WO2021100746A1 - Raceway member, rolling bearing, bearing ring for rolling bearing, and method for manufacturing bearing ring for rolling bearing - Google Patents

Raceway member, rolling bearing, bearing ring for rolling bearing, and method for manufacturing bearing ring for rolling bearing Download PDF

Info

Publication number
WO2021100746A1
WO2021100746A1 PCT/JP2020/042944 JP2020042944W WO2021100746A1 WO 2021100746 A1 WO2021100746 A1 WO 2021100746A1 JP 2020042944 W JP2020042944 W JP 2020042944W WO 2021100746 A1 WO2021100746 A1 WO 2021100746A1
Authority
WO
WIPO (PCT)
Prior art keywords
peripheral surface
raceway
amount
retained austenite
inner ring
Prior art date
Application number
PCT/JP2020/042944
Other languages
French (fr)
Japanese (ja)
Inventor
山田 昌弘
直輝 藤村
大木 力
Original Assignee
Ntn株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Priority claimed from JP2019211179A external-priority patent/JP2021081047A/en
Priority claimed from JP2020000362A external-priority patent/JP2021110341A/en
Application filed by Ntn株式会社 filed Critical Ntn株式会社
Publication of WO2021100746A1 publication Critical patent/WO2021100746A1/en

Links

Images

Classifications

    • CCHEMISTRY; METALLURGY
    • C21METALLURGY OF IRON
    • C21DMODIFYING THE PHYSICAL STRUCTURE OF FERROUS METALS; GENERAL DEVICES FOR HEAT TREATMENT OF FERROUS OR NON-FERROUS METALS OR ALLOYS; MAKING METAL MALLEABLE, e.g. BY DECARBURISATION OR TEMPERING
    • C21D1/00General methods or devices for heat treatment, e.g. annealing, hardening, quenching or tempering
    • C21D1/06Surface hardening
    • CCHEMISTRY; METALLURGY
    • C21METALLURGY OF IRON
    • C21DMODIFYING THE PHYSICAL STRUCTURE OF FERROUS METALS; GENERAL DEVICES FOR HEAT TREATMENT OF FERROUS OR NON-FERROUS METALS OR ALLOYS; MAKING METAL MALLEABLE, e.g. BY DECARBURISATION OR TEMPERING
    • C21D1/00General methods or devices for heat treatment, e.g. annealing, hardening, quenching or tempering
    • C21D1/18Hardening; Quenching with or without subsequent tempering
    • CCHEMISTRY; METALLURGY
    • C21METALLURGY OF IRON
    • C21DMODIFYING THE PHYSICAL STRUCTURE OF FERROUS METALS; GENERAL DEVICES FOR HEAT TREATMENT OF FERROUS OR NON-FERROUS METALS OR ALLOYS; MAKING METAL MALLEABLE, e.g. BY DECARBURISATION OR TEMPERING
    • C21D1/00General methods or devices for heat treatment, e.g. annealing, hardening, quenching or tempering
    • C21D1/34Methods of heating
    • C21D1/42Induction heating
    • CCHEMISTRY; METALLURGY
    • C21METALLURGY OF IRON
    • C21DMODIFYING THE PHYSICAL STRUCTURE OF FERROUS METALS; GENERAL DEVICES FOR HEAT TREATMENT OF FERROUS OR NON-FERROUS METALS OR ALLOYS; MAKING METAL MALLEABLE, e.g. BY DECARBURISATION OR TEMPERING
    • C21D9/00Heat treatment, e.g. annealing, hardening, quenching or tempering, adapted for particular articles; Furnaces therefor
    • C21D9/40Heat treatment, e.g. annealing, hardening, quenching or tempering, adapted for particular articles; Furnaces therefor for rings; for bearing races
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F16ENGINEERING ELEMENTS AND UNITS; GENERAL MEASURES FOR PRODUCING AND MAINTAINING EFFECTIVE FUNCTIONING OF MACHINES OR INSTALLATIONS; THERMAL INSULATION IN GENERAL
    • F16CSHAFTS; FLEXIBLE SHAFTS; ELEMENTS OR CRANKSHAFT MECHANISMS; ROTARY BODIES OTHER THAN GEARING ELEMENTS; BEARINGS
    • F16C19/00Bearings with rolling contact, for exclusively rotary movement
    • F16C19/02Bearings with rolling contact, for exclusively rotary movement with bearing balls essentially of the same size in one or more circular rows
    • F16C19/04Bearings with rolling contact, for exclusively rotary movement with bearing balls essentially of the same size in one or more circular rows for radial load mainly
    • F16C19/06Bearings with rolling contact, for exclusively rotary movement with bearing balls essentially of the same size in one or more circular rows for radial load mainly with a single row or balls
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F16ENGINEERING ELEMENTS AND UNITS; GENERAL MEASURES FOR PRODUCING AND MAINTAINING EFFECTIVE FUNCTIONING OF MACHINES OR INSTALLATIONS; THERMAL INSULATION IN GENERAL
    • F16CSHAFTS; FLEXIBLE SHAFTS; ELEMENTS OR CRANKSHAFT MECHANISMS; ROTARY BODIES OTHER THAN GEARING ELEMENTS; BEARINGS
    • F16C19/00Bearings with rolling contact, for exclusively rotary movement
    • F16C19/22Bearings with rolling contact, for exclusively rotary movement with bearing rollers essentially of the same size in one or more circular rows, e.g. needle bearings
    • F16C19/34Bearings with rolling contact, for exclusively rotary movement with bearing rollers essentially of the same size in one or more circular rows, e.g. needle bearings for both radial and axial load
    • F16C19/36Bearings with rolling contact, for exclusively rotary movement with bearing rollers essentially of the same size in one or more circular rows, e.g. needle bearings for both radial and axial load with a single row of rollers
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F16ENGINEERING ELEMENTS AND UNITS; GENERAL MEASURES FOR PRODUCING AND MAINTAINING EFFECTIVE FUNCTIONING OF MACHINES OR INSTALLATIONS; THERMAL INSULATION IN GENERAL
    • F16CSHAFTS; FLEXIBLE SHAFTS; ELEMENTS OR CRANKSHAFT MECHANISMS; ROTARY BODIES OTHER THAN GEARING ELEMENTS; BEARINGS
    • F16C33/00Parts of bearings; Special methods for making bearings or parts thereof
    • F16C33/30Parts of ball or roller bearings
    • F16C33/58Raceways; Race rings
    • F16C33/62Selection of substances
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F16ENGINEERING ELEMENTS AND UNITS; GENERAL MEASURES FOR PRODUCING AND MAINTAINING EFFECTIVE FUNCTIONING OF MACHINES OR INSTALLATIONS; THERMAL INSULATION IN GENERAL
    • F16CSHAFTS; FLEXIBLE SHAFTS; ELEMENTS OR CRANKSHAFT MECHANISMS; ROTARY BODIES OTHER THAN GEARING ELEMENTS; BEARINGS
    • F16C33/00Parts of bearings; Special methods for making bearings or parts thereof
    • F16C33/30Parts of ball or roller bearings
    • F16C33/58Raceways; Race rings
    • F16C33/64Special methods of manufacture
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02PCLIMATE CHANGE MITIGATION TECHNOLOGIES IN THE PRODUCTION OR PROCESSING OF GOODS
    • Y02P10/00Technologies related to metal processing
    • Y02P10/25Process efficiency

Definitions

  • the present invention relates to a method for manufacturing a raceway member, a rolling bearing, a raceway ring of a rolling bearing, and a raceway ring of a rolling bearing.
  • the conventional track member is manufactured by performing a heat treatment including quenching treatment and tempering treatment.
  • the tempering treatment is carried out by accommodating the entire molded product, which is the object to be treated, in the atmosphere furnace.
  • the dimensional change rate of the track member used in a high temperature environment is preferably kept low from the viewpoint of bearing life. For example, if the dimensional change rate of the inner diameter surface of the inner ring is suppressed to a low level, it is possible to suppress loosening of the fit between the inner diameter surface of the inner ring and the shaft to cause creep, and it is possible to suppress damage to the bearing.
  • Japanese Unexamined Patent Publication No. 2017-227334 discloses a technique for tempering a steel material at a temperature of 180 ° C. or higher and 230 ° C. or lower in order to reduce the average residual austenite amount of the entire track member to 18% by volume or less.
  • the track member manufactured by performing the above-mentioned tempering treatment for example, the track member manufactured without performing the tempering treatment under the above-mentioned conditions because it is not planned to be used in a high temperature environment.
  • the amount of martensite in the raceway surface and the circumferential surface (hereinafter referred to as the anti-tracking surface) located on the opposite side of the raceway surface, that is, the inner diameter surface of the inner ring or the outer diameter surface of the outer ring is suppressed to be low.
  • the hardness of the track surface and the anti-track surface is low.
  • the amount of retained austenite is smaller than that of the latter track member, but since it is necessary to reduce the amount of decrease in hardness of the raceway surface, the amount of decomposition of retained austenite is small. Therefore, the effect of suppressing the dimensional change rate is not sufficient, and the hardness of the raceway surface and the anti-trackway surface is reduced.
  • a main object of the present invention is to provide a raceway member and a rolling bearing in which the dimensional change rate of the anti-track surface is suppressed to a low level and the decrease in hardness of the raceway surface and the anti-track surface is suppressed.
  • the track member according to the present invention has a track surface extending along the circumferential direction and an anti-track surface facing the opposite side to the track surface.
  • the amount of retained austenite on the orbital plane is larger than the amount of retained austenite on the anti-orbital plane.
  • the difference between the amount of retained austenite on the orbital plane and the amount of retained austenite on the anti-orbital plane is 3% by volume or more.
  • the average residual austenite amount as a whole is 20% by volume or less. In the track member, the average residual austenite amount as a whole is 10% by volume or less.
  • the amount of retained austenite on the anti-track surface is 5% by volume or less.
  • the hardness of the anti-track surface is 600 Hv or more.
  • the rolling bearing according to the present invention includes an inner ring having an inner ring raceway surface and an inner diameter surface located on the side opposite to the inner ring raceway surface, an outer ring having an outer ring raceway surface facing the inner ring raceway surface, and an inner ring raceway surface and an outer ring. It includes a plurality of rolling elements that come into contact with the raceway surface.
  • the inner ring is the track member.
  • the inner ring raceway surface is the raceway surface of the raceway member.
  • the inner diameter surface is the anti-track surface of the track member.
  • the present invention it is possible to provide a raceway member and a rolling bearing in which the dimensional change rate of the circumferential surface is suppressed to a low level and the decrease in hardness of the raceway surface and the anti-track surface is suppressed.
  • the rolling bearing according to the present embodiment is, for example, a radial ball bearing, and more specifically, a deep groove ball bearing 1 shown in FIG.
  • the deep groove ball bearing 1 is a rolling element arranged between the annular outer ring 11, the annular inner ring 12 arranged inside the outer ring 11, and the outer ring 11 and the inner ring 12, and held by the annular cage 14. It is provided with a plurality of balls 13 which are.
  • the central axis of the outer ring 11 is arranged so as to overlap the central axis of the inner ring 12.
  • the outer ring 11 has an inner peripheral surface 11B and an outer peripheral surface 11C as an outer diameter surface.
  • An outer ring raceway surface 11A extending along the circumferential direction is formed on the inner peripheral surface 11B of the outer ring 11.
  • the inner ring 12 has an outer peripheral surface 12B facing the outer peripheral side in the radial direction and an inner peripheral surface 12C as an inner diameter surface.
  • An inner ring raceway surface 12A extending along the circumferential direction is formed on the outer peripheral surface 12B of the inner ring 12.
  • the inner ring 12 is arranged inside the outer ring 11 so that the inner ring raceway surface 12A faces the outer ring raceway surface 11A.
  • the plurality of balls 13 are in contact with the outer ring raceway surface 11A and the inner ring raceway surface 12A on the rolling surface 13A, and are arranged at a predetermined pitch in the circumferential direction by the cage 14. As a result, the plurality of balls 13 are rotatably held on the annular orbits of the outer ring 11 and the inner ring 12. With such a configuration, the outer ring 11 and the inner ring 12 of the deep groove ball bearing 1 can rotate relative to each other.
  • the inner ring 12 is a track member according to the present embodiment.
  • the inner ring 12 has an inner ring raceway surface 12A extending along the circumferential direction and an inner peripheral surface 12C as a circumferential surface extending along the circumferential direction and extending along the axial direction.
  • the amount of retained austenite on the inner ring raceway surface 12A is larger than the amount of retained austenite on the inner peripheral surface 12C.
  • the amount of retained austenite in the inner ring 12 tends to gradually decrease from the inner ring raceway surface 12A to the inner peripheral surface 12C in the radial direction.
  • the difference between the amount of retained austenite on the inner ring raceway surface 12A and the amount of retained austenite on the inner peripheral surface 12C is 3% by volume or more.
  • the difference between the amount of retained austenite on the inner ring raceway surface 12A and the amount of retained austenite on the inner peripheral surface 12C is, for example, 10% by volume or less, for example, less than 5% by volume.
  • the above difference between the amount of retained austenite on the inner ring raceway surface 12A and the amount of retained austenite on the inner peripheral surface 12C exceeds the difference between the amount of retained austenite on the raceway surface and the amount of retained austenite on the inner peripheral surface realized by the conventional tempering treatment. This is realized by the tempering process according to the present embodiment, which will be described later.
  • the amount of retained austenite is calculated from the diffraction intensities of the martensite phase and the austenite phase measured by X-ray diffraction.
  • the amount of retained austenite on the inner peripheral surface 12C is, for example, 5% by volume or less, preferably less than 5% by volume.
  • the amount of retained austenite on the inner ring raceway surface 12A is, for example, 10% by volume or more, preferably 15% by volume or more.
  • the above difference between the amount of retained austenite on the inner ring raceway surface 12A and the amount of retained austenite on the inner peripheral surface 12C exceeds the difference between the amount of retained austenite on the raceway surface and the amount of retained austenite on the inner peripheral surface realized by the conventional tempering treatment. This is realized by the tempering process in the method for manufacturing the inner ring 12 according to the present embodiment, which will be described later.
  • the average residual austenite amount of the entire inner ring 12 that is, the average value calculated from the distribution of the residual austenite amount in the radial direction from the inner ring raceway surface 12A to the inner peripheral surface 12C of the inner ring 12 is 20% by volume or less.
  • the average residual austenite amount of the inner ring 12 as a whole is 20% by volume or less regardless of whether or not the carburizing and nitriding treatment is performed in the method for producing the inner ring 12.
  • the average residual austenite amount of the entire inner ring 12 can be 10% by volume or less.
  • the hardness of the inner ring raceway surface 12A exceeds the hardness of the inner peripheral surface 12C.
  • the hardness of the inner ring raceway surface 12A is, for example, 650 Hv or more, preferably 700 Hv or more.
  • the hardness of the inner peripheral surface 12C is, for example, 600 Hv or more and 700 Hv or less.
  • the hardness of the inner ring raceway surface 12A is, for example, 750 Hv or more.
  • the hardness of each surface is measured according to the Vickers hardness test method specified in the JIS standard (JJS Z 2244: 2009).
  • the rolling bearing according to the present embodiment may be, for example, a radial roller bearing, and more specifically, a conical roller bearing 2 shown in FIG.
  • the conical roller bearing 2 includes an annular outer ring 21 and an inner ring 22, a plurality of rollers 23 which are rolling elements, and an annular cage 24.
  • An outer ring raceway surface 21A extending along the circumferential direction is formed on the inner peripheral surface of the outer ring 21, and an inner ring raceway surface 22A extending along the circumferential direction is formed on the outer peripheral surface of the inner ring 22.
  • the inner ring 22 is arranged inside the outer ring 21 so that the inner ring raceway surface 22A faces the outer ring raceway surface 21A.
  • the plurality of rollers 23 are in contact with the outer ring raceway surface 21A and the inner ring raceway surface 22A on the rolling surface 23A, and are arranged at a predetermined pitch in the circumferential direction by the cage 24. As a result, the roller 23 is rotatably held on the annular orbit of the outer ring 21 and the inner ring 22. Further, in the conical roller bearing 2, the apex of each of the cone including the outer ring raceway surface 21A, the cone including the inner ring raceway surface 22A, and the cone including the locus of the rotation axis when the roller 23 rolls is on the center line of the bearing. It is configured to intersect at one point.
  • the inner ring 22 is a track member according to the present embodiment, like the inner ring 12.
  • the inner ring 22 has the same configuration as the inner ring 12.
  • the inner ring 22 has an inner ring raceway surface 22A extending along the circumferential direction and an inner peripheral surface 22C as a circumferential surface extending along the circumferential direction and extending along the axial direction.
  • the amount of retained austenite on the inner ring raceway surface 22A is larger than the amount of retained austenite on the inner peripheral surface 22C.
  • the amount of retained austenite in the inner ring 22 tends to gradually decrease from the inner ring raceway surface 22A to the inner peripheral surface 22C in the radial direction.
  • the amount of retained austenite on the inner peripheral surface 22C is, for example, 5% by volume or less, preferably less than 5% by volume.
  • the amount of retained austenite on the inner ring raceway surface 22A is, for example, 10% by volume or more, preferably 15% by volume or more.
  • the above difference between the amount of retained austenite on the inner ring raceway surface 22A and the amount of retained austenite on the inner peripheral surface 22C exceeds the difference between the amount of retained austenite on the raceway surface and the amount of retained austenite on the inner peripheral surface realized by the conventional tempering treatment. This is realized by the tempering process in the method for manufacturing the inner ring 22 according to the present embodiment described later.
  • the average residual austenite amount of the inner ring 22 as a whole that is, the average value calculated from the distribution of the residual austenite amount in the radial direction from the inner ring raceway surface 22A to the inner peripheral surface 22C of the inner ring 22 is 20% by volume or less.
  • the average residual austenite amount of the inner ring 22 as a whole is 20% by volume or less regardless of whether or not the carburizing and nitriding treatment is performed in the method for producing the inner ring 22.
  • the average residual austenite amount of the entire inner ring 22 can be 10% by volume or less.
  • the above difference between the amount of retained austenite on the inner ring raceway surface 22A and the amount of retained austenite on the inner peripheral surface 22C exceeds the difference between the amount of retained austenite on the raceway surface and the amount of retained austenite on the inner peripheral surface realized by the conventional tempering treatment. This is realized by the tempering process according to the present embodiment, which will be described later.
  • the hardness of the inner ring raceway surface 22A exceeds the hardness of the inner peripheral surface 22C.
  • the hardness of the inner ring raceway surface 22A is, for example, 650 Hv or more, preferably 700 Hv or more.
  • the hardness of the inner peripheral surface 22C is, for example, 600 Hv or more and 700 Hv or less.
  • the hardness of the inner ring raceway surface 22A is, for example, 750 Hv or more.
  • the rolling bearing according to the present embodiment is manufactured by the method for manufacturing the rolling bearing according to the present embodiment shown in FIG.
  • the rolling bearing manufacturing method according to the present embodiment includes a step (S10) of preparing a molded body to be inner rings 12 and 22 (track members) and quenching of the molded body.
  • S40 and.
  • Inner rings 12 and 22 are manufactured by the above steps (S10) to (S40).
  • the method for manufacturing a rolling bearing according to the present embodiment is a step of preparing outer rings 11 and 21 and balls 13 or rollers 23 and assembling inner rings 12, 22, outer rings 11 and 21 and balls 13 or rollers 23. (S50) is further provided.
  • a steel material made of steel is prepared.
  • the steel material is prepared as, for example, steel bar or steel wire.
  • the steel material is subjected to processing such as cutting, forging, and turning.
  • a steel material (molded body) formed into the approximate shape of the inner rings 12 and 22 is produced.
  • the molded body has a first peripheral surface 10C facing inward in the radial direction and a second peripheral surface facing outward in the radial direction.
  • the inner peripheral surfaces 12C and 22C of the inner rings 12 and 22 are formed by grinding the first peripheral surface 10C in the subsequent step (S40).
  • the inner ring raceway surfaces 12A and 22A of the inner rings 12 and 22 are formed by grinding the second peripheral surface in the post-process (S40).
  • a quench hardening treatment is performed on the molded product prepared in the previous step (S10).
  • a carburizing and nitriding treatment for carburizing and nitriding the molded product is carried out.
  • a nitrogen diffusion treatment for diffusing the nitrogen that has infiltrated into the molded body by the carburizing and nitrification treatment is carried out.
  • the whole of the molded body is heated to a temperature T 1 of the above point A, retention time t 1 (soaking time) for soaking only be retained.
  • the molded product is cooled to a temperature T 2 below the Ms point (martensite transformation point).
  • This cooling treatment is carried out by immersing the target material in a coolant such as oil or water. As a result, the target material is quenched.
  • the quenching treatment is carried out under conditions such that the hardness of the hardened target material exceeds the hardness of the tempered target material described later.
  • the difference between the amount of retained austenite on the second peripheral surface and the amount of retained austenite on the first peripheral surface 10C of the molded product subjected to the quench hardening treatment is less than 3% by volume.
  • the amount of retained austenite on each of the first peripheral surface and the second peripheral surface of the molded product subjected to the quench hardening treatment (hereinafter referred to as the initial retained austenite amount) is not particularly limited. For example, it is 5% by volume or more and 13% by volume or less.
  • the tempering treatment is performed on the molded product that has been quench-hardened in the previous step (S20).
  • the first tempering treatment as a conventional dimensional stabilization treatment in which the entire molded product is heated, and the first peripheral surface 10C while the second peripheral surface of the molded product is locally cooled.
  • a second tempering process is performed in which the heat is locally heated. Local cooling of the second peripheral surface is continuously performed in the second tempering process from the start of heating to the end of heating of the first peripheral surface 10C.
  • the surface temperature of the first peripheral surface 10C of the molded product is maintained until the holding time t 2 (tempering time) elapses at the tempering temperature T 3.
  • the holding time t 2 is the time from when the first peripheral surface 10C tempering temperature T 3 is reached in the second tempering treatment to the end of heating.
  • Surface temperature of the second circumferential surface of the green body after being held by the first temperature reached T 4 lower than the tempering temperature T 3, first reaches a temperature T 4 or more tempering temperature T 3 below the second temperature reached It is held at T 5 until the holding time t 3 elapses.
  • the holding time t 3 is the time from when the second peripheral surface reaches the second reaching temperature T 5 in the second tempering process until the heating of the second peripheral surface is completed.
  • the second reached temperature T 5 is, for example, equal to the tempering temperature T 3.
  • the tempering temperature T 3 and the holding time t 2 are values in which the amount of retained austenite on the inner peripheral surfaces 12C and 22C is predetermined from the viewpoint of achieving the dimensional stability and hardness required for the inner peripheral surfaces 12C and 22C. It is set so that the hardness of the inner peripheral surfaces 12C and 22C is equal to or greater than a predetermined value.
  • the first ultimate temperature T 4 , the second ultimate temperature T 5 , and the holding time t 3 of the second peripheral surface are required for the hardness required for the inner ring raceway surfaces 12A and 22A and for the entire inner rings 12 and 22.
  • the hardness of the inner ring raceway surfaces 12A and 22A should be equal to or higher than the predetermined value, and the residual austenite amount of the inner ring raceway surfaces 12A and 22A should be equal to or lower than the predetermined value. Is set to.
  • the first tempering treatment and the second tempering treatment are carried out by, for example, the heating method and the cooling method shown in FIGS. 4 and 5.
  • the heating of the first peripheral surface 10C is carried out by, for example, induction heating using the first coil 30, preferably high frequency induction heating.
  • the first coil 30 is arranged in the molded body 10 so as to face only the first peripheral surface 10C.
  • An alternating current of 3 kHz or higher is supplied to the first coil 30.
  • a high-frequency alternating current is supplied to the first coil 30
  • the temperature rises on the second peripheral surface 10A side in the radial direction as compared with the induction heating in which a lower-frequency alternating current is supplied to the first coil 30. Is suppressed, so that the difference between the tempering temperature T 3 and the first reached temperature T 4 becomes large.
  • the cooling of the second peripheral surface 10A is carried out by supplying a cooling solvent such as water to the second peripheral surface 10A of the molded body 10 by using, for example, the injection unit 31.
  • the cooling is carried out so as not to cool the first peripheral surface 10C.
  • the cooling is carried out so that the water supplied to the second peripheral surface 10A is not supplied to the first peripheral surface 10C.
  • the injection unit 31 is arranged so as to face the second peripheral surface 10A of the molded body 10 in the second tempering process, and injects water onto the second peripheral surface 10A.
  • the first coil 30 and the injection unit 31 are arranged so as to sandwich the molded body 10 in the radial direction of the molded body 10, for example.
  • the cooling may be performed on a region of the second peripheral surface 10A that is ground to form the inner ring raceway surfaces 12A and 22A at least in the subsequent step (S40).
  • the first tempering process and the second tempering process are carried out, for example, by relatively rotating the molded body 10, the first coil 30, and the injection unit 31 in the circumferential direction.
  • the relative positions of the first coil 30 and the injection unit 31 are fixed throughout, for example, the second tempering process.
  • the first tempering process is carried out by putting the entire molded product into a heat treatment furnace heated to a temperature of 180 ° C. or higher and 230 ° C. or lower.
  • the first coil 30 heats the first peripheral surface 10C and the injection unit 31 cools the second peripheral surface 10A.
  • the set values of the tempering temperature T 3 , the holding time t 2 , the first reaching temperature T 4 , the second reaching temperature T 5, and the holding time t 3 are based on, for example, the following formulas 1, 2, and 3. Is set.
  • the coefficients of the above formulas 1, 2 and 3 vary depending on the composition of the steel of the molded product, the amount of the initial retained austenite and the like.
  • the above formula 1 is a prediction formula for predicting the relationship between the tempering temperature T 3 (unit: ° C.) and the above first reached temperature T 4 (unit: ° C.).
  • the present inventors consider a molded product in which the heating is carried out by induction heating on the first peripheral surface 10C and the cooling is carried out by jetting water on the second peripheral surface 10A. The temperature distribution in the member to be heated was simulated and analyzed.
  • the above formula 1 was obtained by the present inventors from the results of the above simulation analysis. As a result of the analysis, it was confirmed that the first reached temperature T 4 changes linearly with respect to the tempering temperature T 3 (see FIG. 8). The details of the simulation analysis will be described later.
  • the above formula 1 is changed to the prediction formula in the different method.
  • the above formula 2 is based on the reached temperature T (unit: K), holding time t (unit: seconds) during tempering treatment, and residual austenite amount ⁇ (remaining austenite amount ⁇ ) on the first peripheral surface 10C or the second peripheral surface 10A after tempering treatment. It is a prediction formula that predicts the relationship of unit: volume%).
  • the residual austenite amount ⁇ of the first peripheral surface 10C after the second tempering treatment is obtained by substituting the tempering temperature T 3 for the ultimate temperature T in Equation 2 and substituting the holding time t 2 for the holding time t. Calculated.
  • the residual austenite amount ⁇ of the second peripheral surface 10A after the second tempering treatment is obtained by substituting the second reaching temperature T 5 for the reaching temperature T in Equation 2 and substituting the holding time t 3 for the holding time t. It is estimated that the value is less than the calculated value by the amount of decomposition in the first tempering process.
  • the above formula 2 is based on Non-Patent Document 1 (Takeshi Inoue, "Application of new tempering parameters and their application to the method of integrating the tempering effect along the continuous temperature rise curve", Iron and Steel, 66, 10 (1980) 1533.). It was experimentally obtained by the present inventors based on the relational expression between the hardness and the tempering temperature described in 1.
  • the above formula 3 is based on the reached temperature T (unit: K), holding time t (unit: seconds) during the tempering process, and hardness M (unit: unit) of the first peripheral surface 10C or the second peripheral surface 10A after the tempering process.
  • HV is a prediction formula that predicts the relationship.
  • the hardness M of the first peripheral surface 10C after the tempering process is calculated by substituting the tempering temperature T 3 for the ultimate temperature T in Equation 3 and substituting the holding time t 3 for the holding time t.
  • the hardness M of the second peripheral surface 10A after the tempering treatment is estimated to be about a value calculated by substituting the second ultimate temperature T 5 for the ultimate temperature T in Equation 3.
  • the above formula 3 was experimentally obtained by the present inventors based on the relational expression between the amount of retained austenite and the tempering temperature described in JP-A-10-102137.
  • the tempering temperature T 3 and the holding time t 2 are such that the amount of retained austenite on the first peripheral surface 10C is equal to or less than the predetermined value and the hardness of the first peripheral surface 10C is based on the mathematical formulas 2 and 3. Is set so as to be equal to or greater than the above-mentioned predetermined value.
  • the first ultimate temperature T 4 , the second ultimate temperature T 5, and the holding time t 3 are such that the hardness of the second peripheral surface 10A is equal to or higher than the predetermined value based on the above equations 1, 2, and 3. Is set to be. Further, the second reaching temperature T 5 and the holding time t 3 are set so that the amount of retained austenite on the second peripheral surface 10A is equal to or less than the predetermined value.
  • the holding time t 2 and the holding time t 3 are set as follows, for example.
  • the lower limit of the holding time t 2 of the tempering temperature T 3 in the tempering process is set to realize the initial residual austenite amount and the dimensional stability required for the inner rings 12 and 22. It is calculated from the upper limit of the residual austenite amount of 10C based on the above formula 2.
  • the lower limit of the holding time t 3 in the second tempering process is set to realize the initial residual austenite amount and the dimensional stability required for the inner rings 12 and 22, and the retained austenite on the second peripheral surface 10A is set. It is calculated from the upper limit of the amount based on the above formula 2.
  • the upper limit of the holding time t 3 is, the hardness lower limit of the first peripheral 10C which is set to achieve the hardness required for the inner ring 12, 22, based on the equation 3 Calculated. Further, the upper limit value of the holding time t 3 is calculated based on the above formula 3 from the lower limit value of the hardness of the second peripheral surface 10A set to realize the hardness required for the inner rings 12 and 22. Will be done.
  • the initial residual austenite amount of the molded product is 5% by volume
  • the upper limit of the retained austenite amount of the first peripheral surface 10C is 0% by volume
  • the lower limit of the hardness of the first peripheral surface 10C is 670HV.
  • the lower limit of the hardness of the second peripheral surface 10A is 700 HV. From the above formula 2, the graph shown in FIG. 6 is calculated.
  • FIG. 6 shows the holding time t 2 (heating time) required to reduce the initial residual austenite amount by a predetermined amount when the tempering temperature T 3 is 350 ° C. in the tempering treatment according to the present embodiment. ) And the amount of initial retained austenite.
  • the holding time t 2 with respect to the first peripheral surface is 156 seconds or more. Is set. For example, of the holding time t 2 , the lower limit of the holding time in the first tempering process is set as 156 seconds.
  • the hardness of the second peripheral surface 10A is 700 HV or more and the hardness of the first peripheral surface 10C.
  • the holding time t 3 with respect to the second peripheral surface 10A is set to 12 seconds or less.
  • the holding time t 2 is set to 168 seconds, which is the sum of 156 seconds and 12 seconds.
  • the step (S40) at least the second peripheral surface 10A of the molded body 10 is ground.
  • the inner rings 12 and 22 having the inner ring raceway surfaces 12A and 22A are formed.
  • the inner peripheral surfaces 12C and 22C are the first peripheral surfaces that have been tempered.
  • the inner peripheral surfaces 12C and 22C are surfaces formed by grinding the first peripheral surface that has been tempered.
  • the outer rings 11 and 21 and the balls 13 or rollers 23 are prepared.
  • the inner ring 12 manufactured in the previous step (S40) the prepared outer ring 11 and the ball 13 are assembled.
  • the deep groove ball bearing 1 shown in FIG. 1 is manufactured.
  • the inner ring 22 manufactured in the previous step (S40) and the prepared outer ring 21 and roller 23 are assembled.
  • the conical roller bearing 2 shown in FIG. 2 is manufactured.
  • step (S20) carburizing and nitriding treatment is carried out, but the present invention is not limited to this.
  • the above step (S20) only the above quench hardening treatment may be carried out.
  • the amount of retained austenite in the molded product after the quenching treatment is generally smaller than that in the case where the carburizing treatment is carried out. That is, the difference between the amount of retained austenite on the inner ring raceway surfaces 12A and 22A and the amount of retained austenite on the inner peripheral surfaces 12C and 22C due to the above tempering treatment is the difference between the inner ring 12 and the inner ring 12 It is smaller than that of 22.
  • the difference becomes larger than that of the conventional inner ring in which the conventional tempering treatment is performed instead of the tempering treatment.
  • the above difference between the inner rings 12 and 22 manufactured without performing the carburizing and nitriding treatment can be, for example, 3% by volume or more and 5% by volume or less.
  • the outer rings 11 and 21 may also be configured as the track members according to the present embodiment.
  • the amount of retained austenite on the outer ring raceway surface 11A is larger than the amount of retained austenite on the outer peripheral surface 11C as the circumferential surface, and the difference between the two is 3% by volume or more.
  • the amount of retained austenite on the outer ring raceway surface 21A is larger than the amount of retained austenite on the outer peripheral surface 21C as the circumferential surface, and the difference between the two is 3% by volume or more.
  • the inner rings 12 and 22 as the raceway members according to the present embodiment are made of steel and extend along the circumferential direction with the inner ring raceway surfaces 12A and 22A, and extend along the circumferential direction and along the axial direction. It has inner peripheral surfaces 12C and 22C as an extending circumferential surface.
  • the amount of retained austenite on the inner ring raceway surfaces 12A and 22A is larger than the amount of retained austenite on the inner peripheral surfaces 12C and 22C.
  • the difference between the amount of retained austenite on the inner ring raceway surfaces 12A and 22A and the amount of retained austenite on the inner peripheral surfaces 12C and 22C is 3% by volume or more.
  • the entire molded body is heated in the atmosphere furnace, so that retained austenite and martensite in the region that should be the raceway surface are decomposed. Therefore, in the inner ring as the first comparative example manufactured by the conventional tempering treatment, the difference between the amount of retained austenite on the raceway surface and the amount of retained austenite on the inner diameter surface is less than 3% by volume. As a result, in the inner ring, the dimensional stability of the inner diameter surface and the hardness of the raceway surface showed a trade-off relationship, and it was difficult to increase both at the same time.
  • the second period in the tempering process is performed.
  • the reaching temperature of the surface becomes high, and the decomposition of retained austenite and martensite on the second peripheral surface side proceeds.
  • the difference between the amount of retained austenite on the raceway surface and the amount of retained austenite on the inner diameter surface is 3 volumes even in the inner ring as a second comparative example produced by the tempering treatment in which only the heating is performed and the cooling is not performed. It will be less than%.
  • the dimensional stability of the inner diameter surface and the hardness of the raceway surface show a trade-off relationship, and it is difficult to increase both at the same time.
  • the temperature of the second peripheral surface 10A is set to the temperature of the first peripheral surface 10C.
  • some of the time of the holding time t 2, which is held in the tempering temperature T 3 is held in the first ultimate temperature T 4 lower than the tempering temperature T 3.
  • the first ultimate temperature T 4 can be made lower than the ultimate temperature of each of the second peripheral surfaces of the first comparative example and the second comparative example by the above cooling. Therefore, in the tempering treatment according to the present embodiment, decomposition of retained austenite and martensite on the second peripheral surface 10A side is suppressed as compared with the first comparative example and the second comparative example.
  • the residual austenite amount of the inner ring raceway surfaces 12A and 22A formed based on the second peripheral surface is determined.
  • the amount of retained austenite on the inner peripheral surfaces 12C and 22C formed based on the first peripheral surface is 3% by volume or more larger than the amount of retained austenite.
  • the amount of retained austenite on the inner ring raceway surfaces 12A and 22A is larger than that of the inner rings of the first and second comparative examples, and the amount of retained austenite on the inner peripheral surfaces 12C and 22C is large. It can be reduced as compared with that of the inner ring of the first comparative example and the second comparative example.
  • the dimensional stability of the inner peripheral surfaces 12C and 22C and the hardness of the inner ring raceway surfaces 12A and 22A are simultaneously enhanced as compared with the inner rings of the first comparative example and the second comparative example. There is.
  • the amount of retained austenite on the inner peripheral surfaces 12C and 22C is the same as that of the inner rings of the first and second comparative examples, and the amount of retained austenite on the inner ring raceway surfaces 12A and 22A. Can be increased as compared with that of the inner ring of the first comparative example and the second comparative example.
  • the dimensional stability of the inner peripheral surfaces 12C and 22C is made equivalent to that of the inner rings of the first comparative example and the second comparative example, and the hardness of the inner ring raceway surfaces 12A and 22A is high. It is greatly improved as compared with that of the inner ring of the first comparative example and the second comparative example.
  • the amount of retained austenite on the inner ring raceway surfaces 12A and 22A is equal to that of the inner rings of the first and second comparative examples, and the amount of retained austenite on the inner peripheral surfaces 12C and 22C. Can be reduced as compared with that of the inner ring of the first comparative example and the second comparative example.
  • the hardness of the inner ring raceway surfaces 12A and 22A is the same as that of the inner rings of the first comparative example and the second comparative example, and the dimensional stability of the inner peripheral surfaces 12C and 22C is improved. It is greatly improved as compared with that of the inner ring of the first comparative example and the second comparative example.
  • the tempering temperature of the tempering treatment is equal to the tempering temperature T 3
  • the reaching temperature of the second peripheral surface is the first reaching temperature.
  • the second tempering treatment is performed after the first tempering treatment.
  • the entire molded body is heated. Therefore, the amount of retained austenite on the inner ring raceway surfaces 12A and 22A formed based on the second peripheral surface 10A is smaller than the amount of retained austenite on the inner ring raceway surface of the third comparative example.
  • the average residual austenite amount of the inner rings 12 and 22 as a whole is also smaller than that of the third comparative example, and the overall dimensional stability of the inner rings 12 and 22 is improved as compared with that of the third comparative example.
  • the inner rings 12 and 22 are manufactured after undergoing carburizing and nitriding treatment.
  • the average residual austenite amount of the inner rings 12 and 22 is, for example, 5% by volume or more and 25% by volume or less.
  • the dimensional stability of the inner peripheral surfaces 12C and 22C and the hardness of the inner ring raceway surfaces 12A and 22A are simultaneously and greatly improved as compared with the first comparative example and the second comparative example. There is. Further, the overall dimensional stability of the inner rings 12 and 22 is higher than that of the third comparative example.
  • the inner rings 12 and 22 may be manufactured without undergoing carburizing and nitrification treatment.
  • the total average retained austenite amount of the inner rings 12 and 22 can be 10% by volume or less. Therefore, in such inner rings 12 and 22, the dimensional stability of the inner peripheral surfaces 12C and 22C and the hardness of the inner ring raceway surfaces 12A and 22A are at the same time as compared with the inner rings of the first comparative example and the second comparative example. It has improved significantly.
  • the hardness of the inner ring raceway surfaces 12A and 22A of the inner rings 12 and 22 is 700 Hv or more.
  • the tempering treatment according to the present embodiment can suppress the decomposition of martensite on the second peripheral surface of the molded product as compared with the conventional tempering treatment. Therefore, the hardness of the inner ring raceway surfaces 12A and 22A may exceed the hardness of the raceway surfaces of the inner rings of the first comparative example and the second comparative example.
  • the inner rings 12 and 22 are the inner rings of the deep groove ball bearing 1 or the conical roller bearing 2 which are radial bearings, and the inner peripheral surfaces 12C and 22C are surfaces located on the opposite sides of the inner ring raceway surfaces 12A and 22A in the radial direction. is there.
  • the deep groove ball bearing 1 provided with the inner ring 12 has higher dimensional stability of the inner peripheral surface 12C and hardness of the inner ring raceway surface 12A at the same time than the deep groove ball bearings provided with the inner rings of the first comparative example and the second comparative example. Because it is a bearing, it has a long life.
  • the conical roller bearing 2 provided with the inner ring 22 has the dimensional stability of the inner peripheral surface 22C and the hardness of the inner ring raceway surface 22A at the same time as compared with the conical roller bearings having the inner rings of the first comparative example and the second comparative example. Because it is enhanced, it has a long life.
  • the details of the above simulation analysis regarding the second tempering process according to the present embodiment will be described below.
  • the simulation analysis was performed by heat conduction analysis by the finite element method.
  • the member to be heated simulating the molded body was made of JIS standard SUJ2 and was a ring having a thickness of 3 mm in the axial direction. Further, it was assumed that the member to be heated was subjected to the above quenching treatment.
  • the tempering process of the member to be heated was simulated using the analysis model shown in FIG. 7, and the temperature distribution inside the member to be heated at that time was analyzed. In this analysis model, tempering conditions were set in which the heating of the first peripheral surface of the molded product was induced and the cooling of the second peripheral surface was water cooling.
  • FIG. 8 shows the heating temperature and the ultimate temperature of the cooled second peripheral surface when the heating temperature for the first peripheral surface is 180 ° C. or higher and 490 ° C. or lower and the holding time is 1 minute. It is a graph which shows the relationship.
  • the horizontal axis of FIG. 8 indicates the heating temperature (unit: ° C.) with respect to the first peripheral surface, and the vertical axis of FIG. 8 indicates the ultimate temperature (unit: ° C.) of the second peripheral surface.
  • the temperature reached by the second peripheral surface changed linearly with respect to the heating temperature with respect to the first peripheral surface.
  • the above formula 1 was derived from the graph of FIG. From FIG.
  • the temperature difference between the first peripheral surface and the second peripheral surface can be sufficiently increased, and the residual austenite amount and the inner peripheral surface of the inner ring raceway surface can be sufficiently increased. It was confirmed that the difference from the amount of retained austenite in the above can be 3% by volume or more.
  • FIG. 9 is a graph showing the temperature changes of the first peripheral surface and the second peripheral surface with respect to the elapsed time from the start of heating with the heating temperature of the first peripheral surface to 420 ° C. and the above-mentioned cooling.
  • the horizontal axis of FIG. 9 indicates the elapsed time (unit: seconds) from the start of heating, and the vertical axis of FIG. 9 indicates the temperatures (unit: ° C.) of the first peripheral surface and the second peripheral surface.
  • the temperature of the first peripheral surface reached 390 ° C., which is 90% of the tempering temperature.
  • the temperature of the second peripheral surface reached 220 ° C., which is 90% of the temperature estimated from the above equation 1, about 5 seconds after the start of heating. Further, after the temperature of the second peripheral surface reached the above-estimated temperature, the temperature rise of the second peripheral surface was suppressed even though the heating of the first peripheral surface was continued. That is, it was confirmed that the temperature rise of the second peripheral surface was sufficiently suppressed by the above water cooling.
  • FIG. 10 is a diagram showing the temperature distribution inside the member to be heated when 30 seconds have passed since the start of heating and cooling at a heating temperature of 350 ° C. for the first peripheral surface.
  • the temperature inside the member to be heated gradually decreases from the first peripheral surface to the second peripheral surface, and the amount of decrease from the temperature of the first peripheral surface is the first circumference. It was confirmed that it changed linearly with respect to the distance from the surface. Further, it was confirmed that the temperature reached in the region where the raceway surface is formed can be suppressed to a temperature at which the decomposition of martensite can be sufficiently suppressed, even when the grinding allowance in the above step (S50) is taken into consideration.
  • the heating and cooling shown in FIG. 10 were carried out on the member to be heated having a residual austenite amount of 14.4% by volume and a hardness of 780Hv on the first peripheral surface and the second peripheral surface before the tempering treatment.
  • the amount of retained austenite on the first peripheral surface is 2% by volume or less and the hardness of the first peripheral surface is 680Hv
  • the amount of retained austenite on the second peripheral surface is 14.1% by volume and the hardness is 779Hv. Met.
  • the conventional tempering treatment is carried out on a member to be heated in which the amount of retained austenite on the first and second peripheral surfaces before the tempering treatment is 14.4% by volume and the hardness is 780 Hv
  • the first The difference between the amount of retained austenite on the peripheral surface and the amount of retained austenite on the second peripheral surface was less than 5% by volume.
  • the method for manufacturing the raceway member according to the present embodiment it is possible to manufacture an inner ring in which the amount of retained austenite on the raceway surface is 5% by volume or more larger than the amount of retained austenite on the first peripheral surface. .. Further, according to the method for manufacturing a track member according to the present embodiment, the amount of residual austenite on the first peripheral surface is lower and the residual austenite on the second peripheral surface is lower than that in the conventional method for manufacturing a track member including tempering treatment. It was confirmed that an inner ring with a high amount of austenite could be produced.
  • the raceway ring of the rolling bearing according to the embodiment is, for example, an inner ring of a deep groove ball bearing (hereinafter, referred to as "inner ring 110").
  • inner ring 110 an inner ring of a deep groove ball bearing
  • the raceway ring of the rolling bearing according to the embodiment is not limited to this.
  • the raceway ring of the rolling bearing according to the embodiment may be an outer ring of a deep groove ball bearing, or may be a raceway ring of a rolling bearing other than the deep groove ball bearing.
  • the inner ring 110 is made of hardened steel. That is, this steel contains martensite crystal grains and retained austenite crystal grains. This steel may contain other than martensite crystal grains and retained austenite crystal grains (for example, ferrite crystal grains and carbide grains). This steel is, for example, SUJ2, which is a high carbon chrome bearing steel defined in the JIS standard (JIS G 4805: 2008).
  • FIG. 11 is a plan view of the inner ring 110.
  • FIG. 12 is a cross-sectional view taken along the line XII-XII of FIG. As shown in FIGS. 11 and 12, the inner ring 110 has an annular shape. The inner ring 110 has a central axis A.
  • the inner ring 110 has a first end surface 110a and a second end surface 110b, an inner peripheral surface 110c, and an outer peripheral surface 110d.
  • the first end surface 110a, the second end surface 110b, the inner peripheral surface 110c, and the outer peripheral surface 110d may be collectively referred to as the surface of the inner ring 110.
  • the first end face 110a and the second end face 110b form end faces in a direction along the central axis A (hereinafter, referred to as "axial direction").
  • the second end surface 110b is the opposite surface of the first end surface 110a in the axial direction.
  • the inner peripheral surface 110c extends in a direction along the circumference centered on the central axis A (hereinafter, referred to as "circumferential direction").
  • the inner peripheral surface 110c faces the central axis A side.
  • the inner peripheral surface 110c is connected to the first end surface 110a and the second end surface 110b.
  • the inner ring 110 is fitted to a shaft (not shown) on the inner peripheral surface 110c.
  • the outer peripheral surface 110d extends in the circumferential direction.
  • the outer peripheral surface 110d faces the side opposite to the central axis A. That is, the outer peripheral surface 110d is the opposite surface of the inner peripheral surface 110c in the direction orthogonal to the central axis A and passing through the central axis A (hereinafter, referred to as “diameter direction”).
  • the outer peripheral surface 110d has a raceway surface 110da.
  • the outer peripheral surface 110d is recessed on the inner peripheral surface 110c side in the raceway surface 110da.
  • the raceway surface 110da has an arc shape in a cross-sectional view passing through the central axis A.
  • the raceway surface 110da is a surface that comes into contact with a rolling element (not shown).
  • the anti-orbital plane is a plane on the opposite side of the orbital plane 110da in the radial direction.
  • the inner peripheral surface 110c is an anti-track surface.
  • the amount of retained austenite on the inner peripheral surface 110c which is the anti-orbital plane, is smaller than the amount of retained austenite on the raceway surface 110da.
  • the average value of the amount of retained austenite in the steel constituting the inner ring 110 is preferably 10% by volume or less.
  • the "average value of the amount of retained austenite in the steel constituting the inner ring 110" is a plurality of points arranged at equal intervals between the raceway surface 110da and the inner peripheral surface 110c along the radial direction of the inner ring 110. It is a value obtained by integrating the distribution curve of the retained austenite amount obtained by the measurement along the circumferential direction and dividing it by the cross-sectional area of the raceway ring (inner ring 110) parallel to the circumferential direction.
  • the difference between the amount of retained austenite on the inner peripheral surface 110c and the amount of retained austenite on the raceway surface 110da is preferably 3% by volume or more.
  • the amount of retained austenite on the inner peripheral surface 110c is preferably 5% by volume or less.
  • the amount of retained austenite in the steel constituting the inner ring 110 is measured by an X-ray diffraction method. More specifically, the amount of retained austenite is obtained by comparing the intensities of the diffraction peaks of each phase obtained by irradiating with X-rays.
  • the minimum value of compressive residual stress on the raceway surface 110 da is 100 MPa or more. In the region where the distance from the raceway surface 110 da is 0.2 mm or less, the compressive residual stress is preferably 100 MPa or less.
  • the residual stress on the orbital plane 110 da is measured by the X-ray diffraction method. More specifically, the residual stress on the raceway surface 110da is measured based on the change in the diffraction peak angle when the raceway surface 110da is irradiated with X-rays.
  • the hardness on the raceway surface 110da is higher than the hardness on the inner peripheral surface 110c.
  • the hardness of the raceway surface 110da and the hardness of the inner peripheral surface 110c are preferably 700 Hv or more.
  • the hardness of the raceway surface 110da and the hardness of the inner peripheral surface 110c are measured according to the Vickers hardness test method defined in the JIS standard (JIS Z 2244: 2009).
  • FIG. 13 is a cross-sectional view of the inner ring 110 according to the modified example.
  • an immersion layer 110e may be formed on the surface of the inner ring 110.
  • the nitrogen concentration in the steel located in the immersion layer 110e is higher than the nitrogen concentration in the steel located in the steel other than the immersion layer 110e.
  • the nitrogen concentration in steel is measured by EPMA (Electron Probe Micro Analyzer).
  • the average value of the amount of retained austenite in the steel constituting the inner ring 110 is preferably 20% by volume or less.
  • FIG. 14 is a process diagram showing a manufacturing method of the inner ring 110.
  • the method for manufacturing the inner ring 110 includes a preparation step S11, a quenching step S12, a tempering step S13, and a post-treatment step S14.
  • the preparation step S11 the annular machined member 120 to be the inner ring 110 is prepared by going through the quenching step S12, the tempering step S13, and the post-treatment step S14.
  • the surface of the member 120 to be processed is subjected to a nitrification treatment prior to the quenching step S12.
  • the immersion treatment is performed by holding the member 120 to be processed at a predetermined temperature for a predetermined time in, for example, an atmospheric gas containing nitrogen (for example, ammonia (NH 3) gas).
  • the quenching step S12 the member 120 to be processed is quenched.
  • the quenching step S12 includes a heating step S121 and a cooling step S122.
  • the heating step S121 the member 120 to be processed is heated to a temperature of one A point or higher and held for a predetermined time.
  • a 1 point is the temperature at which ferrite in steel begins to transform into austenite.
  • austenite crystal grains are generated in the steel constituting the processing target member 120.
  • the cooling step S122 is performed after the heating step S121.
  • the member 120 to be processed is cooled to a temperature equal to or lower than the Ms point.
  • the Ms point is the temperature at which the transformation from austenite to martensite begins. Therefore, in the cooling step S122, some of the austenite crystal grains in the steel constituting the processing target member 120 become martensite crystal grains.
  • the temperature is lowered below the Ms point and at or near the Mf point.
  • the Mf point is the temperature at which the transformation from austenite to martensite ends. That is, in the cooling step S122, a so-called sub-zero treatment (deep cooling treatment) is performed. As a result, the amount of retained austenite in the steel constituting the work target member 120 is considerably reduced.
  • the tempering step S13 is performed after the quenching step S12. In the tempering step S13, the member 120 to be processed is tempered.
  • FIG. 15 is a schematic plan view for explaining the tempering step S13.
  • FIG. 16 is a schematic cross-sectional view for explaining the tempering step S13. As shown in FIGS. 15 and 16, the heating in the tempering step S13 is performed by, for example, induction heating.
  • the outer peripheral surface 120d of the member 120 to be processed is cooled by a cooling liquid such as water injected from the injection unit 131.
  • FIG. 17 is a graph showing the simulation results regarding the relationship between the heating time by the heating coil 130 and the temperatures on the inner peripheral surface 120c and the outer peripheral surface 120d.
  • the horizontal axis represents the heating time (unit: seconds) by the heating coil 130
  • the vertical axis represents the temperature (unit: ° C.) on the inner peripheral surface 120c and the outer peripheral surface 120d.
  • the simulation of FIG. 17 was performed under the conditions that the heating temperature of the inner peripheral surface 120c was 420 ° C., the outer peripheral surface 120d was water-cooled, and the distance between the inner peripheral surface 120c and the outer peripheral surface 120d was 3 mm.
  • the heating temperature of the outer peripheral surface 120d is lower than the heating temperature of the inner peripheral surface 120c.
  • FIG. 18 is a graph showing a simulation result of the heating temperature of the outer peripheral surface 120d when the heating temperature of the inner peripheral surface 120c is changed.
  • the horizontal axis represents the heating temperature (unit: ° C.) of the inner peripheral surface 120c
  • the vertical axis represents the heating temperature (unit: ° C.) of the outer peripheral surface 120d.
  • the simulation of FIG. 18 was performed under the same conditions as the simulation of FIG. 17, except that the heating temperature of the inner peripheral surface 120c was changed.
  • the heating temperature of the outer peripheral surface 120d is a linear expression of the heating temperature of the inner peripheral surface 120c.
  • the volume ratio (M 1 ) of retained austenite in the steel constituting the work target member 120 after the tempering step S13 is performed is tempered.
  • M 1 M 0 ⁇ ⁇ A.
  • the heating temperature of the outer peripheral surface 120d can be appropriately adjusted, and accordingly, the volume ratio of the retained austenite in the inner peripheral surface 120c. And the volume ratio of retained austenite on the outer peripheral surface 120d can be adjusted as appropriate.
  • post-treatment step S14 post-treatment is performed on the member 120 to be processed.
  • This post-treatment includes grinding of the processing target member 120, cleaning of the processing target member 120, and the like. With the above, the manufacturing process of the inner ring 110 is completed.
  • the inner ring 110 since the amount of retained austenite on the anti-orbital plane (inner peripheral surface 110c) is smaller than the amount of retained austenite on the raceway surface 110da, the retained austenite is transformed into martensite over time, so that the inner peripheral surface 110c The dimensional change of is small. Therefore, in the inner ring 110, the fitting with the shaft is hard to loosen, and the creep resistance on the anti-track surface can be improved.
  • the amount of retained austenite on the inner peripheral surface 110c is smaller than the amount of retained austenite on the raceway surface 110da (from another viewpoint, the amount of decrease in retained austenite on the inner peripheral surface 110c is the amount of retained austenite on the raceway surface 110da.
  • the shrinkage on the inner peripheral surface 110c side after the end of the tempering step S13 is larger than that on the raceway surface 110da side.
  • the raceway surface 110da Due to this difference in the amount of shrinkage, compressive residual stress acts on the raceway surface 110da.
  • the difference between the amount of retained austenite on the inner peripheral surface 110c and the amount of retained austenite on the raceway surface 110da is 3% by volume or more, so that the raceway surface 110da has a large compressive residual stress (specifically, , The minimum value is 100 MPa or more). Therefore, according to the inner ring 110, the rolling fatigue characteristics on the raceway surface 110 da can be improved.
  • the average value of the amount of retained austenite in the steel constituting the inner ring 110 is 10% by volume or less (when the nitriding layer 110e is formed, it is 20% by volume or less). , The transformation of retained austenite to martensite with the passage of time is less likely to occur, and the creep resistance can be further improved.
  • the average value of the amount of retained austenite in the steel constituting the inner ring 110 is 10% by volume or less (20% by volume when the nitriding layer 110e is formed). The following) can be used. If the average value of the amount of retained austenite in the steel is reduced before the tempering step S13, the time required for the tempering step S13 can be shortened, and the inner peripheral surface 110c is heated in the tempering step S13. The temperature can be lowered. As a result, the hardness can be maintained not only on the raceway surface 110da but also on the inner peripheral surface 110c.
  • Samples 1 to 4 were prepared as samples to be used in the experiment.
  • Samples 1 to 4 are annular members formed by SUJ2 defined in JIS standards.
  • the surfaces of Sample 1 and Sample 2 have not been subjected to nitrification treatment.
  • the surfaces of Samples 3 and 4 are subjected to a nitrogen immersion treatment.
  • the sample 1 and the sample 3 are not subjected to the sub-zero treatment in the cooling step S122, and the samples 2 and the sample 4 are subjected to the sub-zero treatment in the cooling step S122.
  • a tempering step S13 is performed on Samples 1 to 4.
  • the amount of retained austenite on the orbital surface of Sample 1 was 11% by volume.
  • the amount of retained austenite on the orbital surface of Sample 2 was 7% by volume.
  • the amount of retained austenite on the orbital surface of Sample 3 was 31% by volume, while the amount of retained austenite on the orbital surface of Sample 4 was 16% by volume.
  • the inner ring 110 is formed by performing the subzero treatment in the cooling step S122.
  • the average value of the amount of retained austenite in the steel can be 10% by volume or less (20% by volume or less when the immersion layer 110e is formed).
  • Tempering step S13 was performed on sample 2. At this time, the heating temperature on the inner peripheral surface side of the sample 2 was set to 300 ° C., and the outer peripheral surface side of the sample 2 was water-cooled. The heating time was set so that the difference between the amount of retained austenite on the outer peripheral surface and the retained austenite on the inner peripheral surface was 3% by volume based on the formulas 1 and 2.

Abstract

An inner ring (12) is made from a steel and has an inner ring raceway surface (12A) that extends along a circumferential direction and an inner circumferential surface (12C) that serves as an inner circumferential surface extending along the circumferential direction and also extending along an axis direction. The amount of retained austenite in the inner ring raceway surface (12A) is larger than that in the inner circumferential surface (12C). The difference between the amount of retained austenite in the inner ring raceway surface (12A) and that in the inner circumferential surface (12C) is 3% by volume or more.

Description

軌道部材、転がり軸受、転がり軸受の軌道輪及び転がり軸受の軌道輪の製造方法Method for manufacturing raceway members, rolling bearings, raceway rings for rolling bearings, and raceway rings for rolling bearings
 本発明は、軌道部材、転がり軸受、転がり軸受の軌道輪及び転がり軸受の軌道輪の製造方法に関する。 The present invention relates to a method for manufacturing a raceway member, a rolling bearing, a raceway ring of a rolling bearing, and a raceway ring of a rolling bearing.
 従来の軌道部材は、焼入処理及び焼戻処理を含む熱処理が施されることにより、製造されている。一般的に、焼戻処理は、被処理物である成形体全体が雰囲気炉内に収容されることにより、実施される。 The conventional track member is manufactured by performing a heat treatment including quenching treatment and tempering treatment. Generally, the tempering treatment is carried out by accommodating the entire molded product, which is the object to be treated, in the atmosphere furnace.
 高温環境下で使用される軌道部材の寸法変化率は、軸受寿命の観点から、低く抑えられているのが好ましい。例えば内輪の内径面の寸法変化率が低く抑えられていれば、内輪の内径面と軸との嵌め合いに緩みが生じてクリープが発生することを抑制でき、軸受の破損を抑制できる。 The dimensional change rate of the track member used in a high temperature environment is preferably kept low from the viewpoint of bearing life. For example, if the dimensional change rate of the inner diameter surface of the inner ring is suppressed to a low level, it is possible to suppress loosening of the fit between the inner diameter surface of the inner ring and the shaft to cause creep, and it is possible to suppress damage to the bearing.
 従来、軌道部材の寸法変化率を低く抑える対策として、軌道部材全体の平均残留オーステナイト量を減らすための焼戻処理が知られている。 Conventionally, as a measure to keep the dimensional change rate of the track member low, a tempering process for reducing the average residual austenite amount of the entire track member has been known.
 特開2017-227334号公報には、軌道部材全体の平均残留オーステナイト量を18体積%以下とするために、180℃以上230℃以下の温度で鋼材を焼き戻す技術が開示されている。 Japanese Unexamined Patent Publication No. 2017-227334 discloses a technique for tempering a steel material at a temperature of 180 ° C. or higher and 230 ° C. or lower in order to reduce the average residual austenite amount of the entire track member to 18% by volume or less.
特開2017-227334公報JP-A-2017-227334
 しかしながら、従来の上記焼戻処理方法では、成形体全体を焼き戻すため、成形体全体において残留オーステナイトが分解される。さらに、従来の上記焼戻処理方法では、成形体全体において、残留オーステナイトが分解されると同時に、マルテンサイトが分解される。 However, in the conventional tempering treatment method, since the entire molded product is tempered, retained austenite is decomposed in the entire molded product. Further, in the conventional tempering treatment method, martensite is decomposed at the same time as retained austenite is decomposed in the entire molded product.
 そのため、従来の上記焼戻処理が施されることにより製造された軌道部材では、例えば高温環境下での使用が予定されないために上記条件での焼戻処理が施されずに製造された軌道部材と比べて、軌道面及び軌道面とは反対側に位置する円周面(以下、反軌道面という)、すなわち内輪の内径面または外輪の外径面、のマルテンサイト量が低く抑えられており、軌道面及び反軌道面の硬さが低い。また、前者の軌道部材では、後者の軌道部材と比べて、残留オーステナイト量は少ないが、軌道面の硬さ低下量を小さくする必要があるため、残留オーステナイトの分解量が少ない。そのため、寸法変化率の抑制効果は十分ではなく、その上、軌道面及び反軌道面の硬さが低下している。 Therefore, in the conventional track member manufactured by performing the above-mentioned tempering treatment, for example, the track member manufactured without performing the tempering treatment under the above-mentioned conditions because it is not planned to be used in a high temperature environment. The amount of martensite in the raceway surface and the circumferential surface (hereinafter referred to as the anti-tracking surface) located on the opposite side of the raceway surface, that is, the inner diameter surface of the inner ring or the outer diameter surface of the outer ring is suppressed to be low. , The hardness of the track surface and the anti-track surface is low. Further, in the former track member, the amount of retained austenite is smaller than that of the latter track member, but since it is necessary to reduce the amount of decrease in hardness of the raceway surface, the amount of decomposition of retained austenite is small. Therefore, the effect of suppressing the dimensional change rate is not sufficient, and the hardness of the raceway surface and the anti-trackway surface is reduced.
 本発明の主たる目的は、上記反軌道面の寸法変化率が低く抑えられているとともに、軌道面及び反軌道面の硬さの低下が抑制された軌道部材及び転がり軸受を提供することにある。 A main object of the present invention is to provide a raceway member and a rolling bearing in which the dimensional change rate of the anti-track surface is suppressed to a low level and the decrease in hardness of the raceway surface and the anti-track surface is suppressed.
 本発明に係る軌道部材は、周方向に沿って延在する軌道面と、前記軌道面と反対側を向いた反軌道面とを有している。前記軌道面の残留オーステナイト量は前記反軌道面の残留オーステナイト量よりも多い。前記軌道面の残留オーステナイト量と前記反軌道面の残留オーステナイト量との差が3体積%以上である。 The track member according to the present invention has a track surface extending along the circumferential direction and an anti-track surface facing the opposite side to the track surface. The amount of retained austenite on the orbital plane is larger than the amount of retained austenite on the anti-orbital plane. The difference between the amount of retained austenite on the orbital plane and the amount of retained austenite on the anti-orbital plane is 3% by volume or more.
 上記軌道部材では、全体の平均残留オーステナイト量が20体積%以下である。
 上記軌道部材では、全体の平均残留オーステナイト量が10体積%以下である。
In the track member, the average residual austenite amount as a whole is 20% by volume or less.
In the track member, the average residual austenite amount as a whole is 10% by volume or less.
 上記軌道部材では、反軌道面の残留オーステナイト量が5体積%以下である。
 上記軌道部材では、反軌道面の硬さが600Hv以上である。
In the track member, the amount of retained austenite on the anti-track surface is 5% by volume or less.
In the track member, the hardness of the anti-track surface is 600 Hv or more.
 本発明に係る転がり軸受は、内輪軌道面と、内輪軌道面とは反対側に位置する内径面とを有する内輪と、内輪軌道面と対向する外輪軌道面を有する外輪と、内輪軌道面と外輪軌道面と接触する複数の転動体とを備える。内輪が上記軌道部材である。内輪軌道面が軌道部材の軌道面である。内径面が軌道部材の反軌道面である。 The rolling bearing according to the present invention includes an inner ring having an inner ring raceway surface and an inner diameter surface located on the side opposite to the inner ring raceway surface, an outer ring having an outer ring raceway surface facing the inner ring raceway surface, and an inner ring raceway surface and an outer ring. It includes a plurality of rolling elements that come into contact with the raceway surface. The inner ring is the track member. The inner ring raceway surface is the raceway surface of the raceway member. The inner diameter surface is the anti-track surface of the track member.
 本発明によれば、上記円周面の寸法変化率が低く抑えられているとともに、軌道面及び反軌道面の硬さの低下が抑制された軌道部材及び転がり軸受を提供することができる。 According to the present invention, it is possible to provide a raceway member and a rolling bearing in which the dimensional change rate of the circumferential surface is suppressed to a low level and the decrease in hardness of the raceway surface and the anti-track surface is suppressed.
本実施の形態に係る転がり軸受の一例を示す断面図である。It is sectional drawing which shows an example of the rolling bearing which concerns on this embodiment. 本実施の形態に係る転がり軸受の他の一例を示す断面図である。It is sectional drawing which shows another example of the rolling bearing which concerns on this embodiment. 本実施の形態に係る転がり軸受の製造方法のフローチャートである。It is a flowchart of the manufacturing method of the rolling bearing which concerns on this embodiment. 本実施の形態に係る転がり軸受の製造方法において、第1焼戻処理の一例を示す上面図である。It is a top view which shows an example of the 1st tempering process in the manufacturing method of the rolling bearing which concerns on this embodiment. 図4中の矢印V-Vから視た断面図である。It is sectional drawing seen from the arrow VV in FIG. 本実施の形態に係る焼戻処理において初期残留オーステナイト量から所定量減少させるために必要となる焼戻温度での保持時間(均熱時間)と初期残留オーステナイト量との関係を示すグラフである。It is a graph which shows the relationship between the holding time (soaking time) at a tempering temperature required for reducing a predetermined amount from the initial residual austenite amount in the tempering treatment which concerns on this embodiment, and the initial residual austenite amount. 本実施の形態に係る焼戻処理によって実現される被加熱部材の温度分布に関するシミュレーション解析に用いた解析モデルを示す図である。It is a figure which shows the analysis model used for the simulation analysis about the temperature distribution of the member to be heated realized by the tempering process which concerns on this embodiment. 図7に示される解析モデルを用いたシミュレーション解析により得られた第1周面に対する加熱温度とそのときの第2周面の温度との関係を示すグラフである。It is a graph which shows the relationship between the heating temperature with respect to the 1st peripheral surface and the temperature of the 2nd peripheral surface at that time obtained by the simulation analysis using the analysis model shown in FIG. 図7に示される解析モデルを用いたシミュレーション解析により得られた加熱時間に対する第1周面及び第2周面の各温度変化を示すグラフである。It is a graph which shows each temperature change of the 1st peripheral surface and the 2nd peripheral surface with respect to the heating time obtained by the simulation analysis using the analysis model shown in FIG. 図7に示される解析モデルを用いたシミュレーション解析により得られた被加熱部材の温度分布を示す図である。It is a figure which shows the temperature distribution of the member to be heated obtained by the simulation analysis using the analysis model shown in FIG. 内輪110の平面図である。It is a top view of the inner ring 110. 図11のXII-XIIにおける断面図である。It is sectional drawing in XII-XII of FIG. 変形例に係る内輪110の断面図である。It is sectional drawing of the inner ring 110 which concerns on a modification. 内輪110の製造方法を示す工程図である。It is a process drawing which shows the manufacturing method of the inner ring 110. 焼き戻し工程S13を説明するための平面模式図である。It is a plane schematic diagram for demonstrating the tempering process S13. 焼き戻し工程S13を説明するための断面模式図である。It is sectional drawing to explain the tempering process S13. 加熱コイル130による加熱時間と内周面120c及び外周面120dにおける温度との関係についてのシミュレーション結果を示すグラフである。It is a graph which shows the simulation result about the relationship between the heating time by a heating coil 130, and the temperature on the inner peripheral surface 120c and the outer peripheral surface 120d. 内周面120cの加熱温度を変化させた際の外周面120dの加熱温度のシミュレーション結果を示すグラフである。It is a graph which shows the simulation result of the heating temperature of the outer peripheral surface 120d when the heating temperature of the inner peripheral surface 120c is changed.
 以下に、実施形態について図面を参照して説明する。なお、以下の図面においては、同一又は相当する部分に同一の参照番号を付し、その説明は繰り返さないものとする。 Hereinafter, embodiments will be described with reference to the drawings. In the following drawings, the same or corresponding parts shall be given the same reference number, and the description thereof shall not be repeated.
 <転がり軸受の構成>
 本実施の形態に係る転がり軸受は、例えばラジアル玉軸受であって、より具体的には図1に示される深溝玉軸受1である。深溝玉軸受1は、環状の外輪11と、外輪11の内側に配置された環状の内輪12と、外輪11と内輪12との間に配置され、円環状の保持器14に保持された転動体である複数の玉13とを備えている。外輪11の中心軸は、内輪12の中心軸と重なるように配置されている。
<Structure of rolling bearing>
The rolling bearing according to the present embodiment is, for example, a radial ball bearing, and more specifically, a deep groove ball bearing 1 shown in FIG. The deep groove ball bearing 1 is a rolling element arranged between the annular outer ring 11, the annular inner ring 12 arranged inside the outer ring 11, and the outer ring 11 and the inner ring 12, and held by the annular cage 14. It is provided with a plurality of balls 13 which are. The central axis of the outer ring 11 is arranged so as to overlap the central axis of the inner ring 12.
 外輪11は、内周面11Bと、外径面としての外周面11Cとを有している。外輪11の内周面11Bには、周方向に沿って延在する外輪軌道面11Aが形成されている。内輪12は、径方向において外周側を向いた外周面12Bと、内径面としての内周面12Cとを有している。内輪12の外周面12Bには、周方向に沿って延在する内輪軌道面12Aが形成されている。内輪12は、内輪軌道面12Aが外輪軌道面11Aと対向するように外輪11の内側に配置されている。 The outer ring 11 has an inner peripheral surface 11B and an outer peripheral surface 11C as an outer diameter surface. An outer ring raceway surface 11A extending along the circumferential direction is formed on the inner peripheral surface 11B of the outer ring 11. The inner ring 12 has an outer peripheral surface 12B facing the outer peripheral side in the radial direction and an inner peripheral surface 12C as an inner diameter surface. An inner ring raceway surface 12A extending along the circumferential direction is formed on the outer peripheral surface 12B of the inner ring 12. The inner ring 12 is arranged inside the outer ring 11 so that the inner ring raceway surface 12A faces the outer ring raceway surface 11A.
 複数の玉13は、転動面13Aにおいて外輪軌道面11A及び内輪軌道面12Aに接触し、かつ保持器14により周方向に所定のピッチで配置されている。これにより、複数の玉13は、外輪11及び内輪12の円環状の軌道上に転動自在に保持されている。このような構成により、深溝玉軸受1の外輪11及び内輪12は、互いに相対的に回転可能となっている。なお、内輪12が、本実施の形態に係る軌道部材である。 The plurality of balls 13 are in contact with the outer ring raceway surface 11A and the inner ring raceway surface 12A on the rolling surface 13A, and are arranged at a predetermined pitch in the circumferential direction by the cage 14. As a result, the plurality of balls 13 are rotatably held on the annular orbits of the outer ring 11 and the inner ring 12. With such a configuration, the outer ring 11 and the inner ring 12 of the deep groove ball bearing 1 can rotate relative to each other. The inner ring 12 is a track member according to the present embodiment.
 内輪12は、周方向に沿って延在する内輪軌道面12Aと、周方向に沿って延在し、かつ軸方向に沿って延びる円周面としての内周面12Cとを有している。内輪軌道面12Aの残留オーステナイト量は、内周面12Cの残留オーステナイト量よりも多い。内輪12の残留オーステナイト量は、径方向において内輪軌道面12Aから内周面12Cに向かうにつれて、徐々に減少する傾向を示す。 The inner ring 12 has an inner ring raceway surface 12A extending along the circumferential direction and an inner peripheral surface 12C as a circumferential surface extending along the circumferential direction and extending along the axial direction. The amount of retained austenite on the inner ring raceway surface 12A is larger than the amount of retained austenite on the inner peripheral surface 12C. The amount of retained austenite in the inner ring 12 tends to gradually decrease from the inner ring raceway surface 12A to the inner peripheral surface 12C in the radial direction.
 内輪軌道面12Aの残留オーステナイト量と内周面12Cの残留オーステナイト量との差は、3体積%以上である。内輪軌道面12Aの残留オーステナイト量と内周面12Cの残留オーステナイト量との差は、例えば10体積%以下であり、例えば5体積%未満である。内輪軌道面12Aの残留オーステナイト量と内周面12Cの残留オーステナイト量との上記差は、従来の焼戻処理によって実現される軌道面の残留オーステナイト量と内周面の残留オーステナイト量との差超えであり、後述する本実施の形態に係る焼戻処理により実現される。なお、残留オーステナイト量は、X線回折によって測定されたマルテンサイト相及びオーステナイト相の各回折強度から算出される。 The difference between the amount of retained austenite on the inner ring raceway surface 12A and the amount of retained austenite on the inner peripheral surface 12C is 3% by volume or more. The difference between the amount of retained austenite on the inner ring raceway surface 12A and the amount of retained austenite on the inner peripheral surface 12C is, for example, 10% by volume or less, for example, less than 5% by volume. The above difference between the amount of retained austenite on the inner ring raceway surface 12A and the amount of retained austenite on the inner peripheral surface 12C exceeds the difference between the amount of retained austenite on the raceway surface and the amount of retained austenite on the inner peripheral surface realized by the conventional tempering treatment. This is realized by the tempering process according to the present embodiment, which will be described later. The amount of retained austenite is calculated from the diffraction intensities of the martensite phase and the austenite phase measured by X-ray diffraction.
 内周面12Cの残留オーステナイト量は、例えば5体積%以下であり、好ましくは5体積%未満である。内輪軌道面12Aの残留オーステナイト量は、例えば10体積%以上であり、好ましくは15体積%以上である。内輪軌道面12Aの残留オーステナイト量と内周面12Cの残留オーステナイト量との上記差は、従来の焼戻処理によって実現される軌道面の残留オーステナイト量と内周面の残留オーステナイト量との差超えであり、後述する本実施の形態に係る内輪12の製造方法における焼戻処理により実現される。 The amount of retained austenite on the inner peripheral surface 12C is, for example, 5% by volume or less, preferably less than 5% by volume. The amount of retained austenite on the inner ring raceway surface 12A is, for example, 10% by volume or more, preferably 15% by volume or more. The above difference between the amount of retained austenite on the inner ring raceway surface 12A and the amount of retained austenite on the inner peripheral surface 12C exceeds the difference between the amount of retained austenite on the raceway surface and the amount of retained austenite on the inner peripheral surface realized by the conventional tempering treatment. This is realized by the tempering process in the method for manufacturing the inner ring 12 according to the present embodiment, which will be described later.
 内輪12の全体の平均残留オーステナイト量、すなわち内輪12の内輪軌道面12Aから内周面12Cまでの上記径方向の残留オーステナイト量の分布から算出される平均値は、20体積%以下である。内輪12の全体の平均残留オーステナイト量は、内輪12の製造方法において浸炭浸窒処理が施されているか否かに関わらず、20体積%以下である。その製造方法において浸炭浸窒処理が施されなかった内輪12では、内輪12の全体の平均残留オーステナイト量が10体積%以下となり得る。 The average residual austenite amount of the entire inner ring 12, that is, the average value calculated from the distribution of the residual austenite amount in the radial direction from the inner ring raceway surface 12A to the inner peripheral surface 12C of the inner ring 12 is 20% by volume or less. The average residual austenite amount of the inner ring 12 as a whole is 20% by volume or less regardless of whether or not the carburizing and nitriding treatment is performed in the method for producing the inner ring 12. In the inner ring 12 which has not been subjected to the carburizing and nitrogen treatment in the production method, the average residual austenite amount of the entire inner ring 12 can be 10% by volume or less.
 内輪軌道面12Aの硬さは、内周面12Cの硬さ超えである。内輪軌道面12Aの硬さは、例えば650Hv以上であり、好ましくは700Hv以上である。内周面12Cの硬さは、例えば600Hv以上700Hv以下である。内周面12Cの硬さが700Hvであるとき、内輪軌道面12Aの硬さは例えば750Hv以上である。なお、各表面の硬さは、JIS規格(JJS Z 2244:2009)に規定されるビッカース硬さ試験法にしたがって測定される。 The hardness of the inner ring raceway surface 12A exceeds the hardness of the inner peripheral surface 12C. The hardness of the inner ring raceway surface 12A is, for example, 650 Hv or more, preferably 700 Hv or more. The hardness of the inner peripheral surface 12C is, for example, 600 Hv or more and 700 Hv or less. When the hardness of the inner peripheral surface 12C is 700 Hv, the hardness of the inner ring raceway surface 12A is, for example, 750 Hv or more. The hardness of each surface is measured according to the Vickers hardness test method specified in the JIS standard (JJS Z 2244: 2009).
 本実施の形態に係る転がり軸受は、例えばラジアルころ軸受であって、より具体的には図2に示される円錐ころ軸受2であってもよい。円錐ころ軸受2は、環状の外輪21及び内輪22と、転動体である複数のころ23と、円環状の保持器24とを備えている。外輪21の内周面には、周方向に沿って延在する外輪軌道面21Aが形成されており、内輪22の外周面には、周方向に沿って延在する内輪軌道面22Aが形成されている。内輪22は、内輪軌道面22Aが外輪軌道面21Aと対向するように外輪21の内側に配置されている。 The rolling bearing according to the present embodiment may be, for example, a radial roller bearing, and more specifically, a conical roller bearing 2 shown in FIG. The conical roller bearing 2 includes an annular outer ring 21 and an inner ring 22, a plurality of rollers 23 which are rolling elements, and an annular cage 24. An outer ring raceway surface 21A extending along the circumferential direction is formed on the inner peripheral surface of the outer ring 21, and an inner ring raceway surface 22A extending along the circumferential direction is formed on the outer peripheral surface of the inner ring 22. ing. The inner ring 22 is arranged inside the outer ring 21 so that the inner ring raceway surface 22A faces the outer ring raceway surface 21A.
 複数のころ23は、転動面23Aにおいて外輪軌道面21A及び内輪軌道面22Aに接触し、かつ保持器24により周方向に所定のピッチで配置されている。これにより、ころ23は、外輪21及び内輪22の円環状の軌道上に転動自在に保持されている。また、円錐ころ軸受2は、外輪軌道面21Aを含む円錐、内輪軌道面22Aを含む円錐、及びころ23が転動した場合の回転軸の軌跡を含む円錐のそれぞれの頂点が軸受の中心線上の1点で交わるように構成されている。このような構成により、円錐ころ軸受2の外輪21及び内輪22は、互いに相対的に回転可能となっている。なお、内輪22は、内輪12と同様に、本実施の形態に係る軌道部材である。内輪22は、内輪12と同様の構成を有している。 The plurality of rollers 23 are in contact with the outer ring raceway surface 21A and the inner ring raceway surface 22A on the rolling surface 23A, and are arranged at a predetermined pitch in the circumferential direction by the cage 24. As a result, the roller 23 is rotatably held on the annular orbit of the outer ring 21 and the inner ring 22. Further, in the conical roller bearing 2, the apex of each of the cone including the outer ring raceway surface 21A, the cone including the inner ring raceway surface 22A, and the cone including the locus of the rotation axis when the roller 23 rolls is on the center line of the bearing. It is configured to intersect at one point. With such a configuration, the outer ring 21 and the inner ring 22 of the conical roller bearing 2 can rotate relative to each other. The inner ring 22 is a track member according to the present embodiment, like the inner ring 12. The inner ring 22 has the same configuration as the inner ring 12.
 内輪22は、周方向に沿って延在する内輪軌道面22Aと、周方向に沿って延在し、かつ軸方向に沿って延びる円周面としての内周面22Cとを有している。内輪軌道面22Aの残留オーステナイト量は、内周面22Cの残留オーステナイト量よりも多い。内輪22の残留オーステナイト量は、径方向において内輪軌道面22Aから内周面22Cに向かうにつれて、徐々に減少する傾向を示す。 The inner ring 22 has an inner ring raceway surface 22A extending along the circumferential direction and an inner peripheral surface 22C as a circumferential surface extending along the circumferential direction and extending along the axial direction. The amount of retained austenite on the inner ring raceway surface 22A is larger than the amount of retained austenite on the inner peripheral surface 22C. The amount of retained austenite in the inner ring 22 tends to gradually decrease from the inner ring raceway surface 22A to the inner peripheral surface 22C in the radial direction.
 内周面22Cの残留オーステナイト量は、例えば5体積%以下であり、好ましくは5体積%未満である。内輪軌道面22Aの残留オーステナイト量は、例えば10体積%以上であり、好ましくは15体積%以上である。内輪軌道面22Aの残留オーステナイト量と内周面22Cの残留オーステナイト量との上記差は、従来の焼戻処理によって実現される軌道面の残留オーステナイト量と内周面の残留オーステナイト量との差超えであり、後述する本実施の形態に係る内輪22の製造方法における焼戻処理により実現される。 The amount of retained austenite on the inner peripheral surface 22C is, for example, 5% by volume or less, preferably less than 5% by volume. The amount of retained austenite on the inner ring raceway surface 22A is, for example, 10% by volume or more, preferably 15% by volume or more. The above difference between the amount of retained austenite on the inner ring raceway surface 22A and the amount of retained austenite on the inner peripheral surface 22C exceeds the difference between the amount of retained austenite on the raceway surface and the amount of retained austenite on the inner peripheral surface realized by the conventional tempering treatment. This is realized by the tempering process in the method for manufacturing the inner ring 22 according to the present embodiment described later.
 内輪22の全体の平均残留オーステナイト量、すなわち内輪22の内輪軌道面22Aから内周面22Cまでの上記径方向の残留オーステナイト量の分布から算出される平均値は、20体積%以下である。内輪22の全体の平均残留オーステナイト量は、内輪22の製造方法において浸炭浸窒処理が施されているか否かに関わらず、20体積%以下である。その製造方法において浸炭浸窒処理が施されなかった内輪22では、内輪22の全体の平均残留オーステナイト量が10体積%以下となり得る。内輪軌道面22Aの残留オーステナイト量と内周面22Cの残留オーステナイト量との上記差は、従来の焼戻処理によって実現される軌道面の残留オーステナイト量と内周面の残留オーステナイト量との差超えであり、後述する本実施の形態に係る焼戻処理により実現される。 The average residual austenite amount of the inner ring 22 as a whole, that is, the average value calculated from the distribution of the residual austenite amount in the radial direction from the inner ring raceway surface 22A to the inner peripheral surface 22C of the inner ring 22 is 20% by volume or less. The average residual austenite amount of the inner ring 22 as a whole is 20% by volume or less regardless of whether or not the carburizing and nitriding treatment is performed in the method for producing the inner ring 22. In the inner ring 22 which has not been subjected to the carburizing and nitrogen treatment in the production method, the average residual austenite amount of the entire inner ring 22 can be 10% by volume or less. The above difference between the amount of retained austenite on the inner ring raceway surface 22A and the amount of retained austenite on the inner peripheral surface 22C exceeds the difference between the amount of retained austenite on the raceway surface and the amount of retained austenite on the inner peripheral surface realized by the conventional tempering treatment. This is realized by the tempering process according to the present embodiment, which will be described later.
 内輪軌道面22Aの硬さは、内周面22Cの硬さ超えである。内輪軌道面22Aの硬さは、例えば650Hv以上であり、好ましくは700Hv以上である。内周面22Cの硬さは、例えば600Hv以上700Hv以下である。内周面22Cの硬さが700Hvであるとき、内輪軌道面22Aの硬さは例えば750Hv以上である。 The hardness of the inner ring raceway surface 22A exceeds the hardness of the inner peripheral surface 22C. The hardness of the inner ring raceway surface 22A is, for example, 650 Hv or more, preferably 700 Hv or more. The hardness of the inner peripheral surface 22C is, for example, 600 Hv or more and 700 Hv or less. When the hardness of the inner peripheral surface 22C is 700 Hv, the hardness of the inner ring raceway surface 22A is, for example, 750 Hv or more.
 <転がり軸受の製造方法>
 本実施の形態に係る転がり軸受は、図3に示される本実施の形態に係る転がり軸受の製造方法により、製造される。図3に示されるように、本実施の形態に係る転がり軸受の製造方法は、内輪12,22(軌道部材)となるべき成形体を準備する工程(S10)と、成形体に対して焼入硬化処理を行う工程(S20)と、焼入硬化処理が施された成形体に対して焼戻処理を行う工程(S30)と、焼戻処理が施された成形体を研削加工する仕上工程(S40)とを備える。上記工程(S10)~(S40)により、内輪12,22が製造される。さらに、本実施の形態に係る転がり軸受の製造方法は、外輪11,21と玉13またはころ23とを準備して、内輪12,22、外輪11,21、及び玉13またはころ23を組み立てる工程(S50)とをさらに備える。
<Manufacturing method of rolling bearings>
The rolling bearing according to the present embodiment is manufactured by the method for manufacturing the rolling bearing according to the present embodiment shown in FIG. As shown in FIG. 3, the rolling bearing manufacturing method according to the present embodiment includes a step (S10) of preparing a molded body to be inner rings 12 and 22 (track members) and quenching of the molded body. A step of performing a hardening treatment (S20), a step of performing a tempering treatment on a molded product subjected to a quench hardening treatment (S30), and a finishing step of grinding a molded body subjected to the tempering treatment (S20). S40) and. Inner rings 12 and 22 are manufactured by the above steps (S10) to (S40). Further, the method for manufacturing a rolling bearing according to the present embodiment is a step of preparing outer rings 11 and 21 and balls 13 or rollers 23 and assembling inner rings 12, 22, outer rings 11 and 21 and balls 13 or rollers 23. (S50) is further provided.
 工程(S10)では、まず、鋼からなる鋼材が準備される。鋼材は、たとえば棒鋼や鋼線などとして準備される。次に、当該鋼材に対して切断、鍛造、旋削などの加工が施される。これにより、内輪12,22の概略形状に成形加工された鋼材(成形体)が作製される。上記成形体は、径方向において内側を向いた第1周面10Cと、径方向において外側を向いた第2周面とを有している。第1周面10Cが後工程(S40)において研削加工されることにより、内輪12,22の内周面12C,22Cが形成される。第2周面が後工程(S40)において研削加工されることにより、内輪12,22の内輪軌道面12A,22Aが形成される。 In the process (S10), first, a steel material made of steel is prepared. The steel material is prepared as, for example, steel bar or steel wire. Next, the steel material is subjected to processing such as cutting, forging, and turning. As a result, a steel material (molded body) formed into the approximate shape of the inner rings 12 and 22 is produced. The molded body has a first peripheral surface 10C facing inward in the radial direction and a second peripheral surface facing outward in the radial direction. The inner peripheral surfaces 12C and 22C of the inner rings 12 and 22 are formed by grinding the first peripheral surface 10C in the subsequent step (S40). The inner ring raceway surfaces 12A and 22A of the inner rings 12 and 22 are formed by grinding the second peripheral surface in the post-process (S40).
 工程(S20)では、先の工程(S10)において準備された成形体に対し、焼入硬化処理が実施される。工程(S20)では、まず、成形体を浸炭浸窒させるための浸炭浸窒処理が実施される。次に、浸炭浸窒処理によって成形体中に浸入した窒素を拡散させるための窒素拡散処理が実施される。次に、成形体の全体がA1点以上の温度T1に加熱され、均熱のために保持時間t1(均熱時間)だけ保持される。次に、成形体がMs点(マルテンサイト変態点)以下の温度T2にまで冷却される。この冷却処理は、例えば油や水などの冷却液中に対象材が浸漬されることにより実施される。これにより、当該対象材が焼入処理される。焼入処理は、焼入処理された対象材の硬度が後述する焼戻処理された対象材の硬度超えとなるような条件で実施される。なお、焼入硬化処理が実施された成形体の上記第2周面の残留オーステナイト量と上記第1周面10Cの残留オーステナイト量との差は3体積%未満とされている。また、焼入硬化処理が実施された成形体の上記第1周面及び上記第2周面の各残留オーステナイト量(以下、初期残留オーステナイト量とよぶ)は、特に制限されるものではないが、例えば5体積%以上13体積%以下である。 In the step (S20), a quench hardening treatment is performed on the molded product prepared in the previous step (S10). In the step (S20), first, a carburizing and nitriding treatment for carburizing and nitriding the molded product is carried out. Next, a nitrogen diffusion treatment for diffusing the nitrogen that has infiltrated into the molded body by the carburizing and nitrification treatment is carried out. Next, the whole of the molded body is heated to a temperature T 1 of the above point A, retention time t 1 (soaking time) for soaking only be retained. Next, the molded product is cooled to a temperature T 2 below the Ms point (martensite transformation point). This cooling treatment is carried out by immersing the target material in a coolant such as oil or water. As a result, the target material is quenched. The quenching treatment is carried out under conditions such that the hardness of the hardened target material exceeds the hardness of the tempered target material described later. The difference between the amount of retained austenite on the second peripheral surface and the amount of retained austenite on the first peripheral surface 10C of the molded product subjected to the quench hardening treatment is less than 3% by volume. The amount of retained austenite on each of the first peripheral surface and the second peripheral surface of the molded product subjected to the quench hardening treatment (hereinafter referred to as the initial retained austenite amount) is not particularly limited. For example, it is 5% by volume or more and 13% by volume or less.
 工程(S30)では、先の工程(S20)において焼入硬化処理が実施された成形体に対し、焼戻処理が実施される。焼戻処理では、成形体全体が加熱される従来の寸法安定化処理としての第1焼戻処理と、成形体のの上記第2周面が局所的に冷却されながら、上記第1周面10Cが局所的に加熱される第2焼戻処理とが実施される。第2周面に対する局所的な冷却は、第2焼戻処理において第1周面10Cに対する加熱開始時から加熱終了時まで、継続して実施される。 In the step (S30), the tempering treatment is performed on the molded product that has been quench-hardened in the previous step (S20). In the tempering treatment, the first tempering treatment as a conventional dimensional stabilization treatment in which the entire molded product is heated, and the first peripheral surface 10C while the second peripheral surface of the molded product is locally cooled. A second tempering process is performed in which the heat is locally heated. Local cooling of the second peripheral surface is continuously performed in the second tempering process from the start of heating to the end of heating of the first peripheral surface 10C.
 成形体の上記第1周面10Cの表面温度は、焼戻温度T3に保持時間t2(焼戻時間)が経過するまで保持される。保持時間t2は、第2焼戻処理において上記第1周面10C焼戻温度T3に到達してから、加熱を終了するまでの時間である。成形体の上記第2周面の表面温度は、焼戻温度T3未満の第1到達温度T4に保持された後、第1到達温度T4以上焼戻温度T3以下の第2到達温度T5に保持時間t3が経過するまで保持される。保持時間t3は、第2焼戻処理において上記第2周面が第2到達温度T5に到達してから、第2周面に対する加熱を終了するまでの時間である。第2到達温度T5は、例えば焼戻温度T3に等しい。 The surface temperature of the first peripheral surface 10C of the molded product is maintained until the holding time t 2 (tempering time) elapses at the tempering temperature T 3. The holding time t 2 is the time from when the first peripheral surface 10C tempering temperature T 3 is reached in the second tempering treatment to the end of heating. Surface temperature of the second circumferential surface of the green body, after being held by the first temperature reached T 4 lower than the tempering temperature T 3, first reaches a temperature T 4 or more tempering temperature T 3 below the second temperature reached It is held at T 5 until the holding time t 3 elapses. The holding time t 3 is the time from when the second peripheral surface reaches the second reaching temperature T 5 in the second tempering process until the heating of the second peripheral surface is completed. The second reached temperature T 5 is, for example, equal to the tempering temperature T 3.
 焼戻温度T3、保持時間t2は、内周面12C,22Cに要求される寸法安定性及び硬さを実現する観点から、内周面12C,22Cの残留オーステナイト量が予め定められた値以下となりかつ内周面12C,22Cの硬さが予め定められた値以上となるように設定される。一方、上記第2周面の第1到達温度T4、第2到達温度T5、及び保持時間t3は、内輪軌道面12A,22Aに要求される硬さ及び内輪12,22の全体に要求される寸法安定性を実現する観点から、内輪軌道面12A,22Aの硬さが予め定められた値以上となり、かつ内輪軌道面12A,22Aの残留オーステナイト量が予め定められた値以下となるように設定される。 The tempering temperature T 3 and the holding time t 2 are values in which the amount of retained austenite on the inner peripheral surfaces 12C and 22C is predetermined from the viewpoint of achieving the dimensional stability and hardness required for the inner peripheral surfaces 12C and 22C. It is set so that the hardness of the inner peripheral surfaces 12C and 22C is equal to or greater than a predetermined value. On the other hand, the first ultimate temperature T 4 , the second ultimate temperature T 5 , and the holding time t 3 of the second peripheral surface are required for the hardness required for the inner ring raceway surfaces 12A and 22A and for the entire inner rings 12 and 22. From the viewpoint of realizing the dimensional stability, the hardness of the inner ring raceway surfaces 12A and 22A should be equal to or higher than the predetermined value, and the residual austenite amount of the inner ring raceway surfaces 12A and 22A should be equal to or lower than the predetermined value. Is set to.
 第1焼戻処理及び第2焼戻処理は、例えば図4及び図5に示される加熱方法及び冷却方法により実施される。 The first tempering treatment and the second tempering treatment are carried out by, for example, the heating method and the cooling method shown in FIGS. 4 and 5.
 図4~図5に示されるように、上記第1周面10Cに対する加熱は、例えば第1コイル30を用いた誘導加熱により実施され、好ましくは高周波誘導加熱により実施される。第1コイル30は成形体10において第1周面10Cのみと対向するように配置される。 As shown in FIGS. 4 to 5, the heating of the first peripheral surface 10C is carried out by, for example, induction heating using the first coil 30, preferably high frequency induction heating. The first coil 30 is arranged in the molded body 10 so as to face only the first peripheral surface 10C.
 第1コイル30には、3kHz以上の交流電流が供給される。第1コイル30に高周波数の交流電流が供給される場合、それよりも低周波数の交流電流が第1コイル30に供給される誘導加熱と比べて径方向において第2周面10A側の温度上昇が抑制されるため、焼戻温度T3と上記第1到達温度T4との差が大きくなる。 An alternating current of 3 kHz or higher is supplied to the first coil 30. When a high-frequency alternating current is supplied to the first coil 30, the temperature rises on the second peripheral surface 10A side in the radial direction as compared with the induction heating in which a lower-frequency alternating current is supplied to the first coil 30. Is suppressed, so that the difference between the tempering temperature T 3 and the first reached temperature T 4 becomes large.
 図4及び図5に示されるように、上記第2周面10Aに対する冷却は、例えば噴射部31を用いて水などの冷却溶媒を成形体10の第2周面10Aに供給することにより実施される。好ましくは、上記冷却は、第1周面10Cを冷却しないように実施される。上記冷却は、第2周面10Aに供給される水が第1周面10Cには供給されないように実施される。噴射部31は、第2焼戻処理において、成形体10の第2周面10Aと対向するように配置され、第2周面10Aに対して水を噴射する。第1コイル30及び噴射部31は、上記第1焼戻処理において、例えば成形体10の径方向において成形体10を挟むように配置される。なお、上記冷却は、第2周面10Aのうち、少なくとも後工程(S40)において内輪軌道面12A,22Aを形成するために研削加工が施される領域に対して実施されればよい。 As shown in FIGS. 4 and 5, the cooling of the second peripheral surface 10A is carried out by supplying a cooling solvent such as water to the second peripheral surface 10A of the molded body 10 by using, for example, the injection unit 31. To. Preferably, the cooling is carried out so as not to cool the first peripheral surface 10C. The cooling is carried out so that the water supplied to the second peripheral surface 10A is not supplied to the first peripheral surface 10C. The injection unit 31 is arranged so as to face the second peripheral surface 10A of the molded body 10 in the second tempering process, and injects water onto the second peripheral surface 10A. In the first tempering process, the first coil 30 and the injection unit 31 are arranged so as to sandwich the molded body 10 in the radial direction of the molded body 10, for example. The cooling may be performed on a region of the second peripheral surface 10A that is ground to form the inner ring raceway surfaces 12A and 22A at least in the subsequent step (S40).
 上記第1焼戻処理及び上記第2焼戻処理は、例えば成形体10と、第1コイル30及び噴射部31とを周方向において相対的に回転させることにより実施される。第1コイル30、噴射部31の相対的な位置は、例えば第2焼戻処理の間中一定とされる。 The first tempering process and the second tempering process are carried out, for example, by relatively rotating the molded body 10, the first coil 30, and the injection unit 31 in the circumferential direction. The relative positions of the first coil 30 and the injection unit 31 are fixed throughout, for example, the second tempering process.
 第1焼戻処理では、180℃以上230℃以下の温度に加熱された熱処理炉内に成形体全体が投入されることにより実施される。 The first tempering process is carried out by putting the entire molded product into a heat treatment furnace heated to a temperature of 180 ° C. or higher and 230 ° C. or lower.
 第2焼戻処理では、第1コイル30による第1周面10Cに対する加熱及び噴射部31による第2周面10Aに対する冷却が実施される。 In the second tempering process, the first coil 30 heats the first peripheral surface 10C and the injection unit 31 cools the second peripheral surface 10A.
 なお、焼戻温度T3、保持時間t2、第1到達温度T4、第2到達温度T5及び保持時間t3の各設定値は、例えば以下の数式1、数式2及び数式3に基づいて設定される。なお、上記数式1,数式2及び数式3の各係数は、成形体の鋼の組成、上記初期残留オーステナイト量等に応じて変化する。 The set values of the tempering temperature T 3 , the holding time t 2 , the first reaching temperature T 4 , the second reaching temperature T 5, and the holding time t 3 are based on, for example, the following formulas 1, 2, and 3. Is set. The coefficients of the above formulas 1, 2 and 3 vary depending on the composition of the steel of the molded product, the amount of the initial retained austenite and the like.
Figure JPOXMLDOC01-appb-M000001
Figure JPOXMLDOC01-appb-M000001
 上記数式1は、焼戻温度T3(単位:℃)と上記第1到達温度T4(単位:℃)との関係を予測する予測式である。本発明者らは、第1焼戻処理において、上記加熱が第1周面10Cに対する誘導加熱により実施され、かつ上記冷却が第2周面10Aに対する水の噴射により実施される場合の、成形体を模擬した被加熱部材内の温度分布をシミュレーション解析した。上記数式1は、本発明者らが上記シミュレーション解析の結果から求めたものである。解析の結果、上記第1到達温度T4が焼戻温度T3に対して線形に変化することが確認された(図8参照)。シミュレーション解析の詳細は後述する。なお、加熱方法及び冷却方法の少なくともいずれかが上記とは異なる方法により実施される場合、上記数式1が当該異なる方法における予測式に変更される。 The above formula 1 is a prediction formula for predicting the relationship between the tempering temperature T 3 (unit: ° C.) and the above first reached temperature T 4 (unit: ° C.). In the first tempering treatment, the present inventors consider a molded product in which the heating is carried out by induction heating on the first peripheral surface 10C and the cooling is carried out by jetting water on the second peripheral surface 10A. The temperature distribution in the member to be heated was simulated and analyzed. The above formula 1 was obtained by the present inventors from the results of the above simulation analysis. As a result of the analysis, it was confirmed that the first reached temperature T 4 changes linearly with respect to the tempering temperature T 3 (see FIG. 8). The details of the simulation analysis will be described later. When at least one of the heating method and the cooling method is carried out by a method different from the above, the above formula 1 is changed to the prediction formula in the different method.
Figure JPOXMLDOC01-appb-M000002
Figure JPOXMLDOC01-appb-M000002
 上記数式2は、焼戻処理時の到達温度T(単位:K)、保持時間t(単位:秒)及び焼戻処理後の第1周面10Cまたは第2周面10Aの残留オーステナイト量γ(単位:体積%)の関係を予測する予測式である。第2焼戻処理後の第1周面10Cの残留オーステナイト量γは、数式2中の到達温度Tに焼戻温度T3を代入し、かつ保持時間tに保持時間t2を代入することにより算出される。第2焼戻処理後の第2周面10Aの残留オーステナイト量γは、数式2中の到達温度Tに第2到達温度T5を代入しかつ保持時間tに保持時間t3を代入することにより算出される値よりも、第1焼戻処理において分解される分だけ少ないと見積もられる。上記数式2は、非特許文献1(井上毅、「新しい焼もどしパラメータとその連続昇温曲線に沿った焼もどし効果の積算法への応用」鉄と鋼,66,10(1980)1533.)に記載されている硬さと焼戻温度との関係式に基づき、本発明者らが実験的に求めたものである。 The above formula 2 is based on the reached temperature T (unit: K), holding time t (unit: seconds) during tempering treatment, and residual austenite amount γ (remaining austenite amount γ) on the first peripheral surface 10C or the second peripheral surface 10A after tempering treatment. It is a prediction formula that predicts the relationship of unit: volume%). The residual austenite amount γ of the first peripheral surface 10C after the second tempering treatment is obtained by substituting the tempering temperature T 3 for the ultimate temperature T in Equation 2 and substituting the holding time t 2 for the holding time t. Calculated. The residual austenite amount γ of the second peripheral surface 10A after the second tempering treatment is obtained by substituting the second reaching temperature T 5 for the reaching temperature T in Equation 2 and substituting the holding time t 3 for the holding time t. It is estimated that the value is less than the calculated value by the amount of decomposition in the first tempering process. The above formula 2 is based on Non-Patent Document 1 (Takeshi Inoue, "Application of new tempering parameters and their application to the method of integrating the tempering effect along the continuous temperature rise curve", Iron and Steel, 66, 10 (1980) 1533.). It was experimentally obtained by the present inventors based on the relational expression between the hardness and the tempering temperature described in 1.
Figure JPOXMLDOC01-appb-M000003
Figure JPOXMLDOC01-appb-M000003
 上記数式3は、焼戻処理時の到達温度T(単位:K)、保持時間t(単位:秒)及び焼戻処理後の第1周面10Cまたは第2周面10Aの硬さM(単位:HV)の関係を予測する予測式である。焼戻処理後の第1周面10Cの硬さMは、数式3中の到達温度Tに焼戻温度T3を代入しかつ保持時間tに保持時間t3を代入することにより算出される。焼戻処理後の第2周面10Aの硬さMは、数式3中の到達温度Tに第2到達温度T5を代入することにより算出される値程度と見積もられる。上記数式3は、特開平10-102137号公報に記載されている残留オーステナイト量と焼戻温度との関係式に基づき、本発明者らが実験的に求めたものである。 The above formula 3 is based on the reached temperature T (unit: K), holding time t (unit: seconds) during the tempering process, and hardness M (unit: unit) of the first peripheral surface 10C or the second peripheral surface 10A after the tempering process. : HV) is a prediction formula that predicts the relationship. The hardness M of the first peripheral surface 10C after the tempering process is calculated by substituting the tempering temperature T 3 for the ultimate temperature T in Equation 3 and substituting the holding time t 3 for the holding time t. The hardness M of the second peripheral surface 10A after the tempering treatment is estimated to be about a value calculated by substituting the second ultimate temperature T 5 for the ultimate temperature T in Equation 3. The above formula 3 was experimentally obtained by the present inventors based on the relational expression between the amount of retained austenite and the tempering temperature described in JP-A-10-102137.
 焼戻温度T3及び保持時間t2は、数式2及び数式3に基づいて、第1周面10Cの残留オーステナイト量が上記予め定められた値以下となり、かつ、第1周面10Cの硬さが上記予め定められた値以上となるように、設定される。 The tempering temperature T 3 and the holding time t 2 are such that the amount of retained austenite on the first peripheral surface 10C is equal to or less than the predetermined value and the hardness of the first peripheral surface 10C is based on the mathematical formulas 2 and 3. Is set so as to be equal to or greater than the above-mentioned predetermined value.
 第1到達温度T4、第2到達温度T5及び保持時間t3は、上記数式1、数式2及び数式3に基づいて、第2周面10Aの硬さが上記予め定められた値以上となるように設定される。さらに、第2到達温度T5及び保持時間t3は、第2周面10Aの残留オーステナイト量が上記予め定められた値以下となるように、設定される。 The first ultimate temperature T 4 , the second ultimate temperature T 5, and the holding time t 3 are such that the hardness of the second peripheral surface 10A is equal to or higher than the predetermined value based on the above equations 1, 2, and 3. Is set to be. Further, the second reaching temperature T 5 and the holding time t 3 are set so that the amount of retained austenite on the second peripheral surface 10A is equal to or less than the predetermined value.
 保持時間t2及び保持時間t3は、例えば以下のようにして設定される。まず、焼戻処理における焼戻温度T3の保持時間t2の下限値が、上記初期残留オーステナイト量及び内輪12,22に要求される寸法安定性を実現するために設定された第1周面10Cの残留オーステナイト量の上限値から、上記数式2に基づいて算出される。さらに、第2焼戻処理における保持時間t3の下限値が、上記初期残留オーステナイト量及び内輪12,22に要求される寸法安定性を実現するために設定された第2周面10Aの残留オーステナイト量の上限値から、上記数式2に基づいて算出される。 The holding time t 2 and the holding time t 3 are set as follows, for example. First, the lower limit of the holding time t 2 of the tempering temperature T 3 in the tempering process is set to realize the initial residual austenite amount and the dimensional stability required for the inner rings 12 and 22. It is calculated from the upper limit of the residual austenite amount of 10C based on the above formula 2. Further, the lower limit of the holding time t 3 in the second tempering process is set to realize the initial residual austenite amount and the dimensional stability required for the inner rings 12 and 22, and the retained austenite on the second peripheral surface 10A is set. It is calculated from the upper limit of the amount based on the above formula 2.
 次に、上記保持時間t3の上限値が、内輪12,22に要求される硬さを実現するために設定された第1周面10Cの硬さの下限値から、上記数式3に基づいて算出される。さらに、上記保持時間t3の上限値が、内輪12,22に要求される硬さを実現するために設定された第2周面10Aの硬さの下限値から、上記数式3に基づいて算出される。 Next, the upper limit of the holding time t 3 is, the hardness lower limit of the first peripheral 10C which is set to achieve the hardness required for the inner ring 12, 22, based on the equation 3 Calculated. Further, the upper limit value of the holding time t 3 is calculated based on the above formula 3 from the lower limit value of the hardness of the second peripheral surface 10A set to realize the hardness required for the inner rings 12 and 22. Will be done.
 例えば、成形体の初期残留オーステナイト量が5体積%であり、第1周面10Cの残留オーステナイト量の上限値が0体積%であり、第1周面10Cの硬さの下限値が670HVであり、かつ第2周面10Aの硬さの下限値が700HVである場合を考える。上記数式2から、図6に示されるグラフが算出される。図6は、本実施の形態に係る焼戻処理において、焼戻温度T3を350℃としたときの、初期残留オーステナイト量から所定量減少させるために必要となる保持時間t2(均熱時間)と、初期残留オーステナイト量との関係を示すグラフである。図6の横軸は焼戻処理前の成形体の初期残留オーステナイト量(単位:%)を示し、図6の縦軸は350℃での均熱時間(単位:秒)を示している。図6から、初期残留オーステナイト量が5体積%であった第1周面の残留オーステナイト量を焼戻処理によって0体積%とすべき場合、第1周面に対する上記保持時間t2は156秒以上と設定される。例えば、上記保持時間t2のうち第1焼戻処理における保持時間の下限値が、156秒として設定される。一方、上記数式3から、焼戻温度T3及び第2到達温度T5が350℃とされた上記焼戻処理において、第2周面10Aの硬さを700HV以上かつ第1周面10Cの硬さを670HV以上とするためには、第2周面10Aに対する上記保持時間t3は12秒以下と設定される。この場合、上記保持時間t2は156秒と12秒との和である168秒と設定される。 For example, the initial residual austenite amount of the molded product is 5% by volume, the upper limit of the retained austenite amount of the first peripheral surface 10C is 0% by volume, and the lower limit of the hardness of the first peripheral surface 10C is 670HV. Moreover, consider the case where the lower limit of the hardness of the second peripheral surface 10A is 700 HV. From the above formula 2, the graph shown in FIG. 6 is calculated. FIG. 6 shows the holding time t 2 (heating time) required to reduce the initial residual austenite amount by a predetermined amount when the tempering temperature T 3 is 350 ° C. in the tempering treatment according to the present embodiment. ) And the amount of initial retained austenite. The horizontal axis of FIG. 6 shows the initial residual austenite amount (unit:%) of the molded product before the tempering treatment, and the vertical axis of FIG. 6 shows the soaking time (unit: seconds) at 350 ° C. From FIG. 6, when the amount of retained austenite on the first peripheral surface from which the initial amount of retained austenite was 5% by volume should be reduced to 0% by volume by tempering, the holding time t 2 with respect to the first peripheral surface is 156 seconds or more. Is set. For example, of the holding time t 2 , the lower limit of the holding time in the first tempering process is set as 156 seconds. On the other hand, according to the above formula 3, in the above tempering process in which the tempering temperature T 3 and the second reaching temperature T 5 are 350 ° C., the hardness of the second peripheral surface 10A is 700 HV or more and the hardness of the first peripheral surface 10C. In order to set the hardness to 670 HV or more, the holding time t 3 with respect to the second peripheral surface 10A is set to 12 seconds or less. In this case, the holding time t 2 is set to 168 seconds, which is the sum of 156 seconds and 12 seconds.
 工程(S40)では、少なくとも上記成形体10の上記第2周面10Aに対して研削加工が実施される。これにより、内輪軌道面12A,22Aを有する内輪12,22が形成される。なお、上記成形体の上記第1周面10Cに対する研削加工が実施されない場合、内周面12C,22Cは焼戻処理が施された第1周面である。また、上記成形体の上記第1周面に対する研削加工が実施される場合、内周面12C,22Cは焼戻処理が施された第1周面に対する研削加工により形成された面である。 In the step (S40), at least the second peripheral surface 10A of the molded body 10 is ground. As a result, the inner rings 12 and 22 having the inner ring raceway surfaces 12A and 22A are formed. When the first peripheral surface 10C of the molded product is not ground, the inner peripheral surfaces 12C and 22C are the first peripheral surfaces that have been tempered. Further, when the first peripheral surface of the molded product is ground, the inner peripheral surfaces 12C and 22C are surfaces formed by grinding the first peripheral surface that has been tempered.
 工程(S50)では、外輪11,21と玉13またはころ23とが準備される。次に、先の工程(S40)において製造された内輪12と、準備された外輪11及び玉13とが組み立てる。これにより、図1に示される深溝玉軸受1が製造される。あるいは、先の工程(S40)において製造された内輪22と、準備された外輪21及びころ23とが組み立てる。これにより、図2に示される円錐ころ軸受2が製造される。 In the process (S50), the outer rings 11 and 21 and the balls 13 or rollers 23 are prepared. Next, the inner ring 12 manufactured in the previous step (S40), the prepared outer ring 11 and the ball 13 are assembled. As a result, the deep groove ball bearing 1 shown in FIG. 1 is manufactured. Alternatively, the inner ring 22 manufactured in the previous step (S40) and the prepared outer ring 21 and roller 23 are assembled. As a result, the conical roller bearing 2 shown in FIG. 2 is manufactured.
 <変形例>
 上記工程(S20)では、浸炭浸窒処理が実施されるが、これに限られるものではない。上記工程(S20)では、上記焼入硬化処理のみが実施されてもよい。この場合の焼入処理後の成形体の残留オーステナイト量は、浸炭処理が実施される場合のそれと比べて全体的に少なくなる。つまり、上記焼戻処理が実施されていることにより内輪軌道面12A,22Aの残留オーステナイト量と内周面12C,22Cの残留オーステナイト量との差は、浸炭浸窒処理が実施された内輪12,22のそれと比べて小さくなる。一方で、この場合にも上記焼戻処理が実施されていることにより、上記差は上記焼戻処理に代えて従来の焼戻処理が施された従来の内輪のそれと比べて大きくなる。浸炭浸窒処理が実施されずに製造された内輪12,22の上記差は、例えば3体積%以上5体積%以下とされ得る。
<Modification example>
In the above step (S20), carburizing and nitriding treatment is carried out, but the present invention is not limited to this. In the above step (S20), only the above quench hardening treatment may be carried out. In this case, the amount of retained austenite in the molded product after the quenching treatment is generally smaller than that in the case where the carburizing treatment is carried out. That is, the difference between the amount of retained austenite on the inner ring raceway surfaces 12A and 22A and the amount of retained austenite on the inner peripheral surfaces 12C and 22C due to the above tempering treatment is the difference between the inner ring 12 and the inner ring 12 It is smaller than that of 22. On the other hand, also in this case, since the tempering treatment is carried out, the difference becomes larger than that of the conventional inner ring in which the conventional tempering treatment is performed instead of the tempering treatment. The above difference between the inner rings 12 and 22 manufactured without performing the carburizing and nitriding treatment can be, for example, 3% by volume or more and 5% by volume or less.
 また、内輪12,22とともに、外輪11,21も、本実施の形態に係る軌道部材として構成されていてもよい。この場合、外輪軌道面11Aの残留オーステナイト量は円周面としての外周面11Cの残留オーステナイト量よりも多く、両者の差は3体積%以上である。また、外輪軌道面21Aの残留オーステナイト量は円周面としての外周面21Cの残留オーステナイト量よりも多く、両者の差は3体積%以上である。 Further, together with the inner rings 12 and 22, the outer rings 11 and 21 may also be configured as the track members according to the present embodiment. In this case, the amount of retained austenite on the outer ring raceway surface 11A is larger than the amount of retained austenite on the outer peripheral surface 11C as the circumferential surface, and the difference between the two is 3% by volume or more. Further, the amount of retained austenite on the outer ring raceway surface 21A is larger than the amount of retained austenite on the outer peripheral surface 21C as the circumferential surface, and the difference between the two is 3% by volume or more.
 <作用効果>
 本実施の形態に係る軌道部材としての内輪12,22は、鋼からなり、周方向に沿って延在する内輪軌道面12A,22Aと、周方向に沿って延在し、かつ軸方向に沿って延びる円周面としての内周面12C,22Cとを有している。内輪軌道面12A,22Aの残留オーステナイト量は内周面12C,22Cの残留オーステナイト量よりも多い。内輪軌道面12A,22Aの残留オーステナイト量と内周面12C,22Cの残留オーステナイト量との差が3体積%以上である。
<Effect>
The inner rings 12 and 22 as the raceway members according to the present embodiment are made of steel and extend along the circumferential direction with the inner ring raceway surfaces 12A and 22A, and extend along the circumferential direction and along the axial direction. It has inner peripheral surfaces 12C and 22C as an extending circumferential surface. The amount of retained austenite on the inner ring raceway surfaces 12A and 22A is larger than the amount of retained austenite on the inner peripheral surfaces 12C and 22C. The difference between the amount of retained austenite on the inner ring raceway surfaces 12A and 22A and the amount of retained austenite on the inner peripheral surfaces 12C and 22C is 3% by volume or more.
 従来の焼戻処理では、成形体の全体が雰囲気炉内で加熱されるため、軌道面となるべき領域の残留オーステナイト及びマルテンサイトが分解される。そのため、従来の上記焼戻処理により製造される第1比較例としての内輪では、軌道面の残留オーステナイト量と内径面の残留オーステナイト量との差は3体積%未満となる。その結果、当該内輪では、内径面の寸法安定性と軌道面の硬さとはトレードオフの関係を示し、両者を同時に高めることは困難であった。 In the conventional tempering process, the entire molded body is heated in the atmosphere furnace, so that retained austenite and martensite in the region that should be the raceway surface are decomposed. Therefore, in the inner ring as the first comparative example manufactured by the conventional tempering treatment, the difference between the amount of retained austenite on the raceway surface and the amount of retained austenite on the inner diameter surface is less than 3% by volume. As a result, in the inner ring, the dimensional stability of the inner diameter surface and the hardness of the raceway surface showed a trade-off relationship, and it was difficult to increase both at the same time.
 また、焼戻処理において、仮に成形体の第1周面のみに対する局所的な加熱が実施されたとしても、第2周面に対する局所的な冷却が実施されなければ、焼戻処理における第2周面の到達温度が高くなり、第2周面側の残留オーステナイト及びマルテンサイトの分解が進行する。その結果、上記加熱のみが実施され上記冷却が実施されない焼戻処理により製造される第2比較例としての内輪においても、軌道面の残留オーステナイト量と内径面の残留オーステナイト量との差は3体積%未満となる。その結果、当該内輪においても、内径面の寸法安定性と軌道面の硬さとはトレードオフの関係を示し、両者を同時に高めることは困難である。 Further, in the tempering process, even if local heating is performed only on the first peripheral surface of the molded product, if local cooling is not performed on the second peripheral surface, the second period in the tempering process is performed. The reaching temperature of the surface becomes high, and the decomposition of retained austenite and martensite on the second peripheral surface side proceeds. As a result, the difference between the amount of retained austenite on the raceway surface and the amount of retained austenite on the inner diameter surface is 3 volumes even in the inner ring as a second comparative example produced by the tempering treatment in which only the heating is performed and the cooling is not performed. It will be less than%. As a result, even in the inner ring, the dimensional stability of the inner diameter surface and the hardness of the raceway surface show a trade-off relationship, and it is difficult to increase both at the same time.
 これに対し、本実施の形態に係る焼戻処理では、第2焼戻処理において第2周面10Aが局所的に冷却されるため、第2周面10Aの温度は、第1周面10Cが焼戻温度T3に保持される保持時間t2のうちの一部の時間、焼戻温度T3よりも低い第1到達温度T4に保持される。第1到達温度T4は、上記の冷却により、上記第1比較例及び上記第2比較例の各第2周面の到達温度よりも低くされ得る。そのため、本実施の形態に係る焼戻処理では、上記第1比較例及び上記第2比較例と比べて、第2周面10A側の残留オーステナイト及びマルテンサイトの分解が抑制されている。その結果、本実施の形態に係る焼戻処理が施されることにより製造された上記内輪12,22では、第2周面に基づいて形成された内輪軌道面12A,22Aの残留オーステナイト量は、第1周面に基づいて形成された内周面12C,22Cの残留オーステナイト量よりも、3体積%以上多くなる。 On the other hand, in the tempering treatment according to the present embodiment, since the second peripheral surface 10A is locally cooled in the second tempering treatment, the temperature of the second peripheral surface 10A is set to the temperature of the first peripheral surface 10C. some of the time of the holding time t 2, which is held in the tempering temperature T 3, is held in the first ultimate temperature T 4 lower than the tempering temperature T 3. The first ultimate temperature T 4 can be made lower than the ultimate temperature of each of the second peripheral surfaces of the first comparative example and the second comparative example by the above cooling. Therefore, in the tempering treatment according to the present embodiment, decomposition of retained austenite and martensite on the second peripheral surface 10A side is suppressed as compared with the first comparative example and the second comparative example. As a result, in the inner rings 12 and 22 manufactured by performing the tempering treatment according to the present embodiment, the residual austenite amount of the inner ring raceway surfaces 12A and 22A formed based on the second peripheral surface is determined. The amount of retained austenite on the inner peripheral surfaces 12C and 22C formed based on the first peripheral surface is 3% by volume or more larger than the amount of retained austenite.
 その結果、内輪12,22では、内輪軌道面12A,22Aの残留オーステナイト量が上記第1比較例及び第2比較例の内輪のそれと比べて多く、かつ内周面12C,22Cの残留オーステナイト量が上記第1比較例及び第2比較例の内輪のそれと比べて少なくされ得る。このような内輪12,22では、上記第1比較例及び第2比較例の内輪と比べて、内周面12C,22Cの寸法安定性及び内輪軌道面12A,22Aの硬さが同時に高められている。 As a result, in the inner rings 12 and 22, the amount of retained austenite on the inner ring raceway surfaces 12A and 22A is larger than that of the inner rings of the first and second comparative examples, and the amount of retained austenite on the inner peripheral surfaces 12C and 22C is large. It can be reduced as compared with that of the inner ring of the first comparative example and the second comparative example. In such inner rings 12 and 22, the dimensional stability of the inner peripheral surfaces 12C and 22C and the hardness of the inner ring raceway surfaces 12A and 22A are simultaneously enhanced as compared with the inner rings of the first comparative example and the second comparative example. There is.
 また、内輪12,22では、内周面12C,22Cの残留オーステナイト量が上記第1比較例及び第2比較例の内輪のそれと比べて同等とされ、かつ内輪軌道面12A,22Aの残留オーステナイト量が上記第1比較例及び第2比較例の内輪のそれと比べて多くされ得る。このような内輪12,22では、内周面12C,22Cの寸法安定性が上記第1比較例及び第2比較例の内輪のそれと同等とされるとともに、内輪軌道面12A,22Aの硬さが上記第1比較例及び第2比較例の内輪のそれと比べて大きく向上している。 Further, in the inner rings 12 and 22, the amount of retained austenite on the inner peripheral surfaces 12C and 22C is the same as that of the inner rings of the first and second comparative examples, and the amount of retained austenite on the inner ring raceway surfaces 12A and 22A. Can be increased as compared with that of the inner ring of the first comparative example and the second comparative example. In such inner rings 12 and 22, the dimensional stability of the inner peripheral surfaces 12C and 22C is made equivalent to that of the inner rings of the first comparative example and the second comparative example, and the hardness of the inner ring raceway surfaces 12A and 22A is high. It is greatly improved as compared with that of the inner ring of the first comparative example and the second comparative example.
 また、内輪12,22では、内輪軌道面12A,22Aの残留オーステナイト量が上記第1比較例及び第2比較例の内輪のそれと比べて同等とされ、かつ内周面12C,22Cの残留オーステナイト量が上記第1比較例及び第2比較例の内輪のそれと比べて少なくされ得る。このような内輪12,22では、内輪軌道面12A,22Aの硬さが上記第1比較例及び第2比較例の内輪のそれと同等とされるとともに、内周面12C,22Cの寸法安定性が上記第1比較例及び第2比較例の内輪のそれと比べて大きく向上している。 Further, in the inner rings 12 and 22, the amount of retained austenite on the inner ring raceway surfaces 12A and 22A is equal to that of the inner rings of the first and second comparative examples, and the amount of retained austenite on the inner peripheral surfaces 12C and 22C. Can be reduced as compared with that of the inner ring of the first comparative example and the second comparative example. In such inner rings 12 and 22, the hardness of the inner ring raceway surfaces 12A and 22A is the same as that of the inner rings of the first comparative example and the second comparative example, and the dimensional stability of the inner peripheral surfaces 12C and 22C is improved. It is greatly improved as compared with that of the inner ring of the first comparative example and the second comparative example.
 また、焼戻処理において第2焼戻処理のみが実施されて製造され、該焼戻処理の焼戻温度が上記焼戻温度T3と同等かつ第2周面の到達温度が上記第1到達温度T4と同等とされた第3比較例としての内輪を考える。第3比較例では、焼戻処理における第2周面の到達温度が焼戻温度と比べて十分に低いために、第2周面側に残留オーステナイトが多く残存する。その結果、第3比較例の全体の平均残留オーステナイト量は比較的多くなり、第3比較例の全体の寸法安定性は要求される仕様よりも低い場合が生じ得る。 Further, it is manufactured by performing only the second tempering treatment in the tempering treatment, the tempering temperature of the tempering treatment is equal to the tempering temperature T 3 , and the reaching temperature of the second peripheral surface is the first reaching temperature. Consider the inner ring as a third comparative example equivalent to T 4. In the third comparative example, since the temperature reached by the second peripheral surface in the tempering process is sufficiently lower than the tempering temperature, a large amount of residual austenite remains on the second peripheral surface side. As a result, the overall average retained austenite amount of the third comparative example may be relatively large, and the overall dimensional stability of the third comparative example may be lower than the required specifications.
 これに対し、本実施の形態に係る焼戻処理では、第1焼戻処理後に、第2焼戻処理が施される。第1焼戻処理では、成形体全体が加熱される。そのため、第2周面10Aに基づいて形成された内輪軌道面12A,22Aの残留オーステナイト量は、第3比較例の内輪軌道面の残留オーステナイト量よりも、少なくなる。その結果、内輪12,22の全体の平均残留オーステナイト量も第3比較例のそれよりも少なくなり、内輪12,22の全体の寸法安定性は第3比較例のそれと比べて向上している。 On the other hand, in the tempering treatment according to the present embodiment, the second tempering treatment is performed after the first tempering treatment. In the first tempering treatment, the entire molded body is heated. Therefore, the amount of retained austenite on the inner ring raceway surfaces 12A and 22A formed based on the second peripheral surface 10A is smaller than the amount of retained austenite on the inner ring raceway surface of the third comparative example. As a result, the average residual austenite amount of the inner rings 12 and 22 as a whole is also smaller than that of the third comparative example, and the overall dimensional stability of the inner rings 12 and 22 is improved as compared with that of the third comparative example.
 上記内輪12,22は、浸炭浸窒処理を経て製造されている。この場合、内輪12,22の全体の平均残留オーステナイト量は、例えば5体積%以上25体積%以下となる。このような内輪12,22では、上記第1比較例及び第2比較例と比べて、内周面12C,22Cの寸法安定性及び内輪軌道面12A,22Aの硬さが同時にかつ大きく向上している。また、このような内輪12,22の全体の寸法安定性は、上記第3比較例と比べて、高められている。 The inner rings 12 and 22 are manufactured after undergoing carburizing and nitriding treatment. In this case, the average residual austenite amount of the inner rings 12 and 22 is, for example, 5% by volume or more and 25% by volume or less. In such inner rings 12 and 22, the dimensional stability of the inner peripheral surfaces 12C and 22C and the hardness of the inner ring raceway surfaces 12A and 22A are simultaneously and greatly improved as compared with the first comparative example and the second comparative example. There is. Further, the overall dimensional stability of the inner rings 12 and 22 is higher than that of the third comparative example.
 内輪12,22は、浸炭浸窒処理を経ずに製造されていてもよい。この場合、内輪12,22の全体の平均残留オーステナイト量は、10体積%以下とされ得る。そのため、このような内輪12,22では、上記第1比較例及び第2比較例の内輪と比べて、内周面12C,22Cの寸法安定性及び内輪軌道面12A,22Aの硬さが同時にかつ大きく向上している。 The inner rings 12 and 22 may be manufactured without undergoing carburizing and nitrification treatment. In this case, the total average retained austenite amount of the inner rings 12 and 22 can be 10% by volume or less. Therefore, in such inner rings 12 and 22, the dimensional stability of the inner peripheral surfaces 12C and 22C and the hardness of the inner ring raceway surfaces 12A and 22A are at the same time as compared with the inner rings of the first comparative example and the second comparative example. It has improved significantly.
 内輪12,22の内輪軌道面12A,22Aの硬さは、700Hv以上である。本実施の形態に係る焼戻処理は、従来の焼戻処理と比べて、成形体の上記第2周面のマルテンサイトの分解を抑制することができる。そのため、内輪軌道面12A,22Aの硬さは、上記第1比較例及び第2比較例の内輪の軌道面の硬さ超えとされ得る。 The hardness of the inner ring raceway surfaces 12A and 22A of the inner rings 12 and 22 is 700 Hv or more. The tempering treatment according to the present embodiment can suppress the decomposition of martensite on the second peripheral surface of the molded product as compared with the conventional tempering treatment. Therefore, the hardness of the inner ring raceway surfaces 12A and 22A may exceed the hardness of the raceway surfaces of the inner rings of the first comparative example and the second comparative example.
 上記内輪12,22は、ラジアル軸受である深溝玉軸受1または円錐ころ軸受2の内輪であり、内周面12C,22Cは径方向において内輪軌道面12A,22Aとは反対側に位置する面である。上記内輪12を備える深溝玉軸受1は、上記第1比較例及び第2比較例の内輪を備える深溝玉軸受と比べて内周面12Cの寸法安定性と内輪軌道面12Aの硬さとが同時に高められているため、高寿命である。上記内輪22を備える円錐ころ軸受2は、上記第1比較例及び第2比較例の内輪を備える円錐ころ軸受と比べて、内周面22Cの寸法安定性と内輪軌道面22Aの硬さとが同時に高められているため、高寿命である。 The inner rings 12 and 22 are the inner rings of the deep groove ball bearing 1 or the conical roller bearing 2 which are radial bearings, and the inner peripheral surfaces 12C and 22C are surfaces located on the opposite sides of the inner ring raceway surfaces 12A and 22A in the radial direction. is there. The deep groove ball bearing 1 provided with the inner ring 12 has higher dimensional stability of the inner peripheral surface 12C and hardness of the inner ring raceway surface 12A at the same time than the deep groove ball bearings provided with the inner rings of the first comparative example and the second comparative example. Because it is a bearing, it has a long life. The conical roller bearing 2 provided with the inner ring 22 has the dimensional stability of the inner peripheral surface 22C and the hardness of the inner ring raceway surface 22A at the same time as compared with the conical roller bearings having the inner rings of the first comparative example and the second comparative example. Because it is enhanced, it has a long life.
 以下では、本実施の形態に係る第2焼戻処理に関する上記シミュレーション解析の詳細を説明する。シミュレーション解析は、有限要素法による熱伝導解析により行った。まず、上記成形体を模擬した被加熱部材は、JIS規格 SUJ2からなり、軸方向の厚さが3mmのリングとした。また、該被加熱部材、上記焼入処理が施されたものとした。この被加熱部材を、図7に示される解析モデルを用いて上記焼戻処理を模擬し、そのときの被加熱部材内部の温度分布を解析した。本解析モデルでは、成形体の第1周面に対する上記加熱を誘導加熱、第2周面に対する上記冷却を水冷とする焼戻条件を設定した。また、第2周面に適当な熱伝達係数を与えて、水冷を模擬した。このような解析モデルにおいて、第1周面に対する加熱温度、すなわち焼戻温度を180℃以上490℃以下とし、保持時間を1分としたときの、成形体内部の温度分布を解析した。図8~図10に解析結果を示す。 The details of the above simulation analysis regarding the second tempering process according to the present embodiment will be described below. The simulation analysis was performed by heat conduction analysis by the finite element method. First, the member to be heated simulating the molded body was made of JIS standard SUJ2 and was a ring having a thickness of 3 mm in the axial direction. Further, it was assumed that the member to be heated was subjected to the above quenching treatment. The tempering process of the member to be heated was simulated using the analysis model shown in FIG. 7, and the temperature distribution inside the member to be heated at that time was analyzed. In this analysis model, tempering conditions were set in which the heating of the first peripheral surface of the molded product was induced and the cooling of the second peripheral surface was water cooling. In addition, an appropriate heat transfer coefficient was given to the second peripheral surface to simulate water cooling. In such an analysis model, the temperature distribution inside the molded body was analyzed when the heating temperature with respect to the first peripheral surface, that is, the tempering temperature was 180 ° C. or higher and 490 ° C. or lower, and the holding time was 1 minute. The analysis results are shown in FIGS. 8 to 10.
 図8は、第1周面に対する加熱温度を180℃以上490℃以下とし、保持時間を1分としたときの、該加熱温度と上記冷却が施されている第2周面の到達温度との関係を示すグラフである。図8の横軸は第1周面に対する加熱温度(単位:℃)を示し、図8の縦軸は第2周面の到達温度(単位:℃)を示す。図8に示されるように、第2周面の到達温度は第1周面に対する加熱温度に対して線形に変化した。図8のグラフから、上記数式1が導出された。図8から、上記加熱及び上記冷却が同時に実施されることにより、第1周面と第2周面との温度差を十分に大きくすることができ、内輪軌道面の残留オーステナイト量と内周面の残留オーステナイト量との差を3体積%以上とすることができることが確認された。 FIG. 8 shows the heating temperature and the ultimate temperature of the cooled second peripheral surface when the heating temperature for the first peripheral surface is 180 ° C. or higher and 490 ° C. or lower and the holding time is 1 minute. It is a graph which shows the relationship. The horizontal axis of FIG. 8 indicates the heating temperature (unit: ° C.) with respect to the first peripheral surface, and the vertical axis of FIG. 8 indicates the ultimate temperature (unit: ° C.) of the second peripheral surface. As shown in FIG. 8, the temperature reached by the second peripheral surface changed linearly with respect to the heating temperature with respect to the first peripheral surface. The above formula 1 was derived from the graph of FIG. From FIG. 8, by performing the heating and the cooling at the same time, the temperature difference between the first peripheral surface and the second peripheral surface can be sufficiently increased, and the residual austenite amount and the inner peripheral surface of the inner ring raceway surface can be sufficiently increased. It was confirmed that the difference from the amount of retained austenite in the above can be 3% by volume or more.
 図9は、第1周面に対する加熱温度を420℃とする加熱及び上記冷却を開始してからの経過時間に対する第1周面及び第2周面の各温度変化を示すグラフである。図9の横軸は加熱開始からの経過時間(単位:秒)を示し、図9の縦軸は第1周面及び第2周面の各温度(単位:℃)を示す。図9に示されるように、加熱開始から約5秒後には、第1周面の温度は上記焼戻温度の9割の温度である390℃に達した。同様に、第2周面の温度も、加熱開始から約5秒後には、上記数式1から見積もられた温度の9割である220℃に達した。さらに、第2周面の温度が上記見積もられた温度に達した後、第1周面に対する加熱が継続されているにもかかわらず、第2周面の温度上昇が抑制されていた。つまり、上記水冷により、第2周面の温度上昇が十分に抑えられることが確認された。 FIG. 9 is a graph showing the temperature changes of the first peripheral surface and the second peripheral surface with respect to the elapsed time from the start of heating with the heating temperature of the first peripheral surface to 420 ° C. and the above-mentioned cooling. The horizontal axis of FIG. 9 indicates the elapsed time (unit: seconds) from the start of heating, and the vertical axis of FIG. 9 indicates the temperatures (unit: ° C.) of the first peripheral surface and the second peripheral surface. As shown in FIG. 9, about 5 seconds after the start of heating, the temperature of the first peripheral surface reached 390 ° C., which is 90% of the tempering temperature. Similarly, the temperature of the second peripheral surface reached 220 ° C., which is 90% of the temperature estimated from the above equation 1, about 5 seconds after the start of heating. Further, after the temperature of the second peripheral surface reached the above-estimated temperature, the temperature rise of the second peripheral surface was suppressed even though the heating of the first peripheral surface was continued. That is, it was confirmed that the temperature rise of the second peripheral surface was sufficiently suppressed by the above water cooling.
 図10は、第1周面に対する加熱温度を350℃とする加熱及び上記冷却を開始してから30秒経過したときの、被加熱部材の内部の温度分布を示す図である。図10に示されるように、第1周面から第2周面に向かうにつれて、被加熱部材の内部の温度が徐々に低くなっており、第1周面の温度からの低下量が第1周面からの距離に対して線形に変化することが確認された。また、上記工程(S50)における研削加工の取り代を考慮しても、軌道面が形成される領域の到達温度はマルテンサイトの分解が十分に抑制され得る温度に抑えられることが確認された。 FIG. 10 is a diagram showing the temperature distribution inside the member to be heated when 30 seconds have passed since the start of heating and cooling at a heating temperature of 350 ° C. for the first peripheral surface. As shown in FIG. 10, the temperature inside the member to be heated gradually decreases from the first peripheral surface to the second peripheral surface, and the amount of decrease from the temperature of the first peripheral surface is the first circumference. It was confirmed that it changed linearly with respect to the distance from the surface. Further, it was confirmed that the temperature reached in the region where the raceway surface is formed can be suppressed to a temperature at which the decomposition of martensite can be sufficiently suppressed, even when the grinding allowance in the above step (S50) is taken into consideration.
 また、図10に示される上記加熱及び上記冷却を、焼戻処理前の第1周面及び第2周面の残留オーステナイト量が14.4体積%、硬さが780Hvである被加熱部材に実施した場合、第1周面の残留オーステナイト量が2体積%以下、第1周面の硬さが680Hvであるの対し、第2周面の残留オーステナイト量は14.1体積%、硬さは779Hvであった。 Further, the heating and cooling shown in FIG. 10 were carried out on the member to be heated having a residual austenite amount of 14.4% by volume and a hardness of 780Hv on the first peripheral surface and the second peripheral surface before the tempering treatment. In this case, the amount of retained austenite on the first peripheral surface is 2% by volume or less and the hardness of the first peripheral surface is 680Hv, whereas the amount of retained austenite on the second peripheral surface is 14.1% by volume and the hardness is 779Hv. Met.
 一方、従来の焼戻処理を、焼戻処理前の第1周面及び第2周面の残留オーステナイト量が14.4体積%、硬さが780Hvである被加熱部材に実施した場合、第1周面の残留オーステナイト量と第2周面の残留オーステナイト量との差は、5体積%未満であった。 On the other hand, when the conventional tempering treatment is carried out on a member to be heated in which the amount of retained austenite on the first and second peripheral surfaces before the tempering treatment is 14.4% by volume and the hardness is 780 Hv, the first The difference between the amount of retained austenite on the peripheral surface and the amount of retained austenite on the second peripheral surface was less than 5% by volume.
 このように、本実施の形態に係る軌道部材の製造方法によれば、軌道面の残留オーステナイト量が第1周面の残留オーステナイト量と比べて5体積%以上多い内輪を製造できることが確認された。さらに、本実施の形態に係る軌道部材の製造方法によれば、従来の焼戻処理を備える軌道部材の製造方法と比べて、第1周面の残留オーステナイト量が低くかつ第2周面の残留オーステナイト量が高い内輪を製造できることが確認された。 As described above, it was confirmed that according to the method for manufacturing the raceway member according to the present embodiment, it is possible to manufacture an inner ring in which the amount of retained austenite on the raceway surface is 5% by volume or more larger than the amount of retained austenite on the first peripheral surface. .. Further, according to the method for manufacturing a track member according to the present embodiment, the amount of residual austenite on the first peripheral surface is lower and the residual austenite on the second peripheral surface is lower than that in the conventional method for manufacturing a track member including tempering treatment. It was confirmed that an inner ring with a high amount of austenite could be produced.
 (実施形態に係る転がり軸受の軌道輪の構成)
 以下に、実施形態に係る転がり軸受の軌道輪の構成を説明する。
(Structure of raceway ring of rolling bearing according to embodiment)
The configuration of the raceway ring of the rolling bearing according to the embodiment will be described below.
 実施形態に係る転がり軸受の軌道輪は、例えば、深溝玉軸受の内輪(以下においては、「内輪110」とする)である。但し、実施形態に係る転がり軸受の軌道輪は、これに限られるものではない。実施形態に係る転がり軸受の軌道輪は、深溝玉軸受の外輪であってもよく、深溝玉軸受以外の転がり軸受の軌道輪であってもよい。 The raceway ring of the rolling bearing according to the embodiment is, for example, an inner ring of a deep groove ball bearing (hereinafter, referred to as "inner ring 110"). However, the raceway ring of the rolling bearing according to the embodiment is not limited to this. The raceway ring of the rolling bearing according to the embodiment may be an outer ring of a deep groove ball bearing, or may be a raceway ring of a rolling bearing other than the deep groove ball bearing.
 内輪110は、焼入れが行われた鋼製である。すなわち、この鋼は、マルテンサイト結晶粒と、残留オーステナイト結晶粒とを含んでいる。この鋼は、マルテンサイト結晶粒及び残留オーステナイト結晶粒以外(例えば、フェライト結晶粒や炭化物粒)を含んでいてもよい。この鋼は、例えば、JIS規格(JIS G 4805:2008)に定められた高炭素クロム軸受鋼であるSUJ2である。 The inner ring 110 is made of hardened steel. That is, this steel contains martensite crystal grains and retained austenite crystal grains. This steel may contain other than martensite crystal grains and retained austenite crystal grains (for example, ferrite crystal grains and carbide grains). This steel is, for example, SUJ2, which is a high carbon chrome bearing steel defined in the JIS standard (JIS G 4805: 2008).
 図11は、内輪110の平面図である。図12は、図11のXII-XIIにおける断面図である。図11及び図12に示されるように、内輪110は、環状の形状を有している。内輪110は、中心軸Aを有している。 FIG. 11 is a plan view of the inner ring 110. FIG. 12 is a cross-sectional view taken along the line XII-XII of FIG. As shown in FIGS. 11 and 12, the inner ring 110 has an annular shape. The inner ring 110 has a central axis A.
 内輪110は、第1端面110a及び第2端面110bと、内周面110cと、外周面110dとを有している。第1端面110a、第2端面110b、内周面110c及び外周面110dを合わせて、内輪110の表面ということがある。 The inner ring 110 has a first end surface 110a and a second end surface 110b, an inner peripheral surface 110c, and an outer peripheral surface 110d. The first end surface 110a, the second end surface 110b, the inner peripheral surface 110c, and the outer peripheral surface 110d may be collectively referred to as the surface of the inner ring 110.
 第1端面110a及び第2端面110bは、中心軸Aに沿う方向(以下においては、「軸方向」という)における端面を構成している。第2端面110bは、軸方向における第1端面110aの反対面である。 The first end face 110a and the second end face 110b form end faces in a direction along the central axis A (hereinafter, referred to as "axial direction"). The second end surface 110b is the opposite surface of the first end surface 110a in the axial direction.
 内周面110cは、中心軸Aを中心とする円周に沿う方向(以下においては、「周方向」という)に延在している。内周面110cは、中心軸A側を向いている。内周面110cは、第1端面110a及び第2端面110bに連なっている。内輪110は、内周面110cにおいて軸(図示せず)に嵌め合わされる。 The inner peripheral surface 110c extends in a direction along the circumference centered on the central axis A (hereinafter, referred to as "circumferential direction"). The inner peripheral surface 110c faces the central axis A side. The inner peripheral surface 110c is connected to the first end surface 110a and the second end surface 110b. The inner ring 110 is fitted to a shaft (not shown) on the inner peripheral surface 110c.
 外周面110dは、周方向に延在している。外周面110dは、中心軸Aとは反対側を向いている。すなわち、外周面110dは、中心軸Aに直交し、かつ中心軸Aを通る方向(以下において、「径方向」という)における内周面110cの反対面である。 The outer peripheral surface 110d extends in the circumferential direction. The outer peripheral surface 110d faces the side opposite to the central axis A. That is, the outer peripheral surface 110d is the opposite surface of the inner peripheral surface 110c in the direction orthogonal to the central axis A and passing through the central axis A (hereinafter, referred to as “diameter direction”).
 外周面110dは、軌道面110daを有している。外周面110dは、軌道面110daにおいて、内周面110c側に窪んでいる。軌道面110daは、中心軸Aを通る断面視において円弧形状を有している。軌道面110daは、転動体(図示せず)に接触する面である。反軌道面とは、径方向において軌道面110daの反対側にある面である。内輪110においては、内周面110cが反軌道面になっている。 The outer peripheral surface 110d has a raceway surface 110da. The outer peripheral surface 110d is recessed on the inner peripheral surface 110c side in the raceway surface 110da. The raceway surface 110da has an arc shape in a cross-sectional view passing through the central axis A. The raceway surface 110da is a surface that comes into contact with a rolling element (not shown). The anti-orbital plane is a plane on the opposite side of the orbital plane 110da in the radial direction. In the inner ring 110, the inner peripheral surface 110c is an anti-track surface.
 反軌道面である内周面110cにおける残留オーステナイト量は、軌道面110daにおける残留オーステナイト量よりも少ない。内輪110を構成している鋼中の残留オーステナイト量の平均値は、10体積パーセント以下になっていることが好ましい。「内輪110を構成している鋼中の残留オーステナイト量の平均値」とは、内輪110の径方向に沿って軌道面110daと内周面110cとの間に等間隔で配置された複数点の測定により得られた残留オーステナイト量の分布曲線を周方向に沿って積分するとともに、それを周方向に平行な軌道輪(内輪110)の断面積で除した値である。 The amount of retained austenite on the inner peripheral surface 110c, which is the anti-orbital plane, is smaller than the amount of retained austenite on the raceway surface 110da. The average value of the amount of retained austenite in the steel constituting the inner ring 110 is preferably 10% by volume or less. The "average value of the amount of retained austenite in the steel constituting the inner ring 110" is a plurality of points arranged at equal intervals between the raceway surface 110da and the inner peripheral surface 110c along the radial direction of the inner ring 110. It is a value obtained by integrating the distribution curve of the retained austenite amount obtained by the measurement along the circumferential direction and dividing it by the cross-sectional area of the raceway ring (inner ring 110) parallel to the circumferential direction.
 内周面110cにおける残留オーステナイト量と軌道面110daにおける残留オーステナイト量との差は、3体積パーセント以上であることが好ましい。内周面110cにおける残留オーステナイト量は、5体積パーセント以下であることが好ましい。 The difference between the amount of retained austenite on the inner peripheral surface 110c and the amount of retained austenite on the raceway surface 110da is preferably 3% by volume or more. The amount of retained austenite on the inner peripheral surface 110c is preferably 5% by volume or less.
 なお、内輪110を構成している鋼中における残留オーステナイト量は、X線回折法により測定される。より具体的には、残留オーステナイト量は、X線を照射することにより得られた各相の回折ピークの強度を比較することにより得られる。 The amount of retained austenite in the steel constituting the inner ring 110 is measured by an X-ray diffraction method. More specifically, the amount of retained austenite is obtained by comparing the intensities of the diffraction peaks of each phase obtained by irradiating with X-rays.
 軌道面110daにおける圧縮残留応力の最小値は、100MPa以上である。軌道面110daからの距離が0.2mm以下となる領域において、圧縮残留応力が100MPa以下となっていることが好ましい。軌道面110daにおける残留応力は、X線回折法により測定される。より具体的には、軌道面110daにX線を照射した際の回折ピーク角の変化に基づいて、軌道面110daにおける残留応力が測定される。 The minimum value of compressive residual stress on the raceway surface 110 da is 100 MPa or more. In the region where the distance from the raceway surface 110 da is 0.2 mm or less, the compressive residual stress is preferably 100 MPa or less. The residual stress on the orbital plane 110 da is measured by the X-ray diffraction method. More specifically, the residual stress on the raceway surface 110da is measured based on the change in the diffraction peak angle when the raceway surface 110da is irradiated with X-rays.
 軌道面110daにおける硬さは、内周面110cにおける硬さよりも高い。軌道面110daにおける硬さ及び内周面110cにおける硬さは、700Hv以上となっていることが好ましい。なお、軌道面110daにおける硬さ及び内周面110cにおける硬さは、JIS規格(JIS Z 2244:2009)に定められたビッカース硬さ試験法にしたがって測定される。 The hardness on the raceway surface 110da is higher than the hardness on the inner peripheral surface 110c. The hardness of the raceway surface 110da and the hardness of the inner peripheral surface 110c are preferably 700 Hv or more. The hardness of the raceway surface 110da and the hardness of the inner peripheral surface 110c are measured according to the Vickers hardness test method defined in the JIS standard (JIS Z 2244: 2009).
 <変形例>
 図13は、変形例に係る内輪110の断面図である。図13に示されるように、内輪110の表面には、浸窒層110eが形成されていてもよい。浸窒層110eに位置する鋼中の窒素濃度は、浸窒層110e以外に位置する鋼中の窒素濃度よりも高くなっている。なお、鋼中の窒素濃度は、EPMA(Electron Probe Micro Analyzer)により測定される。
<Modification example>
FIG. 13 is a cross-sectional view of the inner ring 110 according to the modified example. As shown in FIG. 13, an immersion layer 110e may be formed on the surface of the inner ring 110. The nitrogen concentration in the steel located in the immersion layer 110e is higher than the nitrogen concentration in the steel located in the steel other than the immersion layer 110e. The nitrogen concentration in steel is measured by EPMA (Electron Probe Micro Analyzer).
 なお、内輪110の表面に浸窒層110eが形成されている場合、内輪110を構成している鋼中の残留オーステナイト量の平均値は、20体積パーセント以下になっていることが好ましい。 When the nitriding layer 110e is formed on the surface of the inner ring 110, the average value of the amount of retained austenite in the steel constituting the inner ring 110 is preferably 20% by volume or less.
 (実施形態に係る転がり軸受の軌道輪の製造方法)
 以下に、内輪110の製造方法を説明する。
(Method of manufacturing a raceway ring of a rolling bearing according to an embodiment)
The method of manufacturing the inner ring 110 will be described below.
 図14は、内輪110の製造方法を示す工程図である。図14に示されるように、内輪110の製造方法は、準備工程S11と、焼入れ工程S12と、焼き戻し工程S13と、後処理工程S14とを有している。準備工程S11においては、焼入れ工程S12、焼き戻し工程S13及び後処理工程S14を経ることにより内輪110となる環状の加工対象部材120が準備される。 FIG. 14 is a process diagram showing a manufacturing method of the inner ring 110. As shown in FIG. 14, the method for manufacturing the inner ring 110 includes a preparation step S11, a quenching step S12, a tempering step S13, and a post-treatment step S14. In the preparation step S11, the annular machined member 120 to be the inner ring 110 is prepared by going through the quenching step S12, the tempering step S13, and the post-treatment step S14.
 なお、内輪110の表面に浸窒層110eが形成される場合、焼入れ工程S12に先立って、加工対象部材120の表面に対して浸窒処理が行われる。浸窒処理は、例えば、窒素を含む雰囲気ガス(例えば、アンモニア(NH)ガス)中において加工対象部材120を所定温度で所定時間保持することにより行われる。 When the nitrification layer 110e is formed on the surface of the inner ring 110, the surface of the member 120 to be processed is subjected to a nitrification treatment prior to the quenching step S12. The immersion treatment is performed by holding the member 120 to be processed at a predetermined temperature for a predetermined time in, for example, an atmospheric gas containing nitrogen (for example, ammonia (NH 3) gas).
 焼入れ工程S12においては、加工対象部材120に対する焼入れが行われる。焼入れ工程S12は、加熱工程S121と冷却工程S122とを有している。加熱工程S121においては、加工対象部材120がA点以上の温度に加熱され、所定時間保持される。A点は、鋼中のフェライトがオーステナイトへの変態を開始する温度である。加熱工程S121が行われることにより、加工対象部材120を構成している鋼中にオーステナイト結晶粒が生じる。 In the quenching step S12, the member 120 to be processed is quenched. The quenching step S12 includes a heating step S121 and a cooling step S122. In the heating step S121, the member 120 to be processed is heated to a temperature of one A point or higher and held for a predetermined time. A 1 point is the temperature at which ferrite in steel begins to transform into austenite. By performing the heating step S121, austenite crystal grains are generated in the steel constituting the processing target member 120.
 冷却工程S122は、加熱工程S121の後に行われる。冷却工程S122において、加工対象部材120は、Ms点以下の温度に冷却される。Ms点は、オーステナイトからマルテンサイトへの変態が開始される温度である。そのため、冷却工程S122により、加工対象部材120を構成している鋼中のオーステナイト結晶粒の一部が、マルテンサイト結晶粒になる。 The cooling step S122 is performed after the heating step S121. In the cooling step S122, the member 120 to be processed is cooled to a temperature equal to or lower than the Ms point. The Ms point is the temperature at which the transformation from austenite to martensite begins. Therefore, in the cooling step S122, some of the austenite crystal grains in the steel constituting the processing target member 120 become martensite crystal grains.
 冷却工程S122においては、Ms点を下回り、かつ、Mf点以下又はその近傍の温度まで冷却される。Mf点は、オーステナイトからマルテンサイトへの変態が終了する温度である。すなわち、冷却工程S122においては、いわゆるサブゼロ処理(深冷処理)が行われる。これにより、加工対象部材120を構成している鋼中の残留オーステナイト量が、相当程度減少する。 In the cooling step S122, the temperature is lowered below the Ms point and at or near the Mf point. The Mf point is the temperature at which the transformation from austenite to martensite ends. That is, in the cooling step S122, a so-called sub-zero treatment (deep cooling treatment) is performed. As a result, the amount of retained austenite in the steel constituting the work target member 120 is considerably reduced.
 焼き戻し工程S13は、焼入れ工程S12の後に行われる。焼き戻し工程S13においては、加工対象部材120の焼き戻しが行われる。 The tempering step S13 is performed after the quenching step S12. In the tempering step S13, the member 120 to be processed is tempered.
 図15は、焼き戻し工程S13を説明するための平面模式図である。図16は、焼き戻し工程S13を説明するための断面模式図である。図15及び図16に示されるように、焼き戻し工程S13における加熱は、例えば、誘導加熱により行われる。 FIG. 15 is a schematic plan view for explaining the tempering step S13. FIG. 16 is a schematic cross-sectional view for explaining the tempering step S13. As shown in FIGS. 15 and 16, the heating in the tempering step S13 is performed by, for example, induction heating.
 より具体的には、加熱コイル130を加工対象部材120の内周面120cに沿って周方向に回転させて内周面120cを誘導加熱することにより行われる。加熱コイル130により内周面120cの加熱が行われている際には、加工対象部材120の外周面120dが、噴射部131から噴射される水等の冷却液により冷却されている。 More specifically, it is performed by inducing and heating the inner peripheral surface 120c by rotating the heating coil 130 in the circumferential direction along the inner peripheral surface 120c of the member 120 to be processed. When the inner peripheral surface 120c is heated by the heating coil 130, the outer peripheral surface 120d of the member 120 to be processed is cooled by a cooling liquid such as water injected from the injection unit 131.
 図17は、加熱コイル130による加熱時間と内周面120c及び外周面120dにおける温度との関係についてのシミュレーション結果を示すグラフである。なお、図17中において、横軸は加熱コイル130による加熱時間(単位:秒)であり、縦軸は内周面120c及び外周面120dにおける温度(単位:℃)である。図17のシミュレーションは、内周面120cの加熱温度が420℃、外周面120dを水冷、内周面120cと外周面120dとの間の距離が3mmとの条件の下で行われた。図17に示されるように、焼き戻し工程S13においては、外周面120dの加熱温度は、内周面120cの加熱温度よりも低くなる。 FIG. 17 is a graph showing the simulation results regarding the relationship between the heating time by the heating coil 130 and the temperatures on the inner peripheral surface 120c and the outer peripheral surface 120d. In FIG. 17, the horizontal axis represents the heating time (unit: seconds) by the heating coil 130, and the vertical axis represents the temperature (unit: ° C.) on the inner peripheral surface 120c and the outer peripheral surface 120d. The simulation of FIG. 17 was performed under the conditions that the heating temperature of the inner peripheral surface 120c was 420 ° C., the outer peripheral surface 120d was water-cooled, and the distance between the inner peripheral surface 120c and the outer peripheral surface 120d was 3 mm. As shown in FIG. 17, in the tempering step S13, the heating temperature of the outer peripheral surface 120d is lower than the heating temperature of the inner peripheral surface 120c.
 図18は、内周面120cの加熱温度を変化させた際の外周面120dの加熱温度のシミュレーション結果を示すグラフである。なお、図18中において、横軸は、内周面120cの加熱温度(単位:℃)、縦軸は、外周面120dの加熱温度(単位:℃)である。図18のシミュレーションは、内周面120cの加熱温度を変化させたことを除き、図17のシミュレーションと同様の条件で行われた。図18に示されるように、外周面120dの加熱温度は、内周面120cの加熱温度の一次式となる。内周面120cの加熱温度をx、外周面120dの加熱温度をyとすると、y=a×x+b(aは1未満の正の数、bは正の数)となる(以下において、この式を「式1」という)。 FIG. 18 is a graph showing a simulation result of the heating temperature of the outer peripheral surface 120d when the heating temperature of the inner peripheral surface 120c is changed. In FIG. 18, the horizontal axis represents the heating temperature (unit: ° C.) of the inner peripheral surface 120c, and the vertical axis represents the heating temperature (unit: ° C.) of the outer peripheral surface 120d. The simulation of FIG. 18 was performed under the same conditions as the simulation of FIG. 17, except that the heating temperature of the inner peripheral surface 120c was changed. As shown in FIG. 18, the heating temperature of the outer peripheral surface 120d is a linear expression of the heating temperature of the inner peripheral surface 120c. Assuming that the heating temperature of the inner peripheral surface 120c is x and the heating temperature of the outer peripheral surface 120d is y, y = a × x + b (a is a positive number less than 1 and b is a positive number). Is called "Equation 1").
 例えば、特開平10-102137号公報に記載されているように、焼き戻し工程S13が行われた後における加工対象部材120を構成する鋼中の残留オーステナイトの体積比率(M)は、焼き戻し工程S13が行われる前における加工対象部材120を構成する鋼中の残留オーステナイトの体積比率(M)、加熱温度(T)及び加熱時間(t)を用いて、M=M×{A×exp(-Q/RT)×t}(A、Q及びnは定数、Rはガス定数)となる(以下において、この式を「式2」という)。 For example, as described in Japanese Patent Application Laid-Open No. 10-102137, the volume ratio (M 1 ) of retained austenite in the steel constituting the work target member 120 after the tempering step S13 is performed is tempered. Using the volume ratio (M 0 ), heating temperature (T), and heating time (t) of the retained austenite in the steel constituting the member 120 to be processed before the step S13 is performed , M 1 = M 0 × {A. × exp (−Q / RT) × t n } (A, Q and n are constants, R is a gas constant) (hereinafter, this equation is referred to as “Equation 2”).
 そのため、加熱コイル130による内周面120cの加熱温度及び加熱時間を適宜調整することにより、外周面120dの加熱温度を適宜調整することができ、それに伴い、内周面120cにおける残留オーステナイトの体積比率及び外周面120dにおける残留オーステナイトの体積比率を適宜調整することができる。 Therefore, by appropriately adjusting the heating temperature and heating time of the inner peripheral surface 120c by the heating coil 130, the heating temperature of the outer peripheral surface 120d can be appropriately adjusted, and accordingly, the volume ratio of the retained austenite in the inner peripheral surface 120c. And the volume ratio of retained austenite on the outer peripheral surface 120d can be adjusted as appropriate.
 例えば参考文献(井上毅,「新しい焼き戻しパラメータとその連続昇温曲線に沿った焼き戻し積算法への応用」,鉄と鋼,66,10(1980),1533)に記載されているように、焼き戻し工程S13が行われた後における加工対象部材120を構成する鋼の硬さ(Hv)は、加熱時間(t)及び加熱温度(T)を用いて、Hv=c×logt+d/T+e(c、d及びeは定数)となる。そのため、加熱コイル130による内周面120cの加熱温度及び加熱時間を適宜調整することにより、内周面120cにおける硬さを適宜調整することができる。 For example, as described in References (Takeshi Inoue, "New Tempering Parameters and Application to Tempering Integration Method Along Its Continuous Temperature Curve", Iron and Steel, 66, 10 (1980), 1533). The hardness (Hv) of the steel constituting the work target member 120 after the tempering step S13 is determined by using the heating time (t) and the heating temperature (T) as Hv = c × log + d / T + e ( c, d and e are constants). Therefore, the hardness of the inner peripheral surface 120c can be appropriately adjusted by appropriately adjusting the heating temperature and the heating time of the inner peripheral surface 120c by the heating coil 130.
 後処理工程S14においては、加工対象部材120に対する後処理が行われる。この後処理には、加工対象部材120に対する研削加工、加工対象部材120に対する洗浄等が含まれている。以上により、内輪110の製造工程が完了する。 In the post-treatment step S14, post-treatment is performed on the member 120 to be processed. This post-treatment includes grinding of the processing target member 120, cleaning of the processing target member 120, and the like. With the above, the manufacturing process of the inner ring 110 is completed.
 (実施形態に係る転がり軸受の軌道輪の効果)
 以下に、内輪110の効果を説明する。
(Effect of the bearing ring of the rolling bearing according to the embodiment)
The effect of the inner ring 110 will be described below.
 内輪110においては、反軌道面(内周面110c)における残留オーステナイト量が軌道面110daにおける残留オーステナイト量よりも少ないため、時間経過に伴って残留オーステナイトがマルテンサイトに変態することによる内周面110cの寸法変化が小さい。そのため、内輪110においては、軸との嵌め合いが緩みにくく、反軌道面における耐クリープ性を改善することができる。 In the inner ring 110, since the amount of retained austenite on the anti-orbital plane (inner peripheral surface 110c) is smaller than the amount of retained austenite on the raceway surface 110da, the retained austenite is transformed into martensite over time, so that the inner peripheral surface 110c The dimensional change of is small. Therefore, in the inner ring 110, the fitting with the shaft is hard to loosen, and the creep resistance on the anti-track surface can be improved.
 内輪110においては、内周面110cにおける残留オーステナイト量が軌道面110daにおける残留オーステナイト量よりも少ない(別の観点から言えば、内周面110cにおける残留オーステナイトの減少量が、軌道面110daにおける残留オーステナイトの減少量よりも多い)ため、焼き戻し工程S13の終了後における内周面110c側の収縮は、軌道面110da側よりも大きい。 In the inner ring 110, the amount of retained austenite on the inner peripheral surface 110c is smaller than the amount of retained austenite on the raceway surface 110da (from another viewpoint, the amount of decrease in retained austenite on the inner peripheral surface 110c is the amount of retained austenite on the raceway surface 110da. The shrinkage on the inner peripheral surface 110c side after the end of the tempering step S13 is larger than that on the raceway surface 110da side.
 この収縮量の違いに起因し、軌道面110daには圧縮残留応力が作用する。内輪110においては、内周面110cにおける残留オーステナイト量と軌道面110daにおける残留オーステナイト量との差が3体積パーセント以上になっているため、軌道面110daには、大きな圧縮残留応力(具体的には、最小値が100MPa以上)が作用する。そのため、内輪110によると、軌道面110daにおける転動疲労特性を改善することができる。 Due to this difference in the amount of shrinkage, compressive residual stress acts on the raceway surface 110da. In the inner ring 110, the difference between the amount of retained austenite on the inner peripheral surface 110c and the amount of retained austenite on the raceway surface 110da is 3% by volume or more, so that the raceway surface 110da has a large compressive residual stress (specifically, , The minimum value is 100 MPa or more). Therefore, according to the inner ring 110, the rolling fatigue characteristics on the raceway surface 110 da can be improved.
 内輪110を構成している鋼中の残留オーステナイト量の平均値が10体積パーセント以下になっている(浸窒層110eが形成されているときは、20体積パーセント以下になっている)場合には、時間経過に伴う残留オーステナイトのマルテンサイトへの変態が生じにくく、耐クリープ性をさらに改善することができる。 When the average value of the amount of retained austenite in the steel constituting the inner ring 110 is 10% by volume or less (when the nitriding layer 110e is formed, it is 20% by volume or less). , The transformation of retained austenite to martensite with the passage of time is less likely to occur, and the creep resistance can be further improved.
 なお、冷却工程S122においてサブゼロ処理を行うことにより、内輪110を構成している鋼中の残留オーステナイト量の平均値が10体積パーセント以下(浸窒層110eが形成されているときは、20体積パーセント以下)とすることができる。焼き戻し工程S13の前に鋼中の残留オーステナイト量の平均値を減少させておけば、焼き戻し工程S13に要する時間を短縮することができ、また焼き戻し工程S13での内周面110cの加熱温度を低下させることができる。その結果、軌道面110daのみならず、内周面110cにおいても硬さを維持することができる。 By performing the sub-zero treatment in the cooling step S122, the average value of the amount of retained austenite in the steel constituting the inner ring 110 is 10% by volume or less (20% by volume when the nitriding layer 110e is formed). The following) can be used. If the average value of the amount of retained austenite in the steel is reduced before the tempering step S13, the time required for the tempering step S13 can be shortened, and the inner peripheral surface 110c is heated in the tempering step S13. The temperature can be lowered. As a result, the hardness can be maintained not only on the raceway surface 110da but also on the inner peripheral surface 110c.
 <実験例>
 実験に供するサンプルとして、サンプル1~サンプル4を準備した。サンプル1~サンプル4は、JIS規格に定められたSUJ2により形成された環状の部材である。サンプル1及びサンプル2に対しては、表面に浸窒処理が行われていない。サンプル3及びサンプル4に対しては、表面に浸窒処理が行われている。サンプル1及びサンプル3に対しては、冷却工程S122においてサブゼロ処理が行われておらず、サンプル2及びサンプル4に対しては冷却工程S122においてサブゼロ処理が行われている。サンプル1~サンプル4に対しては、焼き戻し工程S13が行われている。
<Experimental example>
Samples 1 to 4 were prepared as samples to be used in the experiment. Samples 1 to 4 are annular members formed by SUJ2 defined in JIS standards. The surfaces of Sample 1 and Sample 2 have not been subjected to nitrification treatment. The surfaces of Samples 3 and 4 are subjected to a nitrogen immersion treatment. The sample 1 and the sample 3 are not subjected to the sub-zero treatment in the cooling step S122, and the samples 2 and the sample 4 are subjected to the sub-zero treatment in the cooling step S122. A tempering step S13 is performed on Samples 1 to 4.
 表1に示されるように、サンプル1の軌道面における残留オーステナイト量は、11体積パーセントであった。他方、サンプル2の軌道面における残留オーステナイト量は、7体積パーセントであった。また、サンプル3の軌道面における残留オーステナイト量は31体積パーセントであった一方で、サンプル4の軌道面における残留オーステナイト量は16体積パーセントであった。 As shown in Table 1, the amount of retained austenite on the orbital surface of Sample 1 was 11% by volume. On the other hand, the amount of retained austenite on the orbital surface of Sample 2 was 7% by volume. The amount of retained austenite on the orbital surface of Sample 3 was 31% by volume, while the amount of retained austenite on the orbital surface of Sample 4 was 16% by volume.
 焼き戻し工程S13により加工対象部材120を構成している鋼中の残留オーステナイト量は軌道面から反軌道面に向かい減少するため、冷却工程S122においてサブゼロ処理を行うことにより、内輪110を構成している鋼中の残留オーステナイト量の平均値を10体積パーセント以下(浸窒層110eが形成されている場合、20体積パーセント以下)にすることができる。 Since the amount of retained austenite in the steel constituting the member 120 to be machined decreases in the tempering step S13 from the raceway surface to the anti-track plane, the inner ring 110 is formed by performing the subzero treatment in the cooling step S122. The average value of the amount of retained austenite in the steel can be 10% by volume or less (20% by volume or less when the immersion layer 110e is formed).
Figure JPOXMLDOC01-appb-T000004
Figure JPOXMLDOC01-appb-T000004
 サンプル2に対して、焼き戻し工程S13を行った。この際、サンプル2の内周面側における加熱温度は300℃とされ、サンプル2の外周面側は水冷された。加熱時間は、式1及び式2に基づいて、外周面における残留オーステナイト量と内周面における残留オーステナイトとの差が3体積パーセントとなるように設定された。 Tempering step S13 was performed on sample 2. At this time, the heating temperature on the inner peripheral surface side of the sample 2 was set to 300 ° C., and the outer peripheral surface side of the sample 2 was water-cooled. The heating time was set so that the difference between the amount of retained austenite on the outer peripheral surface and the retained austenite on the inner peripheral surface was 3% by volume based on the formulas 1 and 2.
 表2に示されるように、焼き戻し工程S13が行われる前のサンプル2においては、外周面に残留引張応力が作用していたが、焼き戻し工程S13が行われた後のサンプル2においては、外周面からの距離が0.2mmまでの位置に100MPa以上の圧縮残留応力が生じていた。このことから、内周面110cにおける残留オーステナイト量と軌道面110daにおける残留オーステナイト量との差が3体積パーセント以上になっていることにより軌道面110daに100MPa以上の圧縮残留応力が発生することが、実験的にも明らかにされた。 As shown in Table 2, in the sample 2 before the tempering step S13 was performed, the residual tensile stress was acting on the outer peripheral surface, but in the sample 2 after the tempering step S13 was performed, the residual tensile stress was acting. A compressive residual stress of 100 MPa or more was generated at a position where the distance from the outer peripheral surface was up to 0.2 mm. From this, it is possible that a compressive residual stress of 100 MPa or more is generated on the raceway surface 110da because the difference between the amount of retained austenite on the inner peripheral surface 110c and the amount of retained austenite on the raceway surface 110da is 3% by volume or more. It was also clarified experimentally.
Figure JPOXMLDOC01-appb-T000005
Figure JPOXMLDOC01-appb-T000005
 今回開示された実施の形態及び実施例はすべての点で例示であって、制限的なものではないと考えられるべきである。本発明の範囲は上記した説明ではなく請求の範囲によって示され、請求の範囲と均等の意味、及び範囲内でのすべての変更が含まれることが意図される。 It should be considered that the embodiments and examples disclosed this time are examples in all respects and are not restrictive. The scope of the present invention is shown by the scope of claims rather than the above description, and is intended to include the meaning equivalent to the scope of claims and all modifications within the scope.
 1 深溝玉軸受、2 円錐ころ軸受、10 成形体、10A 第2周面、10C 第1周面、11,21 外輪、11A,21A 外輪軌道面、12C,22C 内周面、12B,22B 外周面、12,22 内輪、12A,22A 内輪軌道面、13 玉、13A,23A 転動面、14,24 保持器、30 第1コイル、31 噴射部、32 第2コイル、110 内輪、110a 第1端面、110b 第2端面、110c 内周面、110d 外周面、110da 軌道面、110e 浸窒層、120 加工対象部材、120c 内周面、120d 外周面、130 加熱コイル、131 噴射部、A 中心軸、S11 準備工程、S12 焼入れ工程、S13 焼き戻し工程、S14 後処理工程、S121 加熱工程、S122 冷却工程。 1 Deep groove ball bearing, 2 Conical roller bearing, 10 Molded body, 10A 2nd peripheral surface, 10C 1st peripheral surface, 11,21 outer ring, 11A, 21A outer ring raceway surface, 12C, 22C inner peripheral surface, 12B, 22B outer peripheral surface , 12, 22 inner ring, 12A, 22A inner ring raceway surface, 13 ball, 13A, 23A rolling surface, 14, 24 cage, 30 first coil, 31 injection part, 32 second coil, 110 inner ring, 110a first end surface , 110b second end surface, 110c inner peripheral surface, 110d outer peripheral surface, 110da orbital surface, 110e quenching layer, 120 machining target member, 120c inner peripheral surface, 120d outer peripheral surface, 130 heating coil, 131 injection part, A central axis, S11 preparation process, S12 quenching process, S13 tempering process, S14 post-treatment process, S121 heating process, S122 cooling process.

Claims (17)

  1.  周方向に沿って延在する軌道面と、
     前記軌道面と反対側を向いた反軌道面とを有し、
     前記軌道面の残留オーステナイト量は、前記反軌道面の残留オーステナイト量よりも多く、
     前記軌道面の残留オーステナイト量と前記反軌道面の残留オーステナイト量との差は、3体積%以上である、軌道部材。
    The orbital plane extending along the circumferential direction,
    It has an anti-orbital plane facing the opposite side of the orbital plane,
    The amount of retained austenite on the orbital plane is larger than the amount of retained austenite on the anti-orbital plane.
    A raceway member in which the difference between the amount of retained austenite on the raceway surface and the amount of retained austenite on the anti-tracking surface is 3% by volume or more.
  2.  全体の平均残留オーステナイト量は、20体積%以下である、請求項1に記載の軌道部材。 The track member according to claim 1, wherein the average residual austenite amount as a whole is 20% by volume or less.
  3.  全体の平均残留オーステナイト量は、10体積%以下である、請求項1に記載の軌道部材。 The track member according to claim 1, wherein the average residual austenite amount as a whole is 10% by volume or less.
  4.  前記反軌道面の残留オーステナイト量は、5体積%以下である、請求項1~請求項3のいずれか1項に記載の軌道部材。 The orbital member according to any one of claims 1 to 3, wherein the amount of retained austenite on the anti-orbital surface is 5% by volume or less.
  5.  前記反軌道面の硬さが600Hv以上である、請求項1~請求項4のいずれか1項に記載の軌道部材。 The track member according to any one of claims 1 to 4, wherein the hardness of the anti-track surface is 600 Hv or more.
  6.  内輪軌道面と、前記内輪軌道面とは反対側に位置する内径面とを有する内輪と、
     前記内輪軌道面と対向する外輪軌道面を有する外輪と、
     前記内輪軌道面と前記外輪軌道面と接触する複数の転動体とを備え、
     前記内輪が請求項1~5のいずれか1項に記載の軌道部材であり、
     前記内輪軌道面が前記軌道部材の前記軌道面であり、
     前記内径面が前記軌道部材の前記反軌道面である、転がり軸受。
    An inner ring having an inner ring raceway surface and an inner diameter surface located on the side opposite to the inner ring raceway surface,
    An outer ring having an outer ring raceway surface facing the inner ring raceway surface,
    A plurality of rolling elements that come into contact with the inner ring raceway surface and the outer ring raceway surface are provided.
    The inner ring is the track member according to any one of claims 1 to 5.
    The inner ring raceway surface is the raceway surface of the raceway member.
    A rolling bearing in which the inner diameter surface is the anti-track surface of the track member.
  7.  転がり軸受の軌道輪であって、
     前記軌道輪は、焼入れが行われた鋼製であり、内周面及び外周面を有する表面を備え、
     前記内周面及び前記外周面の一方は、軌道面を含み、
     前記内周面及び前記外周面の他方は、反軌道面になっており、
     前記反軌道面における前記鋼中の残留オーステナイト量は、前記軌道面における前記鋼中の残留オーステナイト量よりも少なく、
     前記軌道面における前記鋼中の残留オーステナイト量と前記反軌道面における前記鋼中の残留オーステナイト量との差は、3体積パーセント以上であり、
     前記軌道面における圧縮残留応力の最小値は、100MPa以上である、転がり軸受の軌道輪。
    The raceway ring of a rolling bearing
    The raceway ring is made of hardened steel and has a surface having an inner peripheral surface and an outer peripheral surface.
    One of the inner peripheral surface and the outer peripheral surface includes a raceway surface.
    The other of the inner peripheral surface and the outer peripheral surface is an anti-orbital surface.
    The amount of retained austenite in the steel on the anti-track surface is smaller than the amount of retained austenite in the steel on the raceway surface.
    The difference between the amount of retained austenite in the steel on the raceway surface and the amount of retained austenite in the steel on the anti-track surface is 3% by volume or more.
    The minimum value of compressive residual stress on the raceway surface is 100 MPa or more, which is the raceway ring of the rolling bearing.
  8.  前記鋼中における残留オーステナイト量の平均値は、10体積パーセント以下である、請求項7に記載の転がり軸受の軌道輪。 The raceway ring of the rolling bearing according to claim 7, wherein the average value of the residual austenite amount in the steel is 10% by volume or less.
  9.  前記表面には、浸窒層が形成されており、
     前記鋼中における残留オーステナイト量の平均値は、20パーセント以下である、請求項7に記載の転がり軸受の軌道輪。
    An immersion layer is formed on the surface.
    The raceway ring of the rolling bearing according to claim 7, wherein the average value of the amount of retained austenite in the steel is 20% or less.
  10.  前記軌道面における前記鋼の硬さ及び前記反軌道面における前記鋼の硬さは、700Hv以上である、請求項7~請求項9のいずれか1項に記載の転がり軸受の軌道輪。 The raceway ring of a rolling bearing according to any one of claims 7 to 9, wherein the hardness of the steel on the raceway surface and the hardness of the steel on the anti-track surface are 700 Hv or more.
  11.  前記反軌道面における前記鋼中の残留オーステナイト量は、5体積パーセント以下である、請求項7~請求項9のいずれか1項に記載の転がり軸受の軌道輪。 The raceway ring of the rolling bearing according to any one of claims 7 to 9, wherein the amount of retained austenite in the steel on the anti-track surface is 5% by volume or less.
  12.  前記鋼は、JIS規格に定められた高炭素クロム軸受鋼SUJ2である、請求項7~請求項11のいずれか1項に記載の転がり軸受の軌道輪。 The rolling bearing raceway ring according to any one of claims 7 to 11, wherein the steel is SUJ2, a high carbon chrome bearing steel defined in JIS standards.
  13.  環状であり、第1周面と、前記第1周面の径方向における反対面である第2周面とを有する鋼製の加工対象部材を準備する工程と、
     前記加工対象部材に対して焼き入れを行う焼き入れ工程と、
     前記加工対象部材に対して焼き戻しを行う焼き戻し工程とを備え、
     前記焼き入れ工程は、前記加工対象部材を前記鋼のA変態点以上の温度に加熱する加熱工程と、前記加工対象部材を前記鋼のMf点以下の温度に冷却する冷却工程とを有し、
     前記焼き戻し工程は、前記第1周面を冷却しながら前記第2周面を加熱することにより行われる、転がり軸受の軌道輪の製造方法。
    A step of preparing a member to be processed made of steel, which is annular and has a first peripheral surface and a second peripheral surface which is an opposite surface in the radial direction of the first peripheral surface.
    A quenching process for quenching the member to be processed and
    It is provided with a tempering process for tempering the member to be processed.
    The quenching step includes a heating step of heating the processing target member to the A 1 transformation point or more temperature of the steel, and a cooling step of cooling the processing target member to a temperature below Mf point of the steel ,
    The tempering step is a method for manufacturing a raceway ring of a rolling bearing, which is performed by heating the second peripheral surface while cooling the first peripheral surface.
  14.  前記焼き戻し工程は、前記加工対象部材を前記加工対象部材の中心軸回りに回転させながら行われる、請求項13に記載の転がり軸受の軌道輪の製造方法。 The method for manufacturing a raceway ring of a rolling bearing according to claim 13, wherein the tempering step is performed while rotating the machining target member around the central axis of the machining target member.
  15.  前記焼き戻し工程において、前記第1周面は、冷却液が噴射されることにより冷却される、請求項13又は請求項14に記載の転がり軸受の軌道輪の製造方法。 The method for manufacturing a raceway ring of a rolling bearing according to claim 13, wherein in the tempering step, the first peripheral surface is cooled by injecting a cooling liquid.
  16.  前記焼き戻し工程において、前記第2周面は、誘導加熱により加熱される、請求項13~請求項15のいずれか1項に記載の転がり軸受の軌道輪の製造方法。 The method for manufacturing a raceway ring of a rolling bearing according to any one of claims 13 to 15, wherein in the tempering step, the second peripheral surface is heated by induction heating.
  17.  前記焼き戻し工程において、前記第2周面は、平均温度が300℃以上になるように加熱される、請求項13~請求項16のいずれか1項に記載の転がり軸受の軌道輪の製造方法。 The method for manufacturing a raceway ring of a rolling bearing according to any one of claims 13 to 16, wherein in the tempering step, the second peripheral surface is heated so that the average temperature becomes 300 ° C. or higher. ..
PCT/JP2020/042944 2019-11-22 2020-11-18 Raceway member, rolling bearing, bearing ring for rolling bearing, and method for manufacturing bearing ring for rolling bearing WO2021100746A1 (en)

Applications Claiming Priority (4)

Application Number Priority Date Filing Date Title
JP2019211179A JP2021081047A (en) 2019-11-22 2019-11-22 Raceway member and rolling bearing
JP2019-211179 2019-11-22
JP2020000362A JP2021110341A (en) 2020-01-06 2020-01-06 Bearing ring of rolling bearing
JP2020-000362 2020-01-06

Publications (1)

Publication Number Publication Date
WO2021100746A1 true WO2021100746A1 (en) 2021-05-27

Family

ID=75980547

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2020/042944 WO2021100746A1 (en) 2019-11-22 2020-11-18 Raceway member, rolling bearing, bearing ring for rolling bearing, and method for manufacturing bearing ring for rolling bearing

Country Status (1)

Country Link
WO (1) WO2021100746A1 (en)

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH1193956A (en) * 1997-09-18 1999-04-06 Nippon Seiko Kk Rolling bearing
JP2004232858A (en) * 2003-01-08 2004-08-19 Ntn Corp Rolling bearing and its manufacturing method
JP2013160314A (en) * 2012-02-06 2013-08-19 Nsk Ltd Rolling bearing
JP2018009226A (en) * 2016-07-14 2018-01-18 株式会社ジェイテクト Heat treatment method, and heat treatment apparatus

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH1193956A (en) * 1997-09-18 1999-04-06 Nippon Seiko Kk Rolling bearing
JP2004232858A (en) * 2003-01-08 2004-08-19 Ntn Corp Rolling bearing and its manufacturing method
JP2013160314A (en) * 2012-02-06 2013-08-19 Nsk Ltd Rolling bearing
JP2018009226A (en) * 2016-07-14 2018-01-18 株式会社ジェイテクト Heat treatment method, and heat treatment apparatus

Similar Documents

Publication Publication Date Title
JP4191745B2 (en) Carbonitriding method, machine part manufacturing method and machine part
EP2554686B1 (en) Method for manufacturing base material for wave gear
US20090266449A1 (en) Method of carburizing and quenching a steel member
JP4627776B2 (en) High concentration carburizing / low strain quenching member and method of manufacturing the same
JP5895493B2 (en) Rolling bearing manufacturing method, induction heat treatment apparatus
US20080047632A1 (en) Method for Thermally Treating a Component Consisting of a Fully Hardenable, Heat-Resistant Steel and a Component Consisting of Said Steel
JP2010222678A (en) Bearing parts, rolling bearing, and process for production of bearing parts
KR101066345B1 (en) Sheave member for belt continuously variable transmissions and method of manufacturing it
JP2009052119A (en) Heat-treatment method for steel, method for producing machine part, and machine part
KR20150067358A (en) Bearing element, rolling bearing and process for producing bearing element
WO2021140853A1 (en) Rolling bearing raceway ring and method for manufacturing same
JP2021110032A (en) Production method of bearing ring of rolling bearing
WO2017175756A1 (en) Race for roller bearings, production method for race for roller bearings, and roller bearing
WO2021100746A1 (en) Raceway member, rolling bearing, bearing ring for rolling bearing, and method for manufacturing bearing ring for rolling bearing
JP2007182926A (en) Manufacturing method for needle-like roll bearing raceway member, needle-like roll bearing raceway member, and needle-like roll bearing
WO2021206049A1 (en) Raceway ring, raceway ring manufacturing method, and rolling bearing
JP2015531029A (en) Method for heat treating steel components and steel components
JP2008001967A (en) Carbonitriding method, method of manufacturing machine part and machine part
JP2010024492A (en) Heat-treatment method for steel, method for manufacturing machine component, and machine component
WO2020153243A1 (en) Race member and rolling bearing
EP3564398B1 (en) Method for manufacturing a bearing component.
WO2021002179A1 (en) Raceway ring for rolling bearing
JP2021081047A (en) Raceway member and rolling bearing
JP7370141B2 (en) Raceway members and rolling bearings
JP2007182603A (en) Method for manufacturing rolling member, rolling member and rolling bearing

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 20888912

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 20888912

Country of ref document: EP

Kind code of ref document: A1