WO2021101027A1 - 전극 조립체 및 그의 제조 방법 - Google Patents
전극 조립체 및 그의 제조 방법 Download PDFInfo
- Publication number
- WO2021101027A1 WO2021101027A1 PCT/KR2020/011469 KR2020011469W WO2021101027A1 WO 2021101027 A1 WO2021101027 A1 WO 2021101027A1 KR 2020011469 W KR2020011469 W KR 2020011469W WO 2021101027 A1 WO2021101027 A1 WO 2021101027A1
- Authority
- WO
- WIPO (PCT)
- Prior art keywords
- electrode
- lead
- current collector
- foil
- assembly
- Prior art date
Links
Images
Classifications
-
- H—ELECTRICITY
- H01—ELECTRIC ELEMENTS
- H01M—PROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
- H01M10/00—Secondary cells; Manufacture thereof
- H01M10/05—Accumulators with non-aqueous electrolyte
- H01M10/058—Construction or manufacture
- H01M10/0587—Construction or manufacture of accumulators having only wound construction elements, i.e. wound positive electrodes, wound negative electrodes and wound separators
-
- H—ELECTRICITY
- H01—ELECTRIC ELEMENTS
- H01M—PROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
- H01M50/00—Constructional details or processes of manufacture of the non-active parts of electrochemical cells other than fuel cells, e.g. hybrid cells
- H01M50/50—Current conducting connections for cells or batteries
- H01M50/531—Electrode connections inside a battery casing
- H01M50/536—Electrode connections inside a battery casing characterised by the method of fixing the leads to the electrodes, e.g. by welding
-
- H—ELECTRICITY
- H01—ELECTRIC ELEMENTS
- H01M—PROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
- H01M10/00—Secondary cells; Manufacture thereof
- H01M10/05—Accumulators with non-aqueous electrolyte
- H01M10/058—Construction or manufacture
- H01M10/0585—Construction or manufacture of accumulators having only flat construction elements, i.e. flat positive electrodes, flat negative electrodes and flat separators
-
- H—ELECTRICITY
- H01—ELECTRIC ELEMENTS
- H01M—PROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
- H01M4/00—Electrodes
- H01M4/02—Electrodes composed of, or comprising, active material
- H01M4/04—Processes of manufacture in general
- H01M4/0402—Methods of deposition of the material
- H01M4/0404—Methods of deposition of the material by coating on electrode collectors
-
- H—ELECTRICITY
- H01—ELECTRIC ELEMENTS
- H01M—PROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
- H01M50/00—Constructional details or processes of manufacture of the non-active parts of electrochemical cells other than fuel cells, e.g. hybrid cells
- H01M50/50—Current conducting connections for cells or batteries
- H01M50/502—Interconnectors for connecting terminals of adjacent batteries; Interconnectors for connecting cells outside a battery casing
- H01M50/514—Methods for interconnecting adjacent batteries or cells
- H01M50/517—Methods for interconnecting adjacent batteries or cells by fixing means, e.g. screws, rivets or bolts
-
- H—ELECTRICITY
- H01—ELECTRIC ELEMENTS
- H01M—PROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
- H01M50/00—Constructional details or processes of manufacture of the non-active parts of electrochemical cells other than fuel cells, e.g. hybrid cells
- H01M50/50—Current conducting connections for cells or batteries
- H01M50/531—Electrode connections inside a battery casing
- H01M50/533—Electrode connections inside a battery casing characterised by the shape of the leads or tabs
-
- H—ELECTRICITY
- H01—ELECTRIC ELEMENTS
- H01M—PROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
- H01M50/00—Constructional details or processes of manufacture of the non-active parts of electrochemical cells other than fuel cells, e.g. hybrid cells
- H01M50/50—Current conducting connections for cells or batteries
- H01M50/531—Electrode connections inside a battery casing
- H01M50/54—Connection of several leads or tabs of plate-like electrode stacks, e.g. electrode pole straps or bridges
-
- Y—GENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
- Y02—TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
- Y02E—REDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
- Y02E60/00—Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
- Y02E60/10—Energy storage using batteries
-
- Y—GENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
- Y02—TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
- Y02P—CLIMATE CHANGE MITIGATION TECHNOLOGIES IN THE PRODUCTION OR PROCESSING OF GOODS
- Y02P70/00—Climate change mitigation technologies in the production process for final industrial or consumer products
- Y02P70/50—Manufacturing or production processes characterised by the final manufactured product
Definitions
- the present invention relates to an electrode assembly and a method of manufacturing the same, and more particularly, an electrode current collector is formed in a multi-layered structure including an electrode insulating layer, and only one electrode lead is connected to the uncoated portion so that all of the electricity generated therein is It relates to an electrode assembly that can be sufficiently supplied to the outside and a method of manufacturing the same.
- types of secondary batteries include nickel cadmium batteries, nickel hydride batteries, lithium ion batteries, and lithium ion polymer batteries.
- These secondary batteries are not only small products such as digital cameras, P-DVDs, MP3Ps, mobile phones, PDAs, portable game devices, power tools, and E-bikes, but also large products requiring high output such as electric vehicles and hybrid vehicles, and surplus power generation. It is also applied and used in power storage devices for storing electric power or renewable energy and power storage devices for backup.
- a cathode, a separator, and an anode are manufactured, and these are stacked. Specifically, a positive electrode active material slurry is applied to a positive electrode current collector, and a negative electrode active material slurry is applied to a negative electrode current collector to prepare a cathode and a negative electrode.
- a separator is interposed between the prepared anode and the cathode and stacked, unit cells are formed, and the unit cells are stacked on top of each other, thereby forming an electrode assembly.
- a secondary battery is manufactured.
- the electrodes of the anode and the cathode are formed in a single-layer structure, so that electricity can flow between both surfaces of the electrodes. Therefore, when the electrode assembly is damaged due to external impact, there is a problem that a short circuit occurs on one side of the electrode and a risk of explosion or the like occurs when a short circuit occurs on the other side of the electrode.
- the problem to be solved by the present invention is an electrode assembly in which the electrode current collector is formed in a multi-layered structure including an electrode insulating layer, and that only one electrode lead is connected to the uncoated part to sufficiently supply all of the electricity generated from the inside to the outside. And to provide a method of manufacturing the same.
- an electrode active material is applied to at least a part of an electrode current collector formed by sequentially stacking a first electrode foil, an electrode insulating layer, and a second electrode foil.
- the electrode current collector and the electrode lead may be connected by rivet coupling.
- the electrode current collector and the electrode lead may be connected by screw coupling.
- the fastening part may be made of a conductive material.
- the fastening portion may penetrate all of the first electrode foil, the electrode insulating layer, and the second electrode foil of the electrode current collector.
- An electrode assembly for solving the above problems includes an electrode coated with an electrode active material on at least a part of an electrode current collector; A separator laminated between the electrodes; An electrode lead connected to a non-coated portion of the electrode current collector to which the electrode active material is not applied; And a fastening part which penetrates and connects the electrode current collector and the electrode lead together, wherein the electrode current collector is formed by sequentially stacking a first electrode foil, an electrode insulating layer, and a second electrode foil.
- the fastening portion may be a rivet.
- the fastening part may be a screw.
- the fastening part may be made of a conductive material.
- the fastening portion may penetrate all of the first electrode foil, the electrode insulating layer, and the second electrode foil of the electrode current collector.
- the electrode current collector is formed in a multi-layered structure including an electrode insulating layer, and a conductive fastening part penetrates and connects the uncoated part of the electrode current collector and the electrode lead together, so that electricity generated inside the electrode assembly is transmitted with only one electrode lead. All can be supplied outside enough.
- FIG. 1 is an enlarged cross-sectional view of a cylindrical secondary battery according to an embodiment of the present invention.
- FIG. 2 is a schematic diagram showing a side surface of an electrode current collector according to an embodiment of the present invention.
- FIG. 3 is a schematic diagram showing a state in which a plurality of electrode leads are connected to a non-coated portion of an anode foil and a cathode foil, respectively, from side surfaces.
- FIG. 4 is a schematic diagram showing a state in which a plurality of electrode leads are connected to an uncoated part from the top.
- FIG. 5 is a schematic diagram showing a state in which a plurality of electrode leads are connected to a non-coated part from the bottom surface.
- FIG. 6 is a schematic diagram showing a side view of an electrode lead connected to an uncoated portion of a positive electrode foil and a negative electrode foil according to an exemplary embodiment of the present invention, respectively.
- FIG. 7 is a schematic diagram showing an electrode lead connected to a non-coated part from the top.
- FIG. 8 is a schematic diagram showing a state in which an electrode lead is connected to a non-coated part from the bottom surface.
- FIG. 9 is a schematic diagram illustrating a side view of an electrode lead connected to an uncoated portion of an anode foil and a cathode foil according to another embodiment of the present invention, respectively.
- FIG. 1 is an enlarged cross-sectional view of a cylindrical secondary battery 1 according to an embodiment of the present invention.
- the cylindrical secondary battery 1 In order to manufacture the cylindrical secondary battery 1, first, a slurry obtained by mixing an electrode active material, a binder, and a plasticizer is applied to the positive electrode current collector 101 and the negative electrode current collector 102 to prepare electrodes such as a positive electrode and a negative electrode.
- the electrode assembly 11 having a predetermined shape is formed by stacking on both sides of the separator. Then, the battery can 12 is stretched by applying pressure from the outside to the inside on the top of the battery can 12 to form the beading portion 14. Then, the electrode assembly 11 is inserted into the battery can 12 and an electrolyte is injected. Next, after mounting the crimping gasket 136 on the beading portion 14, the upper opening of the battery can 12 is sealed with the cap assembly 13.
- the cylindrical secondary battery 1 may be used as a power source for mobile phones, notebook computers, electric vehicles and the like stably providing a constant output.
- the cylindrical secondary battery 1 includes an electrode assembly 11 in a jelly-roll form, a cylindrical battery can 12 accommodating the electrode assembly 11 therein, and an upper portion of the battery can 12.
- the cap assembly 13 is coupled to and seals the upper opening of the battery can 12, the beading portion 14 and the battery recessed from the outside to the inside on the top of the battery can 12 to mount the cap assembly 13 It includes a crimping portion 15 for sealing.
- the electrode assembly 11 is formed by stacking electrodes and a separator. Specifically, the electrode assembly 11 includes two types of electrodes, such as an anode and a cathode, and a separator interposed between the electrodes to insulate the electrodes from each other.
- the electrode assembly 11 includes a stack type, a jelly roll type, a stack and folding type, and the like. Two types of electrodes, that is, a positive electrode and a negative electrode, have an active material slurry coated on the electrode current collectors 101 and 102 having a multilayer structure including electrode insulating layers 1013 and 1023, respectively.
- the electrode current collectors 101 and 102 are formed in a multilayer structure in which electrode insulating layers 1013 and 1023 are stacked between two electrode foils. A detailed description of the electrode current collectors 101 and 102 will be described later.
- the slurry may be formed by stirring a particulate active material, an auxiliary conductor, a binder, a plasticizer, and the like in a state in which a solvent is added. The solvent is removed in a subsequent process.
- the electrode assembly 11 according to an embodiment of the present invention is described as being of a jelly roll type, but this is for convenience of description and is not intended to limit the scope of the rights.
- the electrode of the electrode assembly 11 is composed of a portion coated with an electrode active material on the electrode current collectors 101 and 102 and an end portion not coated with the electrode active material, that is, uncoated portions 111 and 112.
- uncoated portions 111 and 112 may exist at the start and end in the direction in which the electrode is wound.
- a pair of electrode leads 113 corresponding to respective electrodes are connected to the uncoated portions 111 and 112.
- the anode lead 1131 having one end connected to the anode uncoated part 111 is drawn out from the upper end of the electrode assembly 11, the other end is electrically connected to the cap assembly 13, and one end is connected to the cathode uncoated part 112
- the negative electrode lead 1132 is pulled out from the bottom of the electrode assembly 11 and the other end is connected to the bottom of the battery can 12.
- both the anode lead 1131 and the cathode lead 1132 may be drawn out in various directions, such as being drawn out in a direction toward the cap assembly 13.
- An insulating plate 16 insulating the electrode assembly 11 is disposed at the top and bottom of the electrode assembly 11, respectively.
- the upper insulating plate 16 disposed at the top is disposed between the electrode assembly 11 and the cap assembly 13 to insulate the electrode assembly 11, and the lower insulating plate (not shown) disposed at the bottom is the electrode assembly 11 And the bottom of the battery can 12 to insulate the electrode assembly 11.
- the battery can 12 is a can made of a rigid material that accommodates the electrode assembly 11 therein.
- the battery can 12 may be formed in a cylindrical shape, but is formed in various shapes such as a square shape according to the shape of the electrode assembly 11, so that the electrode assembly 11 can be easily accommodated therein.
- the battery can 12 is made of a lightweight conductive metal material such as aluminum, nickel, stainless steel, or an alloy thereof, and may have an opening having an open top and a closed bottom facing it.
- a center pin (not shown) that prevents the electrode assembly 11 wound in the form of a jelly roll from being unwound and serves as a passage for gas inside the secondary battery 1 is inserted. May be.
- the cap assembly 13 is coupled to an open portion formed on the upper end of the battery can 12 to seal the open portion of the battery can 12.
- the cap assembly 13 may be formed in various shapes such as a circular shape or a square shape according to the shape of the battery can 12. If the battery can 12 is formed in a cylindrical shape, it is preferable that the cap assembly 13 is also formed in a disk shape corresponding thereto.
- the cap assembly 13 includes a top cap 131 that seals the open portion of the battery can 12 and forms a positive terminal, a PTC element 132 that blocks current by increasing resistance when the temperature inside the battery increases, and an abnormal current. Due to the safety vent 133 that cuts off the current when the pressure inside the battery increases and exhausts the gas inside, the CID gasket 134 electrically separates the safety vent 133 from the CID filter 135 except for a specific part, A positive electrode lead 1131 connected to the positive electrode is connected, and a CID filter 135 that blocks current when a high voltage occurs in the battery is sequentially stacked.
- the cap assembly 13 is installed on the beading portion 14 of the battery can 12 while being mounted on the crimping gasket 136. Therefore, under normal operating conditions, the anode of the electrode assembly 11 is connected to the top cap 131 via the anode lead 1131, the CID filter 135, the safety vent 133, and the PTC element 132 to prevent electricity. To achieve.
- the top cap 131 is disposed on the uppermost portion of the cap assembly 13 to protrude upward to form a positive terminal. Accordingly, the top cap 131 may be electrically connected to an external device such as a load or a charging device.
- a gas hole 1311 through which gas generated inside the secondary battery 1 is discharged may be formed in the top cap 131. Therefore, when gas is generated from the electrode assembly 11 side and the internal pressure increases due to a cause such as overcharging, the CID filter 135 and the safety vent 133 of the current blocking member are ruptured, and the internal gas is ruptured. It can be discharged to the outside through the portion and gas hole 1311. Therefore, charging/discharging does not proceed any more, and the safety of the secondary battery 1 can be ensured.
- the top cap 131 may be made of a metal material such as stainless steel or aluminum.
- the thickness of the portion of the top cap 131 in contact with the PTC element 132 is not particularly limited as long as it is a range capable of protecting various components of the cap assembly 13 from external pressure, for example , It may be 0.3 to 0.5mm. If the thickness of the top cap 131 is too thin, it is difficult to exhibit mechanical rigidity, and if it is too thick, the capacity of the battery compared to the same standard may be reduced by increasing the size and weight.
- the PTC element Block Current by increasing the battery resistance when the temperature inside the battery increases. That is, the PTC element 132 electrically connects the top cap 131 and the safety vent 133 in a normal state. However, in an abnormal state, for example, when the temperature rises abnormally, the PTC element 132 blocks the electrical connection between the top cap 131 and the safety vent 133.
- the thickness of the PTC device 132 may also vary depending on the material and structure, and may be, for example, 0.2 to 0.4 mm. When the thickness of the PTC element 132 is thicker than 0.4 mm, the internal resistance increases, and the battery capacity may be reduced compared to the same standard by increasing the size of the battery.
- the thickness of the PTC element 132 may be appropriately determined within the above thickness range in consideration of these points in combination.
- the safety vent 133 blocks current or exhausts gas when the pressure inside the battery increases due to an abnormal current, and may be made of a metal material.
- the safety vent 133 has an outer peripheral portion inserted into the crimping gasket 136, and the central portion is connected to the CID filter 135, and when the internal pressure of the battery increases, the CID filter 135 ruptures and the safety vent ( The shape of 133) is reversed.
- the thickness of the safety vent 133 may vary depending on the material and structure, and is not particularly limited as long as it is capable of discharging gas or the like while bursting when a predetermined high pressure is generated inside the battery, and may be, for example, 0.2 to 0.6 mm.
- a current interrupt device is positioned between the safety vent 133 and the electrode assembly 11 to electrically connect the electrode assembly 11 and the safety vent 133.
- a current blocking member is a CID gasket that spatially separates and insulates the CID filter 135 and the safety vent 133 except for a part of the CID filter 135 which contacts the safety vent 133 and transmits current. It includes (134).
- At least a portion of the CID filter 135 is connected to the lower surface of the central portion protruding from the center of the safety vent 133, and at least a portion of the lower portion is the electrode lead 113 of the electrode assembly 11, in particular, the anode lead 1131 ). Accordingly, in a normal state, the anode current generated from the electrode assembly 11 flows through the cathode lead 1131 through the CID filter 135 to the safety vent 133, so that the secondary battery 1 may be discharged. . However, when the shape of the safety vent 133 is reversed due to an increase in the internal pressure of the battery due to the gas generated inside the secondary battery 1, the connection between the safety vent 133 and the CID filter 135 is detached, or The CID filter 135 is ruptured. As a result, electrical connection between the safety vent 133 and the electrode assembly 11 is cut off, thereby ensuring safety.
- the secondary battery 1 including the cap assembly 13 can provide an instantaneous high output when used as a power source for a power tool such as an electric drill, and also against external physical shocks such as vibrations and drops. It can be stable.
- a beading portion 14 that is bent from the outside to the inside is formed on the upper portion of the battery can 12.
- the beading part 14 places the cap assembly 13 in which the top cap 131, the PTC element 132, the safety vent 133, and the current blocking member are stacked on the top of the battery can 12, and the electrode assembly (11) Prevents movement in the vertical direction.
- the cap assembly 13 is installed on the beading portion 14 of the battery can 12 while being mounted on the crimping gasket 136.
- the crimping gasket 136 surrounds and insulates the outermost portion of the peripheral portion 1331 of the safety vent 133. This prevents the occurrence of a short circuit due to contact between the positive electrode current flowing through the safety vent 133 and the negative electrode current flowing through the battery can 12.
- the crimping gasket 136 has a cylindrical shape with both ends open in order to easily surround the peripheral portion 1331 of the safety vent 133, and one end facing the inside of the battery can 12 is shown in FIG. 2. As described above, after being first bent substantially vertically toward the central axis, it is secondly bent substantially vertically toward the inside of the battery can 12 and seated on the beading portion 14. And the other end of the crimping gasket 136 initially extends in a direction parallel to the central axis. However, later, when the cap assembly 13 is coupled and the upper outer wall of the battery can 12 is pressed to perform the crimping process, it is bent substantially vertically along the shape of the crimping unit 15 to face the central axis.
- the inner circumferential surface of the crimping gasket 136 is in close contact with the cap assembly 13 and the outer circumferential surface of the battery can 12.
- the crimping process is to bend the crimping portion 15 so that the crimping portion 15 and the crimping gasket 136 seal the outer surface of the cap assembly 13.
- the crimping gasket 136 is preferably made of a material having insulation, impact resistance, elasticity and durability, for example, a polymer such as polyolefine or polypropylene (PP).
- the electrode lead 113 When the electrode lead 113 is connected to the uncoated portions 111 and 112 of the electrode assembly 11, the electrode assembly 11 is inserted into the battery can 12, and the positive lead 1131 is the CID of the cap assembly 13 It is connected to the filter 135 and the negative lead 1132 is connected to the bottom of the battery can 12. Then, an electrolyte is injected into the inside. Next, after mounting the crimping gasket 136 on the beading portion 14, the upper opening of the battery can 12 is sealed with the cap assembly 13.
- the electrolyte is for moving lithium ions generated by the electrochemical reaction of the electrode during charging and discharging of the secondary battery 1, and is a non-aqueous organic electrolyte or polymer electrolyte that is a mixture of a lithium salt and a high-purity organic solvent (2). It may include a polymer using. Through this method, a cylindrical secondary battery 1 may be manufactured.
- FIG. 2 is a schematic view showing side surfaces of electrode current collectors 101 and 102 according to an embodiment of the present invention.
- a slurry obtained by mixing an electrode active material, a binder, and a plasticizer is added to the electrode current collectors 101 and 102 such as the positive electrode current collector 101 and the negative electrode current collector 102, respectively. It is prepared by applying.
- the positive electrode current collector 101 and the negative electrode current collector 102 are each formed in a single-layer structure. Therefore, when the electrode assembly 11 is damaged due to external impact, there is a problem that a risk of explosion due to a short circuit may occur.
- the electrode current collectors 101 and 102 have a multilayer structure in which electrode insulating layers 1013 and 1023 are stacked between the first and second electrode foils. Is formed.
- the positive electrode current collector 101 is formed by sequentially stacking a first positive electrode foil 1011, a positive electrode insulating layer 1013, and a second positive electrode foil 1012.
- the negative electrode current collector 102 is formed by sequentially stacking a first negative electrode foil 1021, a negative electrode insulating layer 1023, and a second negative electrode foil 1022.
- the first and second anode foils 1011 and 1012 are made of a material having high conductivity without causing a chemical change.
- a material having high conductivity for example, stainless steel, aluminum, nickel, titanium, calcined carbon, or aluminum or stainless steel may be surface-treated with carbon, nickel, titanium, silver, or the like, and in particular, aluminum is preferable, but is not limited thereto.
- the first and second positive electrode foils 1011 and 1012 may have fine unevenness on the surface to increase the adhesion of the positive electrode active material.
- the first and second cathode foils 1021 and 1022 are made of a material having conductivity without causing a chemical change.
- a material having conductivity for example, copper, stainless steel, nickel, titanium, calcined carbon, or a surface-treated surface of copper or stainless steel with carbon, nickel, titanium, silver, etc., or aluminum-cadmium alloy, in particular copper or nickel It is preferable that it is plated copper, but is not limited thereto.
- the first and second negative electrode foils 1021 and 1022 may have fine unevenness on the surface to increase the bonding force of the negative electrode active material.
- the anode insulating layer 1013 is stacked between the first anode foil 1011 and the second anode foil 1012 to insulate between the first anode foil 1011 and the second anode foil 1012.
- the negative electrode insulating layer 1023 is laminated between the first negative electrode foil 1021 and the second negative electrode foil 1022 to insulate between the first negative electrode foil 1021 and the second negative electrode foil 1022. Accordingly, even if the electrode assembly 11 is damaged due to external impact, by electrically disconnecting one surface and the other surface of one electrode, the risk of explosion due to a short circuit can be prevented in advance and safety can be secured.
- the positive electrode insulating layer 1013 and the negative electrode insulating layer 1023 are polyethylene, polypropylene, polycarbonate, polyethylene terephthalate, polyvinyl chloride, acrylic polymer, polyacrylonitrile, polyimide, polyamide, cellulose, aramid, It may be made of one or more materials selected from the group consisting of nylon, polyester, polyparaphenylenebenzobisoxazole, polyarylate, Teflon, and glass fibers. In particular, polymers such as nylon resin or polyethylene terephthalate (PET), which have abrasion resistance and heat resistance, are mainly used.
- FIG. 3 is a schematic diagram showing a state in which a plurality of electrode leads 113 are respectively connected to the uncoated portions 111 and 112 of the anode foils 1011 and 1012 and the cathode foils 1021 and 1022, respectively
- FIG. 4 is a plain A schematic diagram showing a state in which a plurality of electrode leads 113 are connected to the portions 111 and 112 from the top
- FIG. 5 is a schematic diagram showing a state in which a plurality of electrode leads 113 are connected to the uncoated portions 111 and 112 from the bottom side to be.
- one end of the anode lead 1131 is connected to the anode uncoated portion 111 and is drawn out from the upper end of the electrode assembly 11 and the other end is electrically connected to the cap assembly 13.
- one end of the negative lead 1132 is connected to the negative electrode uncoated part 112 and is drawn out from the lower end of the electrode assembly 11 and the other end is connected to the bottom of the battery can 12.
- the anode lead 1131 and the cathode lead 1132 may have different materials from each other. That is, the positive lead 1131 is made of the same aluminum (Al) material as the positive foils 1011 and 1012 of the positive current collector 101, and the negative lead 1132 is the negative foil 1021 and 1022 of the negative current collector 102. ) May be the same material as copper (Cu) or a copper material coated with nickel (Ni).
- the electrode current collectors 101 and 102 are formed in a single layer structure, even if one electrode lead 113 is connected to only one side of the uncoated portions 111 and 112, all of the electricity generated inside the electrode assembly 11 is It can be sufficiently supplied to the outside of the secondary battery 1.
- the electrode current collectors 101 and 102 are formed in a multilayer structure in which electrode insulating layers 1013 and 1023 are stacked between the first and second electrode foils, one electrode lead ( If 113 is connected to only one electrode foil, since the other electrode foil is not connected to the electrode lead 113, all of the electricity generated inside the electrode assembly 11 is not supplied to the outside. Therefore, the plurality of electrode leads 113 must all be connected to each electrode foil.
- the plurality of electrode leads 113 include two anode leads 1131 and a first cathode foil 1021 respectively connected to the first anode foil 1011 and the second anode foil 1012. ), and two negative electrode leads 1132 each connected to the second negative electrode foil 1022.
- the two anode leads 1131 are connected to the anode uncoated portion 111 of the first anode foil 1011 and the anode uncoated portion 111 of the second anode foil 1012, respectively.
- the two negative leads 1132 are connected to the negative electrode uncoated portion 112 of the first negative electrode foil 1021 and the negative negative electrode uncoated portion 112 of the second negative electrode foil 1022, respectively. Accordingly, all of the electricity generated inside the electrode assembly 11 can be supplied to the outside of the secondary battery 1 through the plurality of electrode leads 113.
- the anode lead 1131 and the cathode lead 1132 may be connected to the anode uncoated portion 111 and the cathode uncoated portion 112, respectively, by ultrasonic welding or spot welding. In addition, welding is repeatedly performed along the longitudinal direction of the anode lead 1131 and the cathode lead 1132, so that a plurality of welding portions 2 arranged in a row may be formed as shown in FIGS. 4 and 5.
- this method requires a plurality of electrode leads 113, and since such a plurality of electrode leads 113 must be separately welded to the first and second electrode foils, manufacturing cost and time are excessively consumed. have.
- FIG. 6 is a schematic diagram showing a side view of the electrode leads 113 respectively connected to the uncoated portions 111 and 112 of the anode foils 1011 and 1012 and the cathode foils 1021 and 1022 according to an embodiment of the present invention.
- 7 is a schematic diagram showing the connection of the electrode lead 113 to the uncoated portions 111 and 112 from the top
- FIG. 8 is a schematic diagram showing the connection of the electrode lead 113 to the uncoated portions 111 and 112 It is a schematic diagram shown.
- the electrode current collectors 101 and 102 are formed in a multilayer structure including the electrode insulating layers 1013 and 1023, and the conductive fastening portion 114 is the electrode current collectors 101 and 102 )
- the electrode current collectors 101 and 102 By passing through and connecting the uncoated portions 111 and 112 and the electrode lead 113 together, all of the electricity generated inside the electrode assembly 11 with only one electrode lead 113 can be sufficiently supplied to the outside.
- the first electrode foils 1011 and 1021, the electrode insulating layers 1013 and 1023, and the second electrode foils 1012 and 1022 are sequentially Manufacturing an electrode by applying an electrode active material to at least a portion of the stacked electrode current collectors 101 and 102; Stacking the electrode and the separator; Including the step of connecting the electrode lead 113 to the uncoated portions 111 and 112 to which the electrode active material is not applied in the electrode current collectors 101 and 102, the connecting of the electrode lead 113, The fastening part 114 penetrates and connects the electrode current collectors 101 and 102 and the electrode lead 113 together.
- the electrode assembly 11 manufactured by this method includes: an electrode coated with an electrode active material on at least a portion of the electrode current collectors 101 and 102; A separator laminated between the electrodes; An electrode lead 113 connected to the uncoated portions 111 and 112 on the electrode current collectors 101 and 102 to which the electrode active material is not applied; And a fastening portion 114 that penetrates and connects the electrode current collectors 101 and 102 and the electrode lead 113 together, wherein the electrode current collectors 101 and 102 include a first electrode foil 1011, 1021), electrode insulating layers 1013 and 1023, and second electrode foils 1012 and 1022 are sequentially stacked and formed.
- One electrode lead 113 is brought into contact with the first electrode foils 1011 and 1021 of the electrode current collectors 101 and 102.
- the fastening part 114 penetrates and connects the electrode current collectors 101 and 102 and the electrode lead 113 together.
- one positive lead 1131 is brought into contact with the first positive foil 1011 at the uncoated portions 111 and 112 of the positive electrode current collector 101, and one negative lead In the uncoated portions 111 and 112 of the negative electrode current collector 102, 1132 is brought into contact with the first negative electrode foil 1021.
- one fastening part 114 penetrates and connects the positive electrode current collector 101 and the positive lead 1131 together, and the other fastening part 114 connects the negative electrode current collector 102 and the negative lead 1132. Connect through them together.
- the fastening portion 114 is a rivet.
- the electrode current collectors 101 and 102 and the electrode lead 113 may be connected by rivet coupling using rivets.
- the rivets may be combined after performing a separate perforation work on the electrode current collectors 101 and 102 and the electrode lead 113, but through the rivet without performing a separate perforation work using a rivet gun. It is desirable to connect.
- the heads at both ends of the rivet are formed larger than the size of the hole through which the rivet is fixed so that the rivet does not escape to the outside.
- rivet coupling is repeatedly performed along the length direction of the positive lead 1131 and the negative lead 1132, and as shown in FIGS. 7 and 8, a plurality of fastening portions 114 are arranged in a row to be formed. I can. As a result, the electrode current collectors 101 and 102 and the electrode lead 113 can be more firmly connected.
- the fastening part 114 When the fastening part 114 connects the electrode current collectors 101 and 102 and the electrode lead 113, the first electrode foils 1011 and 1021 and the electrode insulating layers 1013 and 1023 of the electrode current collectors 101 and 102 ) And the second electrode foils 1012 and 1022 are all passed through.
- the fastening portion 114 is made of a conductive material, so that electricity can be conducted. Accordingly, the electricity generated by the first electrode foils 1011 and 1021 is supplied to the outside through the directly connected electrode lead 113, and the electricity generated by the second electrode foils 1012 and 1022 is a conductive fastening part 114 After being transferred to the electrode lead 113 through ), it may be supplied to the outside. Accordingly, all of the electricity generated inside the electrode assembly 11 can be sufficiently supplied to the outside with only one electrode lead 113.
- FIG. 9 is a schematic diagram showing a side view of the electrode leads 113 respectively connected to the uncoated portions 111 and 112 of the anode foils 1011 and 1012 and the cathode foils 1021 and 1022 according to another embodiment of the present invention. to be.
- the fastening part 114 is a rivet, but according to another embodiment of the present invention, the fastening part 114a is a screw. Accordingly, the electrode current collectors 101 and 102 and the electrode lead 113 may be connected by screw coupling using a screw. In this case, the electrode current collectors 101 and 102 and the electrode lead 113 may be separately punched, and then the screw may be combined. If the perforation work to form the thread is performed, it can be connected by inserting only the bolt into the through hole. However, if the perforation work is performed without forming a thread, after inserting the bolt from one side of the through hole, it is possible to fasten the nut to the end of the bolt protruding to the other side.
- the screw may not have a sharp tip.
- the present invention is not limited thereto, and may be directly inserted while performing a perforation operation of forming a thread in the electrode current collectors 101 and 102 and the electrode lead 113 by directly rotating the screw.
- the screw should have a sharp tip.
Landscapes
- Chemical & Material Sciences (AREA)
- Chemical Kinetics & Catalysis (AREA)
- Electrochemistry (AREA)
- General Chemical & Material Sciences (AREA)
- Engineering & Computer Science (AREA)
- Manufacturing & Machinery (AREA)
- Connection Of Batteries Or Terminals (AREA)
- Secondary Cells (AREA)
- Cell Electrode Carriers And Collectors (AREA)
Abstract
상기 과제를 해결하기 위한 본 발명의 실시예에 따른 전극 조립체 제조 방법은 제1 전극 포일, 전극 절연층 및 제2 전극 포일이 순서대로 적층되어 형성된 전극 집전체의 적어도 일부에 전극 활물질을 도포하여 전극을 제조하는 단계; 상기 전극과 분리막을 적층하는 단계; 상기 전극 집전체에서 상기 전극 활물질이 도포되지 않은 무지부에 전극 리드를 연결하는 단계를 포함하되, 상기 전극 리드를 연결하는 단계는, 체결부가 상기 전극 집전체 및 상기 전극 리드를 함께 관통하여 연결시킨다.
Description
관련출원과의 상호인용
본 출원은 2019년 11월 19일자 한국특허출원 제10-2019-0148935호에 기초한 우선권의 이익을 주장하며, 해당 한국특허출원의 문헌에 개시된 모든 내용은 본 명세서의 일부로서 포함된다.
기술분야
본 발명은 전극 조립체 및 그의 제조 방법에 관한 것으로서, 보다 상세하게는 전극 집전체가 전극 절연층을 포함하는 다층 구조로 형성되고, 무지부에 하나의 전극 리드만을 연결하여 내부에서 생성된 전기를 모두 충분히 외부로 공급할 수 있는 전극 조립체 및 그의 제조 방법에 관한 것이다.
일반적으로, 이차 전지의 종류로는 니켈 카드뮴 전지, 니켈 수소 전지, 리튬 이온 전지 및 리튬 이온 폴리머 전지 등이 있다. 이러한 이차 전지는 디지털 카메라, P-DVD, MP3P, 휴대폰, PDA, Portable Game Device, Power Tool 및 E-bike 등의 소형 제품뿐만 아니라, 전기 자동차나 하이브리드 자동차와 같은 고출력이 요구되는 대형 제품과 잉여 발전 전력이나 신재생 에너지를 저장하는 전력 저장 장치와 백업용 전력 저장 장치에도 적용되어 사용되고 있다.
전극 조립체를 제조하기 위해, 양극(Cathode), 분리막(Separator) 및 음극(Anode)을 제조하고, 이들을 적층한다. 구체적으로, 양극 활물질 슬러리를 양극 집전체에 도포하고, 음극 활물질 슬러리를 음극 집전체에 도포하여 양극(Cathode)과 음극(Anode)을 제조한다. 그리고 상기 제조된 양극 및 음극의 사이에 분리막(Separator)이 개재되어 적층되면 단위 셀(Unit Cell)들이 형성되고, 단위 셀들이 서로 적층됨으로써, 전극 조립체가 형성된다. 그리고 이러한 전극 조립체가 특정 케이스에 수용되고 전해액을 주입하면 이차 전지가 제조된다.
그런데, 종래에는 양극 및 음극의 전극이 단층 구조로 형성되어, 전극의 양면끼리 전기가 흐를 수 있었다. 따라서, 외부로부터의 충격으로 전극 조립체가 파손되면, 전극의 일면에서 단락이 발생하고 상기 전극의 타면에도 단락이 발생하였을 때 폭발 등의 위험이 발생할 수 있는 문제가 있었다.
본 발명이 해결하고자 하는 과제는, 전극 집전체가 전극 절연층을 포함하는 다층 구조로 형성되고, 무지부에 하나의 전극 리드만을 연결하여 내부에서 생성된 전기를 모두 충분히 외부로 공급할 수 있는 전극 조립체 및 그의 제조 방법을 제공하는 것이다.
본 발명의 과제들은 이상에서 언급한 과제로 제한되지 않으며, 언급되지 않은 또 다른 과제들은 아래의 기재로부터 당업자에게 명확하게 이해될 수 있을 것이다.
상기 과제를 해결하기 위한 본 발명의 실시예에 따른 전극 조립체 제조 방법은 제1 전극 포일, 전극 절연층 및 제2 전극 포일이 순서대로 적층되어 형성된 전극 집전체의 적어도 일부에 전극 활물질을 도포하여 전극을 제조하는 단계; 상기 전극과 분리막을 적층하는 단계; 상기 전극 집전체에서 상기 전극 활물질이 도포되지 않은 무지부에 전극 리드를 연결하는 단계를 포함하되, 상기 전극 리드를 연결하는 단계는, 체결부가 상기 전극 집전체 및 상기 전극 리드를 함께 관통하여 연결시킨다.
또한, 상기 전극 리드를 연결하는 단계에 있어서, 상기 전극 집전체 및 상기 전극 리드를 리벳 결합으로 연결할 수 있다.
또한, 상기 전극 리드를 연결하는 단계에 있어서, 상기 전극 집전체 및 상기 전극 리드를 스크류 결합으로 연결할 수 있다.
또한, 상기 전극 리드를 연결하는 단계에 있어서, 상기 체결부는, 전도성 재질로 제조될 수 있다.
또한, 상기 전극 리드를 연결하는 단계에 있어서, 상기 체결부가 상기 전극 집전체의 상기 제1 전극 포일, 상기 전극 절연층 및 상기 제2 전극 포일을 모두 관통할 수 있다.
상기 과제를 해결하기 위한 본 발명의 실시예에 따른 전극 조립체는 전극 집전체의 적어도 일부에 전극 활물질이 도포된 전극; 상기 전극 사이에 적층되는 분리막; 상기 전극 집전체에서 상기 전극 활물질이 도포되지 않은 무지부에 연결되는 전극 리드; 및 상기 전극 집전체 및 상기 전극 리드를 함께 관통하여 연결시키는 체결부를 포함하되, 상기 전극 집전체는, 제1 전극 포일, 전극 절연층 및 제2 전극 포일이 순서대로 적층되어 형성된다.
또한, 상기 체결부는, 리벳일 수 있다.
또한, 상기 체결부는, 스크류일 수 있다.
또한, 상기 체결부는, 전도성 재질로 제조될 수 있다.
또한, 상기 체결부는, 상기 전극 집전체의 상기 제1 전극 포일, 상기 전극 절연층 및 상기 제2 전극 포일을 모두 관통할 수 있다.
본 발명의 기타 구체적인 사항들은 상세한 설명 및 도면들에 포함되어 있다.
본 발명의 실시예들에 의하면 적어도 다음과 같은 효과가 있다.
전극 집전체가 전극 절연층을 포함하는 다층 구조로 형성되고, 전도성의 체결부가 전극 집전체의 무지부 및 전극 리드를 함께 관통하여 연결시킴으로써, 하나의 전극 리드만으로 전극 조립체의 내부에서 생성된 전기를 모두 충분히 외부로 공급할 수 있다.
본 발명에 따른 효과는 이상에서 예시된 내용에 의해 제한되지 않으며, 더욱 다양한 효과들이 본 명세서 내에 포함되어 있다.
도 1은 본 발명의 일 실시예에 따른 원통형 이차 전지의 단면 확대도이다.
도 2는 본 발명의 일 실시예에 따른 전극 집전체의 측면을 나타낸 개략도이다.
도 3은 양극 포일 및 음극 포일의 무지부에 복수의 전극 리드가 각각 연결된 모습을 각각 측면에서 나타낸 개략도이다.
도 4는 무지부에 복수의 전극 리드가 연결된 모습을 상면에서 나타낸 개략도이다.
도 5는 무지부에 복수의 전극 리드가 연결된 모습을 하면에서 나타낸 개략도이다.
도 6은 본 발명의 일 실시예에 따른 양극 포일 및 음극 포일의 무지부에 전극 리드가 각각 연결된 모습을 각각 측면에서 나타낸 개략도이다.
도 7은 무지부에 전극 리드가 연결된 모습을 상면에서 나타낸 개략도이다.
도 8은 무지부에 전극 리드가 연결된 모습을 하면에서 나타낸 개략도이다.
도 9는 본 발명의 다른 실시예에 따른 양극 포일 및 음극 포일의 무지부에 전극 리드가 각각 연결된 모습을 각각 측면에서 나타낸 개략도이다.
본 발명의 이점 및 특징, 그리고 그것들을 달성하는 방법은 첨부되는 도면과 함께 상세하게 후술되어 있는 실시예들을 참조하면 명확해질 것이다. 그러나 본 발명은 이하에서 개시되는 실시예들에 한정되는 것이 아니라 서로 다른 다양한 형태로 구현될 수 있으며, 단지 본 실시예들은 본 발명의 개시가 완전하도록 하고, 본 발명이 속하는 기술분야에서 통상의 지식을 가진 자에게 발명의 범주를 완전하게 알려주기 위해 제공되는 것이며, 본 발명은 청구항의 범주에 의해 정의될 뿐이다. 명세서 전체에 걸쳐 동일 참조 부호는 동일 구성 요소를 지칭한다.
다른 정의가 없다면, 본 명세서에서 사용되는 모든 용어(기술 및 과학적 용어를 포함)는 본 발명이 속하는 기술분야에서 통상의 지식을 가진 자에게 공통적으로 이해될 수 있는 의미로 사용될 수 있을 것이다. 또 일반적으로 사용되는 사전에 정의되어 있는 용어들은 명백하게 특별히 정의되어 있지 않는 한 이상적으로 또는 과도하게 해석되지 않는다.
본 명세서에서 사용된 용어는 실시예들을 설명하기 위한 것이며 본 발명을 제한하고자 하는 것은 아니다. 본 명세서에서, 단수형은 문구에서 특별히 언급하지 않는 한 복수형도 포함한다. 명세서에서 사용되는 "포함한다(comprises)" 및/또는 "포함하는(comprising)"은 언급된 구성요소 외에 하나 이상의 다른 구성요소의 존재 또는 추가를 배제하지 않는다.
이하, 첨부된 도면을 참조하여 본 발명의 바람직한 실시예를 상세히 설명하기로 한다.
도 1은 본 발명의 일 실시예에 따른 원통형 이차 전지(1)의 단면 확대도이다.
원통형 이차 전지(1)를 제조하기 위해서는, 먼저 전극 활물질과 바인더 및 가소제를 혼합한 슬러리를 양극 집전체(101) 및 음극 집전체(102)에 도포하여 양극과 음극 등의 전극을 제조하고, 이를 분리막(Separator)의 양 측에 적층함으로써 소정 형상의 전극 조립체(11)를 형성한다. 그리고 전지 캔(12)의 상부에 외측에서 내측으로 압력을 인가하여 전지 캔(12)을 연신시킴으로써 비딩부(14)를 형성한다. 그리고 전극 조립체(11)를 전지 캔(12)에 삽입하고 전해액을 주입한다. 다음에, 상기 비딩부(14)의 상부에 크림핑 가스켓(136)을 안착시킨 후, 캡 조립체(13)로 전지 캔(12)의 상단 개방부를 밀폐한다. 이러한 원통형 이차 전지(1)는, 일정한 출력을 안정적으로 제공하는 휴대폰, 노트북, 전기 자동차 등의 전원으로 사용될 수 있다.
원통형 이차 전지(1)는 도 1에 도시된 바와 같이, 젤리-롤 형태의 전극 조립체(11), 전극 조립체(11)를 내부에 수용하는 원통형 전지 캔(12), 전지 캔(12)의 상부에 결합되어 전지 캔(12)의 상단 개방부를 밀폐하는 캡 조립체(13), 캡 조립체(13)를 장착하기 위해 전지 캔(12)의 상부에 외측에서 내측으로 함몰된 비딩부(14) 및 전지를 밀봉하기 위한 크림핑부(15)를 포함한다.
전극 조립체(11)는 전극 및 분리막이 적층되어 형성된다. 구체적으로, 전극 조립체(11)는 양극 및 음극 등 두 종류의 전극과, 상기 전극들을 상호 절연시키기 위해 전극들 사이에 개재되는 분리막을 포함한다. 이러한 전극 조립체(11)는 스택형, 젤리 롤(Jelly Roll)형, 스택 앤 폴딩형 등이 있다. 두 종류의 전극, 즉 양극과 음극은 각각 전극 절연층(1013, 1023)을 포함하는 다층 구조의 전극 집전체(101, 102)에 활물질 슬러리가 도포된 구조이다. 본 발명의 일 실시예에 따른 전극 집전체(101, 102)는 두 개의 전극 포일 사이에 전극 절연층(1013, 1023)이 적층된 다층 구조로 형성된다. 전극 집전체(101, 102)에 대한 자세한 설명은 후술한다. 슬러리는 통상적으로 입상의 활물질, 보조 도체, 바인더 및 가소제 등이 용매가 첨가된 상태에서 교반되어 형성될 수 있다. 용매는 후속 공정에서 제거된다. 이하, 본 발명의 일 실시예에 따른 전극 조립체(11)는 젤리 롤형인 것으로 설명하나, 이는 설명의 편의를 위한 것이며, 권리범위를 제한하기 위함이 아니다.
젤리 롤형 전극 조립체(11)를 제조하기 위해, 길이가 긴 양극과 음극의 전극 한 쌍과 분리막 하나를 적층하고, 일측으로부터 타측으로 권취한다. 전극 조립체(11)의 전극은 전극 집전체(101, 102)에 전극 활물질이 도포된 부분과 전극 활물질이 도포되지 않은 말단 부분, 즉 무지부(111, 112)로 구성된다. 그리고 전극이 권취되는 방향으로 시작단과 끝단에 무지부(111, 112, 도 3에 도시됨)가 존재할 수 있다. 무지부(111, 112)에는 각각의 전극에 대응되는 한 쌍의 전극 리드(113)가 연결된다. 양극 무지부(111)에 일단이 연결되는 양극 리드(1131)는 전극 조립체(11)의 상단에서 인출되어 캡 조립체(13)에 타단이 전기적으로 연결되고, 음극 무지부(112)에 일단이 연결되는 음극 리드(1132)는 전극 조립체(11)의 하단에서 인출되어 전지 캔(12)의 바닥부에 타단이 연결된다. 다만 이에 제한되지 않고, 양극 리드(1131)와 음극 리드(1132)는 모두 캡 조립체(13)를 향하는 방향으로 인출되는 등 다양한 방향으로 인출될 수도 있다.
전극 조립체(11)의 상단 및 하단에는 각각 전극 조립체(11)를 절연하는 절연판(16)이 배치된다. 상단에 배치되는 상부 절연판(16)은 전극 조립체(11)와 캡 조립체(13) 사이에 배치되어 전극 조립체(11)를 절연하고, 하단에 배치되는 하부 절연판(미도시)은 전극 조립체(11)와 전지 캔(12)의 바닥부 사이에 배치되어 전극 조립체(11)를 절연한다.
전지 캔(12)은 전극 조립체(11)를 내부에 수납하는, 강성의 재질로 제조된 캔이다. 전지 캔(12)은 원통형으로 형성될 수 있으나, 전극 조립체(11)의 형태에 따라 각형 등 다양한 형태로 형성되어, 전극 조립체(11)를 용이하게 내부에 수납할 수 있다.
이러한 전지 캔(12)은 알루미늄, 니켈, 스테인리스 스틸 또는 이들의 합금과 같은 경량의 전도성 금속 재질로 구성되며, 상단이 개방된 개방부와 그와 대향되는 밀폐된 바닥부를 가질 수 있다. 전지 캔(12)의 중앙에는 젤리 롤 형태로 권취된 전극 조립체(11)가 권출되는 것을 방지하고 이차 전지(1) 내부의 가스의 이동 통로의 역할을 수행하는 센터핀(미도시)이 삽입될 수도 있다.
캡 조립체(13)는 전지 캔(12)의 상단에 형성된 개방부에 결합되어 전지 캔(12)의 개방부를 밀폐시킨다. 이러한 캡 조립체(13)는, 전지 캔(12)의 형태에 따라 원형 또는 각형 등 다양한 형태로 형성될 수 있다. 만약 전지 캔(12)이 원통형으로 형성된다면, 캡 조립체(13)도 이에 대응되는 형상인 원반 형상으로 형성되는 것이 바람직하다.
캡 조립체(13)는 전지 캔(12)의 개방부를 밀폐하고 양극 단자를 형성하는 탑 캡(131), 전지 내부의 온도 상승시 저항이 증가하여 전류를 차단하는 PTC 소자(132), 비정상 전류로 인하여 전지 내부의 압력 상승시 전류를 차단하고 내부의 기체를 배기하는 안전 벤트(133), 특정 부분을 제외하고 안전 벤트(133)를 CID 필터(135)로부터 전기적으로 분리시키는 CID 가스켓(134), 양극에 연결된 양극 리드(1131)가 접속되고 전지 내의 고압 발생 시 전류를 차단하는 CID 필터(135)가 순차적으로 적층된 구조를 가진다.
그리고 캡 조립체(13)는 크림핑 가스켓(136)에 장착된 상태로 전지 캔(12)의 비딩부(14)에 설치된다. 따라서, 정상적인 작동 조건에서 전극 조립체(11)의 양극은 양극 리드(1131), CID 필터(135), 안전 벤트(133) 및 PTC 소자(132)를 경유하여 탑 캡(131)에 연결되어 통전을 이룬다.
탑 캡(131)은 캡 조립체(13)의 최상부에, 상부 방향으로 돌출된 형태로 배치되어 양극 단자를 형성한다. 따라서, 상기 탑 캡(131)은 부하 또는 충전 장치와 같은 외부 장치에 전기적으로 접속될 수 있다. 탑 캡(131)에는 이차 전지(1)의 내부에서 발생한 기체가 배출되는 기체 구멍(1311)이 형성될 수 있다. 따라서, 과충전 등과 같은 원인에 의해 전극 조립체(11)쪽으로부터 기체가 발생하여 내압이 증가하면, 전류차단부재의 CID 필터(135) 및 안전 벤트(133)가 파열되고, 내부의 기체는 상기 파열된 부분 및 기체 구멍(1311)을 통해 외부로 배출될 수 있다. 따라서, 충방전이 더 이상 진행되지 않고 이차 전지(1)의 안전성을 확보할 수 있다. 이러한 탑 캡(131)은 스테인리스 스틸 또는 알루미늄과 같은 금속 재질로 제조될 수 있다.
탑 캡(131)에서 PTC 소자(132)와 접촉하는 부위의 두께는, 외부로부터 인가되는 압력으로부터 캡 조립체(13)의 여러 구성 요소들을 보호할 수 있는 범위라면 특별히 제한되는 것은 아니며, 예를 들면, 0.3 내지 0.5mm일 수 있다. 탑 캡(131) 부위의 두께가 너무 얇으면 기계적 강성을 발휘하기 어렵고, 반대로 너무 두꺼우면 크기 및 중량 증가에 의해 동일 규격 대비 전지의 용량을 감소시킬 수 있다.
PTC 소자(Positive Temperature Coefficient element, 132)는 전지 내부의 온도 상승시 전지 저항이 증가하여 전류를 차단한다. 즉, PTC 소자(132)는, 정상적인 상태에서는 탑 캡(131)과 안전 벤트(133)를 전기적으로 연결시킨다. 그러나 비정상 상태, 예를 들어 온도가 비정상적으로 상승 할 때에는, PTC 소자(132)는 탑 캡(131)과 안전 벤트(133) 간의 전기적 연결을 차단시킨다. 이러한 PTC 소자(132)의 두께 역시 소재 및 구조 등에 따라 달라질 수 있으며, 예를 들면 0.2 내지 0.4mm일 수 있다. PTC 소자(132)의 두께가 0.4mm 보다 두꺼우면 내부 저항이 상승하고, 전지의 크기를 증가시켜 동일 규격 대비 전지 용량을 감소시킬 수 있다. 반대로, PTC 소자(132)의 두께가 0.2mm 보다 얇으면, 고온에서 전류 차단 효과를 발휘하기 어렵고 약한 외부 충격에 의해서도 파괴될 수 있다. 따라서, PTC 소자(132)의 두께는 이러한 점들을 복합적으로 고려하여 상기 두께 범위 내에서 적절히 결정될 수 있다.
안전 벤트(133)는 비정상 전류로 인하여 전지 내부의 압력 상승시 전류를 차단하거나 가스를 배기하며, 금속 재질일 수 있다. 안전 벤트(133)는 주변부의 외측이 크림핑 가스켓(136)에 삽입되고, 중심부는 하면이 CID 필터(135)와 연결되어, 전지의 내압이 증가하면 CID 필터(135)가 파열되면서 안전 벤트(133)의 형상이 역전된다. 안전 벤트(133)의 두께는 소재 및 구조 등에 따라 달라질 수 있으며, 전지 내부의 소정의 고압 발생시 파열되면서 가스 등을 배출할 수 있다면 특별히 제한되는 것은 아니며, 예를 들면 0.2 내지 0.6 mm일 수 있다.
전류차단부재(CID, Current Interrupt Device)는 안전 벤트(133)와 전극 조립체(11) 사이에 위치하여, 전극 조립체(11)와 안전 벤트(133)를 전기적으로 접속시킨다. 이러한 전류차단부재는 안전 벤트(133)와 접촉하여 전류를 전달하는 CID 필터(135) 및 일부 영역을 제외하고 상기 CID 필터(135)와 안전 벤트(133) 사이를 공간적으로 분리하여 절연시키는 CID 가스켓(134)을 포함한다.
CID 필터(135)는 상부의 적어도 일부분이 안전 벤트(133)의 중앙에 돌출된 중심부의 하면에 연결되고, 하부의 적어도 일부분이 전극 조립체(11)의 전극 리드(113), 특히 양극 리드(1131)와 연결된다. 따라서, 정상적인 상태에서는 전극 조립체(11)로부터 생성된 양극 전류가 양극 리드(1131)를 거쳐 CID 필터(135)를 경유하여 안전 벤트(133)로 흐름으로써 이차 전지(1)의 방전이 이루어질 수 있다. 그러나, 이차 전지(1)의 내부에서 발생한 기체로 인하여, 전지의 내압이 증가하여 안전 벤트(133)의 형상이 역전되면, 안전 벤트(133)와 CID 필터(135) 사이의 연결이 탈착되거나, CID 필터(135)가 파열된다. 그럼으로써, 안전 벤트(133)와 전극 조립체(11) 사이의 전기적 접속이 차단되어, 안전성을 확보할 수 있다.
이와 같은 캡 조립체(13)를 포함하는 이차 전지(1)는, 전동드릴 등과 같은 파워툴의 동력원으로 사용되는 경우에는 순간적으로 높은 출력을 제공할 수 있고 진동, 낙하 등과 같은 외부의 물리적 충격에 대해서도 안정적일 수 있다.
전지 캔(12)의 상부에는 외측에서 내측으로 절곡된 비딩부(14)가 형성된다. 비딩부(14)는 상기 탑 캡(131), PTC 소자(132), 안전 벤트(133) 및 전류차단부재가 적층된 캡 조립체(13)를 전지 캔(12)의 상단에 위치시키고, 전극 조립체(11)의 상하 방향의 이동을 방지한다.
상기 기술한 바와 같이, 캡 조립체(13)는 크림핑 가스켓(136)에 장착된 상태로 전지 캔(12)의 비딩부(14)에 설치된다. 크림핑 가스켓(136)은 안전 벤트(133)의 주변부(1331)의 최외각 부분을 포위하여 절연시킨다. 그럼으로써, 안전 벤트(133)에 흐르는 양극 전류와, 전지 캔(12)에 흐르는 음극 전류가 접촉하여 쇼트가 발생하는 것을 방지한다.
크림핑 가스켓(136)은 안전 벤트(133)의 주변부(1331)를 용이하게 포위하기 위해, 양단이 개방된 원통형의 형태를 가지며, 전지 캔(12)의 내부를 향하는 일측 단은 도 2에 도시된 바와 같이, 중심축을 향해 대략 수직으로 1차 절곡된 후, 다시 전지 캔(12)의 내부를 향해 대략 수직으로 2차 절곡되어 비딩부(14)에 안착된다. 그리고 크림핑 가스켓(136)의 타측 단은, 최초에는 중심축과 평행한 방향으로 연장되어 있다. 그러나, 추후에 캡 조립체(13)를 결합하고 전지 캔(12)의 상단 외벽을 가압하여 크림핑 공정이 진행되면, 크림핑부(15)의 형상을 따라 함께 대략 수직으로 절곡되어 중심축을 향한다. 따라서, 크림핑 가스켓(136)의 내주면은 캡 조립체(13), 외주면은 전지 캔(12)의 내주면에 밀착된다. 여기서 크림핑 공정이란, 크림핑부(15)를 벤딩하여, 크림핑부(15) 및 크림핑 가스켓(136)이 캡 조립체(13)의 외면을 밀봉시키는 것이다. 크림핑 가스켓(136)은 절연성, 내충격성, 탄력성 및 내구성을 가진 소재, 예를 들어 폴리올레핀(Polyolefine) 또는 폴리프로필렌(PP) 등의 폴리머로 제조되는 것이 바람직하다.
전극 조립체(11)의 무지부(111, 112)에 전극 리드(113)가 연결되면, 전극 조립체(11)를 전지 캔(12)에 삽입하고 양극 리드(1131)는 캡 조립체(13)의 CID 필터(135)에 연결하며, 음극 리드(1132)는 전지 캔(12)의 바닥부에 연결한다. 그리고, 내부에 전해액을 주입한다. 다음에, 상기 비딩부(14)의 상부에 크림핑 가스켓(136)을 안착시킨 후, 캡 조립체(13)로 전지 캔(12)의 상단 개방부를 밀폐한다. 전해액은 이차 전지(1)의 충, 방전 시 전극의 전기 화학적 반응에 의해 생성되는 리튬 이온을 이동시키기 위한 것으로, 리튬염과 고순도 유기 용매(2)류의 혼합물인 비수질계 유기 전해액 또는 고분자 전해질을 이용한 폴리머를 포함할 수 있다. 이와 같은 방법을 통해 원통형 이차 전지(1)가 제조될 수 있다.
도 2는 본 발명의 일 실시예에 따른 전극 집전체(101, 102)의 측면을 나타낸 개략도이다.
상기 기술한 바와 같이, 양극과 음극 등의 전극은, 전극 활물질과 바인더 및 가소제를 혼합한 슬러리를 양극 집전체(101) 및 음극 집전체(102) 등의 전극 집전체(101, 102)에 각각 도포하여 제조한다.
종래에는 양극 집전체(101) 및 음극 집전체(102)가 각각 단층 구조로 형성되었다. 따라서, 외부로부터의 충격으로 전극 조립체(11)가 파손되면, 단락으로 인한 폭발 등의 위험이 발생할 수 있는 문제가 있었다. 그러나, 본 발명의 일 실시예에 따르면, 도 2에 도시된 바와 같이 전극 집전체(101, 102)는 제1 및 제2 전극 포일 사이에 전극 절연층(1013, 1023)이 적층된 다층 구조로 형성된다. 구체적으로, 양극 집전체(101)는 제1 양극 포일(1011), 양극 절연층(1013) 및 제2 양극 포일(1012)이 순서대로 적층되어 형성된다. 그리고 음극 집전체(102)는 제1 음극 포일(1021), 음극 절연층(1023) 및 제2 음극 포일(1022)이 순서대로 적층되어 형성된다.
제1 및 제2 양극 포일(1011, 1012)은 화학적 변화를 유발하지 않고 높은 도전성을 가지는 재료로 제조된다. 예를 들어, 스테인리스 스틸, 알루미늄, 니켈, 티탄, 소성 탄소 또는 알루미늄이나 스테인리스 스틸의 표면에 카본, 니켈, 티탄, 은 등을 표면 처리한 것일 수 있으며, 특히 알루미늄인 것이 바람직하나 이에 제한되지 않는다. 그리고 제1 및 제2 양극 포일(1011, 1012)은 양극 활물질의 접착력을 높이기 위해 표면에 미세한 요철을 형성할 수도 있다.
제1 및 제2 음극 포일(1021, 1022)은 화학적 변화를 유발하지 않고 도전성을 가지는 재료로 제조된다. 예를 들어, 구리, 스테인리스 스틸, 니켈, 티탄, 소성 탄소 또는 구리나 스테인리스 스틸의 표면에 카본, 니켈, 티탄, 은 등을 표면 처리한 것, 또는 알루미늄-카드뮴 합금일 수 있으며, 특히 구리 또는 니켈을 도금한 구리인 것이 바람직하나, 이에 제한되지 않는다. 그리고 제1 및 제2 음극 포일(1021, 1022)은 음극 활물질의 결합력을 높이기 위해 표면에 미세한 요철을 형성할 수도 있다.
양극 절연층(1013)은 제1 양극 포일(1011)과 제2 양극 포일(1012)의 사이에 적층되어, 제1 양극 포일(1011)과 제2 양극 포일(1012) 사이를 절연시킨다. 그리고, 음극 절연층(1023)은 제1 음극 포일(1021)과 제2 음극 포일(1022)의 사이에 적층되어, 제1 음극 포일(1021)과 제2 음극 포일(1022) 사이를 절연시킨다. 그럼으로써, 외부로부터의 충격으로 전극 조립체(11)가 파손되더라도, 하나의 전극에서 일면과 타면을 전기적으로 단절시킴으로써, 단락으로 인한 폭발 등의 위험을 미리 방지하여 안전성을 확보할 수 있다. 이러한 양극 절연층(1013) 및 음극 절연층(1023)은 폴리에틸렌, 폴리프로필렌, 폴리카보네이트, 폴리에틸렌테레프탈레이트, 폴리염화비닐, 아크릴계 고분자, 폴리아크릴로나이트릴, 폴리이미드, 폴리아마이드, 셀룰로오스, 아라미드, 나일론, 폴리에스테르, 폴리파라페닐렌벤조비스옥사졸, 폴리아릴레이트, 테프론, 및 유리섬유로 이루어진 군으로부터 선택된 하나 이상의 물질로 이루어질 수 있다. 특히, 주로 내마모성 및 내열성을 가지는 나일론(Nylon) 수지 또는 폴리에틸렌테레프탈레이트(PET) 등의 폴리머가 사용된다.
도 3은 양극 포일(1011, 1012) 및 음극 포일(1021, 1022)의 무지부(111, 112)에 복수의 전극 리드(113)가 각각 연결된 모습을 각각 측면에서 나타낸 개략도이고, 도 4는 무지부(111, 112)에 복수의 전극 리드(113)가 연결된 모습을 상면에서 나타낸 개략도이며, 도 5는 무지부(111, 112)에 복수의 전극 리드(113)가 연결된 모습을 하면에서 나타낸 개략도이다.
상기 기술한 바와 같이, 양극 리드(1131)는 양극 무지부(111)에 일단이 연결되고 전극 조립체(11)의 상단에서 인출되어 캡 조립체(13)에 타단이 전기적으로 연결된다. 그리고 음극 리드(1132)는 음극 무지부(112)에 일단이 연결되고 전극 조립체(11)의 하단에서 인출되어 전지 캔(12)의 바닥부에 타단이 연결된다.
양극 리드(1131) 및 음극 리드(1132)는 서로 그 재질이 다를 수 있다. 즉, 양극 리드(1131)는 양극 집전체(101)의 양극 포일(1011, 1012)과 동일한 알루미늄(Al) 재질이며, 음극 리드(1132)는 음극 집전체(102)의 음극 포일(1021, 1022)과 동일한 구리(Cu) 재질 또는 니켈(Ni)이 코팅된 구리 재질일 수 있다.
한편, 전극 집전체(101, 102)가 단층 구조로 형성된다면, 하나의 전극 리드(113)가 무지부(111, 112)의 일면에만 연결되더라도, 전극 조립체(11) 내부에서 생성된 전기를 모두 충분히 이차 전지(1)의 외부로 공급할 수 있다.
그러나, 본 발명의 일 실시예에 따르면 전극 집전체(101, 102)가 제1 및 제2 전극 포일 사이에 전극 절연층(1013, 1023)이 적층된 다층 구조로 형성되므로, 하나의 전극 리드(113)가 하나의 전극 포일에만 연결된다면, 다른 전극 포일은 전극 리드(113)와 연결되지 않으므로 전극 조립체(11) 내부에서 생성된 전기가 모두 외부로 공급되지 않는다. 따라서, 복수의 전극 리드(113)가 각각의 전극 포일에 모두 연결되어야 한다.
이러한 복수의 전극 리드(113)는 도 3에 도시된 바와 같이, 제1 양극 포일(1011), 제2 양극 포일(1012)에 각각 연결되는 두 개의 양극 리드(1131) 및 제1 음극 포일(1021), 제2 음극 포일(1022)에 각각 연결되는 두 개의 음극 리드(1132)를 포함한다.
구체적으로, 두 개의 양극 리드(1131)는 제1 양극 포일(1011)의 양극 무지부(111)와, 제2 양극 포일(1012)의 양극 무지부(111)에 각각 연결된다. 그리고, 두 개의 음극 리드(1132)는 제1 음극 포일(1021)의 음극 무지부(112)와, 제2 음극 포일(1022)의 음극 무지부(112)에 각각 연결된다. 그럼으로써, 복수의 전극 리드(113)를 통해 전극 조립체(11) 내부에서 생성된 전기를 모두 이차 전지(1)의 외부로 공급할 수 있다. 양극 리드(1131)와 음극 리드(1132)는 각각 양극 무지부(111)와 음극 무지부(112)에 초음파 용접, 스팟(Spot) 용접 등으로 연결될 수 있다. 그리고 양극 리드(1131) 및 음극 리드(1132)의 길이 방향을 따라 용접이 반복적으로 수행되어, 도 4 및 도 5에 도시된 바와 같이, 일렬로 나열된 복수의 용접부(2)를 형성할 수 있다.
그러나, 이러한 방법은 복수의 전극 리드(113)가 필요하고, 이러한 복수의 전극 리드(113)를 제1 및 제2 전극 포일에 각각 별도로 용접하여야 하므로, 제조 비용 및 시간이 과도하게 소모되는 문제가 있다.
도 6은 본 발명의 일 실시예에 따른 양극 포일(1011, 1012) 및 음극 포일(1021, 1022)의 무지부(111, 112)에 전극 리드(113)가 각각 연결된 모습을 각각 측면에서 나타낸 개략도이고, 도 7은 무지부(111, 112)에 전극 리드(113)가 연결된 모습을 상면에서 나타낸 개략도이며, 도 8은 무지부(111, 112)에 전극 리드(113)가 연결된 모습을 하면에서 나타낸 개략도이다.
본 발명의 일 실시예에 따르면, 전극 집전체(101, 102)가 전극 절연층(1013, 1023)을 포함하는 다층 구조로 형성되고, 전도성의 체결부(114)가 전극 집전체(101, 102)의 무지부(111, 112) 및 전극 리드(113)를 함께 관통하여 연결시킴으로써, 하나의 전극 리드(113)만으로 전극 조립체(11)의 내부에서 생성된 전기를 모두 충분히 외부로 공급할 수 있다.
이를 위해, 본 발명의 일 실시예에 따른 전극 조립체(11) 제조 방법은 제1 전극 포일(1011, 1021), 전극 절연층(1013, 1023) 및 제2 전극 포일(1012, 1022)이 순서대로 적층되어 형성된 전극 집전체(101, 102)의 적어도 일부에 전극 활물질을 도포하여 전극을 제조하는 단계; 상기 전극과 분리막을 적층하는 단계; 상기 전극 집전체(101, 102)에서 상기 전극 활물질이 도포되지 않은 무지부(111, 112)에 전극 리드(113)를 연결하는 단계를 포함하되, 상기 전극 리드(113)를 연결하는 단계는, 체결부(114)가 상기 전극 집전체(101, 102) 및 상기 전극 리드(113)를 함께 관통하여 연결시킨다.
그리고 이러한 방법으로 제조된 본 발명의 일 실시예에 따른 전극 조립체(11)는 전극 집전체(101, 102)의 적어도 일부에 전극 활물질이 도포된 전극; 상기 전극 사이에 적층되는 분리막; 상기 전극 집전체(101, 102)에서 상기 전극 활물질이 도포되지 않은 무지부(111, 112)에 연결되는 전극 리드(113); 및 상기 전극 집전체(101, 102) 및 상기 전극 리드(113)를 함께 관통하여 연결시키는 체결부(114)를 포함하되, 상기 전극 집전체(101, 102)는, 제1 전극 포일(1011, 1021), 전극 절연층(1013, 1023) 및 제2 전극 포일(1012, 1022)이 순서대로 적층되어 형성된다.
하나의 전극 리드(113)를 전극 집전체(101, 102)의 제1 전극 포일(1011, 1021)에 접촉시킨다. 그리고 체결부(114)가 전극 집전체(101, 102) 및 전극 리드(113)를 함께 관통하여 연결시킨다. 구체적으로 도 6에 도시된 바와 같이, 먼저 하나의 양극 리드(1131)를 양극 집전체(101)의 무지부(111, 112)에서, 제1 양극 포일(1011)에 접촉시키고, 하나의 음극 리드(1132)를 음극 집전체(102)의 무지부(111, 112)에서, 제1 음극 포일(1021)에 접촉시킨다. 그리고 하나의 체결부(114)는 양극 집전체(101) 및 양극 리드(1131)를 함께 관통하여 연결시키고, 다른 하나의 체결부(114)는 음극 집전체(102) 및 음극 리드(1132)를 함께 관통하여 연결시킨다.
본 발명의 일 실시예에 따르면 체결부(114)는 리벳이다. 따라서, 전극 집전체(101, 102) 및 전극 리드(113)는 리벳을 이용한 리벳 결합으로 연결될 수 있다. 이 때, 전극 집전체(101, 102) 및 전극 리드(113)에 별도로 타공 작업을 수행한 후에 리벳을 결합할 수도 있으나, 리벳건을 이용하여 별도의 타공 작업을 수행할 필요 없이 리벳을 관통하여 연결시키는 것이 바람직하다. 전극 집전체(101, 102) 및 전극 리드(113)에 리벳 결합이 수행되면, 리벳 양 단의 헤드가 관통된 홀의 크기보다 더 크게 형성되어, 상기 리벳이 외부로 이탈하지 않도록 고정시킬 수 있다.
그리고 양극 리드(1131) 및 음극 리드(1132)의 길이 방향을 따라 리벳 결합이 반복적으로 수행되어, 도 7 및 도 8에 도시된 바와 같이, 복수의 체결부(114)가 일렬로 나열되어 형성될 수 있다. 그럼으로써, 전극 집전체(101, 102) 및 전극 리드(113)가 더욱 견고하게 연결될 수 있다.
체결부(114)가 전극 집전체(101, 102)와 전극 리드(113)를 연결시키면, 전극 집전체(101, 102)의 제1 전극 포일(1011, 1021), 전극 절연층(1013, 1023) 및 제2 전극 포일(1012, 1022)을 모두 관통한다. 그리고, 체결부(114)는 전도성 재질로 제조되어, 전기가 통전될 수 있다. 따라서, 제1 전극 포일(1011, 1021)에서 생성된 전기는 직접 연결된 전극 리드(113)를 통해 외부로 공급되고, 제2 전극 포일(1012, 1022)에서 생성된 전기는 전도성의 체결부(114)를 통해 전극 리드(113)로 전달된 후 외부로 공급될 수 있다. 따라서, 하나의 전극 리드(113)만으로 전극 조립체(11)의 내부에서 생성된 전기를 모두 충분히 외부로 공급할 수 있다.
도 9는 본 발명의 다른 실시예에 따른 양극 포일(1011, 1012) 및 음극 포일(1021, 1022)의 무지부(111, 112)에 전극 리드(113)가 각각 연결된 모습을 각각 측면에서 나타낸 개략도이다.
본 발명의 일 실시예에 따르면 체결부(114)는 리벳이나, 본 발명의 다른 실시예에 따르면 체결부(114a)는 스크류이다. 따라서, 전극 집전체(101, 102) 및 전극 리드(113)는 스크류를 이용한 스크류 결합으로 연결될 수 있다. 이 때, 전극 집전체(101, 102) 및 전극 리드(113)에 별도로 타공 작업을 수행한 후에 스크류를 결합할 수도 있다. 만약 나사산을 형성하는 타공 작업을 수행한다면, 관통된 홀에 볼트만을 삽입함으로써 연결될 수 있다. 그러나 만약 나사산을 형성하지 않는 타공 작업을 수행한다면, 관통된 홀의 일측으로부터 볼트를 삽입한 후, 타측으로 돌출된 볼트의 끝에 너트를 체결할 수도 있다. 이러한 경우에 스크류는 끝이 첨예하지 않을 수 있다. 다만 이에 제한되지 않고, 스크류를 직접 회전시켜, 전극 집전체(101, 102) 및 전극 리드(113)에 나사산을 형성하는 타공 작업을 수행하면서 곧바로 삽입될 수도 있다. 이러한 경우에 스크류는 끝이 첨예하여야 한다. 전극 집전체(101, 102) 및 전극 리드(113)에 스크류 결합이 수행되면, 관통된 홀에 형성된 나사산과 스크류 자체의 나사산이 결합되므로, 스크류가 외부로 이탈하지 않도록 고정될 수 있다.
본 발명이 속하는 기술분야의 통상의 지식을 가진 자는 본 발명이 그 기술적 사상이나 필수적인 특징을 변경하지 않고서 다른 구체적인 형태로 실시될 수 있다는 것을 이해할 수 있을 것이다. 그러므로 이상에서 기술한 실시예들은 모든 면에서 예시적인 것이며 한정적이 아닌 것으로 이해해야만 한다. 본 발명의 범위는 상기 상세한 설명보다는 후술하는 특허청구범위에 의하여 나타내어지며, 특허청구범위의 의미 및 범위 그리고 그 균등 개념으로부터 도출되는 다양한 실시 형태가 본 발명의 범위에 포함되는 것으로 해석되어야 한다.
Claims (10)
- 제1 전극 포일, 전극 절연층 및 제2 전극 포일이 순서대로 적층되어 형성된 전극 집전체의 적어도 일부에 전극 활물질을 도포하여 전극을 제조하는 단계;상기 전극과 분리막을 적층하는 단계;상기 전극 집전체에서 상기 전극 활물질이 도포되지 않은 무지부에 전극 리드를 연결하는 단계를 포함하되,상기 전극 리드를 연결하는 단계는,체결부가 상기 전극 집전체 및 상기 전극 리드를 함께 관통하여 연결시키는 전극 조립체 제조 방법.
- 제1항에 있어서,상기 전극 리드를 연결하는 단계에 있어서,상기 전극 집전체 및 상기 전극 리드를 리벳 결합으로 연결하는 전극 조립체 제조 방법.
- 제1항에 있어서,상기 전극 리드를 연결하는 단계에 있어서,상기 전극 집전체 및 상기 전극 리드를 스크류 결합으로 연결하는 전극 조립체 제조 방법.
- 제1항에 있어서,상기 전극 리드를 연결하는 단계에 있어서,상기 체결부는,전도성 재질로 제조되는 전극 조립체 제조 방법.
- 제1항에 있어서,상기 전극 리드를 연결하는 단계에 있어서,상기 체결부가 상기 전극 집전체의 상기 제1 전극 포일, 상기 전극 절연층 및 상기 제2 전극 포일을 모두 관통하는 전극 조립체 제조 방법.
- 전극 집전체의 적어도 일부에 전극 활물질이 도포된 전극;상기 전극 사이에 적층되는 분리막;상기 전극 집전체에서 상기 전극 활물질이 도포되지 않은 무지부에 연결되는 전극 리드; 및상기 전극 집전체 및 상기 전극 리드를 함께 관통하여 연결시키는 체결부를 포함하되,상기 전극 집전체는,제1 전극 포일, 전극 절연층 및 제2 전극 포일이 순서대로 적층되어 형성되는 전극 조립체.
- 제6항에 있어서,상기 체결부는,리벳인 전극 조립체.
- 제6항에 있어서,상기 체결부는,스크류인 전극 조립체.
- 제6항에 있어서,상기 체결부는,전도성 재질로 제조되는 전극 조립체.
- 제6항에 있어서,상기 체결부는,상기 전극 집전체의 상기 제1 전극 포일, 상기 전극 절연층 및 상기 제2 전극 포일을 모두 관통하는 전극 조립체.
Priority Applications (4)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
US17/774,711 US20220393251A1 (en) | 2019-11-19 | 2020-08-27 | Electrode Assembly and Method for Manufacturing the Same |
EP20888831.3A EP4044355A4 (en) | 2019-11-19 | 2020-08-27 | Electrode assembly and manufacturing method therefor |
CN202080077143.6A CN114641896A (zh) | 2019-11-19 | 2020-08-27 | 电极组件及其制造方法 |
JP2022523502A JP7625229B2 (ja) | 2019-11-19 | 2020-08-27 | 電極組立体およびその製造方法 |
Applications Claiming Priority (2)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
KR1020190148935A KR20210061114A (ko) | 2019-11-19 | 2019-11-19 | 전극 조립체 및 그의 제조 방법 |
KR10-2019-0148935 | 2019-11-19 |
Publications (1)
Publication Number | Publication Date |
---|---|
WO2021101027A1 true WO2021101027A1 (ko) | 2021-05-27 |
Family
ID=75981620
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
PCT/KR2020/011469 WO2021101027A1 (ko) | 2019-11-19 | 2020-08-27 | 전극 조립체 및 그의 제조 방법 |
Country Status (6)
Country | Link |
---|---|
US (1) | US20220393251A1 (ko) |
EP (1) | EP4044355A4 (ko) |
JP (1) | JP7625229B2 (ko) |
KR (1) | KR20210061114A (ko) |
CN (1) | CN114641896A (ko) |
WO (1) | WO2021101027A1 (ko) |
Cited By (1)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CN113571844A (zh) * | 2021-07-14 | 2021-10-29 | 厦门海辰新能源科技有限公司 | 集流体组件的制备方法、集流体组件、电池单体和电池包 |
Families Citing this family (2)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
EP3982473A1 (de) * | 2020-10-12 | 2022-04-13 | Andreas Stihl AG & Co. KG | Akkupack, bearbeitungssystem und verfahren zur herstellung eines akkupacks |
KR20230020177A (ko) * | 2021-08-03 | 2023-02-10 | 주식회사 엘지에너지솔루션 | 전극리드 일체형 전극조립체 및 이의 제조방법 |
Citations (5)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
KR20070078853A (ko) * | 2006-01-31 | 2007-08-03 | 주식회사 엘지화학 | 절연성 코팅의 전극 탭을 포함하고 있는 젤리-롤형이차전지 |
JP2009038004A (ja) * | 2007-07-11 | 2009-02-19 | Nissan Motor Co Ltd | 積層型電池 |
JP2012129114A (ja) * | 2010-12-16 | 2012-07-05 | Sharp Corp | 非水系二次電池 |
KR20130122998A (ko) * | 2012-05-02 | 2013-11-12 | 주식회사 엘지화학 | 신규한 전극 탭-리드 결합부 구조를 가진 이차전지 |
JP2016207542A (ja) * | 2015-04-24 | 2016-12-08 | 昭和電工パッケージング株式会社 | 蓄電デバイス用外装体及び蓄電デバイス |
Family Cites Families (6)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JP2002251989A (ja) * | 2001-02-23 | 2002-09-06 | Mitsubishi Materials Corp | リチウムイオンポリマー二次電池 |
JP5420888B2 (ja) | 2008-12-15 | 2014-02-19 | パナソニック株式会社 | 電池 |
KR101107082B1 (ko) * | 2009-11-24 | 2012-01-20 | 삼성에스디아이 주식회사 | 이차 전지 |
JP2013008564A (ja) | 2011-06-24 | 2013-01-10 | Sharp Corp | 非水系二次電池およびその製造方法 |
JP2013012405A (ja) * | 2011-06-29 | 2013-01-17 | Sharp Corp | 非水系二次電池 |
JP2013239266A (ja) | 2012-05-11 | 2013-11-28 | Gs Yuasa Corp | 電池および電池の製造方法 |
-
2019
- 2019-11-19 KR KR1020190148935A patent/KR20210061114A/ko not_active Application Discontinuation
-
2020
- 2020-08-27 CN CN202080077143.6A patent/CN114641896A/zh active Pending
- 2020-08-27 EP EP20888831.3A patent/EP4044355A4/en active Pending
- 2020-08-27 US US17/774,711 patent/US20220393251A1/en active Pending
- 2020-08-27 JP JP2022523502A patent/JP7625229B2/ja active Active
- 2020-08-27 WO PCT/KR2020/011469 patent/WO2021101027A1/ko unknown
Patent Citations (5)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
KR20070078853A (ko) * | 2006-01-31 | 2007-08-03 | 주식회사 엘지화학 | 절연성 코팅의 전극 탭을 포함하고 있는 젤리-롤형이차전지 |
JP2009038004A (ja) * | 2007-07-11 | 2009-02-19 | Nissan Motor Co Ltd | 積層型電池 |
JP2012129114A (ja) * | 2010-12-16 | 2012-07-05 | Sharp Corp | 非水系二次電池 |
KR20130122998A (ko) * | 2012-05-02 | 2013-11-12 | 주식회사 엘지화학 | 신규한 전극 탭-리드 결합부 구조를 가진 이차전지 |
JP2016207542A (ja) * | 2015-04-24 | 2016-12-08 | 昭和電工パッケージング株式会社 | 蓄電デバイス用外装体及び蓄電デバイス |
Non-Patent Citations (1)
Title |
---|
See also references of EP4044355A4 * |
Cited By (1)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CN113571844A (zh) * | 2021-07-14 | 2021-10-29 | 厦门海辰新能源科技有限公司 | 集流体组件的制备方法、集流体组件、电池单体和电池包 |
Also Published As
Publication number | Publication date |
---|---|
JP7625229B2 (ja) | 2025-02-03 |
KR20210061114A (ko) | 2021-05-27 |
EP4044355A1 (en) | 2022-08-17 |
CN114641896A (zh) | 2022-06-17 |
JP2022554118A (ja) | 2022-12-28 |
US20220393251A1 (en) | 2022-12-08 |
EP4044355A4 (en) | 2023-04-19 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
WO2019208911A1 (ko) | 가스배출수단이 구비된 파우치형 이차전지 | |
WO2013157722A1 (ko) | 이차전지, 이에 적용되는 이차전지용 부품 및 이차전지의 제조 방법 | |
WO2019050152A1 (ko) | 벤팅 가스를 이용하여 커넥터를 파단시키는 구조를 갖는 배터리 모듈 | |
WO2019074198A1 (ko) | 이차 전지 | |
WO2014148858A1 (ko) | 에너지 밀도가 향상된 이차전지 | |
WO2018128283A1 (ko) | 내부의 온도를 측정할 수 있는 전지셀 | |
WO2021101027A1 (ko) | 전극 조립체 및 그의 제조 방법 | |
WO2019045310A1 (ko) | 파우치 형 이차 전지 | |
WO2020045814A1 (ko) | 파우치형 이차 전지 및 이차 전지용 파우치 | |
WO2020235916A1 (ko) | 이차 전지 | |
WO2020175773A1 (ko) | 벤팅 장치 | |
WO2012044035A2 (ko) | 부식방지용 보호층을 포함하는 전극리드, 및 이를 포함하는 이차전지 | |
WO2012177083A2 (ko) | 파우치 및 파우치형 이차전지 | |
WO2021040357A1 (ko) | 이차 전지용 전지 케이스 및 가스 배출부 제조 방법 | |
WO2019050177A1 (ko) | 파우치 형 이차 전지 | |
WO2021040380A1 (ko) | 이차 전지용 전지 케이스 및 파우치 형 이차 전지 제조 방법 | |
WO2020204385A1 (ko) | 이차 전지 | |
WO2019088524A1 (ko) | 이차 전지 및 이차 전지용 절연판 | |
WO2019103392A1 (ko) | 최외곽 전극의 구조 및 집전체의 재질에 의해 사용 안전성이 향상된 전극 조립체 및 상기 전극 조립체를 갖는 리튬이온 이차전지 | |
WO2021096035A1 (ko) | 이차 전지 및 실링 블록 | |
WO2022071759A1 (ko) | 이차전지 및 이를 포함하는 디바이스 | |
WO2018038448A1 (ko) | 전극 조립체 및 이를 포함하는 이차 전지 | |
WO2020166803A1 (ko) | 이차 전지 및 전지 모듈 | |
WO2020166802A1 (ko) | 이차 전지 및 전지 모듈 | |
WO2020179990A1 (ko) | 이차 전지용 파우치 및 파우치 형 이차 전지 |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
ENP | Entry into the national phase |
Ref document number: 2022523502 Country of ref document: JP Kind code of ref document: A |
|
ENP | Entry into the national phase |
Ref document number: 2020888831 Country of ref document: EP Effective date: 20220511 |
|
NENP | Non-entry into the national phase |
Ref country code: DE |