WO2021100731A1 - Cas9ヌクレアーゼを用いて相同組み換えを誘導する方法 - Google Patents

Cas9ヌクレアーゼを用いて相同組み換えを誘導する方法 Download PDF

Info

Publication number
WO2021100731A1
WO2021100731A1 PCT/JP2020/042893 JP2020042893W WO2021100731A1 WO 2021100731 A1 WO2021100731 A1 WO 2021100731A1 JP 2020042893 W JP2020042893 W JP 2020042893W WO 2021100731 A1 WO2021100731 A1 WO 2021100731A1
Authority
WO
WIPO (PCT)
Prior art keywords
nucleic acid
sequence
cell
dna
genomic dna
Prior art date
Application number
PCT/JP2020/042893
Other languages
English (en)
French (fr)
Inventor
博司 増本
Original Assignee
国立大学法人 長崎大学
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 国立大学法人 長崎大学 filed Critical 国立大学法人 長崎大学
Priority to JP2021558408A priority Critical patent/JPWO2021100731A1/ja
Publication of WO2021100731A1 publication Critical patent/WO2021100731A1/ja

Links

Images

Classifications

    • CCHEMISTRY; METALLURGY
    • C12BIOCHEMISTRY; BEER; SPIRITS; WINE; VINEGAR; MICROBIOLOGY; ENZYMOLOGY; MUTATION OR GENETIC ENGINEERING
    • C12NMICROORGANISMS OR ENZYMES; COMPOSITIONS THEREOF; PROPAGATING, PRESERVING, OR MAINTAINING MICROORGANISMS; MUTATION OR GENETIC ENGINEERING; CULTURE MEDIA
    • C12N15/00Mutation or genetic engineering; DNA or RNA concerning genetic engineering, vectors, e.g. plasmids, or their isolation, preparation or purification; Use of hosts therefor
    • C12N15/09Recombinant DNA-technology
    • CCHEMISTRY; METALLURGY
    • C12BIOCHEMISTRY; BEER; SPIRITS; WINE; VINEGAR; MICROBIOLOGY; ENZYMOLOGY; MUTATION OR GENETIC ENGINEERING
    • C12NMICROORGANISMS OR ENZYMES; COMPOSITIONS THEREOF; PROPAGATING, PRESERVING, OR MAINTAINING MICROORGANISMS; MUTATION OR GENETIC ENGINEERING; CULTURE MEDIA
    • C12N15/00Mutation or genetic engineering; DNA or RNA concerning genetic engineering, vectors, e.g. plasmids, or their isolation, preparation or purification; Use of hosts therefor
    • C12N15/09Recombinant DNA-technology
    • C12N15/63Introduction of foreign genetic material using vectors; Vectors; Use of hosts therefor; Regulation of expression
    • C12N15/79Vectors or expression systems specially adapted for eukaryotic hosts
    • C12N15/80Vectors or expression systems specially adapted for eukaryotic hosts for fungi
    • C12N15/81Vectors or expression systems specially adapted for eukaryotic hosts for fungi for yeasts
    • CCHEMISTRY; METALLURGY
    • C12BIOCHEMISTRY; BEER; SPIRITS; WINE; VINEGAR; MICROBIOLOGY; ENZYMOLOGY; MUTATION OR GENETIC ENGINEERING
    • C12NMICROORGANISMS OR ENZYMES; COMPOSITIONS THEREOF; PROPAGATING, PRESERVING, OR MAINTAINING MICROORGANISMS; MUTATION OR GENETIC ENGINEERING; CULTURE MEDIA
    • C12N15/00Mutation or genetic engineering; DNA or RNA concerning genetic engineering, vectors, e.g. plasmids, or their isolation, preparation or purification; Use of hosts therefor
    • C12N15/09Recombinant DNA-technology
    • C12N15/87Introduction of foreign genetic material using processes not otherwise provided for, e.g. co-transformation
    • C12N15/90Stable introduction of foreign DNA into chromosome
    • CCHEMISTRY; METALLURGY
    • C12BIOCHEMISTRY; BEER; SPIRITS; WINE; VINEGAR; MICROBIOLOGY; ENZYMOLOGY; MUTATION OR GENETIC ENGINEERING
    • C12NMICROORGANISMS OR ENZYMES; COMPOSITIONS THEREOF; PROPAGATING, PRESERVING, OR MAINTAINING MICROORGANISMS; MUTATION OR GENETIC ENGINEERING; CULTURE MEDIA
    • C12N9/00Enzymes; Proenzymes; Compositions thereof; Processes for preparing, activating, inhibiting, separating or purifying enzymes
    • C12N9/14Hydrolases (3)
    • CCHEMISTRY; METALLURGY
    • C12BIOCHEMISTRY; BEER; SPIRITS; WINE; VINEGAR; MICROBIOLOGY; ENZYMOLOGY; MUTATION OR GENETIC ENGINEERING
    • C12NMICROORGANISMS OR ENZYMES; COMPOSITIONS THEREOF; PROPAGATING, PRESERVING, OR MAINTAINING MICROORGANISMS; MUTATION OR GENETIC ENGINEERING; CULTURE MEDIA
    • C12N9/00Enzymes; Proenzymes; Compositions thereof; Processes for preparing, activating, inhibiting, separating or purifying enzymes
    • C12N9/14Hydrolases (3)
    • C12N9/16Hydrolases (3) acting on ester bonds (3.1)

Definitions

  • the present invention relates to a method of inducing homologous recombination between genomic DNA and donor DNA of a cell by using Cas9 nuclease inactivated at least one DNA-cleaving ability without using a guide RNA. Further, the present invention is a method for evaluating the possibility of introducing an off-target mutation by the nucleic acid when modifying the genomic DNA using a nucleic acid for modifying the genomic DNA possessed by the cell, and the method for introducing the off-target mutation using the evaluation method. The present invention relates to a method for modifying a target site of genomic DNA having a reduced possibility, and a method for designing a nucleic acid for modification in which the possibility of introducing an off-target mutation is reduced by using the evaluation method.
  • CRISPR clustered regularly interspaced short palindromic repeats
  • Cas CRISPR-related proteins
  • PAM protospacer flanking motifs
  • HDR homologous recombination repair
  • Non-Patent Document 3 the off-target mutation introduction rate also varies depending on the target sequence of the guide RNA (for example, Non-Patent Document 4), and the target sequence of the guide RNA is automatically adjusted so as to reduce the possibility of off-target mutation introduction.
  • a system designed in (For example, Non-Patent Document 5) has been developed.
  • An object of the present invention is to provide a method for inducing homologous recombination between genomic DNA and donor DNA of a cell without using a guide RNA by Cas9 nuclease in which at least one DNA cleaving ability is inactivated.
  • the possibility of introducing off-target mutations by the nucleic acid during genomic DNA modification using the target double-stranded DNA modification nucleic acid is evaluated, and the possibility of off-target mutation introduction during the genomic DNA modification is reduced.
  • Providing a method is also an issue.
  • the present inventor introduces the exogenous LEU2 gene contained in the donor DNA into the ADE2 locus of Saccharomyces cerevisiae using homologous recombination using a guide RNA targeting a specific region of the locus and Cas9. I tried that. However, almost all Saccharomyces cerevisiae transformed with the exogenous LEU2 gene did not show the expected introduction to the ADE2 locus. This result suggests that the exogenous LEU2 gene was inserted into a region other than the ADE2 locus of Saccharomyces cerevisiae, even though the guide RNA did not recruit Cas9 to the target site.
  • the genome of Saccharomyces cerevisiae used in the above experiment contains regions highly homologous to the upstream and downstream regions of the LEU2 gene contained in the above donor DNA, and the homology It was confirmed that the exogenous LEU2 gene was inserted in the high region of yeast.
  • the present inventor thinks that an exogenous factor can be inserted into the genomic DNA of a cell by homologous recombination without using a guide RNA in the CRISPR-Cas9 system, which is completely different from the conventional conventional wisdom.
  • the present inventor conducted a similar experiment using a mutant Cas9 (dCas9) that inactivated the DNA-cleaving ability of both Cas9 as well as Cas9, and surprisingly, even when using dCas9, It was confirmed that the exogenous LEU2 gene was introduced into the genome of Saccharomyces cerevisiae as in the case of using Cas9.
  • dCas9 mutant Cas9
  • the present inventor does not require the use of guide RNA or the cleavage of DNA strands by Cas9 in homologous recombination using the CRISPR-Cas9 system, and in order to increase the efficiency of homologous recombination.
  • Cas9 or a variant thereof was concluded to be important.
  • unexpected homologous recombination may occur between the sequence of the introduced vector or donor DNA and the genomic DNA of the cell, not only the target sequence of the guide RNA but also the sequence of the nucleic acid to be introduced. It is important to evaluate the degree of homology with the genomic DNA and to appropriately replace the nucleic acid sequence to be introduced based on the evaluation result in order to reduce the possibility of introducing off-target mutations. The conclusion was reached, and the present invention was completed.
  • the present invention is as follows. [1] Between the genomic DNA and the donor DNA, which comprises a step of contacting the genomic DNA of the cell, the donor DNA containing an insertion sequence into the genomic DNA, and Cas9 nuclease in the absence of a guide RNA. How to induce homologous recombination in. [2] The method according to [1], wherein the Cas9 nuclease has at least one DNA cleaving ability inactivated. [3] The method according to [1] or [2], wherein the contact between the genomic DNA of the cell and Cas9 nuclease is performed by introducing a nucleic acid encoding Cas9 nuclease into the cell.
  • a method for evaluating the possibility of introducing a mutation which comprises a nucleotide sequence or nucleic acid modifying enzyme encoding a nucleic acid sequence recognition module in which the genomic DNA modifying nucleic acid specifically binds to a target nucleotide sequence in the genomic DNA of a cell.
  • a method comprising one or more nucleotide sequences selected from the group consisting of the nucleotide sequence encoding and the sequence inserted into the genomic DNA of the cell.
  • a method for modifying a target site of double-stranded DNA contained in a cell which comprises a step of introducing the evaluated nucleic acid into the cell.
  • the method according to [7] which comprises the step of introducing a donor DNA containing an insertion sequence into the genomic DNA of the cell into the cell.
  • the nucleic acid sequence recognition module is selected from the group consisting of the CRISPR-Cas system, the zinc finger motif, the TAL effector and the PPR motif in which the DNA cleavage ability of at least one of the Cas effector proteins is inactivated. 8].
  • the complex of the nucleic acid sequence recognition module formed in the cell by the nucleic acid introduced in the step (2) and the nucleic acid modifying enzyme is a complex of guide RNA and Cas effector protein [7]. Or the method according to [8].
  • [11] Based on the steps of evaluating the possibility of introducing off-target mutations in the nucleic acid for modifying genomic DNA by the methods described in (1) and [6], and (2) the evaluation results of the step (1).
  • a method for designing a nucleic acid with a reduced possibility of off-target mutation introduction which comprises the step of replacing a part of the nucleic acid sequence.
  • the present invention in the modification of genomic DNA using a nucleic acid for modifying the genome of a cell, the possibility of introducing an off-target mutation by the nucleic acid can be evaluated, thereby reducing the possibility of introducing an off-target mutation. It is possible to modify the genomic DNA. Since suppressing off-target mutations is particularly important in gene therapy, the present invention is also very useful in gene therapy. Further, according to the present invention, since homologous recombination can be introduced into the genomic DNA of a cell without using a guide RNA, the time and cost for designing and producing the guide RNA can be saved, and rapid homologous recombination becomes possible.
  • FIG. 1 shows that a plasmid can be inserted into a chromosome at a site other than the target sequence by CRISPR / Cas9 and sgRNA.
  • Cas9 and two types of sgRNA DNA double-strand breaks were introduced into the MCS site of the plasmid and the ADE2 gene on the budding yeast chromosome, and an attempt was made to insert the YIplac128 plasmid into the ADE2 site using the DNA end-binding reaction. It was. +/- Indicates a combination of Cas9 gene / crRNA, Cas9 gene / sgMCS, Cas9 gene / sgADE2 or YIplac128 (LEU2) plasmid.
  • crRNA lacks a target sequence of 20 nt from sgRNA. Insertion of YIplac128 occurs even in the absence of sgRNA. However, since the colony strain obtained by using the combination of Cas9 and two types of plasmids shows Leu + and Ade +, YIplac128 is inserted in a site other than the ADE2 region.
  • sgADE2 An sgRNA that recognizes the ADE2 region.
  • sgMCS An sgRNA that recognizes the MCS of the plasmid. The experiment was repeated three times and statistical processing was performed. FIG.
  • Example 2 is inserted in the transformants obtained by the two types of plasmid recombination operations obtained in Example 1 (combination of Cas9 / crRNA and YIplac128, combination of Cas9 / sgMCS, Cas9 / sgADE2 and YIplac128).
  • the results of confirming the insertion site of the YIplac128 plasmid are shown below.
  • the structure of the YIplac128 plasmid used and the position of the primers in the MCS region used in PCR are shown (upper left figure). PCR was performed using the chromosomal DNA of the transformed yeast as a template and the primers at the positions shown in the upper left figure.
  • the Amp area on YIplac128 is a control. Since the MCS region is amplified in all 8 strains analyzed, the MCS site of YIplac128 is not used as a site for insertion into the chromosome (upper right figure). Examples of PCR analysis and electrophoresis of transformant chromosomes (3 strains) (see the figure below).
  • FIG. 3 shows a comparison result of the transformation efficiency of the YIplac128 plasmid by Cas9 and dCas9.
  • crRNA lacks a target sequence of 20 nt from sgRNA.
  • FIG. 4 shows a comparison result of the transformation efficiency of the YIplac128 plasmid by Cas9 and dCas9.
  • crRNA lacks a target sequence of 20 nt from sgRNA.
  • +/- indicates the Cas9 or dCas9 gene on the plasmid, the presence or absence of a transcription region encoding crRNA, and the combination of the YIplac128 (LEU2) plasmid.
  • FIG. 5 shows the confirmation result of the insertion site of YIplac128 on the chromosome.
  • the promoter region / terminator region of the LEU2 gene is shown as a homologous sequence site with the Saccharomyces cerevisiae chromosome in C. YIp1ac128. This result indicates that YIplac128 is inserted into the chromosome by a homologous recombination mechanism between the promoter regions of the LEU gene between chromosomes and plasmids.
  • FIG. 6 shows a comparison result of the insertion frequency of the plasmid into the chromosome in the gene-deficient strain.
  • a plasmid having both Cas9 and crRNA and a YIplac128 (LEU2) plasmid were combined and transformed.
  • FIG. 7 shows a vector map of the plasmid vector described in the Examples.
  • FIG. 7 shows a vector map of the plasmid vector described in the Examples.
  • FIG. 7 shows a vector map of the plasmid vector described in the Examples.
  • FIG. 7 shows a vector map of the plasmid vector described in the Examples.
  • the present invention relates to at least a part of a sequence of a nucleic acid for modifying genomic DNA of a cell (hereinafter, also simply referred to as “nucleic acid for modification”) and at least a part of the genomic DNA of the cell.
  • a method for evaluating the possibility of introducing an off-target mutation by the nucleic acid by calculating the degree of identity with a part of the sequence hereinafter, may be referred to as "evaluation method of the present invention”). provide.
  • the modifying nucleic acid used in the present invention includes a nucleotide sequence encoding a nucleic acid sequence recognition module that specifically binds to a target nucleotide sequence of cellular genomic DNA, and / or a nucleotide sequence encoding a nucleic acid modifying enzyme.
  • the nucleic acid for modification shall also include a donor DNA containing an insertion sequence into the genomic DNA of the cell.
  • the nucleic acid for modification consists of a nucleotide sequence encoding a nucleic acid sequence recognition module that specifically binds to a target nucleotide sequence of the cell's genomic DNA, a nucleotide sequence encoding a nucleic acid modifying enzyme, and an insertion sequence into the genomic DNA.
  • a nucleotide sequence encoding a nucleic acid sequence recognition module that specifically binds to a target nucleotide sequence of the cell's genomic DNA
  • a nucleotide sequence encoding a nucleic acid modifying enzyme a nucleic acid modifying enzyme
  • an insertion sequence into the genomic DNA consists of a nucleotide sequence encoding a nucleic acid sequence recognition module that specifically binds to a target nucleotide sequence of the cell's genomic DNA, a nucleotide sequence encoding a nucleic acid modifying enzyme, and an insertion sequence into the genomic DNA.
  • nucleic acid sequence recognition module means a molecule or molecular complex capable of specifically recognizing and binding to a specific nucleotide sequence (that is, a target nucleotide sequence) on the DNA strand of the genome. To do. When the nucleic acid sequence recognition module binds to the target nucleotide sequence, the nucleic acid modifying enzyme linked to the module is targeted by the enzyme in the double-stranded DNA (that is, the target nucleotide sequence and the nucleotides in the vicinity thereof). Allows you to act specifically on.
  • the target nucleotide sequence in the double-stranded DNA recognized by the nucleic acid sequence recognition module is not particularly limited as long as the module can specifically bind, and may be any sequence in the double-stranded DNA.
  • the length of the target nucleotide sequence may be sufficient for the nucleic acid sequence recognition module to specifically bind, for example, when introducing a mutation into a specific site in the genomic DNA of a eukaryotic cell, the genomic size. Depending, it is 12 nucleotides or more, preferably 15 nucleotides or more, and more preferably 17 nucleotides or more.
  • the upper limit of the length is not particularly limited, but is preferably 25 nucleotides or less, more preferably 22 nucleotides or less.
  • the nucleic acid sequence recognition module examples include a CRISPR-Cas system (hereinafter also referred to as "CRISPR-mutant Cas”) in which at least one DNA cleavage ability of a Cas effector protein (also referred to as Cas nuclease or simply Cas) is inactivated, and a zinc finger.
  • CRISPR-mutant Cas a CRISPR-Cas system
  • TAL transcription activator-like effectors
  • PPR penentatricopeptide repeat
  • DNA binding domains of proteins that can specifically bind to DNA such as restriction enzymes, transcription factors, and RNA polymerases are included. Fragments and the like that do not have the ability to break chains can be used, but are not limited thereto.
  • Preferred examples include CRISPR-mutant Cas, zinc finger motif, TAL effector, PPR motif and the like.
  • the Cas effector protein in which at least one DNA cleavage ability is inactivated is also referred to as a mutant Cas effector protein or simply a mutant Cas.
  • the zinc finger motif is a combination of 3 to 6 different zinc finger units of Cys2His2 type (1 finger recognizes about 3 bases), and can recognize the target nucleotide sequence of 9 to 18 bases.
  • Zinc finger motifs are Modular assembly method (Nat Biotechnol (2002) 20: 135-141), OPEN method (Mol Cell (2008) 31: 294-301), CoDA method (Nat Methods (2011) 8: 67-69). , Escherichia coli one-hybrid method (Nat Biotechnol (2008) 26: 695-701) and other known methods.
  • Japanese Patent No. 4968498 can be referred to.
  • the TAL effector has a repeating structure of modules in units of about 34 amino acids, and the 12th and 13th amino acid residues (called RVD) of one module determine the binding stability and base specificity. Ru. Since each module is highly independent, it is possible to create a TAL effector specific to the target nucleotide sequence simply by connecting the modules. TAL effectors are manufactured using open resources (REAL method (Curr Protoc Mol Biol (2012) Chapter 12: Unit 12.15), FLASH method (Nat Biotechnol (2012) 30: 460-465), Golden Gate method (Nucleic Acids). Res (2011) 39: e82), etc.) have been established, and TAL effectors for target nucleotide sequences can be designed relatively easily. For details on the production of TAL effectors, refer to Japanese Patent Publication No. 2013-513389.
  • the PPR motif is composed of 35 amino acids and is configured to recognize a specific nucleotide sequence by a series of PPR motifs that recognize one nucleobase, and the 1st, 4th, and ii (-2) amino acids of each motif. Only recognize the target base. Since there is no dependence on the motif composition and there is no interference from the motifs on both sides, it is possible to prepare a PPR protein specific to the target nucleotide sequence simply by connecting the PPR motifs, as with the TAL effector. For details on the preparation of the PPR motif, Japanese Patent Application Laid-Open No. 2013-128413 can be referred to.
  • the Cas used in the present invention is not particularly limited as long as it can recognize and bind to the target nucleotide sequence in the target gene and the protospacer adjacent motif (PAM) adjacent thereto, but is preferably Cas9 nuclease (hereinafter, simply “” It is also referred to as “Cas9”) or Cpf1 nuclease (hereinafter, also simply referred to as "Cpf1").
  • Cas9 include Cas9 (SpCas9; PAM sequence NGG (N is A, G, T or C; the same applies hereinafter)) derived from Streptococcus pyogenes, and Cas9 (StCas9) derived from Streptococcus thermophilus.
  • PAM sequence NNAGAAW Cas9 (NmCas9; PAM sequence NNNNGATT) from Neisseria meningitidis, Cas9 (SaCas9; PAM sequence: NNGRRT) from Staphylococcus aureus, Campirobacta ) Derived from Cas9 (CjCas9; PAM sequence NNNVRYM (V stands for A, G or C; R stands for A or G; Y stands for T or C; M stands for A or C)), but is not limited thereto.
  • Preferred is SpCas9, which is less constrained by PAM (substantially 2 bases and can theoretically be targeted almost anywhere on the genome).
  • Cpf1 examples include Cpf1 (FnCpf1; PAM sequence NTT) derived from Francisella novicida, Cpf1 (AsCpf1; PAM sequence NTTT) derived from Acidaminococcus sp., And Lachnospiraceae bacteria. Examples include, but are not limited to, Cpf1 (LbCpf1; PAM sequence NTTT) derived from (Lachnospiraceae bacterium).
  • the mutant Cas used in the present invention both those having inactivated the ability to cleave both strands of the double-stranded DNA of Cas and those having a nickase activity inactivating only the ability to cleave one strand are used. It is possible.
  • the 10th Asp residue is converted to an Ala residue and lacks the ability to cleave the opposite strand of the strand that forms a complementary strand with the guide RNA (thus, for the strand that forms a complementary strand with the guide RNA.
  • the D10A mutant (having nickase activity) or the chain in which the His residue at position 840 is converted with the Ala residue and forms a complementary strand with the guide RNA lacks the ability to cleave (thus, forms a complementary strand with the guide RNA).
  • a variant of H840A (having nickase activity against the opposite strand of the strand), as well as a double variant thereof (dCas9) can be used.
  • For SaCas9 convert the 10th Asp residue to an Ala residue and / or the 556th Asp residue, the 557th His residue and / or the 580th Asn residue to an Ala residue.
  • the modified product can be prepared.
  • FnCpf1 a mutant lacking the ability to cleave both strands, in which the Asp residue at position 917 was converted to Ala residue (D917A) or the Glu residue at position 1006 was converted to Ala residue (E1006A). Can be used.
  • Other mutant Cass can be used as well, as long as they lack the ability to cleave at least one strand of double-stranded DNA.
  • the DNA binding domains of these proteins are well known, so that, for example, fragments containing the domains and not having the ability to cleave DNA double strands can be easily obtained. Can be designed and built.
  • nucleic acid modifying enzyme means an enzyme that directly or indirectly modifies DNA by reacting with a nucleic acid, and may be a peptide fragment thereof as long as it has catalytic activity.
  • examples of the reaction with such a nucleic acid include a reaction for cleaving a DNA strand (hereinafter, also referred to as a “DNA strand cleavage reaction”) catalyzed by a nucleic acid degrading enzyme, and a DNA strand cleavage catalyzed by a nucleobase converting enzyme.
  • nucleobase conversion reaction A reaction that converts a substituent on the purine or pyrimidine ring of a nucleobase into another group or atom (hereinafter, also referred to as a “nucleobase conversion reaction”) (eg, a base deamination reaction). ), A reaction that hydrolyzes the N-glycoside bond of DNA, which is catalyzed by DNA glycosylase (hereinafter, also referred to as “debase reaction”).
  • modified DNA means that one nucleotide (eg, dA, dC, dG or dT) or nucleotide sequence on the DNA strand is replaced or missing with another nucleotide or nucleotide sequence. It means loss or insertion of another nucleotide or nucleotide sequence between one nucleotide on a DNA strand.
  • nucleotide eg, dA, dC, dG or dT
  • the nucleolytic enzyme used in the present invention is not particularly limited as long as it can catalyze the above reaction, and is, for example, a nuclease (eg Cas, etc.), an endonuclease (eg, restriction enzyme, etc.), an exonuclease, etc. Recombinase, DNA gyrase, DNA topoisomerase, transposase and the like can be mentioned.
  • nucleobase converting enzyme used in the present invention examples include deaminase belonging to the nucleic acid / nucleotide deaminase superfamily, which catalyzes a deamination reaction for converting an amino group into a carbonyl group.
  • Preferred examples thereof include cytosine deaminase capable of converting cytosine or 5-methylcytosine to uracil or thymine, adenosine deaminase capable of converting adenine to hypoxanthine, guanosine deaminase capable of converting guanine to xanthine, and the like, but citidine is preferable.
  • Deaminase eg APOBEC family, AID, PmCDA1, etc.
  • International Publication No. 2015/133554 can be referred to.
  • the DNA glycosylase used in the present invention is not particularly limited as long as it can catalyze the above reaction, and is thymine DNA glycosylase, oxoguanine glucosylase, alkyladenine DNA glycosylase (eg, yeast 3-methyladenine-DNA glycosylase). (MAG1) etc.) and so on.
  • a DNA glycosylase is a mutant of UNG (uracil-DNA glycosylase) having cytosine-DNA glycosylase (CDG) activity and / or thymine-DNA glycosylase (TDG) activity described in International Publication No. 2016/072399. UDG mutants derived from vaccinia virus can be mentioned.
  • UNG mutant examples include N222D / L304A double mutant, N222D / R308E double mutant, N222D / R308C double mutant, Y164A / L304A double mutant, and Y164A / R308E double mutant of yeast UNG1.
  • a mutant in which a similar mutation has been introduced may be used for the amino acid corresponding to each of the above mutants.
  • UDG mutants derived from vaccinia virus include N120D mutant, Y70G mutant, Y70A mutant, N120D / Y70G double mutant, N120D / Y70A double mutant and the like.
  • the term "donor DNA” means DNA containing a foreign insertion sequence, and the donor DNA usually has two regions (hereinafter referred to as “donor DNA") adjacent to the target site on the upstream side and the downstream side of the target site. It contains two types of sequences (hereinafter also referred to as “homology arms”) that are homologous to the sequences of "adjacent regions”). When distinguishing each homology arm, it may be distinguished by "5'homology arm” and “3'homology arm”.
  • the "target site” of the double-stranded DNA means a site where modification will occur, and the site includes a region to be replaced by an insertion sequence contained in the donor DNA and the insertion sequence. The target site does not include the adjacent sequence, although the position where the is to be inserted is also included.
  • sequence homologous to the adjacent region of the target site is not only the exact same sequence, but preferably 80% or more (eg, 85) of the completely identical sequence as long as homologous recombination can occur in the cell. It may be a sequence having the same identity of% or more, 90% or more, 95% or more, 96% or more, 97% or more, 98% or more, 99% or more).
  • the insert sequence may include drug resistance genes (eg, canamycin resistance gene, ampicillin resistance gene, puromycin resistance gene, etc.), thymidine kinase gene, diphtheriatoxin gene, and other selectable marker sequences, as needed, and green fluorescent protein (GFP). , Red fluorescent protein, ⁇ -glucuronidase (GUS), reporter gene sequences such as FLAG, etc. can be included.
  • LoxP sequence, FRT sequence or transposon-specific terminal repeat sequence may be provided before and after these genes so that these genes can be excised after cell selection or the like is completed. ..
  • Preferred transposons include, for example, piggyBac, which is a transposon derived from lepidopteran insects (Kaji, K. et al., Nature, 458: 771-775 (2009), Waltjen et al., Nature, 458: 766. -770 (2009), WO 2010/012077).
  • piggyBac is a transposon derived from lepidopteran insects
  • an expression vector containing the above drug resistance gene is co-introduced, and a transient drug (for several days) is introduced. Selection may be performed.
  • Whether or not the inserted sequence is inserted into the target site and whether or not it is replaced with the target site can be determined by decoding the sequence and screening the chromosomal DNA separated and extracted from the cells by Southern hybridization or PCR. It can be confirmed, and when the above drug resistance genes and the like are present in the donor DNA, their expression can be confirmed as an index.
  • the donor DNA may be linear (eg, synthetic double-stranded DNA), circular (eg, plasmid DNA), or single-stranded DNA (eg, single-stranded oligodeoxynucleotide). (SsODN)) or double-stranded DNA.
  • the donor DNA can be appropriately designed based on the base length of the insertion sequence, the homologous recombination activity of the host cell, and the like. For example, if the insertion sequence is 100 bases or less in length, ssODN or synthetic double-stranded DNA is usually used, and if it is longer than that, synthetic double-stranded DNA or plasmid DNA is usually used.
  • the length of the donor DNA is also not particularly limited, and can be appropriately designed depending on the length of the insertion sequence and the like.
  • the length of the insertion sequence is not particularly limited, and is usually in the range of 1 base length to tens of thousands of bases (for example, in the case of ssODN, 100 bases or less (example: 70 bases or less, 50 bases or less)). It can be appropriately designed according to the purpose.
  • the length of each homology arm is also not particularly limited. When the donor DNA is ssODN, the one having a length of 10 to 150 bases is usually used, and when the donor DNA is a synthetic double-stranded DNA, it is usually 10 to.
  • a DNA having a length of 5000 bases is used, and when the donor DNA is a plasmid DNA, a DNA having a length of 100 bases to 5000 bases, preferably 500 bases to 1000 bases is used.
  • donor DNAs refer to publicly known documents (eg, Ochiai H, Int J Mol Sci, 16: 21128-21137 (2015), Hockemeyer D et al., Nat Biotefchnol, 27: 851-857 (2009)). Can be designed.
  • the nucleic acid sequence recognition module and the nucleic acid modifying enzyme are complexed in a host cell as a nucleic acid encoding their fusion protein or after being translated into a protein using a binding domain, intein, or the like (hereinafter, "the present invention”). It is preferable to prepare nucleic acids encoding each of them in a form capable of forming "complexes of”. Molecules or molecular complexes in which a nucleic acid sequence recognition module and a nucleic acid modifying enzyme function integrally, such as restriction enzymes and CRISPR-Cas systems, are also included in the complex of the present invention.
  • the nucleic acid encoding the complex of the present invention includes not only the nucleotide sequence encoding Cas but also the nucleotide sequence encoding the guide RNA. obtain.
  • the nucleic acid sequence recognition module is a CRISPR-mutant Cas system
  • the nucleic acid encoding the module may include not only the nucleotide sequence encoding Cas, but also the nucleotide sequence encoding the guide RNA.
  • the guide RNA is composed of crRNA and tracrRNA, it may be in the form of different molecules, or may be in the form of a chimeric RNA of crRNA and tracrRNA.
  • the nucleic acid may be DNA or RNA.
  • DNA it is preferably double-stranded DNA and is provided in the form of an expression vector placed under the control of a functional promoter in the host cell.
  • RNA it is preferably single-strand RNA.
  • the nucleic acid for modification is, for example, a nucleotide sequence encoding a nucleic acid sequence recognition module that specifically binds to a target nucleotide sequence of the genomic DNA of a cell and / or a nucleotide sequence encoding a nucleic acid modifying enzyme of a promoter in an appropriate expression vector. It can be manufactured by connecting it downstream.
  • Expression vectors include E.
  • coli-derived plasmids eg, pBR322, pBR325, pUC12, pUC13
  • bacteriophage-derived plasmids eg, pUB110, pTP5, pC194
  • yeast-derived plasmids eg, pSH19, pSH15
  • insect cell expression eg, pSH19, pSH15
  • Plasmid eg pFast-Bac
  • animal cell expression plasmid eg pA1-11, pXT1, pRc / CMV, pRc / RSV, pcDNAI / Neo
  • bacteriophage such as ⁇ phage
  • insect viral vector such as baculovirus (eg) Example: BmNPV, AcNPV)
  • Animal viral vectors such as retrovirus, vacciniavirus, and adenovirus are used.
  • the promoter may be any promoter as long as it is suitable for the host used for gene expression.
  • SR ⁇ promoter SV40 promoter, LTR promoter, CMV (cytomegalovirus) promoter, RSV (Rous sarcoma virus) promoter, MoMuLV (Molony mouse leukemia virus) LTR, HSV-TK (herpes simplex virus)
  • CMV cytomegalovirus
  • RSV Raster sarcoma virus
  • MoMuLV Molony mouse leukemia virus
  • HSV-TK herpes simplex virus
  • a viral thymidin kinase promoter or the like is used.
  • the CMV promoter, SR ⁇ promoter and the like are preferable.
  • the host is E. coli, trp promoter, lac promoter, recA promoter, .lambda.P L promoter, lpp promoter, T7 promoter and the like are preferable.
  • the SPO1 promoter, SPO2 promoter, penP promoter and the like are preferable.
  • the host is yeast, Gal1 / 10, PHO5 promoter, PGK promoter, GAP promoter, ADH promoter and the like are preferable.
  • the host is an insect cell, a polyhedrin promoter, a P10 promoter, or the like is preferable.
  • the CaMV35S promoter, CaMV19S promoter, NOS promoter and the like are preferable.
  • a vector containing an enhancer, a splicing signal, a terminator, a poly A addition signal, a drug resistance gene, a selection marker such as an auxotrophic complementary gene, an origin of replication, or the like is used, if desired. Can be done.
  • the RNA can be prepared by transcribing to mRNA by an in vitro transcription system known per se using the above expression vector as a template.
  • the DNA encoding the guide RNA contains a crRNA sequence (for example, Cpf1 as Cas) containing a nucleotide sequence complementary to the target nucleotide sequence (also referred to as “targeting sequence” in the present specification).
  • a crRNA sequence for example, Cpf1 as Cas
  • a nucleotide sequence complementary to the target nucleotide sequence also referred to as “targeting sequence” in the present specification.
  • an oligo DNA sequence in which a crRNA coding sequence and a known tracrRNA coding sequence are linked can be designed and chemically synthesized using a DNA / RNA synthesizer.
  • the length of the targeting sequence is not particularly limited as long as it can specifically bind to the target nucleotide sequence, but is, for example, 15 to 30 nucleotides, preferably 18 to 25 nucleotides.
  • the DNA encoding the guide RNA can also be inserted into the same expression vector as above, but the promoters include pol III promoters (eg, SNR6, SNR52, SCR1, RPR1, U3, U6, H1 promoters, etc.). And a terminator (eg, poly T sequence (T 6 sequence, etc.)) is preferably used.
  • pol III promoters eg, SNR6, SNR52, SCR1, RPR1, U3, U6, H1 promoters, etc.
  • a terminator eg, poly T sequence (T 6 sequence, etc.) is preferably used.
  • the "sequence of at least a part of the modifying nucleic acid" (hereinafter, may be referred to as "target sequence"), which is the target sequence for calculating the degree of identity, is the above-mentioned modification nucleic acid.
  • the sequence is not particularly limited as long as it is at least a part of the sequence, but for example, a sequence consisting of 20 or more consecutive nucleotides (eg, 20, 25, 30, 35, 40, 45, 50 nucleotides or more) of the nucleic acid for modification. Examples thereof include the full-length sequence of the nucleic acid for modification.
  • the "at least a part of the sequence of the genomic DNA possessed by the cell" which is the reference sequence of the homogeneity or the sameness is preferably the full-length sequence of the genomic DNA, but may be a part of the sequence.
  • Examples of such a partial sequence include sequences of all exons, sequences of housekeeping genes and their expression control regions (eg, promoters, enhancers, etc.), and those skilled in the art may appropriately set reference sequences. be able to.
  • the sequence of the genomic DNA of the cell into which the nucleic acid for modification is introduced is unknown, for example, the sequence of the genomic DNA can be determined by a large-scale sequence using a next-generation sequencer, and the genomic sequence having a similar biological classification can be determined. Sequence information can also be obtained by appropriately designing a primer based on information from a known organism, amplifying the target sequence by PCR, and sequencing.
  • the method for calculating the degree of identity between the target sequence and the reference sequence is a known method, for example, NCBI BLAST (National Center for Biotechnology Information Basic Local Alignment Search Tool) (https://blast. There is a method of calculating based on the sameness by ncbi.nlm.nih.gov/Blast.cgi), but the method is not limited to this method.
  • the degree of identity is a sequence in which the target sequence consists of a specific number of nucleotides (eg, 20 nucleotides or more (eg, 20, 25, 30, 35, 40, 45, 50 nucleotides or more)).
  • each divided sequence is also called a "divided sequence"
  • each divided sequence is used as a query sequence
  • NCBI BLAST is applied under the default conditions
  • the identity of each query sequence is a specific ratio.
  • the total number of the above hit sequences can be the degree of identity, but is not limited to this method.
  • a specific value such as the total number of hit sequences is equal to or less than a preset reference value, it is evaluated that the possibility of introducing an off-target mutation by the modifying nucleic acid is low and exceeds the reference value. In some cases, it can be evaluated that the possibility of introducing an off-target mutation by the modifying nucleic acid is high.
  • the target sequence is a divided sequence in which each sequence consists of n nucleotide residues (however, the last divided sequence of the target sequence is n or less), and m query sequences are obtained from each divided sequence. If created,
  • the above 1. includes a step of evaluating the possibility of introducing an off-target mutation of the modifying nucleic acid according to the above, and (2) a step of introducing the nucleic acid evaluated for the possibility of introducing an off-target mutation in the step (1) into the cell.
  • a method for modifying a target site of double-stranded DNA possessed by a cell (hereinafter, may be referred to as "modification method of the present invention") is provided.
  • the evaluation method of the present invention can evaluate the possibility of introducing off-target mutations, it is possible to predict the toxicity of the modification method to be carried out in advance due to the introduction of off-target mutations, and the possibility of introducing off-target mutations. When is low, it can be predicted that cell toxicity caused by off-target mutations can be suppressed. Therefore, the evaluation in the step (2) of the modification method of the present invention is based on the above 1. It is preferable to evaluate that the possibility of introducing an off-target mutation is low by the method described in 1. (that is, the degree of identity described in 1. above is equal to or less than the above reference value).
  • Examples of the host cell into which the nucleic acid for modification is introduced include Escherichia spp., Bacillus spp., Yeast, insect cells, insects, animal cells and the like.
  • Examples of Escherichia spp. Are Escherichia coli K12 and DH1 [Proc. Natl. Acad. Sci.
  • yeast examples include Saccharomyces cerevisiae (Saccharomyces cerevisiae) AH22, AH22R - , NA87-11A, DKD-5D, 20B-12, Schizosaccharomyces pombe (Schizosaccharomyces pombe) NCYC1913, NCYC2036, Pichia pastoris (Pichia pastoris) KM71 etc. are used.
  • insect cells for example, when the virus is AcNPV, Spodoptera frugiperda cells (Sf cells), MG1 cells derived from the middle intestine of Trichoplusia ni, and High Five TM cells derived from eggs of Trichoplusia ni. , Cells derived from Mamestra brassicae, cells derived from Estigmena acrea, etc. are used.
  • Sf cells silk moth-derived cell lines (Bombyx mori N cells; BmN cells) are used as insect cells.
  • Sf cells for example, Sf9 cells (ATCC CRL1711), Sf21 cells [above, In Vivo, 13, 213-217 (1977)] and the like are used.
  • insects for example, silk moth larvae, Drosophila, crickets, etc. are used [Nature, 315, 592 (1985)].
  • animal cells examples include monkey COS-7 cells, monkey Vero cells, Chinese hamster ovary (CHO) cells, dhfr gene-deficient CHO cells, mouse L cells, mouse AtT-20 cells, mouse myeloma cells, rat GH3 cells, and humans.
  • Fetal kidney-derived cells eg HEK293 cells
  • human liver cancer-derived cells eg HepG2
  • cell lines such as human FL cells
  • pluripotent stem cells such as human and other mammalian iPS cells and ES cells
  • various Primary cultured cells prepared from tissues are used.
  • zebrafish embryos, Xenopus oocytes and the like can also be used.
  • the plant cells were prepared from various plants (for example, grains such as rice, wheat and corn, commercial crops such as tomato, cucumber and eggplant, garden plants such as carnation and Vietnamese ginkgo, experimental plants such as tobacco and white indigo plant). Suspended cultured cells, callus, protoplasts, leaf sections, root sections and the like are used.
  • the nucleic acid for modification can be introduced by a known method (for example, lysoteam method, competent method, PEG method, CaCl 2 coprecipitation method, electroporation method, microinjection method, particle gun method, lipofection method) depending on the type of host. , Agrobacterium method, etc.).
  • a plurality of modification nucleic acids are introduced into cells, each modification nucleic acid may be introduced at the same time or at different timings.
  • Escherichia coli can be transformed according to the methods described in, for example, Proc. Natl. Acad. Sci. USA, 69, 2110 (1972) and Gene, 17, 107 (1982).
  • Bacillus can be vector-introduced, for example, according to the method described in Molecular & General Genetics, 168, 111 (1979).
  • Yeast can be vectorized according to, for example, Methods in Enzymology, 194, 182-187 (1991), Proc. Natl. Acad. Sci. USA, 75, 1929 (1978).
  • Insect cells and insects can be vector-introduced according to, for example, the methods described in Bio / Technology, 6, 47-55 (1988).
  • Animal cells can be vector-introduced according to, for example, the method described in Cell Engineering Supplement 8 New Cell Engineering Experiment Protocol, 263-267 (1995) (published by Shujunsha), Virology, 52, 456 (1973).
  • Culturing of cells into which a nucleic acid for modification has been introduced can be carried out according to a known method depending on the type of host.
  • a liquid medium is preferable as the medium used for culturing.
  • the medium preferably contains a carbon source, a nitrogen source, an inorganic substance and the like necessary for the growth of the transformant.
  • the carbon source for example, glucose, dextrin, soluble starch, sucrose, etc .
  • the nitrogen source for example, ammonium salts, nitrates, corn steep liquor, peptone, casein, meat extract, soybean meal, etc.
  • Inorganic or organic substances such as potato extracts; examples of the inorganic substances include calcium chloride, sodium dihydrogen phosphate, magnesium chloride and the like, respectively.
  • yeast extract, vitamins, growth promoting factors and the like may be added to the medium.
  • the pH of the medium is preferably about 5 to about 8.
  • an M9 medium containing glucose and casamino acid is preferable.
  • agents such as 3 ⁇ -indrill acrylic acid may be added to the medium to allow the promoter to work efficiently. Culturing of E.
  • coli is usually carried out at about 15 to about 43 ° C. If necessary, ventilation or stirring may be performed.
  • Culture of Bacillus spp. Is usually carried out at about 30 to about 40 ° C. If necessary, ventilation or stirring may be performed.
  • Examples of the medium for culturing yeast include Burkholder's minimum medium [Proc. Natl. Acad. Sci. USA, 77, 4505 (1980)] and SD medium containing 0.5% casamino acid [Proc. Natl. Acad. Sci. USA, 81, 5330 (1984)] and the like.
  • the pH of the medium is preferably about 5 to about 8.
  • Culturing is usually carried out at about 20 ° C to about 35 ° C. If necessary, ventilation or stirring may be performed.
  • a medium for culturing insect cells or insects for example, Grace's Insect Medium [Nature, 195, 788 (1962)] to which an additive such as deactivated 10% bovine serum is appropriately added is used.
  • the pH of the medium is preferably from about 6.2 to about 6.4. Culturing is usually carried out at about 27 ° C. If necessary, ventilation or stirring may be performed.
  • MEM minimum essential medium
  • DMEM Dalveco modified Eagle's medium
  • RPMI 1640 medium The Journal of the American Medical Association, 199, 519 (1967)] 199 medium [Proceeding of the Society for the Biological Medicine, 73, 1 (1950)], etc.
  • the pH of the medium is preferably about 6 to about 8.
  • Culturing is usually carried out at about 30 ° C to about 40 ° C. If necessary, ventilation or stirring may be performed.
  • MS medium As a medium for culturing plant cells, MS medium, LS medium, B5 medium and the like are used.
  • the pH of the medium is preferably about 5 to about 8.
  • Culturing is usually carried out at about 20 ° C to about 30 ° C. If necessary, ventilation or stirring may be performed.
  • the complex of the present invention can be expressed intracellularly.
  • RNA When the nucleic acid for modification is RNA, it can be introduced into a host cell by a microinjection method, a lipofection method, or the like. RNA introduction can be repeated once or multiple times (eg, 2-5 times) at appropriate intervals.
  • the genomic DNA of the cell, the donor DNA containing the insert sequence into the genomic DNA, and the Cas9 nuclease induce homologous recombination between the genomic DNA and the donor DNA.
  • a method hereinafter, may be referred to as "the method for inducing homologous recombination of the present invention”
  • the method for inducing homologous recombination of the present invention does not require the use of a guide RNA (that is, the guide RNA of the guide RNA). Homologous recombination is induced in the absence).
  • the possibility of introducing an off-target mutation by the nucleic acid to be introduced may be evaluated by the evaluation method of the present invention.
  • Homologous recombination means recombination performed between homologous DNA, and is mediated by recombinase involved in DNA repair and uptake of foreign DNA.
  • Two recombinases are known in eukaryotes, including yeast and humans, of which the Rad51 protein is required for homologous recombination in mitosis and meiosis, and the other Dmc1 protein is homologous in meiosis. It functions specifically for recombination.
  • DNA double-strand cleavage ends are recognized by the Mre11 / Rad50 / Nbs1 (Xrs2) complex, and helicases and nucleases produce single-stranded regions when repairs are performed via homologous recombination. , And further stabilized by a single-stranded DNA-binding protein (RPA). After that, a recombination catalytic protein such as Rad52 protein removes RPA on the single-stranded DNA and arranges Rad51, so that homologous recombination finally occurs.
  • RPA single-stranded DNA-binding protein
  • RecA which is a recombinase
  • RecBCD a complex of helicase and nuclease called RecBCD recognizes and digests the terminal to produce single-stranded DNA.
  • RecA is placed on single-stranded DNA by the action of RecBCD, and the RecA polymerizes on single-stranded DNA while removing the single-stranded DNA-binding protein (SSB) that protects the single-stranded DNA. Elongation forms nucleoprotein filaments, ultimately resulting in homologous recombination.
  • SSB single-stranded DNA-binding protein
  • inducing homologous recombination means that the efficiency of homologous recombination is improved as compared with a control in which Cas9 is not introduced.
  • an insertion sequence contained in donor DNA is inserted into a target site in the genomic DNA of a cell, or the target site is replaced with an insertion sequence. The efficiency at which Cas9 is generated is improved as compared with the case where Cas9 is not used.
  • the definition, explanation, specific examples, etc. of the donor DNA are described in 1. above.
  • contact between Cas9 and the genomic DNA of the cell is typically carried out by introducing a nucleic acid encoding Cas9 into the cell having the genomic DNA of interest.
  • the description of the cell to be the target of the homologous recombination induction method of the present invention specific examples, the method of introducing nucleic acid into the cell, the method of culturing the cell, and the like are described in the above 2.
  • eukaryotic cells such as yeast are preferable as such cells.
  • Cas9 nuclease used in the present invention examples include the above 1. Examples include, but are not limited to, SpCas9, StCas9, NmCas9, SaCas9, CjCas9, etc. described in.
  • Cas9 may have the ability to cleave a DNA strand, but from the viewpoint of reducing cytotoxicity, a mutant Cas9 nuclease in which at least one of the cleaving abilities is inactivated (may be abbreviated as mutant Cas9). Is preferable, and the mutant Cas9 in which the ability to cleave both DNA strands is inactivated is more preferable.
  • the mutant Cas9 for example, in the case of SpCas9, the D10A mutant in which the 10th Asp residue is converted to the Ala residue, the H840A mutant in which the 840th His residue is converted to the Ala residue, and further, the mutant Cas9.
  • a double mutant (dCas9) can be used.
  • For SaCas9 convert the 10th Asp residue to an Ala residue and / or the 556th Asp residue, the 557th His residue and / or the 580th Asn residue to an Ala residue.
  • the modified product can be prepared.
  • a mutant lacking the ability to cleave both strands in which the Asp residue at position 917 was converted to Ala residue (D917A) or the Glu residue at position 1006 was converted to Ala residue (E1006A). Can be used.
  • Other mutant Cas9s can be used as well, as long as they lack the ability to cleave at least one strand of double-stranded DNA.
  • the possibility of introducing an off-target mutation can be evaluated by the evaluation method of the present invention, and based on the evaluation result, a part of the sequence of the nucleic acid for modification is substituted for the modification. It is possible to reduce the possibility of introducing off-target mutations by nucleic acids. In particular, when it is evaluated that the possibility of introducing an off-target mutation of the modifying nucleic acid is high, it is preferable to replace a part of the sequence of the modifying nucleic acid. Therefore, in another aspect of the present invention, (1) the step of evaluating the possibility of introducing an off-target mutation of the modifying nucleic acid by the evaluation method of the present invention, and (2) the result of the evaluation by the above step (1).
  • the design method of the present invention a method for designing a nucleic acid in which the possibility of introducing an off-target mutation is reduced, which comprises a step of substituting a part of the sequence of the nucleic acid.
  • the design method of the present invention as long as the nucleotide sequence of the target nucleic acid for modification can be obtained, the possibility of introducing an off-target mutation can be evaluated in advance based on the sequence. Therefore, it is not possible to actually prepare the nucleic acid for modification.
  • the sequence may be designed by applying the design method of the present invention to the modification nucleic acid to be produced, which is not always necessary.
  • reducing the possibility of off-target mutation means introducing off-target mutation by the modifying nucleic acid as compared with the case of using the modifying nucleic acid before replacing a part of the modifying nucleic acid.
  • the above step (1) is the above 1. It can be carried out as explained in.
  • the above step (2) is described in the above 1. By the method described in the above, even if the modification nucleic acid is evaluated to have a high possibility of off-target mutation introduction, or to a modification nucleic acid evaluated to have a low possibility of off-target mutation introduction. This may be done to reduce that possibility.
  • the sequence to be replaced in the above step (2) may be any sequence as long as it is contained in the modifying nucleic acid, and is a nucleic acid that specifically binds to the target nucleotide sequence of the genomic DNA of the cell.
  • At least one nucleotide sequence selected from the group consisting of a nucleotide sequence encoding a sequence recognition module, a nucleotide sequence encoding a nucleic acid modifying enzyme, and a sequence inserted into the genomic DNA, and other sequences (eg, a sequence of an expression control region). , Drug resistance gene sequence, multicloning site sequence, etc.), and some sequences of these sequences.
  • the sequence to be replaced in the above step (2) when the evaluation method of the present invention is carried out using the divided sequence of the target sequence, the sequence having a particularly high hit sequence among the divided sequences is selected.
  • the modifying nucleic acid designed by the design method of the present invention is introduced into the genomic DNA of a cell by homologous recombination, if the sequence of the homology arm normally contained in the donor DNA is replaced, the efficiency of homologous recombination is reduced. It is expected to do. Therefore, when substituting the sequence of the homology arm, the identity of the replaced sequence with the sequence of the region adjacent to the target site is 80% or more (eg, 85% or more, 90% or more, 95% or more, 96). % Or more, 97% or more, 98% or more, 99% or more).
  • step (2) when the nucleotide sequence encoding the protein is replaced, it is replaced with a codon that does not cause a mutation in the amino acid residue of the protein (that is, it is replaced so as to be a silent mutation). ) Is preferable.
  • the design of such substitutions may be performed by in silico, for example, designing all possible codon combinations encoding proteins using an electronic computing instrument, and the most of the codon combinations. It is also possible to select a sequence that is judged to have a low possibility of introducing an off-target mutation. Sequences other than the nucleotide sequence encoding the protein can be appropriately substituted, and for example, a promoter can be substituted with another promoter having preferably the same level of expression efficiency.
  • promoters examples include the above 1. Examples include, but are not limited to, the promoters described for each cell type in (eg, SR ⁇ promoter, SV40 promoter, LTR promoter, CMV (cytomegalovirus) promoter, etc.). Further, by substituting the above-mentioned sequence to be replaced with an artificial sequence, the degree of homology with the genomic DNA of the host cell can be reduced.
  • an artificial sequence for example, a synthetic promoter (pSyn) (Redden, H. & Alper, H) in which a plurality of minimum domain sequences (TATA sequence, TSS sequence, etc.) involved in gene transcription regulation are linked and shortened to 160 nucleotides in length. . S.
  • pSyn include promoters containing or consisting of the sequences represented by any of SEQ ID NOs: 1 to 9.
  • one or more (eg, 2, 3, 4, 5, 6, 7, 8, 9, 10 or more) nucleotides may be added to a part of the modifying nucleic acid (eg, a sequence other than the coding region).
  • the degree of identity with genomic DNA can also be reduced by deleting, substituting, adding and / or inserting.
  • BY4742 (MAT ⁇ his3 ⁇ leu2 ⁇ 1 met15 ⁇ 0 ura3 ⁇ 0) (Brachmann, C.B. et al., Yeast 14, 115-132 (1998)) was used as the parent budding yeast strain.
  • a yeast strain lacking a single gene was purchased from the haploid yeast open reading frame deletion collection (GEDharmacon, USA) (Winzeler, E. A. et al., Science 285, 901-906 (1999)).
  • Yeast was grown at 30 ° C. using YPD (1% yeast extract, 2% peptone, 2% glucose) or suitable synthetic complete (SC) medium (Sherman, F., Methods Enzymol 350, 3-41).
  • Yeast was cultured at 25 ° C for time course analysis. Standard methods were used to isolate yeast genomic DNA. E. coli strain DH5 ⁇ and standard medium and standard methods were used to manipulate the plasmid. Plasmid DNA was isolated from E. coli using the QIAquick Spin Miniprep kit (Qiagen, USA). DNA fragments were separated from samples or agarose gels that had undergone a polymerase chain reaction (PCR) using the Wizard SV Gel and PCR Clean-up Kit (Promega, USA).
  • PCR polymerase chain reaction
  • Oligonucleotides were purchased from Invitrogen (USA) or FASMAC (Japan). DNA for plasmid construction was prepared by PCR using Proof High-Fidelity DNA polymerase (Bio-Rad Laboratories, USA). The mixture contained 10 ⁇ l of 5 x iProof buffer, 0.25 ⁇ l of each 100 ⁇ M PCR primer, 1 ⁇ l of 10 mM dNTP mix, 0.1 ⁇ g of template DNA and 0.5 ⁇ l of iProof Taq polymerase (final volume 50 ⁇ l).
  • Plasmid PHM879, PHM891 The pML104 plasmid (provided by John Wyrick (Addgene plasmid number 67638)) was used as the base plasmid to construct plasmids encoding Cas9 and crRNA (Laughery, MF et al., Yeast 32). , 711-720, (2015)). This plasmid requires a 20 nt guide sequence to be inserted into a single guide RNA (sgRNA) cassette.
  • sgRNA single guide RNA
  • Target sequence guide RNA 5'-ctagagtcgacctgc agg -3 for '(underlined: PAM sequence) and (SEQ ID NO: 10), 5'-caacttaaggcgaagttgt tgg -3 for ADE2' (underlined: PAM sequence) ( It was designated as SEQ ID NO: 11).
  • PHM878 Primer set (HMP1400: 5'-TGGAGCTCACCGCGGACAATCTTTGAAAA-3' (SEQ ID NO: 12), HMP1401: 5'-CGGAGCTCCGAGCAAATGCCTGCAAATCGC-3'(HMP1400: 5'-TGGAGCTCACCGCGGACAATCTTTGAAAA-3' (SEQ ID NO: 12), to construct a plasmid encoding crRNA.
  • the DNA fragment of the SNR52 promoter-crRNA-SUP4 terminator region was amplified using SEQ ID NO: 13)).
  • the DNA ends were digested with the restriction enzyme SacI and subcloned into the pRS423 plasmid (Sikorski RS & Hieter P.
  • PHM898 A plasmid with TDH3 promoter + dCas9 + ADH1 terminator was constructed.
  • HMP1330 5'-atgcggccgcacttctaaataagcgaattt-3'(SEQ ID NO: 14)
  • HMP1331 5'-atgagctcagatctgatctatattaccctgttatc-3' (SEQ ID NO: 15)
  • 10.1126 / science.aaf8729 PubMed 27492474 was digested with the restriction enzyme NcoI and treated with the NcoI TDH3 promoter fragment. And end binding treatment was performed.
  • a primer set (HMP1394: 5'-ggactagtCAACCATCAGTTCATAGGTCCA-3', HMP1395: 5'- tgcggccgcggtcatcctagacttatcgtc-3' (SEQ ID NO: 18)) was used to amplify the DNA fragment of the TDH3 promoter + dCas9 region. ..
  • PHM903 TDH3 promoter + Cas9 + ADH1 terminator region encoding plasmid, pML104 plasmid as template DNA, primer set (HMP1394: 5'-ggactagtCAACCATCAGTTCATAGGTCCA-3', HMP1463: 5'-atgcggccgcGAGTCTAGGATCCGGAACTA-3'(sequence)
  • HMP1394 5'-ggactagtCAACCATCAGTTCATAGGTCCA-3'
  • HMP1463 5'-atgcggccgcGAGTCTAGGATCCGGAACTA-3'(sequence)
  • a DNA fragment containing the TDH3 promoter + Cas9 + ADH1 terminator region was amplified using No. 19)).
  • the DNA ends were digested with the restriction enzymes SpeI and NotI, and subcloned into the pRS426 plasmid (Sikorski RS & Hieter P. Genetics. 122 (1): 19-27 (1989)) also digested with SpeI and NotI to obtain the PHM903 plasmid. ..
  • the vector map of the plasmid vector prepared above is shown in FIG.
  • Example 1 Introduction of ADE2 gene into sprouting yeast DNA Cas9 gene + crRNA plasmid (pML104), Cas9 + single-guide RNA (sgMCS) plasmid (PHM879) and Cas9 + single-guide RNA (sgADE2) plasmid (PHM891) ( Various combinations of 0.5 ⁇ g each and YIplac128 (LEU2) plasmid (0.5 ⁇ g) were combined to transform into yeast (2x10 8 cells) and seeded on synthetic agar medium (SD-Ura) without uracil.
  • Fig. 1 The results are shown in Fig. 1.
  • Saccharomyces cerevisiae was transformed with a YIp-type plasmid for insertion having the LEU2 gene, sgADE2 or sgMCS, and a URA3 marker plasmid having both the Cas9 gene at the same time, colonies of URA + and LEU + increased.
  • sgADE2 was used with the expectation that an insertion YIp-type plasmid having LEU2 would be inserted into the ADE2 gene site and disrupt the ADE2 gene (become ADE-), but almost all colonies that appeared were used. It was ADE +. This indicates that when sgADE2 and sgMCS were combined, the insertion YIp-type plasmid having LEU2 could not be inserted into the ADE2 gene site and was inserted into another genomic region.
  • Example 2 Verification of difference in plasmid insertion rate into genomic DNA of budding yeast with and without guide RNA Cas9 gene + crRNA plasmid (pML104) (0.5 ⁇ g) and Cas9 + single-guide RNA (sgMCS) plasmid ( Various combinations of PHM879) and Cas9 + single-guide RNA (sgADE2) plasmid (PHM891) (0.5 ⁇ g each) and YIplac128 (LEU2) plasmid (0.5 ⁇ g) were combined to transform into yeast (2x10 8 cells) and uracil. It was inoculated on a synthetic agar medium (SD-Ura) from which the above was removed.
  • SD-Ura synthetic agar medium
  • Chromosome DNA was prepared from the obtained colony strain, and the insertion site of YIplac128 into the chromosome was confirmed using the PCR method.
  • Fig. 2 The results are shown in Fig. 2.
  • the plasmid was inserted into the genomic DNA of Saccharomyces cerevisiae at the same rate as when sgRNA was introduced, even when sgRNA was not introduced.
  • Example 3 Verification of difference in insertion rate of plasmid into genomic DNA of budding yeast depending on the presence or absence of DNA cleavage ability of Cas9 Cas9 gene plasmid (PHM903), dCas9 gene plasmid (PHM898) and crRNA plasmid (PHM876) (0.5 each)
  • PLM903 Cas9 Cas9 gene plasmid
  • PLM898 dCas9 gene plasmid
  • crRNA plasmid 0.5 each
  • Various combinations of ⁇ g) and YIplac128 (LEU2) plasmid 0.5 ⁇ g were combined to transform into yeast (2x10 8 cells) and seeded on synthetic agar medium (SD-Ura) without uracil. Three days later, the appearing colonies were transferred to agar medium without leucine, and the number of colonies formed was counted.
  • Example 4 Verification of the difference in the insertion rate of the plasmid into the genomic DNA of Saccharomyces cerevisiae with Cas9 or dCas9 alone Further, the case where Saccharomyces cerevisiae was transformed with Cas9 alone without gRNA and dCas9 without gRNA The efficiency of insertion of the exogenous LEU gene into genomic DNA was compared when Saccharomyces cerevisiae was transformed alone.
  • the Cas9 gene plasmid (PHM903), dCas9 gene plasmid (PHM898), Cas9 / crRNA plasmid (pML104) (0.5 ⁇ g each) and YIplac128 (LEU2) plasmid (0.5 ⁇ g) were combined and transformed into yeast (2x10 8 cells). Then, it was inoculated on a synthetic agar medium (SD-Ura) from which the plasmid had been removed. Three days later, the appearing colonies were transferred to agar medium without leucine, and the number of colonies formed was counted.
  • SD-Ura synthetic agar medium
  • Example 4 Accurate identification of the insertion site of the plasmid into the chromosome
  • the pML104 and Yiplac128 plasmids were transformed, and PCR was performed using the obtained yeast strain chromosomal DNA as a template to identify the insertion site of the YIplac128 plasmid into the chromosome. did.
  • the PCR amplification region on YIplac128 was divided into four regions, and PCR was performed using each primer set. The region that could not be amplified by PCR was determined to be the fusion region with the plasmid chromosome.
  • the sequences and combinations of primer sets are listed in Tables 1 and 2.
  • the results are shown in Fig. 5.
  • the genome of Saccharomyces cerevisiae used in the above experiment contains regions highly homologous to the upstream and downstream regions of the LEU gene of the above donor DNA, and the highly homologous region contains the exogenous LEU2 gene. was confirmed to be inserted.
  • Example 5 Verification of contribution of Ku70 and rad52 in genomic DNA modification with CRISPR-Cas9 system pML104 (0.5 ⁇ g) and YIplac128 plasmid (0.5 ⁇ g) were combined and transformed into yeast (2x10 8 cells) and uracil. It was inoculated on a synthetic agar medium (SD-Ura) from which the above was removed. Three days later, the appearing colonies were transferred to agar medium without leucine, and the number of colonies formed was counted.
  • SD-Ura synthetic agar medium
  • yeast strains Three types of yeast strains were used: a wild strain (BY4742 strain), a homologous recombination mechanism deficient strain (BY4742 rad52 ⁇ ), and a DNA terminal binding mechanism deficient strain (BY4742 ku70 ⁇ ).

Landscapes

  • Life Sciences & Earth Sciences (AREA)
  • Health & Medical Sciences (AREA)
  • Genetics & Genomics (AREA)
  • Engineering & Computer Science (AREA)
  • Chemical & Material Sciences (AREA)
  • Organic Chemistry (AREA)
  • Bioinformatics & Cheminformatics (AREA)
  • Wood Science & Technology (AREA)
  • Zoology (AREA)
  • Biomedical Technology (AREA)
  • Biotechnology (AREA)
  • General Engineering & Computer Science (AREA)
  • Molecular Biology (AREA)
  • Microbiology (AREA)
  • Biochemistry (AREA)
  • General Health & Medical Sciences (AREA)
  • Mycology (AREA)
  • Physics & Mathematics (AREA)
  • Biophysics (AREA)
  • Plant Pathology (AREA)
  • Medicinal Chemistry (AREA)
  • Micro-Organisms Or Cultivation Processes Thereof (AREA)

Abstract

本発明は、(1)細胞のゲノムDNAと、該ゲノムDNAへの挿入配列を含むドナーDNAと、Cas9ヌクレアーゼとを、ガイドRNAの非存在下で接触させる工程を含む、該ゲノムDNAと該ドナーDNAとの間で相同組み換えを誘導する方法、並びに(2)細胞のゲノムDNA改変用核酸の少なくとも一部の配列と、該細胞の有するゲノムDNAの少なくとも一部の配列との間の同一性の程度を算出する工程を含む、該核酸によるオフターゲット変異導入の可能性を評価する方法であって、前記ゲノムDNA改変用核酸が、細胞のゲノムDNA中の標的ヌクレオチド配列と特異的に結合する核酸配列認識モジュールをコードするヌクレオチド配列、核酸改変酵素をコードするヌクレオチド配列、及び細胞のゲノムDNAへの挿入配列からなる群から選択される1以上のヌクレオチド配列を含む、方法を提供する。

Description

Cas9ヌクレアーゼを用いて相同組み換えを誘導する方法
 本発明は、少なくとも1つのDNA切断能が失活したCas9ヌクレアーゼにより、ガイドRNAを用いることなく細胞のゲノムDNAとドナーDNAとの間で相同組み換えを誘導する方法に関する。また、本発明は、細胞の有するゲノムDNA改変用核酸を用いたゲノムDNA改変の際の、該核酸によるオフターゲット変異導入の可能性を評価する方法、該評価方法を用いてオフターゲット変異導入の可能性が低減したゲノムDNAの標的部位を改変する方法、並びに該評価方法を用いてオフターゲット変異導入の可能性が低減された改変用核酸の設計方法に関する。
 CRISPR(clustered regularly interspaced short palindromic repeats)及びCRISPR関連(Cas)タンパク質は、ガイドRNA及びプロトスペーサー隣接モチーフ(PAM)に依存的な様式で標的DNAを切断することで、細菌の適応免疫系として働くことが知られている。ストレプトコッカス・ピオゲネス(Streptococcus pyogenes)由来のCas9ヌクレアーゼは、DNA二重鎖切断(DSB)の修復経路を有する真核生物において、強力なゲノム編集ツールとして広く使用されている(例えば、非特許文献1、2)。非相同末端結合(NHEJ)経路によるDSBの修復中に、標的DNAに小さな挿入及び/又は欠失(indels)が導入され、部位特異的な変異又は遺伝子破壊が生じる。効率は宿主細胞に依存するものの、より正確な編集のために、標的領域に対するホモロジーアームを含むドナーDNAを提供することにより、相同組換え修復(HDR)を促進することができる。
 しかしながら、上記従来の方法では、意図していない部位への変異である、オフターゲット変異導入の可能性が高い。例えば、ヒト細胞を用いたゲノム編集技術において、オフターゲット変異の導入数が、オンターゲット変異の導入数に匹敵するとの報告がされている(非特許文献3)。オフターゲット変異導入率はガイドRNAの標的配列によっても変動することが知られており(例えば、非特許文献4)、オフターゲット変異導入の可能性を低減させるように、ガイドRNAの標的配列を自動で設計するシステムが開発されている(例えば、非特許文献5)。しかしながら、本発明者が知る限りにおいて、ガイドRNAの標的配列以外の配列に着目したオフターゲット変異導入の可能性の低減方法については知られていない。
Mali P, et al., Science, 339:823-827 (2013) Cong L, et al., Science, 339:819-823 (2013) Fu Y, et al., Nat Biotechnol, 31:822-826 (2013) Wu Y, et al., Cell Stem Cell, 13:659-662 (2013) Xiao A, et al., Bioinformatics, 30:1180-1182 (2014)
 本発明の課題は、少なくとも1つのDNA切断能が失活したCas9ヌクレアーゼにより、ガイドRNAを用いることなく細胞のゲノムDNAとドナーDNAとの間で相同組み換えを誘導する方法を提供することである。また、標的二本鎖DNA改変用核酸を用いたゲノムDNA改変の際の、該核酸によるオフターゲット変異導入の可能性を評価し、該ゲノムDNA改変時のオフターゲット変異導入の可能性を低減する方法を提供することも課題とする。
 本発明者は、該遺伝子座の特定の領域を標的とするガイドRNA及びCas9を用いた相同組み換えを用いて、出芽酵母のADE2遺伝子座に、ドナーDNAに含まれる外因性のLEU2遺伝子を導入することを試みた。しかしながら、外因性のLEU2遺伝子により形質転換された出芽酵母のほとんど全てにおいて、期待されたADE2遺伝子座への導入が認められなかった。この結果から、前記外因性のLEU2遺伝子が、ガイドRNAによるCas9の標的部位へのリクルートが生じないにも関わらず、出芽酵母のADE2遺伝子座以外の領域に挿入されたことが示唆された。さらに研究を進めることで、上記の実験に用いた出芽酵母のゲノムには、上記のドナーDNAに含まれるLEU2遺伝子の上流及び下流の領域と相同性の高い領域が含まれており、該相同性の高い領域に外因性のLEU2遺伝子が挿入されていることが確認された。
 そこで本発明者は、CRISPR-Cas9システムにおいて、ガイドRNAを使用せずとも相同組み換えにより外因性因子を細胞のゲノムDNAに挿入できるのではないか、との従来の技術常識とは全くかけ離れた発想に想到し、実際にガイドRNAの有無により相同組み換え率が変化するか否かについての検証を行った。その結果、ガイドRNAの有無により、外因性のLEU2遺伝子の出芽酵母ゲノムへの導入効率に差異がないことを見出した。さらに本発明者は、Cas9だけではなくCas9の両方のDNA切断能を失活させた変異Cas9(dCas9)を用いて同様の実験を行ったところ、驚くべきことに、dCas9を用いた場合でも、Cas9を用いた場合と同様に外因性のLEU2遺伝子が出芽酵母のゲノムに導入されていることが確認された。
 以上のことから、本発明者は、CRISPR-Cas9システムを用いた相同組み換えにおいては、ガイドRNAの使用も、Cas9によるDNA鎖の切断も必須というわけではなく、相同組み換えの効率を上げるためには、Cas9又はその変異体を導入することが重要であると結論付けた。さらには、導入したベクターやドナーDNAの配列と、細胞のゲノムDNAとの間でも想定外の相同組み換えが生じ得るため、ガイドRNAの標的配列だけでなく、該導入する予定の核酸の配列についても、該ゲノムDNAとの相同性の程度を評価することや、該評価結果に基づいて導入する予定の核酸の配列を適宜置換等行うことが、オフターゲット変異導入の可能性の低減に重要であるとの結論に達し、本発明を完成するに至った。
 すなわち、本発明は以下の通りである。
〔1〕 細胞のゲノムDNAと、該ゲノムDNAへの挿入配列を含むドナーDNAと、Cas9ヌクレアーゼとを、ガイドRNAの非存在下で接触させる工程を含む、該ゲノムDNAと該ドナーDNAとの間で相同組み換えを誘導する方法。
〔2〕 前記Cas9ヌクレアーゼが、少なくとも1つのDNA切断能が失活したものである、〔1〕に記載の方法。
〔3〕 細胞のゲノムDNAとCas9ヌクレアーゼとの接触が、前記細胞へのCas9ヌクレアーゼをコードする核酸の導入により行われる、〔1〕又は〔2〕に記載の方法。
〔4〕 前記細胞が真核細胞である、〔1〕~〔3〕のいずれかに記載の方法。
〔5〕 前記真核細胞が酵母である、〔4〕に記載の方法。
〔6〕 細胞のゲノムDNA改変用核酸の少なくとも一部の配列と、該細胞の有するゲノムDNAの少なくとも一部の配列との間の同一性の程度を算出する工程を含む、該核酸によるオフターゲット変異導入の可能性を評価する方法であって、前記ゲノムDNA改変用核酸が、細胞のゲノムDNA中の標的ヌクレオチド配列と特異的に結合する核酸配列認識モジュールをコードするヌクレオチド配列、核酸改変酵素をコードするヌクレオチド配列、及び細胞のゲノムDNAへの挿入配列からなる群から選択される1以上のヌクレオチド配列を含む、方法。
〔7〕 (1)〔6〕に記載の方法により、ゲノムDNA改変用核酸によるオフターゲット変異導入の可能性を評価する工程、及び
    (2)前記工程(1)でオフターゲット変異導入の可能性が評価された核酸を該細胞に導入する工程
を含む、細胞の有する二本鎖DNAの標的部位を改変する方法。
〔8〕 前記細胞のゲノムDNAへの挿入配列を含むドナーDNAを該細胞に導入する工程を含む、〔7〕に記載の方法。
〔9〕 核酸配列認識モジュールが、Casエフェクタータンパク質の少なくとも一方のDNA切断能が失活したCRISPR-Casシステム、ジンクフィンガーモチーフ、TALエフェクター及びPPRモチーフからなる群より選択される、〔7〕又〔8〕に記載の方法。
〔10〕 前記工程(2)で導入された核酸により細胞内で形成される核酸配列認識モジュールと核酸改変酵素との複合体が、ガイドRNAとCasエフェクタータンパク質との複合体である、〔7〕又は〔8〕に記載の方法。
〔11〕 (1)〔6〕に記載の方法により、ゲノムDNA改変用核酸のオフターゲット変異導入の可能性を評価する工程、及び
     (2)前記工程(1)による評価の結果に基づき、該核酸の配列の一部を置換する工程
を含む、オフターゲット変異導入の可能性が低減された核酸を設計する方法。
〔12〕 前記工程(2)の置換が人工配列への置換を含む、〔11〕に記載の方法。
 本発明によれば、細胞のゲノム改変用核酸を用いたゲノムDNAの改変において、該核酸によるオフターゲット変異導入の可能性を評価することができ、それにより、オフターゲット変異導入の可能性が低減したゲノムDNAの改変が可能となる。オフターゲット変異を抑制することは、遺伝子治療において特に重要となるため、本発明は遺伝子治療においても非常に有用である。また、本発明によれば、ガイドRNAを用いることなく細胞のゲノムDNAに相同組み換えを導入できるため、ガイドRNAを設計及び作製する時間及び費用が節約でき、迅速な相同組み換えを可能とする。
図1は、CRISPR/Cas9およびsgRNAによる標的配列以外の部位で、プラスミドを染色体に挿入できることを示す。Cas9と二種類のsgRNAを使い、プラスミドのMCS部位、出芽酵母染色体上のADE2遺伝子にDNAの二重鎖切断を導入、DNAの末端結合反応を利用してADE2部位へのYIplac128プラスミドの挿入を試みた。+/-はCas9遺伝子/crRNA, Cas9遺伝子/sgMCS, Cas9遺伝子/sgADE2もしくはYIplac128 (LEU2)プラスミドの組み合せを示す。crRNAはsgRNAから20 ntの標的配列を欠損している。sgRNAの非存在下でもYIplac128の挿入は起こる。しかしCas9と二種類のプラスミドの組み合わせを使って得られたコロニー株はLeu+, Ade+を示すことから、YIplac128はADE2領域以外の部位に挿入されている。sgADE2: ADE2領域を認識するsgRNA。sgMCS: プラスミドのMCSを認識するsgRNA。実験は三回繰り返し、統計処理を行った。 図2は、実施例1で得られた二種類のプラスミド組換え操作で得られた形質転換体(Cas9/crRNAとYIplac128の組み合わせ、Cas9/sgMCS、Cas9/sgADE2およびYIplac128の組み合わせ)において、挿入されたYIplac128プラスミドの挿入部位の確認を行った結果を示す。使用したYIplac128プラスミドの構造と、PCRで使用したMCS領域のプライマーのポジションを示す (左上図)。形質転換酵母の染色体DNAを鋳型に、左上図で示すポジションのプライマーを使用してPCRを行った。YIplac128上のAmp領域はコントロール。解析した8株全てでMCS領域が増幅することから、YIplac128のMCS部位は染色体への挿入部位として使用されていない(右上図)。形質転換体染色体(3株)のPCR解析と電気泳動の実施例(下図)。 図3は、Cas9およびdCas9によるYIplac128プラスミドの形質転換効率の比較結果を示す。crRNAはsgRNAから20 ntの標的配列を欠損している。+/-はCas9もしくはdCas9遺伝子、crRNAをコードする転写領域を持つプラスミド、YIplac128 (LEU2)プラスミドの組み合せを示す。実験は三回繰り返し、統計処理を行った。 図4は、Cas9およびdCas9によるYIplac128プラスミドの形質転換効率の比較結果を示す。crRNAはsgRNAから20 ntの標的配列を欠損している。+/-はプラスミド上のCas9もしくはdCas9遺伝子、crRNAをコードする転写領域の有無、YIplac128 (LEU2)プラスミドの組み合せを示す。実験は三回繰り返し、統計処理を行った。 図5は、染色体上のYIplac128の挿入部位の確認結果を示す。A. YIplac128を4つの領域(region1, 3, 4, 5)に分割し、PCRでYIplac128の挿入部位の確認を行った。B. PCRでYIplac128の挿入部位の挿入部位の確認結果。○はPCRで増幅できた領域であり、XはPCRで増幅きでなかった領域を示す。PCRで増幅できなかったregion 4が染色体への挿入部位と考えられる(6株/7株)。C. YIp1ac128内の出芽酵母染色体との相同配列部位として、LEU2遺伝子のプロモーター領域/ターミネーター領域を示す。本結果は染色体およびプラスミド間のLEU遺伝子のプロモーター領域間で、相同組換え機構によりYIplac128が染色体中に挿入されていることを示す。 図6は、遺伝子欠損株でのプラスミドの染色体への挿入頻度の比較結果を示す。Cas9およびcrRNAを両方を持つプラスミドとYIplac128 (LEU2)プラスミドを組み合せ、形質転換を行った。rad52△欠損は相同組換え修復機構の欠損を示し、ku70△欠損は末端結合修復機構の欠損を示す。 図7は、実施例に記載のプラスミドベクターのベクターマップを示す。 図7は、実施例に記載のプラスミドベクターのベクターマップを示す。 図7は、実施例に記載のプラスミドベクターのベクターマップを示す。 図7は、実施例に記載のプラスミドベクターのベクターマップを示す。
1.オフターゲット変異導入の可能性の評価方法
 本発明は、細胞のゲノムDNA改変用核酸(以下、単に「改変用核酸」ともいう。)の少なくとも一部の配列と、該細胞の有するゲノムDNAの少なくとも一部の配列との間の同一性の程度を算出することで、該核酸によるオフターゲット変異導入の可能性を評価する方法(以下、「本発明の評価方法」と称することがある。)を提供する。
 本発明で用いる改変用核酸には、細胞のゲノムDNAの標的ヌクレオチド配列と特異的に結合する核酸配列認識モジュールをコードするヌクレオチド配列、及び/又は核酸改変酵素をコードするヌクレオチド配列が含まれる。細胞のゲノムDNAの改変を相同組み換えにより誘導する場合には、改変用核酸には、細胞のゲノムDNAへの挿入配列を含むドナーDNAも包含されるものとする。従って、改変用核酸は、細胞のゲノムDNAの標的ヌクレオチド配列と特異的に結合する核酸配列認識モジュールをコードするヌクレオチド配列、核酸改変酵素をコードするヌクレオチド配列、及び該ゲノムDNAへの挿入配列からなる群から選択される少なくとも1つのヌクレオチド配列を含むが、該配列が2つ以上含まれる場合には、全ての配列は、単一分子の改変用核酸に存在してもよく、又は2つ以上の異なる改変用核酸分子に分かれて存在してもよい。細胞のゲノムとしては、核ゲノム、ミトコンドリアゲノム及び色素体ゲノム(例:葉緑体ゲノム)が挙げられる。
 本明細書において、「核酸配列認識モジュール」とは、ゲノムのDNA鎖上の特定のヌクレオチド配列(即ち、標的ヌクレオチド配列)を特異的に認識して結合する能力を有する分子又は分子複合体を意味する。核酸配列認識モジュールが標的ヌクレオチド配列に結合することにより、該モジュールに連結された核酸改変酵素が、二本鎖DNAの該酵素により標的とされる部位(即ち、標的ヌクレオチド配列及びその近傍のヌクレオチド)に特異的に作用することを可能にする。
 核酸配列認識モジュールにより認識される、二本鎖DNA中の標的ヌクレオチド配列は、該モジュールが特異的に結合し得る限り特に制限されず、二本鎖DNA中の任意の配列であってよい。標的ヌクレオチド配列の長さは、核酸配列認識モジュールが特異的に結合するのに十分であればよく、例えば、真核細胞のゲノムDNA中の特定の部位に変異を導入する場合、そのゲノムサイズに応じて、12ヌクレオチド以上、好ましくは15ヌクレオチド以上、より好ましくは17ヌクレオチド以上である。長さの上限は特に制限されないが、好ましくは25ヌクレオチド以下、より好ましくは22ヌクレオチド以下である。
 核酸配列認識モジュールとしては、例えば、Casエフェクタータンパク質(Casヌクレアーゼ又は単にCasともいう)の少なくとも1つのDNA切断能が失活したCRISPR-Casシステム(以下「CRISPR-変異Cas」ともいう)、ジンクフィンガーモチーフ、TAL(transcription activator-like)エフェクター及びPPR(pentatricopeptide repeat)モチーフ等の他、制限酵素、転写因子、RNAポリメラーゼ等のDNAと特異的に結合し得るタンパク質のDNA結合ドメインを含み、DNA二重鎖切断能を有しないフラグメント等が用いられ得るが、これらに限定されない。好ましくは、CRISPR-変異Cas、ジンクフィンガーモチーフ、TALエフェクター、PPRモチーフ等が挙げられる。また、前記の少なくとも1つのDNA切断能が失活したCasエフェクタータンパク質を、変異Casエフェクタータンパク質又は単に変異Casともいう。
 ジンクフィンガーモチーフは、Cys2His2型の異なるジンクフィンガーユニット(1フィンガーが約3塩基を認識する)を3~6個連結させたものであり、9~18塩基の標的ヌクレオチド配列を認識することができる。ジンクフィンガーモチーフは、Modular assembly法(Nat Biotechnol(2002) 20: 135-141)、OPEN法(Mol Cell (2008) 31: 294-301)、CoDA法(Nat Methods (2011) 8: 67-69)、大腸菌one-hybrid法(Nat Biotechnol (2008) 26:695-701)等の公知の手法により作製することができる。ジンクフィンガーモチーフの作製の詳細については、特許第4968498号公報を参照することができる。
 TALエフェクターは、約34アミノ酸を単位としたモジュールの繰り返し構造を有しており、1つのモジュールの12及び13番目のアミノ酸残基(RVDと呼ばれる)によって、結合安定性と塩基特異性が決定される。各モジュールは独立性が高いので、モジュールを繋ぎ合わせるだけで、標的ヌクレオチド配列に特異的なTALエフェクターを作製することが可能である。TALエフェクターは、オープンリソースを利用した作製方法(REAL法(Curr Protoc Mol Biol (2012) Chapter 12: Unit 12.15)、FLASH法(Nat Biotechnol(2012) 30: 460-465)、Golden Gate法(Nucleic Acids Res (2011) 39: e82)等)が確立されており、比較的簡便に標的ヌクレオチド配列に対するTALエフェクターを設計することができる。TALエフェクターの作製の詳細については、特表2013-513389号公報を参照することができる。
 PPRモチーフは、35アミノ酸からなり1つの核酸塩基を認識するPPRモチーフの連続によって、特定のヌクレオチド配列を認識するように構成されており、各モチーフの1、4及びii(-2)番目のアミノ酸のみで標的塩基を認識する。モチーフ構成に依存性はなく、両脇のモチーフからの干渉はないので、TALエフェクター同様、PPRモチーフを繋ぎ合わせるだけで、標的ヌクレオチド配列に特異的なPPRタンパク質を作製することが可能である。PPRモチーフの作製の詳細については、特開2013-128413号公報を参照することができる。
 本発明で使用されるCasは、目的遺伝子中の標的ヌクレオチド配列とそれに隣接するprotospacer adjacent motif(PAM)を認識し結合し得る限り、特に制限はないが、好ましくはCas9ヌクレアーゼ(以下では、単に「Cas9」ともいう)又はCpf1ヌクレアーゼ(以下では、単に「Cpf1」ともいう)である。Cas9としては、例えばストレプトコッカス・ピオゲネス(Streptococcus pyogenes)由来のCas9(SpCas9; PAM配列NGG(NはA、G、T又はC。以下同じ))、ストレプトコッカス・サーモフィラス(Streptococcus thermophilus)由来のCas9(StCas9; PAM配列NNAGAAW)、ナイセリア・メニンギチジス(Neisseria meningitidis)由来のCas9(NmCas9; PAM配列NNNNGATT)、スタフィロコッカス・アウレウス(Staphylococcus aureus)由来のCas9(SaCas9;PAM配列:NNGRRT)、カンピロバクター・ジェジュニ(Campylobacter jejuni)由来のCas9(CjCas9;PAM配列NNNVRYM(VはA、G又はC;RはA又はG;YはT又はC;MはA又はCを示す))が挙げられるが、これらに限定されない。好ましくはPAMによる制約が少ないSpCas9である(実質2塩基であり、理論上ゲノム上のほぼどこでも標的化することができる)。また、Cpf1としては、例えば、フランシセラ・ノヴィシダ(Francisella novicida)由来のCpf1(FnCpf1; PAM配列NTT)、アシダミノコッカス sp.(Acidaminococcus sp.)由来のCpf1(AsCpf1;PAM配列NTTT)、ラクノスピラ科細菌(Lachnospiraceae bacterium)由来のCpf1(LbCpf1; PAM配列NTTT)等が挙げられるが、それらに限定されない。本発明で用いられる変異Casとしては、Casの二本鎖DNAの両方の鎖の切断能が失活したものと、一方の鎖の切断能のみを失活したニッカーゼ活性を有するものの、いずれも使用可能である。例えば、SpCas9の場合、10番目のAsp残基がAla残基に変換した、ガイドRNAと相補鎖を形成する鎖の反対鎖の切断能を欠く(従って、ガイドRNAと相補鎖を形成する鎖に対するニッカーゼ活性を有する)D10A変異体、あるいは、840番目のHis残基がAla残基で変換した、ガイドRNAと相補鎖を形成する鎖の切断能を欠く(従って、ガイドRNAと相補鎖を形成する鎖の反対鎖に対するニッカーゼ活性を有する)H840A変異体、さらにはその二重変異体(dCas9)を用いることができる。SaCas9の場合は、10番目のAsp残基をAla残基に変換し、及び/又は556番目のAsp残基、557番目のHis残基及び/又は580番目のAsn残基をAla残基に変換した改変体を調製することができる。また、FnCpf1の場合、917番目のAsp残基がAla残基(D917A)に、あるいは1006番目のGlu残基がAla残基(E1006A)に変換した、両方の鎖の切断能を欠く変異体を用いることができる。二本鎖DNAの少なくとも一方の鎖の切断能を欠く限り、他の変異Casも同様に用いることができる。
 制限酵素、転写調節因子、RNAポリメラーゼ等のフラグメントを用いる場合、これらのタンパク質のDNA結合ドメインは周知であるので、例えば、該ドメインを含み、且つDNA二重鎖切断能を有しない断片を容易に設計し、構築することができる。
 本明細書において「核酸改変酵素」とは、核酸と反応することで、直接的又は間接的にDNAの改変が生じる酵素を意味し、触媒活性を有する限り、そのペプチド断片であってもよい。かかる核酸との反応としては、例えば、核酸分解酵素により触媒される、DNA鎖を切断する反応(以下「DNA鎖切断反応」ともいう)や、核酸塩基変換酵素により触媒される、DNA鎖の切断を直接伴わない反応である、核酸塩基のプリン又はピリミジン環上の置換基を他の基又は原子に変換する反応(以下、「核酸塩基変換反応」ともいう)(例:塩基の脱アミノ化反応)、DNAグリコシラーゼにより触媒される、DNAのN-グリコシド結合を加水分解する反応(以下「脱塩基反応」ともいう)などが挙げられる。
 本発明において、二本鎖DNAの「改変」とは、DNA鎖上のあるヌクレオチド(例えば、dA、dC、dG又はdT)又はヌクレオチド配列が、他のヌクレオチド又はヌクレオチド配列に置換されるか、欠失すること、あるいはDNA鎖上のあるヌクレオチド間に他のヌクレオチドもしくはヌクレオチド配列が挿入されることを意味する。
 本発明に用いられる核酸分解酵素として、上記反応を触媒し得るものであれば特に制限はなく、例えば、ヌクレアーゼ(例:Cas等)、エンドヌクレアーゼ(例:制限酵素等)、エキソヌクレアーゼ等)、リコンビナーゼ、DNAジャイレース、DNAトポイソメラーゼ、トランスポザーゼなどが挙げられる。
 本発明に用いられる核酸塩基変換酵素としては、例えば、アミノ基をカルボニル基に変換する脱アミノ化反応を触媒する、核酸/ヌクレオチドデアミナーゼスーパーファミリーに属するデアミナーゼが挙げられる。好ましくは、シトシン又は5-メチルシトシンをそれぞれウラシル又はチミンに変換し得るシチジンデアミナーゼ、アデニンをヒポキサンチンに変換し得るアデノシンデアミナーゼ、グアニンをキサンチンに変換し得るグアノシンデアミナーゼ等が挙げられるが、好ましくはシチジンデアミナーゼ(例:APOBECファミリー、AID、PmCDA1等)である。デアミナーゼを用いたゲノムDNAの改変方法については、例えば、国際公開第2015/133554号を参照することができる。
 本発明に用いられるDNAグリコシラーゼとしては、上記反応を触媒し得るものであれば特に制限はなく、チミンDNAグリコシラーゼ、オキソグアニングルコシラーゼ、アルキルアデニンDNAグリコシラーゼ(例:酵母3-メチルアデニン-DNAグリコシラーゼ(MAG1)等)などが挙げられる。かかるDNAグリコシラーゼとしては、国際公開第2016/072399号に記載された、シトシン-DNAグリコシラーゼ(CDG)活性及び/又はチミン-DNAグリコシラーゼ(TDG)活性を有するUNG(ウラシル-DNAグリコシラーゼ)の変異体、ワクシニアウイルス由来のUDG変異体が挙げられる。
 前記UNGの変異体の具体例としては、酵母UNG1のN222D/L304A二重変異体、N222D/R308E二重変異体、N222D/R308C二重変異体、Y164A/ L304A二重変異体、Y164A/R308E二重変異体、Y164A/R308C二重変異体、Y164G/ L304A二重変異体、Y164G/R308E二重変異体、Y164G/R308C二重変異体、N222D/Y164A/L304A三重変異体、N222D/Y164A/R308E三重変異体、N222D/Y164A/R308C三重変異体、N222D/Y164G/L304A三重変異体、N222D/Y164G/R308E三重変異体、N222D/Y164G/R308C三重変異体などが挙げられる。酵母UNG1に代えて別のUNGを用いる場合は、上記各変異体に対応するアミノ酸に、同様の変異が導入された変異体を用いればよい。ワクシニアウイルス由来のUDG変異体としては、N120D変異体、Y70G変異体、Y70A変異体、N120D/Y70G二重変異体、N120D/Y70A二重変異体などが挙げられる。
 本明細書において、「ドナーDNA」とは、外来の挿入配列を含むDNAを意味し、ドナーDNAには通常、標的部位に隣接する、標的部位の上流側及び下流側2か所の領域(以下「隣接領域」ともいう)の配列と相同な2種類の配列(以下「ホモロジーアーム」ともいう)を含む。各ホモロジーアームを区別する場合には、「5’ホモロジーアーム」と「3’ホモロジーアーム」とで区別することがある。また、二本鎖DNAの「標的部位」とは、改変が生じることとなる部位を意味し、該部位には、ドナーDNAに含まれる挿入配列で置換されることとなる領域、及び該挿入配列が挿入されることとなる位置も包含されるが、該標的部位には、前記隣接配列は含まれない。
 標的部位の隣接領域と相同な配列とは、完全に同一な配列だけでなく、細胞内で相同組換えが起こり得る限り、完全に同一な配列に対して、好ましくは80%以上(例:85%以上、90%以上、95%以上、96%以上、97%以上、98%以上、99%以上)の同一性を有する配列であってもよい。
 挿入配列には、必要に応じて、薬剤耐性遺伝子(例:カナマイシン耐性遺伝子、アンピシリン耐性遺伝子、ピューロマイシン耐性遺伝子など)、チミジンキナーゼ遺伝子、ジフテリアトキシン遺伝子などの選択マーカー配列、緑色蛍光タンパク質(GFP)、赤色蛍光タンパク質、βグルクロニダーゼ(GUS)、FLAGなどのレポーター遺伝子配列などを含むことができる。また、細胞の選別等が終了した後などに、これらの遺伝子を切除できるように、それらの前後にLoxP配列、FRT配列又はトランスポゾン特異性末端逆位配列(PiggyBac Terminal Repeat)を有してもよい。好ましいトランスポゾンとしては、例えば、鱗翅目昆虫由来のトランスポゾンであるpiggyBac等が挙げられる(Kaji, K. et al., Nature, 458: 771-775 (2009)、Woltjen et al., Nature, 458: 766-770 (2009)、WO 2010/012077)。あるいは、Oji A. et al., Sci Rep, 6: 31666 (2016)などに記載されるように、上記薬剤耐性遺伝子を含む発現ベクターを共導入し、一過的な(数日程度の)薬剤選抜を行ってもよい。挿入配列が標的部位に挿入されていることや、標的部位と置換されているか否かは、配列を解読するほか、細胞から分離抽出した染色体DNAをサザンハイブリダイゼーションまたはPCR法によりスクリーニングすることなどにより確認することができ、ドナーDNAに上記薬剤耐性遺伝子等が存在する場合には、それらの発現を指標として確認することもできる。
 ドナーDNAは、直鎖状(例:合成二本鎖DNA)であってもよく、環状(例:プラスミドDNA)であってもよく、また、一本鎖DNA(例:一本鎖オリゴデオキシヌクレオチド(ssODN))であってもよく、二本鎖DNAであってもよい。ドナーDNAは、挿入配列の塩基長や、宿主細胞の相同組換え活性等のより、適宜設計することができる。例えば、挿入配列として100塩基長以下の場合、通常はssODN又は合成二本鎖DNAが用いられ、それより長い場合、通常は合成二本鎖DNA又はプラスミドDNAが用いられる。ドナーDNAの長さも特に制限はなく、挿入配列の長さなどにより適宜設計することができる。挿入配列の長さは、特に制限はなく、通常は1塩基長~数万塩基長の範囲(例えば、ssODNの場合には、100塩基長以下(例:70塩基以下、50塩基以下))で目的に応じて適宜設計することができる。また、各ホモロジーアームの長さも特に制限はなく、ドナーDNAがssODNの場合、通常は10塩基長~150塩基長のものが用いられ、ドナーDNAが合成二本鎖DNAの場合、通常は10~5000塩基長のものが用いられ、ドナーDNAがプラスミドDNAの場合、通常は100塩基長~5000塩基長、好ましくは500塩基長~1000塩基長のものが用いられる。これらのドナーDNAは、公知文献(例:Ochiai H, Int J Mol Sci, 16:21128-21137 (2015)、Hockemeyer D et al., Nat Biotefchnol, 27:851-857 (2009))を参酌して設計することができる。
 核酸配列認識モジュールと、核酸改変酵素とは、それらの融合タンパク質をコードする核酸として、あるいは、結合ドメインやインテイン等を利用してタンパク質に翻訳後、宿主細胞内で複合体(以下、「本発明の複合体」と称することがある。)を形成し得るような形態で、それらをそれぞれコードする核酸として調製することが好ましい。制限酵素やCRISPR-Casシステムのように、核酸配列認識モジュールと核酸改変酵素とが一体となって機能する分子又は分子複合体も、本発明の複合体に包含される。また、本発明の複合体がCRISPR-Casシステムである場合には、本発明の複合体をコードする核酸には、Casをコードするヌクレオチド配列だけでなく、ガイドRNAをコードするヌクレオチド配列も含まれ得る。同様に、核酸配列認識モジュールがCRISPR-変異Casシステムである場合には、該モジュールをコードする核酸には、Casをコードするヌクレオチド配列だけでなく、ガイドRNAをコードするヌクレオチド配列も含まれ得る。さらに、ガイドRNAは、crRNA及びtracrRNAからなる場合には、それぞれ別の分子の形態であってもよく、crRNAとtracrRNAとのキメラRNAの形態であってもよい。ここで核酸は、DNAであってもRNAであってもよい。DNAの場合は、好ましくは二本鎖DNAであり、宿主細胞内で機能的なプロモーターの制御下に配置した発現ベクターの形態で提供される。RNAの場合は、好ましくは一本鎖RNAである。
 改変用核酸は、例えば、細胞のゲノムDNAの標的ヌクレオチド配列と特異的に結合する核酸配列認識モジュールをコードするヌクレオチド配列及び/又は核酸改変酵素をコードするヌクレオチド配列を適当な発現ベクター中のプロモーターの下流に連結することにより製造することができる。
 発現ベクターとしては、大腸菌由来のプラスミド(例、pBR322,pBR325,pUC12,pUC13);枯草菌由来のプラスミド(例、pUB110,pTP5,pC194);酵母由来プラスミド(例、pSH19,pSH15);昆虫細胞発現プラスミド(例:pFast-Bac);動物細胞発現プラスミド(例:pA1-11、pXT1、pRc/CMV、pRc/RSV、pcDNAI/Neo);λファージなどのバクテリオファージ;バキュロウイルスなどの昆虫ウイルスベクター(例:BmNPV、AcNPV);レトロウイルス、ワクシニアウイルス、アデノウイルスなどの動物ウイルスベクターなどが用いられる。
 プロモーターとしては、遺伝子の発現に用いる宿主に対応して適切なプロモーターであればいかなるものでもよい。
 例えば、宿主が動物細胞である場合、SRαプロモーター、SV40プロモーター、LTRプロモーター、CMV(サイトメガロウイルス)プロモーター、RSV(ラウス肉腫ウイルス)プロモーター、MoMuLV(モロニーマウス白血病ウイルス)LTR、HSV-TK(単純ヘルペスウイルスチミジンキナーゼ)プロモーターなどが用いられる。なかでも、CMVプロモーター、SRαプロモーターなどが好ましい。
 宿主が大腸菌である場合、trpプロモーター、lacプロモーター、recAプロモーター、λPLプロモーター、lppプロモーター、T7プロモーターなどが好ましい。
 宿主がバチルス属菌である場合、SPO1プロモーター、SPO2プロモーター、penPプロモーターなどが好ましい。
 宿主が酵母である場合、Gal1/10プロモーター、PHO5プロモーター、PGKプロモーター、GAPプロモーター、ADHプロモーターなどが好ましい。
 宿主が昆虫細胞である場合、ポリヘドリンプロモーター、P10プロモーターなどが好ましい。
 宿主が植物細胞である場合、CaMV35Sプロモーター、CaMV19Sプロモーター、NOSプロモーターなどが好ましい。
 発現ベクターとしては、上記の他に、所望によりエンハンサー、スプライシングシグナル、ターミネーター、ポリA付加シグナル、薬剤耐性遺伝子、栄養要求性相補遺伝子等の選択マーカー、複製起点などを含有しているものを用いることができる。
 改変用核酸がRNAである場合、該RNAは、上記発現ベクターを鋳型として、自体公知のインビトロ転写系にてmRNAに転写することにより調製することができる。
 一方、ガイドRNAをコードするDNAは、標的ヌクレオチド配列に対して相補的なヌクレオチド配列(本明細書中、「ターゲッティング配列(targeting sequence)」ともいう)を含む、crRNA配列(例えば、CasとしてCpf1をリクルートする場合)、あるいは、crRNAコード配列と必要に応じて既知のtracrRNAコード配列とを連結したオリゴDNA配列を設計し、DNA/RNA合成機を用いて、化学的に合成することができる。ターゲッティング配列の長さは、標的ヌクレオチド配列に対して特異的に結合し得る限り特に制限はないが、例えば15~30ヌクレオチド、好ましくは18~25ヌクレオチドである。
 ガイドRNAをコードするDNAも、上記と同様の発現ベクターに挿入することができるが、プロモーターとしては、pol III系のプロモーター(例、SNR6、SNR52、SCR1、RPR1、U3、U6、H1プロモーター等)及びターミネーター(例、ポリT配列(T6配列等))を用いることが好ましい。
 本発明の評価方法において、同一性の程度の算出の対象配列である「改変用核酸の少なくとも一部の配列」(以下、「対象配列」と称することがある)は、上述の改変用核酸の少なくとも一部の配列であれば特に限定されないが、例えば、該改変用核酸の連続する20ヌクレオチド以上(例:20、25、30、35、40、45、50ヌクレオチド又はそれ以上)からなる配列、改変用核酸の全長配列などが挙げられる。
 また、上記相同性又は同一性の参照配列となる「細胞の有するゲノムDNAの少なくとも一部の配列」は、好ましくはゲノムDNAの全長配列であるが、一部の配列であってもよい。かかる一部の配列としては、例えば、全エクソンの配列、ハウスキーピング遺伝子及びその発現制御領域(例:プロモーター、エンハンサー等)の配列などが挙げられるが、当業者であれば適宜参照配列を設定することができる。改変用核酸を導入する細胞のゲノムDNAの配列が未知の場合には、例えば、次世代シーケンサーを用いた大規模シーケンスによりゲノムDNAの配列を決定することができ、生物学的分類の近いゲノム配列が既知の生物からの情報に基づき、適宜プライマーを設計してPCRにより目的の配列を増幅し、シーケンシングすることにより、配列情報を取得することもできる。
 上記の対象配列と参照配列との同一性の程度の算出方法は、公知の方法、例えば、相同性計算アルゴリズムのNCBI BLAST(National Center for Biotechnology Information Basic Local Alignment Search Tool)(https://blast.ncbi.nlm.nih.gov/Blast.cgi)による同一性に基づき算出する方法が挙げられるが、この方法に限定されない。具体的に例示すると、同一性の程度は、対象配列を特定のヌクレオチド数(例えば、20ヌクレオチド以上(例:20、25、30、35、40、45、50ヌクレオチド又はそれ以上))からなる配列で分割して(各分割された配列を「分割配列」ともいう)、各分割配列を問い合わせ配列(query sequence)として、defaultの条件下でNCBI BLASTにかけ、各問い合わせ配列における同一性が特定の割合以上のヒット配列の数の合計数を、同一性の程度とすることができるが、この方法に限定されない。また、前記ヒット配列の数の合計数などの特定の値が、あらかじめ設定した基準値以下である場合に、改変用核酸によるオフターゲット変異導入の可能性が低いと評価し、該基準値を超える場合に、改変用核酸によるオフターゲット変異導入の可能性が高いと評価することができる。
 好ましい態様において、対象配列を、各配列がn個のヌクレオチド残基からなる(ただし、対象配列の最後の分割配列はn個以下となる)分割配列とし、各分割配列からm個の問い合わせ配列を作成した場合に、
Figure JPOXMLDOC01-appb-M000001
を基準値として設定することができ、具体的な基準値としては、上記同一性の割合を20%とした場合には、10以下(例:10、9、8、7、6、5、4、3、2、1、0)が挙げられる。
2.二本鎖DNAの標的部位を改変する方法
 本発明の別の態様において、(1)本発明の評価方法により、上記1.に記載の改変用核酸のオフターゲット変異導入の可能性を評価する工程、及び(2)前記工程(1)でオフターゲット変異導入の可能性が評価された核酸を該細胞に導入する工程を含む、細胞の有する二本鎖DNAの標的部位を改変する方法(以下、「本発明の改変方法」と称することがある。)が提供される。
 本発明の評価方法により、オフターゲット変異導入の可能性を評価することできるため、あらかじめ実施する改変方法の、オフターゲット変異導入に起因する毒性を予測することができ、オフターゲット変異導入の可能性が低い場合には、オフターゲット変異に起因する細胞の毒性を抑制し得ると予測することができる。従って、本発明の改変方法の工程(2)での評価は、上記1.に記載した方法によりオフターゲット変異導入の可能性が低い(即ち、上記1.に記載の同一性の程度が上記基準値以下である)との評価であることが好ましい。
 改変用核酸を導入する宿主細胞としては、例えば、エシェリヒア属菌、バチルス属菌、酵母、昆虫細胞、昆虫、動物細胞などが挙げられる。
 エシェリヒア属菌としては、例えば、エシェリヒア・コリ(Escherichia coli)K12・DH1〔Proc. Natl. Acad. Sci. USA,60,160 (1968)〕,エシェリヒア・コリJM103〔Nucleic Acids Research,9,309 (1981)〕,エシェリヒア・コリJA221〔Journal of Molecular Biology,120,517 (1978)〕,エシェリヒア・コリHB101〔Journal of Molecular Biology,41,459 (1969)〕,エシェリヒア・コリC600〔Genetics,39,440 (1954)〕などが用いられる。
 バチルス属菌としては、例えば、バチルス・サブチルス(Bacillus subtilis)MI114〔Gene,24,255 (1983)〕,バチルス・サブチルス207-21〔Journal of Biochemistry,95, 87 (1984)〕などが用いられる。
 酵母としては、例えば、サッカロマイセス・セレビシエ(Saccharomyces cerevisiae)AH22,AH22R-,NA87-11A,DKD-5D,20B-12,シゾサッカロマイセス・ポンベ(Schizosaccharomyces pombe)NCYC1913,NCYC2036,ピキア・パストリス(Pichia pastoris)KM71などが用いられる。
 昆虫細胞としては、例えば、ウイルスがAcNPVの場合、夜盗蛾の幼虫由来株化細胞(Spodoptera frugiperda cell;Sf細胞)、Trichoplusia niの中腸由来のMG1細胞、Trichoplusia niの卵由来のHigh FiveTM細胞、Mamestra brassicae由来の細胞、Estigmena acrea由来の細胞などが用いられる。ウイルスがBmNPVの場合、昆虫細胞としては、蚕由来株化細胞(Bombyx mori N 細胞;BmN細胞)などが用いられる。該Sf細胞としては、例えば、Sf9細胞(ATCC CRL1711)、Sf21細胞〔以上、In Vivo, 13, 213-217 (1977)〕などが用いられる。昆虫としては、例えば、カイコの幼虫、ショウジョウバエ、コオロギなどが用いられる〔Nature,315,592 (1985)〕。
 動物細胞としては、例えば、サルCOS-7細胞、サルVero細胞、チャイニーズハムスター卵巣(CHO)細胞、dhfr遺伝子欠損CHO細胞、マウスL細胞,マウスAtT-20細胞、マウスミエローマ細胞,ラットGH3細胞、ヒト胎児腎臓由来細胞(例:HEK293細胞)、ヒト肝癌由来細胞(例:HepG2)、ヒトFL細胞などの細胞株、ヒト及び他の哺乳動物のiPS細胞やES細胞などの多能性幹細胞、種々の組織から調製した初代培養細胞が用いられる。さらには、ゼブラフィッシュ胚、アフリカツメガエル卵母細胞なども用いることができる。
 植物細胞としては、種々の植物(例えば、イネ、コムギ、トウモロコシ等の穀物、トマト、キュウリ、ナス等の商品作物、カーネーション、トルコギキョウ等の園芸植物、タバコ、シロイヌナズナ等の実験植物など)から調製した懸濁培養細胞、カルス、プロトプラスト、葉切片、根切片などが用いられる。
 改変用核酸の導入は、宿主の種類に応じ、公知の方法(例えば、リゾチーム法、コンピテント法、PEG法、CaCl2共沈殿法、エレクトロポレーション法、マイクロインジェクション法、パーティクルガン法、リポフェクション法、アグロバクテリウム法など)に従って実施することができる。複数の改変用核酸を細胞に導入する場合、各改変用核酸の導入は、同時に行ってもよく、異なるタイミングで行ってもよい。
 大腸菌は、例えば、Proc. Natl. Acad. Sci. USA,69,2110 (1972)やGene,17,107 (1982)などに記載の方法に従って形質転換することができる。
 バチルス属菌は、例えば、Molecular & General Genetics,168,111 (1979)などに記載の方法に従ってベクター導入することができる。
 酵母は、例えば、Methods in Enzymology,194,182-187 (1991)、Proc. Natl. Acad. Sci. USA,75,1929 (1978)などに記載の方法に従ってベクター導入することができる。
 昆虫細胞および昆虫は、例えば、Bio/Technology,6,47-55 (1988)などに記載の方法に従ってベクター導入することができる。
 動物細胞は、例えば、細胞工学別冊8 新細胞工学実験プロトコール,263-267 (1995)(秀潤社発行)、Virology,52,456 (1973)に記載の方法に従ってベクター導入することができる。
 改変用核酸を導入した細胞の培養は、宿主の種類に応じ、公知の方法に従って実施することができる。
 例えば、大腸菌またはバチルス属菌を培養する場合、培養に使用される培地としては液体培地が好ましい。また、培地は、形質転換体の生育に必要な炭素源、窒素源、無機物などを含有することが好ましい。ここで、炭素源としては、例えば、グルコース、デキストリン、可溶性澱粉、ショ糖などが;窒素源としては、例えば、アンモニウム塩類、硝酸塩類、コーンスチープ・リカー、ペプトン、カゼイン、肉エキス、大豆粕、バレイショ抽出液などの無機または有機物質が;無機物としては、例えば、塩化カルシウム、リン酸二水素ナトリウム、塩化マグネシウムなどがそれぞれ挙げられる。また、培地には、酵母エキス、ビタミン類、生長促進因子などを添加してもよい。培地のpHは、好ましくは約5~約8である。
 大腸菌を培養する場合の培地としては、例えば、グルコース、カザミノ酸を含むM9培地〔Journal of Experiments in Molecular Genetics, 431-433, Cold Spring Harbor Laboratory, New York 1972〕が好ましい。必要により、プロモーターを効率よく働かせるために、例えば、3β-インドリルアクリル酸のような薬剤を培地に添加してもよい。大腸菌の培養は、通常約15~約43℃で行なわれる。必要により、通気や撹拌を行ってもよい。
 バチルス属菌の培養は、通常約30~約40℃で行なわれる。必要により、通気や撹拌を行ってもよい。
 酵母を培養する場合の培地としては、例えば、バークホールダー(Burkholder)最小培地〔Proc. Natl. Acad. Sci. USA,77,4505 (1980)〕や0.5%カザミノ酸を含有するSD培地〔Proc. Natl. Acad. Sci. USA,81,5330 (1984)〕などが挙げられる。培地のpHは、好ましくは約5~約8である。培養は、通常約20℃~約35℃で行なわれる。必要に応じて、通気や撹拌を行ってもよい。
 昆虫細胞または昆虫を培養する場合の培地としては、例えばGrace's Insect Medium〔Nature,195,788 (1962)〕に非働化した10%ウシ血清等の添加物を適宜加えたものなどが用いられる。培地のpHは、好ましくは約6.2~約6.4である。培養は、通常約27℃で行なわれる。必要に応じて通気や撹拌を行ってもよい。
 動物細胞を培養する場合の培地としては、例えば、約5~約20%の胎児ウシ血清を含む最小必須培地(MEM)〔Science,122,501 (1952)〕,ダルベッコ改変イーグル培地(DMEM)〔Virology,8,396 (1959)〕,RPMI 1640培地〔The Journal of the American Medical Association,199,519 (1967)〕,199培地〔Proceeding of the Society for the Biological Medicine,73,1 (1950)〕などが用いられる。培地のpHは、好ましくは約6~約8である。培養は、通常約30℃~約40℃で行なわれる。必要に応じて通気や撹拌を行ってもよい。
 植物細胞を培養する培地としては、MS培地、LS培地、B5培地などが用いられる。培地のpHは好ましくは約5~約8である。培養は、通常約20℃~約30℃で行なわれる。必要に応じて通気や撹拌を行ってもよい。
 以上のようにして、本発明の複合体を細胞内で発現させることができる。
 改変用核酸がRNAの場合には、宿主細胞への導入は、マイクロインジェクション法、リポフェクション法等により行うことができる。RNA導入は1回もしくは適当な間隔をおいて複数回(例えば、2~5回)繰り返して行うことができる。
3.相同組み換えの誘導方法
 下述の実施例で示される通り、CRISPR-Cas9システムを用いた場合に、ガイドRNAの有無に関係なく、さらにはCas9ヌクレアーゼのDNA切断能の有無にも関係なく、細胞のゲノムDNAにおける相同組み換えが生じることが見出された。即ち、Cas9は、DNA切断能だけでなく、Cas9を用いないものと比べて相同組み換えの効率を向上させると機能を有することが強く示唆された。従って、本発明の別の態様において、細胞のゲノムDNAと、該ゲノムDNAへの挿入配列を含むドナーDNAと、Cas9ヌクレアーゼとを、該ゲノムDNAと該ドナーDNAとの間で相同組み換えを誘導する方法(以下、「本発明の相同組み換え誘導方法」と称することがある。)が提供されるが、本発明の相同組み換え誘導方法は、ガイドRNAを用いることを必要としない(即ち、ガイドRNAの非存在下で相同組み換えが誘導される)。また、本発明の相同組み換え誘導方法を行う前に、本発明の評価方法により、導入予定の核酸によるオフターゲット変異導入の可能性を評価してもよい。
 「相同組み換え」は、相同性のあるDNA間で行われる組み換えを意味し、DNA修復や外来DNAの取り込みに関与するリコンビナーゼにより媒介される。酵母やヒトを含む真核生物では、2種のリコンビナーゼが知られおり、そのうちRad51タンパク質は体細胞分裂および減数分裂での相同組換えに必要であり、もう一方のDmc1タンパク質は減数分裂時の相同組換えに特異的に機能する。真核生物では、DNA二本鎖の切断末端はMre11/Rad50/Nbs1(Xrs2)複合体によって認識され、相同組換えを介した修復が行われる際は、ヘリカーゼおよびヌクレアーゼによって一本鎖領域が生じ、さらに一本鎖DNA結合蛋白質(RPA)によって安定化される。その後Rad52タンパク質等の組換え触媒タンパク質が一本鎖DNA上でRPAを除去しRad51を配置することで、最終的に相同組換えが生じる。大腸菌を含む真性細菌ではリコンビナーゼであるRecAが相同組換えを介してDNA修復や外来DNAの取り込みに関与していることが知られている。大腸菌では、DNAの二重鎖が切断されると、RecBCDと呼ばれるヘリカーゼとヌクレアーゼの複合体によりその末端の認識及び消化が行われて一本鎖DNAが生じる。通常、RecBCDの働きにより、一本鎖DNA上にRecAが配置され、該RecAが、一本鎖DNAを保護する一本鎖DNA結合タンパク質(SSB)を除去しながら一本鎖DNA上に重合・伸長することによりヌクレオプロテインフィラメントが形成され、最終的に相同組み換えが生じる。
 本発明において、「相同組み換えが誘導される」とは、Cas9を導入していない対照と比較して、相同組み換えの効率が向上することを意味する。本発明の相同組み換え誘導方法では、相同組み換えが誘導される結果、細胞のゲノムDNA内の標的部位に、ドナーDNAに含まれる挿入配列が挿入されるか、あるいは該標的部位と挿入配列との置換が生じる効率が、Cas9を用いない場合と比較して向上する。
 上記ドナーDNAについての定義、説明、具体例などは、上記1.で記載した通りである。また、Cas9と、細胞のゲノムDNAとの接触は、典型的には、目的のゲノムDNAを有する細胞に、Cas9をコードする核酸を導入することにより実施される。本発明の相同組み換え誘導方法の対象となる細胞についての説明、具体例、該細胞への核酸の導入方法、該細胞の培養方法などは、上記2.の記載を参照することができるが、かかる細胞として、酵母などの真核細胞が好ましい。
 本発明で用いるCas9ヌクレアーゼとしては、例えば、上記1.で記載のSpCas9、StCas9、NmCas9、SaCas9、CjCas9などが挙げられるが、それらに限定されない。Cas9は、DNA鎖の切断能を有していてもよいが、細胞毒性を低減させる観点からは、該切断能の少なくとも1つが失活した変異Cas9ヌクレアーゼ(変異Cas9と略記する場合がある。)が好ましく、両方のDNA鎖の切断能が失活した変異Cas9がより好ましい。変異Cas9としては、例えば、SpCas9の場合、10番目のAsp残基がAla残基に変換したD10A変異体、あるいは、840番目のHis残基がAla残基で変換したH840A変異体、さらにはその二重変異体(dCas9)を用いることができる。SaCas9の場合は、10番目のAsp残基をAla残基に変換し、及び/又は556番目のAsp残基、557番目のHis残基及び/又は580番目のAsn残基をAla残基に変換した改変体を調製することができる。また、FnCpf1の場合、917番目のAsp残基がAla残基(D917A)に、あるいは1006番目のGlu残基がAla残基(E1006A)に変換した、両方の鎖の切断能を欠く変異体を用いることができる。二本鎖DNAの少なくとも一方の鎖の切断能を欠く限り、他の変異Cas9も同様に用いることができる。
4.改変用核酸の設計方法
 本発明の評価方法により、オフターゲット変異導入の可能性を評価することができ、該評価結果に基づき、改変用核酸の配列の一部を置換することで、該改変用核酸によるオフターゲット変異導入の可能性を低減させることが可能となる。特に、改変用核酸のオフターゲット変異導入の可能性が高いと評価された場合には、該改変用核酸の配列の一部を置換することが好ましい。従って、本発明の別の態様において、(1)本発明の評価方法により、改変用核酸のオフターゲット変異導入の可能性を評価する工程、及び(2)前記工程(1)による評価の結果に基づき、該核酸の配列の一部を置換する工程を含む、オフターゲット変異導入の可能性が低減された核酸を設計する方法(以下、「本発明の設計方法」と称することがある。)が提供される。本発明の設計方法によれば、対象の改変用核酸のヌクレオチド配列さえ取得できれば、該配列によりオフターゲット変異導入の可能性をあらかじめ評価することができるため、改変用核酸を実際に作製することは必ずしも必要とはせず、作製する予定の改変用核酸に、本発明の設計方法を適用して配列を設計してもよい。
 本明細書において、「オフターゲット変異の可能性を低減させる」ことは、改変用核酸の一部を置換する前の改変用核酸を用いた場合と比較して、改変用核酸によるオフターゲット変異導入の可能性が低くなることを意味する。
 上記工程(1)は、上記1.で説明した通りに実施することができる。上記工程(2)は、上記1.で説明した方法により、オフターゲット変異導入の可能性が高いと評価された改変用核酸に対して行っても、又はオフターゲット変異導入の可能性が低いと評価された改変用核酸に対し、さらに該可能性を低減させるために行ってもよい。上記工程(2)で置換の対象となる配列としては、改変用核酸に含まれる配列であればどのような配列であってもよく、細胞のゲノムDNAの標的ヌクレオチド配列と特異的に結合する核酸配列認識モジュールをコードするヌクレオチド配列、核酸改変酵素をコードするヌクレオチド配列、及び該ゲノムDNAへの挿入配列からなる群から選択される少なくとも1つのヌクレオチド配列、その他の配列(例:発現制御領域の配列、薬剤耐性遺伝子の配列、マルチクローニングサイトの配列等)、これらの配列の一部の配列などが挙げられる。例えば、上記工程(2)で置換の対象となる配列は、本発明の評価方法を、対象配列の分割配列を用いて実施する場合には、該分割配列の内、ヒット配列が特に高いものを少なくとも1つ選択し、該選択した分割配列に対して、本発明の設計方法を適用することで、効率的にオフターゲット変異導入の可能性を低減することができる。また、本明細書において、改変用核酸の一部に付加的な配列を挿入することも、該核酸の配列の一部の置換に包含されるものとする。
 本発明の設計方法により設計した改変用核酸を、相同組み換えにより細胞のゲノムDNAに導入する場合には、ドナーDNAに通常含まれるホモロジーアームの配列を置換してしまうと、相同組み換えの効率が低減することが予測される。従って、ホモロジーアームの配列を置換する場合には、置換後の配列と標的部位に隣接する領域の配列との同一性が80%以上(例:85%以上、90%以上、95%以上、96%以上、97%以上、98%以上、99%以上)有することが好ましい。また、上記工程(2)において、タンパク質をコードするヌクレオチド配列を置換する場合には、該タンパク質のアミノ酸残基の変異が生じないようなコドンに置換する(即ち、サイレント変異となるように置換する)ことが好ましい。このような置換の設計は、インシリコにより行ってもよく、例えば、タンパク質をコードする、全ての可能性のあるコドンの組み合わせを電子計算機器を用いて設計し、該コドンの組み合わせの中から、最もオフターゲット変異導入の可能性が低いと判断される配列を選択することもできる。タンパク質をコードするヌクレオチド配列以外についても、適宜配列を置換することができ、例えばプロモーターを、好ましくは同程度の発現効率を有する別のプロモーターに置換することができる。かかるプロモーターとしては、例えば、上記1.で細胞種ごとに記載したプロモーター(例:SRαプロモーター、SV40プロモーター、LTRプロモーター、CMV(サイトメガロウイルス)プロモーター等)が挙げられるが、これらに限定されない。また、上述の置換の対象となる配列を、人工配列に置換することによっても、宿主細胞のゲノムDNAとの相同性の程度を低下させることができる。かかる人工配列としては、例えば遺伝子転写制御に関わる複数の最小限のドメイン配列(TATA配列、TSS配列など)を連結し160ヌクレオチド長に短縮したsynthetic promoter (pSyn) (Redden, H. & Alper, H. S. Nat Commun6, 7810, doi:10.1038/ncomms8810 (2015))が挙げられるが、これらに限定されない。前記pSynとしては、具体的には、配列番号1~9のいずれかで示される配列を含む、又は該配列からなるプロモーターなどが挙げられる。あるいは、改変用核酸の一部(例:コーディング領域以外の配列)に、1~複数個(例:2、3、4、5、6、7、8、9、10個又はそれ以上)のヌクレオチドを欠失、置換、付加及び/又は挿入することで、ゲノムDNAとの同一性の程度を低下させることもできる。
 以下、実施例により本発明をさらに詳しく説明するが、本発明はこれらの実施例に限定されるものではない。
<方法>
株及び培養方法
 下述の実施例では、親の出芽酵母株として、BY4742(MATα his3Δ leu2Δ1 met15Δ0 ura3Δ0)(Brachmann, C. B. et al., Yeast 14, 115-132 (1998))を用いた。単一の遺伝子を欠失する酵母株を、haploid yeast open reading frame deletion collection (GEDharmacon、USA)から購入した(Winzeler, E. A. et al., Science 285, 901-906 (1999))。酵母を、YPD(1%酵母エキス、2%ペプトン、2%グルコース)又は適切な合成完全(SC)培地を用いて、30℃で増殖させた(Sherman, F., Methods Enzymol 350, 3-41 (2002);Amberg, D. C. et al., Methods in Yeast Genetics 2005 Edition.(Cold Spring Harbor Laboratory Press, 2005))。必要に応じて、2%寒天を加えることで培地を固化した。時間経過分析のために、酵母を25℃で培養した。酵母ゲノムDNAの分離には、標準的な方法を使用した。大腸菌株DH5α、及び標準培地並びに標準方法をプラスミドの操作に使用した。プラスミドDNAを、QIAquick Spin Miniprepキット(Qiagen、USA)を使用して大腸菌から単離した。Wizard SV Gel及びPCR Clean-upキット(Promega、USA)を使用して、ポリメラーゼ連鎖反応(PCR)行ったサンプル又はアガロースゲルからDNA断片を分離した。オリゴヌクレオチドを、Invitrogen(USA)又はFASMAC(日本)から購入した。Proof High-Fidelity DNAポリメラーゼ(Bio-Rad Laboratories、USA)を用いたPCRにより、プラスミド構築用のDNAを作製した。混合液には、10μlの5x iProofバッファー、各0.25μlの100μMのPCRプライマー、1μlの10 mM dNTPミックス、0.1μgのテンプレートDNA及び0.5μlのiProof Taqポリメラーゼ(最終容量50μl)が含まれていた。98℃で10秒間を1サイクル;98℃で10秒、55℃で10秒、72℃で1分/(目的生成物のkb)を25サイクル;72℃で5分を1サイクルで、反応させた。
プラスミドの構築
PHM879, PHM891: Cas9及びcrRNAをコードするプラスミドを構築するために、pML104プラスミド(John Wyrickから提供を受けた(Addgeneプラスミド番号67638))をベースプラスミドとして使用した(Laughery, M. F. et al., Yeast 32, 711-720, (2015))。このプラスミドには、単一ガイドRNA(sgRNA)カセット内に20 ntのガイド配列を挿入する必要がある。pML104プラスミドにおけるsgRNAカセットの構築は、Laughery, M. F. et al., Yeast 32, 711-720, (2015)、Ran, F. A. et al., Nat Protoc 8, 2281-2308 (2013)及びMashiko, D. et al., Sci Rep 3, 3355 (2013)を参考にした。標的配列は、ガイドRNA(sgMCS)用に5’-ctagagtcgacctgcagg-3’ (下線:PAM 配列)(配列番号10)とし、ADE2用に5'-caacttaaggcgaagttgttgg-3'(下線:PAM 配列)(配列番号11)とした。PHM878: crRNAをコードするプラスミドを構築するために、pML104プラスミドをPCRの鋳型DNAとして、プライマーセット(HMP1400: 5’- TGGAGCTCCACCGCGGACAATCTTTGAAAA-3’(配列番号12), HMP1401: 5’- CGGAGCTCCGAGCAAATGCCTGCAAATCGC-3’(配列番号13))を使用して、SNR52 promoter-crRNA-SUP4 terminator領域のDNA断片を増幅した。制限酵素SacIでDNA末端を消化し、同じくSacIで消化したpRS423プラスミド (Sikorski RS& Hieter P. Genetics. 122(1):19-27 (1989))にサブクローニングし、PHM878とした。PHM898: TDH3 promoter+dCas9+ADH1 terminatorを持つプラスミドを構築した。まず出芽酵母染色体DNAを鋳型にプライマーセット(HMP1330: 5’- atgcggccgcacttctaaataagcgaattt-3’(配列番号14), HMP1331: 5’- atgagctcagatctgatctatattaccctgttatc-3’(配列番号15))を使用して、ADH1 terminater領域のDNA断片を増幅した。制限酵素NotI, SacIでDNA末端を消化し、同じくNotI, SacIで消化したpRS426プラスミド (Sikorski RS & Hieter P. Genetics. 122(1):19-27 (1989))にサブクローニングし、PHM896とした。次に出芽酵母染色体DNAを鋳型にプライマーセット(HMP1394: 5’- ggactagtCAACCATCAGTTCATAGGTCCA-3’(配列番号16), HMP1399: 5’- gtcCATggtagaTTTGTTTGTTTATGTGTG-3’(配列番号17))を使用して、TDH3 promoter領域のDNA断片を増幅し、さらに制限酵素NcoIで消化した。次にプラスミドpRS315e-pGal-dCas9-PmCDA1(Nishida K, et al. Science. 2016 Aug 4. pii:aaf8729. 10.1126/science.aaf8729 PubMed 27492474)を制限酵素NcoIで消化し、NcoIで処理したTDH3 promoter断片と末端結合処理を行った。この結合DNAを鋳型にプライマーセット(HMP1394: 5’- ggactagtCAACCATCAGTTCATAGGTCCA-3’, HMP1395: 5’- tgcggccgcggtcatcctagacttatcgtc-3’(配列番号18))を使用して、TDH3 promoter+dCas9領域のDNA断片を増幅した。制限酵素NotI, SpeIでDNA末端を消化し、同じくNotI, SpeIで消化したPHM896にサブクローニングし、PHM898プラスミドを構築した。PHM903: TDH3 promoter+Cas9+ ADH1 terminator領域をコードするプラスミドを構築するために、pML104プラスミドを鋳型DNAとして、プライマーセット(HMP1394: 5’- ggactagtCAACCATCAGTTCATAGGTCCA-3’, HMP1463: 5’- atgcggccgcGAGTCTAGGATCCGGAACTA-3’(配列番号19))を使用しTDH3 promoter+Cas9+ ADH1 terminator領域を含むDNA断片を増幅した。制限酵素SpeI, NotIでDNA末端を消化し、同じくSpeI, NotIで消化したpRS426プラスミド (Sikorski RS & Hieter P. Genetics. 122(1):19-27 (1989))にサブクローニングし、PHM903プラスミドとした。
 上記で作製したプラスミドベクターのベクターマップを、図7に示す。
実施例1:出芽酵母DNAへのADE2遺伝子の導入
 Cas9遺伝子+crRNAプラスミド(pML104)、Cas9+single-guide RNA(sgMCS)プラスミド (PHM879)およびCas9+single-guide RNA(sgADE2)プラスミド (PHM891) (それぞれ0.5 μg)の各種組み合わせと、YIplac128 (LEU2)プラスミド(0.5 μg)を組み合わせて酵母 (2x108 cells)に形質転換し、ウラシルを抜いた合成寒天培地 (SD-Ura)に播種した。3日後、出現したコロニーをロイシンを抜いた寒天培地もしくはアデニンを抜いた寒天培地 (Cas9/sgADE2 プラスミド、Cas9/sgMCSプラスミドおよびYIplac128の組み合せのみ)に転写し、コロニー形成数をカウントした。
 結果を図1に示す。LEU2遺伝子を有する挿入用YIp型plasmidと、sgADE2あるいはsgMCSと、Cas9遺伝子の両方を有するURA3マーカープラスミドとを同時に用いて出芽酵母を形質転換した場合には、URA+、LEU+のコロニーが増えた。ここで、sgADE2は、LEU2を有する挿入用YIp型plasmidを、ADE2遺伝子部位に挿入し、ADE2遺伝子を破壊する(ADE-になる)ことを期待して用いたが、出現したコロニー群はほぼ全てADE+であった。このことから、sgADE2及びsgMCSの組み合せた場合には、LEU2を有する挿入用YIp型plasmidをADE2遺伝子部位に挿入できず、別のゲノム領域に挿入されたことが示される。
実施例2:ガイドRNAの有無による、出芽酵母のゲノムDNAへのプラスミドの挿入率の差異の検証
 Cas9遺伝子+crRNAプラスミド(pML104)(0.5 μg)と、Cas9+single-guide RNA(sgMCS)プラスミド (PHM879)およびCas9+single-guide RNA(sgADE2)プラスミド (PHM891) (それぞれ0.5 μg)の各種組み合わせと、YIplac128 (LEU2)プラスミド(0.5 μg)を組み合わせて酵母 (2x108 cells)に形質転換し、ウラシルを抜いた合成寒天培地 (SD-Ura)に播種した。3日後、出現したコロニーをロイシンを抜いた寒天培地に転写し、コロニーを得た。得られたコロニー株から染色体DNAを調製し、PCR法を用いてYIplac128の染色体への挿入部位を確認した。挿入部位として期待されるYIplac128のMCS部位を増幅するプライマーセット、コントロールとして同じくYIplac128のAmp遺伝子部位を増幅するプライマーセットを使用した。染色体DNA(n=8)を鋳型に、二種類のプライマーセットを使用し、PCRを実行した。標的部位の増幅の有無は、アガロース電気泳動を行い確認した。プライマーセットの配列及び組み合わせを、表1及び表2に列挙した。
 結果を図2に示す。Cas9を用いた場合には、sgRNAを導入しない場合であっても、sgRNAを導入した場合と同程度の割合で出芽酵母のゲノムDNAへのプラスミドの挿入が認められた。
実施例3:Cas9のDNA切断能の有無による、出芽酵母のゲノムDNAへのプラスミドの挿入率の差異の検証
 Cas9遺伝子プラスミド(PHM903)、dCas9遺伝子プラスミド(PHM898)およびcrRNAプラスミド(PHM876) (それぞれ0.5 μg)の各種組み合わせと、YIplac128 (LEU2)プラスミド(0.5 μg)を組み合わせて酵母 (2x108 cells)に形質転換し、ウラシルを抜いた合成寒天培地 (SD-Ura)に播種した。3日後、出現したコロニーをロイシンを抜いた寒天培地に転写し、コロニー形成数をカウントした。
 結果を図3に示す。dCas9を用いた場合であっても、Cas9を導入した場合と同程度の割合で出芽酵母のゲノムDNAへのプラスミドの挿入が認められた。以上のことから、Cas9を用いた場合には、gRNAの有無に関わらず、さらにはCas9のDNA切断能の有無にも関わらず、外因性のLEU遺伝子が出芽酵母のゲノムDNAに挿入されることが実証された。
実施例4: Cas9もしくはdCas9単独で出芽酵母のゲノムDNAへのプラスミドの挿入率の差異の検証
 さらに、gRNAを用いずにCas9単独により出芽酵母を形質転換した場合と、gRNAを用いずにdCas9を単独により出芽酵母を形質転換した場合における、ゲノムDNAへの外因性のLEU遺伝子の挿入効率を比較した。まずCas9遺伝子プラスミド(PHM903)、dCas9遺伝子プラスミド(PHM898)およびCas9/crRNAプラスミド (pML104) (それぞれ0.5 μg)と、YIplac128 (LEU2)プラスミド(0.5 μg)を組み合わせて酵母 (2x108 cells)に形質転換し、ウラシルを抜いた合成寒天培地 (SD-Ura)に播種した。3日後、出現したコロニーをロイシンを抜いた寒天培地に転写し、コロニー形成数をカウントした。
 結果を図4に示す。Cas9単独を用いた場合であっても、出芽酵母のゲノムDNAへのプラスミドの挿入が認められたが、dCas9単独で用いた場合の方が、ゲノムDNAへのプラスミドの挿入効率が高い傾向であることが示された。
実施例4:プラスミドの染色体への挿入部位の正確な同定
 pML104とYiplac128プラスミドを形質転換し、得られた酵母株の染色体DNAを鋳型に、PCRを行い、YIplac128プラスミドの染色体への挿入部位を同定した。YIplac128上のPCR増幅領域を4つの領域に分け、それぞれプライマーセットを使いPCRを行った。PCRで増幅できなかった領域をプラスミドー染色体との融合領域と判断した。プライマーセットの配列及び組み合わせを、表1及び表2に列挙した。
Figure JPOXMLDOC01-appb-T000002
Figure JPOXMLDOC01-appb-T000003
 結果を図5に示す。上記の実験に用いた出芽酵母のゲノムには、上記のドナーDNAのLEU遺伝子の上流及び下流の領域と相同性の高い領域が含まれており、該相同性の高い領域に外因性のLEU2遺伝子が挿入されていることが確認された。
実施例5:CRISPR-Cas9システムでのゲノムDNA改変における、Ku70及びrad52の貢献度の検証
 pML104(0.5 μg)およびYIplac128プラスミド(0.5 μg)を組み合わせて酵母 (2x108 cells)に形質転換し、ウラシルを抜いた合成寒天培地 (SD-Ura)に播種した。3日後、出現したコロニーをロイシンを抜いた寒天培地に転写し、コロニー形成数をカウントした。使用した酵母株は野生株(BY4742株)、相同組換え機構欠損株(BY4742 rad52Δ)、DNA末端結合機構欠損株(BY4742 ku70Δ)の三種類を使用した。
 結果を図6に示す。二本鎖DNAの切断部分を認識して結合するタンパク質をコードするKu70遺伝子をノックアウトした場合よりも、相同組み換えの中核となるタンパク質をコードする遺伝子をノックアウトした場合の方が、コロニー形成割合が顕著に低くなることが示された。この結果から、CRISPR-Cas9システムでのゲノムDNA改変において、DNA鎖の切断と修復による過程における外因性核酸の取り込みよりも、相同組み換えによる外因性核酸の取り込みの方が出芽酵母のゲノムDNA改変への貢献度が高いことが示唆される。
 以上のことから、CRISPR-Cas9システムを用いた相同組み換えにおいては、ガイドRNAの使用も、Cas9によるDNA鎖の切断も必須というわけではなく、相同組み換えの効率を上げるためにCas9又はその変異体の導入が重要であることが強く示唆される。
 本発明により、細胞のゲノムDNAの改変において、該核酸によるオフターゲット変異導入の可能性を評価することができ、それにより、オフターゲット変異導入の可能性が低減したゲノムDNAの改変が可能となるため、極めて有用である。
 本出願は日本で出願された特願2019-209165(出願日:2019年11月19日)を基礎としており、その内容は本明細書に全て包含されるものである。

Claims (12)

  1.  細胞のゲノムDNAと、該ゲノムDNAへの挿入配列を含むドナーDNAと、Cas9ヌクレアーゼとを、ガイドRNAの非存在下で接触させる工程を含む、該ゲノムDNAと該ドナーDNAとの間で相同組み換えを誘導する方法。
  2.  前記Cas9ヌクレアーゼが、少なくとも1つのDNA切断能が失活したものである、請求項1に記載の方法。
  3.  細胞のゲノムDNAとCas9ヌクレアーゼとの接触が、前記細胞へのCas9ヌクレアーゼをコードする核酸の導入により行われる、請求項1又は2に記載の方法。
  4.  前記細胞が真核細胞である、請求項1~3のいずれか1項に記載の方法。
  5.  前記真核細胞が酵母である、請求項4に記載の方法。
  6.  細胞のゲノムDNA改変用核酸の少なくとも一部の配列と、該細胞の有するゲノムDNAの少なくとも一部の配列との間の同一性の程度を算出する工程を含む、該核酸によるオフターゲット変異導入の可能性を評価する方法であって、前記ゲノムDNA改変用核酸が、細胞のゲノムDNA中の標的ヌクレオチド配列と特異的に結合する核酸配列認識モジュールをコードするヌクレオチド配列、核酸改変酵素をコードするヌクレオチド配列、及び細胞のゲノムDNAへの挿入配列からなる群から選択される1以上のヌクレオチド配列を含む、方法。
  7.  (1)請求項6に記載の方法により、ゲノムDNA改変用核酸によるオフターゲット変異導入の可能性を評価する工程、及び
     (2)前記工程(1)でオフターゲット変異導入の可能性が評価された核酸を該細胞に導入する工程
    を含む、細胞の有する二本鎖DNAの標的部位を改変する方法。
  8.  前記細胞のゲノムDNAへの挿入配列を含むドナーDNAを該細胞に導入する工程を含む、請求項7に記載の方法。
  9.  核酸配列認識モジュールが、Casエフェクタータンパク質の少なくとも一方のDNA切断能が失活したCRISPR-Casシステム、ジンクフィンガーモチーフ、TALエフェクター及びPPRモチーフからなる群より選択される、請求項7又は8に記載の方法。
  10.  前記工程(2)で導入された核酸により細胞内で形成される核酸配列認識モジュールと核酸改変酵素との複合体が、ガイドRNAとCasエフェクタータンパク質との複合体である、請求項7又は8に記載の方法。
  11.  (1)請求項6に記載の方法により、ゲノムDNA改変用核酸のオフターゲット変異導入の可能性を評価する工程、及び
     (2)前記工程(1)による評価の結果に基づき、該核酸の配列の一部を置換する工程
    を含む、オフターゲット変異導入の可能性が低減された核酸を設計する方法。
  12.  前記工程(2)の置換が人工配列への置換を含む、請求項11に記載の方法。
PCT/JP2020/042893 2019-11-19 2020-11-18 Cas9ヌクレアーゼを用いて相同組み換えを誘導する方法 WO2021100731A1 (ja)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2021558408A JPWO2021100731A1 (ja) 2019-11-19 2020-11-18

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2019-209165 2019-11-19
JP2019209165 2019-11-19

Publications (1)

Publication Number Publication Date
WO2021100731A1 true WO2021100731A1 (ja) 2021-05-27

Family

ID=75980545

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2020/042893 WO2021100731A1 (ja) 2019-11-19 2020-11-18 Cas9ヌクレアーゼを用いて相同組み換えを誘導する方法

Country Status (2)

Country Link
JP (1) JPWO2021100731A1 (ja)
WO (1) WO2021100731A1 (ja)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN115976086A (zh) * 2023-01-19 2023-04-18 河南农业大学 一种细菌CRISPR-Cas9基因编辑的方法和应用
WO2024070589A1 (ja) * 2022-09-30 2024-04-04 国立大学法人広島大学 オフターゲットリスク解析方法、オフターゲットリスク解析システム、プログラム、記録媒体

Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2012149470A1 (en) * 2011-04-27 2012-11-01 Amyris, Inc. Methods for genomic modification
JP2018191561A (ja) * 2017-05-16 2018-12-06 国立大学法人 長崎大学 多重遺伝子導入手法

Patent Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2012149470A1 (en) * 2011-04-27 2012-11-01 Amyris, Inc. Methods for genomic modification
JP2018191561A (ja) * 2017-05-16 2018-12-06 国立大学法人 長崎大学 多重遺伝子導入手法

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2024070589A1 (ja) * 2022-09-30 2024-04-04 国立大学法人広島大学 オフターゲットリスク解析方法、オフターゲットリスク解析システム、プログラム、記録媒体
CN115976086A (zh) * 2023-01-19 2023-04-18 河南农业大学 一种细菌CRISPR-Cas9基因编辑的方法和应用
CN115976086B (zh) * 2023-01-19 2023-08-08 河南农业大学 一种细菌CRISPR-Cas9基因编辑的方法和应用

Also Published As

Publication number Publication date
JPWO2021100731A1 (ja) 2021-05-27

Similar Documents

Publication Publication Date Title
US11718846B2 (en) Genomic sequence modification method for specifically converting nucleic acid bases of targeted DNA sequence, and molecular complex for use in same
EP3653709B1 (en) Methods for modulating dna repair outcomes
US20210171935A1 (en) Method for modifying genome sequence to introduce specific mutation to targeted dna sequence by base-removal reaction, and molecular complex used therein
DeWitt et al. Genome editing via delivery of Cas9 ribonucleoprotein
Schmidt et al. DNA break repair in plants and its application for genome engineering
JP2023179468A (ja) Ruvcドメインを有する酵素
EP3519570B1 (en) Method to analyze and optimize gene editing modules and delivery approaches
WO2021100731A1 (ja) Cas9ヌクレアーゼを用いて相同組み換えを誘導する方法
US11834652B2 (en) Compositions and methods for scarless genome editing
CA3192224A1 (en) Base editing enzymes
US20240117384A1 (en) Method for converting nucleic acid sequence of cell specifically converting nucleic acid base of targeted dna using cell endogenous dna modifying enzyme, and molecular complex used therein
JP6990385B2 (ja) 多重遺伝子導入手法
JP2023063448A (ja) 細胞の有する二本鎖dnaの標的部位を改変する方法
CN111386343A (zh) 用于克鲁维酵母宿主细胞基因组整合的方法
TWI843749B (zh) PaCas9核酸酶

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 20891223

Country of ref document: EP

Kind code of ref document: A1

ENP Entry into the national phase

Ref document number: 2021558408

Country of ref document: JP

Kind code of ref document: A

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 20891223

Country of ref document: EP

Kind code of ref document: A1