WO2021103151A1 - 大功率上下行切换装置和通信设备 - Google Patents

大功率上下行切换装置和通信设备 Download PDF

Info

Publication number
WO2021103151A1
WO2021103151A1 PCT/CN2019/124699 CN2019124699W WO2021103151A1 WO 2021103151 A1 WO2021103151 A1 WO 2021103151A1 CN 2019124699 W CN2019124699 W CN 2019124699W WO 2021103151 A1 WO2021103151 A1 WO 2021103151A1
Authority
WO
WIPO (PCT)
Prior art keywords
radio frequency
microstrip line
frequency switch
power
port
Prior art date
Application number
PCT/CN2019/124699
Other languages
English (en)
French (fr)
Inventor
刘江涛
谢路平
闫书保
樊奇彦
Original Assignee
京信通信系统(中国)有限公司
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 京信通信系统(中国)有限公司 filed Critical 京信通信系统(中国)有限公司
Priority to EP19954490.9A priority Critical patent/EP4024716A4/en
Priority to US17/762,965 priority patent/US20220337281A1/en
Publication of WO2021103151A1 publication Critical patent/WO2021103151A1/zh

Links

Images

Classifications

    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04BTRANSMISSION
    • H04B1/00Details of transmission systems, not covered by a single one of groups H04B3/00 - H04B13/00; Details of transmission systems not characterised by the medium used for transmission
    • H04B1/38Transceivers, i.e. devices in which transmitter and receiver form a structural unit and in which at least one part is used for functions of transmitting and receiving
    • H04B1/40Circuits
    • H04B1/44Transmit/receive switching
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04BTRANSMISSION
    • H04B1/00Details of transmission systems, not covered by a single one of groups H04B3/00 - H04B13/00; Details of transmission systems not characterised by the medium used for transmission
    • H04B1/005Details of transmission systems, not covered by a single one of groups H04B3/00 - H04B13/00; Details of transmission systems not characterised by the medium used for transmission adapting radio receivers, transmitters andtransceivers for operation on two or more bands, i.e. frequency ranges
    • H04B1/0053Details of transmission systems, not covered by a single one of groups H04B3/00 - H04B13/00; Details of transmission systems not characterised by the medium used for transmission adapting radio receivers, transmitters andtransceivers for operation on two or more bands, i.e. frequency ranges with common antenna for more than one band
    • H04B1/006Details of transmission systems, not covered by a single one of groups H04B3/00 - H04B13/00; Details of transmission systems not characterised by the medium used for transmission adapting radio receivers, transmitters andtransceivers for operation on two or more bands, i.e. frequency ranges with common antenna for more than one band using switches for selecting the desired band
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04BTRANSMISSION
    • H04B1/00Details of transmission systems, not covered by a single one of groups H04B3/00 - H04B13/00; Details of transmission systems not characterised by the medium used for transmission
    • H04B1/38Transceivers, i.e. devices in which transmitter and receiver form a structural unit and in which at least one part is used for functions of transmitting and receiving
    • H04B1/40Circuits
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01QANTENNAS, i.e. RADIO AERIALS
    • H01Q9/00Electrically-short antennas having dimensions not more than twice the operating wavelength and consisting of conductive active radiating elements
    • H01Q9/04Resonant antennas
    • H01Q9/06Details
    • H01Q9/065Microstrip dipole antennas

Definitions

  • This application relates to the field of communication technology, and in particular to a high-power uplink and downlink switching device and communication equipment.
  • the ultra-high performance and experience of 5G communication also brings new challenges to communication equipment. For example, an operator puts forward the demand for 2.6GHz (Gigahertz) and 160W (Watt) communication equipment.
  • the proposal of this device has brought unprecedented challenges to the device, and the traditional uplink and downlink switching devices cannot meet the needs of communication development.
  • an embodiment of the present application provides a high-power uplink and downlink switching device, including:
  • Radio frequency switch the common end of the radio frequency switch is used to connect to the first radio frequency port.
  • Power amplifier module the input end of the power amplifier module is connected to the downstream end of the radio frequency switch.
  • Circulator the first port of the circulator is connected to the output end of the power amplifier module, and the second port is used to connect to the second radio frequency port.
  • the first radio frequency switch the first end of the first radio frequency switch is connected to the third port of the circulator.
  • Low noise amplifier module the input end of the low noise amplifier module is connected to the second end of the first radio frequency switch; the output end of the low noise amplifier module is connected to the upstream end of the radio frequency switch.
  • the load resistance the first end of the load resistance is connected to the second end of the first microstrip line, and the second end of the load resistance is grounded.
  • the second radio frequency switch the first end of the second radio frequency switch is connected to the second end of the first microstrip line, and the second end of the second radio frequency switch is grounded.
  • Synchronization control module the input end of the synchronization control module is used to connect to the first radio frequency port; the output end of the synchronization control module is respectively connected to the control end of the radio frequency switch, the control end of the first radio frequency switch, and the control end of the second radio frequency switch.
  • an embodiment of the present application also provides a communication device, including the above-mentioned high-power uplink and downlink switching device.
  • the radio frequency switch and the synchronization control module can cooperate to complete the uplink and downlink switching;
  • the first port of the circulator is connected to the output end of the power amplifier module, the second port is connected to the second radio frequency port, and the third port passes through
  • the first radio frequency switch is connected to the low-noise amplifier module, and the third port is also connected to the high-power load resistor and the second radio frequency switch through the first microstrip line to respectively ground; wherein, the first end of the first microstrip line
  • the RF impedance to the second end is in a high impedance state.
  • the downlink reflected power can be absorbed by the high-power load resistance without affecting the uplink; and, when the uplink is on, the RF switch cooperates with the periodic transformation of the impedance characteristics of the microstrip line to ensure that the RF power does not leak to Load resistance, in turn, realizes TDD (Time Division Duplexing, Time Division Duplexing) switching with high power capacity.
  • TDD Time Division Duplexing, Time Division Duplexing
  • FIG. 1 is a first schematic structural diagram of a high-power uplink and downlink switching device in an embodiment
  • FIG. 2 is a second schematic structural diagram of a high-power uplink and downlink switching device in an embodiment
  • FIG. 3 is a third schematic structural diagram of a high-power uplink and downlink switching device in an embodiment
  • Fig. 4 is a fourth schematic structural diagram of a high-power uplink and downlink switching device in an embodiment.
  • the ultra-high performance and experience of 5G communication put forward high requirements for communication equipment, especially technical indicators such as power capacity, signal bandwidth, linearity and efficiency. Therefore, it is very difficult for equipment manufacturers to meet the requirements of operators. In order to achieve new requirements, they can only innovate technologically to overcome the bottleneck caused by the device level. Due to the limitations of the current device technology and design level, there is no high-power (greater than 100W (watt)), low-latency (nanosecond) RF switch, the entire upstream and downstream active modules cannot be designed and integrated in a normal way; therefore, For high-power communication equipment, traditional high-power uplink and downlink TDD switching devices cannot meet the requirements. For this reason, the embodiment of the present application proposes an integrated active device for uplink and downlink switching that effectively meets high-power TDD, which has the advantages of flexible control and low cost, and can meet the needs of next-generation mobile communications and equipment.
  • a high-power uplink and downlink switching device is provided, as shown in FIG. 1, including:
  • Radio frequency switch the common end of the radio frequency switch is used to connect to the first radio frequency port.
  • Power amplifier module the input end of the power amplifier module is connected to the downstream end of the radio frequency switch.
  • Circulator the first port of the circulator is connected to the output end of the power amplifier module, and the second port is used to connect to the second radio frequency port.
  • the first radio frequency switch the first end of the first radio frequency switch is connected to the third port of the circulator.
  • Low noise amplifier module the input end of the low noise amplifier module is connected to the second end of the first radio frequency switch; the output end of the low noise amplifier module is connected to the upstream end of the radio frequency switch.
  • the load resistance the first end of the load resistance is connected to the second end of the first microstrip line, and the second end of the load resistance is grounded.
  • the second radio frequency switch the first end of the second radio frequency switch is connected to the second end of the first microstrip line, and the second end of the second radio frequency switch is grounded.
  • Synchronization control module the input end of the synchronization control module is used to connect to the first radio frequency port; the output end of the synchronization control module is respectively connected to the control end of the radio frequency switch, the control end of the first radio frequency switch, and the control end of the second radio frequency switch.
  • the high-power uplink and downlink switching device includes a radio frequency switch, a power amplifier module, a circulator, a first radio frequency switch, a low noise amplifier module, and a synchronization control module.
  • the common end of the radio frequency switching module is connected to the first radio frequency port, and is used for transmitting uplink signals to the first radio frequency port or receiving downlink signals transmitted by the first radio frequency port.
  • the input end of the power amplifier module is connected to the downstream end of the radio frequency switch, and the output end is connected to the first port of the circulator; at the same time, the second port of the circulator is connected to the second radio frequency port for transmitting downlink signals to the second radio frequency port, or Receive the uplink signal transmitted by the second radio frequency port; based on this, the radio frequency switch, the power amplifier module and the circulator cooperate to form a downlink.
  • the input end of the low noise amplifier module is connected to the third port of the circulator through the first radio frequency switch, and the output end is connected to the upstream end of the radio frequency switch; based on this, the radio frequency switch, the low noise amplifier module, the first radio frequency switch and the ring The device cooperates to form an uplink.
  • the input end of the synchronization control module is connected to the first radio frequency port, and the output end is respectively connected to the radio frequency switch and the first radio frequency switch; based on this, the synchronization control module can obtain the synchronization signal through the first radio frequency port, and control the radio frequency switch to turn on according to the synchronization signal
  • the corresponding radio frequency link realizes uplink and downlink switching, and controls the on and off of the first radio frequency switch to avoid crosstalk between uplink and downlink signals.
  • the high-power uplink and downlink switching device further includes a first microstrip line, a load resistor, and a second radio frequency switch.
  • the first end of the first microstrip line is respectively connected to the third port of the circulator and the first end of the first radio frequency switch, and the second end is respectively connected to the first end of the load resistor and the first end of the second radio frequency switch; the load resistor The second end of the second radio frequency switch and the second end of the second radio frequency switch are both grounded.
  • the radio frequency impedance from the first end to the second end of the first microstrip line is in a high impedance state; the output end of the synchronization control module is connected to the control end of the second radio frequency switch.
  • the synchronization control module can control the on and off of the second radio frequency switch according to the synchronization signal, and can control the conduction of the first radio frequency switch and the second radio frequency switch to ensure that the radio frequency impedance enters high impedance after passing through the first microstrip line, so that the uplink signal It enters the uplink completely through the first radio frequency switch to prevent radio frequency power from leaking to the load resistance; it can also control the first radio frequency switch and the second radio frequency switch to disconnect to ensure that the downlink reflected radio frequency signal is completely absorbed by the load resistance without affecting the uplink road.
  • the radio frequency switch can be a single-pole double-throw switch.
  • the power amplifier module may include a power amplifier and peripheral circuits. In the circulator, the external signal obtained from the first port is output from the second port, the external signal obtained from the second port is output from the third port, and the external signal obtained from the third port is output from the first port.
  • the low noise amplifier module may include a low noise amplifier and peripheral circuits. In the first microstrip line, the direction from the first end to the second end is in a high resistance state, which can be realized by the electrical length and characteristic impedance of the microstrip line; wherein the electrical length is determined by the frequency and wavelength of the radio frequency signal.
  • the synchronization control module can be used to obtain a synchronization signal from the first radio frequency port, and output a control signal according to the synchronization signal; wherein the synchronization signal can be coupled to the first radio frequency port by an external device, or can be obtained from TDD uplink and downlink signals; the control signal can be used to indicate Each radio frequency switch action.
  • the synchronization control module may include a coupler, a switch device, a level inverter, etc., and may also be mainly composed of a synchronization circuit or a processor, which is not specifically limited here.
  • the first radio frequency switch and the second radio frequency switch can be selected as a normally open radio frequency switch or a normally closed radio frequency switch according to actual needs; accordingly, the synchronization control module can output the corresponding level when controlling the first radio frequency switch and the second radio frequency switch. Control signal to instruct the radio frequency switch to turn on or off.
  • the synchronization control module may output a high-level signal to the first radio frequency switch and the second radio frequency switch, so that the first radio frequency switch and the second radio frequency switch are disconnected, and at the same time, in the uplink signal transmission In this case, the synchronization control module can output a low-level signal to the first radio frequency switch and the second radio frequency switch, so that the first radio frequency switch and the second radio frequency switch are turned on. It should be noted that the selection of the radio frequency switch and the control signal output by the synchronization control module can be matched and set according to actual needs, and there is no specific restriction here.
  • the downlink reflected power can be absorbed by the high-power load resistance without affecting the uplink; and, when the uplink is on, the RF switch cooperates with the periodic transformation of the impedance characteristics of the microstrip line to ensure that the RF power does not leak to High-power load resistance, and then achieve high-power capacity TDD switching.
  • the embodiment of the present application can use a low-power radio frequency switch to implement high-power uplink and downlink switching, overcome the limitation of the power capacity of the device, and has the advantage of low cost.
  • the transmission process of the downlink signal may be: the downlink signal obtained by the first radio frequency port, and the synchronization control module controls the radio frequency switch to turn on the downlink end and controls the first radio frequency switch and the second radio frequency switch based on the first synchronization signal.
  • the radio frequency switch is off; the first radio frequency port transmits the downlink signal to the power amplifier module through the radio frequency switch; the power amplifier module amplifies the downlink signal, and transmits the amplified downlink signal to the first port of the circulator, and then from The second port of the circulator is output to the second radio frequency port to complete the amplification and output of the downstream signal; at the same time, the reflected radio frequency signal generated during the transmission of the downstream signal passes through the third port of the circulator and the first microstrip line to the load resistance in turn , To achieve the absorption of reflected power in the downlink and avoid affecting the uplink.
  • the transmission process of the uplink signal may be: the uplink signal obtained by the second radio frequency port, and based on the second synchronization signal, the synchronization control module controls the radio frequency switch to turn on the uplink end and controls the first radio frequency switch and The second radio frequency switch is turned on; the second radio frequency port transmits the uplink signal to the second port of the circulator, and then outputs it from the third port of the circulator; because from the first end of the first radio frequency switch to the direction of the load resistance, The RF impedance of the first microstrip line is in a high-impedance state.
  • the upstream signal transmitted by the third port is completely transmitted to the low noise amplifier module through the first RF switch, and will not leak to the load resistance; the low noise amplifier module has an effect on the upstream signal.
  • the amplified uplink signal is transmitted to the first radio frequency port through the radio frequency switch to complete the amplification and output of the uplink signal.
  • the output terminal of the synchronization control module is also connected to the control terminal of the power amplifier module and the control terminal of the low noise amplifier module respectively.
  • the synchronization control module can also be used to control the power amplifier module and the low noise amplifier module.
  • the synchronization control module can control the power amplifier module to be powered on and control the power off of the low-noise amplifier during the downlink signal transmission; specifically, in the downlink signal transmission, the first output terminal of the synchronization control module can send to the power amplifier module At a high level, the second output terminal sends a low level to the low noise amplifier module, so as to realize the control of the power amplifier module and the low noise amplifier module.
  • the synchronization control module in the uplink signal transmission, can control the power amplifier module to power off and control the low noise amplifier to power on.
  • the synchronization control module in the embodiment of the present application can control the power amplifier module and the low noise amplifier module according to the synchronization signal, further avoiding the crosstalk of the uplink and downlink signals, improving the reliability of the uplink and downlink switching, and reducing the energy consumption of the device .
  • the synchronization control module includes a synchronization unit and a level inverter.
  • the input end of the synchronization unit is used to connect to the first radio frequency port, and the output end of the synchronization unit is respectively connected to the input end of the level inverter, the control end of the radio frequency switch, the control end of the power amplifier module, and the control end of the second radio frequency switch.
  • the output terminals of the level inverter are respectively connected to the control terminal of the low noise amplifier module and the control terminal of the first radio frequency switch.
  • the synchronization control module may include a synchronization unit and a level inverter.
  • the input end of the synchronization unit serves as the input end of the synchronization control module and is connected to the first radio frequency port; the output end of the synchronization unit is connected to the input end of the level inverter and is used to control the radio frequency switch, the power amplifier module and the second radio frequency switch.
  • the level inverter can be used to control the control terminal of the low noise amplifier module and the first radio frequency switch according to the signal transmitted by the synchronization unit.
  • the synchronization unit when the downlink signal is transmitted, can output a high level to control the radio frequency switch to turn on the downlink, the power amplifier module is energized, and the second radio frequency switch is turned off; at the same time, the level inverter can be based on the synchronization unit The output high level outputs the low level to the low noise amplifier module and the first radio frequency switch to control the low noise amplifier module to power off and the first radio frequency switch to turn off.
  • the synchronization unit can output a low level to control the radio frequency switch to turn on the uplink, the power amplifier module is powered off, and the second radio frequency switch is turned on; at the same time, the level inverter can be based on the output of the synchronization unit Low level, outputting a high level to the low noise amplifier module and the first radio frequency switch to control the low noise amplifier module to be energized and the first radio frequency switch to be turned on.
  • the high-power uplink and downlink switching device further includes a coupler connected between the first radio frequency port and the synchronization control module.
  • the input end of the coupler is used to connect to the first radio frequency port, and the coupling end is connected to the input end of the synchronization control module.
  • a coupler can be used to connect the synchronization control module and the first radio frequency port; the synchronization control module can be coupled at the first radio frequency port through the coupler to obtain a synchronization signal.
  • the acquisition of synchronization signals can be achieved by simple devices, which can reduce equipment costs while ensuring the reliability of uplink and downlink; and, according to different types of synchronization signals, couplers with different parameters can be selected for matching, which improves the application. Applicability of the embodiment.
  • the high-power uplink and downlink switching device further includes a second microstrip line; the downlink end of the radio frequency switch is connected to the input end of the power amplifier module through the second microstrip line.
  • the downstream end of the radio frequency switch and the input end of the power amplifier module are connected through the second microstrip line.
  • the second microstrip line can be used for radio frequency power transmission.
  • the electrical length of the second microstrip line can range from 10 degrees to 180 degrees; preferably, the electrical length of the second microstrip line can range from 25 degrees to 35 degrees, such as 27 degrees, 29 degrees, 30 degrees, 32 degrees or 34 degrees, etc.; the characteristic impedance of the second microstrip line ranges from 48 ohms to 52 ohms, such as 49 ohms, 50 ohms, or 51 ohms.
  • the high-power uplink and downlink switching device further includes a third microstrip line; the output end of the power amplifier module is connected to the first port of the circulator through the third microstrip line.
  • the output terminal of the power amplifier module and the first port of the circulator are connected by a third microstrip line.
  • the third microstrip line can be used for radio frequency power transmission.
  • the electrical length of the third microstrip line ranges from 10 degrees to 180 degrees; preferably, the electrical length of the second microstrip line ranges from 25 degrees to 35 degrees, such as 27 degrees, 29 degrees, 30 degrees, 32 degrees, or 34 degrees, etc.; the characteristic impedance of the third microstrip line ranges from 48 ohms to 52 ohms, such as 49 ohms, 50 ohms, or 51 ohms.
  • the high-power uplink and downlink switching device further includes a fourth microstrip line; the second port of the circulator is connected to the second radio frequency port through the fourth microstrip line.
  • the second port and the second radio frequency port of the circulator are connected by a fourth microstrip line.
  • the fourth microstrip line can be used for radio frequency power transmission.
  • the electrical length of the fourth microstrip line can range from 10 degrees to 180 degrees; preferably, the electrical length of the second microstrip line can range from 25 degrees to 35 degrees, such as 27 degrees, 29 degrees, 30 degrees, 32 degrees or 34 degrees, etc.; the characteristic impedance of the fourth microstrip line ranges from 48 ohms to 52 ohms, such as 49 ohms, 50 ohms, or 51 ohms.
  • the high-power uplink and downlink switching device further includes a fifth microstrip line; the third port of the circulator is respectively connected to the first end of the first radio frequency switch and the first end of the first microstrip line through the fifth microstrip line One end.
  • the first end of the fifth microstrip line is connected to the third port of the circulator, and the second end is respectively connected to the first end of the first radio frequency switch and the first end of the first microstrip line.
  • the fifth microstrip line can be used for radio frequency power transmission.
  • the electrical length of the fifth microstrip line ranges from 10 degrees to 180 degrees; preferably, the electrical length of the second microstrip line ranges from 25 degrees to 35 degrees, for example, 27 degrees, 29 degrees, 30 degrees, 32 degrees, or 34 degrees, etc.; the characteristic impedance of the fifth microstrip line ranges from 48 ohms to 52 ohms, such as 49 ohms, 50 ohms, or 51 ohms.
  • the high-power uplink and downlink switching device further includes a sixth microstrip line; the second end of the first radio frequency switch is connected to the input end of the low noise amplifier module through the sixth microstrip line.
  • the second end of the first radio frequency switch and the low noise amplifier module are connected through a sixth microstrip line.
  • the sixth microstrip line can be used to ensure that when the uplink is working, the radio frequency signal takes the path in the direction of the low noise amplifier module, and when the downlink is working, the radio frequency signal takes the path in the direction of the first microstrip line; at the same time, the sixth microstrip line also Can be used for conventional radio frequency power transmission.
  • the electrical length of the sixth microstrip line can range from 10 degrees to 180 degrees; preferably, the electrical length of the second microstrip line can range from 25 degrees to 35 degrees, such as 27 degrees, 29 degrees, 30 degrees, 32 degrees, or 34 degrees, etc.; the characteristic impedance of the sixth microstrip line ranges from 48 ohms to 52 ohms, such as 49 ohms, 50 ohms, or 51 ohms.
  • the high-power uplink and downlink switching device further includes a seventh microstrip line; the output end of the low noise amplifier module is connected to the uplink end of the radio frequency switch through the seventh microstrip line.
  • the output end of the low-noise amplifier module and the uplink end of the radio frequency switch are connected through the seventh microstrip line.
  • the seventh microstrip line can be used for radio frequency power transmission.
  • the electrical length of the seventh microstrip line ranges from 10 degrees to 180 degrees; preferably, the electrical length of the second microstrip line ranges from 25 degrees to 35 degrees, such as 27 degrees, 29 degrees, 30 degrees, 32 degrees or 34 degrees, etc.; the characteristic impedance of the seventh microstrip line ranges from 48 ohms to 52 ohms, such as 49 ohms, 50 ohms, or 51 ohms.
  • the characteristic impedance of the first microstrip line ranges from 50 ohms to 100 ohms.
  • the characteristic impedance of the first microstrip line may be 75 ohms, 79 ohms, 85 ohms, 90 ohms, 95 ohms, or 99 ohms.
  • the electrical length of the first microstrip line ranges from 85 degrees to 95 degrees.
  • the electrical length of the first microstrip line may be 87 degrees, 89 degrees, 91 degrees, 93 degrees, or the like.
  • the RF impedance of the first microstrip line from the first end to the second end can be greater than 300 ohms. It should be noted that the value of the electrical length of the first microstrip line can be fine-tuned on the basis of a quarter wavelength to obtain a better high resistance state.
  • the high-power uplink and downlink switching device mainly includes: a first radio frequency switch S1, a second radio frequency switch S2, a radio frequency switch S3, a microstrip line Z1 (second microstrip line), Z2 (seventh microstrip line), Z3 (third microstrip line), Z4 (sixth microstrip line), Z5 (fourth microstrip line), Z6 (first microstrip line), and Z7 (fifth microstrip line) With line), power amplifier module P1, circulator, low noise amplifier module P2, synchronization unit, level inverter and load resistance R1, etc.
  • Z1, Z2, Z3, Z4, Z5, Z6 are 50 ohm microstrip lines, the electrical length of Z6 is a quarter wavelength of the operating frequency, and the characteristic impedance can be selected according to the design requirements of high resistance and power capacity.
  • the RF impedance enters high impedance from 0 ohms through the quarter-wavelength line, so that the uplink signal can enter the uplink completely through the first RF switch S1, while ensuring that the RF switch After S1 and S2 are disconnected, the reflected radio frequency signal from the second radio frequency port is completely absorbed by the load resistor R1 without affecting the uplink.
  • the entire switching device does not use high-power radio frequency switches, thereby solving the bottleneck that the current industry does not have high-power radio frequency switches.
  • the implementation process of the high-power TDD uplink and downlink switching device may include:
  • the synchronization unit generates and provides a control signal 1 to control the power amplifier module P1, the second radio frequency switch S2, and the radio frequency switch S3.
  • the synchronization signal provides the control signal 2 through the level inverter to control the low noise amplifier module P2 and the first radio frequency switch S1.
  • control signal 1 When control signal 1 is high (control signal 2 is low), S1 is set to off, S2 is set to off, and S3 is set to downstream conduction, power amplifier module P1 is on, and low noise amplifier module P2 Closed; the RF signal enters from TXin, enters the power amplifier module P1 through the RF switch S3 and the microstrip line Z1 for power amplification, and enters the circulator via the microstrip line Z3; further, the forward signal arrives after the microstrip line Z5 TXout port output, the reverse signal enters the high-power load resistance R1 after passing through the microstrip lines Z7 and Z6.
  • control signal 2 When the control signal 2 is high (control signal 1 is low), S1 is set to close, S2 is set to close, and S3 is set to uplink conduction, low noise amplifier module P2 is opened, and power amplifier module P1 is closed;
  • the radio frequency signal enters from RXin, passes through the circulator and the microstrip line Z7, enters the first radio frequency switch S1, and then enters the low noise amplification module P2 through the microstrip line Z4; after the low noise amplifier module amplifies the radio frequency signal, it passes through the microstrip Line Z2 and RF switch S3 reach the RXout port and output.
  • the corresponding device components can be selected according to actual frequency requirements.
  • a 2.6GHz high-power integrated uplink and downlink active device including: radio frequency switches S1, S2, and S3 (models are PE4251), a synchronization unit, and a 2.6GHz power amplifier module, 2.6GHz low noise amplifier module, 2.6GHz circulator and voltage inverter (model NC7WZ1P6X) and other components.
  • One output port of the radio frequency switch S3 (PE4251) is connected to the input end of the 2.6HGz power amplifier module through the microstrip line Z1, and the other output port is connected to the output end of the 2.6GHz low noise amplifier module with the microstrip line Z2; the output of the 2.6GHz power amplifier module The output end is connected to the first port of the 2.6GHz circulator through the microstrip line Z3; the second port of the 2.6GHz circulator is connected to the TXout (RXin) port through the microstrip line Z5; the third port of the 2.6GHz circulator is through the microstrip line Z7 They are respectively connected to the input end of the radio frequency switch S1 and the first end of the microstrip line Z6.
  • the microstrip line Z6 is connected to the load resistor R1 through the first end of the radio frequency switch S2; the output end of the radio frequency switch S1 is connected to the input end of the 2.6GHz low noise amplifier module through the microstrip line Z4.
  • the characteristic impedance of the microstrip lines Z1, Z2, Z3, Z4, Z5, and Z7 are all 50 ohms, and the electrical length can be selected as 30 degrees according to the circuit board layout requirements.
  • the characteristic impedance and electrical length of the microstrip line Z6 are selected as follows: from the connection point of the radio frequency switch S1 and the microstrip line Z6 to the other end of the microstrip line Z6, the radio frequency impedance is in a high impedance state (such as greater than 300 ohms). When the uplink is turned on, no radio frequency power leaks to the load resistance R1. For example, the characteristic impedance of Z6 is 80 ohms and the electrical length is 89 degrees.
  • the implementation steps of the 2.6GHz high-power uplink and downlink switching device can be as follows:
  • the synchronization unit couples the signal from the radio frequency input (TXin/RXout) to process and generates a synchronization signal for controlling the switching of the uplink and downlink; the synchronization signal output by the synchronization unit is determined to be the control signal 1, and the control signal 1 undergoes voltage inversion. After the NC7WZ146X, the control signal 2 is output.
  • the RF signal enters from TXin, enters the 2.6GHz power amplifier module P1 through the RF switch S3 (PE4251) and the microstrip line Z1, and then enters the 2.6GHz circulator via the microstrip line Z3 after power amplification; the forward signal passes through the microstrip line Z5 When it reaches the TXout port output, the reverse signal enters the high-power load resistor R1 after passing through the microstrip lines Z7 and Z6.
  • the radio frequency switch S1 (PE4251) is set to closed, S2 (PE4251) is set to closed, and S3 (PE4251) is set to uplink conduction and low noise
  • the amplifier module P2 is turned on and the power amplifier module P1 is turned off.
  • the radio frequency signal enters from RXin, enters the radio frequency switch S1 (PE4251) after passing through the 2.6GHz circulator and the microstrip line Z7, then enters the 2.6GHz low noise amplifier module via the microstrip line Z4, and then passes through the microstrip line Z2 and the radio frequency switch S3 (PE4251) Arrive at the RXout port and output.
  • a communication device including the above-mentioned high-power uplink and downlink switching device.

Landscapes

  • Engineering & Computer Science (AREA)
  • Computer Networks & Wireless Communication (AREA)
  • Signal Processing (AREA)
  • Transmitters (AREA)
  • Transceivers (AREA)
  • Amplifiers (AREA)

Abstract

本申请涉及一种大功率上下行切换装置和通信设备。大功率上下行切换装置中,基于第一射频端口,射频切换开关和同步控制模块可配合完成上下行链路的切换;环形器的第一端口连接功率放大模块的输出端,第二端口连接第二射频端口,第三端口通过第一射频开关连接低噪放模块;第三端口还通过第一微带线分别连接大功率负载电阻和第二射频开关,以分别进行接地;第一微带线的第一端到第二端的射频阻抗为高阻状态。基于上述结构,下行反射功率可通过大功率负载电阻吸收,不影响上行链路;并且,在上行链路导通时,射频开关配合微带线阻抗特性的周期变换,能够保证射频功率不泄露至负载电阻,进而实现大功率容量的TDD切换,克服器件功率容量的限制。

Description

大功率上下行切换装置和通信设备 技术领域
本申请涉及通信技术领域,特别是涉及一种大功率上下行切换装置和通信设备。
背景技术
当前,信息通信技术飞速发展,从2G(2-Generation wireless telephone technology,第二代手机通信技术规格)时代到4G(the 4th Generation mobile communication technology,第四代移动通信技术)的大规模应用,通信网络承载的业务量、通信速率和带宽急剧增长,对通信设备提出了很高的要求,特别是即将到来的5G(5th-Generation,第五代移动通信技术)通信时代,万物互联,具备超大带宽、超低时延等特性,能够满足不同场景下的应用需求,如AR(Augmented Reality,增强现实)、自动驾驶等应用。
5G通信超高性能和体验也相应的给通信设备带来新的挑战,如某运营商提出了2.6GHz(吉赫兹)、160W(瓦特)通信设备的需求。该设备的提出给器件上带来了前所未有的挑战,传统的上下行切换装置无法满足通信发展的需求。
发明内容
基于此,有必要针对传统的上下行切换装置无法满足大功率通信设备需求的问题,提供一种大功率上下行切换装置和通信设备。
为了实现上述目的,一方面,本申请实施例提供了一种大功率上下行切换装置,包括:
射频切换开关;射频切换开关的公共端用于连接第一射频端口。
功率放大模块;功率放大模块的输入端连接射频切换开关的下行端。
环形器;环形器的第一端口连接功率放大模块的输出端,第二端口用于连接第二射频端口。
第一射频开关;第一射频开关的第一端连接环形器的第三端口。
低噪放模块;低噪放模块的输入端连接第一射频开关的第二端;低噪放模块的输出端连接射频切换开关的上行端。
第一微带线;第一微带线的第一端连接环形器的第三端口;其中,第一微带线中,从第一端到第二端的射频阻抗为高阻状态。
负载电阻,负载电阻的第一端连接第一微带线的第二端,负载电阻的第二端接地。
第二射频开关;第二射频开关的第一端连接第一微带线的第二端,第二射频开关的第二端接地。
同步控制模块;同步控制模块的输入端用于连接第一射频端口;同步控制模块的输出端分别连接射频切换开关的控制端、第一射频开关的控制端以及第二射频开关的控制端。
另一方面,本申请实施例还提供了一种通信设备,包括如上述的大功率上下行切换装置。
上述技术方案中的一个技术方案具有如下优点和有益效果:
基于第一射频端口,射频切换开关和同步控制模块可配合完成上下行链路的切换;环形器的第一端口连接功率放大模块的输出端,第二端口连接第二射频端口,第三端口通过第一射频开关连接低噪放模块,并且,第三端口还通过第一微带线分别连接大功率负载电阻和第二射频开关,以分别进行接地;其中,第一微带线的第一端到第二端的射频阻抗为高阻状态。基于上述结构,下行反射功率可通过大功率负载电阻吸收,不影响上行链路;并且,在上行链路导通时,射频开关配合微带线阻抗特性的周期变换,能够保证射频功率不泄露至负载电阻,进而实现大功率容量的TDD(Time Division Duplexing,时分双工)切换。基于此,本申请实施例能够采用小功率射频开关来实现大功率上下行 切换,克服器件功率容量的限制,具有成本低、易实施的优势。
附图说明
图1为一个实施例中大功率上下行切换装置的第一示意性结构图;
图2为一个实施例中大功率上下行切换装置的第二示意性结构图;
图3为一个实施例中大功率上下行切换装置的第三示意性结构图;
图4为一个实施例中大功率上下行切换装置的第四示意性结构图。
具体实施方式
5G通信超高性能和体验给通信设备提出了很高的要求,尤其是功率容量、信号带宽、线性度和效率等技术指标。因此,设备制造商非常难满足运营商提出的要求,要想实现新的需求,只能从技术上进行创新,克服器件层面带来的瓶颈。由于目前器件工艺及设计水平的限制,没有大功率(大于100W(瓦特))、低时延(纳秒级)的射频开关,整个上下行有源模块是无法按正常的方式设计集成;因此,对于大功率通信设备,传统大功率上下行TDD切换装置无法满足要求。为此,本申请实施例提出了一种有效满足大功率TDD的上下行切换一体化有源装置,具有控制灵活、成本低等有点,能够满足下一代移动通信及设备需求。
在一个实施例中,提供了一种大功率上下行切换装置,如图1所示,包括:
射频切换开关;射频切换开关的公共端用于连接第一射频端口。
功率放大模块;功率放大模块的输入端连接射频切换开关的下行端。
环形器;环形器的第一端口连接功率放大模块的输出端,第二端口用于连接第二射频端口。
第一射频开关;第一射频开关的第一端连接环形器的第三端口。
低噪放模块;低噪放模块的输入端连接第一射频开关的第二端;低噪放模块的输出 端连接射频切换开关的上行端。
第一微带线;第一微带线的第一端连接环形器的第三端口;其中,第一微带线中,从第一端到第二端的射频阻抗为高阻状态。
负载电阻,负载电阻的第一端连接第一微带线的第二端,负载电阻的第二端接地。
第二射频开关;第二射频开关的第一端连接第一微带线的第二端,第二射频开关的第二端接地。
同步控制模块;同步控制模块的输入端用于连接第一射频端口;同步控制模块的输出端分别连接射频切换开关的控制端、第一射频开关的控制端以及第二射频开关的控制端。
具体而言,大功率上下行切换装置包括射频切换开关、功率放大模块、环形器、第一射频开关、低噪放模块和同步控制模块。射频切换模块的公共端连接第一射频端口,用于传输上行信号给第一射频端口,或接收第一射频端口传输的下行信号。功率放大模块的输入端连接射频切换开关的下行端,输出端连接环形器的第一端口;同时,环形器的第二端口连接第二射频端口,用于传输下行信号给第二射频端口,或接收第二射频端口传输的上行信号;基于此,射频切换开关、功率放大模块和环形器配合形成下行链路。此外,低噪放模块的输入端通过第一射频开关连接环形器的第三端口,输出端连接射频切换开关的上行端;基于此,射频切换开关、低噪放模块、第一射频开关和环形器配合形成上行链路。同步控制模块的输入端连接第一射频端口,输出端分别连接射频切换开关和第一射频开关;基于此,同步控制模块可通过第一射频端口获取同步信号,根据同步信号控制射频切换开关导通对应的射频链路,实现上下行的切换,并控制第一射频开关的通断,避免上下行信号串扰。
进一步地,大功率上下行切换装置还包括第一微带线、负载电阻和第二射频开关。第一微带线的第一端分别连接环形器的第三端口和第一射频开关的第一端,第二端分别连接负载电阻的第一端和第二射频开关的第一端;负载电阻的第二端和第二射频开 关的第二端均做接地处理。同时,第一微带线的第一端到其第二端的射频阻抗为高阻状态;同步控制模块的输出端连接第二射频开关的控制端。基于此,同步控制模块可根据同步信号控制第二射频开关的通断,能够控制第一射频开关和第二射频开关导通,保证射频阻抗经第一微带线后进入高阻,使上行信号完全通过第一射频开关进入上行链路,避免射频功率泄露至负载电阻;还能够控制第一射频开关和第二射频开关断开,保证下行反射射频信号完全由负载电阻吸收,而不影响上行链路。
需要说明的是,本申请实施例提及的大功率的范围可为100W至300W。射频切换开关可为单刀双掷开关。功率放大模块可包括功率放大器和外围电路。环形器中,从第一端口获取到的外部信号从第二端口输出,从第二端口获取到的外部信号从第三端口输出,第三端口获取到的外部信号则从第一端口输出。低噪放模块可包括低噪声放大器和外围电路。第一微带线中,第一端至第二端的方向为高阻状态,该状态可由微带线的电长度和特性阻抗来实现;其中,电长度由射频信号的频率、波长确定。同步控制模块可用于从第一射频端口获取同步信号,并根据同步信号输出控制信号;其中,同步信号可由外部设备耦合到第一射频端口中,也可由TDD上下行信号得到;控制信号可用于指示各射频开关动作。可选地,同步控制模块可包括耦合器、开关器件和电平反向器等,也可主要有同步电路或处理器构成,此处不做具体限定。
第一射频开关和第二射频开关可根据实际需求选择为常开射频开关或常闭射频开关;相应地,同步控制模块在控制第一射频开关和第二射频开关时,可输出对应电平的控制信号,以指示射频开关导通或断开。示例性地,在下行信号传输中,同步控制模块可向第一射频开关和第二射频开关输出高电平信号,以使第一射频开关和第二射频开关断开,同时,在上行信号传输中,同步控制模块可向第一射频开关和第二射频开关输出低电平信号,以使第一射频开关和第二射频开关导通。应该注意的是,射频开关的选型,以及同步控制模块输出的控制信号可根据实际需求进行匹配设置,此处不做具体限制。
基于上述结构,下行反射功率可通过大功率负载电阻吸收,不影响上行链路;并且,在上行链路导通时,射频开关配合微带线阻抗特性的周期变换,能够保证射频功率不泄露至大功率负载电阻,进而实现大功率容量的TDD切换。基于此,本申请实施例能够采用小功率射频开关来实现大功率上下行切换,克服器件功率容量的限制,具有成本低的优势。
在一个示例中,下行信号的传输过程可为:第一射频端口获取到的下行信号,并且,同步控制模块基于第一同步信号,控制射频切换开关导通下行端且控制第一射频开关和第二射频开关断开;第一射频端口通过射频切换开关将下行信号传输给功率放大模块;功率放大模块对下行信号进行放大,并将放大后的下行信号传输给环形器的第一端口,进而从环形器的第二端口输出至第二射频端口,完成下行信号的放大及输出;同时,下行信号传输过程中产生的反射射频信号依次通过环形器的第三端口和第一微带线到达负载电阻,实现下行反射功率的吸收,避免影响上行链路。
在另一个示例中,上行信号的传输过程可为:第二射频端口获取到的上行信号,并且,同步控制模块基于第二同步信号,控制射频切换开关导通上行端且控制第一射频开关和第二射频开关导通;第二射频端口将上行信号传输给环形器的第二端口,进而从环形器的第三端口输出;由于从第一射频开关的第一端往负载电阻的方向上,第一微带线的射频阻抗呈高阻状态,因此,第三端口传输的上行信号完全通过第一射频开关传输至低噪放模块,不会泄露到负载电阻上;低噪放模块对上行信号进行放大后,通过射频切换开关将放大后的上行信号传输给第一射频端口,完成上行信号的放大及输出。
在一个实施例中,同步控制模块的输出端还分别连接功率放大模块的控制端,以及低噪放模块的控制端。
具体而言,同步控制模块还可用于控制功率放大模块和低噪放模块。示例性地,同步控制模块可在下行信号传输中,控制功率放大模块通电且控制低噪放断电;具体地,在下行信号传输中,同步控制模块的第一输出端可向功率放大模块发送高电平,第二输 出端向低噪放模块发送低电平,进而实现对功率放大模块和低噪放模块的控制。又例如,在上行信号传输中,同步控制模块可控制功率放大模块断电且控制低噪放通电。基于上述结构,本申请实施例中的同步控制模块可根据同步信号来控制功率放大模块和低噪放模块,进一步避免上下行信号的串扰,提高上下行切换的可靠性,且降低装置的能耗。
在一个实施例中,如图2所示,同步控制模块包括同步单元和电平反向器。
同步单元的输入端用于连接第一射频端口,同步单元的输出端分别连接电平反向器的输入端、射频切换开关的控制端、功率放大模块的控制端以及第二射频开关的控制端。电平反向器的输出端分别连接低噪放模块的控制端和第一射频开关的控制端。
具体而言,同步控制模块可包括同步单元和电平反向器。同步单元的输入端作为同步控制模块的输入端,连接第一射频端口;同步单元的输出端连接电平反向器的输入端,且用于控制射频切换开关、功率放大模块和第二射频开关。电平反向器可用于根据同步单元传输的信号,控制低噪放模块的控制端和第一射频开关。基于上述结构,本申请实施例可通过现有的同步电路与电平反向器配合,实现不同电平控制信号的同步输出,保证上下行切换的及时性,且具有低成本的特点。
示例性地,下行信号传输时,同步单元可输出高电平,以控制射频切换开关导通下行链路、功率放大模块通电以及第二射频开关断开;同时,电平反向器可根据同步单元输出的高电平,向低噪放模块和第一射频开关输出低电平,以控制低噪放模块断电和第一射频开关断开。在上行信号传输时,同步单元可输出低电平,以控制射频切换开关导通上行链路、功率放大模块断电以及第二射频开关导通;同时,电平反向器可根据同步单元输出的低电平,向低噪放模块和第一射频开关输出高电平,以控制低噪放模块通电和第一射频开关导通。
在一个实施例中,大功率上下行切换装置还包括连接在第一射频端口和同步控制模块之间的耦合器。耦合器的输入端用于连接第一射频端口,耦合端连接同步控制模块 的输入端。
具体而言,同步控制模块和第一射频端口之间可采用耦合器进行相连;同步控制模块可通过耦合器在第一射频端口处耦合得到同步信号。基于上述结构,可通过简单的器件实现同步信号的获取,在保证上下行可靠性的同时,降低设备成本;并且,根据不同类型的同步信号,可选择不同参数的耦合器进行匹配,提高本申请实施例的适用性。
在一个实施例中,大功率上下行切换装置还包括第二微带线;射频切换开关的下行端通过第二微带线连接功率放大模块的输入端。
具体而言,射频切换开关的下行端和功率放大模块的输入端之间通过第二微带线相连。第二微带线可用于射频功率传输。可选地,第二微带线的电长度的取值范围为10度至180度;优选地,第二微带线的电长度的取值范围可为25度至35度,例如27度、29度、30度、32度或34度等;第二微带线的特性阻抗的取值范围为48欧至52欧,例如49欧、50欧或51欧等。
在一个实施例中,大功率上下行切换装置还包括第三微带线;功率放大模块的输出端通过第三微带线连接环形器的第一端口。
具体而言,功率放大模块的输出端和环形器的第一端口之间通过第三微带线相连。第三微带线可用于射频功率传输。可选地,第三微带线的电长度的取值范围为10度至180度;优选地,第二微带线的电长度的取值范围可为25度至35度,例如27度、29度、30度、32度或34度等;第三微带线的特性阻抗的取值范围为48欧至52欧,例如49欧、50欧或51欧等。
在一个实施例中,大功率上下行切换装置还包括第四微带线;环形器的第二端口通过第四微带线连接第二射频端口。
具体而言,环形器的第二端口和第二射频端口之间通过第四微带线相连。第四微带线可用于射频功率传输。可选地,第四微带线的电长度的取值范围为10度至180度;优选地,第二微带线的电长度的取值范围可为25度至35度,例如27度、29度、30 度、32度或34度等;第四微带线的特性阻抗的取值范围为48欧至52欧,例如49欧、50欧或51欧等。
在一个实施例中,大功率上下行切换装置还包括第五微带线;环形器的第三端口通过第五微带线分别连接第一射频开关的第一端和第一微带线的第一端。
具体而言,第五微带线的第一端连接环形器的第三端口,第二端分别连接第一射频开关的第一端和第一微带线的第一端。第五微带线可用于射频功率传输。可选地,第五微带线的电长度的取值范围为10度至180度;优选地,第二微带线的电长度的取值范围可为25度至35度,例如27度、29度、30度、32度或34度等;第五微带线的特性阻抗的取值范围为48欧至52欧,例如49欧、50欧或51欧等。
在一个实施例中,大功率上下行切换装置还包括第六微带线;第一射频开关的第二端通过第六微带线连接低噪放模块的输入端。
具体而言,第一射频开关的第二端和低噪放模块之间通过第六微带线相连。第六微带线可用于保证上行链路工作时,射频信号走低噪放模块方向的通路,下行链路工作时,射频信号走第一微带线方向的通路;同时,第六微带线还可用于常规射频功率传输。
可选地,第六微带线的电长度的取值范围为10度至180度;优选地,第二微带线的电长度的取值范围可为25度至35度,例如27度、29度、30度、32度或34度等;第六微带线的特性阻抗的取值范围为48欧至52欧,例如49欧、50欧或51欧等。
在一个实施例中,大功率上下行切换装置还包括第七微带线;低噪放模块的输出端通过第七微带线连接射频切换开关的上行端。
具体而言,低噪放模块的输出端和射频切换开关的上行端之间通过第七微带线相连。第七微带线可用于射频功率传输。可选地,第七微带线的电长度的取值范围为10度至180度;优选地,第二微带线的电长度的取值范围可为25度至35度,例如27度、29度、30度、32度或34度等;第七微带线的特性阻抗的取值范围为48欧至52欧,例如49欧、50欧或51欧等。
在一个实施例中,第一微带线的特性阻抗的取值范围为50欧至100欧。
具体而言,第一微带线的特性阻抗可为75欧、79欧、85欧、90欧、95欧或99欧等。
在一个实施例中,第一微带线的电长度取值范围为85度至95度。
具体而言,第一微带线的电长度可为87度、89度、91度或93度等。基于上述结构,第一微带线从第一端往第二端的方向的射频阻抗可大于300欧。应该注意的是,第一微带线的电长度的取值可在四分之一波长的基础上微调,以便得到更好的高阻状态。
在一个实施例中,如图3所示,大功率上下行切换装置主要包括:第一射频开关S1、第二射频开关S2、射频切换开关S3,微带线Z1(第二微带线)、Z2(第七微带线)、Z3(第三微带线)、Z4(第六微带线)、Z5(第四微带线)、Z6(第一微带线)和Z7(第五微带线),功率放大模块P1,环行器,低噪放模块P2,同步单元,电平反转器和负载电阻R1等。其中,Z1、Z2、Z3、Z4、Z5、Z6为50欧微带线,Z6的电长度为工作频率的四分之一波长,特性阻抗可根据高阻和功率容量设计要求选取一般可选50欧至100欧。即,要保证在射频开关S1、S2闭合后,射频阻抗从0欧姆经过四分之一波长线后进入高阻,从而使上行信号完全通过第一射频开关S1进入上行链路,同时保证射频开关S1、S2断开后来自第二射频端口的反射射频信号完全由负载电阻R1吸收,而不影响上行链路。基于此,整个切换装置不会使用大功率射频开关,从而解决了目前行业没有大功率射频开关的瓶颈。
基于上述结构,大功率TDD上下行切换装置的实现过程可包括:
1)同步单元生成并提供控制信号1,控制功率放大模块P1、第二射频开关S2和射频切换开关S3。
2)同步信号通过电平反向器提供控制信号2,控制低噪放模块P2及第一射频开关S1。
3)当控制信号1为高电平时(控制信号2为低电平),S1设置为断开、S2设置为 断开且S3设置为下行导通、功率放大模块P1打开以及低噪放模块P2关闭;射频信号由TXin进入,经过射频切换开关S3及微带线Z1进入功率放大模块P1进行功率放大后,经微带线Z3进入环形器;进一步地,前向信号经微带线Z5后到达TXout口输出,反向信号经过微带线Z7和Z6后进入大功率负载电阻R1。
4)当控制信号2为高电平时(控制信号1为低电平),S1设置为闭合、S2设置为闭合且S3设置为上行导通、低噪放模块P2打开以及功率放大模块P1关闭;射频信号由RXin进入,经过环形器及微带线Z7后,进入第一射频开关S1,然后经微带线Z4进入低噪放大模块P2;低噪放模块对射频信号进行放大后,经微带线Z2和射频切换开关S3后到达RXout口输出。
在一个实施例中,可根据实际的频率需求,选择相应的设备组件。
在一个示例中,提供一种2.6GHz大功率上下行一体化有源装置,如图4所示,包括:射频开关S1、S2和S3(型号为PE4251),同步单元,2.6GHz功率放大模块,2.6GHz低噪放模块,2.6GHz环形器和电压反向器(型号为NC7WZ1P6X)等组成。射频开关S3(PE4251)一个输出端口通过微带线Z1连接2.6HGz功率放大模块的输入端,另一个输出端口同微带线Z2连接2.6GHz低噪放模块的输出端;2.6GHz功率放大模块的输出端通过微带线Z3连接2.6GHz环行器的第一端口;2.6GHz环行器的第二端口通过微带线Z5连接TXout(RXin)端口;2.6GHz环行器的第三端口通过微带线Z7分别连接至射频开关S1的输入端和微带线Z6的第一端。微带线Z6通过射频开关S2的第一端连接至负载电阻R1;射频开关S1输出端通过微带线Z4连接至2.6GHz低噪放模块的输入端。其中,微带线Z1、Z2、Z3、Z4、Z5、Z7的特性阻抗均为50欧,电长度可根据电路板布局要求选取为30度。微带线Z6的特性阻抗及电长度选取原则为:从射频开关S1与微带线Z6的连接点往微带线Z6另一端的方向,射频阻抗为高阻状态(如大于300欧),以使上行导通时没有射频功率泄漏至负载电阻R1,例如,Z6的特性阻抗取值为80欧,电长度为89度。
基于上述结构,2.6GHz大功率上下行切换装置实现步骤可如下:
1)同步单元从射频输入端(TXin/RXout)耦合信号进行处理并生成同步信号,用于控制上下行链路的切换;同步单元输出的同步信号确定为控制信号1,控制信号1经过电压反向器NC7WZ146X后输出控制信号2。
2)当控制信号1为高电平时(控制信号2为低电平),射频开关S1(PE4251)设置为断开、S2(PE4251)设置为断开且S3(PE4251)设置为下行导通、功率放大模块P1打开以及低噪放模块P2关闭。射频信号由TXin进入,经过射频开关S3(PE4251)及微带线Z1进入2.6GHz功率放大模块P1,进行功率放大后经微带线Z3进入2.6GHz环形器;前向信号经微带线Z5后到达TXout口输出,反向信号经过微带线Z7和Z6后进入大功率负载电阻R1。
3)当控制信号2为高电平时(控制信号1为低电平),射频开关S1(PE4251)设置为闭合、S2(PE4251)设置为闭合且S3(PE4251)设置为上行导通、低噪放模块P2打开以及功率放大模块P1关闭。射频信号由RXin进入,经过2.6GHz环形器及微带线Z7后进入射频开关S1(PE4251),然后经微带线Z4进入2.6GHz低噪放模块后,再经微带线Z2和射频开关S3(PE4251)到达RXout口输出。
在一个实施例中,提供了一种通信设备,包括如上述的大功率上下行切换装置。

Claims (10)

  1. 一种大功率上下行切换装置,包括:
    射频切换开关;所述射频切换开关的公共端用于连接第一射频端口;
    功率放大模块;所述功率放大模块的输入端连接所述射频切换开关的下行端;
    环形器;所述环形器的第一端口连接所述功率放大模块的输出端,第二端口用于连接第二射频端口;
    第一射频开关;所述第一射频开关的第一端连接所述环形器的第三端口;
    低噪放模块;所述低噪放模块的输入端连接所述第一射频开关的第二端;所述低噪放模块的输出端连接所述射频切换开关的上行端;
    第一微带线;所述第一微带线的第一端连接所述环形器的第三端口;其中,所述第一微带线中,从第一端到第二端的射频阻抗为高阻状态;
    负载电阻,所述负载电阻的第一端连接所述第一微带线的第二端,所述负载电阻的第二端接地;
    第二射频开关;所述第二射频开关的第一端连接所述第一微带线的第二端,所述第二射频开关的第二端接地;
    同步控制模块;所述同步控制模块的输入端用于连接所述第一射频端口;所述同步控制模块的输出端分别连接所述射频切换开关的控制端、所述第一射频开关的控制端以及所述第二射频开关的控制端。
  2. 根据权利要求1所述的大功率上下行切换装置,所述同步控制模块的输出端还分别连接所述功率放大模块的控制端,以及所述低噪放模块的控制端。
  3. 根据权利要求2所述的大功率上下行切换装置,所述同步控制模块包括同步单元和电平反向器;
    所述同步单元的输入端用于连接所述第一射频端口,所述同步单元的输出端分别连接所述电平反向器的输入端、所述射频切换开关的控制端、所述功率放大模块的控制端以及所述第二射频开关的控制端;
    所述电平反向器的输出端分别连接所述低噪放模块的控制端和所述第一射频开关的控制端。
  4. 根据权利要求1所述的大功率上下行切换装置,还包括连接在所述第一射频端口和所述同步控制模块之间的耦合器;
    所述耦合器的输入端用于连接所述第一射频端口,耦合端连接所述同步控制模块的输入端。
  5. 根据权利要求1所述的大功率上下行切换装置,还包括第二微带线、第三微带线、第四微带线、第五微带线、第六微带线和第七微带线;
    所述射频切换开关的下行端通过所述第二微带线连接所述功率放大模块的输入端;
    所述功率放大模块的输出端通过所述第三微带线连接所述环形器的第一端口;
    所述环形器的第二端口通过所述第四微带线连接所述第二射频端口;
    所述环形器的第三端口通过所述第五微带线分别连接所述第一射频开关的第一端和所述第一微带线的第一端;
    所述第一射频开关的第二端通过所述第六微带线连接所述低噪放模块的输入端;
    所述低噪放模块的输出端通过所述第七微带线连接所述射频切换开关的上行端。
  6. 根据权利要求5所述的大功率上下行切换装置,所述第二微带线、所述第三微带线、所述第四微带线、所述第五微带线、所述第六微带线和所述第七微带线的电长度的取值范围均为10度至180度。
  7. 根据权利要求5所述的大功率上下行切换装置,所述第二微带线、所述第三微带线、所述第四微带线、所述第五微带线、所述第六微带线和所述第七微带线的特性阻抗的取值范围均为48欧至52欧。
  8. 根据权利要求1至7任一项所述的大功率上下行切换装置,
    所述第一微带线的特性阻抗的取值范围为50欧至100欧。
  9. 根据权利要求1至7任一项所述的大功率上下行切换装置,所述第一微带线的 电长度取值范围为85度至95度。
  10. 一种通信设备,包括如权利要求1至9任一项所述的大功率上下行切换装置。
PCT/CN2019/124699 2019-11-26 2019-12-11 大功率上下行切换装置和通信设备 WO2021103151A1 (zh)

Priority Applications (2)

Application Number Priority Date Filing Date Title
EP19954490.9A EP4024716A4 (en) 2019-11-26 2019-12-11 HIGH POWER UPLINK AND DOWNLINK SWITCHING DEVICE AND COMMUNICATION APPARATUS
US17/762,965 US20220337281A1 (en) 2019-11-26 2019-12-11 High-power uplink and downlink switching device, and communication apparatus

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
CN201911171376.8 2019-11-26
CN201911171376.8A CN110932751A (zh) 2019-11-26 2019-11-26 大功率上下行切换装置和通信设备

Publications (1)

Publication Number Publication Date
WO2021103151A1 true WO2021103151A1 (zh) 2021-06-03

Family

ID=69851953

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2019/124699 WO2021103151A1 (zh) 2019-11-26 2019-12-11 大功率上下行切换装置和通信设备

Country Status (4)

Country Link
US (1) US20220337281A1 (zh)
EP (1) EP4024716A4 (zh)
CN (1) CN110932751A (zh)
WO (1) WO2021103151A1 (zh)

Families Citing this family (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN113271199B (zh) * 2021-05-18 2021-12-14 广东圣大通信有限公司 基于时分双工的收发装置
CN115765825B (zh) * 2023-01-06 2023-05-09 国网信息通信产业集团有限公司 一种5g大功率通信终端装置

Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN1476188A (zh) * 2003-07-08 2004-02-18 大唐移动通信设备有限公司 时分双工无线通信系统收发线性开关电路和其实现方法
CN1492606A (zh) * 2003-09-28 2004-04-28 中兴通讯股份有限公司 一种大功率线性收发开关电路
US20070002781A1 (en) * 2005-07-01 2007-01-04 Samsung Electronics Co., Ltd. Transmit-receive antenna switch in a TDD wireless communication system
CN101282127A (zh) * 2007-04-06 2008-10-08 中兴通讯股份有限公司 时分双工无线通信系统的收发切换装置
CN202565228U (zh) * 2012-01-19 2012-11-28 北京华信联创科技有限公司 一种tdd大功率收发开关
CN106571850A (zh) * 2016-11-08 2017-04-19 北京澳丰源科技股份有限公司 一种tdd模式的双向放大器
CN210693926U (zh) * 2019-11-26 2020-06-05 京信通信系统(中国)有限公司 大功率上下行切换装置和通信设备

Family Cites Families (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US4904965A (en) * 1988-12-27 1990-02-27 Raytheon Company Miniature circulator for monolithic microwave integrated circuits
US6226275B1 (en) * 1999-08-25 2001-05-01 Utstarcom, Inc. Wide band high power ultralinear RF transreceiver
JP4446785B2 (ja) * 2003-08-27 2010-04-07 京セラ株式会社 高周波送受信器およびそれを具備するレーダ装置ならびにそれを搭載したレーダ装置搭載車両およびレーダ装置搭載小型船舶
JP4509899B2 (ja) * 2005-09-07 2010-07-21 株式会社東芝 送受信モジュール
JP5025699B2 (ja) * 2009-09-07 2012-09-12 株式会社東芝 送受信モジュール
US10594268B2 (en) * 2018-05-18 2020-03-17 Cree, Inc. Switch circuits having integrated overdrive protection and related transmit/receive circuits and MMIC amplifiers

Patent Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN1476188A (zh) * 2003-07-08 2004-02-18 大唐移动通信设备有限公司 时分双工无线通信系统收发线性开关电路和其实现方法
CN1492606A (zh) * 2003-09-28 2004-04-28 中兴通讯股份有限公司 一种大功率线性收发开关电路
US20070002781A1 (en) * 2005-07-01 2007-01-04 Samsung Electronics Co., Ltd. Transmit-receive antenna switch in a TDD wireless communication system
CN101282127A (zh) * 2007-04-06 2008-10-08 中兴通讯股份有限公司 时分双工无线通信系统的收发切换装置
CN202565228U (zh) * 2012-01-19 2012-11-28 北京华信联创科技有限公司 一种tdd大功率收发开关
CN106571850A (zh) * 2016-11-08 2017-04-19 北京澳丰源科技股份有限公司 一种tdd模式的双向放大器
CN210693926U (zh) * 2019-11-26 2020-06-05 京信通信系统(中国)有限公司 大功率上下行切换装置和通信设备

Also Published As

Publication number Publication date
EP4024716A1 (en) 2022-07-06
EP4024716A4 (en) 2022-12-28
US20220337281A1 (en) 2022-10-20
CN110932751A (zh) 2020-03-27

Similar Documents

Publication Publication Date Title
US8099061B2 (en) TDD receiver protection
US10498298B1 (en) Time-division duplexing using dynamic transceiver isolation
JP7271706B2 (ja) 無線周波数フロントエンド回路及び移動端末
WO2021103151A1 (zh) 大功率上下行切换装置和通信设备
CN102355203A (zh) 微波功率放大器智能输出技术
CN106411275B (zh) 改善带宽的三路Doherty功率放大器及实现方法
CN111740703B (zh) 伪Doherty式自输入控制的负载调制平衡类功率放大器及其实现方法
CN111211805A (zh) 平衡式射频前端收发电路、系统及其控制方法
US8331388B2 (en) Circuit arrangement and method of operating a circuit arrangement
CN213879768U (zh) 一种用于提高输出功率的固态功放模块
CN101573863A (zh) 发送装置和通信装置
CN202424626U (zh) 一种多路非对称Doherty放大器
KR20120013138A (ko) 복수 방식을 지원하는 증폭기 및 그 증폭 방법
KR102071885B1 (ko) 평형구조 및 광대역 0°/180° 전력분배기를 이용한 동일대역 비자성체 전이중통신 무선 전단부 회로
CN103746680B (zh) 射频开关
CN104183895A (zh) 一种可开关切换的合路器及装置
CN104580043B (zh) 一种数字预失真系统及其方法
CN110166078B (zh) 基于分形微带耦合器组的同时同频全双工单天线中继系统
CN210693926U (zh) 大功率上下行切换装置和通信设备
CN203482168U (zh) L波段小型化tr组件
Jia et al. A 52-67GHz Ultra-Compact Bi-directional Gate-switching Cascode Amplifier with Tri-coil Broadband Matching in 40-nm CMOS
CN108649974B (zh) 一种功率放大器及射频发射机
CN1258933C (zh) 一种时分双工收发开关装置
CN216122385U (zh) 一种tdd和fdd同时工作的联合电路
US10389358B1 (en) Transmit-receive switch

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 19954490

Country of ref document: EP

Kind code of ref document: A1

ENP Entry into the national phase

Ref document number: 2019954490

Country of ref document: EP

Effective date: 20220329

NENP Non-entry into the national phase

Ref country code: DE