JP2004232858A - Rolling bearing and its manufacturing method - Google Patents

Rolling bearing and its manufacturing method Download PDF

Info

Publication number
JP2004232858A
JP2004232858A JP2004002790A JP2004002790A JP2004232858A JP 2004232858 A JP2004232858 A JP 2004232858A JP 2004002790 A JP2004002790 A JP 2004002790A JP 2004002790 A JP2004002790 A JP 2004002790A JP 2004232858 A JP2004232858 A JP 2004232858A
Authority
JP
Japan
Prior art keywords
temperature
rolling
bearing
rolling bearing
austenite
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP2004002790A
Other languages
Japanese (ja)
Inventor
Tsutomu Oki
力 大木
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
NTN Corp
Original Assignee
NTN Corp
NTN Toyo Bearing Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by NTN Corp, NTN Toyo Bearing Co Ltd filed Critical NTN Corp
Priority to JP2004002790A priority Critical patent/JP2004232858A/en
Publication of JP2004232858A publication Critical patent/JP2004232858A/en
Pending legal-status Critical Current

Links

Images

Abstract

<P>PROBLEM TO BE SOLVED: To provide a rolling bearing of high load capacity and its manufacturing method, having long service life to rolling fatigue under lubrication including foreign matters. <P>SOLUTION: A tapered roller bearing 1 includes raceway rings 3, 5 and a rolling element 2 as members. At least one of the raceway rings and the rolling element has a nitrogen enriched layer in its surface layer part, an average particle size of austenite crystalline particle is 10 μm or less, and the remaining austenite amount is 15 % or less. <P>COPYRIGHT: (C)2004,JPO&NCIPI

Description

本発明は、ころがり軸受およびその製造方法に関し、より具体的には、異物混入潤滑下での転動疲労に対し長寿命が要求され、かつ、経年寸法変化率の抑制が必要とされる部位に用いられる高負荷容量のころがり軸受およびその製造方法に関するものである。   The present invention relates to a rolling bearing and a method of manufacturing the same, and more specifically, to a part where a long life is required for rolling fatigue under lubrication mixed with foreign matter, and where a reduction in the dimensional change rate over time is required. The present invention relates to a high-load capacity rolling bearing used and a method for manufacturing the same.

ころがり軸受の高負荷容量化を達成させるため、ころがり軸受の部材を形成する鋼材を焼き入れた後に、サブゼロ処理やクライオ処理といった深冷処理を行なって、鋼材の降伏強度を向上させる手法がある。すなわち、焼入れした鋼材を0℃以下やマルテンサイト変態終了温度Mf点以下に冷却して、焼入れ後も残っている残留オーステナイトをマルテンサイト等に変態させ、降伏強度や硬度を向上させることができる。   In order to achieve a high load capacity of a rolling bearing, there is a method of quenching a steel material forming a member of the rolling bearing, and then performing a deep cooling process such as a sub-zero process or a cryo process to improve the yield strength of the steel product. That is, the quenched steel material is cooled to 0 ° C. or lower or the martensitic transformation end temperature Mf point or lower, and the residual austenite remaining after quenching is transformed into martensite or the like, thereby improving the yield strength and hardness.

一方、深冷処理を行なうと、上記したように残留オーステナイト量が減少する。しかし、異物混入潤滑下での転動疲労は残留オーステナイトにより改善されるので、残留オーステナイトが減少すると、異物混入潤滑下での転動疲労寿命が低下するという弊害が生じる(たとえば特許文献1、非特許文献1参照)。
特開平07−190072号公報 機械設計、第39巻、第13号、頁33:「ごみ入り潤滑環境下での長寿命−TF化技術」
On the other hand, when the deep cooling process is performed, the amount of retained austenite decreases as described above. However, since rolling fatigue under contaminated lubrication is improved by retained austenite, when retained austenite is reduced, there is an adverse effect that rolling fatigue life under contaminated lubrication is reduced (for example, Patent Document 1, Non-Patent Document 1). Patent Document 1).
JP-A-07-190072 Mechanical Design, Vol. 39, No. 13, page 33: "Long life under refuse-containing lubrication environment-TF technology"

近年、異物混入潤滑下および高温環境下での使用など、過酷な環境下での使用が増大しており、上記苛酷な使用環境において高負荷に耐えることができる高負荷容量のころがり軸受およびその製造方法が要求されている。   In recent years, use in harsh environments, such as under contaminated lubrication and use in high-temperature environments, has been increasing. Rolling bearings with a high load capacity capable of withstanding high loads in the above-mentioned harsh use environments and manufacturing thereof A method is required.

本発明は、異物混入潤滑下での転動疲労に対し長寿命であり、経年寸法変化率を抑制する、高負荷容量のころがり軸受およびその製造方法を提供することを目的とする。   An object of the present invention is to provide a high-load capacity rolling bearing having a long life with respect to rolling fatigue under contaminated lubrication and suppressing the rate of dimensional change over time, and a method of manufacturing the same.

本発明のころがり軸受は、軌道輪および転動体を部材として含むころがり軸受であって、軌道輪および転動体のうちの少なくとも1つの部材が、表層部に窒素富化層を有し、オーステナイト結晶粒の平均粒径が10μm以下であり、残留オーステナイト量が15%以下である。   A rolling bearing according to the present invention is a rolling bearing including a bearing ring and a rolling element as members, wherein at least one member of the bearing ring and the rolling element has a nitrogen-enriched layer in a surface layer portion, and includes austenitic crystal grains. Has an average particle size of 10 μm or less and an amount of retained austenite of 15% or less.

上記の構成により、実用上十分優れた異物混入潤滑下での転動疲労寿命を得た上で、経年寸法変化が抑制され、高強度の高負荷容量のころがり軸受を得ることができる。オーステナイト結晶粒の平均粒径が10μmを超えると、転動体と軌道輪との接触で圧痕が深く付きやすく、高負荷容量化の障害となる。また、異物混入潤滑下での転動疲労試験において長寿命を得にくくなる。   According to the above configuration, the rolling fatigue life under the contaminated lubrication, which is sufficiently excellent in practical use, is obtained, and the dimensional change over time is suppressed, so that a high-strength, high-load capacity rolling bearing can be obtained. If the average grain size of the austenite crystal grains exceeds 10 μm, the contact between the rolling elements and the races tends to cause deep indentations, which hinders a high load capacity. Further, it becomes difficult to obtain a long life in a rolling fatigue test under lubrication with foreign matter mixed therein.

なお、上記オーステナイト結晶粒は、対象とする部材の金相試料に対してエッチングなど、粒界を顕出する処理を施して観察することができる粒界であればよい。低温焼入れ直前の加熱された時点での粒界という意味で、旧オーステナイト粒と呼ぶ場合がある。測定は、JIS規格の粒度番号の平均値から平均粒径に換算して求めてもよいし、切片法などにより金相組織に重ねたランダム方向の直線が粒界と会合する間の間隔長さの平均値をとり、補正係数をかけて2次元から3次元の間隔長さにしてもよい。   The austenite crystal grains may be any grain boundaries that can be observed by applying a process such as etching to a gold phase sample of a target member to reveal the grain boundaries. It may be referred to as old austenite grains in the sense of a grain boundary at the time of heating immediately before low-temperature quenching. The measurement may be performed by converting the average value of the particle size numbers of the JIS standard into the average particle size, or the length of the interval between the lines in the random direction superimposed on the metal phase structure by the intercept method or the like and associated with the grain boundary. May be taken and multiplied by a correction coefficient to obtain a two-dimensional to three-dimensional interval length.

残留オーステナイトが15%を超えると、経年寸法変化率が増大し、摩耗の増加や騒音の増大などが生じ、軸受部品としての性能が劣化する。残留オーステナイトの測定は、各種のX線回折法を用いて、オーステナイト相の適当な面指数の回折強度を求め、フェライト相の適当な面指数からの回折強度との比をとるなどして測定される。その際、回折ピークの高さを用いてもよいし、回折ピークの面積を用いてもよい。その他、オーステナイト相が非磁性体であり、フェライト相が強磁性体であることを利用して、磁気天秤などにより磁化力を求めることによっても測定できる。その他、市販の測定装置を用いて簡単に測定することができる。   If the retained austenite exceeds 15%, the dimensional change over time will increase, wear will increase, noise will increase, and the performance as a bearing component will deteriorate. Remaining austenite is measured by using various X-ray diffraction methods to determine the diffraction intensity of the appropriate plane index of the austenite phase and taking the ratio with the diffraction intensity from the appropriate plane index of the ferrite phase. You. At that time, the height of the diffraction peak may be used, or the area of the diffraction peak may be used. In addition, it can also be measured by determining the magnetizing force using a magnetic balance or the like, utilizing the fact that the austenite phase is a non-magnetic substance and the ferrite phase is a ferromagnetic substance. In addition, it can be easily measured using a commercially available measuring device.

また、上記低温焼入れの際にオーステナイト相はマルテンサイトなどに変態するが、上記残留オーステナイトは、異なる結晶面に沿って変態する隣り合うマルテンサイトの束の間などに、未変態のまま室温まで残ってしまったオーステナイトを指す。したがって、上記の平均粒径の範囲が限定されるオーステナイト結晶粒と直接の関係はない。   Also, during the low-temperature quenching, the austenite phase is transformed into martensite, etc., but the retained austenite remains untransformed to room temperature, such as between adjacent martensite bundles transformed along different crystal planes. Austenite. Therefore, there is no direct relationship with the austenitic crystal grains in which the range of the average particle size is limited.

上記のオーステナイト結晶粒の平均粒径を6μm以下とすることができる。   The average grain size of the austenitic crystal grains can be set to 6 μm or less.

上記のようにオーステナイト粒の平均粒径を6μm以下に微細化することにより、同じ残留オーステナイト量であってもオーステナイト粒の粗大な材料より、異物混入潤滑下での転動疲労寿命のさらに大きな延長を得ることができる。また、圧痕付け試験における圧痕深さの減少が得られる傾向がある。   By reducing the average grain size of austenite grains to 6 μm or less as described above, even with the same amount of retained austenite, the rolling fatigue life under lubrication with contaminants can be further extended from a coarse austenite grain material. Can be obtained. In addition, the indentation depth tends to be reduced in the indentation test.

また、上記の残留オーステナイト量を7.5%以下としてもよい。   Further, the amount of retained austenite may be set to 7.5% or less.

上記のように残留オーステナイトを7.5%以下に低くすることにより、降伏強度を高め、異物混入潤滑下での転動疲労寿命をさらに延長し、圧痕付け試験における圧痕深さをさらに減少させることができる。   By reducing the retained austenite to 7.5% or less as described above, the yield strength is increased, the rolling fatigue life under contaminated lubrication is further extended, and the indentation depth in the indentation test is further reduced. Can be.

また、上記部材の表層部の硬度がHRC硬度63を超えるようにしてもよい。   Further, the hardness of the surface layer of the above member may be higher than the HRC hardness 63.

この構成により、さらに高負荷容量のころがり軸受を得ることができる。HRC硬度は市販のHRC硬度計により測定することができる。   With this configuration, it is possible to obtain a rolling bearing having a higher load capacity. The HRC hardness can be measured with a commercially available HRC hardness meter.

また、上記の諸特性を備えることにより、上記のころがり軸受は、異物混入潤滑下での転動疲労に対して長寿命が要求され、かつ経年寸法変化率が小さいことが要求される部位に用いられる軸受とすることができる。軸受の形式は問わず、玉軸受、円筒ころ軸受、針状ころ軸受、円すいころ軸受、スラスト玉軸受、スラストころ軸受など、どのような軸受であってもよい。   In addition, by providing the above-mentioned various characteristics, the above-mentioned rolling bearing is used for a part where a long life is required against rolling fatigue under lubrication mixed with foreign matter and a small dimensional change rate over time is required. Bearing. Regardless of the type of the bearing, any bearing such as a ball bearing, a cylindrical roller bearing, a needle roller bearing, a tapered roller bearing, a thrust ball bearing, and a thrust roller bearing may be used.

上記の使用環境を有する具体的な機械装置に用いられる軸受として、ドライブピニオン用軸受、減速機用軸受およびトランスミッション用軸受のうちのいずれかを挙げることができる。   As a bearing used for a specific mechanical device having the above use environment, any of a drive pinion bearing, a reduction gear bearing, and a transmission bearing can be given.

本発明のころがり軸受の製造方法は、軌道輪および転動体を部材として含むころがり軸受の製造方法である。この製造方法では、部材の少なくとも1つの部材を形成する鋼材を、A1点以上の浸炭窒化温度に加熱し、浸炭窒化処理を施した後に、A1点未満に冷却する工程と、冷却工程の後に、鋼材をA1点以上でA3点未満の温度域であって、浸炭窒化温度よりも低い温度に加熱した後、焼き入れる低温焼入れ工程と、低温焼入れ工程の後、室温未満の温度に一定時間保持する深冷処理を施す工程とを備える。   The manufacturing method of a rolling bearing of the present invention is a manufacturing method of a rolling bearing including a race and a rolling element as members. In this manufacturing method, a steel material forming at least one member of the members is heated to a carbonitriding temperature of at least the A1 point, and after performing a carbonitriding treatment, a step of cooling to below the A1 point, and after the cooling step, After the steel material is heated to a temperature in the temperature range from the A1 point to the A3 point and lower than the carbonitriding temperature, the steel is kept at a temperature lower than room temperature for a fixed time after the low-temperature quenching step of quenching and the low-temperature quenching step. Performing a cryogenic treatment.

上記浸炭窒化温度で浸炭窒化処理した後にA1点未満に冷却する工程では、油冷などにより室温まで冷却してもよいし、オーステナイト変態が所定値以上終了する温度まで冷却する処理であってもよい。上記製造方法により、窒素富化層を有し、オーステナイト粒が微細であり、かつ適切な量の残留オーステナイトを含む金属組織を得ることができる。このため、実用上十分優れた異物混入潤滑下での転動疲労寿命を得た上で、降伏強度を向上させることができる。また、経年寸法変化を抑制したころがり軸受を得ることができる。なお、上記窒素富化層は、上述のように、浸炭窒化処理により形成されるが、上記窒素富化層に炭素が富化されていてもよいし、富化されていなくてもよい。   In the step of cooling to a point lower than the A1 point after the carbonitriding at the above-mentioned carbonitriding temperature, the step of cooling to room temperature by oil cooling or the like, or a step of cooling to a temperature at which austenite transformation ends at a predetermined value or more may be used. . According to the above production method, a metal structure having a nitrogen-enriched layer, fine austenite grains, and containing an appropriate amount of retained austenite can be obtained. For this reason, the yield strength can be improved while obtaining a rolling fatigue life under lubrication mixed with foreign matter which is sufficiently excellent in practical use. Further, it is possible to obtain a rolling bearing in which dimensional change over time is suppressed. The nitrogen-enriched layer is formed by carbonitriding as described above. However, the nitrogen-enriched layer may or may not be enriched with carbon.

また、残留オーステナイトは温度を下げるほど不安定になりマルテンサイト変態しやすくなる。このため、上記の深冷処理工程における室温未満の温度を、残留オーステナイトの目標値に応じて変化させることにより、残留オーステナイト量を変化させることができる。深冷処理の冷媒には、沸点が約−196℃の液体窒素や、その他各種の冷却装置を用いた冷却環境を用いることができる。温度も室温未満から絶対零度までの各種温度を用いることができる。   Further, the retained austenite becomes unstable as the temperature is lowered, and the martensitic transformation is likely to occur. For this reason, the amount of retained austenite can be changed by changing the temperature lower than room temperature in the above-mentioned deep cooling process according to the target value of retained austenite. As the refrigerant for the cryogenic treatment, liquid nitrogen having a boiling point of about -196 ° C or a cooling environment using various other cooling devices can be used. Various temperatures from below room temperature to absolute zero can be used.

深冷処理は低温焼入れの後、1時間以内に実施することが望ましいが、低温焼入れの後、1時間を経過した後に実施してもよい。   The deep cooling treatment is desirably performed within one hour after the low-temperature quenching, but may be performed after one hour has passed after the low-temperature quenching.

また、深冷処理の後、焼戻しを行なうことが望ましい。しかし、深冷処理の後、焼戻しを実施しなくてもよい。   Further, it is desirable to perform tempering after the deep cooling process. However, the tempering need not be performed after the deep cooling process.

次に、図面を用いて本発明の実施の形態について説明する。図1は、円すいころ軸受を示す図であり、(a)は部分切断斜視図であり、(b)は断面図である。図1(a)に示すように、円すいころ軸受1は、ころ軸受の範疇に属し、転動体2と、内輪3と、外輪5と、保持器6とを備えている。転動体2が円すい形(円すい台)であるために、内輪3および外輪5はその断面にテーパがついている。   Next, embodiments of the present invention will be described with reference to the drawings. 1A and 1B are views showing a tapered roller bearing, FIG. 1A is a partially cutaway perspective view, and FIG. 1B is a sectional view. As shown in FIG. 1A, the tapered roller bearing 1 belongs to the category of a roller bearing, and includes a rolling element 2, an inner ring 3, an outer ring 5, and a retainer 6. Since the rolling element 2 has a conical shape (conical base), the inner ring 3 and the outer ring 5 have tapered sections.

図1(b)から認められるように、円すいころ軸受は、内輪3および外輪5の軌道面の円すいの頂点と、ころ2の頂点とが中心軸の一点に集まるように設計されている。また、作用点9は中心軸上に位置する。ころ2は、内輪3の小つば3aおよび大つば3bによって案内されて動作する。ラジアル荷重、一方向のアキシャル荷重およびこれらの合成荷重に対して大きな負荷能力を有する点に特徴がある。ラジアル荷重が作用するときにも、軸(アキシャル)方向の分力が生じるので、2個相対して組み合わせ使用されるのが普通である。内輪3および外輪5ともに、断面における厚み寸法が小さいほうが正面であり、大きいほうがが背面である。すなわち、内輪3においては、小つば3aの側の側面が正面3cであり、大つば3bの側の側面が背面3dであり、外輪5においては、内輪と反対側にそれぞれ背面5dおよび正面5cが位置している。   As can be seen from FIG. 1B, the tapered roller bearing is designed such that the apex of the conical surface of the inner ring 3 and the outer ring 5 and the apex of the roller 2 are gathered at one point on the center axis. The action point 9 is located on the central axis. The roller 2 operates while being guided by the small collar 3a and the large collar 3b of the inner ring 3. It is characterized by having a large load capacity with respect to radial loads, axial loads in one direction, and a combined load thereof. Even when a radial load is applied, a component force is generated in the axial (axial) direction, so that two components are usually used in combination with each other. In both the inner ring 3 and the outer ring 5, the one having a smaller thickness dimension in the cross section is the front, and the one having the larger thickness dimension is the back. That is, in the inner ring 3, the side face on the side of the small brim 3a is the front face 3c, the side face on the side of the large brim 3b is the back face 3d, and in the outer ring 5, the back face 5d and the front face 5c are opposite to the inner ring. positioned.

2個の円すいころ軸受が用いられる場合、外輪における正面5cおよび背面5dを用いて、組み合わせ方が命名される。たとえば、図1(b)の円すいころ軸受に加えて、その右側に鏡面対称にもう1つの円すいころ軸受を組み合わせる場合、背面組み合わせ円すいころ軸受と呼ばれる。一方、図1(b)の円すいころ軸受に加えて、その左側に鏡面対称にもう1つの円すいころ軸受を組み合わせる場合、正面組み合わせ円すいころ軸受と呼ばれる。   When two tapered roller bearings are used, the combination is named using the front face 5c and the rear face 5d of the outer ring. For example, when another tapered roller bearing is combined with the tapered roller bearing shown in FIG. 1B in a mirror-symmetrical manner on the right side of the tapered roller bearing, it is referred to as a rear combination tapered roller bearing. On the other hand, when another tapered roller bearing is combined with the left side of the tapered roller bearing in a mirror-symmetrical manner in addition to the tapered roller bearing of FIG. 1B, it is called a front combined tapered roller bearing.

また、上記の組み合わせ使用と同様な円すいころの配置となるようにした複列(2列)円すいころ軸受を用いてもよい。   Further, a double-row (two-row) tapered roller bearing having a tapered roller arrangement similar to that of the above-described combination use may be used.

上記本実施の形態における円すいころ軸受1では、転動体2および軌道輪3,5の少なくとも一つの部材に、A1点以上の浸炭窒化温度に加熱し、浸炭窒化処理を施す。その後に、A1点未満に冷却する工程と、冷却工程の後に、鋼材をA1点以上でA3点未満の温度域であって、浸炭窒化温度よりも低い温度に加熱した後、焼き入れる。この低温焼入れ工程の後、室温未満の温度、通常液体窒素温度の沸点−196℃前後に一定時間保持する深冷処理を施す。   In the tapered roller bearing 1 according to the present embodiment, at least one of the rolling elements 2 and the races 3 and 5 is heated to a carbonitriding temperature of the point A1 or higher and subjected to carbonitriding. Thereafter, after the step of cooling to below the A1 point and after the cooling step, the steel material is heated to a temperature in a temperature range from the A1 point to the A3 point and lower than the carbonitriding temperature and then quenched. After this low-temperature quenching step, a deep cooling treatment is performed in which the temperature is kept at a temperature lower than room temperature, usually around the boiling point of liquid nitrogen temperature of -196 ° C. for a certain time.

上記の製造方法で製造された部材は、高負荷容量で、かつ、異物混入潤滑下での転動疲労に対し長寿命であり、かつ、経年寸法変化率の増大を防ぐことができる。このような部材の特性改善は、鋼の合金設計によっても可能であると考えられる。しかし、原材料コストが高くなるなどの問題点が発生する。本発明の実施の形態では、上記のように、一般的な軸受用鋼材を素材として、熱処理によってこれらの要求を満足することができる。すなわち、窒素富化層を形成し、かつ、オーステナイト結晶粒を従来の鋼材の2分の1以下として、かつ、深冷処理等によってMf点以下に冷却して降伏強度を向上させた部材を得ることができる。このような、金相上の特性は、異物混入潤滑下での転動疲労に対し長寿命で、経年寸法変化率を抑制し、高負荷容量とする上で非常に有効であることが分った。   The member manufactured by the above-described manufacturing method has a high load capacity, a long life against rolling fatigue under lubrication mixed with foreign matter, and can prevent an increase in the dimensional change rate over time. It is considered that such a property improvement of the member can be achieved by a steel alloy design. However, there arise problems such as an increase in raw material costs. In the embodiment of the present invention, as described above, these requirements can be satisfied by heat treatment using a general bearing steel material. That is, a member in which a nitrogen-enriched layer is formed, the austenite crystal grains are reduced to half or less of the conventional steel material, and the yield strength is improved by cooling to a Mf point or less by deep cooling or the like. be able to. It has been found that such characteristics on the gold phase are very effective for long life against rolling fatigue under contaminated lubrication, suppressing the dimensional change rate over time, and increasing the load capacity. Was.

図2および図3に、本実施の形態における熱処理方法を示す。図2は浸炭窒化処理後に焼入れを行なう方法である。図2において、A1以上の浸炭窒化処理温度A(850℃)では、鋼素地に窒素の拡散と、炭素の溶け込みを十分に行なう。この後、浸炭窒化温度から油焼入れを行ない、次いで180℃で焼戻しを行なう。この焼戻しは省略することができる。   2 and 3 show a heat treatment method according to the present embodiment. FIG. 2 shows a method of performing quenching after carbonitriding. In FIG. 2, at a carbonitriding temperature A (850 ° C.) equal to or higher than A1, diffusion of nitrogen and dissolution of carbon are sufficiently performed in the steel base. Thereafter, oil quenching is performed from the carbonitriding temperature, and then tempering is performed at 180 ° C. This tempering can be omitted.

この後、A1点以上であってA3点未満の温度であって浸炭窒化処理温度Aより低温の温度B(800℃)に加熱する。この温度Bは、2相域温度であり、亜共析範囲ではオーステナイトとフェライトとが、また過共析範囲ではオーステナイトとセメンタイトとが、共存する。これら2相共存域では、オーステナイト粒はほとんど成長せず、微細なオーステナイト粒を得ることができる。本実施の形態における鋼材は、過共析範囲の鋼であり、上記の2相域ではオーステナイトとセメンタイトとが共存する。この2相域の低温焼入れ温度Bから油焼入れを行なう。この後、図4に示す処理を行なう。すなわち、深冷処理を行ない残留オーステナイトを変態させて降伏強度を向上させ、その後、180℃で焼戻しを行なう。   Thereafter, the material is heated to a temperature B (800 ° C.) which is higher than the point A1 and lower than the point A3 and lower than the carbonitriding temperature A. The temperature B is a two-phase temperature, in which austenite and ferrite coexist in the hypoeutectoid range and austenite and cementite coexist in the hypereutectoid range. In these two-phase coexistence regions, austenite grains hardly grow and fine austenite grains can be obtained. The steel material in the present embodiment is a steel in a hypereutectoid range, and austenite and cementite coexist in the two-phase region. Oil quenching is performed from the low-temperature quenching temperature B in the two-phase region. Thereafter, the processing shown in FIG. 4 is performed. That is, a deep cooling process is performed to transform the retained austenite to improve the yield strength, and thereafter, tempering is performed at 180 ° C.

また、図3は、浸炭窒化処理温度Aで浸炭窒化処理した後に、焼入れせずにA1点以下の温度に冷却する。その後、低温焼入れ温度Bに再加熱し、そこから油焼入れする。この後、A1変体点以下に一旦冷却して、温度Aより低温の温度Bに加熱し、油焼入れを施すという方法である。この後、図4に示すように、深冷処理と焼戻し処理を加える。図2の処理の場合も、図3の処理の場合も低温焼入れを行なった後、1時間以内に図4に示す処理を行なって、残留オーステナイトをマルテンサイトに変態させて降伏強度を向上させることが望ましい。   FIG. 3 shows that after carbonitriding at the carbonitriding temperature A, the steel is cooled to a temperature not higher than the point A1 without quenching. Then, it is reheated to the low temperature quenching temperature B, and then oil quenched. Thereafter, it is cooled once to the A1 transformation point or lower, heated to a temperature B lower than the temperature A, and subjected to oil quenching. Thereafter, as shown in FIG. 4, a deep cooling process and a tempering process are performed. In the case of the treatment of FIG. 2 and the treatment of FIG. 3, after the low-temperature quenching is performed, the treatment shown in FIG. 4 is performed within one hour to transform the residual austenite into martensite to improve the yield strength. Is desirable.

上記のどちらの熱処理によっても、その中の浸炭窒化処理により「浸炭窒化処理層」である窒素富化層が形成される。浸炭窒化処理において素材となる鋼の炭素濃度が高いため、通常の浸炭窒化処理の雰囲気から炭素が鋼の表面に侵入しにくい場合がある。たとえば炭素濃度が高い鋼の場合(1wt%程度の鋼)、それ以上高い炭素濃度の浸炭層が生成する場合もあるし、それ以上高い炭素濃度の浸炭層は生成しにくい場合がある。しかし、窒素濃度は、Cr濃度などにも依存するが、通常の鋼では最大限0.025wt%程度以下と低いので、素材の鋼の炭素濃度によらず窒素富化層が明瞭に生成される。上記窒素富化層には炭素が富化されていてもよいことはいうまでもない。   In either of the above heat treatments, a carbon-nitriding treatment therein forms a nitrogen-enriched layer that is a “carbonitriding treatment layer”. Since the carbon used as the material in the carbonitriding process has a high carbon concentration, carbon may not easily enter the surface of the steel from the atmosphere of the normal carbonitriding process. For example, in the case of steel having a high carbon concentration (steel of about 1 wt%), a carburized layer having a higher carbon concentration may be generated, and a carburized layer having a higher carbon concentration may be hardly generated. However, although the nitrogen concentration depends on the Cr concentration, etc., it is as low as 0.025 wt% or less at maximum in ordinary steel, so that a nitrogen-enriched layer is clearly formed regardless of the carbon concentration of the material steel. . It goes without saying that the nitrogen-enriched layer may be enriched with carbon.

(実施例)
次に実施例について説明する。本発明例は、本実施の形態における製造方法を適用する鋼材としてJIS規格SUJ2材(1.0重量%C−0.25重量%Si−0.3重量%Mn−1.5重量%Cr)を用い、本発明例の試験材Eとした。また、同じ鋼材を用い、他の処理を適用したものを比較例の試験材A〜Dとした。それぞれの試験材の製造方法は次のとおりである。
(A材:比較例):普通焼入れのみ(浸炭窒化処理せず)した試験材。
(B材:比較例):浸炭窒化処理後にそのまま焼き入れた(従来の浸炭窒化焼入れ)試験材。浸炭窒化処理温度845℃、保持時間150分間。浸炭窒化処理の雰囲気は、RXガス+アンモニアガスとした。その他の浸炭窒化処理も同じ条件で行なった。
(C材:比較例):浸炭窒化処理後に図4に示す深冷処理を加えた試験材。
(D材:比較例):図2に示す処理(浸炭窒化処理後に焼入れ+焼戻し+低温度焼入れ)を加え、深冷処理を加えなかった試験材。
(E材:本発明例):図2示す処理および図4に示す深冷処理を加えた試験材。
(Example)
Next, examples will be described. In the example of the present invention, JIS standard SUJ2 material (1.0% by weight C-0.25% by weight Si-0.3% by weight Mn-1.5% by weight Cr) is used as a steel material to which the manufacturing method in the present embodiment is applied. Was used as a test material E of the present invention. Test materials A to D of the comparative examples were obtained by using the same steel material and applying other treatments. The manufacturing method of each test material is as follows.
(A material: Comparative example): A test material subjected to normal quenching only (no carbonitriding treatment).
(B material: Comparative example): A test material which was quenched as it was after carbonitriding (conventional carbonitriding and quenching). Carbonitriding temperature 845 ° C, holding time 150 minutes. The atmosphere of the carbonitriding treatment was RX gas + ammonia gas. Other carbonitriding treatments were performed under the same conditions.
(C material: Comparative example): A test material subjected to a deep cooling treatment shown in FIG. 4 after the carbonitriding treatment.
(D material: Comparative example): A test material to which the treatment shown in FIG. 2 (quenching + tempering + low-temperature quenching after carbonitriding treatment) was applied, but not deep cooling treatment.
(E material: Example of the present invention): A test material to which the treatment shown in FIG. 2 and the deep cooling treatment shown in FIG.

本発明例E材および比較例B材の金相組織を図5および図6に示す。図5(a)は本発明例E材の金相写真であり、図5(b)は比較例B材の金相写真である。また、図6(a)および図6(b)は、それぞれの部分領域における模式図である。これらの図を比較することにより、本実施の形態における熱処理が組織の微細化にいかに有効であるか分かる。   FIGS. 5 and 6 show the structures of the gold phases of the material of Example E of the present invention and the material of Comparative Example B. FIG. 5A is a photograph of a gold phase of the material of Example E of the present invention, and FIG. 5B is a photograph of a gold phase of the material of Comparative Example B. FIGS. 6A and 6B are schematic views of respective partial regions. By comparing these figures, it can be seen how effective the heat treatment in the present embodiment is for miniaturization of the structure.

上記A材〜E材の試験材のオーステナイト結晶粒の平均粒径、残留オーステナイト量、HRC硬度を表1に示す。   Table 1 shows the average grain size of austenite crystal grains, the amount of retained austenite, and the HRC hardness of the test materials A to E.

Figure 2004232858
Figure 2004232858

比較例D材および本発明例E材は、いずれも図2に示す熱処理を行った試験材であり、低温焼入れを行なった結果、オーステナイト結晶粒の平均粒径がA材およびC材の2分の1以下である。また、深冷処理を施した比較例C材、および本発明例E材のHRC硬度は高く、逆に残留オーステナイト量は少なくなっていることが分かる。   The material of Comparative Example D and the material of Invention Example E are both test materials subjected to the heat treatment shown in FIG. 2, and as a result of low-temperature quenching, the austenite crystal grains have an average particle size of two minutes of the materials A and C. 1 or less. Further, it can be seen that the HRC hardness of the comparative example C material subjected to the deep cooling treatment and the inventive example material E are high, and conversely, the amount of retained austenite is small.

次に、順を追って各試験条件および試験結果について説明する。
1. 異物混入潤滑下での転動疲労寿命試験
異物混入潤滑下での転動疲労の試験機の略図を図7に示す。この試験機における、異物混入潤滑下での転動疲労試験の試験条件を表2に、また、その試験結果を表3に示す。
Next, each test condition and test result will be described in order.
1. Rolling fatigue life test under contaminated lubrication Fig. 7 shows a schematic diagram of a test machine for rolling fatigue under contaminated lubrication. Table 2 shows the test conditions of the rolling fatigue test under the contaminated lubrication in this tester, and Table 3 shows the test results.

Figure 2004232858
Figure 2004232858

Figure 2004232858
Figure 2004232858

表2および表3によれば、比較例B材のL10寿命(試験片10個中1個が破損する寿命)は、浸炭窒化処理のない比較例A材の2.1倍であり、浸炭窒化処理による長寿命化の効果が認められる。また、比較例C材は窒素富化層を有するが、深冷処理の結果、異物混入潤滑下での転動疲労寿命を改善する残留オーステナイト量が少ない。このため、深冷処理のない比較例B材よりもかなり短寿命になっている。図2に示す浸炭窒化処理と低温焼入れを加えた比較例D材は、他の材料に比べて非常に長寿命である。これは、残留オーステナイト量が非常に多く、かつ、オーステナイト結晶粒が細かいことに起因していると考えられる。上記比較例の試験材の結果に対し、本発明例E材は残留オーステナイトが、同じく深冷処理を行なった比較例C材程度しかないにもかかわらず、残留オーステナイト量の多い比較例B材とほぼ同じ寿命を示すことがわかった。
2. 圧痕付け試験
試験方法の概略を図8(a)〜(c)に示す。図8(a)は鋼球を平板に押し付ける前の状態を、(b)は鋼球を平板に押し込んだ状態を、また(c)は鋼球を平板から遠ざけた状態を示す図である。本圧痕付け試験では、鋼球(直径3/8インチ)と平板の最大接触面圧が、4GPa、5GPa、6GPaになるように荷重を付加し、平面側に形成される圧痕の深さを測定する。鋼球の押し込みによって平板に塑性変形に起因する圧痕が生じる。この平板に形成される圧痕の深さが浅いほど、その材料は高い面圧でも塑性変形をせず、静的な負荷容量が高いので高負荷容量ということになる。なお、それぞれの圧痕付け試験において、鋼球と平板とは、形状のみが異なる同じ試験材を用いた。
According to Table 2 and Table 3, L 10 life of Comparative Example B material (lifetime one test strip 10 in corruption) is 2.1 times the no carbonitriding Comparative Example A material, carburizing The effect of extending the life by nitriding is recognized. Further, although the material of Comparative Example C has a nitrogen-enriched layer, as a result of the deep cooling treatment, the amount of retained austenite for improving the rolling fatigue life under lubrication mixed with foreign matters is small. For this reason, the life is considerably shorter than the material of Comparative Example B without the deep cooling treatment. The comparative example D material to which the carbonitriding treatment and the low-temperature quenching shown in FIG. 2 are applied has a much longer life than other materials. This is considered to be due to the fact that the amount of retained austenite is very large and the austenite crystal grains are fine. In contrast to the results of the test material of the comparative example, the material of the invention sample E was the same as the comparative example B material having a large amount of retained austenite although the retained austenite was only about the same as the comparative example C material which was also subjected to the deep cooling treatment. It was found that the life was almost the same.
2. Indentation test The outline of the test method is shown in FIGS. 8A is a diagram showing a state before the steel ball is pressed against the flat plate, FIG. 8B is a diagram showing a state where the steel ball is pressed into the flat plate, and FIG. 8C is a diagram showing a state where the steel ball is moved away from the flat plate. In this indentation test, a load was applied so that the maximum contact surface pressure between the steel ball (3/8 inch in diameter) and the flat plate became 4 GPa, 5 GPa, and 6 GPa, and the depth of the indentation formed on the plane side was measured. I do. Indentation caused by plastic deformation occurs in the flat plate due to the indentation of the steel ball. As the depth of the indentation formed on the flat plate becomes smaller, the material does not undergo plastic deformation even at a high surface pressure, and has a high static load capacity. In each of the indentation tests, the same test material differing only in shape was used for the steel ball and the flat plate.

図9に圧痕付け試験の結果を示す。深冷処理を施している比較例C材、および本発明例E材は、他の3者に比較して明らかに圧痕深さは浅い。したがって、C材およびE材は、材料として高負荷容量であることがわかった。本発明例E材の圧痕深さは、比較例C材よりもさらに浅くなっている。この理由は、E材が表1に示すように微細粒であることに起因しており、Hall−Petchの法則にしたがって降伏強度が向上しているためと考えられる。
3. 経年寸法変化率測定
試験材A材〜E材について、保持温度130℃、保持時間500時間における経年寸法変化率を測定した。測定結果を表4および図10に示す。
FIG. 9 shows the results of the indentation test. The indentation depth of the comparative example C material subjected to the deep cooling treatment and the inventive example E material is clearly shallower than those of the other three. Therefore, it was found that the C material and the E material had high load capacity as materials. The indentation depth of the material E of the present invention is further shallower than that of the material C of the comparative example. The reason for this is considered to be that the E material is fine grains as shown in Table 1, and that the yield strength is improved in accordance with the Hall-Petch law.
3. Aging dimensional change rate measurement Aging dimensional change rates of the test materials A to E at a holding temperature of 130 ° C. and a holding time of 500 hours were measured. The measurement results are shown in Table 4 and FIG.

Figure 2004232858
Figure 2004232858

深冷処理を施した比較例C材、および本発明例E材の寸法変化率は、比較例B材の2分の1以下になっている。すなわち、普通焼入れ品である比較例A材よりも小さくなることがわかった。図10より分かるとおり、残留オーステナイトが少ないほど経年寸法変化率は軽減されている。また、深冷処理をせず低温焼入れを適用した微細オーステナイト粒の試験材D材、低温焼入れせず深冷処理した試験材C材、および低温焼入れと深冷処理とを行なった本発明例E材の3試験材は、同じ残留オーステナイト量であっても、比較例A材およびB材よりも寸法変化率は低めになる傾向が認められる。   The dimensional change rates of the comparative example C material subjected to the deep cooling treatment and the inventive example E material are less than half that of the comparative example B material. That is, it turned out that it becomes smaller than the comparative example A material which is a normally hardened product. As can be seen from FIG. 10, the smaller the retained austenite, the smaller the dimensional change over time. Further, a test material D of fine austenite grains to which low-temperature quenching was applied without performing deep quenching, a test material C which was subjected to deep chilling without performing low-temperature quenching, and Example E of the present invention which was subjected to low-temperature quenching and deep-cooling In the three test materials, the dimensional change rates tend to be lower than those of the comparative example materials A and B even if the amount of retained austenite is the same.

上記のように、1.異物混入潤滑下での転動疲労寿命試験、2.圧痕付け試験、および3.経年寸法変化率測定の各試験結果により、本実施例における本発明例の試験材は、異物混入潤滑下での転動疲労に対して長寿命であり、高負荷容量であり、かつ経年寸法変化率の小さい材料であることが分った。   As mentioned above, 1. Rolling fatigue life test under contaminated lubrication; 2. indentation test, and According to each test result of the aging rate change measurement, the test material of the present invention example in this embodiment has a long life against rolling fatigue under lubrication mixed with foreign matter, a high load capacity, and aging It turned out to be a low rate material.

今回開示された実施の形態はすべての点で例示であって制限的なものではないと考えられるべきである。本発明の範囲は上記した説明ではなくて特許請求の範囲によって示され、特許請求の範囲と均等の意味および範囲内でのすべての変更が含まれることが意図される。   The embodiments disclosed this time are to be considered in all respects as illustrative and not restrictive. The scope of the present invention is defined by the terms of the claims, rather than the description above, and is intended to include any modifications within the scope and meaning equivalent to the terms of the claims.

本発明のころがり軸受およびその製造方法を用いることにより、異物混入潤滑下での転動疲労に対し長寿命であり、経年寸法変化率が小さく、高負荷容量のころがり軸受およびその製造方法を提供することができるので、今後、この分野において広範な利用が期待される。   By using the rolling bearing and the method of manufacturing the same according to the present invention, there is provided a rolling bearing having a long life against rolling fatigue under contaminated lubrication, a small dimensional change rate over time, and a high load capacity, and a method of manufacturing the same. Therefore, widespread use in this field is expected in the future.

本発明の実施の形態における円すいころ軸受を示す図であり、(a)は円すいころ軸受の部分切断斜視図であり、(b)はその断面図である。BRIEF DESCRIPTION OF THE DRAWINGS It is a figure which shows the tapered roller bearing in embodiment of this invention, (a) is a fragmentary perspective view of a tapered roller bearing, (b) is sectional drawing. 本発明の実施の形態における熱処理方法の一部を示す図である。It is a figure showing a part of heat treatment method in an embodiment of the invention. 本発明の実施の形態における他の熱処理方法の一部を示す図である。FIG. 9 is a diagram illustrating a part of another heat treatment method according to the embodiment of the present invention. 本発明の実施の形態における深冷処理と焼戻し方法を示す図である。It is a figure which shows the cryogenic treatment and the tempering method in embodiment of this invention. 実施例における試験材の金相組織写真を示す図であり、(a)は本発明例E材であり、(b)は比較例B材である。It is a figure which shows the metal phase micrograph of the test material in an Example, (a) is Example E material of this invention, (b) is comparative example B material. 実施例における試験材の金相組織写真の模式図であり、(a)は本発明例E材であり、(b)は比較例B材である。It is a mimetic diagram of a photograph of a metal phase structure of a test material in an example, (a) is a material E of the present invention, and (b) is a material of comparative example B. 異物混入潤滑下での転動疲労試験を行なう試験装置を示す図である。It is a figure which shows the test device which performs a rolling fatigue test under lubrication mixed with a foreign substance. 圧痕付け試験を示す図であり、(a)は鋼球を平板に押し付ける前の状態を、(b)は鋼球を平板に押し込んだ状態を、また(c)は鋼球を平板から遠ざけた状態を示す図である。It is a figure which shows an indentation test, (a) shows the state before pressing a steel ball against a flat plate, (b) shows the state where the steel ball was pressed into a flat plate, and (c) shows the steel ball away from the flat plate. It is a figure showing a state. 圧痕付け試験結果を示す図である。It is a figure showing an indentation test result. 各試験材の寸法変化率と残留オーステナイト量との関係を示す図である。It is a figure which shows the relationship between the dimensional change rate of each test material, and the amount of retained austenite.

符号の説明Explanation of reference numerals

1 円すいころ軸受、2 転動体(円すいころ)、3 内輪、3a 小つば(内輪)、3b 大つば(内輪)、3c 内輪の正面、3d 内輪の背面、5 外輪、5c 外輪の正面、5d 外輪の背面、6 保持器、9 作用点。   1 tapered roller bearing, 2 rolling element (tapered roller), 3 inner ring, 3a small collar (inner ring), 3b large collar (inner ring), 3c front of inner ring, 3d back of inner ring, 5 outer ring, 5c front of outer ring, 5d outer ring Back, 6 cages, 9 working points.

Claims (7)

軌道輪および転動体を部材として含むころがり軸受であって、
前記軌道輪および転動体のうちの少なくとも1つの部材が、表層部に窒素富化層を有し、オーステナイト結晶粒の平均粒径が10μm以下であり、残留オーステナイト量が15%以下である、ころがり軸受。
A rolling bearing including a bearing ring and a rolling element as members,
At least one member of the bearing ring and the rolling element has a nitrogen-enriched layer in a surface layer portion, has an average austenite grain size of 10 μm or less, and has a residual austenite amount of 15% or less. bearing.
前記オーステナイト結晶粒の平均粒径が6μm以下である、請求項1に記載のころがり軸受。   The rolling bearing according to claim 1, wherein the austenite crystal grains have an average particle size of 6 μm or less. 前記残留オーステナイト量が7.5%以下である、請求項1または2に記載のころがり軸受。   3. The rolling bearing according to claim 1, wherein the amount of retained austenite is 7.5% or less. 前記部材の表層部の硬度がHRC硬度63を超える、請求項1〜3のいずれかに記載のころがり軸受。   The rolling bearing according to any one of claims 1 to 3, wherein a hardness of a surface layer portion of the member exceeds an HRC hardness of 63. 前記ころがり軸受は、異物混入潤滑下での転動疲労に対して長寿命が要求され、かつ経年寸法変化率が小さいことが要求される部位に用いられる軸受である、請求項1〜4のいずれかに記載のころがり軸受。   5. The rolling bearing according to claim 1, wherein the rolling bearing is a bearing used for a part where a long life is required for rolling fatigue under contaminated lubrication and a small dimensional change rate is required. Rolling bearings described in Crab. 軌道輪および転動体を部材として含むころがり軸受の製造方法であって、
前記部材の少なくとも1つの部材を形成する鋼材を、A1点以上の浸炭窒化温度に加熱し、浸炭窒化処理を施した後に、A1点未満に冷却する工程と、
前記冷却工程の後に、前記鋼材をA1点以上でA3点未満の温度域であって、前記浸炭窒化温度よりも低い温度に加熱した後、焼き入れる低温焼入れ工程と、
前記低温焼入れ工程の後、室温未満の温度に一定時間保持する深冷処理を施す工程とを備える、ころがり軸受の製造方法。
A method for manufacturing a rolling bearing including a bearing ring and a rolling element as members,
Heating the steel material forming at least one member of the member to a carbonitriding temperature of point A1 or higher, performing a carbonitriding process, and then cooling the steel to a point lower than point A1;
After the cooling step, the steel material is heated to a temperature range of not less than the A1 point and less than the A3 point and lower than the carbonitriding temperature, and then a low-temperature quenching step of quenching,
After the low-temperature quenching step, a step of performing a deep cooling treatment for maintaining the temperature at a temperature lower than room temperature for a certain period of time.
前記深冷処理工程における室温未満の温度を、残留オーステナイトの目標値に応じて変化させる、請求項6に記載のころがり軸受の製造方法。   The method for manufacturing a rolling bearing according to claim 6, wherein a temperature lower than room temperature in the deep cooling process is changed according to a target value of retained austenite.
JP2004002790A 2003-01-08 2004-01-08 Rolling bearing and its manufacturing method Pending JP2004232858A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2004002790A JP2004232858A (en) 2003-01-08 2004-01-08 Rolling bearing and its manufacturing method

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2003002266 2003-01-08
JP2004002790A JP2004232858A (en) 2003-01-08 2004-01-08 Rolling bearing and its manufacturing method

Publications (1)

Publication Number Publication Date
JP2004232858A true JP2004232858A (en) 2004-08-19

Family

ID=32964616

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2004002790A Pending JP2004232858A (en) 2003-01-08 2004-01-08 Rolling bearing and its manufacturing method

Country Status (1)

Country Link
JP (1) JP2004232858A (en)

Cited By (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2012149757A (en) * 2011-01-21 2012-08-09 Ntn Corp Bearing ring and rolling bearing
WO2014199898A1 (en) * 2013-06-10 2014-12-18 Ntn株式会社 Tapered roller bearing
US9487843B2 (en) 2011-01-21 2016-11-08 Ntn Corporation Method for producing a bearing ring
WO2021100746A1 (en) * 2019-11-22 2021-05-27 Ntn株式会社 Raceway member, rolling bearing, bearing ring for rolling bearing, and method for manufacturing bearing ring for rolling bearing
CN114574670A (en) * 2022-02-23 2022-06-03 江苏力星通用钢球股份有限公司 Process for reducing heat treatment residual austenite of long-service-life precision cylindrical roller
WO2023048169A1 (en) * 2021-09-27 2023-03-30 Ntn株式会社 Mechanical component and rolling bearing
JP2023048131A (en) * 2021-09-27 2023-04-06 Ntn株式会社 Machine component and rolling bearing

Cited By (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2012149757A (en) * 2011-01-21 2012-08-09 Ntn Corp Bearing ring and rolling bearing
US9487843B2 (en) 2011-01-21 2016-11-08 Ntn Corporation Method for producing a bearing ring
WO2014199898A1 (en) * 2013-06-10 2014-12-18 Ntn株式会社 Tapered roller bearing
US9816557B2 (en) 2013-06-10 2017-11-14 Ntn Corporation Tapered roller bearing
WO2021100746A1 (en) * 2019-11-22 2021-05-27 Ntn株式会社 Raceway member, rolling bearing, bearing ring for rolling bearing, and method for manufacturing bearing ring for rolling bearing
WO2023048169A1 (en) * 2021-09-27 2023-03-30 Ntn株式会社 Mechanical component and rolling bearing
JP2023048131A (en) * 2021-09-27 2023-04-06 Ntn株式会社 Machine component and rolling bearing
JP7428768B2 (en) 2021-09-27 2024-02-06 Ntn株式会社 Mechanical parts and rolling bearings
CN114574670A (en) * 2022-02-23 2022-06-03 江苏力星通用钢球股份有限公司 Process for reducing heat treatment residual austenite of long-service-life precision cylindrical roller

Similar Documents

Publication Publication Date Title
EP2025765A1 (en) Rolling bearing
US9816557B2 (en) Tapered roller bearing
JP2013164093A (en) Manufacturing method of race for thrust needle bearing
EP3778933A1 (en) Bearing part
US5853249A (en) Rolling contact bearing
JP5392099B2 (en) Rolling sliding member and manufacturing method thereof
JP2004232858A (en) Rolling bearing and its manufacturing method
WO2014196428A1 (en) Bearing component and rolling bearing
JP5168898B2 (en) Rolling shaft
JP2005195148A (en) Thrust needle roller bearing
JP2002180203A (en) Needle bearing components, and method for producing the components
US20220411891A1 (en) Rolling bearing
JP2007100126A (en) Rolling member and ball bearing
JP2008151236A (en) Rolling bearing
JP4857746B2 (en) Rolling support device
JP2011174506A (en) Method for manufacturing thrust race of needle thrust bearing
JP2007186760A (en) Manufacturing method of bearing ring for rolling bearing, and rolling bearing
JP3987023B2 (en) Steel heat treatment method and steel
JP2008232212A (en) Rolling device
JP2006328514A (en) Rolling supporting device
JP2022148544A (en) bearing ring and shaft
JP2005337361A (en) Roller bearing
JP2020125796A (en) Bearing component and rolling bearing
WO2019065622A1 (en) Bearing part and rolling bearing
JP2006316821A (en) Rolling bearing for planetary gear mechanism

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20061031

A977 Report on retrieval

Effective date: 20081111

Free format text: JAPANESE INTERMEDIATE CODE: A971007

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20081202

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20090128

A02 Decision of refusal

Effective date: 20091006

Free format text: JAPANESE INTERMEDIATE CODE: A02