WO2021102889A1 - 随机接入方法、装置、网络设备、终端和存储介质 - Google Patents

随机接入方法、装置、网络设备、终端和存储介质 Download PDF

Info

Publication number
WO2021102889A1
WO2021102889A1 PCT/CN2019/121900 CN2019121900W WO2021102889A1 WO 2021102889 A1 WO2021102889 A1 WO 2021102889A1 CN 2019121900 W CN2019121900 W CN 2019121900W WO 2021102889 A1 WO2021102889 A1 WO 2021102889A1
Authority
WO
WIPO (PCT)
Prior art keywords
value
random access
adjustment
indicate
adjustment amount
Prior art date
Application number
PCT/CN2019/121900
Other languages
English (en)
French (fr)
Inventor
尤心
卢前溪
Original Assignee
Oppo广东移动通信有限公司
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Oppo广东移动通信有限公司 filed Critical Oppo广东移动通信有限公司
Priority to PCT/CN2019/121900 priority Critical patent/WO2021102889A1/zh
Priority to CN201980102400.4A priority patent/CN114731598A/zh
Priority to EP19954368.7A priority patent/EP4068868A4/en
Publication of WO2021102889A1 publication Critical patent/WO2021102889A1/zh
Priority to US17/825,999 priority patent/US20220287082A1/en

Links

Images

Classifications

    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04WWIRELESS COMMUNICATION NETWORKS
    • H04W74/00Wireless channel access, e.g. scheduled or random access
    • H04W74/08Non-scheduled or contention based access, e.g. random access, ALOHA, CSMA [Carrier Sense Multiple Access]
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04WWIRELESS COMMUNICATION NETWORKS
    • H04W74/00Wireless channel access, e.g. scheduled or random access
    • H04W74/08Non-scheduled or contention based access, e.g. random access, ALOHA, CSMA [Carrier Sense Multiple Access]
    • H04W74/0866Non-scheduled or contention based access, e.g. random access, ALOHA, CSMA [Carrier Sense Multiple Access] using a dedicated channel for access
    • H04W74/0891Non-scheduled or contention based access, e.g. random access, ALOHA, CSMA [Carrier Sense Multiple Access] using a dedicated channel for access for synchronized access
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04WWIRELESS COMMUNICATION NETWORKS
    • H04W56/00Synchronisation arrangements
    • H04W56/001Synchronization between nodes
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04WWIRELESS COMMUNICATION NETWORKS
    • H04W56/00Synchronisation arrangements
    • H04W56/004Synchronisation arrangements compensating for timing error of reception due to propagation delay
    • H04W56/0045Synchronisation arrangements compensating for timing error of reception due to propagation delay compensating for timing error by altering transmission time

Definitions

  • This application relates to the field of satellite communications, in particular to a random access method, device, network equipment, terminal and storage medium.
  • Non-Terrestrial Network generally uses satellite communication to provide communication services to ground users. Compared with terrestrial cellular network communication, satellite communication has many unique advantages. First of all, satellite communication is less restricted by the user's geographical area, and can achieve signal coverage in areas such as oceans, mountains, and deserts where communication equipment cannot be installed; secondly, the distance of satellite communication is relatively long, and the cost of satellite communication network deployment does not increase with the increase in communication distance. And increase; Finally, the stability of satellite communication is high, and it is less affected by natural disasters.
  • the NTN network is based on communication technologies such as long term evolution (LTE) or new radio (NR), and adopts orthogonal multiple access methods. In the random access process, the NTN network equipment can control the time when the uplink signals from different terminals (User Equipment, UE) arrive at the base station by setting the uplink timing advance (Timing Advance, referred to as TA).
  • LTE long term evolution
  • NR new radio
  • the NTN network can support two types of UEs, one is a UE without positioning capability, and the other is a UE with positioning capability.
  • the UE with positioning capability may obtain the TA estimated value based on the positioning capability, and use the TA estimated value as the initial TA to send the first message MSG1 to the network device.
  • the network device determines the TA adjustment value of the UE after receiving MSG1, and sends the TA adjustment value to the timing advance command (Timing Advance Command, TAC) in the corresponding Random Access Response (RAR) UE; UE can accumulate the TA estimation value and the TA adjustment value to obtain the target TA.
  • TAC Timing Advance Command
  • RAR Random Access Response
  • the embodiments of the present application provide a random access method, device, network equipment, terminal, and storage medium, which can meet the requirements of random access scenarios in an NTN network.
  • a random access method includes:
  • the random access response returned by the receiving network device based on the random access request is used to indicate the value of the uplink timing TA adjustment, and the TA adjustment is a positive value, a negative value, or 0.
  • the above-mentioned random access response includes a TA attribute indication field and an uplink timing command TAC field.
  • the TA attribute indication field is used to indicate the positive and negative attributes of the TA adjustment amount; the predetermined length of the indication field in the TAC field is used for Indicates the absolute value of TA adjustment.
  • the above-mentioned TA attribute indication field is outside the TAC field.
  • the aforementioned preset length is equal to the length of the TAC field.
  • the above TA attribute indication field is located in the TAC field.
  • the aforementioned preset length is equal to the length of the TAC field minus one.
  • the above-mentioned TA attribute indication field is located at the first or last position of the TAC field.
  • the indicator field with the preset length is used to indicate the first index value of the TA adjustment amount; the first index value is used to instruct the terminal to obtain the TA according to the first index value and the preset TA adjustment amount algorithm The absolute value of the adjustment.
  • the above-mentioned preset length domain is used to indicate the first mapping value of the TA adjustment amount; the first mapping value is used to instruct the terminal to obtain the TA adjustment according to the first mapping value and the preset first mapping table The absolute value of the amount; the first mapping table includes the corresponding relationship between the first mapping value and the absolute value of the TA adjustment amount.
  • the aforementioned random access response includes a TAC field, and the TAC field is used to indicate the value of the TA adjustment amount.
  • the above-mentioned TAC field is used to indicate the second mapping value of the TA adjustment; the second mapping value is used to instruct the terminal to obtain the value of the TA adjustment according to the second mapping value and a preset second mapping table ;
  • the second mapping table includes the correspondence between the second mapping value and the TA adjustment amount.
  • the above-mentioned TAC field is used to indicate the second index value of the TA adjustment; the second index value is used to instruct the terminal to obtain the value of the TA adjustment according to the second index value and a preset TA adjustment algorithm .
  • the length of the above-mentioned TAC field is N
  • the second index value is 0-2 N-1 -2, which is used to indicate the TA adjustment value that the attribute is negative
  • the second index value is 2 N-1 -1, is used to indicate the TA adjustment value of the attribute is 0
  • the second index value of 2 N-1 ⁇ 2 N -1 the attribute for indicating a positive adjustment value TA.
  • a random access method includes:
  • a random access response is sent to the terminal according to the random access request; the random access response is used to indicate the value of the uplink timing TA adjustment, and the TA adjustment is a positive value, a negative value, or 0.
  • the above-mentioned random access response includes a TA attribute indication field and an uplink timing command TAC field.
  • the TA attribute indication field is used to indicate the positive and negative attributes of the TA adjustment amount; the predetermined length of the indication field in the TAC field is used for Indicates the absolute value of TA adjustment.
  • the above-mentioned TA attribute indication field is outside the TAC field.
  • the aforementioned preset length is equal to the length of the TAC field.
  • the above TA attribute indication field is located in the TAC field.
  • the aforementioned preset length is equal to the length of the TAC field minus one.
  • the above-mentioned TA attribute indication field is located at the first or last position of the TAC field.
  • the indicator field with the preset length is used to indicate the first index value of the TA adjustment amount; the first index value is used to instruct the terminal to obtain the TA according to the first index value and the preset TA adjustment amount algorithm The absolute value of the adjustment.
  • the above-mentioned preset length domain is used to indicate the first mapping value of the TA adjustment amount; the first mapping value is used to instruct the terminal to obtain the TA adjustment according to the first mapping value and the preset first mapping table The absolute value of the amount; the first mapping table includes the corresponding relationship between the first mapping value and the absolute value of the TA adjustment amount.
  • the aforementioned random access response includes a TAC field, and the TAC field is used to indicate the value of the TA adjustment amount and the positive and negative attributes of the TA adjustment amount.
  • the above-mentioned TAC field is used to indicate the second mapping value of the TA adjustment; the second mapping value is used to instruct the terminal to obtain the value of the TA adjustment according to the second mapping value and a preset second mapping table ;
  • the second mapping table includes the correspondence between the second mapping value and the TA adjustment amount.
  • the above-mentioned TAC field is used to indicate the second index value of the TA adjustment; the second index value is used to instruct the terminal to obtain the value of the TA adjustment according to the second index value and a preset TA adjustment algorithm .
  • the length of the above-mentioned TAC field is N
  • the second index value is 0-2 N-1 -2, which is used to indicate the TA adjustment value that the attribute is negative
  • the second index value is 2 N-1 -1, is used to indicate the TA adjustment value of the attribute is 0
  • the second index value of 2 N-1 ⁇ 2 N -1 the attribute for indicating a positive adjustment value TA.
  • the aforementioned random access request is sent by the terminal based on the TA estimated value; the method further includes:
  • the target TA is obtained.
  • a random access device includes a receiving module, a sending module, and a processing module:
  • the processing module is used to send a random access request to the network device through the sending module;
  • the processing module is used to receive the random access response returned by the network device based on the random access request through the receiving module; the random access response is used to indicate the value of the uplink timing TA adjustment, and the TA adjustment is a positive value, a negative value or 0.
  • a random access device includes a sending module, a receiving module, and a processing module:
  • the processing module is used to receive the random access request sent by the terminal through the receiving module;
  • the processing module is used to send a random access response to the terminal according to the random access request through the sending module; the random access response is used to indicate the value of the uplink timing TA adjustment, and the TA adjustment is a positive value, a negative value or 0.
  • a terminal includes a memory and a processor, and a computer program is stored in the memory.
  • the processor executes the computer program, the following steps are implemented:
  • the random access response returned by the receiving network device based on the random access request is used to indicate the value of the uplink timing TA adjustment, and the TA adjustment is a positive value, a negative value, or 0.
  • a network device includes a memory and a processor, and a computer program is stored in the memory.
  • the processor executes the computer program, the following steps are implemented:
  • a random access response is sent to the terminal according to the random access request; the random access response is used to indicate the value of the uplink timing TA adjustment, and the TA adjustment is a positive value, a negative value, or 0.
  • a computer-readable storage medium has a computer program stored thereon, and when the computer program is executed by a processor, the following steps are implemented:
  • the random access response returned by the receiving network device based on the random access request is used to indicate the value of the uplink timing TA adjustment, and the TA adjustment is a positive value, a negative value, or 0.
  • a computer-readable storage medium has a computer program stored thereon, and when the computer program is executed by a processor, the following steps are implemented:
  • a random access response is sent to the terminal according to the random access request; the random access response is used to indicate the value of the uplink timing TA adjustment, and the TA adjustment is a positive value, a negative value, or 0.
  • the terminal sends a random access request to the network equipment; and receives the random access response returned by the network equipment based on the random access request; wherein, the random access response is used for Indicates the value of the TA adjustment amount for the uplink timing, and the TA adjustment amount is a positive value, a negative value or 0.
  • the indicated TA adjustment amount can be positive, negative, or 0; therefore, when the estimated TA value obtained by the terminal is larger or smaller than the actual initial TA of the terminal Next, the terminal can adjust the TA estimation value according to the TA adjustment amount indicated in the random access response, so as to smoothly access the network device based on the adjusted TA.
  • FIG. 1 is an application environment diagram of a random access method provided by an embodiment
  • Fig. 2 is a flowchart of a random access method provided by an embodiment
  • FIG. 2A is a schematic diagram of a random access method provided by an embodiment
  • FIG. 3 is a flowchart of a random access method provided by another embodiment
  • FIG. 4 is a schematic diagram of a TAC domain in an embodiment
  • FIG. 5 is a schematic diagram of a TAC domain in another embodiment
  • Fig. 6 is a block diagram of a random access device provided by an embodiment
  • FIG. 7 is a block diagram of a random access device provided by another embodiment.
  • FIG. 8 is a schematic diagram of the internal structure of a network device provided by an embodiment.
  • FIG. 9 is a schematic diagram of the internal structure of a terminal provided by an embodiment.
  • NTN technology generally uses satellite communications to provide communication services to ground users.
  • satellite communications have many unique advantages.
  • satellite communication is not restricted by the user's area.
  • general terrestrial communication cannot cover areas where communication equipment cannot be installed such as oceans, mountains, and deserts, or areas that cannot be covered by communication due to sparse population. Satellites can cover a larger ground, and satellites can orbit the earth. Therefore, in theory, every corner of the earth can be covered by satellite communications.
  • satellite communication has greater social value.
  • Satellite communications can be covered at a lower cost in remote mountainous areas, poor and backward countries or regions, so that people in these areas can enjoy advanced voice communication and mobile Internet technology, which is conducive to narrowing the digital gap with developed regions and promoting The development of these areas.
  • the satellite communication distance is long, and the communication cost has not increased significantly with the increase of the communication distance; finally, the stability of satellite communication is high, and it is not restricted by natural disasters.
  • communication satellites are classified into Low-Earth Orbit (LEO) satellites, Medium-Earth Orbit (MEO) satellites, and Geostationary Earth Orbit (GEO) satellites according to different orbital heights. , High Elliptical Orbit (HEO) satellites, etc.
  • LEO Low-Earth Orbit
  • MEO Medium-Earth Orbit
  • GEO Geostationary Earth Orbit
  • HEO High Elliptical Orbit
  • FIG. 1 is a schematic diagram of an application scenario of the random access method provided in the embodiment of this application.
  • this scenario includes network equipment 1, UE2, UE3, and UE4, and network equipment 1 communicates with UE2, UE3, and UE4 through the network.
  • the base station 1 can be, but not limited to, LEO satellites, MEO satellites, GEO satellites, HEO satellites, etc.
  • the UE can be, but not limited to, various personal computers, notebook computers, smart phones, tablet computers, and portable wearable devices. It should be noted that this application may also include a larger number of base stations and UEs, and is not limited to FIG. 1.
  • the NTN network can support two types of UEs, one is a UE without positioning capability, and the other is a UE with positioning capability.
  • the network equipment broadcasts a public TA to the UE based on the transmission path, and after receiving the random access request sent by the UE, indicates a dedicated TA to the UE in the random access response RAR; After TA, the UE can accumulate the public TA and the dedicated TA to obtain the target TA of the UR.
  • the UE may obtain an estimated TA value based on the positioning capability, and use the estimated TA value as an initial TA to send the first message MSG1 to the network device.
  • the network device After receiving MSG1, the network device determines the TA adjustment amount of the UE, and sends the above TA adjustment amount to the UE through the TAC in the RAR; the UE can accumulate the TA estimation value and the TA adjustment amount to obtain the target TA.
  • the above-mentioned UE with positioning capability sends a random access request to the network device through the TA estimation value.
  • the accuracy with which the above-mentioned UE obtains the TA estimation value is related to the UE's positioning ability. direct relation. Since the aforementioned TA estimation value is larger or smaller than the actual initial TA of the UE, when the network device determines the TA adjustment amount of the UE according to the receiving moment of MSG1, the aforementioned TA adjustment amount may be greater than, equal to, or less than The value of zero.
  • the TAC field in the RAR payload specified in the current NR protocol can only be used to indicate a TA adjustment value greater than or equal to 0, which does not meet the requirements of random access scenarios for terminals with positioning capabilities in the NTN network.
  • the RAR needs to be able to indicate the TA adjustment value with the attribute being a positive value, a negative value, and 0. Therefore, the random access method provided in the embodiment of the present application can solve the above-mentioned problem of indicating the TA adjustment amount in the random access process.
  • random access method of this application is not limited to solving the above technical problems, but can also be used to solve other technical problems, which is not limited in this application.
  • Fig. 2 is a flowchart of a random access method in an embodiment.
  • the random access method in this embodiment is described by taking the network device running in FIG. 1 as an example. As shown in Figure 2, the above random access method includes the following steps:
  • the above random access request may be a random access preamble sequence Preamble sent by the terminal to the network device when the random access process is triggered.
  • the above preamble is mainly used to indicate that the network device has a random access request and make the network device
  • the transmission delay between the Preamble and the UE can be estimated according to the Preamble, and the TA adjustment amount of the UE can be obtained.
  • the foregoing random access process may be triggered when the terminal UE initially accesses the network device, or when the wireless link between the UE and the network device fails and the wireless connection is reestablished; the sending scenario for the foregoing random access request is This is not limited.
  • the UE When sending a preamble to a network device, the UE needs to obtain the above-mentioned preamble and obtain physical random access channel (Physical Random Access Channel, PRACH) resources that can be used to send the preamble.
  • PRACH Physical Random Access Channel
  • the foregoing random access process may be based on a non-competition random access method, and the network equipment may specify the preamble and PRACH resources used during random access to the UE; in addition, the foregoing random access process may also be a contention-based random access In this way, the network equipment broadcasts the preamble and PRACH resources available for random access. After the UE selects a preamble, it then selects a PRACH resource from the available PRACH resources to send the preamble to the network equipment.
  • PRACH Physical Random Access Channel
  • the UE After the UE obtains the PRACH resources, it can obtain the distance between the UE and the network equipment based on the positioning capability, and estimate the TA estimation value based on the above distance. Further, the UE may send the aforementioned random access request in advance at a timing based on the estimated TA value.
  • the network device may receive the foregoing random access request through the PRACH resource.
  • S102 Send a random access response to the terminal according to the random access request; the random access response is used to indicate the value of the uplink timing TA adjustment, and the TA adjustment is a positive value, a negative value, or 0.
  • the network equipment After receiving the random access request sent by the UE, the network equipment can obtain the UE according to the receiving time of the random access request and the time when the UE sends the random access request (that is, the time corresponding to the PRACH time domain resources used by the UE). The TA adjustment amount.
  • the network device may determine the TA adjustment amount of the UE according to the receiving moment of the random access request, and the method for determining the above TA adjustment amount is not limited herein.
  • the network device instructs each UE to receive a random access request near the receiving time t through the PRACH resource.
  • UE1 sends random access request 1 according to the estimated TA estimation value T1, and the network device receives the random access request 1 at time t1; at this time, the network device can determine that the TA adjustment amount of the UE is a positive value t1-t, and In other words, the network equipment needs the UE1 to send a signal in advance on the basis of T1, and adjust the TA of the UE to T1+t1-t.
  • UE2 For UE2, UE2 sends random access request 2 according to the estimated TA estimation value T2, and the network device receives the aforementioned random access request 2 at time t2; at this time, the network device can determine that the TA adjustment amount of UE2 is a negative value t2- t, that is to say, the network equipment needs UE2 to delay sending signals on the basis of T2, and adjust the TA of UE2 to T2+t2-t.
  • the above TA adjustment amount may be a positive value, a negative value, or 0.
  • the network device may convert the above TA adjustment amount into the value of the corresponding bit field in the random access response RAR, and instruct the terminal to adjust the TA through the RAR.
  • the value of the corresponding bit field in the foregoing RAR may indicate the absolute value of the TA adjustment amount and the positive and negative attributes of the TA adjustment amount; the UE obtains the TA adjustment amount according to the foregoing absolute value and attributes.
  • the value of the corresponding bit field in the above RAR may also directly indicate the value of the TA adjustment.
  • the value of a part of the bit field indicates the TA adjustment with a positive attribute
  • the value of another part of the bit field indicates the TA with a negative attribute.
  • Adjustment amount There is no limitation on the indication method of the above TA adjustment amount.
  • the network device can send the RAR to the terminal.
  • the network device receives the random access request sent by the terminal; then, sends a random access response to the terminal according to the random access request; wherein, the random access response is used to indicate the value of the uplink timing TA adjustment, TA
  • the adjustment amount is positive, negative, or 0. Because in the random access response sent by the network device, the indicated TA adjustment amount can be positive, negative, or 0; therefore, when the estimated TA value obtained by the terminal is larger or smaller than the actual initial TA of the terminal In this case, the terminal may adjust the TA estimation value according to the TA adjustment amount indicated in the random access response, so as to smoothly access the network device based on the adjusted TA.
  • Fig. 3 is a flowchart of a random access method in an embodiment.
  • the random access method in this embodiment is described by taking the terminal operating in FIG. 1 as an example.
  • the foregoing random access method includes the following steps:
  • the sending method is similar to the description in S101 in the foregoing embodiment, and will not be repeated here.
  • S202 Receive a random access response returned by the network device based on the random access request; the random access response is used to indicate the value of the uplink timing TA adjustment, and the TA adjustment is a positive value, a negative value, or 0.
  • the UE After the UE sends a random access request to the network device, it can open the random access response time window ra-ResponseWindow, and monitor the RA-RNTI scrambled PDCCH of the UE in the ra-ResponseWindow. After successfully receiving the PDCCH scrambled by the RA-RNTI, the UE can obtain the PDSCH resource scheduled by the PDCCH, and read the RAR from the PDSCH resource.
  • ra-ResponseWindow After successfully receiving the PDCCH scrambled by the RA-RNTI, the UE can obtain the PDSCH resource scheduled by the PDCCH, and read the RAR from the PDSCH resource.
  • the corresponding bit field in the above RAR carries a value used to indicate the TA adjustment amount.
  • the above TA adjustment amount can be a positive value, a negative value or zero.
  • the UE may convert the TA adjustment amount sent by the network device according to the above-mentioned value used to indicate the TA adjustment amount.
  • the conversion method adopted corresponds to the TA adjustment amount indication method adopted in the network device.
  • the UE may obtain the target TA according to the estimated TA value and the above-mentioned TA adjustment value.
  • the aforementioned TA estimation value is estimated by the UE based on the positioning capability, and is the initial TA value used when the UE sends a random access request to the network device.
  • the UE may determine the sum of the TA estimation value and the TA adjustment value as the target TA.
  • the terminal sends a random access request to the network device; and receives the random access response returned by the network device based on the random access request; wherein, the random access response is used to indicate the value of the uplink timing TA adjustment, TA
  • the adjustment amount is positive, negative, or 0.
  • the indicated TA adjustment amount can be positive, negative, or 0; therefore, when the estimated TA value obtained by the terminal is larger or smaller than the actual initial TA of the terminal
  • the terminal can adjust the TA estimation value according to the TA adjustment amount indicated in the random access response, so as to smoothly access the network device based on the adjusted TA.
  • the following embodiments relate to the method of indicating the TA adjustment amount in the RAR in the random access method, which can be applied to the network equipment and the terminal in FIG. 1.
  • the random access response includes a TA attribute indication field and an uplink timing command TAC field.
  • the above TA attribute indication field is used to indicate the positive and negative attributes of the TA adjustment amount
  • the predetermined length indication field in the above TAC field is used to indicate the absolute value of the TA adjustment amount.
  • the TA attribute indication field indicates positive and negative attributes
  • the above-mentioned TA attribute indication field may be located in the above-mentioned TAC field or outside the above-mentioned TAC field, which is not limited here.
  • the TA attribute indication field is an independent domain in the RAR, which may be located before or after the TAC domain; the TA attribute indication field may be the same as the TAC domain. Adjacent, it can also be separated from the TAC field by a preset number of bits, which is not limited here.
  • the TAC field may indicate the absolute value of the TA adjustment amount through a part of the bit field in the TAC field; optionally, the preset length is equal to the length of the TAC field, that is, It is said that the TAC field can indicate the absolute value of the TA adjustment amount through all bit fields. For example, when the length of the TAC field is 8, the preset length may also be 8.
  • the TA attribute indication field may be located at the first or last position of the TAC field, or may be located at other positions in the TAC field, which is not limited here.
  • the indication field of the preset length in the TAC field may be part of the bit fields in the TAC field except for the TA attribute indication field; optionally
  • the above TA attribute indication field is a 1-bit field, and the above preset length is equal to the length of the TAC field minus one. For example, when the length of the TAC field is 8, the preset length may be 7.
  • the network device When the network device indicates the absolute value of the TA adjustment amount through an indication field of a preset length in the TAC field, different indication methods may be adopted.
  • the indication field of the aforementioned preset length may be used to indicate the first index value of the TA adjustment amount; wherein, the aforementioned first index value is used to instruct the terminal to obtain according to the first index value and a preset TA adjustment amount algorithm The absolute value of TA adjustment.
  • the value 0-2N1 -1 of the indication field of length N1 may respectively indicate 2N1 first index values.
  • the above-mentioned first index value 2 N1 -1 can be used to indicate the maximum absolute value, and can also be used to indicate the minimum absolute value.
  • the UE may substitute the first index value into a preset TA adjustment amount algorithm, and calculate and obtain the absolute value of the TA adjustment value corresponding to the first index value.
  • the aforementioned TA adjustment algorithm may be a formula or may include different formulas; for example, different formulas may be selected according to the scenario in which the UE triggers random access.
  • the above-mentioned preset length field may be used to indicate the first mapping value of the TA adjustment; the first mapping value is used to instruct the terminal to obtain the TA adjustment value according to the first mapping value and the preset first mapping table Absolute value; the first mapping table includes the corresponding relationship between the first mapping value and the absolute value of the TA adjustment amount.
  • the first mapping table can be set in both the UE and the network equipment.
  • the first mapping table may include a correspondence relationship between an absolute value of 2 N1 TA adjustment amount of 2 N1 of first mapped values.
  • the network device may select the corresponding first mapping value in the first mapping table according to the absolute value of the TA adjustment value and determine it as the value of the indication field in the above-mentioned TAC.
  • the UE may search for the absolute value of the corresponding TA adjustment amount in the first mapping table according to the value of the indication field in the TAC.
  • the length of the TAC field is 7, and the TA attribute indication field Positive TA is outside the TAC field.
  • a TA attribute indication field of 1 indicates that the TA adjustment amount is a non-negative number, and a TA attribute indication field of 0 indicates that the TA adjustment amount is a negative number.
  • the length of the TAC field is equal to the preset length, which can correspond to 128 first index values index.
  • the UE When the value of the TAC field acquired by the UE is 1000000, it means that the first index value is 64, and then the absolute value of the TA adjustment amount is obtained according to the TA adjustment amount algorithm f (index). Further, the UE can know that the TA adjustment amount indicated in the RAR is -f(index) according to the obtained value 0 of the TA attribute indication field.
  • the network device separately indicates the absolute value of the TA adjustment and the positive and negative attributes of the TA adjustment in the RAR, so that the terminal can obtain the TA adjustment according to the absolute value of the TA adjustment and the positive and negative attributes of the TA adjustment ; Because the above TA adjustment value can be a positive value, a negative value or 0, the terminal can adjust the TA according to the TA adjustment value to adapt to the application scenario in the NTN network.
  • the random access response includes a TAC field, and the TAC field is used to indicate the value of the TA adjustment amount.
  • the value of the TAC field in the RAR can be directly based on the value of the preset rule mapping value TA adjustment.
  • the range of the above TA adjustment can be the smallest TA adjustment with a negative attribute to the maximum TA adjustment with a positive attribute. the amount.
  • the network device When the network device indicates the value of the TA adjustment value through the TAC field, different indication methods can be adopted.
  • the TAC field may be used to indicate the second mapping value of the TA adjustment; where the above-mentioned second mapping value is used to instruct the terminal to obtain the value of the TA adjustment according to the second mapping value and a preset second mapping table ;
  • the second mapping table includes the correspondence between the second mapping value and the TA adjustment amount.
  • the second mapping table can be set in both the UE and the network equipment.
  • the first mapping table may include the corresponding relationship between 2 N TA adjustment values and 2 N second mapping values; wherein, some of the second mapping values and attributes are negative Corresponding to TA adjustment.
  • the network device may select the corresponding second mapping value in the second mapping table according to the value of the TA adjustment value and determine it as the value of the above-mentioned TAC field.
  • the UE may search for the corresponding TA adjustment value in the second mapping table according to the value of the TAC field.
  • the TAC field may be used to indicate the second index value of the TA adjustment; the second index value is used to instruct the terminal to obtain the value of the TA adjustment according to the second index value and a preset TA adjustment algorithm.
  • the values of the TAC field of 0-2 N -1 may respectively indicate 2 N second index values.
  • the UE may substitute the second index value into a preset TA adjustment amount algorithm, and calculate and obtain the value of the TA adjustment value corresponding to the second index value.
  • the above TA adjustment algorithm can map 0 to the maximum TA adjustment, or 2 N -1 to the maximum TA adjustment, which is not limited here.
  • the length of the TAC field is N, and when the second index value is 0-2 N-1 -2, it is used to indicate that the attribute is a negative TA adjustment value; when the second index value is 2 N-1 -1, attribute is used to indicate the TA adjustment value 0; when the second index value of 2 N-1 ⁇ 2 N -1 , the attribute for indicating a positive adjustment value TA.
  • the length of the TAC field is 8.
  • the value of the above-mentioned TAC field may correspond to 256 second index values index.
  • the value of the TAC field acquired by the UE is 10000000, it means that the second index value is 128, and then the value of the TA adjustment amount is obtained according to the TA adjustment amount algorithm f(index).
  • an index of 0 to 126 indicates 127 TA adjustments whose attributes are negative; an index of 127 indicates that the TA adjustments are 0; an index of 128 to 255 indicates 128 TA adjustments with positive attributes. the amount.
  • the indication mode of the TA adjustment amount in the above random access method is different from the indication mode in the previous embodiment, but the signaling overhead is the same.
  • the network device directly indicates the TA adjustment amount through the TAC field in the RAR, so that the terminal can directly obtain the TA adjustment amount including the positive and negative attributes according to the value of the TAC field; and then the TA can be adjusted accordingly to adapt to the NTN Application scenarios in the network.
  • a random access device is provided. As shown in FIG. 6, the aforementioned random access device includes a receiving module 110, a sending module 120, and a processing module 130:
  • the processing module 130 is configured to receive the random access request sent by the terminal through the receiving module 110;
  • the processing module 130 is configured to send a random access response to the terminal according to the random access request through the sending module 120; the random access response is used to indicate the value of the uplink timing TA adjustment, and the TA adjustment is a positive value, a negative value, or zero.
  • the random access response includes a TA attribute indication field and an uplink timing command TAC field.
  • the TA attribute indication field is used to indicate the positive and negative attributes of the TA adjustment amount; the TAC field is preset
  • the length indicator field is used to indicate the absolute value of the TA adjustment.
  • the TA attribute indication field is located outside the TAC field.
  • the preset length is equal to the length of the TAC field.
  • the TA attribute indication field is located in the TAC field.
  • the preset length is equal to the length of the TAC field minus one.
  • the TA attribute indication field is located at the first or last position of the TAC field.
  • the indicator field of the preset length is used to indicate the first index value of the TA adjustment amount; the first index value is used to instruct the terminal according to the first index value and the preset TA Adjustment algorithm, to obtain the absolute value of TA adjustment.
  • a field of preset length is used to indicate the first mapping value of the TA adjustment amount; the first mapping value is used to instruct the terminal according to the first mapping value and the preset first mapping value.
  • the mapping table obtains the absolute value of the TA adjustment; the first mapping table includes the corresponding relationship between the first mapping value and the absolute value of the TA adjustment.
  • the random access response includes a TAC field, and the TAC field is used to indicate the value of the TA adjustment amount.
  • the TAC field is used to indicate the second mapping value of the TA adjustment amount; the second mapping value is used to instruct the terminal according to the second mapping value and the preset second mapping table, Obtain the value of the TA adjustment; the second mapping table includes the correspondence between the second mapping value and the TA adjustment.
  • the TAC field is used to indicate the second index value of the TA adjustment amount; the second index value is used to indicate the terminal according to the second index value and the preset TA adjustment amount algorithm, Get the value of TA adjustment.
  • the length of the TAC field is N
  • the second index value is 0-2 N-1 -2, which is used to indicate the TA adjustment value whose attribute is negative; the second index When the value is 2 N-1 -1, it is used to indicate the TA adjustment value of 0; when the second index value is 2 N-1 to 2 N -1, it is used to indicate the TA adjustment value of the attribute being positive.
  • a random access device includes a sending module 210, a receiving module 220, and a processing module 230:
  • the processing module 230 is configured to send a random access request to the network device through the sending module 210;
  • the processing module 230 is configured to receive the random access response returned by the network device based on the random access request through the receiving module 220; the random access response is used to indicate the value of the uplink timing TA adjustment, and the TA adjustment is positive, negative or 0.
  • the random access response includes a TA attribute indication field and an uplink timing command TAC field.
  • the TA attribute indication field is used to indicate the positive and negative attributes of the TA adjustment amount; the TAC field is preset
  • the length indicator field is used to indicate the absolute value of the TA adjustment.
  • the TA attribute indication field is located outside the TAC field.
  • the preset length is equal to the length of the TAC field.
  • the TA attribute indication field is located in the TAC field.
  • the preset length is equal to the length of the TAC field minus one.
  • the TA attribute indication field is located at the first or last position of the TAC field.
  • the indicator field of the preset length is used to indicate the first index value of the TA adjustment amount; the first index value is used to instruct the terminal according to the first index value and the preset TA Adjustment algorithm, to obtain the absolute value of TA adjustment.
  • a field of preset length is used to indicate the first mapping value of the TA adjustment amount; the first mapping value is used to instruct the terminal according to the first mapping value and the preset first mapping value.
  • the mapping table obtains the absolute value of the TA adjustment; the first mapping table includes the corresponding relationship between the first mapping value and the absolute value of the TA adjustment.
  • the random access response includes a TAC field, which is used to indicate the value of the TA adjustment amount and the positive and negative attributes of the TA adjustment amount.
  • the TAC field is used to indicate the second mapping value of the TA adjustment amount; the second mapping value is used to instruct the terminal according to the second mapping value and the preset second mapping table, Obtain the value of the TA adjustment; the second mapping table includes the correspondence between the second mapping value and the TA adjustment.
  • the TAC field is used to indicate the second index value of the TA adjustment amount; the second index value is used to indicate the terminal according to the second index value and the preset TA adjustment amount algorithm, Get the value of TA adjustment.
  • the length of the TAC field is N
  • the second index value is 0-2 N-1 -2, which is used to indicate the TA adjustment value whose attribute is negative; the second index When the value is 2 N-1 -1, it is used to indicate the TA adjustment value of 0; when the second index value is 2 N-1 to 2 N -1, it is used to indicate the TA adjustment value of the attribute being positive.
  • the above-mentioned random access request is sent by the terminal based on the TA estimated value; the above-mentioned processing module 230 is further configured to: obtain the target TA according to the TA estimated value and the TA adjustment value.
  • each module in the random access device described above is only for illustration. In other embodiments, the random access device may be divided into different modules as needed to complete all or part of the functions of the random access device.
  • Each module in the above-mentioned random access device can be implemented in whole or in part by software, hardware, and a combination thereof.
  • the above-mentioned modules may be embedded in the form of hardware or independent of the processor in the computer equipment, or may be stored in the memory of the computer equipment in the form of software, so that the processor can call and execute the operations corresponding to the above-mentioned modules.
  • Fig. 8 is a schematic diagram of the internal structure of a network device in an embodiment.
  • the network device includes a processor, a non-volatile storage medium, an internal memory, and a network interface connected through a system bus.
  • the processor is used to provide computing and control capabilities to support the operation of the entire electronic device.
  • the memory is used to store data, programs, etc., and at least one computer program is stored in the memory, and the computer program can be executed by the processor to implement the wireless network communication method suitable for network devices provided in the embodiments of the present application.
  • the memory may include a non-volatile storage medium and internal memory.
  • the non-volatile storage medium stores an operating system and a computer program.
  • the computer program can be executed by the processor to implement a random access method provided in the following embodiments.
  • the internal memory provides a cached operating environment for the operating system computer program in the non-volatile storage medium.
  • the network interface can be an Ethernet card or a wireless network card, etc., for communicating with external electronic devices.
  • a terminal is provided, and its internal structure diagram may be as shown in FIG. 9.
  • the terminal includes a processor, a memory, a network interface, a display screen and an input device connected via a system bus.
  • the terminal's processor is used to provide computing and control capabilities.
  • the memory of the terminal includes a non-volatile storage medium and an internal memory.
  • the non-volatile storage medium stores an operating system and a computer program.
  • the internal memory provides an environment for the operation of the operating system and computer programs in the non-volatile storage medium.
  • the network interface of the terminal is used to communicate with an external terminal through a network connection.
  • the computer program is executed by the processor to realize a random access method.
  • the display screen of the terminal can be a liquid crystal display or an electronic ink display
  • the input device of the terminal can be a touch layer covered on the display, or a button, trackball or touchpad set on the terminal shell, or It is an external keyboard, touchpad or mouse, etc.
  • FIG. 8 or FIG. 9 is only a block diagram of part of the structure related to the solution of the present application, and does not constitute a limitation on the network device or terminal to which the solution of the present application is applied.
  • a specific network device or terminal may include more or fewer components than shown in the figure, or combine certain components, or have a different component arrangement.
  • each module in the network equipment device provided in the embodiments of the present application may be in the form of a computer program.
  • the computer program can be run on a terminal or a server.
  • the program module composed of the computer program can be stored in the memory of the terminal or the server.
  • a network device including a memory and a processor, a computer program is stored in the memory, and the processor implements the following steps when the processor executes the computer program:
  • a random access response is sent to the terminal according to the random access request; the random access response is used to indicate the value of the uplink timing TA adjustment, and the TA adjustment is a positive value, a negative value, or 0.
  • a terminal including a memory and a processor, a computer program is stored in the memory, and the processor implements the following steps when the processor executes the computer program:
  • the random access response returned by the receiving network device based on the random access request is used to indicate the value of the uplink timing TA adjustment, and the TA adjustment is a positive value, a negative value, or 0.
  • the embodiment of the present application also provides a computer-readable storage medium.
  • a random access response is sent to the terminal according to the random access request; the random access response is used to indicate the value of the uplink timing TA adjustment, and the TA adjustment is a positive value, a negative value, or 0.
  • the embodiment of the present application also provides a computer-readable storage medium.
  • the random access response returned by the receiving network device based on the random access request is used to indicate the value of the uplink timing TA adjustment, and the TA adjustment is a positive value, a negative value, or 0.
  • a computer program product containing instructions that, when run on a computer, causes the computer to perform a random access method.
  • Non-volatile memory may include read only memory (ROM), programmable ROM (PROM), electrically programmable ROM (EPROM), electrically erasable programmable ROM (EEPROM), or flash memory.
  • Volatile memory may include random access memory (RAM), which acts as external cache memory.
  • RAM is available in many forms, such as static RAM (SRAM), dynamic RAM (DRAM), synchronous DRAM (SDRAM), double data rate SDRAM (DDR SDRAM), enhanced SDRAM (ESDRAM), synchronous Link (Synchlink) DRAM (SLDRAM), memory bus (Rambus) direct RAM (RDRAM), direct memory bus dynamic RAM (DRDRAM), and memory bus dynamic RAM (RDRAM).
  • SRAM static RAM
  • DRAM dynamic RAM
  • SDRAM synchronous DRAM
  • DDR SDRAM double data rate SDRAM
  • ESDRAM enhanced SDRAM
  • SLDRAM synchronous Link (Synchlink) DRAM
  • Rambus direct RAM
  • DRAM direct memory bus dynamic RAM
  • RDRAM memory bus dynamic RAM

Abstract

本申请涉及一种随机接入方法、装置、网络设备、终端和存储介质,终端向网络设备发送随机接入请求;并接收网络设备基于随机接入请求返回的随机接入响应;其中,随机接入响应用于指示上行定时TA调整量的值,TA调整量为正值、负值或0。由于终端接收到的随机接入响应中,指示的TA调整量可以为正值、负值或0;因此,当上述终端获得的TA估计值比该终端的实际初始TA偏大或偏小的情况下,终端可以根据随机接入响应中指示的TA调整量对TA估计值进行相应的调整,从而基于调整后的TA顺利接入网络设备。

Description

随机接入方法、装置、网络设备、终端和存储介质 技术领域
本申请涉及卫星通信领域,特别是涉及一种随机接入方法、装置、网络设备、终端和存储介质。
背景技术
非地面通信网络(Non Terrestrial Network,简称NTN)一般采用卫星通信的方式向地面用户提供通信服务。相比地面蜂窝网通信,卫星通信具有很多独特的优点。首先,卫星通信受用户地域的限制较小,可以在无法搭设通信设备的海洋、高山、沙漠等区域实现信号覆盖;其次,卫星通信距离较远,且卫星通信的布网成本不随通信距离的增加而增加;最后,卫星通信的稳定性高,受自然灾害的影响较小。NTN网络基于长期演进(long term evolution,LTE)或者新空口(new radio,NR)等通信技术,采用正交多址接入方式。在随机接入过程中,NTN网络设备可以通过设置上行定时提前量(Timing Advance,简称TA),控制来自不同终端(User Equipment,简称UE)的上行信号到达基站的时间。
目前,NTN网络中可以支持两种类型的UE,一种是没有定位能力的UE,另一种是有定位能力的UE。具有定位能力的UE可以基于定位能力获得TA估计值,并使用该TA估计值作为初始TA向网络设备发送第一消息MSG1。网络设备在接收到MSG1后确定该UE的TA调整值,并通过随机接入相应(Random Access Response,简称RAR)中的定时提前命令(Timing Advance Command,简称TAC),将上述TA调整值发送给UE;UE可以将TA估计值与TA调整值进行累加,获得目标TA。
发明内容
本申请实施例提供一种随机接入方法、装置、网络设备、终端和存储介质,可以满足NTN网络中的随机接入场景需求。
第一方面,一种随机接入方法,包括:
向网络设备发送随机接入请求;
接收网络设备基于随机接入请求返回的随机接入响应;随机接入响应用于指示上行定时TA调整量的值,TA调整量为正值、负值或0。
在其中一个实施例中,上述随机接入响应包括TA属性指示域和上行定时命令TAC域,TA属性指示域用于指示TA调整量的正负属性;TAC域中预设长度的指示域用于指示TA调整量的绝对值。
在其中一个实施例中,上述TA属性指示域位于TAC域之外。
在其中一个实施例中,上述预设长度等于TAC域的长度。
在其中一个实施例中,上述TA属性指示域位于TAC域之内。
在其中一个实施例中,上述预设长度等于TAC域的长度减1。
在其中一个实施例中,上述TA属性指示域位于TAC域的首位或末位。
在其中一个实施例中,上述预设长度的指示域用于指示TA调整量的第一索引值;第一索引值用于指示终端根据第一索引值以及预设的TA调整量算法,获得TA调整量的绝对值。
在其中一个实施例中,上述预设长度的域用于指示TA调整量的第一映射值;第一映射值用于指示终端根据第一映射值以及预设的第一映射表格,获得TA调整量的绝对值;第一映射表格包括第一映射值与TA调整量的绝对值的对应关系。
在其中一个实施例中,上述随机接入响应包括TAC域,TAC域用于指示TA调整量的值。
在其中一个实施例中,上述TAC域用于指示TA调整量的第二映射值;第二映射值用于指示终端根据第二映射值以及预设的第二映射表格,获得TA调整量的值;第二映射表格包括第二映射值与TA调整量的对应关系。
在其中一个实施例中,上述TAC域用于指示TA调整量的第二索引值;第二索引值用于指示终端根据第二索引值以及预设的TA调整量算法,获得TA调整量的值。
在其中一个实施例中,上述TAC域的长度为N,第二索引值为0~2 N-1-2时,用于指示属性为负的TA调整值;第二索引值为2 N-1-1时,用于指示属性为0的TA调整值;第二索引值中第2 N-1~2 N-1时,用于指示属性为正的TA调整值。
第二方面,一种随机接入方法,包括:
接收终端发送的随机接入请求;
根据随机接入请求向终端发送随机接入响应;随机接入响应用于指示上行定时TA调整量的值,TA调整量为正值、负值或0。
在其中一个实施例中,上述随机接入响应包括TA属性指示域和上行定时命令TAC域,TA属性指示域用于指示TA调整量的正负属性;TAC域中预设长度的指示域用于指示TA调整量的绝对值。
在其中一个实施例中,上述TA属性指示域位于TAC域之外。
在其中一个实施例中,上述预设长度等于TAC域的长度。
在其中一个实施例中,上述TA属性指示域位于TAC域之内。
在其中一个实施例中,上述预设长度等于TAC域的长度减1。
在其中一个实施例中,上述TA属性指示域位于TAC域的首位或末位。
在其中一个实施例中,上述预设长度的指示域用于指示TA调整量的第一索引值;第 一索引值用于指示终端根据第一索引值以及预设的TA调整量算法,获得TA调整量的绝对值。
在其中一个实施例中,上述预设长度的域用于指示TA调整量的第一映射值;第一映射值用于指示终端根据第一映射值以及预设的第一映射表格,获得TA调整量的绝对值;第一映射表格包括第一映射值与TA调整量的绝对值的对应关系。
在其中一个实施例中,上述随机接入响应包括TAC域,TAC域用于指示TA调整量的值和TA调整量的正负属性。
在其中一个实施例中,上述TAC域用于指示TA调整量的第二映射值;第二映射值用于指示终端根据第二映射值以及预设的第二映射表格,获得TA调整量的值;第二映射表格包括第二映射值与TA调整量的对应关系。
在其中一个实施例中,上述TAC域用于指示TA调整量的第二索引值;第二索引值用于指示终端根据第二索引值以及预设的TA调整量算法,获得TA调整量的值。
在其中一个实施例中,上述TAC域的长度为N,第二索引值为0~2 N-1-2时,用于指示属性为负的TA调整值;第二索引值为2 N-1-1时,用于指示属性为0的TA调整值;第二索引值中第2 N-1~2 N-1时,用于指示属性为正的TA调整值。
在其中一个实施例中,上述随机接入请求为终端基于TA估计值发送的;方法还包括:
根据TA估计值以及TA调整值,获得目标TA。
第三方面,一种随机接入装置,包括接收模块、发送模块和处理模块:
处理模块,用于通过发送模块向网络设备发送随机接入请求;
处理模块,用于通过接收模块接收网络设备基于随机接入请求返回的随机接入响应;随机接入响应用于指示上行定时TA调整量的值,TA调整量为正值、负值或0。
第四方面,一种随机接入装置,包括发送模块、接收模块和处理模块:
处理模块,用于通过接收模块接收终端发送的随机接入请求;
处理模块,用于通过发送模块根据随机接入请求向终端发送随机接入响应;随机接入响应用于指示上行定时TA调整量的值,TA调整量为正值、负值或0。
第五方面,一种终端,包括存储器及处理器,存储器中储存有计算机程序,上述处理器执行计算机程序时实现实现以下步骤:
向网络设备发送随机接入请求;
接收网络设备基于随机接入请求返回的随机接入响应;随机接入响应用于指示上行定时TA调整量的值,TA调整量为正值、负值或0。
第六方面,一种网络设备,包括存储器及处理器,存储器中储存有计算机程序,上述处理器执行计算机程序时实现实现以下步骤:
接收终端发送的随机接入请求;
根据随机接入请求向终端发送随机接入响应;随机接入响应用于指示上行定时TA调整量的值,TA调整量为正值、负值或0。
第七方面,一种计算机可读存储介质,其上存储有计算机程序,上述计算机程序被处理器执行时实现以下步骤:
向网络设备发送随机接入请求;
接收网络设备基于随机接入请求返回的随机接入响应;随机接入响应用于指示上行定时TA调整量的值,TA调整量为正值、负值或0。
第八方面,一种计算机可读存储介质,其上存储有计算机程序,上述计算机程序被处理器执行时实现以下步骤:
接收终端发送的随机接入请求;
根据随机接入请求向终端发送随机接入响应;随机接入响应用于指示上行定时TA调整量的值,TA调整量为正值、负值或0。
上述随机接入方法、装置、网络设备、终端和存储介质,终端向网络设备发送随机接入请求;并接收网络设备基于随机接入请求返回的随机接入响应;其中,随机接入响应用于指示上行定时TA调整量的值,TA调整量为正值、负值或0。由于终端接收到的随机接入响应中,指示的TA调整量可以为正值、负值或0;因此,当上述终端获得的TA估计值比该终端的实际初始TA偏大或偏小的情况下,终端可以根据随机接入响应中指示的TA调整量对TA估计值进行相应的调整,从而基于调整后的TA顺利接入网络设备。
附图说明
为了更清楚地说明本申请实施例或现有技术中的技术方案,下面将对实施例或现有技术描述中所需要使用的附图作简单地介绍,显而易见地,下面描述中的附图仅仅是本申请的一些实施例,对于本领域普通技术人员来讲,在不付出创造性劳动的前提下,还可以根据这些附图获得其他的附图。
图1为一个实施例提供的随机接入方法的应用环境图;
图2为一个实施例提供的随机接入方法的流程图;
图2A为一个实施例提供的随机接入方法的示意图;
图3为另一个实施例提供的随机接入方法的流程图;
图4为一个实施例中TAC域的示意图;
图5为另一个实施例中TAC域的示意图;
图6为一个实施例提供的随机接入装置的框图;
图7为另一个实施例提供的随机接入装置的框图;
图8为一个实施例提供的网络设备的内部结构示意图。
图9为一个实施例提供的终端的内部结构示意图。
具体实施方式
为了使本申请的目的、技术方案及优点更加清楚明白,以下结合附图及实施例,对本申请进行进一步详细说明。应当理解,此处所描述的具体实施例仅仅用以解释本申请,并不用于限定本申请。
目前,3GPP正在研究NTN技术,NTN技术一般采用卫星通信的方式向地面用户提供通信服务,相比地面蜂窝网通信,卫星通信具有很多独特的优点。首先,卫星通信不受用户地域的限制,例如一般的陆地通信不能覆盖海洋、高山、沙漠等无法搭设通信设备或由于人口稀少而不做通信覆盖的区域,而对于卫星通信来说,由于一颗卫星即可以覆盖较大的地面,加之卫星可以围绕地球做轨道运动,因此,理论上地球上每一个角落都可以被卫星通信覆盖。其次,卫星通信有较大的社会价值。卫星通信在边远山区、贫穷落后的国家或地区都可以以较低的成本覆盖到,从而使这些地区的人们享受到先进的语音通信和移动互联网技术,有利于缩小与发达地区的数字鸿沟,促进这些地区的发展。再次,卫星通信距离远,且通信距离增大通讯的成本没有明显增加;最后,卫星通信的稳定性高,不受自然灾害的限制。
一般情况下,通信卫星按照轨道高度的不同分为低地球轨道(Low-Earth Orbit,LEO)卫星、中地球轨道(Medium-Earth Orbit,MEO)卫星、地球同步轨道(Geostationary Earth Orbit,GEO)卫星、高椭圆轨道(High Elliptical Orbit,HEO)卫星等等。
本申请实施例提供的随机接入方法,可以应用于NTN技术中,图1为本申请实施例提供的随机接入方法的一种应用场景示意图。如图1所示,该场景包括网络设备1、UE2、UE3、UE4,网络设备1与UE2、UE3、UE4通过网络进行通信。其中,基站1可以但不限于是LEO卫星、MEO卫星、GEO卫星、HEO卫星等等,UE可以但不限于是各种个人计算机、笔记本电脑、智能手机、平板电脑和便携式可穿戴设备等。需要说明的是,本申请还可以包括更多数量的基站和UE,并不以图1为限。
以图1为场景,NTN网络中可以支持两种类型的UE,一种是没有定位能力的UE,另一种是有定位能力的UE。对于没有定位能力的UE,网络设备基于传输路径向UE广播公共TA,并在接收到UE发送的随机接入请求之后,在随机接入响应RAR中向UE指示一个专属TA;在接收到上述专属TA之后,UE可以将公共TA与专属TA累加,获得该UR的目标TA。对于具有定位能力的UE,UE可以基于定位能力获得TA估计值,并使用该TA估计值作为初始TA向网络设备发送第一消息MSG1。网络设备在接收到MSG1后确定该UE的TA调整量,并通过RAR中的TAC,将上述TA调整量发送给UE;UE可以将 TA估计值与TA调整量进行累加,获得目标TA。
与传统的NR技术中的随机接入过程相比,上述具有定位能力的UE是通过TA估算值向网络设备发送随机接入请求的,上述UE获得TA估算值的精确度,与UE的定位能力直接相关。由于上述TA估计值存在比该UE的实际初始TA偏大或偏小的情况,因此网络设备在根据MSG1的接收时刻确定该UE的TA调整量时,上述TA调整量可能是大于,等于或者小于零的值。
然而,目前NR协议中规定的RAR payload中的TAC域只能用于指示大于或等于0的TA调整量,不满足NTN网络中的有定位能力的终端的随机接入场景需求。
针对以上问题,对于NTN系统中的随机接入过程中,RAR需要能够指示属性为正值、负值以及0的TA调整量。因此,本申请实施例提供的随机接入方法可以解决上述随机接入过程中TA调整量的指示问题。
需要说明的是,本申请的随机接入方法并不仅限于解决上述技术问题,还可以用以解决其它的技术问题,本申请中不加以限制。
下面以具体地实施例对本申请的技术方案进行详细说明。下面这几个具体的实施例可以相互结合,对于相同或相似的概念或过程可能在某些实施例中不再赘述。
图2为一个实施例中随机接入方法的流程图。本实施例中的随机接入方法,以运行于图1中的网络设备为例进行描述。如图2所示,上述随机接入方法包括以下步骤:
S101、接收终端发送的随机接入请求。
其中,上述随机接入请求可以是触发随机接入过程的情况下,终端向网络设备发送的随机接入前导序列Preamble,上述Preamble主要用于指示网络设备存在一个随机接入请求,并使得网络设备可以根据Preamble能估计其与UE之间的传输时延,获得该UE的TA调整量。
上述随机接入过程可以是终端UE初始接入网络设备时触发的,也可以是UE与网络设备之间的无线链路失败后重建无线连接时触发的;对于上述随机接入请求的发送场景在此不做限定。
UE在向网络设备发送preamble时,需要获取上述preamble,并获取可以用于发送preamble的物理随机接入信道(Physical Random Access Channel,简称PRACH)资源。上述随机接入过程可以是基于非竞争的随机接入方式,网络设备可以向UE指定随机接入时所使用的preamble以及PRACH资源;另外,上述随机接入过程也可以是基于竞争的随机接入方式,网络设备广播随机接入可用的preamble以及PRACH资源,UE在选择一个preamble之后,再从可用的PRACH资源中选择一个PRACH资源向网络设备发送preamble。
在NTN网络中,UE在获取PRACH资源之后,可以基于定位能力,获得UE与网络 设备之间的距离,并根据上述距离估算TA估计值。进一步地,UE可以基于TA估计值,定时提前发送上述随机接入请求。
在上述步骤的基础上,网络设备可以通过PRACH资源接收到上述随机接入请求。
S102、根据随机接入请求向终端发送随机接入响应;随机接入响应用于指示上行定时TA调整量的值,TA调整量为正值、负值或0。
网络设备接收到UE发送的随机接入请求之后,可以根据随机接入请求的接收时刻,以及UE发送随机接入请求的时刻(即UE使用的PRACH时域资源所对应的时间),获得该UE的TA调整量。
具体地,网络设备可以根据随机接入请求的接收时刻确定该UE的TA调整量,对于上述TA调整量的确定方式在此不做限定。
如图2A所示,网络设备通过PRACH资源指示各UE均在接收时刻t附近接收随机接入请求。UE1根据估算的TA估算值T1发送随机接入请求1,网络设备在时刻t1接收到上述随机接入请求1;此时,网络设备可以确定该UE的TA调整量为正值t1-t,也就是说,网络设备需要UE1在T1的基础上提前发送信号,将该UE的TA调整至T1+t1-t。
对于UE2,UE2根据估算的TA估算值T2发送随机接入请求2,网络设备在时刻t2接收到上述随机接入请求2;此时,网络设备可以确定该UE2的TA调整量为负值t2-t,也就是说,网络设备需要UE2在T2的基础上延迟发送信号,将该UE2的TA调整至T2+t2-t。
网络设备在获取UE的TA调整量之后,上述TA调整量可以是正值,也可以是负值,还可以是0。网络设备可以将上述TA调整量转换成随机接入响应RAR中相应比特域的值,通过RAR指示终端调整TA。
具体地,上述RAR中相应比特域的值可以指示TA调整量的绝对值,以及TA调整量的正负属性;UE根据上述绝对值以及属性获得TA调整量。或者,上述RAR中的相应比特域的值也可以直接指示TA调整量的值,例如部分比特域的值指示属性为正值的TA调整量,另一部分比特域的值指示属性为负值的TA调整量;对于上述TA调整量的指示方式,在此不做限定。
进一步地,网络设备可以将RAR发送给终端。
上述随机接入方法,网络设备接收终端发送的随机接入请求;然后,根据随机接入请求向终端发送随机接入响应;其中,随机接入响应用于指示上行定时TA调整量的值,TA调整量为正值、负值或0。由于网络设备发送的上述随机接入响应中,指示的TA调整量可以为正值、负值或0;因此,当上述终端获得的TA估计值比该终端的实际初始TA偏大或偏小的情况下,终端可以根据随机接入响应中指示的TA调整量对TA估计值进行相应的调整,从而基于调整后的TA顺利接入网络设备。
图3为一个实施例中随机接入方法的流程图。本实施例中的随机接入方法,以运行于图1中的终端为例进行描述。如图3所示,上述随机接入方法包括以下步骤:
S201、向网络设备发送随机接入请求。
具体地,UE向网络设备发送随机接入请求时,其发送方式与上述实施例中S101中的描述类似,在此不做赘述。
S202、接收网络设备基于随机接入请求返回的随机接入响应;随机接入响应用于指示上行定时TA调整量的值,TA调整量为正值、负值或0。
UE在向网络设备发送随机接入请求之后,可以开启随机接入响应时间窗ra-ResponseWindow,并在该ra-ResponseWindow内监测该UE的RA-RNTI加扰的PDCCH。UE在成功接收到RA-RNTI加扰的PDCCH之后,可以获取该PDCCH调度的PDSCH资源,并在该PDSCH资源中读取RAR。
上述RAR中相应的比特域中,携带用于指示TA调整量的值。上述TA调整量可以是正值、负值或0。UE可以根据上述用于指示TA调整量的值,转换成网络设备发送的TA调整量。
具体地,UE根据用于指示TA调整量的值转换成TA调整量时,采用的转换方式与网络设备中采用的TA调整量的指示方式相对应。
进一步地,UE可以根据TA估计值以及上述TA调整值,获得目标TA。上述TA估计值为UE基于定位能力估算的,为UE向网络设备发送随机接入请求时使用的TA初始值。可选地,UE可以将TA估计值与TA调整值的和确定为目标TA。
上述随机接入方法,终端向网络设备发送随机接入请求;并接收网络设备基于随机接入请求返回的随机接入响应;其中,随机接入响应用于指示上行定时TA调整量的值,TA调整量为正值、负值或0。由于终端接收到的随机接入响应中,指示的TA调整量可以为正值、负值或0;因此,当上述终端获得的TA估计值比该终端的实际初始TA偏大或偏小的情况下,终端可以根据随机接入响应中指示的TA调整量对TA估计值进行相应的调整,从而基于调整后的TA顺利接入网络设备。
下述实施例涉及随机接入方法中,RAR中TA调整量的指示方式,可以应用于图1中的网络设备以及终端。
在一个实施例中,在上述实施例的基础上,随机接入响应包括TA属性指示域和上行定时命令TAC域。上述TA属性指示域用于指示TA调整量的正负属性,上述TAC域中预设长度的指示域用于指示TA调整量的绝对值。
上述TA属性指示域在指示正负属性时,上述TA属性指示域的值为1时,可以指示TA调整量为非负值,TA属性指示域的值为0时,可以指示TA调整量为负值;或者上述 TA属性指示域的值为0时,可以指示TA调整量为非负值,TA属性指示域的值为1时,可以指示TA调整量为负值;还可以采用其它的方式来指示TA属性,本申请实施例中不以此为限。
其中,上述TA属性指示域可以位于上述TAC域之内,也可以位于上述TAC域之外,在此不做限定。
上述TA属性指示域位于TAC域之外的情况下,上述TA属性指示域为RAR中独立的一个域,可以位于上述TAC域之前,也可以位于TAC域之后;上述TA属性指示域可以与TAC域相邻,也可以与TAC域间隔预设位数的比特域,在此不做限定。
上述TA属性指示域位于TAC域之外的情况下,上述TAC域可以通过TAC域中的部分比特域指示TA调整量的绝对值;可选地,上述预设长度等于TAC域的长度,也就是说TAC域可以通过所有比特域指示TA调整量的绝对值。例如,上述TAC域的长度为8时,上述预设长度也可以为8。
上述TA属性指示域位于上述TAC域之内的情况下,TA属性指示域可以位于TAC域的首位或末位,也可以位于TAC域中其它位置,在此不做限定。
上述TA属性指示域位于上述TAC域之内的情况下,上述TAC域中预设长度的指示域可以是TAC域中除TA属性指示域之外,其余比特域中的部分比特域;可选地,上述TA属性指示域为1个比特域,上述预设长度等于TAC域的长度减1。例如,上述TAC域的长度为8时,上述预设长度可以为7。
网络设备通过TAC域中的预设长度的指示域指示TA调整量的绝对值时,可以采用不同的指示方式。
可选地,上述预设长度的指示域可以用于指示TA调整量的第一索引值;其中,上述第一索引值用于指示终端根据第一索引值以及预设的TA调整量算法,获得TA调整量的绝对值。
例如,上述预设长度为N1时,长度为N1的指示域的值0~2 N1-1可以分别指示2 N1个第一索引值。其中,上述第一索引值2 N1-1可以用于指示最大绝对值,也可以用于指示最小绝对值。UE在获取上述第一索引值之后,可以将第一索引值代入预设的TA调整量算法,计算获得该第一索引值对应的TA调整值的绝对值。上述TA调整量算法可以是一个公式,也可以包括不同的公式;例如,可以根据UE触发随机接入的场景,选择不同的公式。
可选地,上述预设长度的域可以用于指示TA调整量的第一映射值;第一映射值用于指示终端根据第一映射值以及预设的第一映射表格,获得TA调整量的绝对值;第一映射表格包括第一映射值与TA调整量的绝对值的对应关系。
例如,UE以及网络设备中均可以设置第一映射表格。在上述预设长度为N1时,上述 第一映射表格中可以包括2 N1个TA调整量的绝对值与2 N1个第一映射值的对应关系。网络设备可以根据TA调整值的绝对值,在第一映射表格中选择对应的第一映射值确定为上述TAC中指示域的值。UE可以在接收到RAR之后,根据TAC中指示域的值在第一映射表格中查找相应的TA调整量的绝对值。
以具体实施例对上述随机接入方法进行说明。如图4所示,TAC域的长度为7,TA属性指示域Positive TA位于TAC域之外。TA属性指示域为1指示TA调整量为非负数,TA属性指示域为0指示TA调整量为负数。TAC域的长度等于预设长度,可以对应128个第一索引值index。
UE获取的TAC域的值为1000000时,表示第一索引值为64,然后根据TA调整量算法f(index)获得TA调整量的绝对值。进一步地,UE根据获取的TA属性指示域的值0,可以知道RAR中指示的TA调整量为-f(index)。
上述随机接入方法,网络设备在RAR中分别指示TA调整量的绝对值以及TA调整量的正负属性,使得终端可以根据TA调整量的绝对值以及TA调整量的正负属性获得TA调整量;由于上述TA调整量可以是正值、负值或者0,因此终端可以根据TA调整量对TA进行相应的调整,适应NTN网络中的应用场景。
在一个实施例中,在上述实施例的基础上,随机接入响应包括TAC域,TAC域用于指示TA调整量的值。
具体地,RAR中TAC域的值可以直接基于预设规则映射值TA调整量的值,上述TA调整量的范围可以是属性为负值的最小TA调整量,至属性为正值的最大TA调整量。
网络设备通过TAC域指示TA调整量的值时,可以采用不同的指示方式。
可选地,TAC域可以用于指示TA调整量的第二映射值;其中,上述第二映射值用于指示终端根据第二映射值以及预设的第二映射表格,获得TA调整量的值;第二映射表格包括第二映射值与TA调整量的对应关系。
例如,UE以及网络设备中均可以设置第二映射表格。在上述TAC域的长度为N时,上述第一映射表格中可以包括2 N个TA调整量的值与2 N个第二映射值的对应关系;其中,部分第二映射值与属性为负的TA调整量对应。网络设备可以根据TA调整值的值,在第二映射表格中选择对应的第二映射值确定为上述TAC域的值。UE可以在接收到RAR之后,根据TAC域的值在第二映射表格中查找相应的TA调整量的值。
可选地,TAC域可以用于指示TA调整量的第二索引值;第二索引值用于指示终端根据第二索引值以及预设的TA调整量算法,获得TA调整量的值。
例如,上述TAC域的长度为N时,TAC域的值0~2 N-1可以分别指示2 N个第二索引值。UE在获取上述第二索引值之后,可以将第二索引值代入预设的TA调整量算法,计算 获得该第二索引值对应的TA调整值的值。上述TA调整量算法可以将0映射至最大TA调整量,也可以将2 N-1映射至最大TA调整量,在此不做限定。
可选地,TAC域的长度为N,第二索引值为0~2 N-1-2时,用于指示属性为负的TA调整值;第二索引值为2 N-1-1时,用于指示属性为0的TA调整值;第二索引值中第2 N-1~2 N-1时,用于指示属性为正的TA调整值。
以具体实施例对上述随机接入方法进行说明。如图5所示,TAC域的长度为8。上述TAC域的值可以对应至256个第二索引值index。UE获取的TAC域的值为10000000时,表示第二索引值为128,然后根据TA调整量算法f(index)获得TA调整量的值。在上述TA调整量算法中,index为0~126分别指示127个属性为负的TA调整量;index为127指示TA调整量为0;index为128~255分别指示128个属性为正的TA调整量。
上述随机接入方法中TA调整量的指示方式,与上一实施例中的指示方式不同,但是信令开销是相同的。
上述随机接入方法,网络设备在RAR中通过TAC域直接指示TA调整量,使得终端可以根据TAC域的值直接获得包含正负属性的TA调整量;进而可以对TA进行相应的调整,适应NTN网络中的应用场景。
应该理解的是,虽然图2-3的流程图中的各个步骤按照箭头的指示依次显示,但是这些步骤并不是必然按照箭头指示的顺序依次执行。除非本文中有明确的说明,这些步骤的执行并没有严格的顺序限制,这些步骤可以以其它的顺序执行。而且,图2-3中的至少一部分步骤可以包括多个子步骤或者多个阶段,这些子步骤或者阶段并不必然是在同一时刻执行完成,而是可以在不同的时刻执行,这些子步骤或者阶段的执行顺序也不必然是依次进行,而是可以与其它步骤或者其它步骤的子步骤或者阶段的至少一部分轮流或者交替地执行。
在一个实施例中,提供一种随机接入装置,如图6所示,上述随机接入装置包括接收模块110、发送模块120和处理模块130:
处理模块130,用于通过接收模块110接收终端发送的随机接入请求;
处理模块130,用于通过发送模块120根据随机接入请求向终端发送随机接入响应;随机接入响应用于指示上行定时TA调整量的值,TA调整量为正值、负值或0。
上述实施例提供的一种随机接入装置,其实现原理和技术效果与上述方法实施例类似,在此不再赘述。
在一个实施例中,在上述实施例的基础上,随机接入响应包括TA属性指示域和上行定时命令TAC域,TA属性指示域用于指示TA调整量的正负属性;TAC域中预设长度的指示域用于指示TA调整量的绝对值。
在一个实施例中,在上述实施例的基础上,TA属性指示域位于TAC域之外。
在一个实施例中,在上述实施例的基础上,预设长度等于TAC域的长度。
在一个实施例中,在上述实施例的基础上,TA属性指示域位于TAC域之内。
在一个实施例中,在上述实施例的基础上,预设长度等于TAC域的长度减1。
在一个实施例中,在上述实施例的基础上,TA属性指示域位于TAC域的首位或末位。
在一个实施例中,在上述实施例的基础上,预设长度的指示域用于指示TA调整量的第一索引值;第一索引值用于指示终端根据第一索引值以及预设的TA调整量算法,获得TA调整量的绝对值。
在一个实施例中,在上述实施例的基础上,预设长度的域用于指示TA调整量的第一映射值;第一映射值用于指示终端根据第一映射值以及预设的第一映射表格,获得TA调整量的绝对值;第一映射表格包括第一映射值与TA调整量的绝对值的对应关系。
在一个实施例中,在上述实施例的基础上,随机接入响应包括TAC域,TAC域用于指示TA调整量的值。
在一个实施例中,在上述实施例的基础上,TAC域用于指示TA调整量的第二映射值;第二映射值用于指示终端根据第二映射值以及预设的第二映射表格,获得TA调整量的值;第二映射表格包括第二映射值与TA调整量的对应关系。
在一个实施例中,在上述实施例的基础上,TAC域用于指示TA调整量的第二索引值;第二索引值用于指示终端根据第二索引值以及预设的TA调整量算法,获得TA调整量的值。
在一个实施例中,在上述实施例的基础上,TAC域的长度为N,第二索引值为0~2 N-1-2时,用于指示属性为负的TA调整值;第二索引值为2 N-1-1时,用于指示属性为0的TA调整值;第二索引值中第2 N-1~2 N-1时,用于指示属性为正的TA调整值。
上述实施例提供的一种随机接入装置,其实现原理和技术效果与上述方法实施例类似,在此不再赘述。
在一个实施例中,提供一种随机接入装置,如图7所示,上述随机接入装置包括发送模块210、接收模块220和处理模块230:
处理模块230,用于通过发送模块210向网络设备发送随机接入请求;
处理模块230,用于通过接收模块220接收网络设备基于随机接入请求返回的随机接入响应;随机接入响应用于指示上行定时TA调整量的值,TA调整量为正值、负值或0。
上述实施例提供的一种随机接入装置,其实现原理和技术效果与上述方法实施例类似,在此不再赘述。
在一个实施例中,在上述实施例的基础上,随机接入响应包括TA属性指示域和上行 定时命令TAC域,TA属性指示域用于指示TA调整量的正负属性;TAC域中预设长度的指示域用于指示TA调整量的绝对值。
在一个实施例中,在上述实施例的基础上,TA属性指示域位于TAC域之外。
在一个实施例中,在上述实施例的基础上,预设长度等于TAC域的长度。
在一个实施例中,在上述实施例的基础上,TA属性指示域位于TAC域之内。
在一个实施例中,在上述实施例的基础上,预设长度等于TAC域的长度减1。
在一个实施例中,在上述实施例的基础上,TA属性指示域位于TAC域的首位或末位。
在一个实施例中,在上述实施例的基础上,预设长度的指示域用于指示TA调整量的第一索引值;第一索引值用于指示终端根据第一索引值以及预设的TA调整量算法,获得TA调整量的绝对值。
在一个实施例中,在上述实施例的基础上,预设长度的域用于指示TA调整量的第一映射值;第一映射值用于指示终端根据第一映射值以及预设的第一映射表格,获得TA调整量的绝对值;第一映射表格包括第一映射值与TA调整量的绝对值的对应关系。
在一个实施例中,在上述实施例的基础上,随机接入响应包括TAC域,TAC域用于指示TA调整量的值和TA调整量的正负属性。
在一个实施例中,在上述实施例的基础上,TAC域用于指示TA调整量的第二映射值;第二映射值用于指示终端根据第二映射值以及预设的第二映射表格,获得TA调整量的值;第二映射表格包括第二映射值与TA调整量的对应关系。
在一个实施例中,在上述实施例的基础上,TAC域用于指示TA调整量的第二索引值;第二索引值用于指示终端根据第二索引值以及预设的TA调整量算法,获得TA调整量的值。
在一个实施例中,在上述实施例的基础上,TAC域的长度为N,第二索引值为0~2 N-1-2时,用于指示属性为负的TA调整值;第二索引值为2 N-1-1时,用于指示属性为0的TA调整值;第二索引值中第2 N-1~2 N-1时,用于指示属性为正的TA调整值。
在一个实施例中,在上述实施例的基础上,上述随机接入请求为终端基于TA估计值发送的;上述处理模块230还用于:根据TA估计值以及TA调整值,获得目标TA。
上述实施例提供的一种随机接入装置,其实现原理和技术效果与上述方法实施例类似,在此不再赘述。
上述随机接入装置中各个模块的划分仅用于举例说明,在其他实施例中,可将随机接入装置按照需要划分为不同的模块,以完成上述随机接入装置的全部或部分功能。
关于随机接入装置的具体限定可以参见上文中对于随机接入方法的限定,在此不再赘述。上述随机接入装置中的各个模块可全部或部分通过软件、硬件及其组合来实现。上述 各模块可以硬件形式内嵌于或独立于计算机设备中的处理器中,也可以以软件形式存储于计算机设备中的存储器中,以便于处理器调用执行以上各个模块对应的操作。
图8为一个实施例中网络设备的内部结构示意图。如图8所示,该网络设备包括通过系统总线连接的处理器、非易失性存储介质、内存储器和网络接口。其中,该处理器用于提供计算和控制能力,支撑整个电子设备的运行。存储器用于存储数据、程序等,存储器上存储至少一个计算机程序,该计算机程序可被处理器执行,以实现本申请实施例中提供的适用于网络设备的无线网络通信方法。存储器可包括非易失性存储介质及内存储器。非易失性存储介质存储有操作系统和计算机程序。该计算机程序可被处理器所执行,以用于实现以下各个实施例所提供的一种随机接入方法。内存储器为非易失性存储介质中的操作系统计算机程序提供高速缓存的运行环境。网络接口可以是以太网卡或无线网卡等,用于与外部的电子设备进行通信。本领域技术人员可以理解,图8中示出的结构,仅仅是与本申请方案相关的部分结构的框图,并不构成对本申请方案所应用于其上的网络设备的限定,具体的网络设备可以包括比图中所示更多或更少的部件,或者组合某些部件,或者具有不同的部件布置。
在一个实施例中,提供了一种终端,其内部结构图可以如图9所示。该终端包括通过系统总线连接的处理器、存储器、网络接口、显示屏和输入装置。其中,该终端的处理器用于提供计算和控制能力。该终端的存储器包括非易失性存储介质、内存储器。该非易失性存储介质存储有操作系统和计算机程序。该内存储器为非易失性存储介质中的操作系统和计算机程序的运行提供环境。该终端的网络接口用于与外部的终端通过网络连接通信。该计算机程序被处理器执行时以实现一种随机接入方法。该终端的显示屏可以是液晶显示屏或者电子墨水显示屏,该终端的输入装置可以是显示屏上覆盖的触摸层,也可以是终端外壳上设置的按键、轨迹球或触控板,还可以是外接的键盘、触控板或鼠标等。
本领域技术人员可以理解,图8或图9中示出的结构,仅仅是与本申请方案相关的部分结构的框图,并不构成对本申请方案所应用于其上的网络设备或终端的限定,具体的网络设备或终端可以包括比图中所示更多或更少的部件,或者组合某些部件,或者具有不同的部件布置。
本申请实施例中提供的网络设备装置中的各个模块的实现可为计算机程序的形式。该计算机程序可在终端或服务器上运行。该计算机程序构成的程序模块可存储在终端或服务器的存储器上。该计算机程序被处理器执行时,实现本申请实施例中所描述方法的步骤。
在一个实施例中,提供了一种网络设备,包括存储器和处理器,存储器中存储有计算机程序,该处理器执行计算机程序时实现以下步骤:
接收终端发送的随机接入请求;
根据随机接入请求向终端发送随机接入响应;随机接入响应用于指示上行定时TA调整量的值,TA调整量为正值、负值或0。
在一个实施例中,提供了一种终端,包括存储器和处理器,存储器中存储有计算机程序,该处理器执行计算机程序时实现以下步骤:
向网络设备发送随机接入请求;
接收网络设备基于随机接入请求返回的随机接入响应;随机接入响应用于指示上行定时TA调整量的值,TA调整量为正值、负值或0。
上述实施例提供的一种网络设备和终端,其实现原理和技术效果与上述方法实施例类似,在此不再赘述。
本申请实施例还提供了一种计算机可读存储介质。一个或多个包含计算机可执行指令的非易失性计算机可读存储介质,当计算机可执行指令被一个或多个处理器执行时,使得处理器执行随机接入方法的步骤,包括:
接收终端发送的随机接入请求;
根据随机接入请求向终端发送随机接入响应;随机接入响应用于指示上行定时TA调整量的值,TA调整量为正值、负值或0。
上述实施例提供的一种计算机可读存储介质,其实现原理和技术效果与上述方法实施例类似,在此不再赘述。
本申请实施例还提供了一种计算机可读存储介质。一个或多个包含计算机可执行指令的非易失性计算机可读存储介质,当计算机可执行指令被一个或多个处理器执行时,使得处理器执行随机接入方法的步骤,包括:
向网络设备发送随机接入请求;
接收网络设备基于随机接入请求返回的随机接入响应;随机接入响应用于指示上行定时TA调整量的值,TA调整量为正值、负值或0。
上述实施例提供的一种计算机可读存储介质,其实现原理和技术效果与上述方法实施例类似,在此不再赘述。
一种包含指令的计算机程序产品,当其在计算机上运行时,使得计算机执行随机接入方法。
本申请所使用的对存储器、存储、数据库或其它介质的任何引用可包括非易失性和/或易失性存储器。非易失性存储器可包括只读存储器(ROM)、可编程ROM(PROM)、电可编程ROM(EPROM)、电可擦除可编程ROM(EEPROM)或闪存。易失性存储器可包括随机存取存储器(RAM),它用作外部高速缓冲存储器。作为说明而非局限,RAM以多种形式可得,诸如静态RAM(SRAM)、动态RAM(DRAM)、同步DRAM(SDRAM)、双数据率 SDRAM(DDR SDRAM)、增强型SDRAM(ESDRAM)、同步链路(Synchlink)DRAM(SLDRAM)、存储器总线(Rambus)直接RAM(RDRAM)、直接存储器总线动态RAM(DRDRAM)、以及存储器总线动态RAM(RDRAM)。
以上所述实施例仅表达了本申请的几种实施方式,其描述较为具体和详细,但并不能因此而理解为对本申请专利范围的限制。应当指出的是,对于本领域的普通技术人员来说,在不脱离本申请构思的前提下,还可以做出若干变形和改进,这些都属于本申请的保护范围。因此,本申请专利的保护范围应以所附权利要求为准。

Claims (33)

  1. 一种随机接入方法,其特征在于,包括:
    向网络设备发送随机接入请求;
    接收所述网络设备基于所述随机接入请求返回的随机接入响应;所述随机接入响应用于指示上行定时TA调整量的值,所述TA调整量为正值、负值或0。
  2. 根据权利要求1所述的随机接入方法,其特征在于,所述随机接入响应包括TA属性指示域和上行定时命令TAC域,所述TA属性指示域用于指示所述TA调整量的正负属性;所述TAC域中预设长度的指示域用于指示所述TA调整量的绝对值。
  3. 根据权利要求2所述的随机接入方法,其特征在于,所述TA属性指示域位于所述TAC域之外。
  4. 根据权利要求3所述的随机接入方法,其特征在于,所述预设长度等于所述TAC域的长度。
  5. 根据权利要求2所述的随机接入方法,其特征在于,所述TA属性指示域位于所述TAC域之内。
  6. 根据权利要求5所述的随机接入方法,其特征在于,所述预设长度等于所述TAC域的长度减1。
  7. 根据权利要求5所述的随机接入方法,其特征在于,所述TA属性指示域位于所述TAC域的首位或末位。
  8. 根据权利要求2所述的随机接入方法,其特征在于,所述预设长度的指示域用于指示所述TA调整量的第一索引值;所述第一索引值用于指示终端根据所述第一索引值以及预设的TA调整量算法,获得所述TA调整量的绝对值。
  9. 根据权利要求2所述的随机接入方法,其特征在于,所述预设长度的域用于指示所述TA调整量的第一映射值;所述第一映射值用于指示所述终端根据所述第一映射值以及预设的第一映射表格,获得所述TA调整量的绝对值;所述第一映射表格包括所述第一映射值与所述TA调整量的绝对值的对应关系。
  10. 根据权利要求1所述的随机接入方法,其特征在于,所述随机接入响应包括TAC域,所述TAC域用于指示所述TA调整量的值。
  11. 根据权利要求10所述的随机接入方法,其特征在于,所述TAC域用于指示所述TA调整量的第二映射值;所述第二映射值用于指示所述终端根据所述第二映射值以及预设的第二映射表格,获得所述TA调整量的值;所述第二映射表格包括所述第二映射值与所述TA调整量的对应关系。
  12. 根据权利要求10所述的随机接入方法,其特征在于,所述TAC域用于指示所述 TA调整量的第二索引值;所述第二索引值用于指示所述终端根据所述第二索引值以及预设的TA调整量算法,获得所述TA调整量的值。
  13. 根据权利要求12所述的随机接入方法,其特征在于,所述TAC域的长度为N,所述第二索引值为0~2 N-1-2时,用于指示属性为负的TA调整值;所述第二索引值为2 N-1-1时,用于指示属性为0的TA调整值;所述第二索引值中第2 N-1~2 N-1时,用于指示属性为正的TA调整值。
  14. 根据权利要求1所述的随机接入方法,其特征在于,所述随机接入请求为终端基于TA估计值发送的;所述方法还包括:
    根据所述TA估计值以及所述TA调整值,获得目标TA。
  15. 一种随机接入方法,其特征在于,包括:
    接收终端发送的随机接入请求;
    根据所述随机接入请求向所述终端发送随机接入响应;所述随机接入响应用于指示上行定时TA调整量的值,所述TA调整量为正值、负值或0。
  16. 根据权利要求15所述的随机接入方法,其特征在于,所述随机接入响应包括TA属性指示域和上行定时命令TAC域,所述TA属性指示域用于指示所述TA调整量的正负属性;所述TAC域中预设长度的指示域用于指示所述TA调整量的绝对值。
  17. 根据权利要求16所述的随机接入方法,其特征在于,所述TA属性指示域位于所述TAC域之外。
  18. 根据权利要求17所述的随机接入方法,其特征在于,所述预设长度等于所述TAC域的长度。
  19. 根据权利要求16所述的随机接入方法,其特征在于,所述TA属性指示域位于所述TAC域之内。
  20. 根据权利要求19所述的随机接入方法,其特征在于,所述预设长度等于所述TAC域的长度减1。
  21. 根据权利要求19所述的随机接入方法,其特征在于,所述TA属性指示域位于所述TAC域的首位或末位。
  22. 根据权利要求16所述的随机接入方法,其特征在于,所述预设长度的指示域用于指示所述TA调整量的第一索引值;所述第一索引值用于指示所述终端根据所述第一索引值以及预设的TA调整量算法,获得所述TA调整量的绝对值。
  23. 根据权利要求16所述的随机接入方法,其特征在于,所述预设长度的域用于指示所述TA调整量的第一映射值;所述第一映射值用于指示所述终端根据所述第一映射值以及预设的第一映射表格,获得所述TA调整量的绝对值;所述第一映射表格包括所述第 一映射值与所述TA调整量的绝对值的对应关系。
  24. 根据权利要求15所述的随机接入方法,其特征在于,所述随机接入响应包括TAC域,所述TAC域用于指示所述TA调整量的值和所述TA调整量的正负属性。
  25. 根据权利要求24所述的随机接入方法,其特征在于,所述TAC域用于指示所述TA调整量的第二映射值;所述第二映射值用于指示所述终端根据所述第二映射值以及预设的第二映射表格,获得所述TA调整量的值;所述第二映射表格包括所述第二映射值与所述TA调整量的对应关系。
  26. 根据权利要求24所述的随机接入方法,其特征在于,所述TAC域用于指示所述TA调整量的第二索引值;所述第二索引值用于指示所述终端根据所述第二索引值以及预设的TA调整量算法,获得所述TA调整量的值。
  27. 根据权利要求26所述的随机接入方法,其特征在于,所述TAC域的长度为N,所述第二索引值为0~2 N-1-2时,用于指示属性为负的TA调整值;所述第二索引值为2 N-1-1时,用于指示属性为0的TA调整值;所述第二索引值中第2 N-1~2 N-1时,用于指示属性为正的TA调整值。
  28. 一种随机接入装置,其特征在于,包括接收模块、发送模块和处理模块:
    所述处理模块,用于通过所述发送模块向网络设备发送随机接入请求;
    所述处理模块,用于通过所述接收模块接收所述网络设备基于所述随机接入请求返回的随机接入响应;所述随机接入响应用于指示上行定时TA调整量的值,所述TA调整量为正值、负值或0。
  29. 一种随机接入装置,其特征在于,包括发送模块、接收模块和处理模块:
    所述处理模块,用于通过所述接收模块接收终端发送的随机接入请求;
    所述处理模块,用于通过所述发送模块根据所述随机接入请求向所述终端发送随机接入响应;所述随机接入响应用于指示上行定时TA调整量的值,所述TA调整量为正值、负值或0。
  30. 一种终端,包括存储器及处理器,所述存储器中储存有计算机程序,其特征在于,所述处理器执行所述计算机程序时实现权利要求1至14中任一项所述的随机接入方法的步骤。
  31. 一种网络设备,包括存储器及处理器,所述存储器中储存有计算机程序,其特征在于,所述处理器执行所述计算机程序时实现权利要求15至27中任一项所述的随机接入方法的步骤。
  32. 一种计算机可读存储介质,其上存储有计算机程序,其特征在于,所述计算机程序被处理器执行时实现如权利要求1至14中任一项所述的方法的步骤。
  33. 一种计算机可读存储介质,其上存储有计算机程序,其特征在于,所述计算机程序被处理器执行时实现如权利要求15至27中任一项所述的方法的步骤。
PCT/CN2019/121900 2019-11-29 2019-11-29 随机接入方法、装置、网络设备、终端和存储介质 WO2021102889A1 (zh)

Priority Applications (4)

Application Number Priority Date Filing Date Title
PCT/CN2019/121900 WO2021102889A1 (zh) 2019-11-29 2019-11-29 随机接入方法、装置、网络设备、终端和存储介质
CN201980102400.4A CN114731598A (zh) 2019-11-29 2019-11-29 随机接入方法、装置、网络设备、终端和存储介质
EP19954368.7A EP4068868A4 (en) 2019-11-29 2019-11-29 DIRECT ACCESS METHOD AND DEVICE, NETWORK DEVICE, AND STORAGE MEDIA
US17/825,999 US20220287082A1 (en) 2019-11-29 2022-05-26 Random access method and apparatus, network device, terminal, and storage medium

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
PCT/CN2019/121900 WO2021102889A1 (zh) 2019-11-29 2019-11-29 随机接入方法、装置、网络设备、终端和存储介质

Related Child Applications (1)

Application Number Title Priority Date Filing Date
US17/825,999 Continuation US20220287082A1 (en) 2019-11-29 2022-05-26 Random access method and apparatus, network device, terminal, and storage medium

Publications (1)

Publication Number Publication Date
WO2021102889A1 true WO2021102889A1 (zh) 2021-06-03

Family

ID=76128717

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2019/121900 WO2021102889A1 (zh) 2019-11-29 2019-11-29 随机接入方法、装置、网络设备、终端和存储介质

Country Status (4)

Country Link
US (1) US20220287082A1 (zh)
EP (1) EP4068868A4 (zh)
CN (1) CN114731598A (zh)
WO (1) WO2021102889A1 (zh)

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP4290932A4 (en) * 2021-05-21 2024-04-17 Guangdong Oppo Mobile Telecommunications Corp Ltd CELL ACCESS CONTROL METHOD AND APPARATUS, DEVICE AND STORAGE MEDIUM

Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN102740447A (zh) * 2011-04-13 2012-10-17 华为技术有限公司 确定定时提前量的方法、终端设备和网络侧设备
US20130028198A1 (en) * 2011-07-27 2013-01-31 Sharp Laboratories Of America, Inc. Devices for multi-cell communications
CN109788543A (zh) * 2017-11-13 2019-05-21 展讯通信(上海)有限公司 上行ta的确定方法及装置、存储介质、终端

Family Cites Families (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN107801240A (zh) * 2016-09-07 2018-03-13 中兴通讯股份有限公司 一种发送、接收定时提前量的方法和装置
WO2019109270A1 (zh) * 2017-12-06 2019-06-13 南通朗恒通信技术有限公司 一种用于无线通信的通信节点中的方法和装置
CN111757457B (zh) * 2019-03-29 2022-03-29 华为技术有限公司 用于上行定时同步的方法和装置

Patent Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN102740447A (zh) * 2011-04-13 2012-10-17 华为技术有限公司 确定定时提前量的方法、终端设备和网络侧设备
US20130028198A1 (en) * 2011-07-27 2013-01-31 Sharp Laboratories Of America, Inc. Devices for multi-cell communications
CN109788543A (zh) * 2017-11-13 2019-05-21 展讯通信(上海)有限公司 上行ta的确定方法及装置、存储介质、终端

Non-Patent Citations (2)

* Cited by examiner, † Cited by third party
Title
CMCC: "Considerations on Timing Advance and RACH for Non-Terrestrial", 3GPP DRAFT; R1-1912536, 3RD GENERATION PARTNERSHIP PROJECT (3GPP), MOBILE COMPETENCE CENTRE ; 650, ROUTE DES LUCIOLES ; F-06921 SOPHIA-ANTIPOLIS CEDEX ; FRANCE, vol. RAN WG1, no. Reno, Nevada, USA; 20191118 - 20191122, 9 November 2019 (2019-11-09), Mobile Competence Centre ; 650, route des Lucioles ; F-06921 Sophia-Antipolis Cedex ; France, XP051823470 *
HUAWEI, HISILICON: "Correction on parameter description of beamManagementSSB-CSI-RS in 38.306", 3GPP DRAFT; R2-1913783, 3RD GENERATION PARTNERSHIP PROJECT (3GPP), MOBILE COMPETENCE CENTRE ; 650, ROUTE DES LUCIOLES ; F-06921 SOPHIA-ANTIPOLIS CEDEX ; FRANCE, vol. RAN WG2, no. Chongqing, CN; 20191014 - 20191018, 4 October 2019 (2019-10-04), Mobile Competence Centre ; 650, route des Lucioles ; F-06921 Sophia-Antipolis Cedex ; France, XP051791774 *

Also Published As

Publication number Publication date
EP4068868A1 (en) 2022-10-05
EP4068868A4 (en) 2022-11-30
CN114731598A (zh) 2022-07-08
US20220287082A1 (en) 2022-09-08

Similar Documents

Publication Publication Date Title
US11751157B2 (en) Methods for timing advance indication and timing relationships indication for non-terrestrial networks
WO2020001585A1 (zh) 一种时钟同步的方法和装置
WO2022077938A1 (zh) 一种星历数据传输方法、装置、存储介质、芯片及系统
CN105657844B (zh) 一种资源分配方法及终端
WO2021189183A1 (zh) 一种ta确定方法及装置、终端设备
CN105682215A (zh) 一种时钟同步方法、装置及级联基站系统
US20200396705A1 (en) Time Information Transmission Method and Apparatus
US20220240262A1 (en) Wireless communication method and device
CN112039644A (zh) 一种非周期定位导频传送方法和装置
US20230083152A1 (en) Method for wireless communication and network device
CN105554870A (zh) 上行同步方法及移动终端
US20220287082A1 (en) Random access method and apparatus, network device, terminal, and storage medium
WO2022033944A1 (en) Methods, apparatuses, and computer program products for supporting charging for time synchronization services
WO2022205014A1 (zh) 信息传输方法、终端设备和网络设备
WO2018232569A1 (zh) 超级系统帧号确定方法、通信方法及装置
CN117544213A (zh) 一种通信方法和装置
WO2021232434A1 (zh) 基于随机接入流程的波束链路恢复方法、装置和设备
CN110545579A (zh) 一种处理方法、网络侧设备及用户设备
CN114667701B (zh) 上行反馈资源的确定方法和终端设备
CN111867087B (zh) 调整时域资源边界的方法和通信装置
EP4319002A1 (en) Wireless communication method and terminal device
WO2022236628A1 (zh) 无线通信的方法、终端设备和网络设备
CN114339992B (zh) 定位方法、装置、计算机设备和存储介质
EP4287727A1 (en) Communication method and communication apparatus
US20240023007A1 (en) Method, apparatus, and computer program product to support multiple slices in case of overlayunderlay networking

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 19954368

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

ENP Entry into the national phase

Ref document number: 2019954368

Country of ref document: EP

Effective date: 20220629