WO2021102663A1 - 显示组件、显示组件的制作方法、以及电子设备 - Google Patents

显示组件、显示组件的制作方法、以及电子设备 Download PDF

Info

Publication number
WO2021102663A1
WO2021102663A1 PCT/CN2019/120844 CN2019120844W WO2021102663A1 WO 2021102663 A1 WO2021102663 A1 WO 2021102663A1 CN 2019120844 W CN2019120844 W CN 2019120844W WO 2021102663 A1 WO2021102663 A1 WO 2021102663A1
Authority
WO
WIPO (PCT)
Prior art keywords
light
structure layer
layer
polarized light
display assembly
Prior art date
Application number
PCT/CN2019/120844
Other languages
English (en)
French (fr)
Inventor
刘政明
Original Assignee
重庆康佳光电技术研究院有限公司
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 重庆康佳光电技术研究院有限公司 filed Critical 重庆康佳光电技术研究院有限公司
Priority to CN201980004332.8A priority Critical patent/CN113228287A/zh
Priority to PCT/CN2019/120844 priority patent/WO2021102663A1/zh
Publication of WO2021102663A1 publication Critical patent/WO2021102663A1/zh

Links

Images

Classifications

    • GPHYSICS
    • G09EDUCATION; CRYPTOGRAPHY; DISPLAY; ADVERTISING; SEALS
    • G09FDISPLAYING; ADVERTISING; SIGNS; LABELS OR NAME-PLATES; SEALS
    • G09F9/00Indicating arrangements for variable information in which the information is built-up on a support by selection or combination of individual elements
    • G09F9/30Indicating arrangements for variable information in which the information is built-up on a support by selection or combination of individual elements in which the desired character or characters are formed by combining individual elements
    • G09F9/33Indicating arrangements for variable information in which the information is built-up on a support by selection or combination of individual elements in which the desired character or characters are formed by combining individual elements being semiconductor devices, e.g. diodes
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L27/00Devices consisting of a plurality of semiconductor or other solid-state components formed in or on a common substrate
    • H01L27/15Devices consisting of a plurality of semiconductor or other solid-state components formed in or on a common substrate including semiconductor components with at least one potential-jump barrier or surface barrier specially adapted for light emission
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L33/00Semiconductor devices with at least one potential-jump barrier or surface barrier specially adapted for light emission; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof

Definitions

  • the present invention relates to the field of display technology, and in particular to a display assembly, a manufacturing method of the display assembly, and an electronic device.
  • Micro Light-Emitting Diode As a current-type light-emitting device, has many advantages such as active light emission, fast response speed, wide viewing angle, rich color, high brightness, low power consumption, etc. It is widely used in display devices.
  • a display device using micro light emitting diodes generally includes a substrate and LED pixel units arranged in an array on the substrate. Pixel circuits are arranged on the substrate to drive the LED pixel units to emit light. The pixel circuit uses a device made of metal materials.
  • the metal material when external ambient light is incident on the display device, the metal material will form light reflection.
  • the reflected light is not actively emitted by the LED.
  • the light intensity and frequency spectrum are inconsistent, which may easily lead to poor dark state effects and changes in color rendering. , Thus affecting the display effect of the display device.
  • an embodiment of the present invention provides a display assembly.
  • the display assembly includes a display main body, the display main body including a substrate, a plurality of metal driving circuits arranged in an array of the substrate, a plurality of pixels arranged in an array, and a metal driving circuit that covers the metal driving circuit and is away from the substrate.
  • Each pixel unit is provided with a light-emitting diode, and the light-emitting surface of the light-emitting diode exposes the flattening layer; the metal driving circuit is used to drive the light-emitting diode to emit light, and the display assembly further includes:
  • the light modulating structure layer is arranged on the display body and used to transmit a certain linearly polarized light in the incident ambient light, and the transmitted linearly polarized light is used as the incident linearly polarized light;
  • the optical retardation structure layer is arranged between the flattening layer and the optical modulation structure, and is used to adjust the incident linearly polarized light to incident circularly polarized light or incident elliptically polarized light.
  • the optical retardation structure The phase difference of the layer is not equal to ⁇ /2, where:
  • the incident circularly polarized light is reflected by the metal driving circuit to form reflected circularly polarized light or reflected elliptically polarized light, and the reflected circularly polarized light or reflected elliptically polarized light passes through the optical phase difference structure layer to form reflected linearly polarized light,
  • the reflected linearly polarized light cannot pass completely under the action of the light modulating structure layer.
  • an embodiment of the present invention provides a manufacturing method of a display component, and the manufacturing method includes:
  • a display main body including a substrate, a plurality of metal driving circuits arranged in an array of the substrate, a plurality of pixel units arranged in an array, and a side that covers the metal driving circuit and is away from the substrate Flattening layer; each pixel unit is provided with a light-emitting diode, and the light-emitting surface of the light-emitting diode exposes the flattening layer; the metal driving circuit is used to drive the light-emitting diode to emit light;
  • a light modulating structure layer is formed on the side of the light retardation structure layer away from the flattening layer for transmitting a certain linearly polarized light in the incident ambient light, and the transmitted linearly polarized light is used as the incident linearly polarized light .
  • an embodiment of the present invention provides an electronic device.
  • the electronic device includes a housing and the display assembly arranged on the housing.
  • the above-mentioned display components and electronic devices are provided with a light modulating structure layer and a light phase difference structure layer, and when ambient light is incident on the display component, the light modulating structure layer and the light phase difference structure layer can make the ambient light reflect by the metal driving circuit. The reflected light is transmitted through the display assembly, thereby improving the display effect of the display assembly.
  • Fig. 1 is a schematic diagram of the display assembly of the first embodiment.
  • FIG. 2 is a schematic diagram of the light path of the ambient light incident on the display component.
  • FIG. 3 is a schematic diagram of the optical modulation structure layer of the first embodiment.
  • FIG. 4 is a schematic diagram of the optical phase structure layer of the first embodiment.
  • FIG. 5 is a schematic diagram of a part of the structure of the display assembly of the second embodiment.
  • FIG. 6 is a schematic flowchart of the manufacturing method of the display assembly of the first embodiment.
  • FIG. 7 is a sub-schematic diagram of the manufacturing method of the display assembly of the first embodiment.
  • Fig. 8 is a schematic diagram of an electronic device using the display assembly in the first embodiment.
  • FIG. 1 is a schematic diagram of the display assembly 99 of the first embodiment.
  • the display assembly 99 includes a display main body 100, an optical phase difference structure layer 200 and an optical modulation structure layer 300 sequentially disposed on the display main body 100.
  • the display component 99 may be located in an electronic device, such as a mobile phone, a tablet computer, and other electronic devices including an LED display screen.
  • the display body 100 includes a substrate 10, a plurality of pixel units 20 arranged on the substrate 10 and arranged in an array (only one pixel is used as an example in the figure), and a flattening layer 30 arranged on the side of the pixel unit 20 away from the substrate 10.
  • Each pixel unit 20 is provided with a light-emitting diode 21 having a light-emitting surface exposing the flattening layer.
  • the light-emitting diode 21 is preferably a miniature light-emitting diode.
  • the size of the miniature light-emitting diode is on the order of micrometers, and further, the size of the miniature light-emitting diode is less than 100 microns.
  • the substrate 10 may be transparent or opaque. If the substrate 10 is set to be transparent, it can be made of glass material.
  • the glass material can be, but is not limited to, a glass material with SiO2 as the main component.
  • plastic transparent materials can also be used.
  • the plastic glass materials can be, but are not limited to, polyethersulfone (pes), polyacrylate (par), polyetherimide (pei), and polynaphthalene. Ethylene formate (pet), polyphenylene sulfide (pps), poly- ⁇ -acrylate, polyimide, polycarbonate (pc), cellulose triacetate (TAC), cellulose acetate propionate (CAP) )Wait.
  • the substrate 10 can be made of a metal material.
  • the metal material may be, but not limited to, iron, chromium, manganese, nickel, titanium, molybdenum, stainless steel, and the like.
  • the substrate 10 is provided with a number of metal driving circuits 11 (only one pixel circuit is taken as an example in the figure), a transparent electrode 12, a pixel isolation layer 13, a flat layer 14, an insulating layer 15, and a buffer layer 16.
  • the buffer layer 16, the insulating layer 15, the flat layer 14, and the pixel isolation layer 13 are arranged on the substrate 10 in sequence.
  • the metal driving circuit 11 is embedded in the insulating layer 15 and the flat layer 14.
  • the flat layer 14 covers the side of the metal driving circuit 11 away from the insulating layer 15, and the side away from the insulating layer 15 forms a flat surface.
  • the buffer layer 16 is laid on the upper surface of the substrate 10 to flatten the substrate 10 and effectively prevent impurities or moisture from penetrating from the substrate 10.
  • the buffer layer 16 may be made of inorganic materials.
  • the inorganic material can be, but is not limited to, silicon oxide, silicon nitride, silicon oxide, aluminum oxide, aluminum nitride, titanium oxide, and the like.
  • the buffer layer 16 can also be made of organic materials.
  • the organic material can be, but is not limited to, polyimide, polyamide, or acrylic.
  • the pixel isolation layer 13 is made of an insulating material, and is provided with a plurality of first grooves 130, and the light emitting diodes 21 are arranged in the first grooves 130 one by one to isolate the light emitting diodes 21.
  • the flat layer 14 is provided with a plurality of second grooves 160, and the first grooves 130 and the second grooves 160 are connected.
  • the transparent electrode 12 is located in the slot 130 and the second slot 160 and is used to electrically connect the metal driving circuit 11 and the light emitting diode 21.
  • the flat layer 14 is made of an insulating material, which includes but is not limited to SiO2, Si3N4, HfO2, SiON, TiO2, TaO3, SnO2, and the like.
  • the pixel unit circuit 11 includes a transistor TFT, a data line, a scan line, etc., for driving the light emitting diode 21 of each pixel unit 20 to emit light.
  • the gate, source, and drain of the transistor TFT are made of main metal materials and doped with conductive semiconductor materials.
  • the metal material can be, but is not limited to, copper, aluminum, tungsten, gold, silver, etc.
  • the conductive semiconductor material may be, but is not limited to, polysilicon.
  • the insulating layer 15 includes a gate insulating layer 150 and a non-gate insulating layer 151.
  • the insulating layer 150 is made of an inorganic material, and the inorganic material may be, but is not limited to, an oxidizing material (such as SiO2), a nitrided material (SiN), or the like.
  • the flattening layer 30 is made of insulating material, and the flattening layer 30 has a flat surface 31.
  • the plane 31 is away from the substrate 10.
  • the optical retardation structure layer 200 is disposed between the flattening layer 30 and the optical modulation structure layer 300.
  • the light modulating structure layer 300 is used to transmit a certain linearly polarized light in the incident ambient light, and the transmitted linearly polarized light is used as the incident linearly polarized light.
  • the optical phase difference structure layer 200 is used to adjust the incident linearly polarized light to incident circularly polarized light or incident elliptically polarized light. Further, when the incident circularly polarized light is reflected by the metal driving circuit 11, it forms a reflected circularly polarized light or a reflected elliptically polarized light.
  • the reflected circularly polarized light or the reflected elliptically polarized light passes through the optical retardation structure layer 200 to form a reflected linearly polarized light, wherein the retardation structure layer 200 has a retardation of ⁇ /2, and the reflected linearly polarized light is formed on the optical retardation structure layer 300 Unable to pass or partially pass under the action. Therefore, the influence of ambient light on the display effect of the display assembly 99 is reduced or prevented, thereby optimizing the display effect of the display assembly 99.
  • the phase difference is equal to ⁇ /4 ⁇ /8.
  • the phase difference is equal to ⁇ /4.
  • the optical retardation structure layer 200 is composed of a polymer polymerized birefringent material.
  • the light modulating structure layer 300 is a wire grid polarizer (WGP).
  • WGP wire grid polarizer
  • the phase difference is equal to ⁇ /4, the direction of the two beams of light 201 and 203 separated by the light incident on the birefringent material is perpendicular to the light transmission axis 301 of the wire grid polarizer, so that the reflected linearly polarized light and the transparent light
  • the optical axis 301 is orthogonal, so that the ambient light reflected by the metal driving circuit 11 cannot pass through the light modulating structure layer 300.
  • the two beams of light are ordinary light (ordinary light, o) and extraordinary light (extra-ordinary light, e).
  • the phase difference is not equal to ⁇ /4 and not equal to ⁇ /2
  • the direction of the o-light and e-light separated by the light incident on the birefringent material is at a certain angle to the transmission axis of the wire grid polarizer.
  • the reflected linearly polarized light intersects the light transmission axis, so that part of the ambient light reflected by the metal driving circuit 11 cannot pass through the light modulating structure layer 300.
  • the ambient light passes through the two beams of light separated by the optical phase difference structure layer 200 and the light modulating structure layer 300.
  • the closer the phase difference of the light retardation structure layer 200 is to ⁇ /4 the more ambient light reflected by the metal driving circuit 11 cannot pass through the light modulating structure layer 300, that is, the less impact of ambient light on the display effect of the display assembly 99.
  • the light modulating structure layer 300 is patterned to form the first pattern 303.
  • the first pattern 303 is a plurality of through holes 305 arranged in an array.
  • the through holes 305 correspond to the light-emitting diodes 21 one-to-one, so that the light-emitting diodes 21 are exposed from the light modulating structure layer 300.
  • the light modulating structure layer 300 will not have the transmittance of the light emitted by the light emitting diode 21, and thus will not affect the brightness of the display assembly 99 and the like.
  • the optical retardation structure layer 200 is patterned to form the second pattern 203.
  • the second pattern 203 is a plurality of through holes 205 arranged in an array.
  • the through holes 205 correspond to the light-emitting diodes 21 in a one-to-one correspondence, so that the light-emitting diodes 21 are exposed from the light retardation structure layer 200.
  • the emitted light of the light-emitting diode 21 will not be blocked by the light retardation structure layer 200 to reduce the transmittance, thereby avoiding affecting the brightness of the display assembly 99 and the like.
  • the display assembly 99 further includes an alignment layer 400.
  • the alignment layer 400 is disposed on the plane 31.
  • the alignment layer 400 is made of an alignment material, such as polyimide.
  • the alignment layer 400 is used to orient the birefringent material.
  • another alignment layer 40' is provided on the side of the optical retardation structure layer 200 away from the plane 31, and a transparent alignment substrate 70 is provided on the other alignment layer 40', as shown in FIG. Show.
  • the alignment layer 400 may also be omitted.
  • FIG. 6 is a manufacturing method of the display component 99 of the first embodiment.
  • the manufacturing method includes the following steps.
  • the display body 100 is provided.
  • the display main body 100 includes a substrate 10, a plurality of metal driving circuits 11 arranged in an array on the substrate 10, a plurality of pixel units 20 arranged in an array, and a flattening plate covering the metal driving circuit 11 and away from the substrate 10.
  • Layer 30 each pixel unit is provided with a light-emitting diode 21, the light-emitting surface of the light-emitting diode 21 is exposed to the flattening layer 30; the metal driving circuit 11 is used to drive the light-emitting diode 21 to emit light.
  • an optical retardation structure layer 200 is formed on the side of the flattening layer 30 away from the metal driving circuit 11, and the retardation structure of the optical retardation structure layer 200 is not equal to ⁇ /2.
  • the phase difference is equal to ⁇ /4 ⁇ /8.
  • the phase difference is equal to ⁇ /4.
  • a light modulating structure layer 300 is formed on the side of the light retardation structure layer 200 away from the flattening layer 30 to convert incident ambient light into incident linearly polarized light.
  • a wire grid polarizer is arranged on the side of the optical retardation structure layer 200 away from the flattening layer 30 to form the optical modulation structure layer 300.
  • step S605 further includes: patterning the wire grid oscillator to form a first pattern so that the light emitting diode 21 is exposed to the light modulating structure layer.
  • the first pattern is provided with through holes arranged in an array, and corresponds to the light-emitting diodes 21 one-to-one.
  • step S603 includes: step S6030, coating an alignment material on the side of the planarization layer 30 away from the metal driving circuit 11; step S6031, providing an alignment substrate 80 and coating the alignment material on the alignment substrate 80 Step S6033, coating a polymer birefringent material on the alignment layer material; Step S6035, placing the side of the alignment substrate coated with the alignment material on the side of the flattening layer coated with the alignment material; Step S6037, heating and polymerizing and curing the alignment material and the polymerized birefringent material to form a film to form the phase difference structure layer; Step S6039, removing the alignment substrate 80 and the alignment material cured on the alignment substrate 80. In some feasible embodiments, there is no need to remove the alignment substrate 80 and the alignment material cured on the alignment substrate 80.
  • step S603 further includes: patterning the optical retardation structure layer 200 to form a second pattern, and the light emitting diode 21 is exposed from the optical retardation structure layer 200.
  • the second pattern is provided with through holes arranged in an array, and corresponds to the light-emitting diodes 21 one-to-one.
  • FIG. 8 is a schematic diagram of an electronic device 999 applying the above-mentioned display component 99 according to the first embodiment.
  • the electronic device 999 includes a display assembly 99 and a housing 80 in which the display assembly 99 is fixed. Understandably, the electronic device 999 has a display function.
  • the electronic device 999 includes, but is not limited to, monitors, televisions, computers, notebook computers, tablet computers, wearable devices, and so on.

Abstract

一种显示组件(99),包括显示主体(100),显示组件(99)还包括:光调变结构层(300),设置于显示主体(100),用于透过入射环境光中某一线性偏振光,所透过的线性偏振光作为入射线性偏振光;以及光相位差结构层(200),设置于平化层(30)和光调变结构层(300)之间,用于将入射线性偏振光调整为入射圆偏振光或者入射椭圆偏振光,光相位差结构层(200)的相位差不等于λ/2,其中:入射圆偏振光经过金属驱动电路(11)反射后形成反射圆偏振光或者反射椭圆偏振光,反射圆偏振光或者反射椭圆偏振光经过光相位差结构层(200)形成反射线性偏振光,反射线性偏振光在光调变结构层(300)作用下无法通过。此外,还提供一种显示组件(99)的制作方法以及应用显示组件(99)的电子设备(999)。

Description

显示组件、显示组件的制作方法、以及电子设备 技术领域
本发明涉及显示技术领域,尤其涉及一种显示组件、显示组件的制作方法、以及电子设备。
背景技术
微型发光二极管(Micro Light-Emitting Diode,简称Mic-LED))作为一种电流型发光器件,以其主动发光、快响应速度、广视角、色彩丰富、高亮度、低功耗等众多优点而被广泛应用于显示设备中。应用微型发光二极管的显示设备一般包括基板以及阵列状排布于基板上的LED像素单元。基板上排布有像素电路,用于驱动LED像素单元发光。像素电路采用有金属材料制成的器件。
然而,当外界环境光入射到显示设备中,金属材料会形成光反射,该反射光不是LED主动发的光,光强和频谱不一致,容易导致暗态效果不佳后者显色发生变化的情况,从而影响了显示设备的显示效果。
发明内容
有鉴于此,有必要提供一种显示组件、显示组件的制作方法、以及电子设备,可以降低决环境光对显示设备的显示效果的影响。
第一方面,本发明实施例提供一种显示组件。该显示组件包括显示主体,所述显示主体包括基板、设置于所述基板阵列排布的多个金属驱动电路、阵列排布的多个像素、以及覆盖所述金属驱动电路且远离所述基板一侧的平化层;每一像素单元设置有发光二极管,所述发光二极管的发光面外露所述平化层;所述金属驱动电路用于驱动所述发光二极管发光,所述显示组件还包括:
光调变结构层,设置于所述显示主体,用于透过入射环境光中某一线性偏振光,所透过的线性偏振光作为入射线性偏振光;以及
光相位差结构层,设置于所述平化层和所述光调变结构之间,用于将所述 入射线性偏振光调整为入射圆偏振光或者入射椭圆偏振光,所述光相位差结构层的相位差不等于λ/2,其中:
所述入射圆偏振光经过所述金属驱动电路反射后形成反射圆偏振光或者反射椭圆偏振光,所述反射圆偏振光或者反射椭圆偏振光经过所述光相位差结构层形成反射线性偏振光,所述反射线性偏振光在所述光调变结构层作用下无法完全通过。
第二方面,本发明实施例提供一种显示组件的制作方法,该制作方法包括:
提供显示主体,所述显示主体包括基板、设置于所述基板阵列排布的多个金属驱动电路、阵列排布的多个像素单元、以及覆盖所述金属驱动电路且远离所述基板一侧的平化层;每一像素单元设置有发光二极管,所述发光二极管的发光面外露所述平化层;所述金属驱动电路用于驱动所述发光二极管发光;
在所述平化层远离所述金属驱动电路的一侧形成光相位差结构层,所述光相位差结构层的相位差不等于λ/2;
在所述光相位差结构层远离所述平化层的一侧形成光调变结构层,用于透过入射环境光中某一线性偏振光,所透过的线性偏振光作为入射线性偏振光。
第三方面,本发明实施例提供一种电子设备。该电子设备包括:壳体以及设置于所述壳体的所述显示组件。
上述显示组件和电子设备通过设置光调变结构层和光相位差结构层,可以将环境光入射到显示组件时,光调变结构层和光相位差结构层可以使环境光经金属驱动电路反射后形成的反射光透射出显示组件,从而提升了显示组件的显示效果。
附图说明
图1为第一实施例的显示组件的示意图。
图2为环境光的入射显示组件的光路示意图。
图3为第一实施例光调变结构层示意图。
图4为第一实施例光相位结构层示意图。
图5为第二实施例的显示组件的部分结构示意图。
图6为第一实施例的显示组件的制作方法流程示意图。
图7为第一实施例的显示组件的制作方法子示意图。
图8为第一实施例应用该显示组件的电子设备示意图。
具体实施方式
为使得对本发明的内容有更清楚及更准确的理解,现将结合幅图详细说明。说明书附图示出本发明的实施例的示例,其中,相同的标号表示相同的元件。可以理解的是,说明书附图示出的比例并非本发明实际实施的比例,其仅为示意说明为目的,并非依照原尺寸作图。
请参看图1,其为第一实施方式的显示组件99示意图。显示组件99包括显示主体100、以及依次设置于显示主体100的光相位差结构层200、以及光调变结构层300。在本实施例中,显示组件99可以位于电子设备,例如,手机,平板电脑以及其它包含LED显示屏的电子设备中。
显示主体100包括基板10、设置于基板10且阵列排布的若干像素单元20(图中仅以一个像素为例示意)、以及设置于像素单元20远离基板10一侧的平化层30。
每一像素单元20设置有发光二极管21,发光二极管21具有外露所述平化层的发光面,其中,发光二极管21优选为微型发光二极管。微型发光二极管的尺寸为微米等级,进一步地,微型发光二极管的尺寸小于100微米。
在本实施例中,基板10可以是透明的也可以是不透明的。若基板10设置为透明时,可以采用玻璃材料制成。玻璃材料可以为但不限于以SiO2为主要成分的玻璃材料。在一些可行的实施例中,还可以采用塑胶透明材料制成,塑胶玻璃材料可以为但不限于聚醚砜(pes)、聚丙烯酸酯(par)、聚醚酰亚胺(pei)、聚萘甲酸乙二醇酯(pet)、聚苯硫醚(pps)、聚α-丙烯酸酯、聚酰亚胺、聚碳酸酯(pc)、三醋酸纤维素(TAC)、乙酸丙酸纤维素(CAP)等。若基板10设置为非透明时,可以采用金属材料制成。具体地,金属材料可以为但不限于铁、铬、锰、镍、钛、钼、不锈钢等。
基板10设置有若干金属驱动电路11(图中仅以一个像素电路为例)、透明电极12、像素隔离层13、平坦层14、绝缘层15、缓冲层16。其中,缓冲层16、绝缘层15、平坦层14、像素隔离层13依次设置基板10上。金属驱动电路11嵌设于绝缘层15、平坦层14中。平坦层14覆盖金属驱动电路11远离绝缘层15的一侧,且背离绝缘层15的一侧形成平整的表面。
缓冲层16铺设于基板10的上表面用于使基板10平坦化,且有效地防止杂质或者水分从基板10渗透。缓冲层16可以采用无机材料制成。无机材料可以为但不限于氧化硅、氮化硅、氧化硅、氧化铝、氮化铝、氧化钛等。缓冲层16也可以采用有机材料制成。有机材料可以为但不限于聚酰亚胺、聚酰或丙烯等。
像素隔离层13有绝缘材料制成,其开设有若干第一开槽130,发光二极管21一一对应设置于第一开槽130,将各发光二极管21进行隔离。平坦层14设置有若干第二开槽160,第一开槽130和第二开槽160连通。透明电极12位于于开槽130和第二开槽160中,用于电性连接金属驱动电路11和发光二极管21。其中,平坦层14由绝缘材料制成,该绝缘材料包括但不限于SiO2、Si3N4、HfO2、SiON、TiO2、TaO3、SnO2等。
像素单元电路11包括晶体管TFT、数据线、扫描线等,用于对应驱动每一像素单元20的发光二极管发光21。晶体管TFT的栅极、源极、漏极由主要金属材料制成,以及掺杂有导电半导体材料。金属材料可以为但不限于铜、铝、钨、金、银等。导电半导体材料可以为但不限于多晶硅。
绝缘层15包括栅极绝缘层150和非栅极绝缘层151。绝缘层150采用无机材料制成,无机材料可以为但不限于氧化材料(如SiO2)、氮化材料(SiN)等。
在本实施例中,平化层30采用绝缘材料制成,平化层30具有平面31。平面31远离基板10。
请结合参看图2,光相位差结构层200设置于平化层30和光调变结构层300之间。光调变结构层300用于用于透过入射环境光中某一线性偏振光,所透过的线性偏振光作为入射线性偏振光。光相位差结构层200用于将该入射线性偏振光调整为入射圆偏振光或者入射椭圆偏振光。进一步地,当该入射圆偏振光经过金属驱动电路11反射后形成反射圆偏振光或者反射椭圆偏振光。反射圆偏 振光或者反射椭圆偏振光经过光相位差结构层200形成反射线性偏振光,其中,光相位差结构层200的相位差为λ/2,该反射线性偏振光在光调变结构层300作用下无法通过或者部分通过。因此,减少或者防止环境光对显示组件99显示效果的影响,进而优化了显示组件99的显示效果。
在一些可行的实施例中,该相位差等于λ/4±λ/8。优选地,该相位差等于λ/4。具体地,光相位差结构层200由高分子聚合型双折射材料组成。光调变结构层300为线栅偏振片(wire grid polarizer,WGP)。当相位差等于λ/4时,入射于双折射材料的光所分出的两束光201和203的方向垂直于线栅偏振片的透光轴向301正交,使得反射线性偏振光与透光轴向301正交,进而使得经过金属驱动电路11反射的环境光无法通过光调变结构层300。该两束光为寻常光(ordinary light,o)和非寻常光(extra-ordinary light,e)。例如,当相位差不等于λ/4且不等于λ/2,如此,入射于双折射材料的光所分出的o光和e光的方向与线栅偏振片的透光轴向呈一定角度,使得反射线性偏振光与透光轴向相交,进而使得经过金属驱动电路11反射的部分环境光无法通过光调变结构层300。可以理解地,环境光经过光相位差结构层200分出的两束光和光调变结构层300。光相位差结构层200的相位差越接近λ/4,经过金属驱动电路11反射的环境光越多不能通过光调变结构层300,即环境光对显示组件99的显示效果影响越小。
请参看图3,在一些可行的实施例中,光调变结构层300被图案化从而形成第一图案303。第一图案303为具有阵列排列的多个通孔305。其中,通孔305与发光二极管21一一对应,使发光二极管21外露于光调变结构层300。如此,可以使得光调变结构层300不会对发光二极管21发射光的透射率,进而不会影响显示组件99的亮度等。
请参看图4,在一些可行的实施例中,光相位差结构层200被图案化从而形成第二图案203。第二图案203为具有阵列排列的多个通孔205。其中,通孔205与发光二极管21一一对应,使发光二极管21外露于光相位差结构层200。如此,发光二极管21的发射光不会受光相位差结构层200遮挡而降低透射率,进而避免影响显示组件99的亮度等。
请再次参看图1,在一些可行的实施例中,显示组件99还包括配向层400。配向层400设置于平面31。配向层400由配向材料制成,如polyimide。配向层400用于对双折射材料进行取向。在一些可行的实施例中,光相位差结构层200远离平面31的一侧还设有另一配向层40’,以及设置在另一配向层40’上的透明配向基板70,如图5所示。在一些可行的实施例中,为了简化加工工序,也可以省略配向层400。
请参看图6,其为第一实施例的显示组件99的制作方法。该制作方法包括下面步骤。
步骤S601,提供显示主体100。具体地,显示主体100包括基板10、设置于基板10阵列排布的多个金属驱动电路11、阵列排布的多个像素单元20、以及覆盖金属驱动电路11且远离基板10一侧的平化层30;每一像素单元设置有发光二极管21,发光二极管21的发光面外露平化层30;金属驱动电路11用于驱动发光二极管21发光。
步骤S603,在平化层30远离所述金属驱动电路11的一侧形成光相位差结构层200,所述光相位差结构层200的相位差不等于λ/2,例如,在一些可行的实施例中,该相位差等于λ/4±λ/8。优选地,该相位差等于λ/4。
步骤S605,在光相位差结构层200远离平化层30的一侧形成光调变结构层300,以将入射的环境光转换为入射线性偏振光。具体地,光相位差结构层200远离平化层30的一侧布设有线栅偏振片形成光调变结构层300。
请结合参看图3,在一些可行的实施例中,步骤S605还包括:对该线栅振片进行图案化形成第一图案,使发光二极管21外露于光调变结构层。第一图案设有具有阵列状排列的通孔,且与发光二极管21一一对应。
请参看图6和图7,步骤S603包括:步骤S6030,在平化层30远离金属驱动电路11的一侧涂布配向材料;步骤S6031,提供配向基板80并在配向基板80上涂布配向材料;步骤S6033,在配向层材料上涂布高分子聚合型双折射材料;步骤S6035,将配向基板涂布有配向材料的一侧置放于所述平化层涂布有配向材料的一侧;步骤S6037,加热并聚合固化配向材料和高分子聚合型双折射材料聚合固化成膜以形成所述相位差结构层;步骤S6039,移除配向基板80和固 化于配向基板80的配向材料。在一些可行的实施方式中,也无需移除配向基板80和固化于配向基板80的配向材料。
请结合参看图4,在一些可行的实施例中,步骤S603还包括:对所述光相位差结构层200进行图案化形成第二图案,发光二极管21外露于光相位差结构层200。第二图案设置有阵列状排列的通孔,且与发光二极管21一一对应。
请参看图8,其为第一实施例的应用上述显示组件99的电子设备999示意图。电子设备999包括显示组件99以及固定显示组件99的壳体80。可以理解地,电子设备999具有显示功能。其中,电子设备999包括但不限于显示器、电视机、计算机、笔记本电脑、平板电脑、穿戴式设备等。
显然,本领域的技术人员可以对本发明进行各种改动和变型而不脱离本发明的精神和范围。这样,倘且本发明的这些修改和变型属于本发明权利要求及其等同技术的范围之内,则本发明也意图包含这些改动和变型在内。
以上所列举的仅为本发明较佳实施例而已,当然不能以此来限定本发明之权利范围,因此依本发明权利要求所作的等同变化,仍属本发明所涵盖的范围。

Claims (20)

  1. 一种显示组件,包括:显示主体,所述显示主体包括基板、设置于所述基板阵列排布的多个金属驱动电路、阵列排布的多个像素、以及覆盖所述金属驱动电路且远离所述基板一侧的平化层;每一像素单元设置有发光二极管,所述发光二极管的发光面外露所述平化层;所述金属驱动电路用于驱动所述发光二极管发光,其特征在于,所述显示组件还包括:
    光调变结构层,设置于所述显示主体,用于透过入射环境光中某一线性偏振光,所透过的线性偏振光作为入射线性偏振光;以及
    光相位差结构层,设置于所述平化层和所述光调变结构之间,用于将所述入射线性偏振光调整为入射圆偏振光或者入射椭圆偏振光,所述光相位差结构层的相位差不等于λ/2,其中:
    所述入射圆偏振光经过所述金属驱动电路反射后形成反射圆偏振光或者反射椭圆偏振光,所述反射圆偏振光或者反射椭圆偏振光经过所述光相位差结构层形成反射线性偏振光,所述反射线性偏振光在所述光调变结构层作用下无法完全通过。
  2. 如权利要求1所述的显示组件,其特征在于,所述相位差等于λ/4±λ/8。
  3. 如权利要求1所述的显示组件,其特征在于,所述相位差等于λ/4。
  4. 如权利要求1所述的显示组件,其特征在于,所述光调变结构层形成第一图案,用于使所述每一发光二极管相应地外露于所述光调变结构层。
  5. 如权利要求1或者4任意一项所述的显示组件,其特征在于,所述光相位差结构层形成第二图案,用于使所述每一发光二极管相应地外露于所述光相差结构层。
  6. 如权利要求1所述的显示组件,其特征在于,所述光相位差结构层的一侧形配向层,所述配向层设置于所述平化层。
  7. 如权利要求6所述的显示组件,其特征在于,所述光相位差结构层由高分子聚合型双折射材料组成,所述配向层用于对所述高分子聚合型双折射材料 进行取向。
  8. 如权利要求6所述的显示组件,其特征在于,所述平化层与所述配向层结合的表面为平面。
  9. 如权利要求1所述的显示组件,其特征在于,所述光调变结构层为线栅偏振片(wire grid polarizer,WGP)。
  10. 一种显示组件的制作方法,其特征在于,所述制作方法包括:
    提供显示主体,所述显示主体包括基板、设置于所述基板阵列排布的多个金属驱动电路、阵列排布的多个像素单元、以及覆盖所述金属驱动电路且远离所述基板一侧的平化层;每一像素单元设置有发光二极管,所述发光二极管的发光面外露所述平化层;所述金属驱动电路用于驱动所述发光二极管发光;
    在所述平化层远离所述金属驱动电路的一侧形成光相位差结构层,所述光相位差结构层的相位差不等于λ/2;
    在所述光相位差结构层远离所述平化层的一侧形成光调变结构层,用于透过入射环境光中某一线性偏振光,所述透过的线性偏振光作为入射线性偏振光。
  11. 如权利要求10所述的制作方法,其特征在于,所述相位差等于λ/4±λ/8。
  12. 如权利要求10所述的制作方法,其特征在于,所述相位差等于λ/4。
  13. 如权利要求10所述的制作方法,其特征在于,在所述平化层远离所述金属驱动电路的一侧形成光相位差结构层具体包括:
    在所述平化层远离所述金属驱动电路的一侧涂布配向材料;
    在配向基板上涂布配向材料;
    在所述配向层上涂布高分子聚合型双折射材料;
    将配向基板涂布有配向材料的一侧置放于所述平化层涂布有配向材料的一侧;
    加热和固化配向材料和高分子聚合型双折射材料聚合固化成膜以形成所述相位差结构层。
  14. 如权利要求13所述的制作方法,其特征在于,在形成所述相位差结构之后,所述制作方法还包括:
    移除所述配向基板及配向基板上的配向材料。
  15. 如权利要求9所述的制作方法,其特征在于,在所述光相位差结构层远离所述平化层的一侧形成光调变结构层具体包括:
    在所述光相位差结构层远离所述平化层的一侧布设线栅偏振片形成所述光调变结构层。
  16. 如权利要求13所述的制作方法,其特征在于,在所述光相位差结构层远离所述平化层的一侧形成光调变结构层还包括:
    对所述线栅振片进行图案化形成第一图案,使所述发光二极管外露于光调变结构层。
  17. 如权利要求16所述的制作方法,其特征在于,所述第一图案为具有阵列状排列的通孔。
  18. 如权利要求10所述的制作方法,其特征在于,在所述光相位差结构层远离所述平化层的一侧形成光调变结构层还包括:
    对所述光相位差结构层进行图案化形成第二图案,使所述发光二极管外露于所述光相位差结构层。
  19. 如权利要求18所述的制作方法,其特征在于,所述第二图案为具有阵列状排列的通孔。
  20. 一种电子设备,其特征在于,所述电子设备包括:壳体以及设置于所述壳体的如权利要求1~9任意一项所述的显示组件。
PCT/CN2019/120844 2019-11-26 2019-11-26 显示组件、显示组件的制作方法、以及电子设备 WO2021102663A1 (zh)

Priority Applications (2)

Application Number Priority Date Filing Date Title
CN201980004332.8A CN113228287A (zh) 2019-11-26 2019-11-26 显示组件、显示组件的制作方法、以及电子设备
PCT/CN2019/120844 WO2021102663A1 (zh) 2019-11-26 2019-11-26 显示组件、显示组件的制作方法、以及电子设备

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
PCT/CN2019/120844 WO2021102663A1 (zh) 2019-11-26 2019-11-26 显示组件、显示组件的制作方法、以及电子设备

Publications (1)

Publication Number Publication Date
WO2021102663A1 true WO2021102663A1 (zh) 2021-06-03

Family

ID=76128957

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2019/120844 WO2021102663A1 (zh) 2019-11-26 2019-11-26 显示组件、显示组件的制作方法、以及电子设备

Country Status (2)

Country Link
CN (1) CN113228287A (zh)
WO (1) WO2021102663A1 (zh)

Citations (12)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20100019662A1 (en) * 2008-07-22 2010-01-28 Kim Eun-Ah Organic light emitting diode display and method of manufacturing the same
US20100127238A1 (en) * 2008-11-27 2010-05-27 Samsung Electronics Co., Ltd. Light emitting diode
CN101777289A (zh) * 2009-01-09 2010-07-14 三星移动显示器株式会社 具有镜子功能的有机发光二极管显示器
CN101783360A (zh) * 2009-01-21 2010-07-21 三星移动显示器株式会社 有机发光二极管显示器及光学构件
US20120267646A1 (en) * 2011-04-22 2012-10-25 Samsung Mobile Display Co., Ltd. Organic light emitting diode display and method for manufacturing the same
CN102890362A (zh) * 2012-09-27 2013-01-23 京东方科技集团股份有限公司 一种显示装置
CN104319282A (zh) * 2014-09-23 2015-01-28 京东方科技集团股份有限公司 发光二极管显示面板
CN107316948A (zh) * 2017-06-29 2017-11-03 上海天马有机发光显示技术有限公司 一种显示面板、其制作方法及显示装置
CN108899342A (zh) * 2018-06-29 2018-11-27 武汉华星光电半导体显示技术有限公司 一种阵列基板、显示面板及其制造方法、显示器及电子装置
CN109037239A (zh) * 2018-07-26 2018-12-18 上海天马微电子有限公司 一种阵列基板及其制备方法、显示面板
CN109542273A (zh) * 2018-12-04 2019-03-29 上海天马微电子有限公司 一种显示面板和显示装置
CN109801925A (zh) * 2019-01-17 2019-05-24 京东方科技集团股份有限公司 一种微led显示面板及其制备方法

Family Cites Families (11)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN105911709A (zh) * 2016-06-22 2016-08-31 深圳市华星光电技术有限公司 3d微发光二极管显示装置
KR102618811B1 (ko) * 2017-01-23 2023-12-28 삼성디스플레이 주식회사 색변환 패널 및 이를 포함하는 표시 장치
CN107193158B (zh) * 2017-06-15 2020-04-17 京东方科技集团股份有限公司 一种背光模组、显示装置及背光模组的制备方法
US10193011B1 (en) * 2017-07-14 2019-01-29 Globalfoundries Inc. Method of manufacturing a 3 color LED integrated Si CMOS driver wafer using die to wafer bonding approach
CN107247365B (zh) * 2017-07-28 2020-04-17 京东方科技集团股份有限公司 背光模组及显示装置
CN107608134B (zh) * 2017-09-27 2019-07-12 京东方科技集团股份有限公司 导光结构、直下式背光模组及显示面板
CN108183156A (zh) * 2017-12-26 2018-06-19 深圳市华星光电技术有限公司 微型发光二极管显示面板及其制作方法
CN108447407B (zh) * 2018-02-09 2020-04-14 武汉华星光电技术有限公司 一种微晶粒发光二极管显示面板
CN109461380B (zh) * 2018-06-26 2021-11-05 矽照光电(厦门)有限公司 一种柔性有源彩色显示模块
CN108898966B (zh) * 2018-08-01 2020-11-06 京东方科技集团股份有限公司 显示面板及显示装置
CN109407404A (zh) * 2018-09-07 2019-03-01 武汉华星光电技术有限公司 背光结构

Patent Citations (12)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20100019662A1 (en) * 2008-07-22 2010-01-28 Kim Eun-Ah Organic light emitting diode display and method of manufacturing the same
US20100127238A1 (en) * 2008-11-27 2010-05-27 Samsung Electronics Co., Ltd. Light emitting diode
CN101777289A (zh) * 2009-01-09 2010-07-14 三星移动显示器株式会社 具有镜子功能的有机发光二极管显示器
CN101783360A (zh) * 2009-01-21 2010-07-21 三星移动显示器株式会社 有机发光二极管显示器及光学构件
US20120267646A1 (en) * 2011-04-22 2012-10-25 Samsung Mobile Display Co., Ltd. Organic light emitting diode display and method for manufacturing the same
CN102890362A (zh) * 2012-09-27 2013-01-23 京东方科技集团股份有限公司 一种显示装置
CN104319282A (zh) * 2014-09-23 2015-01-28 京东方科技集团股份有限公司 发光二极管显示面板
CN107316948A (zh) * 2017-06-29 2017-11-03 上海天马有机发光显示技术有限公司 一种显示面板、其制作方法及显示装置
CN108899342A (zh) * 2018-06-29 2018-11-27 武汉华星光电半导体显示技术有限公司 一种阵列基板、显示面板及其制造方法、显示器及电子装置
CN109037239A (zh) * 2018-07-26 2018-12-18 上海天马微电子有限公司 一种阵列基板及其制备方法、显示面板
CN109542273A (zh) * 2018-12-04 2019-03-29 上海天马微电子有限公司 一种显示面板和显示装置
CN109801925A (zh) * 2019-01-17 2019-05-24 京东方科技集团股份有限公司 一种微led显示面板及其制备方法

Also Published As

Publication number Publication date
CN113228287A (zh) 2021-08-06

Similar Documents

Publication Publication Date Title
US9046245B2 (en) Lighting device and liquid crystal display device utilizing selective reflection structure
US11822103B2 (en) Privacy films for curved displays
TWI533055B (zh) 顯示面板
KR20180070783A (ko) 표시 장치 및 이의 제조 방법
WO2021233380A1 (zh) 显示面板及其制备方法
US11527676B2 (en) Light-emitting unit and method for manufacturing the same
US20220120609A1 (en) Electronic device
WO2023108724A1 (zh) 显示面板及电子装置
US20210408185A1 (en) Organic light-emitting diode display device
KR102204756B1 (ko) 표시 장치 및 그 제조 방법
WO2021102663A1 (zh) 显示组件、显示组件的制作方法、以及电子设备
TWI731572B (zh) 感光裝置以及感測指紋的方法
WO2021102664A1 (zh) 显示组件及使用该显示组件的电子设备
JP2023523481A (ja) 表示パネル及び表示装置
US20200098844A1 (en) Organic light-emitting diode display screen and electronic device
US11391985B2 (en) Display device and electronic device
US11638380B2 (en) Illumination apparatus capable of illuminating different lighting patterns
US9904502B2 (en) Dual display equipment with enhanced visibility and suppressed reflections
KR20220023874A (ko) 표시 장치 광학 성능 테스트용 광학 검사 기기 및 이를 이용한 광학 검사 방법
US20190204676A1 (en) Transparent display apparatus
KR102225931B1 (ko) 유기전계발광표시장치
TWI773338B (zh) 顯示裝置
WO2017035880A1 (zh) 薄膜晶体管阵列基板及液晶显示面板
US20210125888A1 (en) Electronic device and manufacturing method thereof
TW202327116A (zh) 電子裝置及其製作方法

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 19954190

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 19954190

Country of ref document: EP

Kind code of ref document: A1