WO2021002179A1 - Raceway ring for rolling bearing - Google Patents

Raceway ring for rolling bearing Download PDF

Info

Publication number
WO2021002179A1
WO2021002179A1 PCT/JP2020/023395 JP2020023395W WO2021002179A1 WO 2021002179 A1 WO2021002179 A1 WO 2021002179A1 JP 2020023395 W JP2020023395 W JP 2020023395W WO 2021002179 A1 WO2021002179 A1 WO 2021002179A1
Authority
WO
WIPO (PCT)
Prior art keywords
peripheral surface
raceway
retained austenite
volume ratio
rolling bearing
Prior art date
Application number
PCT/JP2020/023395
Other languages
French (fr)
Japanese (ja)
Inventor
山田 昌弘
大木 力
Original Assignee
Ntn株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Ntn株式会社 filed Critical Ntn株式会社
Publication of WO2021002179A1 publication Critical patent/WO2021002179A1/en

Links

Images

Classifications

    • CCHEMISTRY; METALLURGY
    • C21METALLURGY OF IRON
    • C21DMODIFYING THE PHYSICAL STRUCTURE OF FERROUS METALS; GENERAL DEVICES FOR HEAT TREATMENT OF FERROUS OR NON-FERROUS METALS OR ALLOYS; MAKING METAL MALLEABLE, e.g. BY DECARBURISATION OR TEMPERING
    • C21D1/00General methods or devices for heat treatment, e.g. annealing, hardening, quenching or tempering
    • C21D1/06Surface hardening
    • CCHEMISTRY; METALLURGY
    • C21METALLURGY OF IRON
    • C21DMODIFYING THE PHYSICAL STRUCTURE OF FERROUS METALS; GENERAL DEVICES FOR HEAT TREATMENT OF FERROUS OR NON-FERROUS METALS OR ALLOYS; MAKING METAL MALLEABLE, e.g. BY DECARBURISATION OR TEMPERING
    • C21D1/00General methods or devices for heat treatment, e.g. annealing, hardening, quenching or tempering
    • C21D1/18Hardening; Quenching with or without subsequent tempering
    • CCHEMISTRY; METALLURGY
    • C21METALLURGY OF IRON
    • C21DMODIFYING THE PHYSICAL STRUCTURE OF FERROUS METALS; GENERAL DEVICES FOR HEAT TREATMENT OF FERROUS OR NON-FERROUS METALS OR ALLOYS; MAKING METAL MALLEABLE, e.g. BY DECARBURISATION OR TEMPERING
    • C21D9/00Heat treatment, e.g. annealing, hardening, quenching or tempering, adapted for particular articles; Furnaces therefor
    • C21D9/40Heat treatment, e.g. annealing, hardening, quenching or tempering, adapted for particular articles; Furnaces therefor for rings; for bearing races
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F16ENGINEERING ELEMENTS AND UNITS; GENERAL MEASURES FOR PRODUCING AND MAINTAINING EFFECTIVE FUNCTIONING OF MACHINES OR INSTALLATIONS; THERMAL INSULATION IN GENERAL
    • F16CSHAFTS; FLEXIBLE SHAFTS; ELEMENTS OR CRANKSHAFT MECHANISMS; ROTARY BODIES OTHER THAN GEARING ELEMENTS; BEARINGS
    • F16C33/00Parts of bearings; Special methods for making bearings or parts thereof
    • F16C33/30Parts of ball or roller bearings
    • F16C33/58Raceways; Race rings
    • F16C33/62Selection of substances
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F16ENGINEERING ELEMENTS AND UNITS; GENERAL MEASURES FOR PRODUCING AND MAINTAINING EFFECTIVE FUNCTIONING OF MACHINES OR INSTALLATIONS; THERMAL INSULATION IN GENERAL
    • F16CSHAFTS; FLEXIBLE SHAFTS; ELEMENTS OR CRANKSHAFT MECHANISMS; ROTARY BODIES OTHER THAN GEARING ELEMENTS; BEARINGS
    • F16C33/00Parts of bearings; Special methods for making bearings or parts thereof
    • F16C33/30Parts of ball or roller bearings
    • F16C33/58Raceways; Race rings
    • F16C33/64Special methods of manufacture

Definitions

  • the present invention relates to a raceway ring of a rolling bearing.
  • the bearing ring of the rolling bearing is manufactured by quenching and tempering the bearing steel or the like (for example, Patent Document 1), it contains retained austenite.
  • residual austenite is decomposed, causing dimensional changes in the raceway wheels.
  • the inner ring undergoes a dimensional change due to use in a high temperature environment, the inner diameter will increase.
  • the fit between the inner ring and the shaft is loosened, and creep occurs. Creep causes damage to rolling bearings.
  • tempering at about 230 ° C. for several hours is performed to reduce the amount of retained austenite in advance.
  • martensite is also decomposed, so that the hardness on the raceway surface is reduced and the life of the rolling bearing is shortened.
  • the present invention has been made in view of the above-mentioned problems of the prior art. More specifically, the present invention provides a raceway ring of a rolling bearing capable of suppressing the occurrence of breakage due to creep while maintaining the hardness on the raceway surface.
  • the raceway ring of the rolling bearing of the present invention is made of steel and has an outer peripheral surface and an inner peripheral surface.
  • One of the outer peripheral surface and the inner peripheral surface has a raceway surface.
  • the other of the outer peripheral surface and the inner peripheral surface is an antibonding surface.
  • the volume ratio of retained austenite on the antibonding surface is smaller than the volume ratio of retained austenite on the orbital surface.
  • the difference between the volume ratio of retained austenite on the orbital surface and the volume ratio of retained austenite on the anti-orbital surface is 5% by volume or more.
  • the average particle size of the former austenite crystal grains on the orbital surface is 8 ⁇ m or less.
  • a plurality of compound particles may be dispersed on the antibonding surface.
  • the average particle size of the compound grains may be 2 ⁇ m or less.
  • the area ratio of the compound grains may be 0.3% or more.
  • the raceway surface and the antibonding surface may be carburized and nitrided.
  • the difference between the volume ratio of retained austenite on the orbital surface and the volume ratio of retained austenite on the anti-orbital surface may be 10% by volume or more.
  • the hardness on the anti-tracking surface may be 650 Hv or more.
  • the steel In the bearing ring of the rolling bearing, the steel may be SUJ2.
  • raceway ring of the rolling bearing of the present invention it is possible to suppress the occurrence of breakage due to creep while maintaining the hardness on the raceway surface.
  • the raceway ring of the rolling bearing according to the embodiment is, for example, the inner ring 10 of the deep groove ball bearing.
  • the raceway ring of the rolling bearing according to the embodiment is not limited to the inner ring 10, but the inner ring 10 will be described below as a specific example of the raceway ring of the rolling bearing according to the embodiment.
  • the inner ring 10 is made of steel.
  • the steel constituting the inner ring 10 is, for example, SUJ2, which is a high carbon chrome bearing steel defined in JIS standard (JIS G 4805; 2008).
  • JIS G 4805; 2008 JIS G 4805; 2008.
  • the steel constituting the inner ring 10 is not limited to this.
  • the steel that makes up the inner ring 10 is hardened. From another point of view, the steel constituting the inner ring 10 contains martensite and retained austenite. Martensite is a non-equilibrium phase obtained by quenching austenite, which is a high-temperature phase of iron (Fe) having an fcc (face centered cubic) structure. Residual austenite is austenite that remains without metamorphosis to martensite when it is rapidly cooled.
  • the compound granule is a compound of iron and nitrogen (N) and carbon (C).
  • the compound granules are formed, for example, by a compound in which the carbon sites of cementite (Fe 3 C) are partially replaced by nitrogen and the iron sites of cementite are partially replaced by chromium. That is, the compound granules are formed of, for example, (Fe, Cr) 3 (C, N).
  • FIG. 1 is a plan view of the inner ring 10.
  • the inner ring 10 has an annular (ring-shaped) shape.
  • the inner ring 10 has a central axis A.
  • FIG. 2 is a cross-sectional view taken along the line II-II of FIG.
  • the inner ring 10 has an upper surface 10a, a lower surface 10b, an inner peripheral surface 10c, and an outer peripheral surface 10d.
  • the upper surface 10a and the lower surface 10b form an end surface of the inner ring 10 in the direction along the central axis A.
  • the bottom surface 10b is the opposite surface of the top surface 10a.
  • the inner peripheral surface 10c extends along the circumferential direction.
  • the inner peripheral surface 10c faces inward in the radial direction.
  • the inner peripheral surface 10c is connected to the upper surface 10a and the bottom surface 10b.
  • the outer peripheral surface 10d extends along the circumferential direction.
  • the outer peripheral surface 10d faces outward in the radial direction.
  • the outer peripheral surface 10d is connected to the upper surface 10a and the bottom surface 10b.
  • the outer peripheral surface 10d includes the raceway surface 10e.
  • the raceway surface 10e is a portion of the outer peripheral surface 10d that comes into contact with a rolling element (not shown).
  • the inner peripheral surface 10c constitutes an antibonding surface 10f. That is, the inner peripheral surface 10c is a surface that is fitted to a shaft (not shown).
  • the surface of the inner ring 10 (upper surface 10a, lower surface 10b, inner peripheral surface 10c and outer peripheral surface 10d) is preferably carburized and nitrided.
  • the volume ratio of retained austenite on the antibonding surface 10f (inner peripheral surface 10c) is smaller than the volume ratio of retained austenite on the orbital surface 10e. That is, since the decomposition of the retained austenite on the anti-tracking surface 10f is more advanced than the decomposition of the retained austenite on the bonding surface 10e, the dimensional change rate on the anti-tracking surface 10f is smaller than the dimensional change rate on the bonding surface 10e.
  • the difference between the volume ratio of retained austenite on the raceway surface 10e and the volume ratio of retained austenite on the anti-track surface 10f (the value obtained by subtracting the volume ratio of retained austenite on the anti-track surface 10f from the volume ratio of retained austenite on the raceway surface 10e) is 5 by volume or more.
  • the difference between the volume ratio of retained austenite on the orbital surface 10e and the volume ratio of retained austenite on the antibonding surface 10f may be 10% by volume or more.
  • the volume ratio of retained austenite is measured using X-ray diffraction. That is, the volume ratio of retained austenite can be obtained by comparing the integrated intensity of the X-ray diffraction peak of the martensite phase with the integrated intensity of the X-ray diffraction peak of the austenite phase.
  • the average particle size of the former austenite crystal grains on the orbital surface 10e is 8 ⁇ m or less.
  • the former austenite grains are the parts surrounded by the grain boundaries of austenite that existed before cooling in quenching.
  • the average particle size of the former austenite crystal grains is determined according to the method specified in the JIS standard (JIS G 0551: 2005).
  • the average particle size of the compound particles on the anti-orbital surface 10f is preferably 2 ⁇ m or less.
  • the area ratio of the compound particles on the anti-orbital surface 10f is preferably 0.3% or more.
  • the average particle size of the compound grains and the area ratio of the compound grains are measured by the following methods.
  • a cross-sectional image of the inner ring 10 is taken with an electron microscope (SEM).
  • SEM electron microscope
  • the inner ring 10 is mirror-polished and the mirror-polished surface is corroded.
  • the area of each compound grain is calculated by performing image processing on the cross-sectional image of the inner ring 10. By summing the areas of each compound grain, the area ratio of the compound grains can be obtained.
  • the equivalent circle diameter of each compound grain is calculated from the square root of the value obtained by dividing the area of each compound grain by ⁇ / 4. By dividing the total value of the equivalent circle diameters of each compound grain by the total number of compound grains, the average particle size of the compound grains can be obtained.
  • the hardness on the orbital surface 10e is higher than the hardness on the antibonding surface 10f where the decomposition of retained austenite is relatively advanced.
  • the hardness of the anti-tracking surface 10f is preferably 650 Hv or more. Hardness is measured according to the Vickers hardness test method specified in JIS standard (JIS Z 2244: 2009).
  • FIG. 3 is a process diagram showing a manufacturing method of the inner ring 10.
  • the method for manufacturing the inner ring 10 includes a preparation step S1, a carburizing nitriding treatment step S2, a quenching step S3, a tempering step S4, and a post-treatment step S5.
  • the quenching step S3 includes a first quenching step S31 and a second quenching step S32.
  • the member 20 to be processed is prepared.
  • the member 20 to be processed is made of steel.
  • the steel constituting the member 20 to be processed is, for example, SUJ2, which is a high carbon chrome bearing steel defined in JIS standards.
  • FIG. 4 is a plan view of the member 20 to be processed.
  • FIG. 5 is a cross-sectional view taken along the line VV of FIG.
  • the processing target member 20 has an annular shape.
  • the member 20 to be processed has an upper surface 20a, a lower surface 20b, an inner peripheral surface 20c, and an outer peripheral surface 20d.
  • the upper surface 20a, the lower surface 20b, the inner peripheral surface 20c, and the outer peripheral surface 20d are surfaces that become the upper surface 10a, the lower surface 10b, the inner peripheral surface 10c, and the outer peripheral surface 10d, respectively, after the completion of the post-treatment step S5.
  • the carburizing nitriding treatment is performed on the surface of the member 20 to be processed.
  • the member 20 to be processed is predetermined at a predetermined temperature in an atmospheric gas containing nitrogen and carbon (for example, an atmospheric gas containing a heat absorbing modified gas (R gas) and ammonia (NH 3 ) gas). It is done by holding time. As a result, carbon and nitrogen are solid-solved in the steel on the surface of the member 20 to be processed.
  • an atmospheric gas containing nitrogen and carbon for example, an atmospheric gas containing a heat absorbing modified gas (R gas) and ammonia (NH 3 ) gas.
  • the first quenching step S31 is performed after the carburizing nitriding treatment step S2.
  • quenching is performed on the member 20 to be processed.
  • the first, processing target member 20, a predetermined time is held in the processing target member 20 the construction to steel A 1 transformation point or more temperature (first temperature).
  • the processing target member 20 is cooled to a temperature equal to or lower than the Ms transformation point of the steel constituting the processing target member 20. Cooling of the member 20 to be processed is performed by, for example, oil cooling.
  • compound particles are precipitated in the steel constituting the member 20 to be processed.
  • the second quenching step S32 is performed after the first quenching step S31.
  • quenching is performed on the member 20 to be processed.
  • the first, processing target member 20 a predetermined time is held in the processing target member 20 the construction to steel A 1 transformation point or more temperature (second temperature).
  • the second temperature is lower than the first temperature. Since the second temperature is lower than the first temperature, the solid solution limit of carbon and nitrogen in the steel is narrowed, so that the compound particles are precipitated even during the heating and holding of the second quenching step S32.
  • the machining target member 20 is cooled to a temperature equal to or lower than the Ms transformation point of the steel constituting the machining target member 20. Cooling of the member 20 to be processed is performed by, for example, oil cooling. The growth of austenite crystal grains during the heating and holding of the second quenching step S32 is suppressed by the pinning effect of the compound grains precipitated during the heating and holding of the first quenching step S31 and the second quenching step S32. There is.
  • the quenching step S3 including the first quenching step S31 and the second quenching step S32, martensite and retained austenite are formed in the steel constituting the member 20 to be processed, and the old austenite is formed.
  • the average particle size of the austenite crystal grains is 8 ⁇ m or less. Further, by performing the quenching step S3, fine compound particles are dispersed in the steel constituting the processing target member 20.
  • the volume ratio of the retained austenite on the inner peripheral surface 20c and the volume ratio of the retained austenite on the outer peripheral surface 20d are between. There is no significant difference (the difference between the volume ratio of retained austenite on the inner peripheral surface 20c and the volume ratio of retained austenite on the outer peripheral surface 20d is less than 5% by volume).
  • the tempering step S4 is performed after the quenching step S3 (first quenching step S31 and second quenching step S32). In the tempering step S4, the tempering of the member 20 to be processed is performed.
  • FIG. 6 is a schematic plan view for explaining the tempering step S4.
  • FIG. 7 is a schematic cross-sectional view for explaining the tempering step S4.
  • the heating in the tempering step S4 is performed by, for example, induction heating. More specifically, the heating coil 30 is rotated in the circumferential direction along the inner peripheral surface 20c to induce and heat the inner peripheral surface 20c.
  • the outer peripheral surface 20d is cooled by a cooling liquid such as water injected from the injection unit 31.
  • FIG. 8 is a graph showing the simulation results regarding the relationship between the heating time by the heating coil 30 and the temperatures on the inner peripheral surface 20c and the outer peripheral surface 20d.
  • the horizontal axis is the heating time (unit: seconds) by the heating coil 30, and the vertical axis is the temperature (unit: ° C.) on the inner peripheral surface 20c and the outer peripheral surface 20d.
  • the simulation of FIG. 8 was performed under the conditions that the heating temperature of the inner peripheral surface 20c was 420 ° C., the outer peripheral surface 20d was water-cooled, and the distance between the inner peripheral surface 20c and the outer peripheral surface 20d was 3 mm.
  • the heating temperature of the outer peripheral surface 20d is lower than the heating temperature of the inner peripheral surface 20c.
  • FIG. 9 is a graph showing a simulation result of the heating temperature of the outer peripheral surface 20d when the heating temperature of the inner peripheral surface 20c is changed.
  • the horizontal axis represents the heating temperature (unit: ° C.) of the inner peripheral surface 20c
  • the vertical axis represents the heating temperature (unit: ° C.) of the outer peripheral surface 20d.
  • the simulation of FIG. 9 was performed under the same conditions as the simulation of FIG. 8 except that the heating temperature of the inner peripheral surface 20c was changed.
  • the volume ratio (M 1 ) of retained austenite in the steel constituting the work target member 20 after the tempering step S4 is performed is tempered.
  • M 1 M 0 ⁇ ⁇ A.
  • the heating temperature of the outer peripheral surface 20d can be appropriately adjusted, and accordingly, the volume ratio of the retained austenite on the inner peripheral surface 20c.
  • the volume ratio of retained austenite on the outer peripheral surface 20d can be adjusted as appropriate.
  • the post-treatment of the member 20 to be processed is performed.
  • This post-treatment includes grinding of the processing target member 20, cleaning of the processing target member 20, and the like. With the above, the manufacturing process of the inner ring 10 is completed.
  • the difference between the volume ratio of retained austenite on the raceway surface 10e and the volume ratio of retained austenite on the antibonding surface 10f is 5% by volume or more. Therefore, according to the inner ring 10, it is possible to suppress damage to the rolling bearing due to the occurrence of creep while maintaining the hardness of the raceway surface 10e.
  • the average particle size of the old austenite crystal grains is refined to 8 ⁇ m or less, the amount of plastic deformation of the anti-trajectory surface when worn with the shaft can be reduced, and the generated wear powder can be reduced. It can be made smaller.
  • the amount of plastic deformation of the anti-orbital surface 10f when worn with the shaft is determined. It can be made even smaller, and the generated abrasion powder can be made even smaller.
  • the amount of plastic deformation of the anti-tracking surface 10f when worn with the shaft can be further reduced.
  • the above embodiment is particularly advantageously applied to the raceway wheels of rolling bearings.

Landscapes

  • Engineering & Computer Science (AREA)
  • Chemical & Material Sciences (AREA)
  • Mechanical Engineering (AREA)
  • General Engineering & Computer Science (AREA)
  • Physics & Mathematics (AREA)
  • Thermal Sciences (AREA)
  • Crystallography & Structural Chemistry (AREA)
  • Materials Engineering (AREA)
  • Metallurgy (AREA)
  • Organic Chemistry (AREA)
  • Manufacturing & Machinery (AREA)
  • Heat Treatment Of Articles (AREA)
  • Rolling Contact Bearings (AREA)

Abstract

This raceway ring (10) for a rolling bearing is composed of steel and is provided with an outer circumferential surface (10d) and an inner circumferential surface (10c). One of the outer circumferential surface (10d) and the inner circumferential surface (10c) has a raceway surface (10e). The other of the outer circumferential surface (10d) and the inner circumferential surface (10c) serves as an anti-raceway surface. The volumetric fraction of residual austenite in the anti-raceway surface is smaller than the volumetric fraction of residual austenite in the raceway surface (10e). The difference between the volumetric fraction of residual austenite in the raceway surface (10e) and the volumetric fraction of residual austenite in the anti-raceway surface is at least 5 volume percent. The average particle diameter of prior austenite grains in the raceway surface (10e) is at most 8 μm.

Description

転がり軸受の軌道輪Rolling bearing bearing ring
 本発明は、転がり軸受の軌道輪に関する。 The present invention relates to a raceway ring of a rolling bearing.
 転がり軸受の軌道輪は、軸受鋼等に対して焼き入れ・焼き戻しを行うことにより製造されている(例えば、特許文献1)ため、残留オーステナイトを含んでいる。転がり軸受が高温環境下において使用されると、残留オーステナイトが分解されることにより、軌道輪に寸法変化が生じる。例えば、内輪に高温環境下での使用に伴う寸法変化が生じると、内径が拡大してしまう。その結果、内輪と軸との嵌め合いが緩まり、クリープが生じる。クリープは、転がり軸受が破損する原因となる。 Since the bearing ring of the rolling bearing is manufactured by quenching and tempering the bearing steel or the like (for example, Patent Document 1), it contains retained austenite. When rolling bearings are used in a high temperature environment, residual austenite is decomposed, causing dimensional changes in the raceway wheels. For example, if the inner ring undergoes a dimensional change due to use in a high temperature environment, the inner diameter will increase. As a result, the fit between the inner ring and the shaft is loosened, and creep occurs. Creep causes damage to rolling bearings.
特開2017-187104号公報JP-A-2017-187104
 上記の寸法変化の対策として、230℃程度で数時間の焼き戻しを行い、予め残留オーステナイト量を減らしておくことが行われている。しかしながら、この対策では、マルテンサイトも分解されてしまうため、軌道面における硬さが低下し、転がり軸受の寿命が短くなってしまう。 As a countermeasure against the above dimensional change, tempering at about 230 ° C. for several hours is performed to reduce the amount of retained austenite in advance. However, with this measure, martensite is also decomposed, so that the hardness on the raceway surface is reduced and the life of the rolling bearing is shortened.
 本発明は、上記のような従来技術の問題点に鑑みてなされたものである。より具体的には、本発明は、軌道面における硬さを維持しつつ、クリープに伴う破損の発生を抑制することが可能な転がり軸受の軌道輪を提供するものである。 The present invention has been made in view of the above-mentioned problems of the prior art. More specifically, the present invention provides a raceway ring of a rolling bearing capable of suppressing the occurrence of breakage due to creep while maintaining the hardness on the raceway surface.
 本発明の転がり軸受の軌道輪は、鋼からなり、外周面と、内周面とを備えている。外周面及び内周面の一方は、軌道面を有する。外周面及び内周面の他方は、反軌道面となっている。反軌道面における残留オーステナイトの体積比率は、軌道面における残留オーステナイトの体積比率よりも小さい。軌道面における残留オーステナイトの体積比率と反軌道面における残留オーステナイトの体積比率との差は、5体積パーセント以上である。軌道面における旧オーステナイト結晶粒の平均粒径は、8μm以下である。 The raceway ring of the rolling bearing of the present invention is made of steel and has an outer peripheral surface and an inner peripheral surface. One of the outer peripheral surface and the inner peripheral surface has a raceway surface. The other of the outer peripheral surface and the inner peripheral surface is an antibonding surface. The volume ratio of retained austenite on the antibonding surface is smaller than the volume ratio of retained austenite on the orbital surface. The difference between the volume ratio of retained austenite on the orbital surface and the volume ratio of retained austenite on the anti-orbital surface is 5% by volume or more. The average particle size of the former austenite crystal grains on the orbital surface is 8 μm or less.
 上記の転がり軸受の軌道輪では、反軌道面において、複数の化合物粒が分散されていてもよい。化合物粒の平均粒径は、2μm以下であってもよい。化合物粒の面積比率は、0.3パーセント以上であってもよい。 In the above-mentioned rolling bearing raceway ring, a plurality of compound particles may be dispersed on the antibonding surface. The average particle size of the compound grains may be 2 μm or less. The area ratio of the compound grains may be 0.3% or more.
 上記の転がり軸受の軌道輪では、軌道面及び反軌道面は、浸炭窒化されていてもよい。軌道面における残留オーステナイトの体積比率と反軌道面における残留オーステナイトの体積比率との差は、10体積パーセント以上であってもよい。 In the above-mentioned rolling bearing raceway ring, the raceway surface and the antibonding surface may be carburized and nitrided. The difference between the volume ratio of retained austenite on the orbital surface and the volume ratio of retained austenite on the anti-orbital surface may be 10% by volume or more.
 上記の転がり軸受の軌道輪では、反軌道面における硬さは、650Hv以上であってもよい。上記の転がり軸受の軌道輪では、鋼がSUJ2であってもよい。 In the above-mentioned rolling bearing raceway ring, the hardness on the anti-tracking surface may be 650 Hv or more. In the bearing ring of the rolling bearing, the steel may be SUJ2.
 本発明の転がり軸受の軌道輪によると、軌道面における硬さを維持しつつ、クリープに伴う破損の発生を抑制することができる。 According to the raceway ring of the rolling bearing of the present invention, it is possible to suppress the occurrence of breakage due to creep while maintaining the hardness on the raceway surface.
内輪10の平面図である。It is a top view of the inner ring 10. 図1のII-IIにおける断面図である。It is sectional drawing in II-II of FIG. 内輪10の製造方法を示す工程図である。It is a process drawing which shows the manufacturing method of the inner ring 10. 加工対象部材20の平面図である。It is a top view of the member 20 to be processed. 図4のV-Vにおける断面図である。It is sectional drawing in VV of FIG. 焼き戻し工程S4を説明するための平面模式図である。It is a plane schematic diagram for demonstrating the tempering process S4. 焼き戻し工程S4を説明するための断面模式図である。It is sectional drawing to explain the tempering process S4. 加熱コイル30による加熱時間と内周面20c及び外周面20dにおける温度との関係についてのシミュレーション結果を示すグラフである。It is a graph which shows the simulation result about the relationship between the heating time by a heating coil 30 and the temperature on the inner peripheral surface 20c and the outer peripheral surface 20d. 内周面20cの加熱温度を変化させた際の外周面20dの加熱温度のシミュレーション結果を示すグラフである。It is a graph which shows the simulation result of the heating temperature of the outer peripheral surface 20d when the heating temperature of the inner peripheral surface 20c is changed.
 実施形態の詳細を、図面を参照しながら説明する。以下の図面においては、同一又は相当する部分に同一の参照符号を付し、重複する説明は繰り返さない。 The details of the embodiment will be described with reference to the drawings. In the following drawings, the same or corresponding parts are designated by the same reference numerals, and duplicate explanations will not be repeated.
 実施形態に係る転がり軸受の軌道輪は、例えば、深溝玉軸受の内輪10である。実施形態に係る転がり軸受の軌道輪は、内輪10に限られるものではないが、以下においては、内輪10を実施形態に係る転がり軸受の軌道輪の具体例として、説明を行う。 The raceway ring of the rolling bearing according to the embodiment is, for example, the inner ring 10 of the deep groove ball bearing. The raceway ring of the rolling bearing according to the embodiment is not limited to the inner ring 10, but the inner ring 10 will be described below as a specific example of the raceway ring of the rolling bearing according to the embodiment.
 (内輪10の構成)
 以下に、内輪10の構成を説明する。
(Structure of inner ring 10)
The configuration of the inner ring 10 will be described below.
 内輪10は、鋼からなる。内輪10を構成している鋼は、例えば、JIS規格(JIS G 4805;2008)に定める高炭素クロム軸受鋼であるSUJ2である。但し、内輪10を構成している鋼は、これに限られるものではない。 The inner ring 10 is made of steel. The steel constituting the inner ring 10 is, for example, SUJ2, which is a high carbon chrome bearing steel defined in JIS standard (JIS G 4805; 2008). However, the steel constituting the inner ring 10 is not limited to this.
 内輪10を構成している鋼は、焼き入れられている。このことを別の観点から言えば、内輪10を構成している鋼は、マルテンサイトと、残留オーステナイトとを含んでいる。マルテンサイトは、fcc(face centered cubic)構造を有する鉄(Fe)の高温相であるオーステナイトを急冷することにより得られる非平衡相である。残留オーステナイトは、急冷された際にマルテンサイトに変態せずに残留したオーステナイトである。 The steel that makes up the inner ring 10 is hardened. From another point of view, the steel constituting the inner ring 10 contains martensite and retained austenite. Martensite is a non-equilibrium phase obtained by quenching austenite, which is a high-temperature phase of iron (Fe) having an fcc (face centered cubic) structure. Residual austenite is austenite that remains without metamorphosis to martensite when it is rapidly cooled.
 内輪10を構成している鋼中には、複数の化合物粒が分散されている。化合物粒は、鉄と窒素(N)及び炭素(C)との化合物である。化合物粒は、例えば、セメンタイト(FeC)の炭素サイトが部分的に窒素により置換されているとともに、セメンタイトの鉄サイトがクロムにより部分的に置換されている化合物により形成されている。すなわち、化合物粒は、例えば、(Fe,Cr)(C,N)により形成されている。 A plurality of compound grains are dispersed in the steel constituting the inner ring 10. The compound granule is a compound of iron and nitrogen (N) and carbon (C). The compound granules are formed, for example, by a compound in which the carbon sites of cementite (Fe 3 C) are partially replaced by nitrogen and the iron sites of cementite are partially replaced by chromium. That is, the compound granules are formed of, for example, (Fe, Cr) 3 (C, N).
 図1は、内輪10の平面図である。図1に示されるように、内輪10は、環状(リング状)の形状を有している。内輪10は、中心軸Aを有している。図2は、図1のII-IIにおける断面図である。図1及び図2に示されるように、内輪10は、上面10aと、底面10bと、内周面10cと、外周面10dとを有している。 FIG. 1 is a plan view of the inner ring 10. As shown in FIG. 1, the inner ring 10 has an annular (ring-shaped) shape. The inner ring 10 has a central axis A. FIG. 2 is a cross-sectional view taken along the line II-II of FIG. As shown in FIGS. 1 and 2, the inner ring 10 has an upper surface 10a, a lower surface 10b, an inner peripheral surface 10c, and an outer peripheral surface 10d.
 上面10a及び底面10bは、中心軸Aに沿う方向における内輪10の端面を構成している。底面10bは、上面10aの反対面である。内周面10cは、周方向に沿って延在している。内周面10cは、径方向において内側を向いている。内周面10cは、上面10a及び底面10bに連なっている。外周面10dは、周方向に沿って延在している。外周面10dは、径方向において外側を向いている。外周面10dは、上面10a及び底面10bに連なっている。 The upper surface 10a and the lower surface 10b form an end surface of the inner ring 10 in the direction along the central axis A. The bottom surface 10b is the opposite surface of the top surface 10a. The inner peripheral surface 10c extends along the circumferential direction. The inner peripheral surface 10c faces inward in the radial direction. The inner peripheral surface 10c is connected to the upper surface 10a and the bottom surface 10b. The outer peripheral surface 10d extends along the circumferential direction. The outer peripheral surface 10d faces outward in the radial direction. The outer peripheral surface 10d is connected to the upper surface 10a and the bottom surface 10b.
 外周面10dは、軌道面10eを含んでいる。軌道面10eは、転動体(図示せず)と接触する外周面10dの部分である。内輪10において、内周面10cは、反軌道面10fを構成している。すなわち、内周面10cは、軸(図示せず)に嵌め合わされる面になっている。内輪10の表面(上面10a、底面10b、内周面10c及び外周面10d)は、浸炭窒化されていることが好ましい。 The outer peripheral surface 10d includes the raceway surface 10e. The raceway surface 10e is a portion of the outer peripheral surface 10d that comes into contact with a rolling element (not shown). In the inner ring 10, the inner peripheral surface 10c constitutes an antibonding surface 10f. That is, the inner peripheral surface 10c is a surface that is fitted to a shaft (not shown). The surface of the inner ring 10 (upper surface 10a, lower surface 10b, inner peripheral surface 10c and outer peripheral surface 10d) is preferably carburized and nitrided.
 反軌道面10f(内周面10c)における残留オーステナイトの体積比率は、軌道面10eにおける残留オーステナイトの体積比率よりも小さい。すなわち、反軌道面10fにおける残留オーステナイトの分解は、軌道面10eにおける残留オーステナイトの分解よりも予め進んでいるため、反軌道面10fにおける寸法変化率は、軌道面10eにおける寸法変化率よりも小さい。 The volume ratio of retained austenite on the antibonding surface 10f (inner peripheral surface 10c) is smaller than the volume ratio of retained austenite on the orbital surface 10e. That is, since the decomposition of the retained austenite on the anti-tracking surface 10f is more advanced than the decomposition of the retained austenite on the bonding surface 10e, the dimensional change rate on the anti-tracking surface 10f is smaller than the dimensional change rate on the bonding surface 10e.
 軌道面10eにおける残留オーステナイトの体積比率と反軌道面10fにおける残留オーステナイトの体積比率との差(軌道面10eにおける残留オーステナイトの体積比率から反軌道面10fにおける残留オーステナイトの体積比率を減じた値)は、5体積パーセント以上である。内輪10の表面が浸炭窒化されている場合、軌道面10eにおける残留オーステナイトの体積比率と反軌道面10fにおける残留オーステナイトの体積比率との差は、10体積パーセント以上であってもよい。残留オーステナイトの体積比率は、X線回折法を用いて測定される。すなわち、マルテンサイト相のX線回折ピークの積分強度とオーステナイト相のX線回折ピークの積分強度とを比較することにより、残留オーステナイトの体積比率が得られる。 The difference between the volume ratio of retained austenite on the raceway surface 10e and the volume ratio of retained austenite on the anti-track surface 10f (the value obtained by subtracting the volume ratio of retained austenite on the anti-track surface 10f from the volume ratio of retained austenite on the raceway surface 10e) is 5 by volume or more. When the surface of the inner ring 10 is carburized and nitrided, the difference between the volume ratio of retained austenite on the orbital surface 10e and the volume ratio of retained austenite on the antibonding surface 10f may be 10% by volume or more. The volume ratio of retained austenite is measured using X-ray diffraction. That is, the volume ratio of retained austenite can be obtained by comparing the integrated intensity of the X-ray diffraction peak of the martensite phase with the integrated intensity of the X-ray diffraction peak of the austenite phase.
 軌道面10eにおける旧オーステナイト結晶粒の平均粒径は、8μm以下である。旧オーステナイト結晶粒は、焼き入れにおける冷却前に存在していたオーステナイトの結晶粒界により取り囲まれている部分である。旧オーステナイト結晶粒の平均粒径は、JIS規格(JIS G 0551:2005)に規定されている方法にしたがって行われる。 The average particle size of the former austenite crystal grains on the orbital surface 10e is 8 μm or less. The former austenite grains are the parts surrounded by the grain boundaries of austenite that existed before cooling in quenching. The average particle size of the former austenite crystal grains is determined according to the method specified in the JIS standard (JIS G 0551: 2005).
 反軌道面10fにおける化合物粒の平均粒径は、2μm以下であることが好ましい。反軌道面10fにおける化合物粒の面積比率は、0.3パーセント以上であることが好ましい。 The average particle size of the compound particles on the anti-orbital surface 10f is preferably 2 μm or less. The area ratio of the compound particles on the anti-orbital surface 10f is preferably 0.3% or more.
 化合物粒の平均粒径及び化合物粒の面積比率は、以下の方法により測定される。この測定においては、第1に、電子顕微鏡(SEM)による内輪10の断面撮影が行われる。なお、電子顕微鏡による内輪10の断面撮影に先立って、内輪10の鏡面研磨及び当該鏡面研磨面に対する腐食が行われる。 The average particle size of the compound grains and the area ratio of the compound grains are measured by the following methods. In this measurement, first, a cross-sectional image of the inner ring 10 is taken with an electron microscope (SEM). Prior to photographing the cross section of the inner ring 10 with an electron microscope, the inner ring 10 is mirror-polished and the mirror-polished surface is corroded.
 第2に、内輪10の断面画像に対する画像処理を行うことにより、各々の化合物粒の面積が算出される。各々の化合物粒の面積を合計することにより、化合物粒の面積比率が得られる。第3に、各々の化合物粒の面積をπ/4で除した値の平方根により、各々の化合物粒の円相当径が算出される。各々の化合物粒の円相当径の合計値を化合物粒の合計数で除することにより、化合物粒の平均粒径が得られる。 Second, the area of each compound grain is calculated by performing image processing on the cross-sectional image of the inner ring 10. By summing the areas of each compound grain, the area ratio of the compound grains can be obtained. Third, the equivalent circle diameter of each compound grain is calculated from the square root of the value obtained by dividing the area of each compound grain by π / 4. By dividing the total value of the equivalent circle diameters of each compound grain by the total number of compound grains, the average particle size of the compound grains can be obtained.
 残留オーステナイトの分解が進むにつれて、マルテンサイトの分解も進む。そのため、軌道面10eにおける硬さは、残留オーステナイトの分解が相対的に進んでいる反軌道面10fにおける硬さよりも高い。反軌道面10fにおける硬さは、650Hv以上であることが好ましい。硬さは、JIS規格(JIS Z 2244:2009)に規定されるビッカース硬さ試験法にしたがって測定される。 As the decomposition of retained austenite progresses, so does the decomposition of martensite. Therefore, the hardness on the orbital surface 10e is higher than the hardness on the antibonding surface 10f where the decomposition of retained austenite is relatively advanced. The hardness of the anti-tracking surface 10f is preferably 650 Hv or more. Hardness is measured according to the Vickers hardness test method specified in JIS standard (JIS Z 2244: 2009).
 (内輪10の製造方法)
 以下に、内輪10の製造方法を説明する。
(Manufacturing method of inner ring 10)
The method of manufacturing the inner ring 10 will be described below.
 図3は、内輪10の製造方法を示す工程図である。図3に示されるように、内輪10の製造方法は、準備工程S1と、浸炭窒化処理工程S2と、焼き入れ工程S3と、焼き戻し工程S4と、後処理工程S5とを有している。焼き入れ工程S3は、第1焼き入れ工程S31と、第2焼き入れ工程S32とを有している。 FIG. 3 is a process diagram showing a manufacturing method of the inner ring 10. As shown in FIG. 3, the method for manufacturing the inner ring 10 includes a preparation step S1, a carburizing nitriding treatment step S2, a quenching step S3, a tempering step S4, and a post-treatment step S5. The quenching step S3 includes a first quenching step S31 and a second quenching step S32.
 準備工程S1においては、加工対象部材20が準備される。加工対象部材20は、鋼からなる。加工対象部材20を構成している鋼は、例えば、JIS規格に定める高炭素クロム軸受鋼であるSUJ2である。 In the preparation step S1, the member 20 to be processed is prepared. The member 20 to be processed is made of steel. The steel constituting the member 20 to be processed is, for example, SUJ2, which is a high carbon chrome bearing steel defined in JIS standards.
 図4は、加工対象部材20の平面図である。図5は、図4のV-Vにおける断面図である。図4及び図5に示されるように、加工対象部材20は、環状の形状を有している。加工対象部材20は、上面20aと、底面20bと、内周面20cと、外周面20dとを有している。上面20a、底面20b、内周面20c及び外周面20dは、それぞれ、後処理工程S5の完了後に上面10a、底面10b、内周面10c及び外周面10dとなる面である。 FIG. 4 is a plan view of the member 20 to be processed. FIG. 5 is a cross-sectional view taken along the line VV of FIG. As shown in FIGS. 4 and 5, the processing target member 20 has an annular shape. The member 20 to be processed has an upper surface 20a, a lower surface 20b, an inner peripheral surface 20c, and an outer peripheral surface 20d. The upper surface 20a, the lower surface 20b, the inner peripheral surface 20c, and the outer peripheral surface 20d are surfaces that become the upper surface 10a, the lower surface 10b, the inner peripheral surface 10c, and the outer peripheral surface 10d, respectively, after the completion of the post-treatment step S5.
 浸炭窒化処理工程S2においては、加工対象部材20の表面に対する浸炭窒化処理が行われる。浸炭窒化処理工程S2は、窒素及び炭素を含む雰囲気ガス(例えば、吸熱型変成ガス(Rガス)及びアンモニア(NH)ガスを含む雰囲気ガス)中において、加工対象部材20を所定の温度で所定時間保持することにより行われる。これにより、加工対象部材20の表面にある鋼中に、炭素及び窒素が固溶される。 In the carburizing nitriding treatment step S2, the carburizing nitriding treatment is performed on the surface of the member 20 to be processed. In the carburizing nitriding treatment step S2, the member 20 to be processed is predetermined at a predetermined temperature in an atmospheric gas containing nitrogen and carbon (for example, an atmospheric gas containing a heat absorbing modified gas (R gas) and ammonia (NH 3 ) gas). It is done by holding time. As a result, carbon and nitrogen are solid-solved in the steel on the surface of the member 20 to be processed.
 第1焼き入れ工程S31は、浸炭窒化処理工程S2の後に行われる。第1焼き入れ工程S31においては、加工対象部材20に対する焼き入れが行われる。第1焼き入れ工程S31においては、第1に、加工対象部材20が、加工対象部材20を構成する鋼のA変態点以上の温度(第1温度)で所定の時間保持される。第2に、加工対象部材20が、加工対象部材20を構成する鋼のMs変態点以下の温度に冷却される。加工対象部材20の冷却は、例えば油冷により行われる。第1焼き入れ工程S31の加熱保持により、加工対象部材20を構成する鋼中に化合物粒が析出する。 The first quenching step S31 is performed after the carburizing nitriding treatment step S2. In the first quenching step S31, quenching is performed on the member 20 to be processed. In the first quenching step S31, the first, processing target member 20, a predetermined time is held in the processing target member 20 the construction to steel A 1 transformation point or more temperature (first temperature). Second, the processing target member 20 is cooled to a temperature equal to or lower than the Ms transformation point of the steel constituting the processing target member 20. Cooling of the member 20 to be processed is performed by, for example, oil cooling. By heating and holding in the first quenching step S31, compound particles are precipitated in the steel constituting the member 20 to be processed.
 第2焼き入れ工程S32は、第1焼き入れ工程S31の後に行われる。第2焼き入れ工程S32においては、加工対象部材20に対する焼き入れが行われる。第2焼き入れ工程S32においては、第1に、加工対象部材20が、加工対象部材20を構成する鋼のA変態点以上の温度(第2温度)で所定の時間保持される。第2温度は、第1温度よりも低い。第2温度が第1温度よりも低いことにより鋼中における炭素及び窒素の固溶限が狭くなるため、第2焼き入れ工程S32の加熱保持の際にも、化合物粒は析出する。 The second quenching step S32 is performed after the first quenching step S31. In the second quenching step S32, quenching is performed on the member 20 to be processed. In the second quenching step S32, the first, processing target member 20, a predetermined time is held in the processing target member 20 the construction to steel A 1 transformation point or more temperature (second temperature). The second temperature is lower than the first temperature. Since the second temperature is lower than the first temperature, the solid solution limit of carbon and nitrogen in the steel is narrowed, so that the compound particles are precipitated even during the heating and holding of the second quenching step S32.
 第2に、加工対象部材20が、加工対象部材20を構成する鋼のMs変態点以下の温度に冷却される。加工対象部材20の冷却は、例えば油冷により行われる。第2焼き入れ工程S32の加熱保持の際のオーステナイト結晶粒の成長は、第1焼き入れ工程S31及び第2焼き入れ工程S32の加熱保持の際に析出した化合物粒のピン止め効果により抑制されている。 Second, the machining target member 20 is cooled to a temperature equal to or lower than the Ms transformation point of the steel constituting the machining target member 20. Cooling of the member 20 to be processed is performed by, for example, oil cooling. The growth of austenite crystal grains during the heating and holding of the second quenching step S32 is suppressed by the pinning effect of the compound grains precipitated during the heating and holding of the first quenching step S31 and the second quenching step S32. There is.
 第1焼き入れ工程S31及び第2焼き入れ工程S32を含む焼き入れ工程S3が行われることにより、加工対象部材20を構成する鋼中に、マルテンサイトと、残留オーステナイトとが形成されるとともに、旧オーステナイト結晶粒の平均粒径が8μm以下になる。また、焼き入れ工程S3が行われることにより、加工対象部材20を構成する鋼中に微細な化合物粒が分散される。 By performing the quenching step S3 including the first quenching step S31 and the second quenching step S32, martensite and retained austenite are formed in the steel constituting the member 20 to be processed, and the old austenite is formed. The average particle size of the austenite crystal grains is 8 μm or less. Further, by performing the quenching step S3, fine compound particles are dispersed in the steel constituting the processing target member 20.
 なお、焼き入れ工程S3が行われた後であって焼き戻し工程S4が行われる前の段階においては、内周面20cにおける残留オーステナイトの体積比率と外周面20dにおける残留オーステナイトの体積比率との間に、顕著な違いはない(内周面20cにおける残留オーステナイトの体積比率と外周面20dにおける残留オーステナイトの体積比率との差は、5体積パーセント未満である)。 In the stage after the quenching step S3 is performed and before the tempering step S4 is performed, the volume ratio of the retained austenite on the inner peripheral surface 20c and the volume ratio of the retained austenite on the outer peripheral surface 20d are between. There is no significant difference (the difference between the volume ratio of retained austenite on the inner peripheral surface 20c and the volume ratio of retained austenite on the outer peripheral surface 20d is less than 5% by volume).
 焼き戻し工程S4は、焼き入れ工程S3(第1焼き入れ工程S31及び第2焼き入れ工程S32)の後に行われる。焼き戻し工程S4においては、加工対象部材20に対する焼き戻しが行われる。 The tempering step S4 is performed after the quenching step S3 (first quenching step S31 and second quenching step S32). In the tempering step S4, the tempering of the member 20 to be processed is performed.
 図6は、焼き戻し工程S4を説明するための平面模式図である。図7は、焼き戻し工程S4を説明するための断面模式図である。図6及び図7に示されるように、焼き戻し工程S4における加熱は、例えば、誘導加熱により行われる。より具体的には、加熱コイル30を内周面20cに沿って周方向に回転させて内周面20cを誘導加熱することにより行われる。加熱コイル30により内周面20cの加熱が行われている際、外周面20dは、噴射部31から噴射される水等の冷却液により冷却されている。 FIG. 6 is a schematic plan view for explaining the tempering step S4. FIG. 7 is a schematic cross-sectional view for explaining the tempering step S4. As shown in FIGS. 6 and 7, the heating in the tempering step S4 is performed by, for example, induction heating. More specifically, the heating coil 30 is rotated in the circumferential direction along the inner peripheral surface 20c to induce and heat the inner peripheral surface 20c. When the inner peripheral surface 20c is being heated by the heating coil 30, the outer peripheral surface 20d is cooled by a cooling liquid such as water injected from the injection unit 31.
 図8は、加熱コイル30による加熱時間と内周面20c及び外周面20dにおける温度との関係についてのシミュレーション結果を示すグラフである。なお、図8中において、横軸は、加熱コイル30による加熱時間(単位:秒)であり、縦軸は、内周面20c及び外周面20dにおける温度(単位:℃)である。図8のシミュレーションは、内周面20cの加熱温度が420℃、外周面20dを水冷、内周面20cと外周面20dとの間の距離が3mmとの条件の下で行われた。図8に示されるように、焼き戻し工程S4においては、外周面20dの加熱温度は、内周面20cの加熱温度よりも低くなる。 FIG. 8 is a graph showing the simulation results regarding the relationship between the heating time by the heating coil 30 and the temperatures on the inner peripheral surface 20c and the outer peripheral surface 20d. In FIG. 8, the horizontal axis is the heating time (unit: seconds) by the heating coil 30, and the vertical axis is the temperature (unit: ° C.) on the inner peripheral surface 20c and the outer peripheral surface 20d. The simulation of FIG. 8 was performed under the conditions that the heating temperature of the inner peripheral surface 20c was 420 ° C., the outer peripheral surface 20d was water-cooled, and the distance between the inner peripheral surface 20c and the outer peripheral surface 20d was 3 mm. As shown in FIG. 8, in the tempering step S4, the heating temperature of the outer peripheral surface 20d is lower than the heating temperature of the inner peripheral surface 20c.
 図9は、内周面20cの加熱温度を変化させた際の外周面20dの加熱温度のシミュレーション結果を示すグラフである。なお、図9中において、横軸は、内周面20cの加熱温度(単位:℃)、縦軸は、外周面20dの加熱温度(単位:℃)である。図9のシミュレーションは、内周面20cの加熱温度を変化させたことを除き、図8のシミュレーションと同様の条件で行われた。図9に示されるように、外周面20dの加熱温度は、内周面20cの加熱温度の一次式となる。内周面20cの加熱温度をx、外周面20dの加熱温度をyとすると、y=a×x+b(aは1未満の正の数、bは正の数)となる。 FIG. 9 is a graph showing a simulation result of the heating temperature of the outer peripheral surface 20d when the heating temperature of the inner peripheral surface 20c is changed. In FIG. 9, the horizontal axis represents the heating temperature (unit: ° C.) of the inner peripheral surface 20c, and the vertical axis represents the heating temperature (unit: ° C.) of the outer peripheral surface 20d. The simulation of FIG. 9 was performed under the same conditions as the simulation of FIG. 8 except that the heating temperature of the inner peripheral surface 20c was changed. As shown in FIG. 9, the heating temperature of the outer peripheral surface 20d is a linear expression of the heating temperature of the inner peripheral surface 20c. Assuming that the heating temperature of the inner peripheral surface 20c is x and the heating temperature of the outer peripheral surface 20d is y, y = a × x + b (a is a positive number less than 1 and b is a positive number).
 例えば、特開平10-102137号公報に記載されているように、焼き戻し工程S4が行われた後における加工対象部材20を構成する鋼中の残留オーステナイトの体積比率(M)は、焼き戻し工程S4が行われる前における加工対象部材20を構成する鋼中の残留オーステナイトの体積比率(M)、加熱温度(T)及び加熱時間(t)を用いて、M=M×{A×exp(-Q/RT)×t}(A、Q及びnは定数、Rはガス定数)となる。 For example, as described in Japanese Patent Application Laid-Open No. 10-102137, the volume ratio (M 1 ) of retained austenite in the steel constituting the work target member 20 after the tempering step S4 is performed is tempered. Using the volume ratio (M 0 ), heating temperature (T), and heating time (t) of the retained austenite in the steel constituting the member 20 to be processed before the step S4 is performed, M 1 = M 0 × {A. × exp (−Q / RT) × t n } (A, Q and n are constants, R is a gas constant).
 そのため、加熱コイル30による内周面20cの加熱温度及び加熱時間を適宜調整することにより、外周面20dの加熱温度を適宜調整することができ、それに伴い、内周面20cにおける残留オーステナイトの体積比率及び外周面20dにおける残留オーステナイトの体積比率を適宜調整することができる。 Therefore, by appropriately adjusting the heating temperature and heating time of the inner peripheral surface 20c by the heating coil 30, the heating temperature of the outer peripheral surface 20d can be appropriately adjusted, and accordingly, the volume ratio of the retained austenite on the inner peripheral surface 20c. The volume ratio of retained austenite on the outer peripheral surface 20d can be adjusted as appropriate.
 例えば参考文献(井上毅,「新しい焼き戻しパラメータとその連続昇温曲線に沿った焼き戻し積算法への応用」,鉄と鋼,66,10(1980),1533)に記載されているように、焼き戻し工程S4が行われた後における加工対象部材20を構成する鋼の硬さ(Hv)は、加熱時間(t)及び加熱温度(T)を用いて、Hv=c×logt+d/T+e(c、d及びeは定数)となる。そのため、加熱コイル30による内周面20cの加熱温度及び加熱時間を適宜調整することにより、内周面20cにおける硬さを適宜調整することができる。 For example, as described in References (Takeshi Inoue, "New Tempering Parameters and Application to Tempering Integration Method Along Its Continuous Temperature Curve", Iron and Steel, 66, 10 (1980), 1533). The hardness (Hv) of the steel constituting the work target member 20 after the tempering step S4 is determined by using the heating time (t) and the heating temperature (T) as Hv = c × log + d / T + e ( c, d and e are constants). Therefore, the hardness of the inner peripheral surface 20c can be appropriately adjusted by appropriately adjusting the heating temperature and the heating time of the inner peripheral surface 20c by the heating coil 30.
 後処理工程S5においては、加工対象部材20に対する後処理が行われる。この後処理には、加工対象部材20に対する研削加工、加工対象部材20に対する洗浄等が含まれている。以上により、内輪10の製造工程が完了する。 In the post-treatment step S5, the post-treatment of the member 20 to be processed is performed. This post-treatment includes grinding of the processing target member 20, cleaning of the processing target member 20, and the like. With the above, the manufacturing process of the inner ring 10 is completed.
 (内輪10の効果)
 以下に、内輪10の効果を説明する。
(Effect of inner ring 10)
The effect of the inner ring 10 will be described below.
 反軌道面10fにおける転がり軸受の使用に伴う寸法の経時変化が大きいと、クリープの発生原因になる。残留オーステナイトの体積比率が小さいほど、転がり軸受の使用に伴う寸法の経時変化は小さい。他方で、残留オーステナイトの体積比率が大きいほど残留オーステナイトの分解に伴うマルテンサイトの分解が進んでいないため、硬さが高くなる。 If the dimensional change over time due to the use of the rolling bearing on the anti-tracking surface 10f is large, it causes creep. The smaller the volume ratio of retained austenite, the smaller the change in dimensions over time with the use of rolling bearings. On the other hand, the larger the volume ratio of retained austenite, the higher the hardness because the decomposition of martensite accompanying the decomposition of retained austenite has not progressed.
 一般的な焼き戻し処理(炉内加熱の焼き戻し処理)が行われる場合、軌道面10eにおける残留オーステナイトの体積比率及び反軌道面10fにおける残留オーステナイトの体積比率は、ともに低下してしまうため、転がり軸受の使用に伴う寸法の経時変化に起因したクリープの発生は抑制されるが、軌道面10eの硬さを維持することはできない。 When a general tempering process (tempering process of heating in a furnace) is performed, the volume ratio of retained austenite on the raceway surface 10e and the volume ratio of retained austenite on the anti-track surface 10f both decrease, so that rolling Although the occurrence of creep due to the change in dimensions with time due to the use of the bearing is suppressed, the hardness of the raceway surface 10e cannot be maintained.
 しかしながら、内輪10においては、軌道面10eにおける残留オーステナイトの体積比率と反軌道面10fにおける残留オーステナイトの体積比率との差が、5体積パーセント以上となっている。そのため、内輪10によると、軌道面10eにおける硬さを維持しながら、クリープの発生に伴う転がり軸受の破損を抑制することができる。 However, in the inner ring 10, the difference between the volume ratio of retained austenite on the raceway surface 10e and the volume ratio of retained austenite on the antibonding surface 10f is 5% by volume or more. Therefore, according to the inner ring 10, it is possible to suppress damage to the rolling bearing due to the occurrence of creep while maintaining the hardness of the raceway surface 10e.
 内輪10においては、旧オーステナイト結晶粒の平均粒径が8μm以下に微細化されているため、軸と摩耗した際の反軌道面の塑性変形量を小さくすることができるとともに、発生する摩耗粉を小さくすることができる。 In the inner ring 10, since the average particle size of the old austenite crystal grains is refined to 8 μm or less, the amount of plastic deformation of the anti-trajectory surface when worn with the shaft can be reduced, and the generated wear powder can be reduced. It can be made smaller.
 反軌道面10fにおいて、化合物粒が、平均粒径が2μm以下、面積比率が0.3パーセント以上になるように分散している場合、軸と摩耗した際の反軌道面10fの塑性変形量をさらに小さくすることができるとともに、発生する摩耗粉をさらに小さくすることができる。 When the compound particles are dispersed on the anti-orbital surface 10f so that the average particle size is 2 μm or less and the area ratio is 0.3% or more, the amount of plastic deformation of the anti-orbital surface 10f when worn with the shaft is determined. It can be made even smaller, and the generated abrasion powder can be made even smaller.
 反軌道面10fにおける硬さが650Hv以上である場合には、軸と摩耗した際の反軌道面10fの塑性変形量をさらに小さくすることができる。 When the hardness of the anti-tracking surface 10f is 650 Hv or more, the amount of plastic deformation of the anti-tracking surface 10f when worn with the shaft can be further reduced.
 以上のように本発明の実施形態について説明を行ったが、上述の実施形態を様々に変形することも可能である。また、本発明の範囲は、上述の実施形態に限定されるものではない。本発明の範囲は、請求の範囲によって示され、請求の範囲と均等の意味及び範囲内での全ての変更を含むことが意図される。 Although the embodiment of the present invention has been described as described above, it is also possible to modify the above-described embodiment in various ways. Moreover, the scope of the present invention is not limited to the above-described embodiment. The scope of the present invention is indicated by the claims and is intended to include all modifications within the meaning and scope equivalent to the claims.
 上記の実施形態は、転がり軸受の軌道輪に特に有利に適用される。 The above embodiment is particularly advantageously applied to the raceway wheels of rolling bearings.
 10 内輪、10a 上面、10b 底面、10c 内周面、10d 外周面、10e 軌道面、10f 反軌道面、20 加工対象部材、20a 上面、20b 底面、20c 内周面、20d 外周面、30 加熱コイル、31 噴射部、A 中心軸、S1 準備工程、S2 浸炭窒化処理工程、S3 焼き入れ工程、S4 焼き戻し工程、S5 後処理工程、S31 第1焼き入れ工程、S32 第2焼き入れ工程。 10 Inner ring, 10a upper surface, 10b bottom surface, 10c inner peripheral surface, 10d outer peripheral surface, 10e raceway surface, 10f anti-track surface, 20 machining target member, 20a upper surface, 20b bottom surface, 20c inner peripheral surface, 20d outer peripheral surface, 30 heating coil , 31 Injection part, A central axis, S1 preparation process, S2 carburizing nitriding process, S3 quenching process, S4 quenching process, S5 post-processing process, S31 first quenching process, S32 second quenching process.

Claims (5)

  1.  鋼からなり、
     外周面と、
     内周面とを備え、
     前記外周面及び前記内周面の一方は、軌道面を有し、
     前記外周面及び前記内周面の他方は、反軌道面となっており、
     前記反軌道面における残留オーステナイトの体積比率は、前記軌道面における残留オーステナイトの体積比率よりも小さく、
     前記軌道面における残留オーステナイトの体積比率と前記反軌道面における残留オーステナイトの体積比率との差は、5体積パーセント以上であり、
     前記軌道面における旧オーステナイト結晶粒の平均粒径は、8μm以下である、転がり軸受の軌道輪。
    Made of steel
    Outer surface and
    With an inner peripheral surface,
    One of the outer peripheral surface and the inner peripheral surface has a raceway surface.
    The other of the outer peripheral surface and the inner peripheral surface is an antibonding surface.
    The volume ratio of retained austenite on the antibonding surface is smaller than the volume ratio of retained austenite on the orbital surface.
    The difference between the volume ratio of retained austenite on the orbital surface and the volume ratio of retained austenite on the anti-orbital surface is 5% by volume or more.
    A raceway ring of a rolling bearing in which the average particle size of the former austenite crystal grains on the raceway surface is 8 μm or less.
  2.  前記反軌道面において、複数の化合物粒が分散されており、
     前記化合物粒の平均粒径は、2μm以下であり、
     前記化合物粒の面積比率は、0.3パーセント以上である、請求項1に記載の転がり軸受の軌道輪。
    A plurality of compound particles are dispersed on the antibonding surface.
    The average particle size of the compound grains is 2 μm or less.
    The raceway ring of the rolling bearing according to claim 1, wherein the area ratio of the compound grains is 0.3% or more.
  3.  前記軌道面及び前記反軌道面は、浸炭窒化されており、
     前記反軌道面における残留オーステナイトの体積比率と前記軌道面における残留オーステナイトの体積比率との差は、10体積パーセント以上である、請求項1又は請求項2に記載の転がり軸受の軌道輪。
    The orbital surface and the anti-orbital surface are carburized and nitrided.
    The raceway ring of the rolling bearing according to claim 1 or 2, wherein the difference between the volume ratio of retained austenite on the anti-track surface and the volume ratio of retained austenite on the raceway surface is 10% by volume or more.
  4.  前記反軌道面における硬さは、650Hv以上である、請求項1~請求項3のいずれか1項に記載の転がり軸受の軌道輪。 The raceway ring of a rolling bearing according to any one of claims 1 to 3, wherein the hardness on the anti-track surface is 650 Hv or more.
  5.  前記鋼は、SUJ2である、請求項1~請求項4のいずれか1項に記載の転がり軸受の軌道輪。 The bearing ring of the rolling bearing according to any one of claims 1 to 4, wherein the steel is SUJ2.
PCT/JP2020/023395 2019-07-04 2020-06-15 Raceway ring for rolling bearing WO2021002179A1 (en)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2019125239A JP7328032B2 (en) 2019-07-04 2019-07-04 rolling bearing rings
JP2019-125239 2019-07-04

Publications (1)

Publication Number Publication Date
WO2021002179A1 true WO2021002179A1 (en) 2021-01-07

Family

ID=74100121

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2020/023395 WO2021002179A1 (en) 2019-07-04 2020-06-15 Raceway ring for rolling bearing

Country Status (2)

Country Link
JP (1) JP7328032B2 (en)
WO (1) WO2021002179A1 (en)

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2006071022A (en) * 2004-09-02 2006-03-16 Nsk Ltd Rolling bearing
JP2008106877A (en) * 2006-10-26 2008-05-08 Ntn Corp Outer ring for rocking bearing, rocking bearing, and air disc brake device
JP2009221493A (en) * 2008-03-13 2009-10-01 Nsk Ltd Rolling bearing, method for manufacturing race ring
WO2018159840A1 (en) * 2017-03-03 2018-09-07 Ntn株式会社 Bearing component, rolling bearing, and bearing component manufacturing method

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2006071022A (en) * 2004-09-02 2006-03-16 Nsk Ltd Rolling bearing
JP2008106877A (en) * 2006-10-26 2008-05-08 Ntn Corp Outer ring for rocking bearing, rocking bearing, and air disc brake device
JP2009221493A (en) * 2008-03-13 2009-10-01 Nsk Ltd Rolling bearing, method for manufacturing race ring
WO2018159840A1 (en) * 2017-03-03 2018-09-07 Ntn株式会社 Bearing component, rolling bearing, and bearing component manufacturing method

Also Published As

Publication number Publication date
JP7328032B2 (en) 2023-08-16
JP2021011894A (en) 2021-02-04
JP2023156391A (en) 2023-10-24

Similar Documents

Publication Publication Date Title
EP2554686B1 (en) Method for manufacturing base material for wave gear
JP5895493B2 (en) Rolling bearing manufacturing method, induction heat treatment apparatus
CN112119169B (en) Bearing component
JP2006200627A (en) Rolling bearing component and its manufacturing method, and rolling bearing
JP2007046114A (en) Rolling bearing
JP2009221493A (en) Rolling bearing, method for manufacturing race ring
WO2021140853A1 (en) Rolling bearing raceway ring and method for manufacturing same
JP5163183B2 (en) Rolling bearing
JP2021110032A (en) Production method of bearing ring of rolling bearing
JP2007182926A (en) Manufacturing method for needle-like roll bearing raceway member, needle-like roll bearing raceway member, and needle-like roll bearing
JP3752577B2 (en) Manufacturing method of machine parts
WO2021002179A1 (en) Raceway ring for rolling bearing
WO2021206049A1 (en) Raceway ring, raceway ring manufacturing method, and rolling bearing
JP2007186760A (en) Manufacturing method of bearing ring for rolling bearing, and rolling bearing
JP2007239837A (en) Tripod type constant velocity universal joint and its manufacturing method
WO2022202922A1 (en) Track wheel and shaft
JP7515673B2 (en) Rolling bearing races and rolling bearings
JPH04333521A (en) Production of bearing ring
JP2009204020A (en) Rolling bearing
EP3779221B1 (en) Intermediary race member of rolling bearing, race, rolling bearing and production method therefor
WO2021100746A1 (en) Raceway member, rolling bearing, bearing ring for rolling bearing, and method for manufacturing bearing ring for rolling bearing
JP2007182603A (en) Method for manufacturing rolling member, rolling member and rolling bearing
JP2021165410A (en) Bearing ring, rolling bearing, and manufacturing method of bearing ring
TWI575170B (en) Ball screw device
JP2022054994A (en) Bearing ring

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 20834464

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 20834464

Country of ref document: EP

Kind code of ref document: A1