤之后S3步骤之前还包括对样本容器中的样本液进行鼓气,通过空气发生器先将洁净气体鼓入样本液中使得样本液在气流的作用下形成对流,从而使得样本液成为混悬液,原本在重力作用下沉积在底部的有形成分分布在样本液的各层,便于后续富集时可以收集到更多有形成分。
其中鼓气实现方式有多种,可以单独设置鼓气单元插入至样本液中鼓气,也可以是上述记载的富集器,通过抽吸机构从富集腔排出洁净空气至样本液中,还可以是采用如图57-58所示的富集器,通过富集器上的气流通道进行鼓气。
实施例六
请参阅图53,本发明实施例公开的样本制作方法,包括如实施例五任一项所述的富集方法,且在所述富集方法的步骤S3之后还包括:
S4:将所述阻隔件103滞留的滞留物转移至检测载体50上。
其中,在该步骤中通过手动操作将阻隔件103上滞留的滞留物转移至检测载体50上,或者通过自动控制将阻隔件103上的滞留物转移至检测载体50上。通过移动富集器10实现转移滞留物,或者通过移动检测载体50实现转移滞留物。
在本发明实施例中,所述步骤S4包括:沿竖直方向移动所述富集器10,并使得所述富集器10的阻隔件103接触所述检测载体50;和/或者沿水平方向移动所述富集器10,并使得所述富集器10的阻隔件103接触所述检测载体50。具体的通过设置样本转移机构40实现上述步骤。
进一步的为了进行不同的检测,所述步骤S4还包括:将滞留在所述富集器10的阻隔件103上的滞留物洗脱在洗脱溶液中形成浓缩混悬液;将所述浓缩混悬液添加至检测载体50上。对应的样本制造系统通过设置洗脱容器实现。所述洗脱容器设置为盛装洗脱溶液以将滞留在所述富集器10的阻隔件103上的滞留物洗脱在洗脱溶液中形成浓缩混悬液;所述样本转移机构40设置为吸样件以将所述浓缩混悬液添加至所述检测载体50上。如此,可针对不同的检测进行样本制造。
由于在某些检测过程中,需要对样本进行染色以方便检出,步骤S4之后还包括:对检测载体50上的滞留物进行染色。对应的样本制作系统通过设置样本染色机构60实现,所述样本染色机构60用于对所述对检测载体50上的滞留物染色。该染色机构60干染色机构60或湿染色机构60,通过干染色机构60能够对样本进行感染色,通过湿染色机构60能够对样本进行湿染色。
样本制造完成之后为了方便后续操作,所述步骤S4之后还包括:丢弃该富集器10,并更换新的富集器10。丢弃的富集器10收纳在废料回收机构702中,通过回收使用后的富集器10能够减少医疗污染的问题。进一步的,还可预先储存多个富集器10,方便替换新的富集器10。
实施例七
请参阅图54,该本发明实施例公开的样本检测方法,包括如实施例六中任一项所述的标本制造方法,且在所述标本制造方法的步骤S4之后还包括:
S5:对所述检测载体50进行镜检。其中,镜检通过显微镜80进行。
进一步的,经过实施例五中富集后的样本除了能够进行镜检,还可以进行其他检测,例如该样本检测方法还包括:干化学检测,所述干化学检测包括:吸取富集腔体1013中的抽吸液或者样本液,并将抽吸液或者样本液添加至化学检测载体50,进行化学显色检测。其中,富集处理完毕后退出抽吸机构20之后吸取富集腔体1013中的抽吸液;或者富集处理过程中,吸取富集腔体1013中的抽吸液。其中,请参阅图46至51,当进行富集处理时,加样件901与富集器10的抽吸连接部102对接,加样件901与抽吸机构20对接,移动富集器10使得富集器10的阻隔件103完全浸入至样本容纳器30中的样本的液面下,抽吸机构20运行,使得加样件901内部腔体形成负压状态,样本容纳器30中的样本透过阻隔件103后进入富集腔体1013后,再进入至加样件901的内部腔体中。当需要对抽吸液进行干化学检测时,抽吸机构20带动加样件901退出富集器10,然后加样件901将腔体内的抽吸液添加至化学检测载体50上,以进行显色识别。
请参阅图2至图9,当富集器10上设置有抽吸通道1014时,加样件901与富集器10的抽吸连接部102对接,并使得加样件901的外表面封堵抽吸通道1014位于富集壳体101内表面的开口,加样件901与抽吸机构20对接,移动富集器10使得富集器10的阻隔件103完全浸入至样本容纳器30中的样本的液面下,抽吸机构20运行,使得加样件901内部腔体形成负压状态,样本容纳器30中的样本透过阻隔件103后进入富集腔体1013,当富集完成后需要吸取抽吸液时,旋转富集器10,使得抽吸通道1014位于富集壳体101内表面的开口导通,此时抽吸机构20运行由于富集腔体1013与外界导通,富集腔体1013中的抽吸液能够顺利进入至加样件901的内部腔体中。当需要对抽吸液进行干化学检测时,抽吸机构20带动加样件901退出富集器10,然后加样件901将腔体内的抽吸液添加至化学检测载体50上,以进行显色识别。
进一步的,经过实施例五中富集后的样本除了能够进行镜检,所述样本检测方法还包括:层析柱902处理,所述层析柱902处理包括:将层析柱902置于富集腔体1013的抽吸液中,柱层析分离抽吸液中的目标分子。
实施例八
如图55-56所示,本实施例中富集器与第一实施例中富集器的区别之处在于,富集壳体101包括第一壳体101A与第二壳体101B,抽吸连接部102设置于 第一壳体101A上,第二壳体101B设置为可拆卸地连接至第一壳体101A,富集壳体101设置为两部分后,支撑部件104设置为支撑柱104A或者限位突起104B,或者为了更好的支撑垫体件106支撑部件104同时包括支撑住104与限位突起104B,其中支撑柱104A设置为从第一壳体101A的内壁沿轴向方向延伸而成,且为了便于模具制作,支撑柱104A的截面设置为网格状,具体地类似于“王”字状或者“井”字状,限位突起104B设置为从第二壳体101B的内壁沿径向方向延伸而成用于支撑垫体件106的中间部位,其形成为突出第二壳体101B内壁的环状用于支撑垫体件106的周边部位,本实施例中第一壳体101A与第二壳体101B设置为套接连接,具体地,第二壳体101B的内壁套设与第一壳体101A的外壁两者形成过盈配合防止脱落,或者两者通过胶粘方式防止脱落,本实施例中富集壳体101拆分为由多个部分组成的设置有利于富集器的生产、加工、组装等后续工艺,首先,富集壳体拆分后,每个组成部件的生产模具结构简单,因此模具加工成本低,使用寿命高,生产过程中每个组成部件结构简单好出膜,便于批量化生产且良品率高,便于组装加工。
实施例九
如图57-58所示,本实施例中富集器与第一实施例中富集器的区别之处在于,富集壳体101的侧壁上设置有气流通道1015,气流通道1015与富集腔体1013隔绝设置不连通,气流通道1015的进口与出口均设置于富集壳体上,气流通道1015设置为与空气发生器连通,空气发生器产生气流进入气流通道1015中,当本实施例富集器伸入至样本液中富集时,在富集之前通过空气发生器先将洁净气体鼓入样本液中使得样本液在气流的作用下形成对流,从而使得样本液形成混悬液,原本在重力作用下沉积在底部的有形成分分布在样本液的各层,便于后续富集时可以收集到更多有形成分。本实施例中,气流通道1015的进口可以设置于富集壳体101的顶端、侧壁,出口可以设置于富集壳体101的侧壁或者底端,进口、出口位置任意组合,气流通道1015连通进口与出口,本实施例中尽管通过负压发生器可以通过富集腔体进行鼓气,单独设置气流通道1015鼓气更流畅,效果更好,且不会破坏阻隔件的连接。
在本申请的描述中,需要说明的是,术语“中心”、“上”、“下”、“左”、“右”、“竖直”、“水平”、“内”、“外”等指示的方位或位置关系为基于附图所示的方位或位置关系,仅是为了便于描述本申请和简化描述,而不是 指示或暗示所指的装置或元件必须具有特定的方位、以特定的方位构造和操作,因此不能理解为对本申请的限制。此外,术语“第一”、“第二”、“第三”仅用于描述目的,而不能理解为指示或暗示相对重要性。
除非另有明确的规定和限定,术语“安装”、“相连”、“连接”应做广义理解,例如,可以是固定连接,也可以是可拆卸连接,或一体地连接;可以是机械连接,也可以是电连接;可以是直接相连,也可以通过中间媒介间接相连,可以是两个元件内部的连通。对于本领域的普通技术人员而言,可以具体情况理解上述术语在本申请中的具体含义。
对所公开的实施例的上述说明,使本领域专业技术人员能够实现或使用本发明。对这些实施例的多种修改对本领域的专业技术人员来说将是显而易见的,本文中所定义的一般原理可以在不脱离本发明的精神或范围的情况下,在其它实施例中实现。因此,本发明将不会被限制于本文所示的这些实施例,而是要符合与本文所公开的原理和新颖特点相一致的最宽的范围。

Claims (34)

  1. 一种富集器,其特征在于,包括:
    富集壳体,所述富集壳体围成用于容纳抽吸液的富集腔体,所述富集壳体上设置有抽吸连接部,所述抽吸连接部用于连通抽吸机构与所述富集腔体,以使所述富集腔体在所述抽真空机构作用下形成负压;
    阻隔件,所述阻隔件设置在所述富集壳体上,当所述富集腔体形成负压时,样本能够通过所述阻隔件形成所述抽吸液进入至所述富集腔体,并在所述阻隔件滞留有滞留物。
  2. 如权利要求1所述的富集器,其特征在于,所述富集壳体的侧壁上设置有连通所述富集腔体的抽吸通道,通过所述抽吸通道能够提取所述抽吸液。
  3. 如权利要求1所述的富集器,其特征在于,所述富集腔的一端设置有多层阻隔件。
  4. 如权利要求3所述的富集器,其特征在于,所述多层阻隔件设置为具有不同大小的孔径,其安装方式为小孔径的阻隔件外套设大孔径的阻隔件。
  5. 如权利要求4所述的富集器,其特征在于,所述阻隔件设置为过滤网或者微孔过滤膜。
  6. 如权利要求5所述的富集器,其特征在于,所述阻隔件通过粘连、热熔或卡套方式连接至所述富集壳体。
  7. 如权利要求1所述的富集器,其特征在于,所述富集壳体的侧壁上设置有气流通道,所述气流通道与所述富集腔体隔绝设置。
  8. 如权利要求1-7任一所述的富集器,其特征在于,所述富集壳体上还设置有用于防止所述阻隔件内陷或者破裂的垫体件。
  9. 如权利要求8所述的富集器,其特征在于,所述垫体件设置为受力能够呈压缩状态的弹性件。
  10. 如权利要求9所述的富集器,其特征在于,所述垫体件设置为海绵。
  11. 如权利要求10所述的富集器,其特征在于,所述垫体件的至少一部分凸出所述富集壳体外表面。
  12. 如权利要求11所述的富集器,其特征在于,所述富集壳体上还设置有支撑所述垫体件的支撑部件。
  13. 如权利要求12所述的富集器,其特征在于,所述支撑部件与所述富集壳体一体成型。
  14. 如权利要求13所述的富集器,其特征在于,所述支撑部件自所述富集壳体壳壁沿所述富集壳体径向和/或轴向方向延伸形成。
  15. 如权利要求14所述的富集器,其特征在于,所述支撑部件延伸形成支撑栅格或者支撑筋。
  16. 如权利要求15所述的富集器,其特征在于,所述富集壳体上形成有安装腔,所述垫体件设置于所述安装腔内。
  17. 如权利要求11所述的富集器,其特征在于,所述支撑部件可拆卸地连接至所述富集壳体。
  18. 如权利要求17所述的富集器,其特征在于,所述支撑部件连接至所述富集壳体的壳壁。
  19. 如权利要求18所述的富集器,其特征在于,所述支撑部件与所述富集壳体形成安装腔,所述垫体件设置于所述安装腔内。
  20. 一种富集系统,其特征在于,包括:抽吸机构和如权利要求1至19中任一项所述的富集器,所述抽吸机构设置为与所述抽吸连接部连接,所述抽吸机构设置为可使得所述富集器的富集腔体产生负压。
  21. 如权利要求20所述的富集系统,其特征在于,所述富集系统还包括:
    动力机构,所述动力机构用于带动所述富集器移动。
  22. 如权利要求21所述的富集系统,其特征在于,所述富集系统还包括:
    控制器,所述控制器预先存储所述富集器的目标距离;当所述富集器移动至目标距离时,控制所述动力机构停止移动。
  23. 如权利要求22所述的富集系统,其特征在于,还包括计时器,所述计时器用于记录所述抽吸机构的运行时间;
    所述控制器还预先存储抽吸机构的目标运行时间;当抽吸机构的运行时间达到所述目标运行时间时,控制所述抽吸机构停止运行。
  24. 如权利要求23所述的富集系统,其特征在于,还包括压力传感器,所述压力传感器用于采集所述抽吸机构的运行压力;
    所述控制器还预先存储抽吸机构的目标压力;当所述运行压力达到所述目标运行压力时,停止运行所述抽吸机构。
  25. 如权利要求20所述的富集系统,其特征在于,所述抽吸机构设置为真空发生器。
  26. 一种样本制作系统,其特征在于,包括样本转移机构和如权利要求20-25中任一所述的富集系统,所述样本转移机构设置为将所述阻隔件上的滞留物转移至检测载体上。
  27. 如权利要求26所述的样本制作系统,其特征在于,所述样本转移机构设置为带动所述富集器沿竖直方向和/或水平方向移动以接触所述检测载体。
  28. 如权利要求26所述的样本制作系统,其特征在于,还包括洗脱容器,所述洗脱容器设置为盛装洗脱溶液以将滞留在所述富集器的阻隔件上的滞留物洗脱在洗脱溶液中形成浓缩混悬液;所述样本转移机构设置为吸样件以将所述浓缩混悬液添加至所述检测载体上。
  29. 如权利要求26所述的样本制作系统,其特征在于,还包括样本染色机构,所述样本染色机构用于对所述对检测载体上的滞留物染色。
  30. 如权利要求29所述的样本制作系统,其特征在于,所述样本染色机构为干染色机构或湿染色机构。
  31. 如权利要求26所述的样本制作系统,其特征在于,还包括富集器存储机构和/或废料回收机构。
  32. 一种样本检测系统,其特征在于,包括显微镜和如权利要求26至31任一项所述的一种样本检测系统,所述显微镜用于对所述标本进行镜检。
  33. 如权利要求32所述的样本检测系统,其特征在于,还包括加样件和干化学检测机构,所述加样件用于吸取富集腔体中的抽吸液或者样本液,并将抽吸液或者样本液添加至化学检测载体;所述干化学检测机构设置为对所述化学检测载体进行显色识别。
  34. 如权利要求33所述的样本检测系统,其特征在于,还包括层析柱,所述层析柱用于柱层析分离所述抽吸液中的目标分子。
PCT/CN2019/125838 2019-11-27 2019-12-17 一种富集器、富集系统、样本制造系统和样本检测系统 WO2021103200A1 (zh)

Priority Applications (4)

Application Number Priority Date Filing Date Title
US17/779,708 US20230038927A1 (en) 2019-11-27 2019-12-17 Enricher, enrichement system, sample manufacturing system, and sample detection system
BR112022010243A BR112022010243A2 (pt) 2019-11-27 2019-12-17 Enriquecedor, sistema de enriquecimento, sistema de fabricação de amostra e sistema de detecção de amostra
AU2019476279A AU2019476279A1 (en) 2019-11-27 2019-12-17 Enricher, enrichement system, sample manufacturing system, and sample detection system
EP19953941.2A EP4050336A4 (en) 2019-11-27 2019-12-17 ENRICHER, ENRICHMENT SYSTEM, SAMPLE MAKING SYSTEM AND SAMPLE DETECTION SYSTEM

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
CN201911181291.8A CN111007238A (zh) 2019-11-27 2019-11-27 一种富集器、富集系统、样本制造系统和样本检测系统
CN201911181291.8 2019-11-27

Publications (1)

Publication Number Publication Date
WO2021103200A1 true WO2021103200A1 (zh) 2021-06-03

Family

ID=70112001

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2019/125838 WO2021103200A1 (zh) 2019-11-27 2019-12-17 一种富集器、富集系统、样本制造系统和样本检测系统

Country Status (6)

Country Link
US (1) US20230038927A1 (zh)
EP (1) EP4050336A4 (zh)
CN (1) CN111007238A (zh)
AU (1) AU2019476279A1 (zh)
BR (1) BR112022010243A2 (zh)
WO (1) WO2021103200A1 (zh)

Families Citing this family (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN111007238A (zh) * 2019-11-27 2020-04-14 爱威科技股份有限公司 一种富集器、富集系统、样本制造系统和样本检测系统
CN114062066A (zh) * 2020-07-30 2022-02-18 爱威科技股份有限公司 一种样本检测装置

Citations (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US7341669B2 (en) * 2002-10-11 2008-03-11 G6 Science Corp. Filter methods to capture a desired amount of material from a sample suspension for monolayer deposition, analysis or other uses
CN107576555A (zh) * 2017-06-02 2018-01-12 温州汇芯生物科技有限公司 分离收集液体样本中目标微粒的装置及方法
CN207423629U (zh) * 2017-11-15 2018-05-29 济南金域医学检验中心有限公司 一种血液检测杂质过滤装置
CN110283693A (zh) * 2019-07-02 2019-09-27 汉氏联合(天津)干细胞研究院有限公司 一种用于富集血液中异常大细胞的系统及其缓冲、过滤装置
CN209485831U (zh) * 2018-08-16 2019-10-11 南方医科大学 医院用的尿液细胞外囊泡富集装置
CN209485830U (zh) * 2018-08-16 2019-10-11 南方医科大学 医院及家庭用均可使的富集尿液细胞外囊泡的装置
WO2019204333A1 (en) * 2018-04-17 2019-10-24 The Regents Of The University Of California A particle-sorting device for the separation, isolation and enrichment of particles at ultra-low concentration
CN111007238A (zh) * 2019-11-27 2020-04-14 爱威科技股份有限公司 一种富集器、富集系统、样本制造系统和样本检测系统

Family Cites Families (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR101348779B1 (ko) * 2012-03-27 2014-01-07 설규남 멤브레인 필터 구조체 및 이를 이용한 세포 도말방법
WO2013166338A2 (en) * 2012-05-02 2013-11-07 Charles River Laboratories, Inc. Cell capture system and use thereof
KR20180052197A (ko) * 2016-11-10 2018-05-18 (주)알엠바이오 피펫이 포함된 시료용기를 이용한 세포 추출방법 및 이를 이용한 자동 도말장치
KR102013277B1 (ko) * 2019-02-21 2019-08-22 (주)바이오다인 세포 도말 및 검사를 위한 필터

Patent Citations (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US7341669B2 (en) * 2002-10-11 2008-03-11 G6 Science Corp. Filter methods to capture a desired amount of material from a sample suspension for monolayer deposition, analysis or other uses
CN107576555A (zh) * 2017-06-02 2018-01-12 温州汇芯生物科技有限公司 分离收集液体样本中目标微粒的装置及方法
CN207423629U (zh) * 2017-11-15 2018-05-29 济南金域医学检验中心有限公司 一种血液检测杂质过滤装置
WO2019204333A1 (en) * 2018-04-17 2019-10-24 The Regents Of The University Of California A particle-sorting device for the separation, isolation and enrichment of particles at ultra-low concentration
CN209485831U (zh) * 2018-08-16 2019-10-11 南方医科大学 医院用的尿液细胞外囊泡富集装置
CN209485830U (zh) * 2018-08-16 2019-10-11 南方医科大学 医院及家庭用均可使的富集尿液细胞外囊泡的装置
CN110283693A (zh) * 2019-07-02 2019-09-27 汉氏联合(天津)干细胞研究院有限公司 一种用于富集血液中异常大细胞的系统及其缓冲、过滤装置
CN111007238A (zh) * 2019-11-27 2020-04-14 爱威科技股份有限公司 一种富集器、富集系统、样本制造系统和样本检测系统

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
See also references of EP4050336A4 *

Also Published As

Publication number Publication date
BR112022010243A2 (pt) 2022-09-06
EP4050336A4 (en) 2023-01-18
US20230038927A1 (en) 2023-02-09
EP4050336A1 (en) 2022-08-31
CN111007238A (zh) 2020-04-14
AU2019476279A1 (en) 2022-06-09

Similar Documents

Publication Publication Date Title
KR100473123B1 (ko) 여과 및 추출 장치와 이를 사용하는 방법
ES2650612T3 (es) Tubo de doble capa basado en membrana para recolecciones de muestras
WO2021103200A1 (zh) 一种富集器、富集系统、样本制造系统和样本检测系统
CN109439533B (zh) 分离装置、分离控制系统及分离方法
JP4571623B2 (ja) 大気中に存在する粒子及び微生物の収集及び分離のための装置
JPH06506150A (ja) 液体試料を分離するための装置および方法
EP3733830A1 (en) Cartridge for extracting nucleic acid
CN111044514A (zh) 一种富集方法、样本制造方法以及样本检测方法
EP3302765B1 (en) Plasma extractor
CN115161188B (zh) 一种空气微生物检测系统及方法
KR100660117B1 (ko) 침전방식과 음압을 이용한 액상 세포 검사용 세포 필터링 장치 및 그 방법
CN109234152B (zh) 一种循环肿瘤细胞分离仪
CN211856600U (zh) 一种富集器、富集系统、样本制作系统和样本检测系统
JP2010151551A (ja) 試料前処理装置
KR101117976B1 (ko) 생물학적 시료로부터의 생화학적 물질의 추출장치
JP5512768B2 (ja) 被検出物捕集具及びその使用方法
JP2006246835A (ja) 密度勾配用分離回収容器
JP5077472B2 (ja) 被検出物捕集具の使用方法
KR101376545B1 (ko) 생물학적 물질의 자동 추출을 위한 원심 분리 장치의 로터 조립체 및 그것을 이용한 생물학적 물질의 추출 방법
CN205691602U (zh) 一种小型化自动进样表面等离子共振生化分析仪
CN112126588A (zh) 一种对液体样本中特定细胞的分离捕获系统
KR102411672B1 (ko) 회수 가능한 멤브레인이 내장된 생체 물질 농축 장치
TWM477925U (zh) 樣品萃取裝置及套組
CN115960710B (zh) 一种基于饱和荧光染料的蜡样芽孢杆菌快速检测装置
ES2640583T3 (es) Sistema y método para filtrar muestras líquidas

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 19953941

Country of ref document: EP

Kind code of ref document: A1

ENP Entry into the national phase

Ref document number: 2019953941

Country of ref document: EP

Effective date: 20220524

REG Reference to national code

Ref country code: BR

Ref legal event code: B01A

Ref document number: 112022010243

Country of ref document: BR

ENP Entry into the national phase

Ref document number: 2019476279

Country of ref document: AU

Date of ref document: 20191217

Kind code of ref document: A

NENP Non-entry into the national phase

Ref country code: DE

ENP Entry into the national phase

Ref document number: 112022010243

Country of ref document: BR

Kind code of ref document: A2

Effective date: 20220526