WO2021100572A1 - Sensor element, gas sensor, and method for producing sensor element - Google Patents

Sensor element, gas sensor, and method for producing sensor element Download PDF

Info

Publication number
WO2021100572A1
WO2021100572A1 PCT/JP2020/042047 JP2020042047W WO2021100572A1 WO 2021100572 A1 WO2021100572 A1 WO 2021100572A1 JP 2020042047 W JP2020042047 W JP 2020042047W WO 2021100572 A1 WO2021100572 A1 WO 2021100572A1
Authority
WO
WIPO (PCT)
Prior art keywords
main body
sensor element
protective layer
temperature
columnar portion
Prior art date
Application number
PCT/JP2020/042047
Other languages
French (fr)
Japanese (ja)
Inventor
嘉彦 山村
中垣 邦彦
Original Assignee
日本碍子株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 日本碍子株式会社 filed Critical 日本碍子株式会社
Priority to JP2021558321A priority Critical patent/JPWO2021100572A1/ja
Publication of WO2021100572A1 publication Critical patent/WO2021100572A1/en

Links

Images

Classifications

    • GPHYSICS
    • G01MEASURING; TESTING
    • G01NINVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
    • G01N27/00Investigating or analysing materials by the use of electric, electrochemical, or magnetic means
    • G01N27/26Investigating or analysing materials by the use of electric, electrochemical, or magnetic means by investigating electrochemical variables; by using electrolysis or electrophoresis
    • G01N27/403Cells and electrode assemblies
    • G01N27/406Cells and probes with solid electrolytes
    • G01N27/407Cells and probes with solid electrolytes for investigating or analysing gases
    • G01N27/409Oxygen concentration cells
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01NINVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
    • G01N27/00Investigating or analysing materials by the use of electric, electrochemical, or magnetic means
    • G01N27/26Investigating or analysing materials by the use of electric, electrochemical, or magnetic means by investigating electrochemical variables; by using electrolysis or electrophoresis
    • G01N27/416Systems

Definitions

  • the present invention relates to a sensor element, a gas sensor, and a method for manufacturing the sensor element.
  • Patent Document 1 describes a sensor element of such a gas sensor in which a protective layer is provided so as to cover the element main body and a space is provided between the protective layer and the element main body. It is explained that the heat conduction in the thickness direction of the protective layer can be insulated by the space, so that the cooling of the element body when water adheres to the surface of the protective layer is suppressed and the water resistance is improved.
  • the present invention has been made to solve such a problem, and a main object thereof is to improve the water resistance of the protective layer of the sensor element.
  • the sensor element of the present invention A sensor element used to detect a specific gas concentration in the gas to be measured.
  • the temperature T1 [° C.] may be at least one temperature included in the temperature range of 500 ° C. or higher and 900 ° C. or lower, but for example, at least one temperature included in the temperature range of 700 ° C. or higher and 900 ° C. or lower.
  • the temperature T1 [° C.] is the temperature of the protective layer when the sensor element is used.
  • the temperature T1 [° C.] may be, for example, an actually measured value of the temperature on the surface of the protective layer when the sensor element is used or a predicted value by simulation.
  • the temperature of the surface of the protective layer may be the temperature of the hottest portion of the surface of the protective layer.
  • the residual compressive stress is preferably 15 MPa or more. In this way, the water resistance is further improved.
  • the upper limit of the residual compressive stress is not particularly limited, but is, for example, 300 MPa or less, preferably 200 MPa or less.
  • the element body has a coefficient of linear thermal expansion of 10 ppm / K or more and 15 ppm / K or less at 40 ° C. to 700 ° C.
  • the protective layer has a linear thermal expansion of 40 ° C. to 700 ° C.
  • the coefficient may be 1 ppm / K or more and 9 ppm / K or less. While the sensor element is used at a high temperature such as 700 ° C., it reaches room temperature when not in use, so that thermal expansion and contraction are repeated in the element body and the protective layer.
  • the element body may contain zirconia as a main component
  • the protective layer may contain one or more selected from the group consisting of alumina, spinel, cordierite and mullite as the main component.
  • the principal component means the component contained most, for example, the component having the highest mass ratio.
  • the coefficient of linear thermal expansion from 40 ° C. to 700 ° C. is 11 ppm / K for zirconia, 8 ppm / K for alumina and spinel, 2 ppm / K for cordierite, and 7 ppm / K for mullite.
  • the protective layer is between a bottomed tubular main body portion that covers the tip end portion, which is one end portion in the longitudinal direction of the element main body, and the main body portion and the element main body. It may have a space support portion provided so as to form a space in the space.
  • the protective layer having the bottomed tubular main body covers the tip of the element main body, the entire tip of the element main body can be protected.
  • a space is formed between the main body of the protective layer and the main body of the element by the space support portion, and this space can suppress heat conduction from the protective layer to the main body of the element, so that water adheres to the surface of the protective layer. It is possible to suppress the cooling of the element body in the case of this.
  • the protective layer has a side columnar portion provided inside the side portion of the main body portion as the space support portion, and (a) the side columnar portion is the main body portion. Is provided in a range of 2% or more and 35% or less inside the side portion of the element, or (b) the side columnar portion is a portion of the element body covered with the side portion of the main body portion of the protective layer. It may satisfy at least one of 2% or more and 35% or less of the above. In this way, the residual compressive stress on the surface of the protective layer tends to be a desired value in the range of, for example, 15 MPa or more and 300 MPa or less.
  • the protective layer has a side columnar portion provided inside the side portion of the main body portion as the space support portion, and the side columnar portion is a side portion of the main body portion.
  • the length protruding from the height H is defined as the height H
  • the length in the direction perpendicular to the height H and the shortest length is defined as the width W
  • the length in the direction perpendicular to the height H and the width W may be 200 ⁇ m or more when the length L is defined as.
  • the width W and the length L of the side columnar portion are 200 ⁇ m or more, the residual compressive stress on the surface of the protective layer tends to be a desired value in the range of, for example, 15 MPa or more and 300 MPa or less.
  • the protective layer has a side columnar portion provided inside the side portion of the main body portion as the space support portion, and the side columnar portion is a side portion of the main body portion.
  • the height H may be 400 ⁇ m or less.
  • the residual compressive stress on the surface of the protective layer tends to be a desired value in the range of, for example, 15 MPa or more and 300 MPa or less.
  • the height H may be 10 ⁇ m or more. In this way, heat conduction from the protective layer to the element body can be further suppressed.
  • the protective layer may have a thickness t of a side portion of the main body portion of 600 ⁇ m or less.
  • the thickness t of the side portion is the average thickness of the side portion, and if there is a portion (for example, a corner portion) whose thickness is significantly different from that of the other portion, the average thickness of the portion excluding such a portion is used.
  • the thickness t of the side portion is 600 ⁇ m or less, the residual compressive stress on the surface of the protective layer tends to be a desired value in the range of, for example, 15 MPa or more and 300 MPa or less.
  • the gas sensor of the present invention includes the sensor element of any of the above-described aspects. Therefore, this gas sensor has the same effect as the sensor element of the present invention described above, for example, the effect of improving the water resistance of the protective layer of the sensor element.
  • the method for manufacturing the sensor element of the present invention is A method for manufacturing a sensor element according to any one of the above embodiments.
  • the coefficient of linear thermal expansion ⁇ a'[ppm / K] and the linear thermal expansion of the protective layer material at the temperature T1 [° C.] to the temperature T2 [° C.] after the same step as the firing step is performed.
  • a coefficient ⁇ b [ppm / K] that satisfies the relationship of ⁇ a'> ⁇ b is used.
  • the solid electrolyte layer of the element body material after the same process as the firing step is used as the element body material and the protective layer material at a temperature T1 [° C.] to a temperature T2 [° C.].
  • the protective layer material and the element main body material in the state where the arrangement step has been performed are heated at a temperature T2 [° C.] to fire at least the protective layer material, so that the protective layer material in the state where the firing step has been performed is protected.
  • the layer and the element body are in close contact with or bonded to each other at least in part. Therefore, when the temperature of the protective layer and the element body in which the firing step has been performed is lowered from the temperature T2 [° C.] to the temperature T1 [° C.] in the subsequent temperature lowering step, the protective layer is dragged by the large shrinkage of the element body. Residual compressive stress is applied to the surface. In this way, a protective layer having residual compressive stress on the surface is obtained. Therefore, a sensor element having a protective layer having high water resistance can be obtained.
  • the element body after firing may be used as the element body material in the arrangement step.
  • the temperature T2 [° C.] can be set relatively low.
  • FIG. 5 is a perspective view schematically showing an example of the configuration of the sensor element 101.
  • FIG. 2 is a vertical cross-sectional view of FIG.
  • FIG. 2 is a cross-sectional view taken along the line AA of FIG. BB sectional view of FIG.
  • FIG. 2 is a partial cross-sectional view of the vertical cross section of FIG.
  • FIG. 2 is a partial cross-sectional view of the cross section of FIG.
  • the development view which shows the inside state of the side part 90c and the side part connection part 90e.
  • FIG. 3 is a cross-sectional view of the mesh sealing portion 94. It is explanatory drawing which shows the state of making the unfired body 190 by the molding die 150.
  • FIG. 1 is a vertical sectional view of the gas sensor 100 according to an embodiment of the present invention
  • FIG. 2 is a perspective view schematically showing an example of the configuration of the sensor element 101
  • FIG. 3 is a vertical sectional view of FIG. 2
  • FIG. 2A is a sectional view taken along the line AA
  • 5 is a sectional view taken along the line BB of FIG. 2
  • FIG. 6 is a partial sectional view of a vertical sectional view of FIG. 2
  • FIG. 7 is a partial sectional view of a cross section of FIG.
  • FIG. 9 is a cross-sectional view of the eye sealing portion 94.
  • the gas sensor 100 includes a sensor element 101, a protective cover 110 that covers and protects one end (lower end in FIG. 1) of the sensor element 101 in the longitudinal direction, an element encapsulant 120 that encloses and fixes the sensor element 101, and element encapsulation. It includes a nut 130 attached to the body 120. As shown in the figure, this gas sensor 100 is attached to a pipe 140 such as an exhaust gas pipe of a vehicle, and is used to measure the concentration of a specific gas (NOx in this embodiment) contained in the exhaust gas as a gas to be measured. Be done.
  • the sensor element 101 includes a sensor element main body 101a, a porous protective layer 90 that covers the sensor element main body 101a, and a mesh sealing portion 94.
  • the protective cover 110 includes a bottomed tubular inner protective cover 111 that covers one end of the sensor element 101, and a bottomed tubular outer protective cover 112 that covers the inner protective cover 111.
  • the inner protective cover 111 and the outer protective cover 112 are formed with a plurality of holes for allowing the gas to be measured to flow into the protective cover 110.
  • One end of the sensor element 101 is arranged in a space surrounded by the inner protective cover 111.
  • the element sealing body 120 includes a cylindrical main metal fitting 122, a ceramic supporter 124 sealed in a through hole inside the main metal fitting 122, and a talc or the like sealed in the through hole inside the main metal fitting 122. It includes a green compact 126 formed by molding a ceramic powder.
  • the sensor element 101 is located on the central axis of the element encapsulant 120 and penetrates the element encapsulant 120 in the front-rear direction.
  • the green compact 126 is compressed between the main metal fitting 122 and the sensor element 101. As a result, the green compact 126 seals the through hole in the main metal fitting 122 and fixes the sensor element 101.
  • the nut 130 is fixed coaxially with the main metal fitting 122, and a male screw portion is formed on the outer peripheral surface.
  • the male threaded portion of the nut 130 is inserted into a mounting member 141 welded to the pipe 140 and provided with a female threaded portion on the inner peripheral surface.
  • the sensor element main body 101a of the sensor element 101 has a long rectangular parallelepiped shape as shown in FIGS. 2 and 3.
  • the sensor element 101 will be described in detail below, but for convenience of explanation, the longitudinal direction of the sensor element body 101a is referred to as a front-rear direction, the thickness direction of the sensor element body 101a is referred to as a vertical direction, and the width direction of the sensor element body 101a is referred to as a left-right direction. I will do it.
  • 3 and 6 show a cross section parallel to the front-back and up-down directions, FIG. 7 shows a cross section parallel to the front-back and left-right directions, and FIGS. ing.
  • the sensor element 101 includes a first substrate layer 1, a second substrate layer 2, and a third substrate layer 3 , each of which is composed of an oxygen ion conductive solid electrolyte layer such as zirconia (ZrO 2).
  • the sensor element main body 101a is manufactured, for example, by performing predetermined processing, printing of a circuit pattern, or the like on a ceramic green sheet corresponding to each layer, laminating them, and further firing and integrating them.
  • a gas inlet 10 and a first gas inlet 10 are located between the lower surface of the second solid electrolyte layer 6 and the upper surface of the first solid electrolyte layer 4 at one tip (end in the front direction) of the sensor element main body 101a.
  • the diffusion rate-determining section 11, the buffer space 12, the second diffusion rate-determining section 13, the first internal space 20, the third diffusion rate-determining section 30, and the second internal space 40 communicate in this order. It is formed adjacent to each other.
  • the gas inlet 10, the buffer space 12, the first internal space 20, and the second internal space 40 are provided with the spacer layer 5 hollowed out so that the upper portion is the lower surface of the second solid electrolyte layer 6.
  • the lower part is the upper surface of the first solid electrolyte layer 4, and the side part is the space inside the sensor element main body 101a partitioned by the side surface of the spacer layer 5.
  • the first diffusion rate-determining section 11, the second diffusion rate-determining section 13, and the third diffusion rate-determining section 30 are all provided as two horizontally long slits (the openings have a longitudinal direction in the direction perpendicular to the drawing). ..
  • the space from the gas introduction port 10 to the second internal vacant space 40 is referred to as a gas distribution unit 9 to be measured.
  • the gas flow unit 9 to be measured is formed in a substantially rectangular parallelepiped shape.
  • the longitudinal direction of the gas flow section 9 to be measured is parallel to the front-rear direction.
  • a reference gas introduction space 43 is provided at a position partitioned by.
  • the atmosphere is introduced into the reference gas introduction space 43 as a reference gas for measuring the NOx concentration.
  • the atmosphere introduction layer 48 is a layer made of porous ceramics, and the reference gas is introduced into the atmosphere introduction layer 48 through the reference gas introduction space 43. Further, the atmosphere introduction layer 48 is formed so as to cover the reference electrode 42.
  • the reference electrode 42 is an electrode formed so as to be sandwiched between the upper surface of the third substrate layer 3 and the first solid electrolyte layer 4, and as described above, the reference electrode 42 is connected to the reference gas introduction space 43 around the reference electrode 42.
  • An air introduction layer 48 is provided. Further, as will be described later, it is possible to measure the oxygen concentration (oxygen partial pressure) in the first internal space 20 and the second internal space 40 using the reference electrode 42.
  • the gas introduction port 10 is a portion that is open to the external space so that the gas to be measured is taken into the sensor element main body 101a from the external space through the gas introduction port 10. It has become.
  • the first diffusion rate-determining unit 11 is a portion that imparts a predetermined diffusion resistance to the gas to be measured taken in from the gas introduction port 10.
  • the buffer space 12 is a space provided for guiding the gas to be measured introduced from the first diffusion rate-determining unit 11 to the second diffusion rate-determining unit 13.
  • the second diffusion rate-determining unit 13 is a portion that imparts a predetermined diffusion resistance to the gas to be measured introduced from the buffer space 12 into the first internal space 20.
  • the pressure fluctuation of the gas to be measured in the external space (if the gas to be measured is the exhaust gas of an automobile, the exhaust pressure
  • the gas to be measured which is rapidly taken into the inside of the sensor element main body 101a from the gas introduction port 10 by pulsation)
  • the first diffusion rate-determining unit 11 the buffer space 12, and the buffer space 12.
  • the second diffusion rate-determining unit 13 the gas is introduced into the first internal space 20.
  • the first internal space 20 is provided as a space for adjusting the oxygen partial pressure in the gas to be measured introduced through the second diffusion rate-determining unit 13. The oxygen partial pressure is adjusted by operating the main pump cell 21.
  • the main pump cell 21 has an inner pump electrode 22 having a ceiling electrode portion 22a provided on substantially the entire lower surface of the lower surface of the second solid electrolyte layer 6 facing the first internal space 20, and an upper surface of the second solid electrolyte layer 6.
  • Electricity composed of an outer pump electrode 23 provided in a region corresponding to the ceiling electrode portion 22a so as to be exposed to the outside of the sensor element main body 101a, and a second solid electrolyte layer 6 sandwiched between these electrodes. It is a chemical pump cell.
  • the outer pump electrode 23 is provided on the upper surface of the sensor element main body 101a.
  • the inner pump electrode 22 is formed so as to straddle the upper and lower solid electrolyte layers (second solid electrolyte layer 6 and first solid electrolyte layer 4) that partition the first internal space 20 and the spacer layer 5 that provides the side wall.
  • a ceiling electrode portion 22a is formed on the lower surface of the second solid electrolyte layer 6 that provides the ceiling surface of the first internal space 20, and a bottom portion is formed on the upper surface of the first solid electrolyte layer 4 that provides the bottom surface.
  • a spacer layer in which electrode portions 22b are formed, and side electrode portions (not shown) form both side wall portions of the first internal space 20 so as to connect the ceiling electrode portions 22a and the bottom electrode portions 22b. It is formed on the side wall surface (inner surface) of No. 5 and is arranged in a structure in the form of a tunnel at the arrangement portion of the side electrode portion.
  • the inner pump electrode 22 and the outer pump electrode 23 are formed as a porous cermet electrode (for example, a cermet electrode of Pt containing 1% Au and ZrO 2 ).
  • the inner pump electrode 22 that comes into contact with the gas to be measured is formed by using a material having a weakened reducing ability for the NOx component in the gas to be measured.
  • a desired pump voltage Vp0 is applied between the inner pump electrode 22 and the outer pump electrode 23, and a pump current is applied in the positive or negative direction between the inner pump electrode 22 and the outer pump electrode 23.
  • Vp0 the oxygen in the first internal space 20 can be pumped into the external space, or the oxygen in the external space can be pumped into the first internal space 20.
  • the inner pump electrode 22 in order to detect the oxygen concentration (oxygen partial pressure) in the atmosphere in the first internal space 20, the inner pump electrode 22, the second solid electrolyte layer 6, the spacer layer 5, and the first solid electrolyte layer 4 are used.
  • the third substrate layer 3 and the reference electrode 42 constitute an electrochemical sensor cell, that is, an oxygen partial pressure detection sensor cell 80 for controlling a main pump.
  • the oxygen concentration (oxygen partial pressure) in the first internal space 20 can be known. Further, the pump current Ip0 is controlled by feedback-controlling the pump voltage Vp0 of the variable power supply 25 so that the electromotive force V0 becomes the target value. As a result, the oxygen concentration in the first internal space 20 can be maintained at a predetermined constant value.
  • the third diffusion rate-determining unit 30 imparts a predetermined diffusion resistance to the gas to be measured whose oxygen concentration (oxygen partial pressure) is controlled by the operation of the main pump cell 21 in the first internal space 20, and applies the gas to be measured. It is a part leading to the second internal space 40.
  • the second internal space 40 is provided as a space for performing a process related to the measurement of the nitrogen oxide (NOx) concentration in the gas to be measured introduced through the third diffusion rate-determining unit 30.
  • the NOx concentration is mainly measured in the second internal space 40 whose oxygen concentration is adjusted by the auxiliary pump cell 50, and further by the operation of the measurement pump cell 41.
  • the auxiliary pump cell 50 is further applied to the gas to be measured introduced through the third diffusion rate-determining unit 30.
  • the oxygen partial pressure is adjusted by.
  • the oxygen concentration in the second internal space 40 can be kept constant with high accuracy, so that the gas sensor 100 can measure the NOx concentration with high accuracy.
  • the auxiliary pump cell 50 includes an auxiliary pump electrode 51 having a ceiling electrode portion 51a provided on substantially the entire lower surface of the second solid electrolyte layer 6 facing the second internal space 40, and an outer pump electrode 23 (outer pump electrode 23). It is an auxiliary electrochemical pump cell composed of a suitable electrode on the outside of the sensor element main body 101a) and a second solid electrolyte layer 6.
  • the auxiliary pump electrode 51 is arranged in the second internal space 40 in a structure having a tunnel shape similar to that of the inner pump electrode 22 provided in the first internal space 20. That is, the ceiling electrode portion 51a is formed on the second solid electrolyte layer 6 that provides the ceiling surface of the second internal space 40, and the first solid electrolyte layer 4 that provides the bottom surface of the second internal space 40 is formed. , The bottom electrode portion 51b is formed, and the side electrode portion (not shown) connecting the ceiling electrode portion 51a and the bottom electrode portion 51b provides a side wall of the second internal space 40 of the spacer layer 5. It has a tunnel-like structure formed on both walls.
  • the auxiliary pump electrode 51 is also formed by using a material having a weakened reducing ability for the NOx component in the gas to be measured, similarly to the inner pump electrode 22.
  • auxiliary pump cell 50 by applying a desired voltage Vp1 between the auxiliary pump electrode 51 and the outer pump electrode 23, oxygen in the atmosphere in the second internal space 40 is pumped out to the external space or outside. It is possible to pump from the space into the second internal space 40.
  • the auxiliary pump electrode 51, the reference electrode 42, the second solid electrolyte layer 6, the spacer layer 5, and the first solid electrolyte are used.
  • the layer 4 and the third substrate layer 3 constitute an electrochemical sensor cell, that is, an oxygen partial pressure detection sensor cell 81 for controlling an auxiliary pump.
  • the auxiliary pump cell 50 pumps with the variable power supply 52 whose voltage is controlled based on the electromotive force V1 detected by the auxiliary pump control oxygen partial pressure detection sensor cell 81.
  • the partial pressure of oxygen in the atmosphere in the second internal space 40 is controlled to a low partial pressure that does not substantially affect the measurement of NOx.
  • the pump current Ip1 is used to control the electromotive force of the oxygen partial pressure detection sensor cell 80 for controlling the main pump. Specifically, the pump current Ip1 is input to the oxygen partial pressure detection sensor cell 80 for controlling the main pump as a control signal, and the above-mentioned target value of the electromotive force V0 is controlled from the third diffusion rate-determining unit 30.
  • the gradient of the oxygen partial pressure in the gas to be measured introduced into the second internal space 40 is controlled to be always constant.
  • the oxygen concentration in the second internal space 40 is maintained at a constant value of about 0.001 ppm by the action of the main pump cell 21 and the auxiliary pump cell 50.
  • the measurement pump cell 41 measures the NOx concentration in the gas to be measured in the second internal space 40.
  • the measurement pump cell 41 includes a measurement electrode 44 provided on the upper surface of the first solid electrolyte layer 4 facing the second internal space 40 and at a position separated from the third diffusion rate-determining portion 30, and an outer pump electrode 23.
  • the measurement electrode 44 is a porous cermet electrode.
  • the measurement electrode 44 also functions as a NOx reduction catalyst that reduces NOx existing in the atmosphere in the second internal space 40. Further, the measurement electrode 44 is covered with the fourth diffusion rate-determining portion 45.
  • the fourth diffusion rate-determining unit 45 is a film made of a ceramic porous body.
  • the fourth diffusion rate-determining unit 45 plays a role of limiting the amount of NOx flowing into the measurement electrode 44, and also functions as a protective film of the measurement electrode 44.
  • oxygen generated by decomposition of nitrogen oxides in the atmosphere around the measurement electrode 44 can be pumped out, and the amount of oxygen generated can be detected as the pump current Ip2.
  • an electrochemical sensor cell that is, a reference electrode 42 is used by the first solid electrolyte layer 4, the third substrate layer 3, the measurement electrode 44, and the reference electrode 42.
  • the oxygen partial pressure detection sensor cell 82 for controlling the measurement pump is configured.
  • the variable power supply 46 is controlled based on the electromotive force V2 detected by the oxygen partial pressure detection sensor cell 82 for controlling the measurement pump.
  • the gas to be measured guided into the second internal space 40 reaches the measurement electrode 44 through the fourth diffusion rate-determining unit 45 under the condition that the oxygen partial pressure is controlled.
  • Nitrogen oxides in the gas to be measured around the measurement electrode 44 are reduced (2NO ⁇ N 2 + O 2 ) to generate oxygen.
  • the generated oxygen is pumped by the measurement pump cell 41, and at that time, a variable power source is used so that the electromotive force V2 detected by the measurement pump control oxygen partial pressure detection sensor cell 82 becomes constant.
  • the voltage Vp2 of 46 is controlled. Since the amount of oxygen generated around the measurement electrode 44 is proportional to the concentration of nitrogen oxides in the gas to be measured, the nitrogen oxides in the gas to be measured are used by using the pump current Ip2 in the measurement pump cell 41. The concentration will be calculated.
  • the measuring electrode 44 can be formed. It is possible to detect the electromotive force according to the difference between the amount of oxygen generated by the reduction of the NOx component in the surrounding atmosphere and the amount of oxygen contained in the reference atmosphere, and thereby the concentration of the NOx component in the gas to be measured. It is also possible to ask for.
  • the electrochemical sensor cell 83 is composed of the second solid electrolyte layer 6, the spacer layer 5, the first solid electrolyte layer 4, the third substrate layer 3, the outer pump electrode 23, and the reference electrode 42.
  • the electromotive force Vref obtained by the sensor cell 83 makes it possible to detect the partial pressure of oxygen in the gas to be measured outside the sensor.
  • the oxygen partial pressure is always kept at a constant low value (a value that does not substantially affect the measurement of NOx) by operating the main pump cell 21 and the auxiliary pump cell 50.
  • the gas to be measured is supplied to the measurement pump cell 41. Therefore, the NOx concentration in the gas to be measured is determined based on the pump current Ip2 that flows when oxygen generated by the reduction of NOx is pumped out from the measurement pump cell 41 in substantially proportional to the concentration of NOx in the gas to be measured. You can know it.
  • the sensor element main body 101a is provided with a heater unit 70 which plays a role of temperature adjustment for heating and keeping the sensor element main body 101a warm in order to enhance the oxygen ion conductivity of the solid electrolyte.
  • the heater unit 70 includes a heater connector electrode 71, a heater 72, a through hole 73, a heater insulating layer 74, and a pressure dissipation hole 75.
  • the heater connector electrode 71 is an electrode formed so as to be in contact with the lower surface of the first substrate layer 1. By connecting the heater connector electrode 71 to an external power source, power can be supplied to the heater unit 70 from the outside.
  • the heater 72 is an electric resistor formed in a manner of being sandwiched between the second substrate layer 2 and the third substrate layer 3 from above and below.
  • the heater 72 is connected to the heater connector electrode 71 via a through hole 73, and generates heat when power is supplied from the outside through the heater connector electrode 71 to heat and retain heat of the solid electrolyte forming the sensor element main body 101a. Do.
  • the heater 72 is embedded over the entire area from the first internal space 20 to the second internal space 40, and the entire sensor element main body 101a can be adjusted to a temperature at which the solid electrolyte is activated. It has become.
  • the heater insulating layer 74 is an insulating layer formed on the upper and lower surfaces of the heater 72 by an insulator such as alumina.
  • the heater insulating layer 74 is formed for the purpose of obtaining electrical insulation between the second substrate layer 2 and the heater 72 and electrical insulation between the third substrate layer 3 and the heater 72.
  • the pressure dissipation hole 75 is a portion provided so as to penetrate the third substrate layer 3 and the atmosphere introduction layer 48 and communicate with the reference gas introduction space 43, and the internal pressure rises with the temperature rise in the heater insulating layer 74. It is formed for the purpose of alleviating.
  • NOx is detected by utilizing the oxygen ion conductivity of the solid electrolyte layer (third substrate layer 3, first solid electrolyte layer 4, spacer layer 5 and second solid electrolyte layer 6) in the sensor element main body 101a.
  • the portion provided with the electrode group (inner pump electrode 22, outer pump electrode 23, auxiliary pump electrode 51, and measurement electrode 44) used for the operation is referred to as a tip portion 101b.
  • the tip portion 101b is a portion (front end portion) from the front end surface (the surface including the gas introduction port 10) of the sensor element main body 101a to a predetermined position exceeding the measurement electrode 44.
  • the rear end of the tip portion 101b is located behind the rear end of the gas flow portion 9 to be measured. That is, the gas flow unit 9 to be measured is included in the tip 101b.
  • a buffer layer 84 is provided on the upper surface and the lower surface of the tip portion 101b. Further, the periphery of the tip portion 101b is covered with a protective layer 90.
  • the sensor element main body 101a includes a buffer layer 84.
  • the buffer layer 84 includes an upper buffer layer 84a that covers at least a part of the upper surface of the second solid electrolyte layer 6, and a lower buffer layer 84b that covers at least a part of the lower surface of the first substrate layer 1. There is.
  • the upper buffer layer 84a also covers the outer pump electrode 23.
  • the upper buffer layer 84a is arranged on the upper surface portion of the tip portion 101b, and exists to the rear of the tip portion 101b.
  • the lower buffer layer 84b is arranged on the lower surface portion of the tip portion 101b, and exists to the rear of the tip portion 101b. Therefore, as shown in FIGS.
  • the buffer layer 84 is made of porous ceramics such as alumina, zirconia, spinel, cordierite, and magnesia.
  • the main component of the buffer layer 84 is preferably the same as the main component of the protective layer 90.
  • the buffer layer 84 is made of porous ceramics made of alumina.
  • the film thickness of the buffer layer 84 is, for example, 5 to 50 ⁇ m.
  • the porosity of the buffer layer 84 is preferably 10% to 71%.
  • the porosity of the buffer layer 84 may be 70% or less, or 60% or less.
  • the arithmetic mean roughness Ra of the surface of the buffer layer 84 (the upper surface of the upper buffer layer 84a and the lower surface of the lower buffer layer 84b) is preferably 2.0 to 5.0 ⁇ m.
  • the buffer layer 84 plays a role of enhancing the adhesion between the sensor element main body 101a and the protective layer 90.
  • the protective layer 90 includes a main body 90a and a columnar portion 91 arranged between the main body 90a and the sensor element main body 101a.
  • the main body 90a covers the entire front end surface of the sensor element main body 101a provided with the gas introduction port 10, and covers a part of the upper surface, the lower surface, the left surface, and the right surface of the sensor element main body 101a connected to the front end surface. It is provided in a bottomed tubular shape (also called a cap shape).
  • the portion of the main body 90a that covers the front end surface of the sensor element main body 101a is referred to as a bottom 90b.
  • the portion that covers the upper, lower, left, and right surfaces of the sensor element main body 101a is referred to as a side 90c.
  • the main body 90a also covers the portion of the buffer layer 84 included in the tip 101b.
  • the portion of the main body 90a that connects the bottom 90b and the side 90c is referred to as a bottom connecting portion 90d.
  • the portion that connects the side 90c to each other is referred to as a side connection 90e.
  • the portion covering the upper surface of the sensor element main body 101a is the upper side portion 92a
  • the portion covering the lower surface of the sensor element main body 101a is the lower side portion 92b
  • the left surface of the sensor element main body 101a is.
  • the covering portion is referred to as a left side portion 92c, and the portion covering the right surface of the sensor element main body 101a is referred to as a right side portion 92d.
  • the main body 90a also covers the outer pump electrode 23 provided on the upper surface of the sensor element main body 101a. Therefore, the protective layer 90 plays a role of suppressing the adhesion of toxic substances such as oil components contained in the gas to be measured to the outer pump electrode 23 and suppressing the deterioration of the outer pump electrode 23.
  • the main body 90a also covers the gas inlet 10, but since the protective layer 90 is made of a porous body, the gas to be measured can flow through the inside of the protective layer 90 and reach the gas inlet 10. ..
  • the thickness t (see FIG. 4) of the side portion 90c of the main body portion 90a may be, for example, 1.5 mm or less, 1 mm or less, 600 ⁇ m or less, or 400 ⁇ m or less.
  • the thickness t of the side portion 90c of the main body portion 90a may be, for example, 100 ⁇ m or more, or 200 ⁇ m or more.
  • the thickness t of any one or more of the upper side portion 92a, the lower side portion 92b, the left side portion 92c and the right side portion 92d satisfies at least one of the above ranges. May be good.
  • the thickness t of the bottom 90b of the main body 90a may also satisfy at least one of the above ranges, or the thickness t may satisfy at least one of the above ranges over the entire area of the main body 90a.
  • a space 95 exists between the surface of the main body portion 90a and the surface of the tip portion 101b.
  • the space 95 includes an upper space 95a, a lower space 95b, a left space 95c, a right space 95d, and a front space 95e.
  • the upper space 95a is a space between the main body 90a and the upper surface of the sensor element main body 101a.
  • the lower space 95b is a space between the main body 90a and the lower surface of the sensor element main body 101a.
  • the left side space 95c is a space between the main body 90a and the left surface of the sensor element main body 101a.
  • the right side space 95d is a space between the main body 90a and the right surface of the sensor element main body 101a.
  • the front space 95e is a space between the main body 90a and the front surface of the sensor element main body 101a.
  • the height of the upper space 95a may be 10 ⁇ m or more, 20 ⁇ m or more, or 50 ⁇ m or more.
  • the height of the upper space 95a is preferably 1 mm or less, more preferably 400 ⁇ m or less, and even more preferably 300 ⁇ m or less. The numerical range of these heights is the same for the lower space 95b, the left space 95c, the right space 95d, and the front space 95e.
  • the height direction of the upper space 95a and the lower space 95b is the vertical direction
  • the height direction of the left side space 95c and the right side space 95d is the left-right direction
  • the height direction of the front side space 95e is the front-rear direction. This also applies to the height directions of the upper columnar portion 91a, the lower columnar portion 91b, the left columnar portion 91c, the right columnar portion 91d, and the front columnar portion 91e, which will be described later.
  • the columnar portion 91 is provided inside the main body portion 90a.
  • the columnar portion 91 is integrally molded with the main body portion 90a, and protrudes from the connection portion with the main body portion 90a toward the sensor element main body 101a.
  • the columnar portion 91 includes one or more upper columnar portions 91a, one or more lower columnar portions 91b, one or more left side columnar portions 91c, one or more right side columnar portions 91d, and one or more front side columnar portions 91e.
  • the columnar portion 91 serves as a space support portion that supports the space 95 between the protective layer 90 and the sensor element main body 101a.
  • the upper columnar portion 91a supports the upper space 95a in a direction perpendicular to the upper surface of the sensor element main body 101a. That is, the upper columnar portion 91a supports the upper space 95a up and down.
  • the lower columnar portion 91b supports the lower space 95b in a direction perpendicular to the lower surface of the sensor element main body 101a. That is, the lower columnar portion 91b supports the lower space 95b up and down.
  • the left columnar portion 91c supports the left side space 95c in a direction perpendicular to the left surface of the sensor element main body 101a. That is, the left columnar portion 91c supports the left side space 95c to the left and right.
  • the right columnar portion 91d supports the right side space 95d in a direction perpendicular to the right surface of the sensor element main body 101a.
  • the right columnar portion 91d supports the right side space 95d to the left and right.
  • the front columnar portion 91e supports the front space 95e in a direction perpendicular to the front surface of the sensor element main body 101a. That is, the front columnar portion 91e supports the front space 95e back and forth.
  • the longitudinal direction of the upper columnar portion 91a is along the longitudinal direction of the sensor element main body 101a, that is, the front-rear direction.
  • the upper columnar portion 91a has a length and a width from the connection portion with the side portion 90c to the facing surface facing the upper surface of the sensor element main body 101a (here, the lower surface of the upper columnar portion 91a). Is constant, and the lower surface of the upper columnar portion 91a is flat.
  • the front end of the upper columnar portion 91a is connected to the bottom portion 90b of the main body portion 90a. In other words, there is no space 95 between the front of the upper columnar portion 91a and the bottom portion 90b of the main body portion 90a.
  • the upper columnar portion 91a is not arranged up to the rear end of the main body portion 90a. Therefore, as shown in FIGS. 3 and 6, the rear end portion 93a of the upper columnar portion 91a and the eye sealing portion 94 are separated from each other in the front-rear direction, and the upper columnar portion 91a and the eye sealing portion 94 are in contact with each other. Absent.
  • the lower columnar portion 91b, the left columnar portion 91c, and the right columnar portion 91d also have the same configuration as the upper columnar portion 91a.
  • the two upper columnar portions 91a are 1 on the left and right sides of the region 102a so as to avoid the region 102a in which the gas flow portion 9 to be measured is projected onto the upper surface of the sensor element main body 101a. They are arranged one by one. Similarly, one of the two lower columnar portions 91b is arranged on each of the left and right sides of the region 102b so as to avoid the region 102b of the lower surface of the sensor element main body 101a where the gas flow portion 9 to be measured is projected onto the lower surface. Has been done.
  • each of the left columnar portion 91c and the right columnar portion 91d is arranged so as to avoid the regions 102c and 102d on which the gas flow portion 9 to be measured is projected on the left surface and the right surface of the sensor element main body 101a.
  • the upper surface is the surface closest to the gas flow unit 9 to be measured.
  • the outer pump electrode 23 is arranged in the region 102a on the upper surface of the sensor element main body 101a.
  • the longitudinal direction of the front columnar portion 91e is along the vertical direction.
  • the front columnar portion 91e extends from the connection portion of the main body portion 90a with the bottom portion 90b to the facing surface facing the front surface of the sensor element main body 101a (here, the rear surface of the front side columnar portion 91e).
  • the width and width are constant, and the rear surface of the front columnar portion 91e is flat.
  • the two front columnar portions 91e are formed on both the left and right sides of the region 102e so as to avoid the region 102e in which the gas flow portion 9 to be measured is projected onto the front surface of the sensor element main body 101a.
  • One is placed in each. Since the front columnar portion 91e avoids the region 102e, the gas introduction port 10 is also avoided.
  • the height of the upper space 95a can be adjusted by adjusting the height H of the upper columnar portion 91a (see FIG. 4). Therefore, the height H of the upper columnar portion 91a may be 10 ⁇ m or more, 20 ⁇ m or more, or 50 ⁇ m or more.
  • the height H of the upper columnar portion 91a is preferably 1 mm or less, more preferably 400 ⁇ m or less, still more preferably 300 ⁇ m or less.
  • the numerical range of these heights H is the same for the lower columnar portion 91b, the left columnar portion 91c, the right columnar portion 91d, and the front columnar portion 91e.
  • the height H of the upper columnar portion 91a, the lower columnar portion 91b, the left columnar portion 91c, and the right columnar portion 91d is a length protruding from the side portion 90c of the main body portion 90a. Further, the height H of the front columnar portion 91e is a length protruding from the bottom portion 90b of the main body portion 90a.
  • the width W (see FIG. 4) of the upper columnar portion 91a is preferably at least 1 times its own height H, for example.
  • the width W of the upper columnar portion 91a is preferably 100 ⁇ m or more, more preferably 200 ⁇ m or more, still more preferably 300 ⁇ m or more. Further, the width W of the upper columnar portion 91a may be 500 ⁇ m or less, or 400 ⁇ m or less.
  • the numerical range of these widths W is the same for the lower columnar portion 91b, the left columnar portion 91c, the right columnar portion 91d, and the front columnar portion 91e.
  • the width W of each of the columnar portions 91a to 91e is the length in the shortest length direction (in the present embodiment, each short direction) in the direction perpendicular to each height H.
  • the width W of the upper columnar portion 91a, the lower columnar portion 91b, and the front columnar portion 91e is the length in the left-right direction
  • the width W of the left columnar portion 91c and the right columnar portion 91d is the length in the vertical direction. ..
  • the length L (see FIG. 6) of the upper columnar portion 91a is preferably, for example, one or more times its own height H.
  • the length L of the upper columnar portion 91a is preferably 100 ⁇ m or more, more preferably 200 ⁇ m or more, still more preferably 300 ⁇ m or more.
  • the length L of the upper columnar portion 91a may be 20000 ⁇ m or less, or 15000 ⁇ m or less.
  • the numerical range of these lengths L is the same for the lower columnar portion 91b, the left columnar portion 91c, and the right columnar portion 91d.
  • the length L of the front columnar portion 91e is preferably 100 ⁇ m or more, more preferably 200 ⁇ m or more, still more preferably 300 ⁇ m or more.
  • the length L of the front columnar portion 91e may be 1300 ⁇ m or less, or 1000 ⁇ m or less.
  • the length L of each of the columnar portions 91a to 91e is the length in the direction perpendicular to the height H and the width W (in the present embodiment, each longitudinal direction).
  • the length L of the upper columnar portion 91a, the lower columnar portion 91b, the left columnar portion 91c, and the right columnar portion 91d is the length in the front-rear direction
  • the length L of the front columnar portion 91e is the length in the vertical direction. Is.
  • the side columnar portions that is, the upper columnar portion 91a, the lower columnar portion 91b, the left columnar portion 91c, and the right columnar portion 91d are provided in a range of 2% or more and 35% or less inside the side portion 90c of the main body portion 90a. Is preferable. This range will be described with reference to FIG. FIG. 8 is a view in which the side portion 90c and the side portion connecting portion 90e of the main body portion 90a are developed so that the inside is in front of the paper surface.
  • the area of the upper side portion 92a is Aa
  • the area of the lower side portion 92b is Ab
  • the area of the left side portion 92c is Ac
  • the area of the right side portion 92d is Ad
  • the upper side portion of each upper columnar portion 91a is defined as Ad.
  • the area of the connection portion with the 92a is Ba
  • the area of the connection portion between each lower columnar portion 91b and the lower side portion 92b is Bb
  • the area of the connection portion of the left columnar portion 91c with the left side side portion 92c is Bc
  • Bd be the area of the connecting portion of the columnar portion 91d with the right side portion 92d.
  • the ratio of the total area (2Ba + 2Bb + Bc + Bd in this embodiment) of the portion where each columnar portion 91a to 91d is provided to the total area inside each side portion 92a to 92d (Aa + Ab + Ac + Ad in this embodiment), that is, , (2Ba + 2Bb + Bc + Bd) / (Aa + Ab + Ac + Ad) ⁇ 100 [%] is preferably within the above range.
  • the area Aa of the upper side portion 92a includes the area of the portion where the upper columnar portion 91a is formed, and is equal to the area of the upper surface of the tip portion 101b of the sensor element main body 101a in the present embodiment.
  • the upper columnar portion 91a is preferably provided in a range of 2% or more and 35% or less inside the upper side portion 92a.
  • the ratio of the total area (2Ba in the present embodiment) of the portion provided with the two upper columnar portions 91a to the area of the upper side portion 92a (Aa in the present embodiment), that is, 2Ba / Aa. It is preferable that the value of ⁇ 100 [%] is within the above range.
  • the lower columnar portion 91b, the left columnar portion 91c, and the right columnar portion 91d is within the above range.
  • the front columnar portion 91e is preferably provided in a range of 2% or more and 35% or less inside the bottom portion 90b of the main body portion 90a.
  • the area of the bottom 90b is Ae
  • the area of the connection portion of each front columnar portion 91e with the bottom 90b is Be.
  • the ratio of the total area (2Be in the present embodiment) of the portion provided with the two front columnar portions 91e to Ae) that is, the value of 2Be / Ae ⁇ 100 [%] is in the above range. Is preferable.
  • the area Ae of the bottom portion 90b includes the area of the portion where the front columnar portion 91e is formed, and is equal to the area of the front end surface of the sensor element main body 101a in the present embodiment.
  • the side columnar portion that is, the upper columnar portion 91a, the lower columnar portion 91b, the left columnar portion 91c, and the right columnar portion 91d is 2% of the portion of the sensor element main body 101a covered by the side portion 90c of the protective layer 90. It is preferable that it is in close contact with or bonded to the range of 35% or more. Further, the upper columnar portion 91a is in close contact with or coupled with a range of 2% or more and 35% or less of the portion of the sensor element main body 101a covered with the upper side portion 92a of the protective layer 90 (here, the upper surface of the tip portion 101b). Is preferable.
  • the front columnar portion 91e is in close contact with or coupled with a range of 2% or more and 35% or less of the portion of the sensor element main body 101a covered with the bottom portion 90b of the protective layer 90 (here, the front end surface of the tip portion 101b). It is preferable to have.
  • the area of the portion of the sensor element main body 101a covered by the upper side portion 92a is the same as the area Aa described above, and the area of the sensor element main body 101a covered by the lower side portion 92b is the same.
  • the area of the above-mentioned area Ab is the same as the above-mentioned area Ab, and the area of the portion of the sensor element main body 101a covered by the left side portion 92c is the same as the above-mentioned area Ac.
  • the area of the covered portion is the same as the above-mentioned area Ad, and the area of the portion of the sensor element main body 101a covered by the bottom 90b is the same as the above-mentioned area Ae.
  • the area of each upper columnar portion 91a that is in close contact with or coupled to the sensor element main body 101a (here, the lower surface of each upper columnar portion 91a) is the same as the above-mentioned area Ba, and in each lower columnar portion 91b.
  • the area of the portion (here, the upper surface of each lower columnar portion 91b) that is in close contact with or coupled to the sensor element main body 101a is the same as the area Bb described above, and the left columnar portion 91c is in close contact or coupled with the sensor element main body 101a.
  • the area of the portion (here, the right surface of the left columnar portion 91c) is the same as the area Bc described above, and the portion of the right columnar portion 91d that is in close contact with or coupled to the sensor element main body 101a (here, the right columnar portion 91d).
  • the area of the left surface is the same as the area Bd described above, and the area of the portion of each front columnar portion 91e that is in close contact with or coupled to the sensor element main body 101a (here, the rear surface of each front columnar portion 91e) is the area Be described above. Is the same as.
  • one or more upper columnar portions 91a and one or more lower columnar portions 91b are arranged so that their left and right positions are at least partially overlapped with each other at positions corresponding to each other. It is installed. That is, the left and right positions of the upper left columnar portion 91a and the left lower columnar portion 91b overlap at least partially, and the left and right positions of the right upper columnar portion 91a and the right lower columnar portion 91b are At least some overlap.
  • the width W of the upper columnar portion 91a and the width W of the lower columnar portion 91b are the same values, and the left and right positions of the upper columnar portion 91a on the left side and the lower columnar portion 91b on the left side are one. However, the left and right positions of the upper columnar portion 91a on the right side and the lower columnar portion 91b on the right side are the same.
  • the one or more upper columnar portions 91a and the one or more front columnar portions 91e are also arranged so that the left and right positions of the ones or more corresponding to each other are at least partially overlapped with each other (FIG. 5).
  • the width W of the upper columnar portion 91a and the width W of the front columnar portion 91e are the same values, and the left and right positions of the upper columnar portion 91a on the left side and the front columnar portion 91e on the left side coincide with each other.
  • the left and right positions of the upper columnar portion 91a on the right side and the front columnar portion 91e on the right side coincide with each other.
  • the upper and lower positions of the left columnar portion 91c and the right columnar portion 91d overlap at least partially.
  • the width W of the left columnar portion 91c and the width W of the right columnar portion 91d are the same values, and their upper and lower positions are the same.
  • the protective layer 90 has a residual compressive stress on its surface at at least one temperature T1 [° C.] included in the temperature range of 500 ° C. or higher and 900 ° C. or lower.
  • the temperature T1 [° C.] is the temperature of the protective layer 90 when the sensor element 101 is used.
  • the temperature T1 [° C.] is, for example, the same as the temperature of the hottest portion of the surface of the protective layer 90 (here, the portion directly above the outer pump electrode 23) when the sensor element 101 is used, for example, 700. °C.
  • the surface of the protective layer 90 is about 700 ° C.
  • the residual compressive stress is preferably present on the entire surface of the protective layer 90, but may be present on at least a part of the surface, for example, the upper side portion 92a, the lower side portion 92b, the left side portion 92c, and the right side portion. It may be present on at least one surface of the side portion 92d.
  • the location where the residual compressive stress is measured is not particularly limited, but may be, for example, at least one of the upper side portion 92a, the lower side portion 92b, the left side portion 92c, and the right side portion 92d.
  • the location where the residual compressive stress is measured may be, for example, a portion of the surface of the protective layer 90 where the temperature becomes particularly high when the sensor element 101 is used (here, a portion directly above the outer pump electrode 23).
  • the residual compressive stress on the surface of the protective layer 90 is the sin 2 ⁇ method using X-ray diffraction (J. Soc. Mat. Sci., Japan, Vol. 48, No. 10, pp. 1147-1154, Oct. 1999. See).
  • the residual compressive stress is, for example, 15 MPa or more and 300 MPa or less.
  • the residual compressive stress of the sensor element 101 of the present embodiment can be measured as follows, for example.
  • the sensor element 101 is held at a uniform temperature of temperature T1 (for example, 700 ° C.), and the residual stress of the portion of the surface of the protective layer 90 that becomes the highest temperature when the sensor element 101 is used is determined by using an X-ray diffractometer.
  • T1 for example, 700 ° C.
  • each sensor element 101 is placed on a Pt heater in a high temperature chamber and measured by a wide-angle X-ray diffraction method.
  • D8ADVANCE encapsulated tube type manufactured by Bruker AXS is used, and the X-ray source is CuK ⁇ ray (Gobel mirror (parallel beam)).
  • the scan method is 2 ⁇ / ⁇ scan, and the measurement range is 133 to 138 ° (Al 2 O 3 (146)).
  • the sin 2 ⁇ method is used, and the stress value ⁇ of the sample is calculated using Eq. (1) from the change in the lattice plane spacing (d value) when tilted by a certain ⁇ from the symmetric reflection. calculate.
  • -[E / ⁇ 2 (1 + ⁇ ) ⁇ ] cot ⁇ 0 [ ⁇ (2 ⁇ ) / ⁇ (sin 2 ⁇ )] ...
  • the protective layer 90 is a porous body and preferably contains ceramic particles as constituent particles, and more preferably contains at least one of alumina, mullite, cordelite, spinel, zirconia, titania, and magnesia.
  • the protective layer 90 is made of a porous alumina body.
  • the porosity of the protective layer 90 is, for example, 5% to 45%.
  • the porosity of the protective layer 90 may be 20% or more.
  • the mesh sealing portion 94 is a porous body that covers one or more of the surface along the longitudinal direction of the sensor element main body 101a, that is, the upper surface, the lower surface, the left surface, and the right surface of the sensor element main body 101a.
  • the eye-sealing portion 94 is the upper surface (here, the upper surface of the upper buffer layer 84a), the lower surface (here, the lower surface of the lower buffer layer 84b), and the left surface of the sensor element main body 101a. Both the right side and the right side are covered and are in close contact with each of these sides.
  • Adjacent portions of the sealing portion 94 that cover the upper surface, the lower surface, the left surface, and the right surface of the sensor element main body 101a are connected to each other. Further, the seal sealing portion 94 is arranged so as to be in contact with the rear end of the protective layer 90. More specifically, the eye-sealing portion 94 is in contact with the rear end surface of the main body portion 90a. As a result, the sealing portion 94 closes the opening at the rear end of the main body portion 90a, that is, the rear ends of the upper space 95a, the lower space 95b, the left side space 95c, and the right side space 95d. However, since the sealing portion 94 is also a porous body, the gas to be measured can pass through the sealing portion 94.
  • the porosity of the sealing portion 94 is, for example, 10% to 50%. The porosity of the sealing portion 94 may exceed 20%.
  • the porosity of the protective layer 90 and the sealing portion 94 is a value derived as follows using an image (SEM image) obtained by observing with a scanning electron microscope (SEM).
  • SEM image an image obtained by observing with a scanning electron microscope (SEM).
  • the protective layer 90 is cut along the thickness direction of the measurement target so that the cross section of the measurement target (for example, the protective layer 90) is the observation surface, and the cut surface is resin-filled and polished to prepare an observation sample. ..
  • an SEM image to be measured is obtained by photographing the observation surface of the observation sample with an SEM photograph (secondary electron image, acceleration voltage 15 kV, magnification 2000 times).
  • a threshold value is determined by a discriminant analysis method (binarization of Otsu) from the brightness distribution of the brightness data of the pixels in the image.
  • each pixel in the image is binarized into an object portion and a pore portion based on the determined threshold value, and the area of the object portion and the area of the pore portion are calculated.
  • the ratio of the area of the pore portion to the total area is derived as the porosity (unit:%).
  • the sealing portion 94 preferably contains ceramic particles as constituent particles, and more preferably contains at least one of alumina, zirconia, spinel, cordierite, titania, and magnesia. Further, the main component of the sealing portion 94 is preferably the same as the main component of the protective layer 90. In the present embodiment, the sealing portion 94 is made of an alumina porous body containing alumina ceramic particles as a main component.
  • FIG. 10 is an explanatory view showing how the unfired body 190 is produced by the molding die 150.
  • 11 and 12 are explanatory views showing a state in which the tip portion 101b of the sensor element main body 101a is inserted into the unfired body 190 and fired.
  • the manufacturing method of the sensor element 101 includes a preparation step, an arrangement step, a firing step, and a temperature lowering step. In the firing step, heating is performed at a temperature of T2 [° C.], and in the temperature lowering step, the temperature is lowered from the temperature T2 [° C.] to a temperature of T1 [° C.] or lower.
  • an element body material which is a sensor element body 101a before or after firing and a protective layer material which becomes a protective layer 90 by firing are prepared.
  • the coefficient of linear thermal expansion ⁇ a'[ppm] at the temperature T1 [° C.] to the temperature T2 [° C.] of the solid electrolyte layer of the element body material after the same step as the firing step is performed.
  • / K] and the coefficient of linear thermal expansion ⁇ b [ppm / K] at the temperature T1 [° C.] to the temperature T2 [° C.] of the protective layer material after performing the same step as the firing step are ⁇ a'> ⁇ b. Prepare something that satisfies the relationship.
  • the temperature T1 [° C.] is as described above, for example, 700 ° C.
  • the temperature T2 [° C.] is a temperature at which the protective layer material is fired in a firing step described later, and is, for example, any temperature included in a temperature range of 1100 ° C. or higher and 1200 ° C. or lower.
  • the sensor element main body 101a as the element main body material is prepared by manufacturing the sensor element main body 101a after firing.
  • first, six unfired ceramic green sheets are prepared.
  • the ceramic green sheet is produced, for example, by mixing ceramic particles, an organic solvent, a plasticizer, a binder, a sintering aid, etc., which are the main components of the sensor element main body 101a, to form a paste, and molding the sheet into a sheet.
  • Print patterns such as electrodes, insulating layers, and heaters on a ceramic green sheet Further, on the surface of the ceramic green sheet to be the second solid electrolyte layer 6 (the surface to be the upper surface of the sensor element main body 101a), a paste to be the upper buffer layer 84a after firing is screen-printed. Similarly, on the surface of the ceramic green sheet to be the first substrate layer 1 (the surface to be the lower surface of the sensor element main body 101a), a paste to be the lower buffer layer 84b after firing is screen-printed.
  • the paste to be the upper buffer layer 84a and the lower buffer layer 84b is, for example, a raw material powder (alumina powder in this embodiment) made of the material of the buffer layer 84 described above, a pore-forming material, an organic binder, and an organic material. Use a mixture of solvents.
  • a raw material powder alumina powder in this embodiment
  • six ceramic green sheets having various patterns formed in this way are laminated to form a laminated body.
  • the laminate is cut and cut into small laminates having the size of the sensor element main body 101a. This small laminate is the sensor element main body 101a before firing.
  • the small laminate is fired at a predetermined firing temperature (for example, 1300 to 1500 ° C.) to obtain the sensor element main body 101a.
  • the paste that becomes the upper buffer layer 84a and the lower buffer layer 84b after firing may be printed after the above-mentioned laminate is prepared. Further, the raw material powder used for the paste to be the upper buffer layer 84a and the lower buffer layer 84b may be a raw material powder of cordierite instead of the alumina powder.
  • the coefficient of linear thermal expansion ⁇ a ′ of the solid electrolyte layer of the element body material after the same step as the firing step at the temperature T1 [° C.] to the temperature T2 [° C.] is the solid electrolyte layer of the sensor element body 101a.
  • the material of the first substrate layer 1, the second substrate layer 2, the third substrate layer 3, the first solid electrolyte layer 4, the spacer layer 5 and the second solid electrolyte layer 6 that is, the main component of the sensor element main body 101a. It is determined by the material of the ceramic particles. Therefore, the coefficient of linear thermal expansion ⁇ a'can be set to a desired value by appropriately selecting the material of the ceramic particles.
  • the unfired body 190 which becomes the protective layer 90 by firing is produced by a mold casting method (also referred to as a gel casting method) using a molding die 150, so that the unfired body 190 as a protective layer material is not fired.
  • a mold casting method also referred to as a gel casting method
  • the unfired body 190 is integrally molded.
  • the mold casting method is a method of solidifying a slurry by a chemical reaction of the slurry itself to form a molded product, and is described in, for example, Japanese Patent Application Laid-Open No. 2016-95287.
  • a predetermined molding die 150 is prepared (FIG. 10A).
  • the molding die 150 has a first outer die 151 and a second outer die 152 having a shape obtained by dividing the outer die into two, and an insertion portion 153a inserted inside the first outer die 151 and the second outer die 152. It is equipped with an inner mold 153.
  • the first outer mold 151 and the second outer mold 152 have recesses corresponding to the outer shape of the unfired body 190. Further, the first outer mold 151 and the second outer mold 152 have a notch 151a and a notch 152a for allowing the slurry to flow in.
  • the outer shape of the insertion portion 153a of the inner mold 153 corresponds to the inner shape of the unfired body 190, and the insertion portion 153a has grooves and recesses for forming the columnar portion 91.
  • the first outer mold 151, the second outer mold 152 and the inner mold 153 are brought into close contact with each other, and the molding mold 150 is inserted in a state where the insertion portion 153a is inserted inside the first outer mold 151 and the second outer mold 152. Fix (Fig. 10B). In this state, the slurry used for mold casting is allowed to flow into the molding die 150 from the injection port composed of the notch 151a and the notch 152a.
  • the unfired body 190 has a main body 90a including a bottom 90b and a side 90c, and a columnar portion 91 (see FIGS. 11 and 12), and has a cap-like shape. There is.
  • the unfired body 190 is preferably dried before or after the mold release of the mold 150.
  • the slurry used in the mold casting method contains, for example, ceramic particles, sintering aids, organic solvents, dispersants, and gelling agents, which are constituent particles of the protective layer 90 described above.
  • the gelling agent is not particularly limited as long as it contains at least two types of polymerizable organic compounds, and examples thereof include those containing two types of organic compounds capable of urethane reaction. Examples of such two types of organic compounds include isocyanates and polyols.
  • a ceramic particle, a sintering aid, an organic solvent and a dispersant are added at a predetermined ratio and mixed over a predetermined time to prepare a slurry precursor.
  • a gelling agent is added to the slurry precursor and mixed to obtain a slurry.
  • the chemical reaction (urethane reaction) of the gelling agent starts to proceed with the passage of time, so that it is preferable to quickly pour the slurry into the molding die 150.
  • the coefficient of linear thermal expansion ⁇ b of the protective layer material at a temperature T1 [° C.] to a temperature T2 [° C.] after the same step as the firing step depends on the material of the protective layer 90, that is, the material of the ceramic particles contained in the slurry. It is decided. Therefore, the coefficient of linear thermal expansion ⁇ b can be set to a desired value by appropriately selecting the material of the ceramic particles.
  • the protective layer material (unfired body 190 in the present embodiment) is arranged on at least a part of the surface of the element main body material (sensor element main body 101a after firing in the present embodiment) prepared in the preparation step.
  • the unfired body 190 and the sensor element main body 101a are arranged so that the tip portion 101b of the sensor element main body 101a is inserted inside the unfired body 190.
  • the tip portion 101b of the sensor element main body 101a is inserted inside the unfired body 190 (FIGS. 11A and 12A) until the front end of the sensor element main body 101a abuts on the front columnar portion 91e.
  • the longitudinal direction (here, the front-rear direction) of the sensor element main body 101a is along the vertical direction, and the unfired body 190 is located vertically above the sensor element main body 101a. It is preferable to carry out in a state.
  • the tip portion 101b of the sensor element main body 101a is covered with the unfired body 190. Further, a space is formed between the unfired body 190 and the sensor element main body 101a by the space support portion (here, the columnar portion 91) that the unfired body 190 has inside. Specifically, the presence of the front columnar portion 91e inside the bottom portion 90b of the unfired body 190 causes the bottom portion 90b and the sensor element main body 101a to be separated from each other, and a space is formed between them.
  • the space support portion here, the columnar portion 91
  • the upper columnar portion 91a, the lower columnar portion 91b, the left columnar portion 91c, and the right columnar portion 91d are present inside the side portion 90c of the unfired body 190, so that the side portion 90c and the sensor element main body 101a are combined. Are separated and a space is formed between them. The space between the side portion 90c and the sensor element main body 101a opens toward the rear end of the front end portion 101b.
  • a firing step of firing the unfired body 190 which is a protective layer material
  • the unfired body 190 is fired by heating the protective layer material and the element main body material in the state where the arrangement step has been performed at a temperature T2 [° C.].
  • T2 a temperature
  • the unfired body 190 is fired to become the protective layer 90
  • the space between the unfired body 190 and the sensor element main body 101a becomes the space 95, and the space 95 between the protective layer 90 and the sensor element main body 101a. Is formed (FIGS. 11C, 12C).
  • the unfired body 190 shrinks during firing, for example, even if there is a gap between the unfired body 190 and the columnar portion 91 (FIG. 12B), the gap disappears and the columnar portion 91 of the protective layer 90 and the sensor element main body 101a Can be brought into close contact with or combined with each other (Fig. 12C). Further, in consideration of the shrinkage of the cap of the unfired body 190 in the depth direction (vertical direction of FIG. 12), the unfired body 190 is provided so that the protective layer 90 after shrinkage can cover the tip portion 101b (FIG. 12C). It is preferable that the size of the protective layer 90 is longer than that of the protective layer 90 (FIG. 12B). At the time of firing, as shown in FIGS.
  • the longitudinal direction (here, the front-rear direction) of the sensor element body 101a is along the vertical direction, and the unfired body 190 is located vertically above the sensor element body 101a. It is preferable to carry out in a state. Further, since the sensor element main body 101a has already been fired in the preparation step, it is preferable to fire the unfired body 190 at a temperature lower than the firing temperature of the sensor element main body 101a in the firing step.
  • the firing temperature of the unfired body 190 is preferably 100 ° C. to 200 ° C. lower than the firing temperature of the sensor element main body 101a.
  • the temperature of the protective layer material (here, the protective layer 90) and the element main body material (here, the sensor element main body 101a) in the state where the firing step has been performed is lowered from the temperature T2 [° C.] to the temperature T1 [° C.].
  • the element body material (here, the sensor element body 101a) and the protective layer material (here, the unfired body 190) used in the arrangement process are the element body materials after the same process as the firing step.
  • the coefficient of linear thermal expansion ⁇ b [ppm / K] at the temperature T2 [° C.] satisfies the relationship of ⁇ a'> ⁇ b.
  • the residual compressive stress on the surface of the protective layer 90 includes the linear shrinkage rates Sa', Sa, Sb due to the linear thermal expansion coefficients ⁇ a'and ⁇ b, as well as the linear shrinkage rate of the protective layer material due to firing shrinkage during the firing step.
  • the linear shrinkage rate (referred to as the firing shrinkage rate) of the element body material has an effect, but it is presumed that the effect is negligible.
  • the firing shrinkage rate Cb [%] of the protective layer material is larger than the firing shrinkage rate Ca [%] of the element main body material (Ca ⁇ Cb)
  • the difference is taken into consideration when ⁇ a'or Sa'is used.
  • An element main body material having a larger Sa, or a protective layer material having a smaller ⁇ b or Sb may be used. Further, the firing shrinkage rate Cb of the protective layer material is adjusted by adjusting the particle size of the ceramic particles contained in the slurry used for the protective layer material, the type and blending ratio of other materials contained in the slurry, the firing conditions in the firing step, and the like. [%] may be reduced.
  • the linear shrinkage rate Sa'[%] and the linear shrinkage rate Sb [%] can be theoretically obtained from the above-mentioned equations, but may be measured as follows, for example.
  • the linear shrinkage rate Sa'[%] first, the same material as the solid electrolyte layer of the element main body material after the same step as the firing step, that is, the same as the solid electrolyte layer of the sensor element main body 101a. Make an anti-folding rod from the material.
  • the length of the anti-folding rod L2 [mm] at the temperature T2 [° C.] and the length L1 [of the anti-folding rod at the temperature T1 [° C.] mm] is measured.
  • the anti-folding rod when producing the anti-folding rod, may be produced from the same material as the protective layer material after the same process as the firing step, that is, the same material as the protective layer 90. ..
  • the linear shrinkage rate Sa is considered to be substantially the same as Sa'as described above, but if the buffer layer 84 may affect the linear shrinkage rate Sa, a layer made of the same material as the buffer layer 84 and having the same thickness. It is also possible to prepare an anti-folding rod similar to the anti-folding rod used to obtain the linear shrinkage rate Sa'except that the anti-folding rod is provided on the surface, and use this anti-folding rod to derive the linear shrinkage rate Sa [%]. .. When there is a difference between the calculated value of the linear shrinkage rate Sa [%], the linear shrinkage rate Sa'[%], and the linear shrinkage rate Sb [%] and the actually measured value, the actually measured value may be prioritized.
  • the value of the residual compressive stress applied to the surface of the protective layer 90 can also be adjusted by the shape and dimensions of the protective layer 90.
  • the ratio of the side portion 90c of the protective layer 90 to which the side columnar portion is provided or the ratio of the portion of the side surface of the tip portion 101b of the sensor element main body 101a that is in close contact with or bonded to the side portion columnar portion.
  • the residual compressive stress can be easily set to a suitable value. The larger the ratio, the larger the value of the residual compressive stress tends to be.
  • the residual compressive stress can be easily set to a suitable value.
  • the sealing portion 94 is formed so as to close the opening on the rear end side of the sensor element main body 101a in the space 95 between the side portion 90c of the protective layer 90 and the sensor element main body 101a. Perform a stop process.
  • the eye-sealing portion 94 is formed by plasma spraying. Such plasma spraying can be performed in the same manner as the plasma spraying described in, for example, Japanese Patent Application Laid-Open No. 2016-109685.
  • the mesh sealing portion 94 is formed on any of the upper, lower, left, and right surfaces of the sensor element main body 101a, and the portions formed on the respective surfaces are formed so as to be connected to each other.
  • the sensor element 101 When the sensor element 101 is obtained, the sensor element 101 is passed through the prepared supporter 124 and the green compact 126, and these are inserted into the through holes inside the main metal fitting 122 from the upper side of FIG. 1, and the sensor element 101 is obtained. Is fixed with the element sealant 120. Then, the gas sensor 100 can be obtained by attaching the nut 130, the protective cover 110, or the like.
  • the gas to be measured in the pipe 140 flows into the protective cover 110, reaches the sensor element 101, passes through the protective layer 90, and flows into the gas introduction port 10. Then, the sensor element 101 detects the NOx concentration in the gas to be measured that has flowed into the gas introduction port 10. At this time, the moisture contained in the gas to be measured may also enter the protective cover 110 and adhere to the surface of the protective layer 90.
  • the sensor element main body 101a is adjusted to a temperature at which the solid electrolyte is activated by the heater 72 (for example, 800 ° C.), and the protective layer 90 is also at a high temperature (for example, 700 ° C.).
  • the protective layer 90 when moisture adheres to the surface of the protective layer 90, tensile stress acts on the boundary between the portion that has been rapidly cooled and shrunk due to the adhesion of the moisture and the other portion, and the protective layer 90 may crack.
  • the residual compressive stress exists on the surface of the protective layer 90 when the gas sensor 100 is used, the above-mentioned tensile stress is canceled by the residual compressive stress. Therefore, the occurrence of cracks in the protective layer 90 is suppressed, and the water resistance of the protective layer 90 is improved.
  • the temperature may drop sharply and cracks may occur in the sensor element main body 101a.
  • the space 95 since the space 95 exists between the protective layer 90 and the sensor element main body 101a, the space 95 can block the heat conduction from the protective layer 90 to the sensor element main body 101a. Therefore, the cooling of the sensor element main body 101a when water adheres to the surface of the protective layer 90 is suppressed.
  • the columnar portion 91 supports the space 95. Therefore, it is possible to suppress a decrease in the strength of the protective layer 90 due to the presence of the space 95. Further, since the longitudinal direction of each of the side columnar portions is along the longitudinal direction of the sensor element main body 101a, it is easy to increase the residual compressive stress on the surface of the protective layer 90. In the temperature lowering step, the sensor element main body 101a and the protective layer 90 shrink as the temperature drops, and the change in the dimensions of the sensor element main body 101a due to this shrinkage is in the direction along the longitudinal direction of the sensor element main body 101a (here, the front-rear direction). Occurs larger in.
  • the upper columnar portion 91a has a length L and a length L from the connection portion with the side portion 90c to the facing surface facing the upper surface of the sensor element main body 101a (lower surface of the upper columnar portion 91a).
  • the width W is constant.
  • the protective layer 90 since the contact (or coupling) area between the upper columnar portion 91a and the sensor element main body 101a is larger than when the length L and width W on the lower surface side of the upper columnar portion 91a are smaller, the protective layer 90 The residual compressive stress on the surface can be increased.
  • the lower columnar portion 91b has a constant length L and width W from the connection portion with the side portion 90c to the facing surface facing the lower surface of the sensor element main body 101a (upper surface of the lower columnar portion 91b). .. Therefore, the residual compressive stress on the surface of the protective layer 90 can be increased. The same effect can be obtained by having the same shape for each of the left columnar portion 91c, the right columnar portion 91d, and the front side columnar portion 91e.
  • the sensor element main body 101a of the present embodiment corresponds to the element main body of the present invention
  • the tip portion 101b corresponds to the tip portion
  • the layer 4, the spacer layer 5 and the second solid electrolyte layer 6 correspond to the solid electrolyte layer
  • the protective layer 90 corresponds to the protective layer.
  • the columnar portion 91 corresponds to the space support portion
  • the upper columnar portion 91a, the lower columnar portion 91b, the left columnar portion 91c, and the right columnar portion 91d correspond to the side columnar portion.
  • the sensor element main body 101a after firing corresponds to the element main body material
  • the unfired body 190 corresponds to the protective layer material.
  • the residual compressive stress existing on the surface of the protective layer 90 is 15 MPa or more, the water resistance is further improved. Further, when the residual compressive stress is 300 MPa or less, the tensile stress generated on the surface of the sensor element main body 101a can be relatively small. Therefore, the sensor element main body 101a is also less likely to be damaged.
  • zirconia which is the main component of the sensor element body 101a, has a coefficient of linear thermal expansion of 11 ppm / K at 40 ° C. to 700 ° C.
  • alumina which is the main component of the protective layer 90, is at 40 ° C. to 700 ° C.
  • the coefficient of linear thermal expansion is 8 ppm / K. That is, the sensor element main body 101a has a linear thermal expansion coefficient of 10 ppm / K or more and 15 ppm / K or less at 40 ° C. to 700 ° C., and the protective layer 90 has a linear thermal expansion coefficient of 1 ppm / K at 40 ° C. to 700 ° C. It is K or more and 9 ppm / K or less.
  • the coefficient of linear thermal expansion from 40 ° C. to 700 ° C. is about 8 ppm / K for spinel, 7 ppm / K for mullite, and about 2 ppm / K for cordierite, which are also suitable as the main components of the protective layer 90.
  • the entire tip portion 101b of the sensor element main body 101a can be protected by the protective layer 90. Further, since the space 95 formed between the main body 90a of the protective layer 90 and the sensor element main body 101a by the space support portion can suppress heat conduction from the protective layer 90 to the sensor element main body 101a, the protective layer 90 It is possible to suppress the cooling of the sensor element main body 101a when water adheres to the surface.
  • the side columnar portion is provided in a range of 2% or more and 35% or less inside the side portion 90c of the main body portion 90a, or the side of the main body portion 90a of the protective layer 90 in the sensor element main body 101a.
  • the residual compressive stress on the surface of the protective layer 90 can be easily set to a suitable value by adhering or bonding with the range of 2% or more and 35% or less of the portion covered with the portion 90c.
  • the height H of the side columnar portion is set to 400 ⁇ m or less, the length L or width W of the side columnar portion is set to 200 ⁇ m or more, or the thickness t of the side portion 90c is set to 600 ⁇ m or less, protection is provided.
  • the residual compressive stress on the surface of the layer 90 can be easily set to a suitable value.
  • the height of one or more of the upper space 95a, the lower space 95b, the left space 95c, the right space 95d, and the front space 95e is 10 ⁇ m or more, that is, the upper columnar portion 91a, the lower columnar portion 91b,
  • the height H of one or more of the left columnar portion 91c, the right columnar portion 91d, and the front columnar portion 91e is 10 ⁇ m or more, the effect of blocking the heat conduction from the protective layer 90 to the sensor element main body 101a by the space 95 can be obtained. Easy to be enough. The higher the height of the space 95, the higher the effect of blocking heat conduction.
  • the upper columnar portion 91a is arranged so as to avoid the region 102a on which the gas flow portion 9 to be measured is projected on the upper surface of the sensor element main body 101a.
  • the portion of the sensor element main body 101a between the gas flow portion 9 to be measured and the upper surface of the sensor element main body 101a is a portion having weak strength and relatively prone to cracking. Since the upper columnar portion 91a does not exist in the region 102a, direct heat conduction to the region 102a via the upper columnar portion 91a does not occur. Cracks in the portion between the gas flow section 9 to be measured are less likely to occur.
  • each of the lower columnar portion 91b, the left columnar portion 91c, and the right columnar portion 91d so as to avoid the regions 102b, 102c, 102d, and 102e, respectively.
  • the region 102a is particularly weak in the regions 102a to 102d. is there.
  • the upper columnar portion 91a is arranged avoiding this region 102a, cracks are less likely to occur in the region 102a having particularly weak strength.
  • the temperature T1 [° C.] of the solid electrolyte layer of the element body material after the same process as the firing step is performed as the element body material and the protective layer material in the arrangement process.
  • ⁇ a'[ppm / K] at the temperature T2 [° C] and the line at the temperature T1 [° C] to the temperature T2 [° C] of the protective layer material after performing the same process as the firing step Since the coefficient of thermal expansion ⁇ b [ppm / K] satisfies the relationship of ⁇ a'> ⁇ b, compressive stress can be applied to the protective layer 90 in the temperature lowering step.
  • the temperature T2 [° C.] can be set relatively low.
  • the temperature T1 [° C.] is 700 ° C., but the temperature is not limited to 700 ° C.
  • the temperature T1 [° C.] may be at least one temperature included in the temperature range of 500 ° C. or higher and 900 ° C. or lower, and the temperature T1 [° C.] may be at least one temperature included in the temperature range of 700 ° C. or higher and 900 ° C. or lower. May be.
  • the higher the temperature the smaller the residual compressive stress on the surface of the protective layer 90. For example, when the residual compressive stress exists at 700 ° C., it is considered that the residual compressive stress exists even at a temperature of 700 ° C. or lower.
  • the temperature T2 [° C.] is any temperature included in the temperature range of 1100 ° C. or higher and 1200 ° C. or lower, but the temperature is not limited to these.
  • the temperature T2 [° C.] may be any temperature included in the temperature range of 1100 ° C. or higher and 1600 ° C. or lower, or may be any temperature included in the temperature range of 1100 ° C. or higher and 1300 ° C. or lower.
  • the protective layer 90 has a cap shape, but the protective layer 90 is not limited to the cap shape as long as it covers at least a part of the surface of the sensor element main body 101a.
  • the protective layer 90 may have, for example, a tubular shape in which the bottom portion 90b is omitted, a shape in which a part of the side portion 90c (for example, a portion covering the left and right sides of the sensor element main body 101a) is omitted, or both of them are omitted. It may have a shaped shape.
  • the rear end portions 93a to 93d are separated from the eye sealing portion 94, but the present invention is not limited to this.
  • the upper columnar portion 91a and the lower columnar portion 91b exist up to the rear end of the main body portion 90a, and the rear end and the lower columnar portion of the upper columnar portion 91a The rear end of 91b may be in contact with the sealing portion 94.
  • the columnar portion 91 of the protective layer 90 includes the upper columnar portion 91a, the lower columnar portion 91b, the left columnar portion 91c, the right columnar portion 91d, and the front columnar portion 91e. It does not have to be included.
  • the columnar portion 91 is preferably arranged on the surfaces of the sensor element main body 101a on opposite sides so as to support at least two spaces located on opposite sides of the sensor element main body 101a.
  • the protective layer 90 includes columnar portions 91 arranged on the surfaces opposite to each other, that is, the left columnar portion 91c and the right columnar portion 91d, and has an upper columnar portion.
  • the lower columnar portion 91b may be omitted, or the upper columnar portion 91a may be provided in place of the lower columnar portion 91b. Further, as the columnar portions 91 arranged on the surfaces opposite to each other, the upper columnar portion 91a and the lower columnar portion 91b may be provided.
  • the upper columnar portion 91a has a constant length L and width W from the connection portion of the main body portion 90a with the side portion 90c to the lower surface of the upper columnar portion 91a, and the lower surface of the upper columnar portion 91a is flat.
  • the lower surface of the upper columnar portion 91a has a surface facing the upper surface of the sensor element main body 101a (here, the lower surface of the upper columnar portion 91a) in a cross-sectional view perpendicular to the longitudinal direction of the upper columnar portion 91a. It may have a shape that bulges in an arc toward the upper surface of the.
  • the "arc shape” includes various arc shapes such as an arc shape and an elliptical arc shape.
  • the upper columnar portion 91a may have a chamfered shape portion such as a C chamfer or an R chamfer around a flat lower surface. If the length L and width W from the connection portion of the main body 90a with the side 90c to the lower surface of the upper columnar portion 91a are not constant, the lower surface of the upper columnar portion 91a may be in close contact with the upper surface of the sensor element main body 101a. It is preferable that the length L and the width W of the portions to be joined satisfy the above-mentioned ranges of the length L and the width W.
  • the protective layer 90 includes a front columnar portion 91e that supports the front space 95e, but is not limited to this.
  • the protective layer 90 may include a front stepped portion 92e instead of the front columnar portion 91e.
  • the front step portion 92e is in contact with the four corners of the front surface of the sensor element main body 101a in the front-rear direction, and the height of the step (length in the front-rear direction) of the front step portion 92e determines the front surface and the main body portion of the sensor element main body 101a.
  • 90a and 90a are separated from each other via the front space 95e.
  • the columnar portions 91a to 91e are arranged so as to avoid the regions 102a to 102e on which the gas flow portion 9 to be measured is projected on the surface of the sensor element main body 101a, but the present invention is not limited to this. ..
  • One or more of the columnar portions 91a to 91e may be arranged at positions overlapping with the respective regions 102a to 102e.
  • the upper surface is the surface closest to the gas flow unit 9 to be measured, but the other surface is not limited to this and is the gas flow unit to be measured. It may be closest to 9. Further, not only when the upper surface is the surface closest to the gas flow portion 9 to be measured, but also the surface closest to the gas flow unit 9 to be measured among the upper surface, the lower surface, the left surface and the right surface of the sensor element main body 101a is formed on the surface. It is preferable that the columnar portion 91 is arranged so as to avoid the region on which the gas flow portion 9 to be measured is projected.
  • the upper columnar portion 91a is arranged on the upper surface, which is the surface on which the outer pump electrode 23 is arranged, avoiding the region 102a. It may be installed.
  • the gas introduction port 10 which is an opening serving as an inlet of the gas flow unit 9 to be measured is arranged on the front surface of the sensor element main body 101a, but the present invention is not limited to this.
  • the gas introduction port 10 may be arranged on any of the upper surface, the lower surface, the left surface, and the right surface of the sensor element main body 101a.
  • the surface on which the gas introduction port 10 is arranged is defined as the "surface closest to the gas flow portion to be measured".
  • the columnar portions 91a to 91e are arranged so as to avoid the regions 102a to 102e on which the gas flow portion 9 to be measured is projected on the surface of the sensor element main body 101a, but the present invention is not limited to this.
  • the portions that come into contact with the sensor element main body 101a may be arranged so as to avoid the respective regions 102a to 102e. For example, if at least the portion of the upper columnar portion 91a in contact with the sensor element main body 101a avoids the region 102a, the entire upper columnar portion 91a may not avoid the region 102a.
  • the portions of the columnar portions 91a to 91e that come into contact with the sensor element main body 101a avoid the regions 102a to 102e, but one or more of the columnar portions 91a to 91e
  • the portion that comes into contact with the sensor element main body 101a may be arranged at a position that overlaps with each of the regions 102a to 102e.
  • the portion of the columnar portion 91 that contacts the surface of the sensor element main body 101a covers the surface. It is preferable that the measurement gas flow unit 9 is arranged so as to avoid the projected region.
  • At least the front columnar portion 91e of the columnar portions 91a to 91e may be arranged so that the portion in contact with the sensor element main body 101a avoids the region 102e, or the entire front columnar portion 91e avoids the region 102e. It may be arranged. Further, regardless of whether or not the upper surface of the sensor element main body 101a is the surface closest to the gas flow portion 9 to be measured, the upper surface, which is the surface on which the outer pump electrode 23 is arranged, is among the upper columnar portions 91a. The portion in contact with the sensor element main body 101a may be arranged so as to avoid the region 102a.
  • the space 95 does not have to exist between the surface of the main body 90a and the surface of the tip 101b.
  • the area where the sensor element main body 101a and the protective layer 90 are in close contact with each other or are bonded to each other is large, the residual compressive stress on the surface of the protective layer 90 tends to be large.
  • the size of the space 95 has not been particularly described, but the space 95 is a space larger than the pores different from the pores in the protective layer 90, and has a size distinguishable from the pores in the protective layer 90. is there.
  • each of the spaces 95a to 95e has a size that can be distinguished from the pores in the protective layer 90.
  • the volume of the part present in the region directly above the top surface of the sensor element body 101a of the upper space 95a may be 0.03 mm 3 or more, may be 0.04 mm 3 or more, 0.07 mm 3 It may be 0.5 mm 3 or more, or 1.5 mm 3 or more.
  • the volume of the part present in the region beneath the lower surface of the sensor element body 101a of the lower space 95b may be 0.03 mm 3 or more, may be 0.04 mm 3 or higher, as 0.07 mm 3 or higher It may be 0.5 mm 3 or more, or 1.5 mm 3 or more.
  • Volume of the part present in the left area of the left surface of the sensor element body 101a of the left space 95c may be a 0.015 mm 3 or more, may be 0.2 mm 3 or more, as 0.4 mm 3 or more May be good.
  • volume of the portion present in the right area of the right surface of the sensor element body 101a of the right space 95d may be a 0.015 mm 3 or more, may be 0.2 mm 3 or more, as 0.4 mm 3 or more May be good.
  • the volume of the portion in front of the area of the front surface of the sensor element body 101a of the front space 95e may be 0.010 mm 3 or more, may be 0.1 mm 3 or more, even 0.2 mm 3 or more It may be 0.3 mm 3 or more.
  • the "region directly above the upper surface" of the sensor element main body 101a means a region existing in a direction perpendicular to the upper surface with respect to the upper surface, and does not include the upper left, upper right, and the like of the upper surface.
  • the volume of the portion existing in the region directly above the upper surface of the sensor element main body 101a is 0.03 mm 3 or more, and 0.
  • at least one of the plurality of spaces may satisfy the above numerical range of the volume, and the total of the plurality of spaces may be described above. It may satisfy the numerical range of the volume of.
  • the height of the upper space 95a may be 40% or more and 70% or less of the height from the upper surface of the sensor element main body 101a to the upper surface of the protective layer 90.
  • the height of the lower space 95b may be 40% or more and 70% or less of the height from the lower surface of the sensor element main body 101a to the lower surface of the protective layer 90.
  • the height of the left side space 95c may be 40% or more and 70% or less of the height from the left surface of the sensor element main body 101a to the left surface of the protective layer 90.
  • the height of the right side space 95d may be 40% or more and 70% or less of the height from the right surface of the sensor element main body 101a to the right surface of the protective layer 90.
  • the height of the front space 95e may be 40% or more and 70% or less of the height from the front surface of the sensor element main body 101a to the front surface of the protective layer 90.
  • the height of the upper space 95a may be 5 times or more or 10 times or more the average pore diameter (by the mercury injection method) of the protective layer 90.
  • the heights of the lower space 95b, the left space 95c, the right space 95d, and the front space 95e may be 5 times or more or 10 times or more the average pore diameter of the protective layer 90. ..
  • the eye-sealing portion 94 is arranged so as to cover a part of the surface of the sensor element main body 101a along the longitudinal direction and contact the end surface of the protective layer 90 on the rear end side. , Not limited to this.
  • the eye-sealing portion 94 may not be in contact with the rear end surface of the protective layer 90, as in the modified example of the eye-sealing portion 94 shown in FIG.
  • the eye sealing portion 94 is arranged between the protective layer 90 and the sensor element main body 101a. Also in FIG.
  • the eye sealing portion 94 closes the opening toward the rear end side of the space 95 existing between the protective layer 90 and the surface of the sensor element main body 101a, as in the above-described embodiment.
  • the rear end of the sealing portion 94 and the rear end of the protective layer 90 are at the same position in the front-rear direction, but the present invention is not limited to this.
  • a part of the eye-sealing portion 94 may protrude rearward from the rear end of the protective layer 90, or the rear end of the eye-sealing portion 94 may be located in front of the rear end of the protective layer 90. Good.
  • FIG. 1 the eye sealing portion 94 closes the opening toward the rear end side of the space 95 existing between the protective layer 90 and the surface of the sensor element main body 101a, as in the above-described embodiment.
  • the rear end of the sealing portion 94 and the rear end of the protective layer 90 are at the same position in the front-rear direction, but the present invention is not limited to this.
  • the sealing portion 94 is separated from the upper columnar portion 91a and the lower columnar portion 91b, but may be in contact with each other. Further, the eye-sealing portion 94 is provided so that a part of the sealing portion 94 is in contact with the end surface on the rear end side of the protective layer 90, and a part of the sealing portion 94 enters between the protective layer 90 and the sensor element main body 101a to open an opening of the space 95. It may be blocked.
  • the eye-sealing portion 94 shown in FIG. 18 masks the rear end surface of the protective layer 90 in the above-mentioned eye-sealing step, performs plasma spraying, and between the protective layer 90 and the sensor element main body 101a.
  • the eye-sealing portion 94 shown in FIG. 18 can be formed by using a paste that becomes the eye-sealing portion 94 after firing.
  • a paste that becomes the eye-sealing portion 94 after firing is applied to the surface of the sensor element main body 101a. It may be applied by printing or the like.
  • a paste that becomes the eye-sealing portion 94 after firing is applied after the unfired body 190. It may be injected from the end side into the gap between the unfired body 190 and the sensor element main body 101a. Further, in the above-described embodiment, the sealing portion 94 may be omitted.
  • the eye-sealing portion 94 may be formed by using a paste instead of plasma spraying.
  • the eye-sealing portion 94 may be formed by using a paste instead of plasma spraying.
  • the unfired body 190 and the paste that becomes the eye-sealing portion 94 after firing may be fired at the same time.
  • a paste to be the sealing portion 94 may be applied after the firing, and the paste may be fired to form the sealing portion 94.
  • the sensor element 101 of the gas sensor 100 is provided with the measurement electrode 44 coated with the fourth diffusion rate-determining portion 45 in the second internal space 40, but the present invention is not particularly limited to this configuration.
  • the measurement electrode 44 is exposed without being covered, and a slit-shaped fourth diffusion rate-determining portion 60 is provided between the measurement electrode 44 and the auxiliary pump electrode 51.
  • the fourth diffusion rate-determining unit 60 imparts a predetermined diffusion resistance to the gas to be measured whose oxygen concentration (oxygen partial pressure) is controlled by the operation of the auxiliary pump cell 50 in the second internal space 40, and transfers the gas to be measured. This is the part that leads to the third internal space 61 in the back.
  • the fourth diffusion rate-determining unit 60 plays a role of limiting the amount of NOx flowing into the third internal space 61. Even with the sensor element 101 having such a configuration, the NOx concentration can be detected by the measurement pump cell 41 as in the above-described embodiment.
  • the sensor element main body 101a is provided with the buffer layer 84, but the present invention is not limited to this.
  • the sensor element main body 101a does not include the buffer layer 84, and includes the upper surface of the second solid electrolyte layer 6, the lower surface of the first substrate layer 1, the protective layer 90, and the sealing portion 94. May be in direct contact.
  • the sensor element main body 101a includes the reference gas introduction space 43 and the atmosphere introduction layer 48, but the present invention is not limited to this.
  • the reference gas introduction space 43 may be filled with the same porous body as the atmosphere introduction layer 48.
  • the sensor element main body 101a may not include the reference gas introduction space 43, and the atmosphere introduction layer 48 may exist up to the rear end of the sensor element main body 101a.
  • the reference gas can be introduced into the sensor element body 101a from the rear end of the sensor element body 101a and reach the reference electrode 42.
  • the sensor element main body 101a is a laminated body having a plurality of solid electrolyte layers (layers 1 to 6), but the present invention is not limited to this.
  • the sensor element main body 101a may include at least one oxygen ion conductive solid electrolyte layer.
  • the layers 1 to 5 other than the second solid electrolyte layer 6 may be a structural layer made of a material other than the solid electrolyte (for example, a layer made of alumina).
  • each electrode of the sensor element main body 101a may be arranged on the second solid electrolyte layer 6.
  • the measurement electrode 44 of FIG. 3 may be arranged on the lower surface of the second solid electrolyte layer 6.
  • the reference gas introduction space 43 is provided in the spacer layer 5 instead of the first solid electrolyte layer 4, and the atmosphere introduction layer 48 is provided between the first solid electrolyte layer 4 and the third substrate layer 3 instead of being provided in the second solid. It may be provided between the electrolyte layer 6 and the spacer layer 5, and the reference electrode 42 may be provided behind the third internal space 61 and on the lower surface of the second solid electrolyte layer 6.
  • the target value of the electromotive force V0 is set based on the pump current Ip1, and the pump voltage Vp0 is feedback-controlled so that the electromotive force V0 becomes the target value, but other control may be performed.
  • the pump voltage Vp0 may be feedback-controlled based on the pump current Ip1 so that the pump current Ip1 becomes the target value Ip1 *. That is, the pump voltage Vp0 is directly controlled based on the pump current Ip1 by omitting the acquisition of the electromotive force V0 from the main pump control oxygen partial pressure detection sensor cell 80 and the setting of the target value of the electromotive force V0 (and thus the pump).
  • the current Ip0 may be controlled).
  • the gas sensor 100 that detects the NOx concentration is illustrated, but the present invention may be applied to a gas sensor that detects the oxygen concentration or a gas sensor that detects the ammonia concentration.
  • the unfired body 190 is integrally molded, but the present invention is not limited to this.
  • a plurality of members having a shape obtained by dividing the unfired body 190 shown in FIG. 10C into a plurality of members may be formed.
  • the plurality of members and the sensor are joined so that the obtained plurality of members are joined to form a cap-shaped unfired body 190 and the sensor element main body 101a is inserted inside the unfired body 190. It may be arranged with the element body 101a.
  • a member having a shape obtained by dividing the unfired body 190 into an upper half and a lower half is formed, and the two members are arranged so as to sandwich the sensor element main body 101a from above and below, and between the two members.
  • the two members and the sensor element main body 101a may be arranged so as to be adhered to each other.
  • the sealing portion 94 may also be included in the unfired body 190 as a part of the protective layer 90 for molding.
  • FIG. 19 shows how the unfired bodies 190a and 190b, which are formed by dividing the unfired body 190 into two, are arranged so that the unfired bodies 190a and 190b sandwich the sensor element main body 101a from above and below. ..
  • the unfired bodies 190a and 190b are molded into a shape including the eye-sealing portion 94 of the above-described embodiment, respectively. In this case, the sealing step performed after the firing step can be omitted.
  • the unfired body 190 and the protective layer 90 obtained by firing the unfired body 190 face the bottom 90b side inward (inner peripheral surface).
  • the shape is such that there is no surface (the surface facing the front of the sensor element 101).
  • the front surface of the eye-sealing portion 94 exists inside the protective layer 90 and faces the bottom 90b side. Therefore, the cap-shaped protective layer 90 and the eye-sealing portion 94 are integrated. It cannot be molded.
  • the shape is such that the unfired body 190 and the protective layer 90 have a surface facing the bottom 90b side inward. It can also be. For example, as shown in FIG.
  • an unfired body 190 (unfired body 190a and unfired body 190b) having a shape such that the protective layer 90 includes a portion having the same shape as the sealing portion 94 can be formed.
  • the front ends of the upper columnar portion 91a, the lower columnar portion 91b, the left columnar portion 91c, and the right columnar portion 91d are connected to the bottom portion 90b of the main body portion 90a, but are not fired.
  • an unfired body 190 having a shape in which the front end and the bottom 90b are not connected can be formed for one or more of these columnar portions 91a to 91d.
  • the unfired body 190 and the protective layer 90 have a shape such that the front end surface of the upper columnar portion 91a exists inside the protective layer 90 and a space exists between the front end surface of the upper columnar portion 91a and the bottom portion 90b. Can also be formed.
  • one or more of the columnar portions 91a to 91d may have a shape in which the longitudinal direction does not follow the longitudinal direction of the sensor element main body 101a, that is, the front-rear direction (for example, along the left-right direction).
  • the unfired body 190 was produced by the mold casting method, but the present invention is not limited to this.
  • the unfired body 190 may be produced by using the powder compaction method.
  • the powder compaction method the unfired body 190 is molded as a powder molded body by sandwiching the raw material powder with a mold and pressing it.
  • the unfired bodies 190a and 190b in which the unfired body 190 is divided as shown in FIG. 19 may also be molded by using the powder compaction method.
  • a method of pressing and molding the raw material powder in this way is described in, for example, Japanese Patent Application Laid-Open No. 2018-146470.
  • the fired sensor element main body 101a and the unfired body 190 are prepared in the preparatory step, but the preparatory step is omitted, and the separately prepared sensor element main body 101a and the unfired body 190 are prepared in the arrangement step. 190 may be used. Further, in the preparation step, only the sensor element main body 101a after firing is prepared, and in the arrangement step, the raw material paste of the unfired body 190 is applied to a predetermined position of the sensor element main body 101a to prepare the unfired body 190. And the arrangement may be performed at the same time.
  • the sensor element main body 101a after firing is prepared as the element main body material in the preparation step, but the present invention is not limited to this, and the sensor element main body 101a before firing may be prepared. In this case, both the sensor element main body 101a and the unfired body 190 may be fired in the firing step.
  • the firing shrinkage rate Cb [%] of the protective layer material is large, the firing shrinkage rate Ca [%] of the sensor element body 101a before firing as the element body material is increased to increase the firing shrinkage rate Ca [%].
  • the difference between%] and Cb [%] may be small.
  • the firing shrinkage rate Ca [%] can be adjusted by adjusting the particle size of the ceramic particles contained in the ceramic green sheet, the type and blending ratio of other materials contained in the ceramic green sheet, and the firing conditions in the firing process. It may be increased.
  • the sensor element 101 of the above-described embodiment was examined.
  • the solid electrolyte layer contained in the sensor element main body 101a is mainly composed of zirconia, and the protective layer 90 is mainly composed of alumina.
  • the thickness (length in the vertical direction) was 1.4 mm
  • the width (length in the horizontal direction) was 4.1 mm
  • the length of the tip portion 101b was 11 mm.
  • the buffer layer 84 is mainly composed of alumina
  • the thickness of the upper buffer layer 84a and the lower buffer layer 84b is 20 ⁇ m, respectively.
  • the temperature T1 was 700 ° C.
  • the temperature T2 was 1100-1200 ° C.
  • the coefficient of linear thermal expansion ⁇ a' is 11 ppm / K
  • the coefficient of linear thermal expansion ⁇ b is 8 ppm / K.
  • the linear shrinkage rate Sa' is 0.44 to 0.55%
  • the linear shrinkage rate Sb is 0.32 to 0.40%.
  • Sa ⁇ Sa' is satisfied. That is, the relationship of ⁇ a'> ⁇ b and the relationship of Sa ( ⁇ Sa')> Sb are satisfied.
  • the protective layer 90 is changed to one containing cordierite as a main component
  • the linear thermal expansion coefficient ⁇ b is 2 ppm / K
  • the linear contraction coefficient Sb is 0.08 to 0.10%.
  • the linear thermal expansion coefficient ⁇ b is 7 ppm / K
  • the linear contraction coefficient Sb is 0.28 to 0.35%. In these cases as well, the relationship of ⁇ a'> ⁇ b and the relationship of Sa ( ⁇ Sa')> Sb are satisfied.
  • the columnar portion ratio in Table 1 is the ratio of the area of the area inside the side portion 90c of the main body portion 90a to which the side columnar portion is provided, that is, (2Ba + 2Bb + Bc + Bd) ⁇ 100. / (Aa + Ab + Ac + Ad). This value is the same as the ratio of the portion of the side surface of the tip portion 101b of the sensor element main body 101a that is in close contact with or coupled to the side columnar portion.
  • FIG. 20 is a graph showing the relationship between the residual compressive stress existing on the surface of the protective layer 90 and the water resistance of the protective layer 90.
  • the larger the residual compressive stress the higher the water resistance. From this, it was found that the water resistance of the protective layer 90 can be enhanced by the presence of residual compressive stress on the surface of the protective layer 90 as in the present invention. It was also found that the water resistance was further improved when the residual compressive stress was 15 MPa or more. It was found that the larger the area where the sensor element main body 101a is in close contact with or bonded to the side columnar portion, or the larger the proportion of the columnar portion, the larger the residual compressive stress and the better the water resistance.
  • the present invention can be used in the manufacturing industry of a gas sensor provided with a sensor element for detecting the concentration of a specific gas such as NOx in a gas to be measured such as the exhaust gas of an automobile.

Landscapes

  • Chemical & Material Sciences (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Health & Medical Sciences (AREA)
  • Physics & Mathematics (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Electrochemistry (AREA)
  • Molecular Biology (AREA)
  • Analytical Chemistry (AREA)
  • Biochemistry (AREA)
  • General Health & Medical Sciences (AREA)
  • General Physics & Mathematics (AREA)
  • Immunology (AREA)
  • Pathology (AREA)
  • Measuring Oxygen Concentration In Cells (AREA)

Abstract

A sensor element 101 used for detecting specific gas concentration in a to-be-measured gas is provided with: a sensor element body 101a; and a protective layer 90 which at least partially covers the surface of the sensor element body 101a. Residual compressive stress is present in the surface of the protective layer 90 at least at a temperature T1 [°C] within a temperature range of 500-900°C.

Description

センサ素子、ガスセンサ及びセンサ素子の製造方法Manufacturing method of sensor element, gas sensor and sensor element
 本発明は、センサ素子、ガスセンサ及びセンサ素子の製造方法に関する。 The present invention relates to a sensor element, a gas sensor, and a method for manufacturing the sensor element.
 従来、自動車の排気ガスなどの被測定ガスにおけるNOxなどの特定ガスの濃度を検出するセンサ素子を備えたガスセンサが知られている。特許文献1には、こうしたガスセンサのセンサ素子において、素子本体を覆うように保護層を設け、保護層と素子本体との間に空間を設けたものが記載されている。これにより、保護層の厚さ方向への熱伝導を空間によって断熱できるため、保護層の表面に水が付着した場合の素子本体の冷えが抑制され、耐被水性が向上すると説明されている。 Conventionally, a gas sensor having a sensor element for detecting the concentration of a specific gas such as NOx in the gas to be measured such as the exhaust gas of an automobile has been known. Patent Document 1 describes a sensor element of such a gas sensor in which a protective layer is provided so as to cover the element main body and a space is provided between the protective layer and the element main body. It is explained that the heat conduction in the thickness direction of the protective layer can be insulated by the space, so that the cooling of the element body when water adheres to the surface of the protective layer is suppressed and the water resistance is improved.
特開2016-188853号公報Japanese Unexamined Patent Publication No. 2016-188853
 しかしながら、特許文献1のセンサ素子では、保護層の表面に水が付着した場合に、素子本体の冷えを抑制できるものの、保護層の表面の水が付着した部分に冷えが集中する。それにより、保護層の表面では、水が付着したときに局所的な温度低下が大きくなり、局所的に温度低下した部分とその周囲の部分との間に引張応力が働き、保護層が破損することがあった。 However, in the sensor element of Patent Document 1, when water adheres to the surface of the protective layer, the cooling of the element body can be suppressed, but the cooling is concentrated on the portion of the surface of the protective layer to which water adheres. As a result, on the surface of the protective layer, when water adheres, the local temperature drop becomes large, and tensile stress acts between the locally lowered part and the surrounding part, and the protective layer is damaged. There was something.
 本発明はこのような課題を解決するためになされたものであり、センサ素子の保護層の耐被水性を向上させることを主目的とする。 The present invention has been made to solve such a problem, and a main object thereof is to improve the water resistance of the protective layer of the sensor element.
 本発明のセンサ素子は、
 被測定ガス中の特定ガス濃度の検出に用いられるセンサ素子であって、
 酸素イオン伝導性の固体電解質層を備え長手方向を有する素子本体と、
 前記素子本体の表面の少なくとも一部を被覆する保護層と、
 を備え、
 前記保護層は、500℃以上900℃以下の温度範囲に含まれる少なくともいずれかの温度T1[℃]において表面に残留圧縮応力が存在するものである。
The sensor element of the present invention
A sensor element used to detect a specific gas concentration in the gas to be measured.
An element body having an oxygen ion conductive solid electrolyte layer and having a longitudinal direction,
A protective layer that covers at least a part of the surface of the element body,
With
The protective layer has residual compressive stress on its surface at at least any temperature T1 [° C.] included in the temperature range of 500 ° C. or higher and 900 ° C. or lower.
 このセンサ素子では、500℃以上900℃以下の温度範囲に含まれる少なくともいずれかの温度T1[℃]において保護層の表面に残留圧縮応力が存在する。このため、温度T1[℃]において保護層の表面に水が付着した場合に、この残留圧縮応力によって、上述した引張応力が相殺される。これにより、保護層の破損が抑制され、保護層の耐被水性が向上する。なお、温度T1[℃]は、500℃以上900℃以下の温度範囲に含まれる少なくともいずれかの温度であればよいが、例えば700℃以上900℃以下の温度範囲に含まれる少なくともいずれかの温度としてもよい。温度T1[℃]は、センサ素子使用時の保護層の温度である。温度T1[℃]は、例えばセンサ素子使用時における保護層表面の温度の実測値やシミュレーションによる予測値としてもよい。保護層表面の温度は、保護層の表面のうち最も高温になる部分の温度としてもよい。 In this sensor element, residual compressive stress exists on the surface of the protective layer at at least one temperature T1 [° C.] included in the temperature range of 500 ° C. or higher and 900 ° C. or lower. Therefore, when water adheres to the surface of the protective layer at the temperature T1 [° C.], the above-mentioned tensile stress is canceled by the residual compressive stress. As a result, damage to the protective layer is suppressed, and the water resistance of the protective layer is improved. The temperature T1 [° C.] may be at least one temperature included in the temperature range of 500 ° C. or higher and 900 ° C. or lower, but for example, at least one temperature included in the temperature range of 700 ° C. or higher and 900 ° C. or lower. May be. The temperature T1 [° C.] is the temperature of the protective layer when the sensor element is used. The temperature T1 [° C.] may be, for example, an actually measured value of the temperature on the surface of the protective layer when the sensor element is used or a predicted value by simulation. The temperature of the surface of the protective layer may be the temperature of the hottest portion of the surface of the protective layer.
 本発明のセンサ素子において、前記残留圧縮応力は、15MPa以上であることが好ましい。こうすれば、耐被水性がより向上する。残留圧縮応力の上限は、特に限定されないが、例えば、300MPa以下、好ましくは200MPa以下である。 In the sensor element of the present invention, the residual compressive stress is preferably 15 MPa or more. In this way, the water resistance is further improved. The upper limit of the residual compressive stress is not particularly limited, but is, for example, 300 MPa or less, preferably 200 MPa or less.
 本発明のセンサ素子において、前記素子本体は、40℃~700℃での線熱膨張係数が10ppm/K以上15ppm/K以下であり、前記保護層は、40℃~700℃での線熱膨張係数が1ppm/K以上9ppm/K以下であってもよい。センサ素子は、700℃等の高温で使用される一方、非使用時には常温になるため、素子本体や保護層においては熱膨張と熱収縮が繰り返される。こうした熱膨張や熱収縮が繰り返された場合にも、素子本体と保護層の熱膨張係数が上述した範囲であれば、両者の線熱膨張係数の差が大きすぎないため、素子本体と保護層との熱膨張差による剥離等が生じにくい。 In the sensor element of the present invention, the element body has a coefficient of linear thermal expansion of 10 ppm / K or more and 15 ppm / K or less at 40 ° C. to 700 ° C., and the protective layer has a linear thermal expansion of 40 ° C. to 700 ° C. The coefficient may be 1 ppm / K or more and 9 ppm / K or less. While the sensor element is used at a high temperature such as 700 ° C., it reaches room temperature when not in use, so that thermal expansion and contraction are repeated in the element body and the protective layer. Even when such thermal expansion and contraction are repeated, if the coefficient of thermal expansion of the element body and the protective layer is within the above range, the difference between the coefficient of linear thermal expansion between the two is not too large, so that the difference between the coefficient of linear thermal expansion is not too large. Peeling due to the difference in thermal expansion with the above is unlikely to occur.
 本発明のセンサ素子において、前記素子本体はジルコニアを主成分とし、前記保護層は、アルミナ、スピネル、コージェライト及びムライトからなる群より選ばれる1以上を主成分としてもよい。主成分とは、最も多く含まれる成分のことをいい、例えば質量割合が最も高い成分のことをいう。なお、40℃~700℃での線熱膨張係数は、ジルコニアで11ppm/K、アルミナやスピネルで8ppm/K、コージェライトで2ppm/K、ムライトで7ppm/Kである。 In the sensor element of the present invention, the element body may contain zirconia as a main component, and the protective layer may contain one or more selected from the group consisting of alumina, spinel, cordierite and mullite as the main component. The principal component means the component contained most, for example, the component having the highest mass ratio. The coefficient of linear thermal expansion from 40 ° C. to 700 ° C. is 11 ppm / K for zirconia, 8 ppm / K for alumina and spinel, 2 ppm / K for cordierite, and 7 ppm / K for mullite.
 本発明のセンサ素子において、前記保護層は、前記素子本体の前記長手方向の一方の端部である先端部を被覆する有底筒状の本体部と、前記本体部と前記素子本体との間に空間が形成されるように設けられた空間支持部と、を有していてもよい。こうしたものでは、有底筒状の本体部を有する保護層が素子本体の先端部を被覆しているため、素子本体の先端部全体を保護できる。また、空間支持部によって保護層の本体部と素子本体との間に空間が形成されており、この空間によって保護層から素子本体への熱伝導を抑制できるため、保護層の表面に水が付着した場合の素子本体の冷えを抑制できる。 In the sensor element of the present invention, the protective layer is between a bottomed tubular main body portion that covers the tip end portion, which is one end portion in the longitudinal direction of the element main body, and the main body portion and the element main body. It may have a space support portion provided so as to form a space in the space. In such a device, since the protective layer having the bottomed tubular main body covers the tip of the element main body, the entire tip of the element main body can be protected. In addition, a space is formed between the main body of the protective layer and the main body of the element by the space support portion, and this space can suppress heat conduction from the protective layer to the main body of the element, so that water adheres to the surface of the protective layer. It is possible to suppress the cooling of the element body in the case of this.
 本発明のセンサ素子において、前記保護層は、前記空間支持部として前記本体部の側部の内側に設けられた側部柱状部を有し、(a)前記側部柱状部は、前記本体部の側部の内側の2%以上35%以下の範囲に設けられているか、(b)前記側部柱状部は、前記素子本体のうち前記保護層の前記本体部の側部で覆われた部分の2%以上35%以下の範囲と密着又は結合しているか、の少なくとも一方を満たしてもよい。こうすれば、保護層の表面の残留圧縮応力が、例えば15MPa以上300MPa以下などの範囲の所望の値になりやすい。 In the sensor element of the present invention, the protective layer has a side columnar portion provided inside the side portion of the main body portion as the space support portion, and (a) the side columnar portion is the main body portion. Is provided in a range of 2% or more and 35% or less inside the side portion of the element, or (b) the side columnar portion is a portion of the element body covered with the side portion of the main body portion of the protective layer. It may satisfy at least one of 2% or more and 35% or less of the above. In this way, the residual compressive stress on the surface of the protective layer tends to be a desired value in the range of, for example, 15 MPa or more and 300 MPa or less.
 本発明のセンサ素子において、前記保護層は、前記空間支持部として前記本体部の側部の内側に設けられた側部柱状部を有し、前記側部柱状部は、前記本体部の側部からの突出長さを高さHとし、前記高さHに垂直な方向のうち長さの最も短い方向の長さを幅Wとし、前記高さH及び前記幅Wに垂直な方向の長さを長さLとしたときに、前記幅W及び前記長さLが200μm以上であってもよい。側部柱状部の幅W及び長さLが200μm以上なら、保護層の表面の残留圧縮応力が、例えば15MPa以上300MPa以下などの範囲の所望の値になりやすい。 In the sensor element of the present invention, the protective layer has a side columnar portion provided inside the side portion of the main body portion as the space support portion, and the side columnar portion is a side portion of the main body portion. The length protruding from the height H is defined as the height H, the length in the direction perpendicular to the height H and the shortest length is defined as the width W, and the length in the direction perpendicular to the height H and the width W. The width W and the length L may be 200 μm or more when the length L is defined as. When the width W and the length L of the side columnar portion are 200 μm or more, the residual compressive stress on the surface of the protective layer tends to be a desired value in the range of, for example, 15 MPa or more and 300 MPa or less.
 本発明のセンサ素子において、前記保護層は、前記空間支持部として前記本体部の側部の内側に設けられた側部柱状部を有し、前記側部柱状部は、前記本体部の側部からの突出長さを高さHとすると、高さHが400μm以下であってもよい。側部柱状部の高さHが400μm以下なら、保護層の表面の残留圧縮応力が、例えば15MPa以上300MPa以下などの範囲の所望の値になりやすい。なお、高さHは10μm以上でもよい。こうすれば、保護層から素子本体への熱伝導をより抑制できる。 In the sensor element of the present invention, the protective layer has a side columnar portion provided inside the side portion of the main body portion as the space support portion, and the side columnar portion is a side portion of the main body portion. Assuming that the height H is the protrusion length from the height H, the height H may be 400 μm or less. When the height H of the side columnar portion is 400 μm or less, the residual compressive stress on the surface of the protective layer tends to be a desired value in the range of, for example, 15 MPa or more and 300 MPa or less. The height H may be 10 μm or more. In this way, heat conduction from the protective layer to the element body can be further suppressed.
 本発明のセンサ素子において、前記保護層は、前記本体部の側部の厚さtが600μm以下であってもよい。側部の厚さtは、側部の平均厚さとし、他の部分と厚さが大きく異なる部分(例えば角部など)がある場合は、そうした部分を除いた部分の平均厚さとする。側部の厚さtが600μm以下なら、保護層の表面の残留圧縮応力が、例えば15MPa以上300MPa以下などの範囲の所望の値になりやすい。 In the sensor element of the present invention, the protective layer may have a thickness t of a side portion of the main body portion of 600 μm or less. The thickness t of the side portion is the average thickness of the side portion, and if there is a portion (for example, a corner portion) whose thickness is significantly different from that of the other portion, the average thickness of the portion excluding such a portion is used. When the thickness t of the side portion is 600 μm or less, the residual compressive stress on the surface of the protective layer tends to be a desired value in the range of, for example, 15 MPa or more and 300 MPa or less.
 本発明のガスセンサは、上述したいずれかの態様のセンサ素子を備えたものである。そのため、このガスセンサは、上述した本発明のセンサ素子と同様の効果、例えば、センサ素子の保護層の耐被水性を向上させるという効果が得られる。 The gas sensor of the present invention includes the sensor element of any of the above-described aspects. Therefore, this gas sensor has the same effect as the sensor element of the present invention described above, for example, the effect of improving the water resistance of the protective layer of the sensor element.
 本発明のセンサ素子の製造方法は、
 上述したいずれかの態様のセンサ素子の製造方法であって、
 焼成前又は焼成後の前記素子本体である素子本体材の表面の少なくとも一部に、焼成により前記保護層となる保護層材を配置する配置工程と、
 前記配置工程が行われた状態の前記保護層材及び前記素子本体材を温度T2[℃]で加熱し、少なくとも前記保護層材を焼成する焼成工程と、
 前記焼成工程が行われた状態の前記保護層及び前記素子本体を前記温度T2[℃]から前記温度T1[℃]以下の温度まで降温する降温工程と、
 を含み、
 前記配置工程では、前記素子本体材及び前記保護層材として、前記焼成工程と同じ工程を行った後の前記素子本体材が有する前記固体電解質層の前記温度T1[℃]~前記温度T2[℃]での線熱膨張係数αa’[ppm/K]と、前記焼成工程と同じ工程を行った後の前記保護層材の前記温度T1[℃]~前記温度T2[℃]での線熱膨張係数αb[ppm/K]とが、αa’>αbの関係を満たすものを用いる。
The method for manufacturing the sensor element of the present invention is
A method for manufacturing a sensor element according to any one of the above embodiments.
An arrangement step of arranging the protective layer material to be the protective layer by firing on at least a part of the surface of the element main body material which is the element main body before or after firing.
A firing step of heating the protective layer material and the element main body material in a state where the arrangement step has been performed at a temperature of T2 [° C.] and firing at least the protective layer material.
A temperature lowering step of lowering the temperature of the protective layer and the element body in the state where the firing step has been performed from the temperature T2 [° C.] to a temperature of the temperature T1 [° C.] or lower.
Including
In the arrangement step, the temperature T1 [° C.] to the temperature T2 [° C.] of the solid electrolyte layer contained in the element body material after performing the same steps as the firing step as the element body material and the protective layer material. ], The coefficient of linear thermal expansion αa'[ppm / K] and the linear thermal expansion of the protective layer material at the temperature T1 [° C.] to the temperature T2 [° C.] after the same step as the firing step is performed. A coefficient αb [ppm / K] that satisfies the relationship of αa'> αb is used.
 この製造方法では、配置工程において、素子本体材及び保護層材として、焼成工程と同じ工程を行った後の素子本体材が有する固体電解質層の温度T1[℃]~温度T2[℃]での線熱膨張係数αa’[ppm/K]と、焼成工程と同じ工程を行った後の保護層材の温度T1[℃]~温度T2[℃]での線熱膨張係数αb[ppm/K]とが、αa’>αbの関係を満たすものを用いるため、降温工程において、保護層に圧縮応力を付与することができる。以下、この点について説明する。焼成工程と同じ工程を行った後の素子本体材及び保護層材を個別に温度T2[℃]から温度T1[℃]まで降温すると、素子本体材が有する固体電解質層の線収縮率Sa’[%]はSa’=αa’×(T2-T1)×10-4となり、保護層材の線収縮率Sb[%]はSb=αb×(T2-T1)×10-4となる。また、素子本体は、大部分が固体電解質層で形成されているため、焼成工程と同じ工程を行った後の素子本体材の線収縮率Sa[%]は、固体電解質層の線収縮率Sa’[%]と略一致する。このため、αa’>αbの関係を満たす場合には、Sa(≒Sa’)>Sbの関係を満たすといえる。Sa>Sbの関係を満たす場合、焼成工程と同じ工程を行った後の素子本体材及び保護層材を個別に温度T2[℃]から温度T1[℃]まで降温すると、保護層材よりも素子本体材の方が大きく収縮する。ところで、焼成工程では、配置工程が行われた状態の保護層材及び素子本体材を、温度T2[℃]で加熱して少なくとも保護層材を焼成するため、焼成工程が行われた状態の保護層及び素子本体は、少なくとも一部において互いに密着又は結合している。このため、焼成工程が行われた状態の保護層及び素子本体を、その後の降温工程で温度T2[℃]から温度T1[℃]まで降温すると、素子本体の大きな収縮に引きずられて保護層の表面に残留圧縮応力が付与される。こうして、表面に残留圧縮応力が存在する保護層が得られる。このため、耐被水性の高い保護層を有するセンサ素子が得られる。 In this manufacturing method, in the arrangement process, the solid electrolyte layer of the element body material after the same process as the firing step is used as the element body material and the protective layer material at a temperature T1 [° C.] to a temperature T2 [° C.]. The coefficient of linear thermal expansion αa'[ppm / K] and the coefficient of linear thermal expansion αb [ppm / K] at the temperature T1 [° C.] to the temperature T2 [° C.] of the protective layer material after performing the same process as the firing step. Since the one that satisfies the relationship of αa'> αb is used, compressive stress can be applied to the protective layer in the temperature lowering step. This point will be described below. When the element body material and the protective layer material are individually cooled from the temperature T2 [° C.] to the temperature T1 [° C.] after the same process as the firing step, the linear shrinkage rate Sa'[of the solid electrolyte layer of the element body material. %] Is Sa'= αa' × (T2-T1) × 10 -4 , and the linear shrinkage rate Sb [%] of the protective layer material is Sb = αb × (T2-T1) × 10 -4 . Further, since most of the element body is formed of the solid electrolyte layer, the linear shrinkage rate Sa [%] of the element body material after the same step as the firing step is the linear shrinkage rate Sa [%] of the solid electrolyte layer. 'It is almost the same as [%]. Therefore, when the relationship of αa'> αb is satisfied, it can be said that the relationship of Sa (≈Sa')> Sb is satisfied. When the relationship of Sa> Sb is satisfied, when the element main body material and the protective layer material are individually cooled from the temperature T2 [° C.] to the temperature T1 [° C.] after the same process as the firing step, the element is more than the protective layer material. The main body material shrinks more. By the way, in the firing step, the protective layer material and the element main body material in the state where the arrangement step has been performed are heated at a temperature T2 [° C.] to fire at least the protective layer material, so that the protective layer material in the state where the firing step has been performed is protected. The layer and the element body are in close contact with or bonded to each other at least in part. Therefore, when the temperature of the protective layer and the element body in which the firing step has been performed is lowered from the temperature T2 [° C.] to the temperature T1 [° C.] in the subsequent temperature lowering step, the protective layer is dragged by the large shrinkage of the element body. Residual compressive stress is applied to the surface. In this way, a protective layer having residual compressive stress on the surface is obtained. Therefore, a sensor element having a protective layer having high water resistance can be obtained.
 本発明のセンサ素子の製造方法において、前記配置工程では、前記素子本体材として、焼成後の前記素子本体を用いてもよい。この場合、焼成工程において、素子本体材を焼成する必要がないため、温度T2[℃]を比較的低く設定できる。 In the method for manufacturing a sensor element of the present invention, the element body after firing may be used as the element body material in the arrangement step. In this case, since it is not necessary to fire the element main body material in the firing step, the temperature T2 [° C.] can be set relatively low.
ガスセンサ100の縦断面図。A vertical sectional view of the gas sensor 100. センサ素子101の構成の一例を概略的に示した斜視図。FIG. 5 is a perspective view schematically showing an example of the configuration of the sensor element 101. 図2の縦断面図。FIG. 2 is a vertical cross-sectional view of FIG. 図2のA-A断面図。FIG. 2 is a cross-sectional view taken along the line AA of FIG. 図2のB-B断面図。BB sectional view of FIG. 図2の縦断面の部分断面図。FIG. 2 is a partial cross-sectional view of the vertical cross section of FIG. 図2の横断面の部分断面図。FIG. 2 is a partial cross-sectional view of the cross section of FIG. 側部90c及び側部接続部90eの内側の様子を示す展開図。The development view which shows the inside state of the side part 90c and the side part connection part 90e. 目封止部94の断面図。FIG. 3 is a cross-sectional view of the mesh sealing portion 94. 成形型150により未焼成体190を作製する様子を示す説明図。It is explanatory drawing which shows the state of making the unfired body 190 by the molding die 150. 未焼成体190にセンサ素子本体101aの先端部101bを挿入して焼成する様子を示す説明図。It is explanatory drawing which shows the state of inserting the tip end part 101b of the sensor element main body 101a into the unfired body 190, and firing. 未焼成体190にセンサ素子本体101aの先端部101bを挿入して焼成する様子を示す説明図。It is explanatory drawing which shows the state of inserting the tip end part 101b of the sensor element main body 101a into the unfired body 190, and firing. 変形例の保護層90の説明図。Explanatory drawing of the protection layer 90 of the modification. 変形例の保護層90の説明図。Explanatory drawing of the protection layer 90 of the modification. 変形例の保護層90の説明図。Explanatory drawing of the protection layer 90 of the modification. 変形例の保護層90の説明図。Explanatory drawing of the protection layer 90 of the modification. 変形例のセンサ素子101の説明図。The explanatory view of the sensor element 101 of the modification. 変形例の目封止部94の説明図。The explanatory view of the eye sealing part 94 of the modification. 変形例の配置工程の説明図。The explanatory view of the arrangement process of the modification. 残留圧縮応力と耐被水量との関係を示すグラフ。A graph showing the relationship between residual compressive stress and water resistance.
 次に、本発明の実施形態について、図面を用いて説明する。図1は本発明の一実施形態であるガスセンサ100の縦断面図、図2はセンサ素子101の構成の一例を概略的に示した斜視図、図3は図2の縦断面図、図4は図2のA-A断面図、図5は図2のB-B断面図、図6は図2の縦断面の部分断面図、図7は図2の横断面の部分断面図、図8は側部90c及び側部接続部90eの内側の様子を示す展開図、図9は目封止部94の断面図である。 Next, an embodiment of the present invention will be described with reference to the drawings. 1 is a vertical sectional view of the gas sensor 100 according to an embodiment of the present invention, FIG. 2 is a perspective view schematically showing an example of the configuration of the sensor element 101, FIG. 3 is a vertical sectional view of FIG. 2, and FIG. 2A is a sectional view taken along the line AA, 5 is a sectional view taken along the line BB of FIG. 2, FIG. 6 is a partial sectional view of a vertical sectional view of FIG. 2, FIG. 7 is a partial sectional view of a cross section of FIG. A developed view showing the inside of the side portion 90c and the side portion connecting portion 90e, and FIG. 9 is a cross-sectional view of the eye sealing portion 94.
 ガスセンサ100は、センサ素子101と、センサ素子101の長手方向の一端(図1の下端)を覆って保護する保護カバー110と、センサ素子101を封入固定する素子封止体120と、素子封止体120に取り付けられたナット130と、を備えている。このガスセンサ100は、図示するように例えば車両の排ガス管などの配管140に取り付けられて、被測定ガスとしての排気ガスに含まれる特定ガス(本実施形態ではNOx)の濃度を測定するために用いられる。センサ素子101は、センサ素子本体101aと、センサ素子本体101aを被覆する多孔質の保護層90と、目封止部94と、を備えている。 The gas sensor 100 includes a sensor element 101, a protective cover 110 that covers and protects one end (lower end in FIG. 1) of the sensor element 101 in the longitudinal direction, an element encapsulant 120 that encloses and fixes the sensor element 101, and element encapsulation. It includes a nut 130 attached to the body 120. As shown in the figure, this gas sensor 100 is attached to a pipe 140 such as an exhaust gas pipe of a vehicle, and is used to measure the concentration of a specific gas (NOx in this embodiment) contained in the exhaust gas as a gas to be measured. Be done. The sensor element 101 includes a sensor element main body 101a, a porous protective layer 90 that covers the sensor element main body 101a, and a mesh sealing portion 94.
 保護カバー110は、センサ素子101の一端を覆う有底筒状の内側保護カバー111と、この内側保護カバー111を覆う有底筒状の外側保護カバー112とを備えている。内側保護カバー111及び外側保護カバー112には、被測定ガスを保護カバー110内に流通させるための複数の孔が形成されている。センサ素子101の一端は、内側保護カバー111で囲まれた空間内に配置されている。 The protective cover 110 includes a bottomed tubular inner protective cover 111 that covers one end of the sensor element 101, and a bottomed tubular outer protective cover 112 that covers the inner protective cover 111. The inner protective cover 111 and the outer protective cover 112 are formed with a plurality of holes for allowing the gas to be measured to flow into the protective cover 110. One end of the sensor element 101 is arranged in a space surrounded by the inner protective cover 111.
 素子封止体120は、円筒状の主体金具122と、主体金具122の内側の貫通孔内に封入されたセラミックス製のサポーター124と、主体金具122の内側の貫通孔内に封入されタルクなどのセラミックス粉末を成形した圧粉体126と、を備えている。センサ素子101は素子封止体120の中心軸上に位置しており、素子封止体120を前後方向に貫通している。圧粉体126は主体金具122とセンサ素子101との間で圧縮されている。これにより、圧粉体126が主体金具122内の貫通孔を封止すると共にセンサ素子101を固定している。 The element sealing body 120 includes a cylindrical main metal fitting 122, a ceramic supporter 124 sealed in a through hole inside the main metal fitting 122, and a talc or the like sealed in the through hole inside the main metal fitting 122. It includes a green compact 126 formed by molding a ceramic powder. The sensor element 101 is located on the central axis of the element encapsulant 120 and penetrates the element encapsulant 120 in the front-rear direction. The green compact 126 is compressed between the main metal fitting 122 and the sensor element 101. As a result, the green compact 126 seals the through hole in the main metal fitting 122 and fixes the sensor element 101.
 ナット130は、主体金具122と同軸に固定されており、外周面に雄ネジ部が形成されている。ナット130の雄ネジ部は、配管140に溶接され内周面に雌ネジ部が設けられた取付用部材141内に挿入されている。これにより、ガスセンサ100は、センサ素子101の一端や保護カバー110の部分が配管140内に突出した状態で、配管140に固定できるようになっている。 The nut 130 is fixed coaxially with the main metal fitting 122, and a male screw portion is formed on the outer peripheral surface. The male threaded portion of the nut 130 is inserted into a mounting member 141 welded to the pipe 140 and provided with a female threaded portion on the inner peripheral surface. As a result, the gas sensor 100 can be fixed to the pipe 140 with one end of the sensor element 101 and a portion of the protective cover 110 protruding into the pipe 140.
 センサ素子101のセンサ素子本体101aは、図2及び図3に示すように長尺な直方体形状をしている。以下には、センサ素子101について詳説するが、説明の便宜上、センサ素子本体101aの長手方向を前後方向、センサ素子本体101aの厚み方向を上下方向、センサ素子本体101aの幅方向を左右方向と称することとする。図3及び図6は、前後上下方向に平行な断面を示しており、図7は前後左右方向に平行な断面を示しており、図4,5,9は上下左右方向に平行な断面を示している。 The sensor element main body 101a of the sensor element 101 has a long rectangular parallelepiped shape as shown in FIGS. 2 and 3. The sensor element 101 will be described in detail below, but for convenience of explanation, the longitudinal direction of the sensor element body 101a is referred to as a front-rear direction, the thickness direction of the sensor element body 101a is referred to as a vertical direction, and the width direction of the sensor element body 101a is referred to as a left-right direction. I will do it. 3 and 6 show a cross section parallel to the front-back and up-down directions, FIG. 7 shows a cross section parallel to the front-back and left-right directions, and FIGS. ing.
 図3に示すように、センサ素子101は、それぞれがジルコニア(ZrO2)等の酸素イオン伝導性固体電解質層からなる第1基板層1と、第2基板層2と、第3基板層3と、第1固体電解質層4と、スペーサ層5と、第2固体電解質層6との6つの層が、図面視で下側からこの順に積層された積層体(センサ素子本体101a)を有する素子である。また、これら6つの層を形成する固体電解質は緻密な気密のものである。係るセンサ素子本体101aは、例えば、各層に対応するセラミックスグリーンシートに所定の加工および回路パターンの印刷などを行った後にそれらを積層し、さらに、焼成して一体化させることによって製造される。 As shown in FIG. 3, the sensor element 101 includes a first substrate layer 1, a second substrate layer 2, and a third substrate layer 3 , each of which is composed of an oxygen ion conductive solid electrolyte layer such as zirconia (ZrO 2). , The element having a laminated body (sensor element main body 101a) in which six layers of the first solid electrolyte layer 4, the spacer layer 5, and the second solid electrolyte layer 6 are laminated in this order from the lower side in the drawing. is there. Further, the solid electrolyte forming these six layers is a dense and airtight one. The sensor element main body 101a is manufactured, for example, by performing predetermined processing, printing of a circuit pattern, or the like on a ceramic green sheet corresponding to each layer, laminating them, and further firing and integrating them.
 センサ素子本体101aの一先端部(前方向の端部)であって、第2固体電解質層6の下面と第1固体電解質層4の上面との間には、ガス導入口10と、第1拡散律速部11と、緩衝空間12と、第2拡散律速部13と、第1内部空所20と、第3拡散律速部30と、第2内部空所40とが、この順に連通する態様にて隣接形成されてなる。 A gas inlet 10 and a first gas inlet 10 are located between the lower surface of the second solid electrolyte layer 6 and the upper surface of the first solid electrolyte layer 4 at one tip (end in the front direction) of the sensor element main body 101a. The diffusion rate-determining section 11, the buffer space 12, the second diffusion rate-determining section 13, the first internal space 20, the third diffusion rate-determining section 30, and the second internal space 40 communicate in this order. It is formed adjacent to each other.
 ガス導入口10と、緩衝空間12と、第1内部空所20と、第2内部空所40とは、スペーサ層5をくり抜いた態様にて設けられた上部を第2固体電解質層6の下面で、下部を第1固体電解質層4の上面で、側部をスペーサ層5の側面で区画されたセンサ素子本体101a内部の空間である。 The gas inlet 10, the buffer space 12, the first internal space 20, and the second internal space 40 are provided with the spacer layer 5 hollowed out so that the upper portion is the lower surface of the second solid electrolyte layer 6. The lower part is the upper surface of the first solid electrolyte layer 4, and the side part is the space inside the sensor element main body 101a partitioned by the side surface of the spacer layer 5.
 第1拡散律速部11と、第2拡散律速部13と、第3拡散律速部30とはいずれも、2本の横長の(図面に垂直な方向に開口が長手方向を有する)スリットとして設けられる。なお、ガス導入口10から第2内部空所40までの空間を被測定ガス流通部9と称する。被測定ガス流通部9は、略直方体形状に形成されている。被測定ガス流通部9の長手方向は前後方向と平行である。 The first diffusion rate-determining section 11, the second diffusion rate-determining section 13, and the third diffusion rate-determining section 30 are all provided as two horizontally long slits (the openings have a longitudinal direction in the direction perpendicular to the drawing). .. The space from the gas introduction port 10 to the second internal vacant space 40 is referred to as a gas distribution unit 9 to be measured. The gas flow unit 9 to be measured is formed in a substantially rectangular parallelepiped shape. The longitudinal direction of the gas flow section 9 to be measured is parallel to the front-rear direction.
 また、被測定ガス流通部9よりも先端側から遠い位置には、第3基板層3の上面と、スペーサ層5の下面との間であって、側部を第1固体電解質層4の側面で区画される位置に基準ガス導入空間43が設けられている。基準ガス導入空間43には、NOx濃度の測定を行う際の基準ガスとして、例えば大気が導入される。 Further, at a position far from the tip side of the gas flow portion 9 to be measured, between the upper surface of the third substrate layer 3 and the lower surface of the spacer layer 5, the side portion is the side surface of the first solid electrolyte layer 4. A reference gas introduction space 43 is provided at a position partitioned by. For example, the atmosphere is introduced into the reference gas introduction space 43 as a reference gas for measuring the NOx concentration.
 大気導入層48は、多孔質セラミックスからなる層であって、大気導入層48には基準ガス導入空間43を通じて基準ガスが導入されるようになっている。また、大気導入層48は、基準電極42を被覆するように形成されている。 The atmosphere introduction layer 48 is a layer made of porous ceramics, and the reference gas is introduced into the atmosphere introduction layer 48 through the reference gas introduction space 43. Further, the atmosphere introduction layer 48 is formed so as to cover the reference electrode 42.
 基準電極42は、第3基板層3の上面と第1固体電解質層4とに挟まれる態様にて形成される電極であり、上述のように、その周囲には、基準ガス導入空間43につながる大気導入層48が設けられている。また、後述するように、基準電極42を用いて第1内部空所20内や第2内部空所40内の酸素濃度(酸素分圧)を測定することが可能となっている。 The reference electrode 42 is an electrode formed so as to be sandwiched between the upper surface of the third substrate layer 3 and the first solid electrolyte layer 4, and as described above, the reference electrode 42 is connected to the reference gas introduction space 43 around the reference electrode 42. An air introduction layer 48 is provided. Further, as will be described later, it is possible to measure the oxygen concentration (oxygen partial pressure) in the first internal space 20 and the second internal space 40 using the reference electrode 42.
 被測定ガス流通部9において、ガス導入口10は、外部空間に対して開口してなる部位であり、該ガス導入口10を通じて外部空間からセンサ素子本体101a内に被測定ガスが取り込まれるようになっている。第1拡散律速部11は、ガス導入口10から取り込まれた被測定ガスに対して、所定の拡散抵抗を付与する部位である。緩衝空間12は、第1拡散律速部11より導入された被測定ガスを第2拡散律速部13へと導くために設けられた空間である。第2拡散律速部13は、緩衝空間12から第1内部空所20に導入される被測定ガスに対して、所定の拡散抵抗を付与する部位である。被測定ガスが、センサ素子本体101a外部から第1内部空所20内まで導入されるにあたって、外部空間における被測定ガスの圧力変動(被測定ガスが自動車の排気ガスの場合であれば排気圧の脈動)によってガス導入口10からセンサ素子本体101a内部に急激に取り込まれた被測定ガスは、直接第1内部空所20へ導入されるのではなく、第1拡散律速部11、緩衝空間12、第2拡散律速部13を通じて被測定ガスの圧力変動が打ち消された後、第1内部空所20へ導入されるようになっている。これによって、第1内部空所20へ導入される被測定ガスの圧力変動はほとんど無視できる程度のものとなる。第1内部空所20は、第2拡散律速部13を通じて導入された被測定ガス中の酸素分圧を調整するための空間として設けられている。係る酸素分圧は、主ポンプセル21が作動することによって調整される。 In the gas flow section 9 to be measured, the gas introduction port 10 is a portion that is open to the external space so that the gas to be measured is taken into the sensor element main body 101a from the external space through the gas introduction port 10. It has become. The first diffusion rate-determining unit 11 is a portion that imparts a predetermined diffusion resistance to the gas to be measured taken in from the gas introduction port 10. The buffer space 12 is a space provided for guiding the gas to be measured introduced from the first diffusion rate-determining unit 11 to the second diffusion rate-determining unit 13. The second diffusion rate-determining unit 13 is a portion that imparts a predetermined diffusion resistance to the gas to be measured introduced from the buffer space 12 into the first internal space 20. When the gas to be measured is introduced from the outside of the sensor element main body 101a to the inside of the first internal space 20, the pressure fluctuation of the gas to be measured in the external space (if the gas to be measured is the exhaust gas of an automobile, the exhaust pressure The gas to be measured, which is rapidly taken into the inside of the sensor element main body 101a from the gas introduction port 10 by pulsation), is not directly introduced into the first internal space 20, but the first diffusion rate-determining unit 11, the buffer space 12, and the buffer space 12. After the pressure fluctuation of the gas to be measured is canceled through the second diffusion rate-determining unit 13, the gas is introduced into the first internal space 20. As a result, the pressure fluctuation of the gas to be measured introduced into the first internal space 20 becomes almost negligible. The first internal space 20 is provided as a space for adjusting the oxygen partial pressure in the gas to be measured introduced through the second diffusion rate-determining unit 13. The oxygen partial pressure is adjusted by operating the main pump cell 21.
 主ポンプセル21は、第1内部空所20に面する第2固体電解質層6の下面のほぼ全面に設けられた天井電極部22aを有する内側ポンプ電極22と、第2固体電解質層6の上面の天井電極部22aと対応する領域にセンサ素子本体101aの外側に露出する態様にて設けられた外側ポンプ電極23と、これらの電極に挟まれた第2固体電解質層6とによって構成されてなる電気化学的ポンプセルである。外側ポンプ電極23は、センサ素子本体101aの上面に設けられている。 The main pump cell 21 has an inner pump electrode 22 having a ceiling electrode portion 22a provided on substantially the entire lower surface of the lower surface of the second solid electrolyte layer 6 facing the first internal space 20, and an upper surface of the second solid electrolyte layer 6. Electricity composed of an outer pump electrode 23 provided in a region corresponding to the ceiling electrode portion 22a so as to be exposed to the outside of the sensor element main body 101a, and a second solid electrolyte layer 6 sandwiched between these electrodes. It is a chemical pump cell. The outer pump electrode 23 is provided on the upper surface of the sensor element main body 101a.
 内側ポンプ電極22は、第1内部空所20を区画する上下の固体電解質層(第2固体電解質層6および第1固体電解質層4)、および、側壁を与えるスペーサ層5にまたがって形成されている。具体的には、第1内部空所20の天井面を与える第2固体電解質層6の下面には天井電極部22aが形成され、また、底面を与える第1固体電解質層4の上面には底部電極部22bが形成され、そして、それら天井電極部22aと底部電極部22bとを接続するように、側部電極部(図示省略)が第1内部空所20の両側壁部を構成するスペーサ層5の側壁面(内面)に形成されて、該側部電極部の配設部位においてトンネル形態とされた構造において配設されている。 The inner pump electrode 22 is formed so as to straddle the upper and lower solid electrolyte layers (second solid electrolyte layer 6 and first solid electrolyte layer 4) that partition the first internal space 20 and the spacer layer 5 that provides the side wall. There is. Specifically, a ceiling electrode portion 22a is formed on the lower surface of the second solid electrolyte layer 6 that provides the ceiling surface of the first internal space 20, and a bottom portion is formed on the upper surface of the first solid electrolyte layer 4 that provides the bottom surface. A spacer layer in which electrode portions 22b are formed, and side electrode portions (not shown) form both side wall portions of the first internal space 20 so as to connect the ceiling electrode portions 22a and the bottom electrode portions 22b. It is formed on the side wall surface (inner surface) of No. 5 and is arranged in a structure in the form of a tunnel at the arrangement portion of the side electrode portion.
 内側ポンプ電極22と外側ポンプ電極23とは、多孔質サーメット電極(例えば、Auを1%含むPtとZrO2とのサーメット電極)として形成される。なお、被測定ガスに接触する内側ポンプ電極22は、被測定ガス中のNOx成分に対する還元能力を弱めた材料を用いて形成される。 The inner pump electrode 22 and the outer pump electrode 23 are formed as a porous cermet electrode (for example, a cermet electrode of Pt containing 1% Au and ZrO 2 ). The inner pump electrode 22 that comes into contact with the gas to be measured is formed by using a material having a weakened reducing ability for the NOx component in the gas to be measured.
 主ポンプセル21においては、内側ポンプ電極22と外側ポンプ電極23との間に所望のポンプ電圧Vp0を印加して、内側ポンプ電極22と外側ポンプ電極23との間に正方向あるいは負方向にポンプ電流Ip0を流すことにより、第1内部空所20内の酸素を外部空間に汲み出し、あるいは、外部空間の酸素を第1内部空所20に汲み入れることが可能となっている。 In the main pump cell 21, a desired pump voltage Vp0 is applied between the inner pump electrode 22 and the outer pump electrode 23, and a pump current is applied in the positive or negative direction between the inner pump electrode 22 and the outer pump electrode 23. By flowing Ip0, the oxygen in the first internal space 20 can be pumped into the external space, or the oxygen in the external space can be pumped into the first internal space 20.
 また、第1内部空所20における雰囲気中の酸素濃度(酸素分圧)を検出するために、内側ポンプ電極22と、第2固体電解質層6と、スペーサ層5と、第1固体電解質層4と、第3基板層3と、基準電極42によって、電気化学的なセンサセル、すなわち、主ポンプ制御用酸素分圧検出センサセル80が構成されている。 Further, in order to detect the oxygen concentration (oxygen partial pressure) in the atmosphere in the first internal space 20, the inner pump electrode 22, the second solid electrolyte layer 6, the spacer layer 5, and the first solid electrolyte layer 4 are used. The third substrate layer 3 and the reference electrode 42 constitute an electrochemical sensor cell, that is, an oxygen partial pressure detection sensor cell 80 for controlling a main pump.
 主ポンプ制御用酸素分圧検出センサセル80における起電力V0を測定することで第1内部空所20内の酸素濃度(酸素分圧)がわかるようになっている。さらに、起電力V0が目標値となるように可変電源25のポンプ電圧Vp0をフィードバック制御することでポンプ電流Ip0が制御されている。これによって、第1内部空所20内の酸素濃度は所定の一定値に保つことができる。 By measuring the electromotive force V0 in the oxygen partial pressure detection sensor cell 80 for controlling the main pump, the oxygen concentration (oxygen partial pressure) in the first internal space 20 can be known. Further, the pump current Ip0 is controlled by feedback-controlling the pump voltage Vp0 of the variable power supply 25 so that the electromotive force V0 becomes the target value. As a result, the oxygen concentration in the first internal space 20 can be maintained at a predetermined constant value.
 第3拡散律速部30は、第1内部空所20で主ポンプセル21の動作により酸素濃度(酸素分圧)が制御された被測定ガスに所定の拡散抵抗を付与して、該被測定ガスを第2内部空所40に導く部位である。 The third diffusion rate-determining unit 30 imparts a predetermined diffusion resistance to the gas to be measured whose oxygen concentration (oxygen partial pressure) is controlled by the operation of the main pump cell 21 in the first internal space 20, and applies the gas to be measured. It is a part leading to the second internal space 40.
 第2内部空所40は、第3拡散律速部30を通じて導入された被測定ガス中の窒素酸化物(NOx)濃度の測定に係る処理を行うための空間として設けられている。NOx濃度の測定は、主として、補助ポンプセル50により酸素濃度が調整された第2内部空所40において、さらに、測定用ポンプセル41の動作によりNOx濃度が測定される。 The second internal space 40 is provided as a space for performing a process related to the measurement of the nitrogen oxide (NOx) concentration in the gas to be measured introduced through the third diffusion rate-determining unit 30. The NOx concentration is mainly measured in the second internal space 40 whose oxygen concentration is adjusted by the auxiliary pump cell 50, and further by the operation of the measurement pump cell 41.
 第2内部空所40では、あらかじめ第1内部空所20において酸素濃度(酸素分圧)が調整された後、第3拡散律速部30を通じて導入された被測定ガスに対して、さらに補助ポンプセル50による酸素分圧の調整が行われるようになっている。これにより、第2内部空所40内の酸素濃度を高精度に一定に保つことができるため、係るガスセンサ100においては精度の高いNOx濃度測定が可能となる。 In the second internal space 40, after the oxygen concentration (oxygen partial pressure) is adjusted in advance in the first internal space 20, the auxiliary pump cell 50 is further applied to the gas to be measured introduced through the third diffusion rate-determining unit 30. The oxygen partial pressure is adjusted by. As a result, the oxygen concentration in the second internal space 40 can be kept constant with high accuracy, so that the gas sensor 100 can measure the NOx concentration with high accuracy.
 補助ポンプセル50は、第2内部空所40に面する第2固体電解質層6の下面の略全体に設けられた天井電極部51aを有する補助ポンプ電極51と、外側ポンプ電極23(外側ポンプ電極23に限られるものではなく、センサ素子本体101aの外側の適当な電極であれば足りる)と、第2固体電解質層6とによって構成される、補助的な電気化学的ポンプセルである。 The auxiliary pump cell 50 includes an auxiliary pump electrode 51 having a ceiling electrode portion 51a provided on substantially the entire lower surface of the second solid electrolyte layer 6 facing the second internal space 40, and an outer pump electrode 23 (outer pump electrode 23). It is an auxiliary electrochemical pump cell composed of a suitable electrode on the outside of the sensor element main body 101a) and a second solid electrolyte layer 6.
 係る補助ポンプ電極51は、先の第1内部空所20内に設けられた内側ポンプ電極22と同様なトンネル形態とされた構造において、第2内部空所40内に配設されている。つまり、第2内部空所40の天井面を与える第2固体電解質層6に対して天井電極部51aが形成され、また、第2内部空所40の底面を与える第1固体電解質層4には、底部電極部51bが形成され、そして、それらの天井電極部51aと底部電極部51bとを連結する側部電極部(図示省略)が、第2内部空所40の側壁を与えるスペーサ層5の両壁面にそれぞれ形成されたトンネル形態の構造となっている。なお、補助ポンプ電極51についても、内側ポンプ電極22と同様に、被測定ガス中のNOx成分に対する還元能力を弱めた材料を用いて形成される。 The auxiliary pump electrode 51 is arranged in the second internal space 40 in a structure having a tunnel shape similar to that of the inner pump electrode 22 provided in the first internal space 20. That is, the ceiling electrode portion 51a is formed on the second solid electrolyte layer 6 that provides the ceiling surface of the second internal space 40, and the first solid electrolyte layer 4 that provides the bottom surface of the second internal space 40 is formed. , The bottom electrode portion 51b is formed, and the side electrode portion (not shown) connecting the ceiling electrode portion 51a and the bottom electrode portion 51b provides a side wall of the second internal space 40 of the spacer layer 5. It has a tunnel-like structure formed on both walls. The auxiliary pump electrode 51 is also formed by using a material having a weakened reducing ability for the NOx component in the gas to be measured, similarly to the inner pump electrode 22.
 補助ポンプセル50においては、補助ポンプ電極51と外側ポンプ電極23との間に所望の電圧Vp1を印加することにより、第2内部空所40内の雰囲気中の酸素を外部空間に汲み出し、あるいは、外部空間から第2内部空所40内に汲み入れることが可能となっている。 In the auxiliary pump cell 50, by applying a desired voltage Vp1 between the auxiliary pump electrode 51 and the outer pump electrode 23, oxygen in the atmosphere in the second internal space 40 is pumped out to the external space or outside. It is possible to pump from the space into the second internal space 40.
 また、第2内部空所40内における雰囲気中の酸素分圧を制御するために、補助ポンプ電極51と、基準電極42と、第2固体電解質層6と、スペーサ層5と、第1固体電解質層4と、第3基板層3とによって電気化学的なセンサセル、すなわち、補助ポンプ制御用酸素分圧検出センサセル81が構成されている。 Further, in order to control the oxygen partial pressure in the atmosphere in the second internal space 40, the auxiliary pump electrode 51, the reference electrode 42, the second solid electrolyte layer 6, the spacer layer 5, and the first solid electrolyte are used. The layer 4 and the third substrate layer 3 constitute an electrochemical sensor cell, that is, an oxygen partial pressure detection sensor cell 81 for controlling an auxiliary pump.
 なお、この補助ポンプ制御用酸素分圧検出センサセル81にて検出される起電力V1に基づいて電圧制御される可変電源52にて、補助ポンプセル50がポンピングを行う。これにより第2内部空所40内の雰囲気中の酸素分圧は、NOxの測定に実質的に影響がない低い分圧にまで制御されるようになっている。 The auxiliary pump cell 50 pumps with the variable power supply 52 whose voltage is controlled based on the electromotive force V1 detected by the auxiliary pump control oxygen partial pressure detection sensor cell 81. As a result, the partial pressure of oxygen in the atmosphere in the second internal space 40 is controlled to a low partial pressure that does not substantially affect the measurement of NOx.
 また、これとともに、そのポンプ電流Ip1が、主ポンプ制御用酸素分圧検出センサセル80の起電力の制御に用いられるようになっている。具体的には、ポンプ電流Ip1は、制御信号として主ポンプ制御用酸素分圧検出センサセル80に入力され、その起電力V0の上述した目標値が制御されることにより、第3拡散律速部30から第2内部空所40内に導入される被測定ガス中の酸素分圧の勾配が常に一定となるように制御されている。NOxセンサとして使用する際は、主ポンプセル21と補助ポンプセル50との働きによって、第2内部空所40内での酸素濃度は約0.001ppm程度の一定の値に保たれる。 Along with this, the pump current Ip1 is used to control the electromotive force of the oxygen partial pressure detection sensor cell 80 for controlling the main pump. Specifically, the pump current Ip1 is input to the oxygen partial pressure detection sensor cell 80 for controlling the main pump as a control signal, and the above-mentioned target value of the electromotive force V0 is controlled from the third diffusion rate-determining unit 30. The gradient of the oxygen partial pressure in the gas to be measured introduced into the second internal space 40 is controlled to be always constant. When used as a NOx sensor, the oxygen concentration in the second internal space 40 is maintained at a constant value of about 0.001 ppm by the action of the main pump cell 21 and the auxiliary pump cell 50.
 測定用ポンプセル41は、第2内部空所40内において、被測定ガス中のNOx濃度の測定を行う。測定用ポンプセル41は、第2内部空所40に面する第1固体電解質層4の上面であって第3拡散律速部30から離間した位置に設けられた測定電極44と、外側ポンプ電極23と、第2固体電解質層6と、スペーサ層5と、第1固体電解質層4とによって構成された電気化学的ポンプセルである。 The measurement pump cell 41 measures the NOx concentration in the gas to be measured in the second internal space 40. The measurement pump cell 41 includes a measurement electrode 44 provided on the upper surface of the first solid electrolyte layer 4 facing the second internal space 40 and at a position separated from the third diffusion rate-determining portion 30, and an outer pump electrode 23. , A second solid electrolyte layer 6, a spacer layer 5, and a first solid electrolyte layer 4.
 測定電極44は、多孔質サーメット電極である。測定電極44は、第2内部空所40内の雰囲気中に存在するNOxを還元するNOx還元触媒としても機能する。さらに、測定電極44は、第4拡散律速部45によって被覆されてなる。 The measurement electrode 44 is a porous cermet electrode. The measurement electrode 44 also functions as a NOx reduction catalyst that reduces NOx existing in the atmosphere in the second internal space 40. Further, the measurement electrode 44 is covered with the fourth diffusion rate-determining portion 45.
 第4拡散律速部45は、セラミックス多孔体にて構成される膜である。第4拡散律速部45は、測定電極44に流入するNOxの量を制限する役割を担うとともに、測定電極44の保護膜としても機能する。測定用ポンプセル41においては、測定電極44の周囲の雰囲気中における窒素酸化物の分解によって生じた酸素を汲み出して、その発生量をポンプ電流Ip2として検出することができる。 The fourth diffusion rate-determining unit 45 is a film made of a ceramic porous body. The fourth diffusion rate-determining unit 45 plays a role of limiting the amount of NOx flowing into the measurement electrode 44, and also functions as a protective film of the measurement electrode 44. In the measurement pump cell 41, oxygen generated by decomposition of nitrogen oxides in the atmosphere around the measurement electrode 44 can be pumped out, and the amount of oxygen generated can be detected as the pump current Ip2.
 また、測定電極44の周囲の酸素分圧を検出するために、第1固体電解質層4と、第3基板層3と、測定電極44と、基準電極42とによって電気化学的なセンサセル、すなわち、測定用ポンプ制御用酸素分圧検出センサセル82が構成されている。測定用ポンプ制御用酸素分圧検出センサセル82にて検出された起電力V2に基づいて可変電源46が制御される。 Further, in order to detect the oxygen partial pressure around the measurement electrode 44, an electrochemical sensor cell, that is, a reference electrode 42 is used by the first solid electrolyte layer 4, the third substrate layer 3, the measurement electrode 44, and the reference electrode 42. The oxygen partial pressure detection sensor cell 82 for controlling the measurement pump is configured. The variable power supply 46 is controlled based on the electromotive force V2 detected by the oxygen partial pressure detection sensor cell 82 for controlling the measurement pump.
 第2内部空所40内に導かれた被測定ガスは、酸素分圧が制御された状況下で第4拡散律速部45を通じて測定電極44に到達することとなる。測定電極44の周囲の被測定ガス中の窒素酸化物は還元されて(2NO→N2+O2)酸素を発生する。そして、この発生した酸素は測定用ポンプセル41によってポンピングされることとなるが、その際、測定用ポンプ制御用酸素分圧検出センサセル82にて検出された起電力V2が一定となるように可変電源46の電圧Vp2が制御される。測定電極44の周囲において発生する酸素の量は、被測定ガス中の窒素酸化物の濃度に比例するものであるから、測定用ポンプセル41におけるポンプ電流Ip2を用いて被測定ガス中の窒素酸化物濃度が算出されることとなる。 The gas to be measured guided into the second internal space 40 reaches the measurement electrode 44 through the fourth diffusion rate-determining unit 45 under the condition that the oxygen partial pressure is controlled. Nitrogen oxides in the gas to be measured around the measurement electrode 44 are reduced (2NO → N 2 + O 2 ) to generate oxygen. Then, the generated oxygen is pumped by the measurement pump cell 41, and at that time, a variable power source is used so that the electromotive force V2 detected by the measurement pump control oxygen partial pressure detection sensor cell 82 becomes constant. The voltage Vp2 of 46 is controlled. Since the amount of oxygen generated around the measurement electrode 44 is proportional to the concentration of nitrogen oxides in the gas to be measured, the nitrogen oxides in the gas to be measured are used by using the pump current Ip2 in the measurement pump cell 41. The concentration will be calculated.
 また、測定電極44と、第1固体電解質層4と、第3基板層3と基準電極42を組み合わせて、電気化学的センサセルとして酸素分圧検出手段を構成するようにすれば、測定電極44の周りの雰囲気中のNOx成分の還元によって発生した酸素の量と基準大気に含まれる酸素の量との差に応じた起電力を検出することができ、これによって被測定ガス中のNOx成分の濃度を求めることも可能である。 Further, if the measuring electrode 44, the first solid electrolyte layer 4, the third substrate layer 3 and the reference electrode 42 are combined to form an oxygen partial pressure detecting means as an electrochemical sensor cell, the measuring electrode 44 can be formed. It is possible to detect the electromotive force according to the difference between the amount of oxygen generated by the reduction of the NOx component in the surrounding atmosphere and the amount of oxygen contained in the reference atmosphere, and thereby the concentration of the NOx component in the gas to be measured. It is also possible to ask for.
 また、第2固体電解質層6と、スペーサ層5と、第1固体電解質層4と、第3基板層3と、外側ポンプ電極23と、基準電極42とから電気化学的なセンサセル83が構成されており、このセンサセル83によって得られる起電力Vrefによりセンサ外部の被測定ガス中の酸素分圧を検出可能となっている。 Further, the electrochemical sensor cell 83 is composed of the second solid electrolyte layer 6, the spacer layer 5, the first solid electrolyte layer 4, the third substrate layer 3, the outer pump electrode 23, and the reference electrode 42. The electromotive force Vref obtained by the sensor cell 83 makes it possible to detect the partial pressure of oxygen in the gas to be measured outside the sensor.
 このような構成を有するガスセンサ100においては、主ポンプセル21と補助ポンプセル50とを作動させることによって酸素分圧が常に一定の低い値(NOxの測定に実質的に影響がない値)に保たれた被測定ガスが測定用ポンプセル41に与えられる。したがって、被測定ガス中のNOxの濃度に略比例して、NOxの還元によって発生する酸素が測定用ポンプセル41より汲み出されることによって流れるポンプ電流Ip2に基づいて、被測定ガス中のNOx濃度を知ることができるようになっている。 In the gas sensor 100 having such a configuration, the oxygen partial pressure is always kept at a constant low value (a value that does not substantially affect the measurement of NOx) by operating the main pump cell 21 and the auxiliary pump cell 50. The gas to be measured is supplied to the measurement pump cell 41. Therefore, the NOx concentration in the gas to be measured is determined based on the pump current Ip2 that flows when oxygen generated by the reduction of NOx is pumped out from the measurement pump cell 41 in substantially proportional to the concentration of NOx in the gas to be measured. You can know it.
 さらに、センサ素子本体101aは、固体電解質の酸素イオン伝導性を高めるために、センサ素子本体101aを加熱して保温する温度調整の役割を担うヒータ部70を備えている。ヒータ部70は、ヒータコネクタ電極71と、ヒータ72と、スルーホール73と、ヒータ絶縁層74と、圧力放散孔75と、を備えている。 Further, the sensor element main body 101a is provided with a heater unit 70 which plays a role of temperature adjustment for heating and keeping the sensor element main body 101a warm in order to enhance the oxygen ion conductivity of the solid electrolyte. The heater unit 70 includes a heater connector electrode 71, a heater 72, a through hole 73, a heater insulating layer 74, and a pressure dissipation hole 75.
 ヒータコネクタ電極71は、第1基板層1の下面に接する態様にて形成されてなる電極である。ヒータコネクタ電極71を外部電源と接続することによって、外部からヒータ部70へ給電することができるようになっている。 The heater connector electrode 71 is an electrode formed so as to be in contact with the lower surface of the first substrate layer 1. By connecting the heater connector electrode 71 to an external power source, power can be supplied to the heater unit 70 from the outside.
 ヒータ72は、第2基板層2と第3基板層3とに上下から挟まれた態様にて形成される電気抵抗体である。ヒータ72は、スルーホール73を介してヒータコネクタ電極71と接続されており、該ヒータコネクタ電極71を通して外部より給電されることにより発熱し、センサ素子本体101aを形成する固体電解質の加熱と保温を行う。 The heater 72 is an electric resistor formed in a manner of being sandwiched between the second substrate layer 2 and the third substrate layer 3 from above and below. The heater 72 is connected to the heater connector electrode 71 via a through hole 73, and generates heat when power is supplied from the outside through the heater connector electrode 71 to heat and retain heat of the solid electrolyte forming the sensor element main body 101a. Do.
 また、ヒータ72は、第1内部空所20から第2内部空所40の全域に渡って埋設されており、センサ素子本体101a全体を上記固体電解質が活性化する温度に調整することが可能となっている。 Further, the heater 72 is embedded over the entire area from the first internal space 20 to the second internal space 40, and the entire sensor element main body 101a can be adjusted to a temperature at which the solid electrolyte is activated. It has become.
 ヒータ絶縁層74は、ヒータ72の上下面に、アルミナ等の絶縁体によって形成されてなる絶縁層である。ヒータ絶縁層74は、第2基板層2とヒータ72との間の電気的絶縁性、および、第3基板層3とヒータ72との間の電気的絶縁性を得る目的で形成されている。 The heater insulating layer 74 is an insulating layer formed on the upper and lower surfaces of the heater 72 by an insulator such as alumina. The heater insulating layer 74 is formed for the purpose of obtaining electrical insulation between the second substrate layer 2 and the heater 72 and electrical insulation between the third substrate layer 3 and the heater 72.
 圧力放散孔75は、第3基板層3及び大気導入層48を貫通し、基準ガス導入空間43に連通するように設けられてなる部位であり、ヒータ絶縁層74内の温度上昇に伴う内圧上昇を緩和する目的で形成されてなる。 The pressure dissipation hole 75 is a portion provided so as to penetrate the third substrate layer 3 and the atmosphere introduction layer 48 and communicate with the reference gas introduction space 43, and the internal pressure rises with the temperature rise in the heater insulating layer 74. It is formed for the purpose of alleviating.
 ここで、センサ素子本体101aのうち、固体電解質層(第3基板層3、第1固体電解質層4、スペーサ層5及び第2固体電解質層6)の酸素イオン伝導性を利用してNOxを検出するのに用いられる電極群(内側ポンプ電極22、外側ポンプ電極23、補助ポンプ電極51及び測定電極44)が設けられている部分を、先端部101bと称する。先端部101bは、センサ素子本体101aの前端面(ガス導入口10を含む面)から測定電極44を超える所定位置までの部分(前端部)である。先端部101bの後端は、被測定ガス流通部9の後端よりも後方に位置する。すなわち、被測定ガス流通部9は先端部101bに含まれている。先端部101bのうち上面及び下面には、緩衝層84が配設されている。また、先端部101bの周囲は、保護層90によって被覆されている。 Here, NOx is detected by utilizing the oxygen ion conductivity of the solid electrolyte layer (third substrate layer 3, first solid electrolyte layer 4, spacer layer 5 and second solid electrolyte layer 6) in the sensor element main body 101a. The portion provided with the electrode group (inner pump electrode 22, outer pump electrode 23, auxiliary pump electrode 51, and measurement electrode 44) used for the operation is referred to as a tip portion 101b. The tip portion 101b is a portion (front end portion) from the front end surface (the surface including the gas introduction port 10) of the sensor element main body 101a to a predetermined position exceeding the measurement electrode 44. The rear end of the tip portion 101b is located behind the rear end of the gas flow portion 9 to be measured. That is, the gas flow unit 9 to be measured is included in the tip 101b. A buffer layer 84 is provided on the upper surface and the lower surface of the tip portion 101b. Further, the periphery of the tip portion 101b is covered with a protective layer 90.
 センサ素子本体101aは、図2,3に示すように、緩衝層84を備えている。緩衝層84は、第2固体電解質層6の上面の少なくとも一部を被覆する上側緩衝層84aと、第1基板層1の下面の少なくとも一部を被覆する下側緩衝層84bと、を備えている。上側緩衝層84aは、外側ポンプ電極23も被覆している。上側緩衝層84aは、先端部101bのうち上面部分に配設されており、先端部101bよりも後方まで存在している。下側緩衝層84bは、先端部101bのうち下面部分に配設されており、先端部101bよりも後方まで存在している。そのため、図2,3に示すように、上側緩衝層84a及び下側緩衝層84bの各々は、保護層90よりも後方まではみ出している。緩衝層84は、例えばアルミナ,ジルコニア,スピネル,コージェライト,マグネシアなどの多孔質セラミックスからなるものである。緩衝層84の主成分は、保護層90の主成分と同じであることが好ましい。本実施形態では、緩衝層84はアルミナからなる多孔質セラミックスであるものとした。特に限定するものではないが、緩衝層84の膜厚は例えば5~50μmである。緩衝層84の気孔率は、10%~71%とすることが好ましい。緩衝層84の気孔率は、70%以下としてもよいし、60%以下としてもよい。また、緩衝層84の表面(上側緩衝層84aの上面及び下側緩衝層84bの下面)の算術平均粗さRaは2.0~5.0μmとすることが好ましい。緩衝層84は、センサ素子本体101aと保護層90との密着力を高める役割を果たす。 As shown in FIGS. 2 and 3, the sensor element main body 101a includes a buffer layer 84. The buffer layer 84 includes an upper buffer layer 84a that covers at least a part of the upper surface of the second solid electrolyte layer 6, and a lower buffer layer 84b that covers at least a part of the lower surface of the first substrate layer 1. There is. The upper buffer layer 84a also covers the outer pump electrode 23. The upper buffer layer 84a is arranged on the upper surface portion of the tip portion 101b, and exists to the rear of the tip portion 101b. The lower buffer layer 84b is arranged on the lower surface portion of the tip portion 101b, and exists to the rear of the tip portion 101b. Therefore, as shown in FIGS. 2 and 3, each of the upper buffer layer 84a and the lower buffer layer 84b protrudes behind the protective layer 90. The buffer layer 84 is made of porous ceramics such as alumina, zirconia, spinel, cordierite, and magnesia. The main component of the buffer layer 84 is preferably the same as the main component of the protective layer 90. In the present embodiment, the buffer layer 84 is made of porous ceramics made of alumina. Although not particularly limited, the film thickness of the buffer layer 84 is, for example, 5 to 50 μm. The porosity of the buffer layer 84 is preferably 10% to 71%. The porosity of the buffer layer 84 may be 70% or less, or 60% or less. Further, the arithmetic mean roughness Ra of the surface of the buffer layer 84 (the upper surface of the upper buffer layer 84a and the lower surface of the lower buffer layer 84b) is preferably 2.0 to 5.0 μm. The buffer layer 84 plays a role of enhancing the adhesion between the sensor element main body 101a and the protective layer 90.
 保護層90は、本体部90aと、本体部90aとセンサ素子本体101aとの間に配設された柱状部91と、を備えている。本体部90aは、ガス導入口10が設けられたセンサ素子本体101aの前端面の全面を覆い、その前端面に連接するセンサ素子本体101aの上面、下面、左面及び右面の一部を覆うように有底筒状(キャップ状とも称する)に設けられている。本体部90aのうち、センサ素子本体101aの前端面を覆う部分を、底部90bと称する。本体部90aのうち、センサ素子本体101aの上下左右の面を覆う部分を、側部90cと称する。本体部90aは、緩衝層84のうち先端部101bに含まれる部分も被覆している。本体部90aのうち、底部90bと側部90cとを接続する部分を底部接続部90dと称する。本体部90aのうち、側部90c同士を接続する部分を側部接続部90eと称する。また、本体部90aの側部90cのうち、センサ素子本体101aの上面を覆う部分を上側側部92a、センサ素子本体101aの下面を覆う部分を下側側部92b、センサ素子本体101aの左面を覆う部分を左側側部92c、センサ素子本体101aの右面を覆う部分を右側側部92dと称する。本体部90aは、センサ素子本体101aの上面に設けられた外側ポンプ電極23も被覆している。そのため、保護層90は、被測定ガスに含まれるオイル成分等の被毒物質が外側ポンプ電極23に付着するのを抑制して、外側ポンプ電極23の劣化を抑制する役割を果たす。本体部90aはガス導入口10も覆っているが、保護層90は多孔質体で構成されているため、被測定ガスは保護層90の内部を流通してガス導入口10に到達可能である。 The protective layer 90 includes a main body 90a and a columnar portion 91 arranged between the main body 90a and the sensor element main body 101a. The main body 90a covers the entire front end surface of the sensor element main body 101a provided with the gas introduction port 10, and covers a part of the upper surface, the lower surface, the left surface, and the right surface of the sensor element main body 101a connected to the front end surface. It is provided in a bottomed tubular shape (also called a cap shape). The portion of the main body 90a that covers the front end surface of the sensor element main body 101a is referred to as a bottom 90b. Of the main body 90a, the portion that covers the upper, lower, left, and right surfaces of the sensor element main body 101a is referred to as a side 90c. The main body 90a also covers the portion of the buffer layer 84 included in the tip 101b. The portion of the main body 90a that connects the bottom 90b and the side 90c is referred to as a bottom connecting portion 90d. Of the main body 90a, the portion that connects the side 90c to each other is referred to as a side connection 90e. Further, among the side portions 90c of the main body portion 90a, the portion covering the upper surface of the sensor element main body 101a is the upper side portion 92a, the portion covering the lower surface of the sensor element main body 101a is the lower side portion 92b, and the left surface of the sensor element main body 101a is. The covering portion is referred to as a left side portion 92c, and the portion covering the right surface of the sensor element main body 101a is referred to as a right side portion 92d. The main body 90a also covers the outer pump electrode 23 provided on the upper surface of the sensor element main body 101a. Therefore, the protective layer 90 plays a role of suppressing the adhesion of toxic substances such as oil components contained in the gas to be measured to the outer pump electrode 23 and suppressing the deterioration of the outer pump electrode 23. The main body 90a also covers the gas inlet 10, but since the protective layer 90 is made of a porous body, the gas to be measured can flow through the inside of the protective layer 90 and reach the gas inlet 10. ..
 本体部90aの側部90cの厚さt(図4参照)は、例えば1.5mm以下としてもよいし、1mm以下としてもよいし、600μm以下としてもよいし、400μm以下としてもよい。本体部90aの側部90c厚さtは、例えば100μm以上としてもよいし、200μm以上としてもよい。また、側部90cのうち、上側側部92a,下側側部92b,左側側部92c及び右側側部92dのうちのいずれか1以上の厚さtが上述の少なくともいずれかの範囲を満たしてもよい。また、本体部90aの底部90bの厚さtも上述の少なくともいずれかの範囲を満たしてもよいし、本体部90aの全域にわたって厚さtが上述の少なくともいずれかの範囲を満たしてもよい。 The thickness t (see FIG. 4) of the side portion 90c of the main body portion 90a may be, for example, 1.5 mm or less, 1 mm or less, 600 μm or less, or 400 μm or less. The thickness t of the side portion 90c of the main body portion 90a may be, for example, 100 μm or more, or 200 μm or more. Further, among the side portions 90c, the thickness t of any one or more of the upper side portion 92a, the lower side portion 92b, the left side portion 92c and the right side portion 92d satisfies at least one of the above ranges. May be good. Further, the thickness t of the bottom 90b of the main body 90a may also satisfy at least one of the above ranges, or the thickness t may satisfy at least one of the above ranges over the entire area of the main body 90a.
 本体部90aと先端部101bの表面との間には、空間95が存在している。空間95には、上側空間95a,下側空間95b,左側空間95c,右側空間95d及び前側空間95eが含まれる。上側空間95aは、本体部90aとセンサ素子本体101aの上面との間の空間である。下側空間95bは、本体部90aとセンサ素子本体101aの下面との間の空間である。左側空間95cは、本体部90aとセンサ素子本体101aの左面との間の空間である。右側空間95dは、本体部90aとセンサ素子本体101aの右面との間の空間である。前側空間95eは、本体部90aとセンサ素子本体101aの前面との間の空間である。上側空間95aの高さは、10μm以上としてもよく、20μm以上としてもよく、50μm以上としてもよい。上側空間95aの高さは、1mm以下が好ましく、400μm以下がより好ましく、300μm以下がさらに好ましい。これらの高さの数値範囲は、下側空間95b,左側空間95c,右側空間95d及び前側空間95eについても同様である。なお、上側空間95a及び下側空間95bの高さ方向は上下方向であり、左側空間95c及び右側空間95dの高さ方向は左右方向であり、前側空間95eの高さ方向は前後方向である。これは、後述する上側柱状部91a,下側柱状部91b,左側柱状部91c,右側柱状部91d及び前側柱状部91eの高さ方向も同様である。 A space 95 exists between the surface of the main body portion 90a and the surface of the tip portion 101b. The space 95 includes an upper space 95a, a lower space 95b, a left space 95c, a right space 95d, and a front space 95e. The upper space 95a is a space between the main body 90a and the upper surface of the sensor element main body 101a. The lower space 95b is a space between the main body 90a and the lower surface of the sensor element main body 101a. The left side space 95c is a space between the main body 90a and the left surface of the sensor element main body 101a. The right side space 95d is a space between the main body 90a and the right surface of the sensor element main body 101a. The front space 95e is a space between the main body 90a and the front surface of the sensor element main body 101a. The height of the upper space 95a may be 10 μm or more, 20 μm or more, or 50 μm or more. The height of the upper space 95a is preferably 1 mm or less, more preferably 400 μm or less, and even more preferably 300 μm or less. The numerical range of these heights is the same for the lower space 95b, the left space 95c, the right space 95d, and the front space 95e. The height direction of the upper space 95a and the lower space 95b is the vertical direction, the height direction of the left side space 95c and the right side space 95d is the left-right direction, and the height direction of the front side space 95e is the front-rear direction. This also applies to the height directions of the upper columnar portion 91a, the lower columnar portion 91b, the left columnar portion 91c, the right columnar portion 91d, and the front columnar portion 91e, which will be described later.
 柱状部91は、本体部90aの内側に設けられている。柱状部91は、本体部90aと一体成形されており、本体部90aとの接続部からセンサ素子本体101a側に向けて突出している。柱状部91には、1以上の上側柱状部91a,1以上の下側柱状部91b,1以上の左側柱状部91c,1以上の右側柱状部91d及び1以上の前側柱状部91eが含まれる。柱状部91のうち、本体部90aの側部90cの内側に設けられているもの、つまり、上側柱状部91a,下側柱状部91b,左側柱状部91c及び右側柱状部91dを、側部柱状部と称する。柱状部91は、保護層90とセンサ素子本体101aとの間の空間95を支持する空間支持部の役割を果たす。上側柱状部91aは、センサ素子本体101aの上面に垂直な方向に上側空間95aを支持する。すなわち上側柱状部91aは上側空間95aを上下に支持する。本実施形態では、上側柱状部91aは2個存在し、左右に並べて配置されている。下側柱状部91bは、センサ素子本体101aの下面に垂直な方向に下側空間95bを支持する。すなわち下側柱状部91bは下側空間95bを上下に支持する。本実施形態では、下側柱状部91bは2個存在し、左右に並べて配置されている。左側柱状部91cは、センサ素子本体101aの左面に垂直な方向に左側空間95cを支持する。すなわち左側柱状部91cは左側空間95cを左右に支持する。本実施形態では、左側柱状部91cは1個存在する。右側柱状部91dは、センサ素子本体101aの右面に垂直な方向に右側空間95dを支持する。すなわち右側柱状部91dは右側空間95dを左右に支持する。本実施形態では、右側柱状部91dは1個存在する。前側柱状部91eは、センサ素子本体101aの前面に垂直な方向に前側空間95eを支持する。すなわち前側柱状部91eは前側空間95eを前後に支持する。本実施形態では、前側柱状部91eは2個存在し、左右に並べて配置されている。 The columnar portion 91 is provided inside the main body portion 90a. The columnar portion 91 is integrally molded with the main body portion 90a, and protrudes from the connection portion with the main body portion 90a toward the sensor element main body 101a. The columnar portion 91 includes one or more upper columnar portions 91a, one or more lower columnar portions 91b, one or more left side columnar portions 91c, one or more right side columnar portions 91d, and one or more front side columnar portions 91e. Of the columnar portions 91, those provided inside the side portion 90c of the main body portion 90a, that is, the upper columnar portion 91a, the lower columnar portion 91b, the left columnar portion 91c, and the right columnar portion 91d are formed into side columnar portions. It is called. The columnar portion 91 serves as a space support portion that supports the space 95 between the protective layer 90 and the sensor element main body 101a. The upper columnar portion 91a supports the upper space 95a in a direction perpendicular to the upper surface of the sensor element main body 101a. That is, the upper columnar portion 91a supports the upper space 95a up and down. In the present embodiment, there are two upper columnar portions 91a, which are arranged side by side. The lower columnar portion 91b supports the lower space 95b in a direction perpendicular to the lower surface of the sensor element main body 101a. That is, the lower columnar portion 91b supports the lower space 95b up and down. In the present embodiment, there are two lower columnar portions 91b, which are arranged side by side. The left columnar portion 91c supports the left side space 95c in a direction perpendicular to the left surface of the sensor element main body 101a. That is, the left columnar portion 91c supports the left side space 95c to the left and right. In this embodiment, there is one left columnar portion 91c. The right columnar portion 91d supports the right side space 95d in a direction perpendicular to the right surface of the sensor element main body 101a. That is, the right columnar portion 91d supports the right side space 95d to the left and right. In this embodiment, there is one right columnar portion 91d. The front columnar portion 91e supports the front space 95e in a direction perpendicular to the front surface of the sensor element main body 101a. That is, the front columnar portion 91e supports the front space 95e back and forth. In the present embodiment, there are two front columnar portions 91e, which are arranged side by side.
 上側柱状部91aは、長手方向がセンサ素子本体101aの長手方向すなわち前後方向に沿っている。上側柱状部91aは、図4~6に示すように、側部90cとの接続部からセンサ素子本体101aの上面に対向する対向面(ここでは上側柱状部91aの下面)まで、長さ及び幅が一定で、上側柱状部91aの下面は平坦である。上側柱状部91aの前端は、本体部90aの底部90bと接続されている。言い換えると、上側柱状部91aの前方と本体部90aの底部90bとの間には空間95が存在しない。上側柱状部91aは、本体部90aの後端までは配設されていない。そのため、図3,6に示すように、上側柱状部91aの後端部93aと目封止部94とは前後に離間しており、上側柱状部91aと目封止部94とは接触していない。下側柱状部91b,左側柱状部91c,及び右側柱状部91dも、上側柱状部91aと同様の構成をしている。 The longitudinal direction of the upper columnar portion 91a is along the longitudinal direction of the sensor element main body 101a, that is, the front-rear direction. As shown in FIGS. 4 to 6, the upper columnar portion 91a has a length and a width from the connection portion with the side portion 90c to the facing surface facing the upper surface of the sensor element main body 101a (here, the lower surface of the upper columnar portion 91a). Is constant, and the lower surface of the upper columnar portion 91a is flat. The front end of the upper columnar portion 91a is connected to the bottom portion 90b of the main body portion 90a. In other words, there is no space 95 between the front of the upper columnar portion 91a and the bottom portion 90b of the main body portion 90a. The upper columnar portion 91a is not arranged up to the rear end of the main body portion 90a. Therefore, as shown in FIGS. 3 and 6, the rear end portion 93a of the upper columnar portion 91a and the eye sealing portion 94 are separated from each other in the front-rear direction, and the upper columnar portion 91a and the eye sealing portion 94 are in contact with each other. Absent. The lower columnar portion 91b, the left columnar portion 91c, and the right columnar portion 91d also have the same configuration as the upper columnar portion 91a.
 図4に示すように、2個の上側柱状部91aは、センサ素子本体101aの上面のうち被測定ガス流通部9をその上面に投影した領域102aを避けるように、領域102aの左右両側に1個ずつ配置されている。同様に、2個の下側柱状部91bは、センサ素子本体101aの下面のうち被測定ガス流通部9をその下面に投影した領域102bを避けるように、領域102bの左右両側に1個ずつ配置されている。同様に、左側柱状部91c及び右側柱状部91dの各々は、センサ素子本体101aの左面及び右面に被測定ガス流通部9を投影した領域102c,102dを避けて配置されている。なお、図4に示すように、本実施形態では、センサ素子本体101aの上面,下面,左面及び右面のうち、上面が最も被測定ガス流通部9に近い面である。また、外側ポンプ電極23はこのセンサ素子本体101aの上面の領域102a内に配設されている。 As shown in FIG. 4, the two upper columnar portions 91a are 1 on the left and right sides of the region 102a so as to avoid the region 102a in which the gas flow portion 9 to be measured is projected onto the upper surface of the sensor element main body 101a. They are arranged one by one. Similarly, one of the two lower columnar portions 91b is arranged on each of the left and right sides of the region 102b so as to avoid the region 102b of the lower surface of the sensor element main body 101a where the gas flow portion 9 to be measured is projected onto the lower surface. Has been done. Similarly, each of the left columnar portion 91c and the right columnar portion 91d is arranged so as to avoid the regions 102c and 102d on which the gas flow portion 9 to be measured is projected on the left surface and the right surface of the sensor element main body 101a. As shown in FIG. 4, in the present embodiment, of the upper surface, the lower surface, the left surface, and the right surface of the sensor element main body 101a, the upper surface is the surface closest to the gas flow unit 9 to be measured. Further, the outer pump electrode 23 is arranged in the region 102a on the upper surface of the sensor element main body 101a.
 前側柱状部91eは、図3,5に示すように、長手方向が上下方向に沿っている。前側柱状部91eは、図6,7に示すように、本体部90aの底部90bとの接続部からセンサ素子本体101aの前面に対向する対向面(ここでは前側柱状部91eの後面)まで、長さ及び幅が一定で、前側柱状部91eの後面は平坦である。図5,7に示すように、2個の前側柱状部91eは、センサ素子本体101aの前面のうち被測定ガス流通部9をその前面に投影した領域102eを避けるように、領域102eの左右両側に1個ずつ配置されている。前側柱状部91eは領域102eを避けているため、ガス導入口10も避けて配置されている。 As shown in FIGS. 3 and 5, the longitudinal direction of the front columnar portion 91e is along the vertical direction. As shown in FIGS. 6 and 7, the front columnar portion 91e extends from the connection portion of the main body portion 90a with the bottom portion 90b to the facing surface facing the front surface of the sensor element main body 101a (here, the rear surface of the front side columnar portion 91e). The width and width are constant, and the rear surface of the front columnar portion 91e is flat. As shown in FIGS. 5 and 7, the two front columnar portions 91e are formed on both the left and right sides of the region 102e so as to avoid the region 102e in which the gas flow portion 9 to be measured is projected onto the front surface of the sensor element main body 101a. One is placed in each. Since the front columnar portion 91e avoids the region 102e, the gas introduction port 10 is also avoided.
 上側柱状部91aの高さH(図4参照)を調整することで、上側空間95aの高さを調整することができる。そのため、上側柱状部91aの高さHは、10μm以上としてもよく、20μm以上としてもよく、50μm以上としてもよい。上側柱状部91aの高さHは、1mm以下が好ましく、400μm以下がより好ましく、300μm以下がさらに好ましい。これらの高さHの数値範囲は、下側柱状部91b,左側柱状部91c,右側柱状部91d,前側柱状部91eについても同様である。なお、上側柱状部91a,下側柱状部91b,左側柱状部91c及び右側柱状部91dの高さHは、本体部90aの側部90cから突出した長さである。また、前側柱状部91eの高さHは、本体部90aの底部90bから突出した長さである。 The height of the upper space 95a can be adjusted by adjusting the height H of the upper columnar portion 91a (see FIG. 4). Therefore, the height H of the upper columnar portion 91a may be 10 μm or more, 20 μm or more, or 50 μm or more. The height H of the upper columnar portion 91a is preferably 1 mm or less, more preferably 400 μm or less, still more preferably 300 μm or less. The numerical range of these heights H is the same for the lower columnar portion 91b, the left columnar portion 91c, the right columnar portion 91d, and the front columnar portion 91e. The height H of the upper columnar portion 91a, the lower columnar portion 91b, the left columnar portion 91c, and the right columnar portion 91d is a length protruding from the side portion 90c of the main body portion 90a. Further, the height H of the front columnar portion 91e is a length protruding from the bottom portion 90b of the main body portion 90a.
 上側柱状部91aの幅W(図4参照)は、例えば自身の高さHの1倍以上が好ましい。上側柱状部91aの幅Wは、100μm以上が好ましく、200μm以上がより好ましく、300μm以上がさらに好ましい。また、上側柱状部91aの幅Wは、500μm以下としてもよいし、400μm以下としてもよい。これらの幅Wの数値範囲は、下側柱状部91b,左側柱状部91c,右側柱状部91d,前側柱状部91eについても同様である。なお、各柱状部91a~91eの幅Wは、各々の高さHに垂直な方向のうち長さの最も短い方向(本実施形態では各々の短手方向)の長さである。ここでは、上側柱状部91a,下側柱状部91b及び前側柱状部91eの幅Wは左右方向の長さであり、左側柱状部91c及び右側柱状部91dの幅Wは上下方向の長さである。 The width W (see FIG. 4) of the upper columnar portion 91a is preferably at least 1 times its own height H, for example. The width W of the upper columnar portion 91a is preferably 100 μm or more, more preferably 200 μm or more, still more preferably 300 μm or more. Further, the width W of the upper columnar portion 91a may be 500 μm or less, or 400 μm or less. The numerical range of these widths W is the same for the lower columnar portion 91b, the left columnar portion 91c, the right columnar portion 91d, and the front columnar portion 91e. The width W of each of the columnar portions 91a to 91e is the length in the shortest length direction (in the present embodiment, each short direction) in the direction perpendicular to each height H. Here, the width W of the upper columnar portion 91a, the lower columnar portion 91b, and the front columnar portion 91e is the length in the left-right direction, and the width W of the left columnar portion 91c and the right columnar portion 91d is the length in the vertical direction. ..
 上側柱状部91aの長さL(図6参照)は、例えば自身の高さHの1倍以上が好ましい。上側柱状部91aの長さLは、100μm以上が好ましく、200μm以上がより好ましく、300μm以上がさらに好ましい。上側柱状部91aの長さLは、20000μm以下としてもよいし、15000μm以下としてもよい。これらの長さLの数値範囲は、下側柱状部91b,左側柱状部91c,右側柱状部91dについても同様である。前側柱状部91eの長さLは、100μm以上が好ましく、200μm以上がより好ましく、300μm以上がさらに好ましい。前側柱状部91eの長さLは、1300μm以下としてもよいし、1000μm以下としてもよい。なお、各柱状部91a~91eの長さLは、各々の高さH及び幅Wに垂直な方向(本実施形態では各々の長手方向)の長さである。ここでは、上側柱状部91a,下側柱状部91b,左側柱状部91c及び右側柱状部91dの長さLは前後方向の長さであり、前側柱状部91eの長さLは上下方向の長さである。 The length L (see FIG. 6) of the upper columnar portion 91a is preferably, for example, one or more times its own height H. The length L of the upper columnar portion 91a is preferably 100 μm or more, more preferably 200 μm or more, still more preferably 300 μm or more. The length L of the upper columnar portion 91a may be 20000 μm or less, or 15000 μm or less. The numerical range of these lengths L is the same for the lower columnar portion 91b, the left columnar portion 91c, and the right columnar portion 91d. The length L of the front columnar portion 91e is preferably 100 μm or more, more preferably 200 μm or more, still more preferably 300 μm or more. The length L of the front columnar portion 91e may be 1300 μm or less, or 1000 μm or less. The length L of each of the columnar portions 91a to 91e is the length in the direction perpendicular to the height H and the width W (in the present embodiment, each longitudinal direction). Here, the length L of the upper columnar portion 91a, the lower columnar portion 91b, the left columnar portion 91c, and the right columnar portion 91d is the length in the front-rear direction, and the length L of the front columnar portion 91e is the length in the vertical direction. Is.
 側部柱状部、すなわち、上側柱状部91a,下側柱状部91b,左側柱状部91c及び右側柱状部91dは、本体部90aの側部90cの内側の2%以上35%以下の範囲に設けられていることが好ましい。この範囲について、図8を用いて説明する。図8は、本体部90aの側部90c及び側部接続部90eを内側が紙面手前になるように展開した図である。ここでは、上側側部92aの面積をAa、下側側部92bの面積をAb、左側側部92cの面積をAc、右側側部92dの面積をAdとし、各上側柱状部91aの上側側部92aとの接続部の面積をBa、各下側柱状部91bと下側側部92bとの接続部の面積をBb、左側柱状部91cの左側側部92cとの接続部の面積をBc、右側柱状部91dの右側側部92dとの接続部の面積をBdとする。ここでは、各側部92a~92dの内側の合計面積(本実施形態ではAa+Ab+Ac+Ad)のうち、各柱状部91a~91dが設けられた部分の合計面積(本実施形態では2Ba+2Bb+Bc+Bd)の占める割合、つまり、(2Ba+2Bb+Bc+Bd)/(Aa+Ab+Ac+Ad)×100[%]の値が上述の範囲内になることが好ましい。なお、上側側部92aの面積Aaは、上側柱状部91aが形成されている部分の面積を含み、本実施形態ではセンサ素子本体101aの先端部101bの上面の面積と等しい。下側側部92bの面積Ab,左側側部92cの面積Ac及び右側側部92dの面積Adも同様である。また、上側柱状部91aは上側側部92aの内側の2%以上35%以下の範囲に設けられていることが好ましい。ここでは、上側側部92aの面積(本実施形態ではAa)のうち、2本の上側柱状部91aが設けられた部分の合計面積(本実施形態では2Ba)の占める割合、つまり、2Ba/Aa×100[%]の値が上述の範囲内になることが好ましい。下側柱状部91bや左側柱状部91c、右側柱状部91dも同様である。また、前側柱状部91eは、本体部90aの底部90bの内側の2%以上35%以下の範囲に設けられていることが好ましい。本実施形態では、本体部90aの底部90bを後方から見た場合、底部90bの面積をAe、各前側柱状部91eの底部90bとの接続部の面積をBeとすると、底部90bの面積(本実施形態ではAe)のうち、2本の前側柱状部91eが設けられた部分の合計面積(本実施形態では2Be)の占める割合、つまり、2Be/Ae×100[%]の値が上述の範囲になることが好ましい。なお、底部90bの面積Aeは、前側柱状部91eが形成されている部分の面積を含み、本実施形態ではセンサ素子本体101aの前端面の面積と等しい。 The side columnar portions, that is, the upper columnar portion 91a, the lower columnar portion 91b, the left columnar portion 91c, and the right columnar portion 91d are provided in a range of 2% or more and 35% or less inside the side portion 90c of the main body portion 90a. Is preferable. This range will be described with reference to FIG. FIG. 8 is a view in which the side portion 90c and the side portion connecting portion 90e of the main body portion 90a are developed so that the inside is in front of the paper surface. Here, the area of the upper side portion 92a is Aa, the area of the lower side portion 92b is Ab, the area of the left side portion 92c is Ac, the area of the right side portion 92d is Ad, and the upper side portion of each upper columnar portion 91a is defined as Ad. The area of the connection portion with the 92a is Ba, the area of the connection portion between each lower columnar portion 91b and the lower side portion 92b is Bb, the area of the connection portion of the left columnar portion 91c with the left side side portion 92c is Bc, and the right side. Let Bd be the area of the connecting portion of the columnar portion 91d with the right side portion 92d. Here, the ratio of the total area (2Ba + 2Bb + Bc + Bd in this embodiment) of the portion where each columnar portion 91a to 91d is provided to the total area inside each side portion 92a to 92d (Aa + Ab + Ac + Ad in this embodiment), that is, , (2Ba + 2Bb + Bc + Bd) / (Aa + Ab + Ac + Ad) × 100 [%] is preferably within the above range. The area Aa of the upper side portion 92a includes the area of the portion where the upper columnar portion 91a is formed, and is equal to the area of the upper surface of the tip portion 101b of the sensor element main body 101a in the present embodiment. The same applies to the area Ab of the lower side portion 92b, the area Ac of the left side portion 92c, and the area Ad of the right side portion 92d. Further, the upper columnar portion 91a is preferably provided in a range of 2% or more and 35% or less inside the upper side portion 92a. Here, the ratio of the total area (2Ba in the present embodiment) of the portion provided with the two upper columnar portions 91a to the area of the upper side portion 92a (Aa in the present embodiment), that is, 2Ba / Aa. It is preferable that the value of × 100 [%] is within the above range. The same applies to the lower columnar portion 91b, the left columnar portion 91c, and the right columnar portion 91d. Further, the front columnar portion 91e is preferably provided in a range of 2% or more and 35% or less inside the bottom portion 90b of the main body portion 90a. In the present embodiment, when the bottom 90b of the main body 90a is viewed from the rear, the area of the bottom 90b is Ae, and the area of the connection portion of each front columnar portion 91e with the bottom 90b is Be. In the embodiment, the ratio of the total area (2Be in the present embodiment) of the portion provided with the two front columnar portions 91e to Ae), that is, the value of 2Be / Ae × 100 [%] is in the above range. Is preferable. The area Ae of the bottom portion 90b includes the area of the portion where the front columnar portion 91e is formed, and is equal to the area of the front end surface of the sensor element main body 101a in the present embodiment.
 側部柱状部、すなわち、上側柱状部91a,下側柱状部91b,左側柱状部91c及び右側柱状部91dは、センサ素子本体101aのうち保護層90の側部90cで覆われた部分の2%以上35%以下の範囲と密着又は結合していることが好ましい。また、上側柱状部91aは、センサ素子本体101aのうち保護層90の上側側部92aで覆われた部分(ここでは先端部101bの上面)の2%以上35%以下の範囲と密着又は結合していることが好ましい。下側柱状部91bや左側柱状部91c、右側柱状部91dも同様である。また、前側柱状部91eは、センサ素子本体101aのうち保護層90の底部90bで覆われた部分(ここでは先端部101bの前端面)の2%以上35%以下の範囲と密着又は結合していることが好ましい。なお、本実施形態では、センサ素子本体101aのうち上側側部92aで覆われた部分の面積は上述した面積Aaと同じであり、センサ素子本体101aのうち下側側部92bで覆われた部分の面積は上述した面積Abと同じであり、センサ素子本体101aのうち左側側部92cで覆われた部分の面積は上述した面積Acと同じであり、センサ素子本体101aのうち右側側部92dで覆われた部分の面積は上述した面積Adと同じであり、センサ素子本体101aのうち底部90bで覆われた部分の面積は上述した面積Aeと同じである。また、各上側柱状部91aにおいてセンサ素子本体101aと密着又は結合している部分(ここでは各上側柱状部91aの下面)の面積は上述した面積Baと同じであり、各下側柱状部91bにおいてセンサ素子本体101aと密着又は結合している部分(ここでは各下側柱状部91bの上面)の面積は上述した面積Bbと同じであり、左側柱状部91cにおいてセンサ素子本体101aと密着又は結合している部分(ここでは左側柱状部91cの右面)の面積は上述した面積Bcと同じであり、右側柱状部91dにおいてセンサ素子本体101aと密着又は結合している部分(ここでは右側柱状部91dの左面)の面積は上述した面積Bdと同じであり、各前側柱状部91eにおいてセンサ素子本体101aと密着又は結合している部分(ここでは各前側柱状部91eの後面)の面積は上述した面積Beと同じである。 The side columnar portion, that is, the upper columnar portion 91a, the lower columnar portion 91b, the left columnar portion 91c, and the right columnar portion 91d is 2% of the portion of the sensor element main body 101a covered by the side portion 90c of the protective layer 90. It is preferable that it is in close contact with or bonded to the range of 35% or more. Further, the upper columnar portion 91a is in close contact with or coupled with a range of 2% or more and 35% or less of the portion of the sensor element main body 101a covered with the upper side portion 92a of the protective layer 90 (here, the upper surface of the tip portion 101b). Is preferable. The same applies to the lower columnar portion 91b, the left columnar portion 91c, and the right columnar portion 91d. Further, the front columnar portion 91e is in close contact with or coupled with a range of 2% or more and 35% or less of the portion of the sensor element main body 101a covered with the bottom portion 90b of the protective layer 90 (here, the front end surface of the tip portion 101b). It is preferable to have. In the present embodiment, the area of the portion of the sensor element main body 101a covered by the upper side portion 92a is the same as the area Aa described above, and the area of the sensor element main body 101a covered by the lower side portion 92b is the same. The area of the above-mentioned area Ab is the same as the above-mentioned area Ab, and the area of the portion of the sensor element main body 101a covered by the left side portion 92c is the same as the above-mentioned area Ac. The area of the covered portion is the same as the above-mentioned area Ad, and the area of the portion of the sensor element main body 101a covered by the bottom 90b is the same as the above-mentioned area Ae. Further, the area of each upper columnar portion 91a that is in close contact with or coupled to the sensor element main body 101a (here, the lower surface of each upper columnar portion 91a) is the same as the above-mentioned area Ba, and in each lower columnar portion 91b. The area of the portion (here, the upper surface of each lower columnar portion 91b) that is in close contact with or coupled to the sensor element main body 101a is the same as the area Bb described above, and the left columnar portion 91c is in close contact or coupled with the sensor element main body 101a. The area of the portion (here, the right surface of the left columnar portion 91c) is the same as the area Bc described above, and the portion of the right columnar portion 91d that is in close contact with or coupled to the sensor element main body 101a (here, the right columnar portion 91d). The area of the left surface) is the same as the area Bd described above, and the area of the portion of each front columnar portion 91e that is in close contact with or coupled to the sensor element main body 101a (here, the rear surface of each front columnar portion 91e) is the area Be described above. Is the same as.
 図4,5に示すように、1以上の上側柱状部91aと1以上の下側柱状部91bとは、互いに対応する位置にあるもの同士の左右の位置が互いに少なくとも一部重複するように配設されている。すなわち、左側の上側柱状部91aと左側の下側柱状部91bとの左右の位置が少なくとも一部重複しており、右側の上側柱状部91aと右側の下側柱状部91bとの左右の位置が少なくとも一部重複している。また、本実施形態では上側柱状部91aの幅Wと下側柱状部91bの幅Wとは同じ値であり、左側の上側柱状部91aと左側の下側柱状部91bとの左右の位置が一致し、右側の上側柱状部91aと右側の下側柱状部91bとの左右の位置が一致している。 As shown in FIGS. 4 and 5, one or more upper columnar portions 91a and one or more lower columnar portions 91b are arranged so that their left and right positions are at least partially overlapped with each other at positions corresponding to each other. It is installed. That is, the left and right positions of the upper left columnar portion 91a and the left lower columnar portion 91b overlap at least partially, and the left and right positions of the right upper columnar portion 91a and the right lower columnar portion 91b are At least some overlap. Further, in the present embodiment, the width W of the upper columnar portion 91a and the width W of the lower columnar portion 91b are the same values, and the left and right positions of the upper columnar portion 91a on the left side and the lower columnar portion 91b on the left side are one. However, the left and right positions of the upper columnar portion 91a on the right side and the lower columnar portion 91b on the right side are the same.
 同様に、1以上の上側柱状部91aと1以上の前側柱状部91eとについても、互いに対応する位置にあるもの同士の左右の位置が互いに少なくとも一部重複するように配設されている(図5参照)。また、本実施形態では上側柱状部91aの幅Wと前側柱状部91eの幅Wとは同じ値であり、左側の上側柱状部91aと左側の前側柱状部91eとの左右の位置が一致し、右側の上側柱状部91aと右側の前側柱状部91eとの左右の位置が一致している。 Similarly, the one or more upper columnar portions 91a and the one or more front columnar portions 91e are also arranged so that the left and right positions of the ones or more corresponding to each other are at least partially overlapped with each other (FIG. 5). Further, in the present embodiment, the width W of the upper columnar portion 91a and the width W of the front columnar portion 91e are the same values, and the left and right positions of the upper columnar portion 91a on the left side and the front columnar portion 91e on the left side coincide with each other. The left and right positions of the upper columnar portion 91a on the right side and the front columnar portion 91e on the right side coincide with each other.
 図4,5に示すように、左側柱状部91cと右側柱状部91dとは、上下の位置が少なくとも一部重複している。また、本実施形態では左側柱状部91cの幅Wと右側柱状部91dの幅Wとは同じ値であり、これらの上下の位置が一致している。 As shown in FIGS. 4 and 5, the upper and lower positions of the left columnar portion 91c and the right columnar portion 91d overlap at least partially. Further, in the present embodiment, the width W of the left columnar portion 91c and the width W of the right columnar portion 91d are the same values, and their upper and lower positions are the same.
 保護層90は、500℃以上900℃以下の温度範囲に含まれる少なくともいずれかの温度T1[℃]において、表面に残留圧縮応力が存在する。温度T1[℃]は、センサ素子101の使用時の保護層90の温度である。温度T1[℃]は、例えば、センサ素子101の使用時に、保護層90の表面のうち最も高温になる部分(ここでは外側ポンプ電極23の直上の部分)の温度と同じ温度であり、例えば700℃である。なお、例えば、センサ素子本体101aのうち最も高温になる部分が800℃のとき、保護層90の表面は700℃程度になる。残留圧縮応力は、保護層90の表面全体に存在することが好ましいが、少なくとも一部の表面に存在していればよく、例えば上側側部92a,下側側部92b,左側側部92c及び右側側部92dの少なくともいずれかの表面に存在していてもよい。残留圧縮応力の測定箇所は、特に限定されるものではないが、例えば上側側部92a,下側側部92b,左側側部92c及び右側側部92dの少なくともいずれかの表面としてもよい。残留圧縮応力の測定箇所は、例えば、保護層90の表面のうち、センサ素子101の使用時に温度が特に高くなる部分(ここでは外側ポンプ電極23の直上の部分)としてもよい。保護層90の表面の残留圧縮応力は、X線回折を用いたsin2ψ法(J. Soc. Mat. Sci., Japan, Vol. 48, No. 10, pp. 1147-1154, Oct. 1999参照)により測定する。このセンサ素子101において、残留圧縮応力は例えば15MPa以上300MPa以下である。本実施形態のセンサ素子101の残留圧縮応力は、例えば以下のように測定できる。まず、センサ素子101を、温度T1(例えば700℃)の均一温度に保持し、保護層90の表面のうち、センサ素子101の使用時に最も高温となる部位の残留応力をX線回折装置を用いて測定する。具体的には、各センサ素子101を高温チャンバー内のPtヒータ上に乗せ、広角X線回折法で測定する。X線回折装置としては、Bruker AXS社製のD8ADVANCE(封入管型)を用い、X線源はCuKα線(Gobel mirror(平行ビーム))とする。スキャン方式は2θ/θスキャンとし、測定範囲は133~138°(Al23(146))とする。X線回折法による応力評価では、sin2ψ法を用い、対称反射からあるψだけ傾けたときの格子面間隔(d値)の変化から、式(1)を用いて試料の応力値σを算出する。
σ=-[E/{2(1+ν)}]cotθ0[∂(2θ)/∂(sin2ψ)]
                           ・・・式(1)
 ここで、σは応力(MPa)、Eはヤング率(MPa)、νはポアソン比、θ0は標準ブラッグ角である。ヤング率としては340GPa、ポアソン比としては0.2を用いる。標準ブラッグ角θ0は対称反射(ψ=0°)の値とする。また、∂(2θ)/∂(sin2ψ)は、横軸に2θ、縦軸にsin2ψをとった2θ-sin2ψ図の傾きから算出する。なお、式(1)を用いて求められるσは、圧縮応力の場合にマイナスの値となるが、本明細書において、残留圧縮応力の値を示す場合には、残留圧縮応力の絶対値を示す。
The protective layer 90 has a residual compressive stress on its surface at at least one temperature T1 [° C.] included in the temperature range of 500 ° C. or higher and 900 ° C. or lower. The temperature T1 [° C.] is the temperature of the protective layer 90 when the sensor element 101 is used. The temperature T1 [° C.] is, for example, the same as the temperature of the hottest portion of the surface of the protective layer 90 (here, the portion directly above the outer pump electrode 23) when the sensor element 101 is used, for example, 700. ℃. For example, when the hottest portion of the sensor element main body 101a is 800 ° C., the surface of the protective layer 90 is about 700 ° C. The residual compressive stress is preferably present on the entire surface of the protective layer 90, but may be present on at least a part of the surface, for example, the upper side portion 92a, the lower side portion 92b, the left side portion 92c, and the right side portion. It may be present on at least one surface of the side portion 92d. The location where the residual compressive stress is measured is not particularly limited, but may be, for example, at least one of the upper side portion 92a, the lower side portion 92b, the left side portion 92c, and the right side portion 92d. The location where the residual compressive stress is measured may be, for example, a portion of the surface of the protective layer 90 where the temperature becomes particularly high when the sensor element 101 is used (here, a portion directly above the outer pump electrode 23). The residual compressive stress on the surface of the protective layer 90 is the sin 2 ψ method using X-ray diffraction (J. Soc. Mat. Sci., Japan, Vol. 48, No. 10, pp. 1147-1154, Oct. 1999. See). In this sensor element 101, the residual compressive stress is, for example, 15 MPa or more and 300 MPa or less. The residual compressive stress of the sensor element 101 of the present embodiment can be measured as follows, for example. First, the sensor element 101 is held at a uniform temperature of temperature T1 (for example, 700 ° C.), and the residual stress of the portion of the surface of the protective layer 90 that becomes the highest temperature when the sensor element 101 is used is determined by using an X-ray diffractometer. To measure. Specifically, each sensor element 101 is placed on a Pt heater in a high temperature chamber and measured by a wide-angle X-ray diffraction method. As the X-ray diffractometer, D8ADVANCE (encapsulated tube type) manufactured by Bruker AXS is used, and the X-ray source is CuKα ray (Gobel mirror (parallel beam)). The scan method is 2θ / θ scan, and the measurement range is 133 to 138 ° (Al 2 O 3 (146)). In the stress evaluation by the X-ray diffraction method, the sin 2 ψ method is used, and the stress value σ of the sample is calculated using Eq. (1) from the change in the lattice plane spacing (d value) when tilted by a certain ψ from the symmetric reflection. calculate.
σ =-[E / {2 (1 + ν)}] cotθ 0 [∂ (2θ) / ∂ (sin 2 ψ)]
... Equation (1)
Here, σ is the stress (MPa), E is the Young's modulus (MPa), ν is the Poisson's ratio, and θ 0 is the standard Bragg angle. 340 GPa is used as the Young's modulus, and 0.2 is used as the Poisson's ratio. The standard Bragg angle θ 0 is the value of symmetric reflection (ψ = 0 °). Further, ∂ (2θ) / ∂ (sin 2 ψ) is calculated from the slope of the 2θ-sin 2 ψ diagram in which 2θ is taken on the horizontal axis and sin 2 ψ is taken on the vertical axis. In addition, σ obtained by using the equation (1) has a negative value in the case of compressive stress, but in the present specification, when the value of residual compressive stress is indicated, it indicates the absolute value of residual compressive stress. ..
 保護層90は、多孔質体であり、構成粒子としてセラミック粒子を含むことが好ましく、アルミナ,ムライト,コージェライト、スピネル,ジルコニア,チタニア,及びマグネシアの少なくともいずれかの粒子を含むことがより好ましい。本実施形態では、保護層90はアルミナ多孔質体からなるものとした。保護層90の気孔率は例えば5%~45%である。保護層90の気孔率は20%以上としてもよい。 The protective layer 90 is a porous body and preferably contains ceramic particles as constituent particles, and more preferably contains at least one of alumina, mullite, cordelite, spinel, zirconia, titania, and magnesia. In the present embodiment, the protective layer 90 is made of a porous alumina body. The porosity of the protective layer 90 is, for example, 5% to 45%. The porosity of the protective layer 90 may be 20% or more.
 目封止部94は、センサ素子本体101aの長手方向に沿った表面、すなわちセンサ素子本体101aの上面,下面,左面及び右面のうち1以上を被覆する多孔質体である。本実施形態では、図9に示すように、目封止部94は、センサ素子本体101aの上面(ここでは上側緩衝層84aの上面),下面(ここでは下側緩衝層84bの下面),左面及び右面のいずれも被覆しており、これらの各々の面と密着している。目封止部94のうちセンサ素子本体101aの上面,下面,左面及び右面をそれぞれ被覆する部分は、隣り合う部分同士が互いに接続されている。また、目封止部94は、保護層90の後端に接するように配設されている。より具体的には、目封止部94は、本体部90aの後端面と接触している。これらにより、目封止部94は、本体部90aの後端の開口、すなわち上側空間95a,下側空間95b,左側空間95c及び右側空間95dの各々の後端を、塞いでいる。ただし、目封止部94も多孔質体であるため、被測定ガスは目封止部94を通過可能である。目封止部94の気孔率は、例えば10%~50%である。目封止部94の気孔率は20%超過としてもよい。 The mesh sealing portion 94 is a porous body that covers one or more of the surface along the longitudinal direction of the sensor element main body 101a, that is, the upper surface, the lower surface, the left surface, and the right surface of the sensor element main body 101a. In the present embodiment, as shown in FIG. 9, the eye-sealing portion 94 is the upper surface (here, the upper surface of the upper buffer layer 84a), the lower surface (here, the lower surface of the lower buffer layer 84b), and the left surface of the sensor element main body 101a. Both the right side and the right side are covered and are in close contact with each of these sides. Adjacent portions of the sealing portion 94 that cover the upper surface, the lower surface, the left surface, and the right surface of the sensor element main body 101a are connected to each other. Further, the seal sealing portion 94 is arranged so as to be in contact with the rear end of the protective layer 90. More specifically, the eye-sealing portion 94 is in contact with the rear end surface of the main body portion 90a. As a result, the sealing portion 94 closes the opening at the rear end of the main body portion 90a, that is, the rear ends of the upper space 95a, the lower space 95b, the left side space 95c, and the right side space 95d. However, since the sealing portion 94 is also a porous body, the gas to be measured can pass through the sealing portion 94. The porosity of the sealing portion 94 is, for example, 10% to 50%. The porosity of the sealing portion 94 may exceed 20%.
 保護層90及び目封止部94の気孔率は、走査型電子顕微鏡(SEM)を用いて観察して得られた画像(SEM画像)を用いて以下のように導出した値とする。まず、測定対象(例えば保護層90)の断面を観察面とするように測定対象の厚さ方向に沿って保護層90を切断し、切断面の樹脂埋め及び研磨を行って観察用試料とする。続いて、SEM写真(2次電子像、加速電圧15kV、倍率2000倍)にて観察用試料の観察面を撮影することで測定対象のSEM画像を得る。次に、得た画像を画像解析することにより、画像中の画素の輝度データの輝度分布から判別分析法(大津の2値化)で閾値を決定する。その後、決定した閾値に基づいて画像中の各画素を物体部分と気孔部分とに2値化して、物体部分の面積と気孔部分の面積とを算出する。そして、全面積(物体部分と気孔部分の合計面積)に対する気孔部分の面積の割合を、気孔率(単位:%)として導出する。 The porosity of the protective layer 90 and the sealing portion 94 is a value derived as follows using an image (SEM image) obtained by observing with a scanning electron microscope (SEM). First, the protective layer 90 is cut along the thickness direction of the measurement target so that the cross section of the measurement target (for example, the protective layer 90) is the observation surface, and the cut surface is resin-filled and polished to prepare an observation sample. .. Subsequently, an SEM image to be measured is obtained by photographing the observation surface of the observation sample with an SEM photograph (secondary electron image, acceleration voltage 15 kV, magnification 2000 times). Next, by performing image analysis on the obtained image, a threshold value is determined by a discriminant analysis method (binarization of Otsu) from the brightness distribution of the brightness data of the pixels in the image. After that, each pixel in the image is binarized into an object portion and a pore portion based on the determined threshold value, and the area of the object portion and the area of the pore portion are calculated. Then, the ratio of the area of the pore portion to the total area (total area of the object portion and the pore portion) is derived as the porosity (unit:%).
 目封止部94は、構成粒子としてセラミック粒子を含むことが好ましく、アルミナ,ジルコニア,スピネル,コージェライト,チタニア,及びマグネシアの少なくともいずれかの粒子を含むことがより好ましい。また、目封止部94の主成分は、保護層90の主成分と同じであることが好ましい。本実施形態では、目封止部94は主成分としてアルミナのセラミック粒子を含む、アルミナ多孔質体からなるものとした。 The sealing portion 94 preferably contains ceramic particles as constituent particles, and more preferably contains at least one of alumina, zirconia, spinel, cordierite, titania, and magnesia. Further, the main component of the sealing portion 94 is preferably the same as the main component of the protective layer 90. In the present embodiment, the sealing portion 94 is made of an alumina porous body containing alumina ceramic particles as a main component.
 次に、こうしたガスセンサ100の製造方法について説明する。まず、ガスセンサ100のうちセンサ素子101の製造方法について説明する。図10は、成形型150により未焼成体190を作製する様子を示す説明図である。図11及び図12は、未焼成体190にセンサ素子本体101aの先端部101bを挿入して焼成する様子を示す説明図である。本実施形態では、センサ素子101の製造方法は、準備工程と、配置工程と、焼成工程と、降温工程を含むものとする。焼成工程では、温度T2[℃]で加熱を行い、降温工程では温度T2[℃]から温度T1[℃]以下の温度まで降温する。 Next, a method of manufacturing such a gas sensor 100 will be described. First, a method of manufacturing the sensor element 101 of the gas sensor 100 will be described. FIG. 10 is an explanatory view showing how the unfired body 190 is produced by the molding die 150. 11 and 12 are explanatory views showing a state in which the tip portion 101b of the sensor element main body 101a is inserted into the unfired body 190 and fired. In the present embodiment, the manufacturing method of the sensor element 101 includes a preparation step, an arrangement step, a firing step, and a temperature lowering step. In the firing step, heating is performed at a temperature of T2 [° C.], and in the temperature lowering step, the temperature is lowered from the temperature T2 [° C.] to a temperature of T1 [° C.] or lower.
[準備工程]
 この工程では、焼成前又は焼成後のセンサ素子本体101aである素子本体材、及び、焼成により保護層90となる保護層材を用意する。素子本体材及び保護層材としては、焼成工程と同じ工程を行った後の素子本体材が有する固体電解質層の温度T1[℃]~温度T2[℃]での線熱膨張係数αa’[ppm/K]と、焼成工程と同じ工程を行った後の保護層材の温度T1[℃]~温度T2[℃]での線熱膨張係数αb[ppm/K]とが、αa’>αbの関係を満たすものを用意する。ここで、温度T1[℃]は、上述した通りであり、例えば700℃である。温度T2[℃]は、後述する焼成工程で保護層材を焼成する温度であり、例えば1100℃以上1200℃以下の温度範囲に含まれるいずれかの温度である。
[Preparation process]
In this step, an element body material which is a sensor element body 101a before or after firing and a protective layer material which becomes a protective layer 90 by firing are prepared. As the element body material and the protective layer material, the coefficient of linear thermal expansion αa'[ppm] at the temperature T1 [° C.] to the temperature T2 [° C.] of the solid electrolyte layer of the element body material after the same step as the firing step is performed. / K] and the coefficient of linear thermal expansion αb [ppm / K] at the temperature T1 [° C.] to the temperature T2 [° C.] of the protective layer material after performing the same step as the firing step are αa'> αb. Prepare something that satisfies the relationship. Here, the temperature T1 [° C.] is as described above, for example, 700 ° C. The temperature T2 [° C.] is a temperature at which the protective layer material is fired in a firing step described later, and is, for example, any temperature included in a temperature range of 1100 ° C. or higher and 1200 ° C. or lower.
 本実施形態の準備工程では、焼成後のセンサ素子本体101aを作製することで素子本体材としてのセンサ素子本体101aを用意する。準備工程では、まず、6枚の未焼成のセラミックスグリーンシートを用意する。セラミックスグリーンシートは、例えば、センサ素子本体101aの主成分となるセラミック粒子、有機溶媒、可塑剤、バインダー、焼結助剤などを混合してペーストとし、シート状に成形して作製する。そして、第1基板層1と、第2基板層2と、第3基板層3と、第1固体電解質層4と、スペーサ層5と、第2固体電解質層6のそれぞれに対応して、各セラミックスグリーンシートに電極や絶縁層、ヒータ等のパターンを印刷する。また、第2固体電解質層6となるセラミックスグリーンシートの表面(センサ素子本体101aの上面となる面)には、焼成後に上側緩衝層84aとなるペーストをスクリーン印刷する。同様に、第1基板層1となるセラミックスグリーンシートの表面(センサ素子本体101aの下面となる面)には、焼成後に下側緩衝層84bとなるペーストをスクリーン印刷する。なお、上側緩衝層84a及び下側緩衝層84bとなるペーストは、例えば、上述した緩衝層84の材質からなる原料粉末(本実施形態ではアルミナの粉末)と、造孔材と、有機バインダー及び有機溶剤を混合したものを用いる。次に、このように各種のパターンを形成した6枚のセラミックスグリーンシートを積層して積層体とする。その積層体を切断してセンサ素子本体101aの大きさの小積層体に切り分ける。この小積層体が、焼成前のセンサ素子本体101aである。その後、小積層体を所定の焼成温度(例えば1300~1500℃)で焼成して、センサ素子本体101aを得る。なお、焼成後に上側緩衝層84a及び下側緩衝層84bとなるペーストの印刷は、上述した積層体を作製した後に行ってもよい。また、上側緩衝層84a及び下側緩衝層84bとなるペーストに用いる原料粉末は、アルミナ粉末ではなくコージェライトの原料粉末としてもよい。焼成工程と同じ工程を行った後の素子本体材が有する固体電解質層の温度T1[℃]~温度T2[℃]での線熱膨張係数αa’は、センサ素子本体101aが有する固体電解質層(ここでは第1基板層1,第2基板層2,第3基板層3,第1固体電解質層4,スペーサ層5及び第2固体電解質層6)の材質、つまりセンサ素子本体101aの主成分となるセラミック粒子の材質によって定まる。このため、このセラミック粒子の材質を適宜選択することで、線熱膨張係数αa’を所望の値とすることができる。 In the preparation step of the present embodiment, the sensor element main body 101a as the element main body material is prepared by manufacturing the sensor element main body 101a after firing. In the preparatory step, first, six unfired ceramic green sheets are prepared. The ceramic green sheet is produced, for example, by mixing ceramic particles, an organic solvent, a plasticizer, a binder, a sintering aid, etc., which are the main components of the sensor element main body 101a, to form a paste, and molding the sheet into a sheet. Then, corresponding to each of the first substrate layer 1, the second substrate layer 2, the third substrate layer 3, the first solid electrolyte layer 4, the spacer layer 5, and the second solid electrolyte layer 6, respectively. Print patterns such as electrodes, insulating layers, and heaters on a ceramic green sheet. Further, on the surface of the ceramic green sheet to be the second solid electrolyte layer 6 (the surface to be the upper surface of the sensor element main body 101a), a paste to be the upper buffer layer 84a after firing is screen-printed. Similarly, on the surface of the ceramic green sheet to be the first substrate layer 1 (the surface to be the lower surface of the sensor element main body 101a), a paste to be the lower buffer layer 84b after firing is screen-printed. The paste to be the upper buffer layer 84a and the lower buffer layer 84b is, for example, a raw material powder (alumina powder in this embodiment) made of the material of the buffer layer 84 described above, a pore-forming material, an organic binder, and an organic material. Use a mixture of solvents. Next, six ceramic green sheets having various patterns formed in this way are laminated to form a laminated body. The laminate is cut and cut into small laminates having the size of the sensor element main body 101a. This small laminate is the sensor element main body 101a before firing. Then, the small laminate is fired at a predetermined firing temperature (for example, 1300 to 1500 ° C.) to obtain the sensor element main body 101a. The paste that becomes the upper buffer layer 84a and the lower buffer layer 84b after firing may be printed after the above-mentioned laminate is prepared. Further, the raw material powder used for the paste to be the upper buffer layer 84a and the lower buffer layer 84b may be a raw material powder of cordierite instead of the alumina powder. The coefficient of linear thermal expansion αa ′ of the solid electrolyte layer of the element body material after the same step as the firing step at the temperature T1 [° C.] to the temperature T2 [° C.] is the solid electrolyte layer of the sensor element body 101a. Here, the material of the first substrate layer 1, the second substrate layer 2, the third substrate layer 3, the first solid electrolyte layer 4, the spacer layer 5 and the second solid electrolyte layer 6), that is, the main component of the sensor element main body 101a. It is determined by the material of the ceramic particles. Therefore, the coefficient of linear thermal expansion αa'can be set to a desired value by appropriately selecting the material of the ceramic particles.
 本実施形態の準備工程では、焼成により保護層90となる未焼成体190を、成形型150を用いてモールドキャスト法(ゲルキャスト法とも言う)により作製することで、保護層材としての未焼成体190を用意する。また、本実施形態では、未焼成体190を一体成形する。モールドキャスト法は、スラリーを、スラリー自身の化学反応により固化して成形体とする方法であり、例えば特開2016-95287号公報に記載されている。未焼成体190を作製する際には、まず、所定の成形型150を用意する(図10A)。成形型150は、外型を2つに分割した形状の第1外型151及び第2外型152と、第1外型151及び第2外型152の内側に挿入される挿入部153aを有する内型153と、を備えている。第1外型151及び第2外型152は、未焼成体190の外側の形状に対応する凹部を有している。また、第1外型151及び第2外型152は、スラリーを流入させるための切り欠き151a及び切り欠き152aを有している。内型153の挿入部153aの外形は、未焼成体190の内側の形状に対応しており、挿入部153aは柱状部91を形成するための溝や凹部を有している。続いて、この第1外型151,第2外型152及び内型153を密着させ、挿入部153aが第1外型151及び第2外型152の内側に挿入された状態で成形型150を固定する(図10B)。この状態で、切り欠き151a及び切り欠き152aで構成される注入口から、モールドキャストに用いるスラリーを成形型150内に流入させる。スラリーの成分については後述するが、ゲル化剤を含むものである。そして、スラリーがゲル化剤の重合反応によってゲル化して未焼成体190の形状となった後、内型153を引き抜くと共に第1外型151及び第2外型152を取り外すことで成形型150を離型して、未焼成体190を得る(図10C)。未焼成体190は、保護層90と同じく、底部90b及び側部90cを含む本体部90aと、柱状部91(図11及び図12参照)とを有しており、キャップ状の形状をしている。未焼成体190は、成形型150の離型前又は離型後に乾燥することが好ましい。 In the preparatory step of the present embodiment, the unfired body 190 which becomes the protective layer 90 by firing is produced by a mold casting method (also referred to as a gel casting method) using a molding die 150, so that the unfired body 190 as a protective layer material is not fired. Prepare the body 190. Further, in the present embodiment, the unfired body 190 is integrally molded. The mold casting method is a method of solidifying a slurry by a chemical reaction of the slurry itself to form a molded product, and is described in, for example, Japanese Patent Application Laid-Open No. 2016-95287. When producing the unfired body 190, first, a predetermined molding die 150 is prepared (FIG. 10A). The molding die 150 has a first outer die 151 and a second outer die 152 having a shape obtained by dividing the outer die into two, and an insertion portion 153a inserted inside the first outer die 151 and the second outer die 152. It is equipped with an inner mold 153. The first outer mold 151 and the second outer mold 152 have recesses corresponding to the outer shape of the unfired body 190. Further, the first outer mold 151 and the second outer mold 152 have a notch 151a and a notch 152a for allowing the slurry to flow in. The outer shape of the insertion portion 153a of the inner mold 153 corresponds to the inner shape of the unfired body 190, and the insertion portion 153a has grooves and recesses for forming the columnar portion 91. Subsequently, the first outer mold 151, the second outer mold 152 and the inner mold 153 are brought into close contact with each other, and the molding mold 150 is inserted in a state where the insertion portion 153a is inserted inside the first outer mold 151 and the second outer mold 152. Fix (Fig. 10B). In this state, the slurry used for mold casting is allowed to flow into the molding die 150 from the injection port composed of the notch 151a and the notch 152a. The components of the slurry will be described later, but those containing a gelling agent. Then, after the slurry is gelled by the polymerization reaction of the gelling agent to form the unfired body 190, the inner mold 153 is pulled out and the first outer mold 151 and the second outer mold 152 are removed to form the molding mold 150. The mold is released to obtain an unfired body 190 (FIG. 10C). Like the protective layer 90, the unfired body 190 has a main body 90a including a bottom 90b and a side 90c, and a columnar portion 91 (see FIGS. 11 and 12), and has a cap-like shape. There is. The unfired body 190 is preferably dried before or after the mold release of the mold 150.
 スラリーについて詳説する。モールドキャスト法に用いるスラリーは、例えば、上述した保護層90の構成粒子であるセラミック粒子、焼結助剤、有機溶媒、分散剤及びゲル化剤を含むものである。ゲル化剤としては、重合可能な少なくとも2種類の有機化合物を含むものであれば、特に限定されないが、例えば、ウレタン反応が可能な2種類の有機化合物を含むものなどが挙げられる。このような2種類の有機化合物としては、イソシアネート類とポリオール類が挙げられる。スラリーを調製するに当たっては、まず、セラミック粒子、焼結助剤、有機溶媒及び分散剤を所定の割合で添加して所定時間に亘ってこれらを混合することによりスラリー前駆体を調製する。そして、スラリーを使用する直前に、そのスラリー前駆体にゲル化剤を添加して混合することによりスラリーとする。スラリー前駆体にゲル化剤を添加したあとのスラリーは、時間経過に伴いゲル化剤の化学反応(ウレタン反応)が進行し始めるため、速やかに成形型150内に流し込むことが好ましい。焼成工程と同じ工程を行った後の保護層材の温度T1[℃]~温度T2[℃]での線熱膨張係数αbは、保護層90の材質、つまりスラリーに含まれるセラミック粒子の材質によって定まる。このため、このセラミック粒子の材質を適宜選択することで、線熱膨張係数αbを所望の値とすることができる。 The slurry will be explained in detail. The slurry used in the mold casting method contains, for example, ceramic particles, sintering aids, organic solvents, dispersants, and gelling agents, which are constituent particles of the protective layer 90 described above. The gelling agent is not particularly limited as long as it contains at least two types of polymerizable organic compounds, and examples thereof include those containing two types of organic compounds capable of urethane reaction. Examples of such two types of organic compounds include isocyanates and polyols. In preparing the slurry, first, a ceramic particle, a sintering aid, an organic solvent and a dispersant are added at a predetermined ratio and mixed over a predetermined time to prepare a slurry precursor. Then, immediately before using the slurry, a gelling agent is added to the slurry precursor and mixed to obtain a slurry. After the gelling agent is added to the slurry precursor, the chemical reaction (urethane reaction) of the gelling agent starts to proceed with the passage of time, so that it is preferable to quickly pour the slurry into the molding die 150. The coefficient of linear thermal expansion αb of the protective layer material at a temperature T1 [° C.] to a temperature T2 [° C.] after the same step as the firing step depends on the material of the protective layer 90, that is, the material of the ceramic particles contained in the slurry. It is decided. Therefore, the coefficient of linear thermal expansion αb can be set to a desired value by appropriately selecting the material of the ceramic particles.
[配置工程]
 続いて、準備工程で用意された素子本体材(本実施形態では焼成後のセンサ素子本体101a)の表面の少なくとも一部に、保護層材(本実施形態では未焼成体190)を配置する配置工程を行う。本実施形態の配置工程では、未焼成体190の内側にセンサ素子本体101aの先端部101bが挿入された状態になるように、未焼成体190とセンサ素子本体101aとを配置する。具体的には、未焼成体190の内側にセンサ素子本体101aの先端部101bを挿入していき(図11A,図12A)、前側柱状部91eにセンサ素子本体101aの前端が当接するまで先端部101bの挿入を行う(図11B,図12B)。この挿入は、図11,12に示すように、センサ素子本体101aの長手方向(ここでは前後方向)が鉛直方向に沿い、且つ、未焼成体190がセンサ素子本体101aよりも鉛直上側に位置する状態で行うことが好ましい。
[Placement process]
Subsequently, an arrangement in which the protective layer material (unfired body 190 in the present embodiment) is arranged on at least a part of the surface of the element main body material (sensor element main body 101a after firing in the present embodiment) prepared in the preparation step. Perform the process. In the arranging step of the present embodiment, the unfired body 190 and the sensor element main body 101a are arranged so that the tip portion 101b of the sensor element main body 101a is inserted inside the unfired body 190. Specifically, the tip portion 101b of the sensor element main body 101a is inserted inside the unfired body 190 (FIGS. 11A and 12A) until the front end of the sensor element main body 101a abuts on the front columnar portion 91e. 101b is inserted (FIGS. 11B and 12B). In this insertion, as shown in FIGS. 11 and 12, the longitudinal direction (here, the front-rear direction) of the sensor element main body 101a is along the vertical direction, and the unfired body 190 is located vertically above the sensor element main body 101a. It is preferable to carry out in a state.
 このようにして配置工程を行うことで、センサ素子本体101aの先端部101bが未焼成体190に被覆された状態になる。また、未焼成体190が内側に有する空間支持部(ここでは柱状部91)により、未焼成体190とセンサ素子本体101aとの間に空間が形成される。具体的には、未焼成体190の底部90bの内側に前側柱状部91eが存在することで、底部90bとセンサ素子本体101aとが離間して、両者の間に空間が形成される。同様に、未焼成体190の側部90cの内側に上側柱状部91a,下側柱状部91b,左側柱状部91c,及び右側柱状部91dが存在することで、側部90cとセンサ素子本体101aとが離間して、両者の間に空間が形成される。側部90cとセンサ素子本体101aとの間の空間は、先端部101bの後端に向かって開口している。 By performing the arrangement step in this way, the tip portion 101b of the sensor element main body 101a is covered with the unfired body 190. Further, a space is formed between the unfired body 190 and the sensor element main body 101a by the space support portion (here, the columnar portion 91) that the unfired body 190 has inside. Specifically, the presence of the front columnar portion 91e inside the bottom portion 90b of the unfired body 190 causes the bottom portion 90b and the sensor element main body 101a to be separated from each other, and a space is formed between them. Similarly, the upper columnar portion 91a, the lower columnar portion 91b, the left columnar portion 91c, and the right columnar portion 91d are present inside the side portion 90c of the unfired body 190, so that the side portion 90c and the sensor element main body 101a are combined. Are separated and a space is formed between them. The space between the side portion 90c and the sensor element main body 101a opens toward the rear end of the front end portion 101b.
[焼成工程]
 配置工程を行うと、保護層材である未焼成体190を焼成する焼成工程を行う。焼成工程では、配置工程が行われた状態の保護層材及び素子本体材を温度T2[℃]で加熱することで、未焼成体190を焼成する。これにより、未焼成体190が焼成されて保護層90となり、未焼成体190とセンサ素子本体101aとの間の空間が空間95となって、保護層90とセンサ素子本体101aと間に空間95が形成される(図11C,図12C)。未焼成体190は焼成時に収縮するため、例えば未焼成体190と柱状部91との間に隙間があったとしても(図12B)、隙間がなくなり保護層90の柱状部91とセンサ素子本体101aとを密着又は結合させることができる(図12C)。また、未焼成体190のキャップの深さ方向(図12の上下方向)の収縮を考慮して、収縮後の保護層90が先端部101bを被覆できるように(図12C)、未焼成体190の寸法を保護層90よりも長くしておくことが好ましい(図12B)。焼成時には、図11C及び図12Cに示すように、センサ素子本体101aの長手方向(ここでは前後方向)が鉛直方向に沿い、且つ、未焼成体190がセンサ素子本体101aよりも鉛直上側に位置する状態で行うことが好ましい。また、センサ素子本体101aは準備工程で既に焼成済みであるため、焼成工程では、センサ素子本体101aの焼成温度よりも低い温度で未焼成体190を焼成することが好ましい。未焼成体190の焼成温度は、センサ素子本体101aの焼成温度よりも100℃~200℃低い温度とすることが好ましい。
[Baking process]
When the arranging step is performed, a firing step of firing the unfired body 190, which is a protective layer material, is performed. In the firing step, the unfired body 190 is fired by heating the protective layer material and the element main body material in the state where the arrangement step has been performed at a temperature T2 [° C.]. As a result, the unfired body 190 is fired to become the protective layer 90, the space between the unfired body 190 and the sensor element main body 101a becomes the space 95, and the space 95 between the protective layer 90 and the sensor element main body 101a. Is formed (FIGS. 11C, 12C). Since the unfired body 190 shrinks during firing, for example, even if there is a gap between the unfired body 190 and the columnar portion 91 (FIG. 12B), the gap disappears and the columnar portion 91 of the protective layer 90 and the sensor element main body 101a Can be brought into close contact with or combined with each other (Fig. 12C). Further, in consideration of the shrinkage of the cap of the unfired body 190 in the depth direction (vertical direction of FIG. 12), the unfired body 190 is provided so that the protective layer 90 after shrinkage can cover the tip portion 101b (FIG. 12C). It is preferable that the size of the protective layer 90 is longer than that of the protective layer 90 (FIG. 12B). At the time of firing, as shown in FIGS. 11C and 12C, the longitudinal direction (here, the front-rear direction) of the sensor element body 101a is along the vertical direction, and the unfired body 190 is located vertically above the sensor element body 101a. It is preferable to carry out in a state. Further, since the sensor element main body 101a has already been fired in the preparation step, it is preferable to fire the unfired body 190 at a temperature lower than the firing temperature of the sensor element main body 101a in the firing step. The firing temperature of the unfired body 190 is preferably 100 ° C. to 200 ° C. lower than the firing temperature of the sensor element main body 101a.
[降温工程]
 焼成工程を行うと、焼成工程が行われた状態の保護層材(ここでは保護層90)及び素子本体材(ここではセンサ素子本体101a)を温度T2[℃]から温度T1[℃]まで降温する降温工程を行う。ここで、上述した通り、配置工程で用いる素子本体材(ここではセンサ素子本体101a)及び保護層材(ここでは未焼成体190)は、焼成工程と同じ工程を行った後の素子本体材が有する固体電解質層の温度T1[℃]~温度T2[℃]での線熱膨張係数αa’[ppm/K]と、焼成工程と同じ工程を行った後の保護層材の温度T1[℃]~温度T2[℃]での線熱膨張係数αb[ppm/K]とが、αa’>αbの関係を満たす。焼成工程と同じ工程を行った後の素子本体材及び保護層材を個別に温度T2[℃]から温度T1[℃]まで降温すると、素子本体材が有する固体電解質層の線収縮率Sa’[%]はSa’=αa’×(T2-T1)×10-4となり、保護層材の線収縮率Sb[%]はSb=αb×(T2-T1)×10-4となる。また、焼成工程後の素子本体材は、大部分が固体電解質層で形成されているため、素子本体材の線収縮率Sa[%]は、固体電解質層の線収縮率Sa’[%]と略一致する。このため、αa’>αbの関係を満たす場合には、Sa(≒Sa’)>Sbの関係を満たすといえる。Sa>Sbの関係を満たす場合、焼成工程と同じ工程を行った後の素子本体材及び保護層材を個別に温度T2[℃]から温度T1[℃]まで降温すると、保護層材よりも素子本体材の方が大きく収縮する。ところで、焼成工程が行われた状態の保護層90及びセンサ素子本体101aは、少なくとも一部において互いに密着又は結合している。このため、焼成工程が行われた状態の保護層90及びセンサ素子本体101aを、降温工程で温度T2[℃]から温度T1[℃]まで降温すると、センサ素子本体101aの大きな収縮に引きずられて保護層90の表面に残留圧縮応力が付与される。こうして、降温工程において、保護層90の表面に残留圧縮応力が付与される。
[Temperature lowering process]
When the firing step is performed, the temperature of the protective layer material (here, the protective layer 90) and the element main body material (here, the sensor element main body 101a) in the state where the firing step has been performed is lowered from the temperature T2 [° C.] to the temperature T1 [° C.]. Perform the temperature lowering process. Here, as described above, the element body material (here, the sensor element body 101a) and the protective layer material (here, the unfired body 190) used in the arrangement process are the element body materials after the same process as the firing step. The coefficient of linear thermal expansion αa'[ppm / K] from the temperature T1 [° C.] to the temperature T2 [° C.] of the solid electrolyte layer, and the temperature T1 [° C.] of the protective layer material after the same step as the firing step. The coefficient of linear thermal expansion αb [ppm / K] at the temperature T2 [° C.] satisfies the relationship of αa'> αb. When the element body material and the protective layer material are individually cooled from the temperature T2 [° C.] to the temperature T1 [° C.] after the same process as the firing step, the linear shrinkage rate Sa'[of the solid electrolyte layer of the element body material. %] Is Sa'= αa' × (T2-T1) × 10 -4 , and the linear shrinkage rate Sb [%] of the protective layer material is Sb = αb × (T2-T1) × 10 -4 . Further, since most of the element main body material after the firing step is formed of the solid electrolyte layer, the linear shrinkage rate Sa [%] of the element main body material is the linear shrinkage rate Sa'[%] of the solid electrolyte layer. It almost matches. Therefore, when the relationship of αa'> αb is satisfied, it can be said that the relationship of Sa (≈Sa')> Sb is satisfied. When the relationship of Sa> Sb is satisfied, when the element main body material and the protective layer material are individually cooled from the temperature T2 [° C.] to the temperature T1 [° C.] after the same process as the firing step, the element is more than the protective layer material. The main body material shrinks more. By the way, the protective layer 90 and the sensor element main body 101a in the state where the firing step has been performed are in close contact with or bonded to each other at least in a part. Therefore, when the protective layer 90 and the sensor element main body 101a in the state where the firing step has been performed are cooled from the temperature T2 [° C.] to the temperature T1 [° C.] in the temperature lowering step, they are dragged by the large shrinkage of the sensor element main body 101a. Residual compressive stress is applied to the surface of the protective layer 90. In this way, in the temperature lowering step, residual compressive stress is applied to the surface of the protective layer 90.
 なお、保護層90の表面の残留圧縮応力には、線熱膨張係数αa’,αbによる線収縮率Sa’,Sa,Sbのほか、焼成工程時の焼成収縮による保護層材の線収縮率や素子本体材の線収縮率(焼成収縮率と称する)等が影響することも考えられるが、その影響は無視できる程度と推察される。ただし、素子本体材の焼成収縮率Ca[%]よりも保護層材の焼成収縮率Cb[%]が大きい(Ca<Cb)場合などには、その差を考慮して、αa’やSa’、Saがより大きくなるような素子本体材を用いたり、αbやSbがより小さくなるような保護層材を用いてもよい。また、保護層材に用いるスラリーに含まれるセラミック粒子の粒子径やスラリーに含まれるその他の材料の種類や配合比率、焼成工程での焼成条件などを調整して、保護層材の焼成収縮率Cb[%]を小さくしてもよい。 The residual compressive stress on the surface of the protective layer 90 includes the linear shrinkage rates Sa', Sa, Sb due to the linear thermal expansion coefficients αa'and αb, as well as the linear shrinkage rate of the protective layer material due to firing shrinkage during the firing step. It is possible that the linear shrinkage rate (referred to as the firing shrinkage rate) of the element body material has an effect, but it is presumed that the effect is negligible. However, when the firing shrinkage rate Cb [%] of the protective layer material is larger than the firing shrinkage rate Ca [%] of the element main body material (Ca <Cb), the difference is taken into consideration when αa'or Sa'is used. , An element main body material having a larger Sa, or a protective layer material having a smaller αb or Sb may be used. Further, the firing shrinkage rate Cb of the protective layer material is adjusted by adjusting the particle size of the ceramic particles contained in the slurry used for the protective layer material, the type and blending ratio of other materials contained in the slurry, the firing conditions in the firing step, and the like. [%] may be reduced.
 線収縮率Sa’[%]や線収縮率Sb[%]は、理論的には上述した式から求めることができるが、例えば、以下のように測定してもよい。例えば、線収縮率Sa’[%]を求める場合、まず、焼成工程と同じ工程を行った後の素子本体材が有する固体電解質層と同じ材料、つまり、センサ素子本体101aの固体電解質層と同じ材料で抗折棒を作製する。次に、熱膨張係数測定装置(押し棒式膨張計)を用いて、温度T2[℃]における抗折棒の長さL2[mm]と温度T1[℃]における抗折棒の長さL1[mm]を測定する。そして、Sa’=(L2-L1)/L2×100[%]の式を用いて線収縮率Sa’[%]を導出する。線収縮率Sbを求める場合、抗折棒を作製するにあたり、焼成工程と同じ工程を行った後の保護層材と同じ材料、つまり、保護層90と同じ材料で抗折棒を作製すればよい。線収縮率Saは、上述した通りSa’と略一致すると考えられるが、緩衝層84が線収縮率Saに影響を及ぼす可能性がある場合には、緩衝層84と同じ材料で同じ厚みの層を表面に有する以外は線収縮率Sa’を求めるのに用いた抗折棒と同様の抗折棒を作製し、この抗折棒を用いて線収縮率Sa[%]を導出してもよい。なお、線収縮率Sa[%]や線収縮率Sa’[%]、線収縮率Sb[%]の計算値と実測値に差があるときには、実測値を優先してもよい。 The linear shrinkage rate Sa'[%] and the linear shrinkage rate Sb [%] can be theoretically obtained from the above-mentioned equations, but may be measured as follows, for example. For example, when determining the linear shrinkage rate Sa'[%], first, the same material as the solid electrolyte layer of the element main body material after the same step as the firing step, that is, the same as the solid electrolyte layer of the sensor element main body 101a. Make an anti-folding rod from the material. Next, using a coefficient of thermal expansion measuring device (push rod type expansion meter), the length of the anti-folding rod L2 [mm] at the temperature T2 [° C.] and the length L1 [of the anti-folding rod at the temperature T1 [° C.] mm] is measured. Then, the linear shrinkage rate Sa'[%] is derived using the formula Sa'= (L2-L1) / L2 × 100 [%]. When determining the linear shrinkage rate Sb, when producing the anti-folding rod, the anti-folding rod may be produced from the same material as the protective layer material after the same process as the firing step, that is, the same material as the protective layer 90. .. The linear shrinkage rate Sa is considered to be substantially the same as Sa'as described above, but if the buffer layer 84 may affect the linear shrinkage rate Sa, a layer made of the same material as the buffer layer 84 and having the same thickness. It is also possible to prepare an anti-folding rod similar to the anti-folding rod used to obtain the linear shrinkage rate Sa'except that the anti-folding rod is provided on the surface, and use this anti-folding rod to derive the linear shrinkage rate Sa [%]. .. When there is a difference between the calculated value of the linear shrinkage rate Sa [%], the linear shrinkage rate Sa'[%], and the linear shrinkage rate Sb [%] and the actually measured value, the actually measured value may be prioritized.
 なお、保護層90の表面に付与される残留圧縮応力の値は、保護層90の形状や寸法などによっても調整できる。例えば、保護層90の側部90cのうち側部柱状部が設けられた部分の割合や、センサ素子本体101aの先端部101bの側面のうち側部柱状部と密着又は結合している部分の割合などを上述した範囲内とすると、残留圧縮応力を好適な値にしやすい。なお、この割合が大きいほど、残留圧縮応力の値は大きくなりやすい。また例えば、本体部90aの厚さtや、柱状部91の高さH,長さL,幅Wなどを、上述した範囲内とすると、残留圧縮応力を好適な値にしやすい。なお、厚さtが小さいほど、高さHが小さいほど、長さLや幅Wが大きいほど、残留圧縮応力の値は大きくなりやすい。 The value of the residual compressive stress applied to the surface of the protective layer 90 can also be adjusted by the shape and dimensions of the protective layer 90. For example, the ratio of the side portion 90c of the protective layer 90 to which the side columnar portion is provided, or the ratio of the portion of the side surface of the tip portion 101b of the sensor element main body 101a that is in close contact with or bonded to the side portion columnar portion. When the above range is set, the residual compressive stress can be easily set to a suitable value. The larger the ratio, the larger the value of the residual compressive stress tends to be. Further, for example, when the thickness t of the main body portion 90a, the height H, the length L, and the width W of the columnar portion 91 are within the above-mentioned ranges, the residual compressive stress can be easily set to a suitable value. The smaller the thickness t, the smaller the height H, and the larger the length L and the width W, the larger the value of the residual compressive stress tends to be.
[目封止工程]
 降温工程を行うと、保護層90の側部90cとセンサ素子本体101aとの間の空間95のうちセンサ素子本体101aの後端側の開口を塞ぐように目封止部94を形成する目封止工程を行う。本実施形態では、目封止部94をプラズマ溶射により形成する。こうしたプラズマ溶射は、例えば特開2016-109685号公報に記載のプラズマ溶射と同様にして行うことができる。目封止部94は、図9に示したようにセンサ素子本体101aの上下左右のいずれの面にも形成され、且つ各面に形成された部分が互いに接続されるように形成する。こうして目封止部94を形成すると、センサ素子101が得られる。
[Eye sealing process]
When the temperature lowering step is performed, the sealing portion 94 is formed so as to close the opening on the rear end side of the sensor element main body 101a in the space 95 between the side portion 90c of the protective layer 90 and the sensor element main body 101a. Perform a stop process. In the present embodiment, the eye-sealing portion 94 is formed by plasma spraying. Such plasma spraying can be performed in the same manner as the plasma spraying described in, for example, Japanese Patent Application Laid-Open No. 2016-109685. As shown in FIG. 9, the mesh sealing portion 94 is formed on any of the upper, lower, left, and right surfaces of the sensor element main body 101a, and the portions formed on the respective surfaces are formed so as to be connected to each other. When the eye-sealing portion 94 is formed in this way, the sensor element 101 is obtained.
 センサ素子101を得ると、用意したサポーター124,圧粉体126内にこのセンサ素子101を貫通させ、図1の上側から主体金具122の内側の貫通孔内にこれらを挿入して、センサ素子101を素子封止体120で固定する。そして、ナット130や保護カバー110などを取り付けることで、ガスセンサ100が得られる。 When the sensor element 101 is obtained, the sensor element 101 is passed through the prepared supporter 124 and the green compact 126, and these are inserted into the through holes inside the main metal fitting 122 from the upper side of FIG. 1, and the sensor element 101 is obtained. Is fixed with the element sealant 120. Then, the gas sensor 100 can be obtained by attaching the nut 130, the protective cover 110, or the like.
 こうして構成されたガスセンサ100の使用時には、配管140内の被測定ガスが保護カバー110内に流入してセンサ素子101に到達し、保護層90を通過してガス導入口10内に流入する。そして、センサ素子101は、ガス導入口10内に流入した被測定ガス中のNOx濃度を検出する。このとき、被測定ガスに含まれる水分も保護カバー110内に侵入して、保護層90の表面に付着する場合がある。センサ素子本体101aは、上述したようにヒータ72により固体電解質が活性化する温度(例えば800℃など)に調整されており、保護層90も高温(例えば700℃)になっている。このため、保護層90の表面に水分が付着すると、水分の付着によって急冷されて収縮した部分と、その他の部分との境界に引張応力が働き、保護層90にクラックが生じる場合がある。しかし、本実施形態では、ガスセンサ100の使用時に保護層90の表面に残留圧縮応力が存在するため、この残留圧縮応力によって上述した引張応力が相殺される。このため、保護層90のクラックの発生が抑制され、保護層90の耐被水性が向上する。 When the gas sensor 100 configured in this way is used, the gas to be measured in the pipe 140 flows into the protective cover 110, reaches the sensor element 101, passes through the protective layer 90, and flows into the gas introduction port 10. Then, the sensor element 101 detects the NOx concentration in the gas to be measured that has flowed into the gas introduction port 10. At this time, the moisture contained in the gas to be measured may also enter the protective cover 110 and adhere to the surface of the protective layer 90. As described above, the sensor element main body 101a is adjusted to a temperature at which the solid electrolyte is activated by the heater 72 (for example, 800 ° C.), and the protective layer 90 is also at a high temperature (for example, 700 ° C.). Therefore, when moisture adheres to the surface of the protective layer 90, tensile stress acts on the boundary between the portion that has been rapidly cooled and shrunk due to the adhesion of the moisture and the other portion, and the protective layer 90 may crack. However, in the present embodiment, since the residual compressive stress exists on the surface of the protective layer 90 when the gas sensor 100 is used, the above-mentioned tensile stress is canceled by the residual compressive stress. Therefore, the occurrence of cracks in the protective layer 90 is suppressed, and the water resistance of the protective layer 90 is improved.
 また、センサ素子101に水分が付着すると温度が急激に低下してセンサ素子本体101aにクラックが生じる場合がある。しかし、本実施形態では、保護層90とセンサ素子本体101aとの間に空間95が存在しているため、空間95により保護層90からセンサ素子本体101aへの熱伝導を遮断することができる。そのため、保護層90の表面に水が付着した場合のセンサ素子本体101aの冷えが抑制される。 Further, when moisture adheres to the sensor element 101, the temperature may drop sharply and cracks may occur in the sensor element main body 101a. However, in the present embodiment, since the space 95 exists between the protective layer 90 and the sensor element main body 101a, the space 95 can block the heat conduction from the protective layer 90 to the sensor element main body 101a. Therefore, the cooling of the sensor element main body 101a when water adheres to the surface of the protective layer 90 is suppressed.
 また、本実施形態のセンサ素子101では、柱状部91が空間95を支持している。そのため、空間95が存在することによる保護層90の強度の低下を抑制できる。また、側部柱状部は、それぞれ、長手方向がセンサ素子本体101aの長手方向に沿っているため、保護層90の表面の残留圧縮応力を大きくしやすい。降温工程では、センサ素子本体101a及び保護層90が降温に伴い収縮するが、この収縮によるセンサ素子本体101aの寸法の変化は、センサ素子本体101aの長手方向に沿った方向(ここでは前後方向)でより大きく生じる。このため、側部柱状部の長手方向がセンサ素子本体101aの長手方向に沿っている場合、こうしたセンサ素子本体101aの大きな寸法変化(収縮)に引きずられて、保護層90の表面により大きな残留圧縮応力が付与されると考えられる。 Further, in the sensor element 101 of the present embodiment, the columnar portion 91 supports the space 95. Therefore, it is possible to suppress a decrease in the strength of the protective layer 90 due to the presence of the space 95. Further, since the longitudinal direction of each of the side columnar portions is along the longitudinal direction of the sensor element main body 101a, it is easy to increase the residual compressive stress on the surface of the protective layer 90. In the temperature lowering step, the sensor element main body 101a and the protective layer 90 shrink as the temperature drops, and the change in the dimensions of the sensor element main body 101a due to this shrinkage is in the direction along the longitudinal direction of the sensor element main body 101a (here, the front-rear direction). Occurs larger in. Therefore, when the longitudinal direction of the side columnar portion is along the longitudinal direction of the sensor element main body 101a, it is dragged by such a large dimensional change (shrinkage) of the sensor element main body 101a, and the surface of the protective layer 90 has a larger residual compression. It is considered that stress is applied.
 また、本実施形態のセンサ素子101では、上側柱状部91aは、側部90cとの接続部からセンサ素子本体101aの上面に対向する対向面(上側柱状部91aの下面)まで、長さL及び幅Wが一定である。この場合、上側柱状部91aの下面側の長さLや幅Wが小さくなっている場合よりも上側柱状部91aとセンサ素子本体101aとの密着(又は結合)面積が大きいため、保護層90の表面の残留圧縮応力を大きくできる。同様に、下側柱状部91bは、側部90cとの接続部からセンサ素子本体101aの下面に対向する対向面(下側柱状部91bの上面)まで、長さL及び幅Wが一定である。したがって、保護層90の表面の残留圧縮応力を大きくできる。左側柱状部91c,右側柱状部91d及び前側柱状部91eの各々についても、同様の形状を有することで、同様の効果が得られる。 Further, in the sensor element 101 of the present embodiment, the upper columnar portion 91a has a length L and a length L from the connection portion with the side portion 90c to the facing surface facing the upper surface of the sensor element main body 101a (lower surface of the upper columnar portion 91a). The width W is constant. In this case, since the contact (or coupling) area between the upper columnar portion 91a and the sensor element main body 101a is larger than when the length L and width W on the lower surface side of the upper columnar portion 91a are smaller, the protective layer 90 The residual compressive stress on the surface can be increased. Similarly, the lower columnar portion 91b has a constant length L and width W from the connection portion with the side portion 90c to the facing surface facing the lower surface of the sensor element main body 101a (upper surface of the lower columnar portion 91b). .. Therefore, the residual compressive stress on the surface of the protective layer 90 can be increased. The same effect can be obtained by having the same shape for each of the left columnar portion 91c, the right columnar portion 91d, and the front side columnar portion 91e.
 ここで、本実施形態の構成要素と本発明の構成要素との対応関係を明らかにする。本実施形態のセンサ素子本体101aが本発明の素子本体に相当し、先端部101bが先端部に相当し、第1基板層1,第2基板層2,第3基板層3,第1固体電解質層4,スペーサ層5及び第2固体電解質層6が固体電解質層に相当し、保護層90が保護層に相当する。また、柱状部91が空間支持部に相当し、上側柱状部91a,下側柱状部91b,左側柱状部91c及び右側柱状部91dが側部柱状部に相当する。また、焼成後のセンサ素子本体101aが素子本体材に相当し、未焼成体190が保護層材に相当する。 Here, the correspondence between the components of the present embodiment and the components of the present invention will be clarified. The sensor element main body 101a of the present embodiment corresponds to the element main body of the present invention, the tip portion 101b corresponds to the tip portion, and the first substrate layer 1, the second substrate layer 2, the third substrate layer 3, and the first solid electrolyte The layer 4, the spacer layer 5 and the second solid electrolyte layer 6 correspond to the solid electrolyte layer, and the protective layer 90 corresponds to the protective layer. Further, the columnar portion 91 corresponds to the space support portion, and the upper columnar portion 91a, the lower columnar portion 91b, the left columnar portion 91c, and the right columnar portion 91d correspond to the side columnar portion. Further, the sensor element main body 101a after firing corresponds to the element main body material, and the unfired body 190 corresponds to the protective layer material.
 以上説明した本実施形態のセンサ素子101では、500℃以上900℃以下の温度範囲に含まれる少なくともいずれかの温度T1[℃]において保護層90の表面に残留圧縮応力が存在する。このため、温度T1[℃]において保護層90の表面に水が付着した場合に保護層90の表面に生じる引張応力が、保護層90の表面に存在する残留圧縮応力によって相殺される。これにより、保護層90の破損が抑制され、保護層90の耐被水性が向上する。 In the sensor element 101 of the present embodiment described above, residual compressive stress exists on the surface of the protective layer 90 at at least one temperature T1 [° C.] included in the temperature range of 500 ° C. or higher and 900 ° C. or lower. Therefore, the tensile stress generated on the surface of the protective layer 90 when water adheres to the surface of the protective layer 90 at the temperature T1 [° C.] is canceled by the residual compressive stress existing on the surface of the protective layer 90. As a result, damage to the protective layer 90 is suppressed, and the water resistance of the protective layer 90 is improved.
 また、保護層90の表面に存在する残留圧縮応力が15MPa以上であれば、耐被水性がより向上する。また、この残留圧縮応力が300MPa以下であれば、センサ素子本体101aの表面に生じる引張応力を比較的小さくできる。このため、センサ素子本体101aも破損しにくい。 Further, if the residual compressive stress existing on the surface of the protective layer 90 is 15 MPa or more, the water resistance is further improved. Further, when the residual compressive stress is 300 MPa or less, the tensile stress generated on the surface of the sensor element main body 101a can be relatively small. Therefore, the sensor element main body 101a is also less likely to be damaged.
 さらに、センサ素子本体101aの主成分であるジルコニアは、40℃~700℃での線熱膨張係数が11ppm/Kであり、保護層90の主成分であるアルミナは、40℃~700℃での線熱膨張係数が8ppm/Kである。つまり、センサ素子本体101aは、40℃~700℃での線熱膨張係数が10ppm/K以上15ppm/K以下であり、保護層90は、40℃~700℃での線熱膨張係数が1ppm/K以上9ppm/K以下である。このため、センサ素子本体101aと保護層90との熱膨張差による剥離等が生じにくい。なお、40℃~700℃での線熱膨張係数は、スピネルで8ppm/K、ムライトで7ppm/K、コージェライトで2ppm/K程度であり、これらも保護層90の主成分に適している。 Further, zirconia, which is the main component of the sensor element body 101a, has a coefficient of linear thermal expansion of 11 ppm / K at 40 ° C. to 700 ° C., and alumina, which is the main component of the protective layer 90, is at 40 ° C. to 700 ° C. The coefficient of linear thermal expansion is 8 ppm / K. That is, the sensor element main body 101a has a linear thermal expansion coefficient of 10 ppm / K or more and 15 ppm / K or less at 40 ° C. to 700 ° C., and the protective layer 90 has a linear thermal expansion coefficient of 1 ppm / K at 40 ° C. to 700 ° C. It is K or more and 9 ppm / K or less. Therefore, peeling or the like due to the difference in thermal expansion between the sensor element main body 101a and the protective layer 90 is unlikely to occur. The coefficient of linear thermal expansion from 40 ° C. to 700 ° C. is about 8 ppm / K for spinel, 7 ppm / K for mullite, and about 2 ppm / K for cordierite, which are also suitable as the main components of the protective layer 90.
 さらにまた、有底筒状の本体部90aを有する保護層90によって、センサ素子本体101aの先端部101bが被覆されているため、先端部101bの全体を保護層90で保護できる。また、空間支持部によって保護層90の本体部90aとセンサ素子本体101aとの間に形成された空間95によって、保護層90からセンサ素子本体101aへの熱伝導を抑制できるため、保護層90の表面に水が付着した場合のセンサ素子本体101aの冷えを抑制できる。 Furthermore, since the tip portion 101b of the sensor element main body 101a is covered with the protective layer 90 having the bottomed tubular main body portion 90a, the entire tip portion 101b can be protected by the protective layer 90. Further, since the space 95 formed between the main body 90a of the protective layer 90 and the sensor element main body 101a by the space support portion can suppress heat conduction from the protective layer 90 to the sensor element main body 101a, the protective layer 90 It is possible to suppress the cooling of the sensor element main body 101a when water adheres to the surface.
 そして、側部柱状部が、本体部90aの側部90cの内側の2%以上35%以下の範囲に設けられているものとしたり、センサ素子本体101aのうち保護層90の本体部90aの側部90cで覆われた部分の2%以上35%以下の範囲と密着又は結合したりすることで、保護層90の表面の残留圧縮応力を好適な値にしやすい。 Then, the side columnar portion is provided in a range of 2% or more and 35% or less inside the side portion 90c of the main body portion 90a, or the side of the main body portion 90a of the protective layer 90 in the sensor element main body 101a. The residual compressive stress on the surface of the protective layer 90 can be easily set to a suitable value by adhering or bonding with the range of 2% or more and 35% or less of the portion covered with the portion 90c.
 そしてまた、側部柱状部の高さHを400μm以下としたり、側部柱状部の長さLや幅Wを200μm以上としたり、側部90cの厚さtを600μm以下などとすれば、保護層90の表面の残留圧縮応力を好適な値にしやすい。 Further, if the height H of the side columnar portion is set to 400 μm or less, the length L or width W of the side columnar portion is set to 200 μm or more, or the thickness t of the side portion 90c is set to 600 μm or less, protection is provided. The residual compressive stress on the surface of the layer 90 can be easily set to a suitable value.
 そしてさらに、上側空間95a,下側空間95b,左側空間95c,右側空間95d,前側空間95eのうち1以上の高さが10μm以上とすること、つまり、上側柱状部91a,下側柱状部91b,左側柱状部91c,右側柱状部91d,前側柱状部91eのうち1以上の高さHを10μm以上とすることで、保護層90からセンサ素子本体101aへの熱伝導を空間95によって遮断する効果が十分になりやすい。なお、空間95の高さが大きいほど、熱伝導を遮断する効果が高くなる。 Further, the height of one or more of the upper space 95a, the lower space 95b, the left space 95c, the right space 95d, and the front space 95e is 10 μm or more, that is, the upper columnar portion 91a, the lower columnar portion 91b, By setting the height H of one or more of the left columnar portion 91c, the right columnar portion 91d, and the front columnar portion 91e to 10 μm or more, the effect of blocking the heat conduction from the protective layer 90 to the sensor element main body 101a by the space 95 can be obtained. Easy to be enough. The higher the height of the space 95, the higher the effect of blocking heat conduction.
 そしてさらにまた、上側柱状部91aは、センサ素子本体101aの上面のうち被測定ガス流通部9を投影した領域102aを避けて配設されている。ここで、センサ素子本体101aのうち被測定ガス流通部9とセンサ素子本体101aの上面との間の部分は強度が弱く比較的クラックが生じやすい部分である。そして、領域102aに上側柱状部91aが存在しないことで、上側柱状部91aを介したこの領域102aへの直接的な熱伝導が生じないため、センサ素子本体101aのうちセンサ素子本体101aの上面と被測定ガス流通部9との間の部分のクラックが生じにくくなる。下側柱状部91b,左側柱状部91c,及び右側柱状部91dの各々についても、それぞれ領域102b,102c,102d,102eを避けて配設されていることで、同様の効果が得られる。また、上述した通りセンサ素子本体101aの上面,下面,左面及び右面のうち上面が最も被測定ガス流通部9に近い面であるから、領域102a~102dのうち特に領域102aは強度が弱い部分である。本実施形態ではこの領域102aを避けて上側柱状部91aが配設されているから、特に強度の弱い領域102aについて、クラックが生じにくくなる。 Furthermore, the upper columnar portion 91a is arranged so as to avoid the region 102a on which the gas flow portion 9 to be measured is projected on the upper surface of the sensor element main body 101a. Here, the portion of the sensor element main body 101a between the gas flow portion 9 to be measured and the upper surface of the sensor element main body 101a is a portion having weak strength and relatively prone to cracking. Since the upper columnar portion 91a does not exist in the region 102a, direct heat conduction to the region 102a via the upper columnar portion 91a does not occur. Cracks in the portion between the gas flow section 9 to be measured are less likely to occur. The same effect can be obtained by arranging each of the lower columnar portion 91b, the left columnar portion 91c, and the right columnar portion 91d so as to avoid the regions 102b, 102c, 102d, and 102e, respectively. Further, as described above, since the upper surface of the upper surface, the lower surface, the left surface, and the right surface of the sensor element main body 101a is the surface closest to the gas flow portion 9 to be measured, the region 102a is particularly weak in the regions 102a to 102d. is there. In the present embodiment, since the upper columnar portion 91a is arranged avoiding this region 102a, cracks are less likely to occur in the region 102a having particularly weak strength.
 また、本実施形態のセンサ素子101の製造方法では、配置工程において、素子本体材及び保護層材として、焼成工程と同じ工程を行った後の素子本体材が有する固体電解質層の温度T1[℃]~温度T2[℃]での線熱膨張係数αa’[ppm/K]と、焼成工程と同じ工程を行った後の保護層材の温度T1[℃]~温度T2[℃]での線熱膨張係数αb[ppm/K]とが、αa’>αbの関係を満たすものを用いるため、降温工程において、保護層90に圧縮応力を付与することができる。 Further, in the method for manufacturing the sensor element 101 of the present embodiment, the temperature T1 [° C.] of the solid electrolyte layer of the element body material after the same process as the firing step is performed as the element body material and the protective layer material in the arrangement process. ] -The coefficient of linear thermal expansion αa'[ppm / K] at the temperature T2 [° C] and the line at the temperature T1 [° C] to the temperature T2 [° C] of the protective layer material after performing the same process as the firing step. Since the coefficient of thermal expansion αb [ppm / K] satisfies the relationship of αa'> αb, compressive stress can be applied to the protective layer 90 in the temperature lowering step.
 さらにまた、素子本体材として、焼成後のセンサ素子本体101aを用いるため、つまり、焼成工程において、素子本体材を焼成する必要がないため、温度T2[℃]を比較的低く設定できる。 Furthermore, since the sensor element body 101a after firing is used as the element body material, that is, it is not necessary to fire the element body material in the firing step, the temperature T2 [° C.] can be set relatively low.
 なお、本発明は上述した実施形態に何ら限定されることはなく、本発明の技術的範囲に属する限り種々の態様で実施し得ることはいうまでもない。 It goes without saying that the present invention is not limited to the above-described embodiment, and can be implemented in various embodiments as long as it belongs to the technical scope of the present invention.
 例えば、上述した実施形態では、温度T1[℃]は700℃としたが、700℃に限定されない。なお、温度T1[℃]は、500℃以上900℃以下の温度範囲に含まれる少なくともいずれかの温度であればよく、このうち700℃以上900℃以下の温度範囲に含まれる少なくともいずれかの温度としてもよい。高温になるほど保護層90の表面の残留圧縮応力は小さくなる傾向にあり、例えば、700℃で残留圧縮応力が存在する場合には、700℃以下の温度でも残留圧縮応力が存在すると考えられる。 For example, in the above-described embodiment, the temperature T1 [° C.] is 700 ° C., but the temperature is not limited to 700 ° C. The temperature T1 [° C.] may be at least one temperature included in the temperature range of 500 ° C. or higher and 900 ° C. or lower, and the temperature T1 [° C.] may be at least one temperature included in the temperature range of 700 ° C. or higher and 900 ° C. or lower. May be. The higher the temperature, the smaller the residual compressive stress on the surface of the protective layer 90. For example, when the residual compressive stress exists at 700 ° C., it is considered that the residual compressive stress exists even at a temperature of 700 ° C. or lower.
 上述した実施形態では、温度T2[℃]は1100℃以上1200℃以下の温度範囲に含まれるいずれかの温度としたが、こうした温度に限定されない。例えば、温度T2[℃]は1100℃以上1600℃以下の温度範囲に含まれるいずれかの温度としてもよく、1100℃以上1300℃以下の温度範囲に含まれるいずれかの温度としてもよい。 In the above-described embodiment, the temperature T2 [° C.] is any temperature included in the temperature range of 1100 ° C. or higher and 1200 ° C. or lower, but the temperature is not limited to these. For example, the temperature T2 [° C.] may be any temperature included in the temperature range of 1100 ° C. or higher and 1600 ° C. or lower, or may be any temperature included in the temperature range of 1100 ° C. or higher and 1300 ° C. or lower.
 上述した実施形態では、保護層90は、キャップ状としたが、センサ素子本体101aの表面の少なくとも一部を被覆するものであれば、キャップ状に限定されない。保護層90は、例えば、底部90bを省略した筒状としてもよいし、側部90cの一部(例えばセンサ素子本体101aの左右を覆う部分)を省略した形状としてもよいし、この両方を省略した形状としてもよい。 In the above-described embodiment, the protective layer 90 has a cap shape, but the protective layer 90 is not limited to the cap shape as long as it covers at least a part of the surface of the sensor element main body 101a. The protective layer 90 may have, for example, a tubular shape in which the bottom portion 90b is omitted, a shape in which a part of the side portion 90c (for example, a portion covering the left and right sides of the sensor element main body 101a) is omitted, or both of them are omitted. It may have a shaped shape.
 上述した実施形態では、上側柱状部91a,下側柱状部91b,左側柱状部91c,及び右側柱状部91dは、長手方向がセンサ素子本体101aの長手方向に沿っているものとしたが、長手方向がセンサ素子本体101aの長手方向に垂直でもよいし、長手方向がその他の方向を向いていてもよい。また、上側柱状部91a,下側柱状部91b,左側柱状部91c,及び右側柱状部91dは、長手方向を有さない、つまり、長さLと幅WとがL=Wを満たしてもよい。 In the above-described embodiment, the longitudinal direction of the upper columnar portion 91a, the lower columnar portion 91b, the left columnar portion 91c, and the right columnar portion 91d is assumed to be along the longitudinal direction of the sensor element main body 101a. May be perpendicular to the longitudinal direction of the sensor element main body 101a, or the longitudinal direction may be oriented in another direction. Further, the upper columnar portion 91a, the lower columnar portion 91b, the left columnar portion 91c, and the right columnar portion 91d do not have a longitudinal direction, that is, the length L and the width W may satisfy L = W. ..
 例えば、上述した実施形態では、後端部93a~93dは目封止部94とは離間していたが、これに限られない。例えば図13に示す変形例の保護層90のように、上側柱状部91a及び下側柱状部91bが本体部90aの後端まで存在しており、上側柱状部91aの後端及び下側柱状部91bの後端が目封止部94と接触していてもよい。左側柱状部91c及び右側柱状部91dについても同様である。 For example, in the above-described embodiment, the rear end portions 93a to 93d are separated from the eye sealing portion 94, but the present invention is not limited to this. For example, as in the protective layer 90 of the modified example shown in FIG. 13, the upper columnar portion 91a and the lower columnar portion 91b exist up to the rear end of the main body portion 90a, and the rear end and the lower columnar portion of the upper columnar portion 91a The rear end of 91b may be in contact with the sealing portion 94. The same applies to the left columnar portion 91c and the right columnar portion 91d.
 上述した実施形態では、保護層90の柱状部91は上側柱状部91a,下側柱状部91b,左側柱状部91c,右側柱状部91d,前側柱状部91eを含んでいたが、これらの1以上を含まなくてもよい。柱状部91は、少なくともセンサ素子本体101aの互いに反対側に位置する2つの空間を支持するように、センサ素子本体101aの互いに反対側の表面上に配設されていることが好ましい。例えば、図14に示す変形例の保護層90のように、保護層90が、互いに反対側の表面に配設された柱状部91、つまり左側柱状部91c及び右側柱状部91dを備え、上側柱状部91aを有さなくてもよい。図14において、下側柱状部91bを省略してもよいし、下側柱状部91bに代えて上側柱状部91aを備えていてもよい。また、互いに反対側の表面に配設された柱状部91として、上側柱状部91a及び下側柱状部91bを備えるものとしてもよい。 In the above-described embodiment, the columnar portion 91 of the protective layer 90 includes the upper columnar portion 91a, the lower columnar portion 91b, the left columnar portion 91c, the right columnar portion 91d, and the front columnar portion 91e. It does not have to be included. The columnar portion 91 is preferably arranged on the surfaces of the sensor element main body 101a on opposite sides so as to support at least two spaces located on opposite sides of the sensor element main body 101a. For example, as in the protective layer 90 of the modified example shown in FIG. 14, the protective layer 90 includes columnar portions 91 arranged on the surfaces opposite to each other, that is, the left columnar portion 91c and the right columnar portion 91d, and has an upper columnar portion. It is not necessary to have the part 91a. In FIG. 14, the lower columnar portion 91b may be omitted, or the upper columnar portion 91a may be provided in place of the lower columnar portion 91b. Further, as the columnar portions 91 arranged on the surfaces opposite to each other, the upper columnar portion 91a and the lower columnar portion 91b may be provided.
 上述した実施形態では、上側柱状部91aは、本体部90aの側部90cとの接続部から上側柱状部91aの下面まで長さL及び幅Wが一定で、上側柱状部91aの下面は平坦であるものとしたが、こうしたものに限定されない。例えば、上側柱状部91aの下面は、センサ素子本体101aの上面に対向する対向面(ここでは上側柱状部91aの下面)が、上側柱状部91aの長手方向に垂直な断面視でセンサ素子本体101aの上面に向かって弧状に膨らんだ形状をしていてもよい。「弧状」には、円弧状や楕円弧状など、種々の弧状を含む。また、上側柱状部91aは、平坦な下面の周囲に、C面取りやR面取りなどの面取り形状部を有していてもよい。なお、本体部90aの側部90cとの接続部から上側柱状部91aの下面までの長さL及び幅Wが一定でない場合、上側柱状部91aの下面のうちセンサ素子本体101aの上面と密着又は結合する部分の長さL及び幅Wが上述した長さL及び幅Wの範囲を満たすことが好ましい。 In the above-described embodiment, the upper columnar portion 91a has a constant length L and width W from the connection portion of the main body portion 90a with the side portion 90c to the lower surface of the upper columnar portion 91a, and the lower surface of the upper columnar portion 91a is flat. Yes, but not limited to these. For example, the lower surface of the upper columnar portion 91a has a surface facing the upper surface of the sensor element main body 101a (here, the lower surface of the upper columnar portion 91a) in a cross-sectional view perpendicular to the longitudinal direction of the upper columnar portion 91a. It may have a shape that bulges in an arc toward the upper surface of the. The "arc shape" includes various arc shapes such as an arc shape and an elliptical arc shape. Further, the upper columnar portion 91a may have a chamfered shape portion such as a C chamfer or an R chamfer around a flat lower surface. If the length L and width W from the connection portion of the main body 90a with the side 90c to the lower surface of the upper columnar portion 91a are not constant, the lower surface of the upper columnar portion 91a may be in close contact with the upper surface of the sensor element main body 101a. It is preferable that the length L and the width W of the portions to be joined satisfy the above-mentioned ranges of the length L and the width W.
 上述した実施形態では、保護層90は前側空間95eを支持する前側柱状部91eを備えていたが、これに限られない。例えば、図15,16に示す変形例の保護層90のように、保護層90が前側柱状部91eに替えて前側段差部92eを備えていてもよい。前側段差部92eは、センサ素子本体101aの前面の四隅と前後に当接しており、この前側段差部92eの段差の高さ(前後方向の長さ)によって、センサ素子本体101aの前面と本体部90aとが前側空間95eを介して離間している。 In the above-described embodiment, the protective layer 90 includes a front columnar portion 91e that supports the front space 95e, but is not limited to this. For example, as in the modified protective layer 90 shown in FIGS. 15 and 16, the protective layer 90 may include a front stepped portion 92e instead of the front columnar portion 91e. The front step portion 92e is in contact with the four corners of the front surface of the sensor element main body 101a in the front-rear direction, and the height of the step (length in the front-rear direction) of the front step portion 92e determines the front surface and the main body portion of the sensor element main body 101a. 90a and 90a are separated from each other via the front space 95e.
 上述した実施形態では、各柱状部91a~91eは、センサ素子本体101aの表面に被測定ガス流通部9を投影した各領域102a~102eを避けて配設されていたが、これに限られない。各柱状部91a~91eのうち1以上について各領域102a~102eと重複する位置に配設されていてもよい。 In the above-described embodiment, the columnar portions 91a to 91e are arranged so as to avoid the regions 102a to 102e on which the gas flow portion 9 to be measured is projected on the surface of the sensor element main body 101a, but the present invention is not limited to this. .. One or more of the columnar portions 91a to 91e may be arranged at positions overlapping with the respective regions 102a to 102e.
 上述した実施形態では、センサ素子本体101aの上面,下面,左面及び右面のうち、上面が最も被測定ガス流通部9に近い面としたが、これに限らず他の面が被測定ガス流通部9に最も近くてもよい。また、上面が最も被測定ガス流通部9に近い面である場合に限らず、センサ素子本体101aの上面,下面,左面及び右面のうち最も被測定ガス流通部9に近い面について、その面に被測定ガス流通部9を投影した領域を避けて柱状部91が配設されていることが好ましい。また、上面が最も被測定ガス流通部9に近い面であるか否かに関わらず、外側ポンプ電極23が配設されている面である上面について、領域102aを避けて上側柱状部91aが配設されていてもよい。また、上述した実施形態では、被測定ガス流通部9の入口となる開口であるガス導入口10はセンサ素子本体101aの前面に配設されていたが、これに限られない。例えば、ガス導入口10がセンサ素子本体101aの上面,下面,左面及び右面のいずれかに配設されていてもよい。この場合、センサ素子本体101aの上面,下面,左面及び右面のうちガス導入口10が配設されている面を、「最も被測定ガス流通部に近い面」とする。 In the above-described embodiment, of the upper surface, the lower surface, the left surface, and the right surface of the sensor element main body 101a, the upper surface is the surface closest to the gas flow unit 9 to be measured, but the other surface is not limited to this and is the gas flow unit to be measured. It may be closest to 9. Further, not only when the upper surface is the surface closest to the gas flow portion 9 to be measured, but also the surface closest to the gas flow unit 9 to be measured among the upper surface, the lower surface, the left surface and the right surface of the sensor element main body 101a is formed on the surface. It is preferable that the columnar portion 91 is arranged so as to avoid the region on which the gas flow portion 9 to be measured is projected. Further, regardless of whether or not the upper surface is the surface closest to the gas flow portion 9 to be measured, the upper columnar portion 91a is arranged on the upper surface, which is the surface on which the outer pump electrode 23 is arranged, avoiding the region 102a. It may be installed. Further, in the above-described embodiment, the gas introduction port 10 which is an opening serving as an inlet of the gas flow unit 9 to be measured is arranged on the front surface of the sensor element main body 101a, but the present invention is not limited to this. For example, the gas introduction port 10 may be arranged on any of the upper surface, the lower surface, the left surface, and the right surface of the sensor element main body 101a. In this case, of the upper surface, lower surface, left surface, and right surface of the sensor element main body 101a, the surface on which the gas introduction port 10 is arranged is defined as the "surface closest to the gas flow portion to be measured".
 上述した実施形態では、各柱状部91a~91eはセンサ素子本体101aの表面に被測定ガス流通部9を投影した各領域102a~102eを避けて配設されていたが、これに限らず、各柱状部91a~91eのうちセンサ素子本体101aと接触する部分が、各領域102a~102eを避けて配設されていればよい。例えば、上側柱状部91aのうち少なくともセンサ素子本体101aと接触する部分が領域102aを避けていれば、上側柱状部91a全体が領域102aを避けていなくてもよい。この場合も、上述した実施形態と同様に、上側柱状部91aを介した領域102aへの直接的な熱伝導が生じないため、センサ素子本体101aのうちセンサ素子本体101aの上面と被測定ガス流通部9との間の部分のクラックが生じにくくなる。下側柱状部91b,左側柱状部91c,右側柱状部91d,及び前側柱状部91eの各々についても、センサ素子本体101aと接触する部分が領域102b,102c,102d,102eを避けて配設されていることで、同様の効果が得られる。なお、上述した実施形態では、各柱状部91a~91eのいずれについてもセンサ素子本体101aと接触する部分が各領域102a~102eを避けているが、各柱状部91a~91eのうち1以上について、センサ素子本体101aと接触する部分が各領域102a~102eと重複する位置に配設されていてもよい。また、センサ素子本体101aの上面,下面,左面及び右面のうち最も被測定ガス流通部9に近い面について、柱状部91のうちセンサ素子本体101aのその面と接触する部分が、その面に被測定ガス流通部9を投影した領域を避けるように配設されていることが好ましい。また、各柱状部91a~91eのうち少なくとも前側柱状部91eについて、センサ素子本体101aと接触する部分が領域102eを避けて配設されていてもよいし、前側柱状部91e全体が領域102eを避けて配設されていてもよい。また、センサ素子本体101aの上面が最も被測定ガス流通部9に近い面であるか否かに関わらず、外側ポンプ電極23が配設されている面である上面について、上側柱状部91aのうちセンサ素子本体101aと接触する部分が領域102aを避けて配設されていてもよい。 In the above-described embodiment, the columnar portions 91a to 91e are arranged so as to avoid the regions 102a to 102e on which the gas flow portion 9 to be measured is projected on the surface of the sensor element main body 101a, but the present invention is not limited to this. Of the columnar portions 91a to 91e, the portions that come into contact with the sensor element main body 101a may be arranged so as to avoid the respective regions 102a to 102e. For example, if at least the portion of the upper columnar portion 91a in contact with the sensor element main body 101a avoids the region 102a, the entire upper columnar portion 91a may not avoid the region 102a. In this case as well, as in the above-described embodiment, direct heat conduction to the region 102a via the upper columnar portion 91a does not occur, so that the upper surface of the sensor element main body 101a and the gas flow to be measured are flown among the sensor element main bodies 101a. Cracks in the portion between the portion 9 and the portion 9 are less likely to occur. In each of the lower columnar portion 91b, the left columnar portion 91c, the right columnar portion 91d, and the front columnar portion 91e, the portions in contact with the sensor element main body 101a are arranged so as to avoid the regions 102b, 102c, 102d, 102e. By doing so, the same effect can be obtained. In the above-described embodiment, the portions of the columnar portions 91a to 91e that come into contact with the sensor element main body 101a avoid the regions 102a to 102e, but one or more of the columnar portions 91a to 91e The portion that comes into contact with the sensor element main body 101a may be arranged at a position that overlaps with each of the regions 102a to 102e. Further, regarding the upper surface, lower surface, left surface, and right surface of the sensor element main body 101a that are closest to the gas flow portion 9 to be measured, the portion of the columnar portion 91 that contacts the surface of the sensor element main body 101a covers the surface. It is preferable that the measurement gas flow unit 9 is arranged so as to avoid the projected region. Further, at least the front columnar portion 91e of the columnar portions 91a to 91e may be arranged so that the portion in contact with the sensor element main body 101a avoids the region 102e, or the entire front columnar portion 91e avoids the region 102e. It may be arranged. Further, regardless of whether or not the upper surface of the sensor element main body 101a is the surface closest to the gas flow portion 9 to be measured, the upper surface, which is the surface on which the outer pump electrode 23 is arranged, is among the upper columnar portions 91a. The portion in contact with the sensor element main body 101a may be arranged so as to avoid the region 102a.
 上述した実施形態において、本体部90aと先端部101bの表面との間には、空間95が存在しなくてもよい。この場合、センサ素子本体101aと保護層90とが密着又は結合する面積が大きいため、保護層90の表面の残留圧縮応力が大きくなりやすい。 In the above-described embodiment, the space 95 does not have to exist between the surface of the main body 90a and the surface of the tip 101b. In this case, since the area where the sensor element main body 101a and the protective layer 90 are in close contact with each other or are bonded to each other is large, the residual compressive stress on the surface of the protective layer 90 tends to be large.
 上述した実施形態では、空間95の大きさについて特に説明しなかったが、空間95は保護層90内の気孔とは異なる気孔より大きい空間であり、保護層90内の気孔と区別できる大きさである。例えば上述した実施形態では、各空間95a~95eの各々は、保護層90内の気孔と区別できる大きさである。例えば、上側空間95aのうちセンサ素子本体101aの上面の真上の領域に存在する部分の容積は、0.03mm3以上としてもよいし、0.04mm3以上としてもよいし、0.07mm3以上としてもよいし、0.5mm3以上としてもよいし、1.5mm3以上としてもよい。下側空間95bのうちセンサ素子本体101aの下面の真下の領域に存在する部分の容積は、0.03mm3以上としてもよいし、0.04mm3以上としてもよいし、0.07mm3以上としてもよいし、0.5mm3以上としてもよいし、1.5mm3以上としてもよい。左側空間95cのうちセンサ素子本体101aの左面の左方の領域に存在する部分の容積は、0.015mm3以上としてもよいし、0.2mm3以上としてもよいし、0.4mm3以上としてもよい。右側空間95dのうちセンサ素子本体101aの右面の右方の領域に存在する部分の容積は、0.015mm3以上としてもよいし、0.2mm3以上としてもよいし、0.4mm3以上としてもよい。前側空間95eのうちセンサ素子本体101aの前面の前方の領域に存在する部分の容積は、0.010mm3以上としてもよいし、0.1mm3以上としてもよいし、0.2mm3以上としてもよいし、0.3mm3以上としてもよい。ここで、センサ素子本体101aの「上面の真上の領域」は、上面に対して上面に垂直な方向に存在する領域を意味し、上面の左上,右上などは含まない。「下面の真下の領域」,「左面の左方の領域」,「右面の右方の領域」,及び「前面の前方の領域」についても同様である。また、上側空間95aが複数の空間を有する場合は、複数の空間のうち少なくとも1つについて、センサ素子本体101aの上面の真上の領域に存在する部分の容積が0.03mm3以上、0.04mm3以上、0.07mm3以上、0.5mm3以上、又は1.5mm3以上であってもよいし、複数の空間の合計として、センサ素子本体101aの上面の真上の領域に存在する部分の容積が0.03mm3以上、0.04mm3以上、又は0.07mm3以上、0.5mm3以上、又は1.5mm3以上であってもよい。各空間95b~95eについても同様に、各々が複数の空間を有する場合は、複数の空間のうち少なくとも1つについて上記の容積の数値範囲を満たしていてもよいし、複数の空間の合計について上記の容積の数値範囲を満たしていてもよい。また、上側空間95aの高さは、センサ素子本体101aの上面から保護層90の上面までの高さの40%以上70%以下としてもよい。同様に、下側空間95bの高さは、センサ素子本体101aの下面から保護層90の下面までの高さの40%以上70%以下としてもよい。左側空間95cの高さは、センサ素子本体101aの左面から保護層90の左面までの高さの40%以上70%以下としてもよい。右側空間95dの高さは、センサ素子本体101aの右面から保護層90の右面までの高さの40%以上70%以下としてもよい。前側空間95eの高さは、センサ素子本体101aの前面から保護層90の前面までの高さの40%以上70%以下としてもよい。上側空間95aの高さは、保護層90の平均気孔径(水銀圧入法による)の5倍以上としてもよいし、10倍以上としてもよい。下側空間95b,左側空間95c,右側空間95d,及び前側空間95eの各々の高さについても、同様に、保護層90の平均気孔径の5倍以上としてもよいし、10倍以上としてもよい。 In the above-described embodiment, the size of the space 95 has not been particularly described, but the space 95 is a space larger than the pores different from the pores in the protective layer 90, and has a size distinguishable from the pores in the protective layer 90. is there. For example, in the above-described embodiment, each of the spaces 95a to 95e has a size that can be distinguished from the pores in the protective layer 90. For example, the volume of the part present in the region directly above the top surface of the sensor element body 101a of the upper space 95a, may be 0.03 mm 3 or more, may be 0.04 mm 3 or more, 0.07 mm 3 It may be 0.5 mm 3 or more, or 1.5 mm 3 or more. The volume of the part present in the region beneath the lower surface of the sensor element body 101a of the lower space 95b, may be 0.03 mm 3 or more, may be 0.04 mm 3 or higher, as 0.07 mm 3 or higher It may be 0.5 mm 3 or more, or 1.5 mm 3 or more. Volume of the part present in the left area of the left surface of the sensor element body 101a of the left space 95c may be a 0.015 mm 3 or more, may be 0.2 mm 3 or more, as 0.4 mm 3 or more May be good. Volume of the portion present in the right area of the right surface of the sensor element body 101a of the right space 95d may be a 0.015 mm 3 or more, may be 0.2 mm 3 or more, as 0.4 mm 3 or more May be good. The volume of the portion in front of the area of the front surface of the sensor element body 101a of the front space 95e, may be 0.010 mm 3 or more, may be 0.1 mm 3 or more, even 0.2 mm 3 or more It may be 0.3 mm 3 or more. Here, the "region directly above the upper surface" of the sensor element main body 101a means a region existing in a direction perpendicular to the upper surface with respect to the upper surface, and does not include the upper left, upper right, and the like of the upper surface. The same applies to "the area directly below the lower surface", "the area on the left side of the left surface", "the area on the right side of the right surface", and "the area in front of the front surface". When the upper space 95a has a plurality of spaces, the volume of the portion existing in the region directly above the upper surface of the sensor element main body 101a is 0.03 mm 3 or more, and 0. 04Mm 3 above, 0.07 mm 3 or more, 0.5 mm 3 or more, or may be at 1.5 mm 3 or more, as the sum of a plurality of spaces, present in the region directly above the top surface of the sensor element body 101a volume portions 0.03 mm 3 or more, 0.04 mm 3 or more, or 0.07 mm 3 or more, 0.5 mm 3 or more, or may be 1.5 mm 3 or more. Similarly, when each of the spaces 95b to 95e has a plurality of spaces, at least one of the plurality of spaces may satisfy the above numerical range of the volume, and the total of the plurality of spaces may be described above. It may satisfy the numerical range of the volume of. Further, the height of the upper space 95a may be 40% or more and 70% or less of the height from the upper surface of the sensor element main body 101a to the upper surface of the protective layer 90. Similarly, the height of the lower space 95b may be 40% or more and 70% or less of the height from the lower surface of the sensor element main body 101a to the lower surface of the protective layer 90. The height of the left side space 95c may be 40% or more and 70% or less of the height from the left surface of the sensor element main body 101a to the left surface of the protective layer 90. The height of the right side space 95d may be 40% or more and 70% or less of the height from the right surface of the sensor element main body 101a to the right surface of the protective layer 90. The height of the front space 95e may be 40% or more and 70% or less of the height from the front surface of the sensor element main body 101a to the front surface of the protective layer 90. The height of the upper space 95a may be 5 times or more or 10 times or more the average pore diameter (by the mercury injection method) of the protective layer 90. Similarly, the heights of the lower space 95b, the left space 95c, the right space 95d, and the front space 95e may be 5 times or more or 10 times or more the average pore diameter of the protective layer 90. ..
 上述した実施形態では、目封止部94はセンサ素子本体101aの長手方向に沿った表面の一部を被覆し、保護層90のうち後端側の端面に接するように配設されていたが、これに限られない。例えば、図18に示す変形例の目封止部94のように、目封止部94は保護層90の後端側の端面に接していなくてもよい。図18では、目封止部94は、保護層90とセンサ素子本体101aとの間に配設されている。この図18でも、上述した実施形態と同様に、目封止部94は保護層90とセンサ素子本体101aの表面との間に存在する空間95の後端側に向けた開口を塞いでいる。なお、図18では目封止部94の後端と保護層90の後端とが前後方向で同じ位置にあるが、これに限られない。例えば目封止部94の一部が保護層90の後端よりも後方にはみ出していてもよいし、目封止部94の後端が保護層90の後端より前側に位置していてもよい。また、図18では目封止部94は上側柱状部91a及び下側柱状部91bと離間しているが、接触していてもよい。また、目封止部94は、一部が保護層90の後端側の端面に接するように設けられ、一部が保護層90とセンサ素子本体101aとの間に入り込んで空間95の開口を塞いでいてもよい。図18に示した目封止部94は、例えば上述した目封止工程において保護層90の後端面をマスクしておき、プラズマ溶射を行って、保護層90とセンサ素子本体101aとの間に粉末溶射材料184が侵入するようにすることで、形成できる。あるいは、焼成後に目封止部94となるペーストを用いて図18に示す目封止部94を形成することもできる。例えば、上述した配置工程において未焼成体190の内側にセンサ素子本体101aの先端部101bが挿入された状態になる前に、焼成後に目封止部94となるペーストをセンサ素子本体101aの表面に印刷などにより塗布しておいてもよい。あるいは、上述した配置工程において未焼成体190の内側にセンサ素子本体101aの先端部101bが挿入された状態になった後に、焼成後に目封止部94となるペーストを、未焼成体190の後端側から未焼成体190とセンサ素子本体101aとの隙間に注入してもよい。また、上述した実施形態において、目封止部94は、省略してもよい。 In the above-described embodiment, the eye-sealing portion 94 is arranged so as to cover a part of the surface of the sensor element main body 101a along the longitudinal direction and contact the end surface of the protective layer 90 on the rear end side. , Not limited to this. For example, the eye-sealing portion 94 may not be in contact with the rear end surface of the protective layer 90, as in the modified example of the eye-sealing portion 94 shown in FIG. In FIG. 18, the eye sealing portion 94 is arranged between the protective layer 90 and the sensor element main body 101a. Also in FIG. 18, the eye sealing portion 94 closes the opening toward the rear end side of the space 95 existing between the protective layer 90 and the surface of the sensor element main body 101a, as in the above-described embodiment. In FIG. 18, the rear end of the sealing portion 94 and the rear end of the protective layer 90 are at the same position in the front-rear direction, but the present invention is not limited to this. For example, a part of the eye-sealing portion 94 may protrude rearward from the rear end of the protective layer 90, or the rear end of the eye-sealing portion 94 may be located in front of the rear end of the protective layer 90. Good. Further, in FIG. 18, the sealing portion 94 is separated from the upper columnar portion 91a and the lower columnar portion 91b, but may be in contact with each other. Further, the eye-sealing portion 94 is provided so that a part of the sealing portion 94 is in contact with the end surface on the rear end side of the protective layer 90, and a part of the sealing portion 94 enters between the protective layer 90 and the sensor element main body 101a to open an opening of the space 95. It may be blocked. For example, the eye-sealing portion 94 shown in FIG. 18 masks the rear end surface of the protective layer 90 in the above-mentioned eye-sealing step, performs plasma spraying, and between the protective layer 90 and the sensor element main body 101a. It can be formed by allowing the powder sprayed material 184 to penetrate. Alternatively, the eye-sealing portion 94 shown in FIG. 18 can be formed by using a paste that becomes the eye-sealing portion 94 after firing. For example, before the tip portion 101b of the sensor element main body 101a is inserted inside the unfired body 190 in the above-mentioned arrangement step, a paste that becomes the eye-sealing portion 94 after firing is applied to the surface of the sensor element main body 101a. It may be applied by printing or the like. Alternatively, after the tip portion 101b of the sensor element main body 101a is inserted inside the unfired body 190 in the above-mentioned arrangement step, a paste that becomes the eye-sealing portion 94 after firing is applied after the unfired body 190. It may be injected from the end side into the gap between the unfired body 190 and the sensor element main body 101a. Further, in the above-described embodiment, the sealing portion 94 may be omitted.
 図18に示した目封止部94を形成する場合において、プラズマ溶射の代わりにペーストを用いて目封止部94を形成する方法を説明したが、図18の目封止部94に限らず例えば図3の目封止部94などの他の態様の目封止部94を形成する際にも、プラズマ溶射の代わりにペーストを用いて目封止部94を形成してもよい。また、ペーストを用いて目封止部94を形成する場合、未焼成体190と焼成後に目封止部94となるペーストとを同時に焼成してもよい。もしくは、未焼成体190を焼成した後に、焼成後に目封止部94となるペーストを塗布し、そのペーストを焼成して目封止部94を形成してもよい。 In the case of forming the eye-sealing portion 94 shown in FIG. 18, a method of forming the eye-sealing portion 94 by using a paste instead of plasma spraying has been described, but the method is not limited to the eye-sealing portion 94 of FIG. For example, when forming the eye-sealing portion 94 of another aspect such as the eye-sealing portion 94 of FIG. 3, the eye-sealing portion 94 may be formed by using a paste instead of plasma spraying. Further, when the eye-sealing portion 94 is formed by using the paste, the unfired body 190 and the paste that becomes the eye-sealing portion 94 after firing may be fired at the same time. Alternatively, after the unfired body 190 is fired, a paste to be the sealing portion 94 may be applied after the firing, and the paste may be fired to form the sealing portion 94.
 上述した実施形態では、ガスセンサ100のセンサ素子101は第2内部空所40に第4拡散律速部45で被覆された測定電極44を備えるものとしたが、特にこの構成に限られるものではない。例えば、図17の変形例のセンサ素子101のように、測定電極44を被覆せずに露出させ、その測定電極44と補助ポンプ電極51との間にスリット状の第4拡散律速部60を設けてもよい。第4拡散律速部60は、第2内部空所40で補助ポンプセル50の動作により酸素濃度(酸素分圧)が制御された被測定ガスに所定の拡散抵抗を付与して、該被測定ガスを奥の第3内部空所61に導く部位である。第4拡散律速部60は、第3内部空所61に流入するNOxの量を制限する役割を担う。このような構成のセンサ素子101であっても、上述した実施形態と同様に、測定用ポンプセル41によりNOx濃度を検出できる。 In the above-described embodiment, the sensor element 101 of the gas sensor 100 is provided with the measurement electrode 44 coated with the fourth diffusion rate-determining portion 45 in the second internal space 40, but the present invention is not particularly limited to this configuration. For example, as in the sensor element 101 of the modified example of FIG. 17, the measurement electrode 44 is exposed without being covered, and a slit-shaped fourth diffusion rate-determining portion 60 is provided between the measurement electrode 44 and the auxiliary pump electrode 51. You may. The fourth diffusion rate-determining unit 60 imparts a predetermined diffusion resistance to the gas to be measured whose oxygen concentration (oxygen partial pressure) is controlled by the operation of the auxiliary pump cell 50 in the second internal space 40, and transfers the gas to be measured. This is the part that leads to the third internal space 61 in the back. The fourth diffusion rate-determining unit 60 plays a role of limiting the amount of NOx flowing into the third internal space 61. Even with the sensor element 101 having such a configuration, the NOx concentration can be detected by the measurement pump cell 41 as in the above-described embodiment.
 上述した実施形態では、センサ素子本体101aは緩衝層84を備えていたが、これに限られない。例えば、図15,16に示すように、センサ素子本体101aが緩衝層84を備えず、第2固体電解質層6の上面及び第1基板層1の下面と保護層90及び目封止部94とが直接接触していてもよい。 In the above-described embodiment, the sensor element main body 101a is provided with the buffer layer 84, but the present invention is not limited to this. For example, as shown in FIGS. 15 and 16, the sensor element main body 101a does not include the buffer layer 84, and includes the upper surface of the second solid electrolyte layer 6, the lower surface of the first substrate layer 1, the protective layer 90, and the sealing portion 94. May be in direct contact.
 上述した実施形態では、センサ素子本体101aは基準ガス導入空間43及び大気導入層48を備えていたが、これに限られない。例えば基準ガス導入空間43が大気導入層48と同様の多孔質体で満たされていてもよい。あるいは、センサ素子本体101aが基準ガス導入空間43を備えず大気導入層48がセンサ素子本体101aの後端まで存在していてもよい。これらの態様でも、基準ガスはセンサ素子本体101aの後端からセンサ素子本体101a内に導入されて基準電極42に到達できる。 In the above-described embodiment, the sensor element main body 101a includes the reference gas introduction space 43 and the atmosphere introduction layer 48, but the present invention is not limited to this. For example, the reference gas introduction space 43 may be filled with the same porous body as the atmosphere introduction layer 48. Alternatively, the sensor element main body 101a may not include the reference gas introduction space 43, and the atmosphere introduction layer 48 may exist up to the rear end of the sensor element main body 101a. Also in these embodiments, the reference gas can be introduced into the sensor element body 101a from the rear end of the sensor element body 101a and reach the reference electrode 42.
 上述した実施形態では、センサ素子本体101aは複数の固体電解質層(層1~6)を有する積層体としたが、これに限られない。センサ素子本体101aは、酸素イオン伝導性の固体電解質層を少なくとも1つ含んでいればよい。例えば、図3において第2固体電解質層6以外の層1~5は固体電解質以外の材質からなる構造層(例えばアルミナからなる層)としてもよい。この場合、センサ素子本体101aが有する各電極は第2固体電解質層6に配設されるようにすればよい。例えば、図3の測定電極44は第2固体電解質層6の下面に配設すればよい。また、基準ガス導入空間43を第1固体電解質層4の代わりにスペーサ層5に設け、大気導入層48を第1固体電解質層4と第3基板層3との間に設ける代わりに第2固体電解質層6とスペーサ層5との間に設け、基準電極42を第3内部空所61よりも後方且つ第2固体電解質層6の下面に設ければよい。 In the above-described embodiment, the sensor element main body 101a is a laminated body having a plurality of solid electrolyte layers (layers 1 to 6), but the present invention is not limited to this. The sensor element main body 101a may include at least one oxygen ion conductive solid electrolyte layer. For example, in FIG. 3, the layers 1 to 5 other than the second solid electrolyte layer 6 may be a structural layer made of a material other than the solid electrolyte (for example, a layer made of alumina). In this case, each electrode of the sensor element main body 101a may be arranged on the second solid electrolyte layer 6. For example, the measurement electrode 44 of FIG. 3 may be arranged on the lower surface of the second solid electrolyte layer 6. Further, the reference gas introduction space 43 is provided in the spacer layer 5 instead of the first solid electrolyte layer 4, and the atmosphere introduction layer 48 is provided between the first solid electrolyte layer 4 and the third substrate layer 3 instead of being provided in the second solid. It may be provided between the electrolyte layer 6 and the spacer layer 5, and the reference electrode 42 may be provided behind the third internal space 61 and on the lower surface of the second solid electrolyte layer 6.
 上述した実施形態では、ポンプ電流Ip1に基づいて起電力V0の目標値を設定し、起電力V0が目標値となるようにポンプ電圧Vp0をフィードバック制御したが、他の制御を行ってもよい。例えば、ポンプ電流Ip1が目標値Ip1*となるように、ポンプ電流Ip1に基づいてポンプ電圧Vp0をフィードバック制御してもよい。すなわち、主ポンプ制御用酸素分圧検出センサセル80からの起電力V0の取得や起電力V0の目標値の設定を省略して、ポンプ電流Ip1に基づいて直接的にポンプ電圧Vp0を制御(ひいてはポンプ電流Ip0を制御)してもよい。 In the above-described embodiment, the target value of the electromotive force V0 is set based on the pump current Ip1, and the pump voltage Vp0 is feedback-controlled so that the electromotive force V0 becomes the target value, but other control may be performed. For example, the pump voltage Vp0 may be feedback-controlled based on the pump current Ip1 so that the pump current Ip1 becomes the target value Ip1 *. That is, the pump voltage Vp0 is directly controlled based on the pump current Ip1 by omitting the acquisition of the electromotive force V0 from the main pump control oxygen partial pressure detection sensor cell 80 and the setting of the target value of the electromotive force V0 (and thus the pump). The current Ip0 may be controlled).
 上述した実施形態では、NOx濃度を検出するガスセンサ100を例示したが、酸素濃度を検出するガスセンサやアンモニア濃度を検出するガスセンサに本発明を適用してもよい。 In the above-described embodiment, the gas sensor 100 that detects the NOx concentration is illustrated, but the present invention may be applied to a gas sensor that detects the oxygen concentration or a gas sensor that detects the ammonia concentration.
 上述した実施形態では、未焼成体190を一体成形したが、これに限られない。例えば、図10Cに示した未焼成体190を複数の部材に分割した形状の複数の部材をそれぞれ成形してもよい。この場合、得られた複数の部材を接合してキャップ状の未焼成体190を形成すると共に未焼成体190の内側にセンサ素子本体101aが挿入された状態になるように、複数の部材とセンサ素子本体101aとの配置を行ってもよい。例えば、未焼成体190を上半分と下半分とに2分割した形状の部材をそれぞれ成形しておき、この2つの部材がセンサ素子本体101aを上下から挟むように配置しつつ2つの部材間を接着するようにして、この2つの部材とセンサ素子本体101aとの配置を行ってもよい。このように未焼成体190を複数の部材に分割して成形する場合、目封止部94も保護層90の一部として未焼成体190に含めて成形してもよい。図19は、未焼成体190を2つに分割した形状の未焼成体190a,190bを用いて、未焼成体190a,190bがセンサ素子本体101aを上下から挟むように配置する様子を示している。この図19では、図示するように、未焼成体190a,190bはそれぞれ上述した実施形態の目封止部94も含むような形状に成形されている。この場合、焼成工程後に行う目封止工程は省略できる。 In the above-described embodiment, the unfired body 190 is integrally molded, but the present invention is not limited to this. For example, a plurality of members having a shape obtained by dividing the unfired body 190 shown in FIG. 10C into a plurality of members may be formed. In this case, the plurality of members and the sensor are joined so that the obtained plurality of members are joined to form a cap-shaped unfired body 190 and the sensor element main body 101a is inserted inside the unfired body 190. It may be arranged with the element body 101a. For example, a member having a shape obtained by dividing the unfired body 190 into an upper half and a lower half is formed, and the two members are arranged so as to sandwich the sensor element main body 101a from above and below, and between the two members. The two members and the sensor element main body 101a may be arranged so as to be adhered to each other. When the unfired body 190 is divided into a plurality of members and molded in this way, the sealing portion 94 may also be included in the unfired body 190 as a part of the protective layer 90 for molding. FIG. 19 shows how the unfired bodies 190a and 190b, which are formed by dividing the unfired body 190 into two, are arranged so that the unfired bodies 190a and 190b sandwich the sensor element main body 101a from above and below. .. In FIG. 19, as shown in the drawing, the unfired bodies 190a and 190b are molded into a shape including the eye-sealing portion 94 of the above-described embodiment, respectively. In this case, the sealing step performed after the firing step can be omitted.
 ここで、上記した実施形態では、未焼成体190を一体成形により形成したため、未焼成体190及びそれを焼成して得られる保護層90は、内側(内周面)には底部90b側を向く面(センサ素子101の前方を向く面)が存在しない形状になっている。キャップ状の未焼成体190を一体成形する場合には、図10を用いて説明したように成形後に内型153を底部90bとは反対方向に引き抜く必要があり、未焼成体190の内側に底部90b側を向く面が存在すると、内型153を引き抜くことができないためである。上述した実施形態で目封止部94を後から形成しているのもこの理由による。すなわち、例えば図3に示すように目封止部94の前面は保護層90の内側に存在し底部90b側を向く面であるから、キャップ状の保護層90と目封止部94とを一体成形することはできない。これに対して、上記のように未焼成体190を複数の部材に分割して成形する場合には、未焼成体190及び保護層90が内側に底部90b側を向く面が存在するような形状とすることもできる。例えば、図19に示したように、保護層90が目封止部94と同じ形状の部分を含むような形状の未焼成体190(未焼成体190a及び未焼成体190b)を成形できる。同様に、上述した実施形態では、上側柱状部91a,下側柱状部91b,左側柱状部91c,及び右側柱状部91dの各々の前端が本体部90aの底部90bと接続されていたが、未焼成体190を一体成形しない場合は、これらの柱状部91a~91dの1以上について、前端と底部90bとが接続されていない形状の未焼成体190を形成することもできる。例えば、保護層90の内側に上側柱状部91aの前端面が存在して上側柱状部91aの前端面と底部90bとの間に空間が存在するような形状を有する未焼成体190及び保護層90を形成することもできる。あるいは、柱状部91a~91dの1以上について、長手方向がセンサ素子本体101aの長手方向すなわち前後方向に沿っていない(例えば左右方向に沿っている)形状とすることもできる。 Here, in the above-described embodiment, since the unfired body 190 is integrally formed, the unfired body 190 and the protective layer 90 obtained by firing the unfired body 190 face the bottom 90b side inward (inner peripheral surface). The shape is such that there is no surface (the surface facing the front of the sensor element 101). When integrally molding the cap-shaped unfired body 190, it is necessary to pull out the inner mold 153 in the direction opposite to the bottom 90b after molding as described with reference to FIG. 10, and the bottom portion is inside the unfired body 190. This is because the inner mold 153 cannot be pulled out if there is a surface facing the 90b side. It is also for this reason that the eye-sealing portion 94 is formed later in the above-described embodiment. That is, for example, as shown in FIG. 3, the front surface of the eye-sealing portion 94 exists inside the protective layer 90 and faces the bottom 90b side. Therefore, the cap-shaped protective layer 90 and the eye-sealing portion 94 are integrated. It cannot be molded. On the other hand, when the unfired body 190 is divided into a plurality of members and molded as described above, the shape is such that the unfired body 190 and the protective layer 90 have a surface facing the bottom 90b side inward. It can also be. For example, as shown in FIG. 19, an unfired body 190 (unfired body 190a and unfired body 190b) having a shape such that the protective layer 90 includes a portion having the same shape as the sealing portion 94 can be formed. Similarly, in the above-described embodiment, the front ends of the upper columnar portion 91a, the lower columnar portion 91b, the left columnar portion 91c, and the right columnar portion 91d are connected to the bottom portion 90b of the main body portion 90a, but are not fired. When the body 190 is not integrally molded, an unfired body 190 having a shape in which the front end and the bottom 90b are not connected can be formed for one or more of these columnar portions 91a to 91d. For example, the unfired body 190 and the protective layer 90 have a shape such that the front end surface of the upper columnar portion 91a exists inside the protective layer 90 and a space exists between the front end surface of the upper columnar portion 91a and the bottom portion 90b. Can also be formed. Alternatively, one or more of the columnar portions 91a to 91d may have a shape in which the longitudinal direction does not follow the longitudinal direction of the sensor element main body 101a, that is, the front-rear direction (for example, along the left-right direction).
 上述した実施形態では、未焼成体190をモールドキャスト法で作製したが、これに限られない。例えば、粉末圧粉法を用いて未焼成体190を作製してもよい。粉末圧粉法では、原料粉末を金型で挟んで押圧することにより、粉末成形体として未焼成体190を成形する。図19のように未焼成体190を分割した形状の未焼成体190a,190bについても、粉末圧粉法を用いて成形してもよい。このように原料粉末を押圧して成形する方法は、例えば特開2018-146470号公報に記載されている。 In the above-described embodiment, the unfired body 190 was produced by the mold casting method, but the present invention is not limited to this. For example, the unfired body 190 may be produced by using the powder compaction method. In the powder compaction method, the unfired body 190 is molded as a powder molded body by sandwiching the raw material powder with a mold and pressing it. The unfired bodies 190a and 190b in which the unfired body 190 is divided as shown in FIG. 19 may also be molded by using the powder compaction method. A method of pressing and molding the raw material powder in this way is described in, for example, Japanese Patent Application Laid-Open No. 2018-146470.
 上述した実施形態では、準備工程で焼成後のセンサ素子本体101a及び未焼成体190を用意したが、準備工程を省略し、配置工程では、別途用意した焼成後のセンサ素子本体101a及び未焼成体190を用いてもよい。また、準備工程では焼成後のセンサ素子本体101aのみを用意し、配置工程において、未焼成体190の原料ペーストをセンサ素子本体101aの所定の位置に塗布することなどによって、未焼成体190の用意と配置を同時に行ってもよい。 In the above-described embodiment, the fired sensor element main body 101a and the unfired body 190 are prepared in the preparatory step, but the preparatory step is omitted, and the separately prepared sensor element main body 101a and the unfired body 190 are prepared in the arrangement step. 190 may be used. Further, in the preparation step, only the sensor element main body 101a after firing is prepared, and in the arrangement step, the raw material paste of the unfired body 190 is applied to a predetermined position of the sensor element main body 101a to prepare the unfired body 190. And the arrangement may be performed at the same time.
 上述した実施形態では、準備工程で素子本体材として焼成後のセンサ素子本体101aを用意したが、これに限らず焼成前のセンサ素子本体101aを用意してもよい。この場合、焼成工程においてセンサ素子本体101aと未焼成体190とを共に焼成すればよい。なお、保護層材の焼成収縮率Cb[%]が大きい場合などには、素子本体材としての焼成前のセンサ素子本体101aの焼成収縮率Ca[%]を大きくして、焼成収縮率Ca[%]とCb[%]との差が小さくなるようにしてもよい。例えば、セラミックスグリーンシートに含まれるセラミック粒子の粒子径や、セラミックスグリーンシートに含まれるその他の材料の種類や配合比率、焼成工程での焼成条件などを調整して、焼成収縮率Ca[%]を大きくしてもよい。 In the above-described embodiment, the sensor element main body 101a after firing is prepared as the element main body material in the preparation step, but the present invention is not limited to this, and the sensor element main body 101a before firing may be prepared. In this case, both the sensor element main body 101a and the unfired body 190 may be fired in the firing step. When the firing shrinkage rate Cb [%] of the protective layer material is large, the firing shrinkage rate Ca [%] of the sensor element body 101a before firing as the element body material is increased to increase the firing shrinkage rate Ca [%]. The difference between%] and Cb [%] may be small. For example, the firing shrinkage rate Ca [%] can be adjusted by adjusting the particle size of the ceramic particles contained in the ceramic green sheet, the type and blending ratio of other materials contained in the ceramic green sheet, and the firing conditions in the firing process. It may be increased.
 以下には、本発明のセンサ素子101を具体的に検討した例について、実施例として説明する。ここでは、実験例1~18の全てが本発明の実施例に相当する。なお、本発明は、以下の実施例に何ら限定されることはなく、本発明の技術的範囲に属する限り種々の態様で実施し得ることはいうまでもない。 Hereinafter, an example in which the sensor element 101 of the present invention is specifically examined will be described as an example. Here, all of Experimental Examples 1 to 18 correspond to the examples of the present invention. It goes without saying that the present invention is not limited to the following examples, and can be carried out in various embodiments as long as it belongs to the technical scope of the present invention.
[センサ素子101の構成]
 実験例1~18では、上述した実施形態のセンサ素子101について検討した。実験例1~18のセンサ素子101は、いずれも、センサ素子本体101aの有する固体電解質層はジルコニアを主成分とするものとし、保護層90はアルミナを主成分とするものとした。センサ素子本体101aについては、厚み(上下方向の長さ)を1.4mm、幅(左右方向の長さ)を4.1mm、先端部101bの長さを11mmとした。緩衝層84はアルミナを主成分とするものとし、上側緩衝層84a及び下側緩衝層84bの厚みはそれぞれ20μmとした。また、温度T1は700℃とし、温度T2は1100~1200℃とした。この場合、線熱膨張係数αa’は11ppm/Kであり、線熱膨張係数αbは8ppm/Kである。また、線収縮率Sa’は0.44~0.55%であり、線収縮率Sbは、0.32~0.40%である。またSa≒Sa’を満たす。つまり、αa’>αbの関係及びSa(≒Sa’)>Sbの関係を満たす。なお、保護層90を、コージェライトを主成分とするものに変えた場合、線熱膨張係数αbは2ppm/Kであり、線収縮率Sbは0.08~0.10%である。また、保護層90を、ムライトを主成分とするものとした場合、線熱膨張係数αbは7ppm/Kであり、線収縮率Sbは0.28~0.35%である。これらの場合も、αa’>αbの関係及びSa(≒Sa’)>Sbの関係を満たす。
[Structure of sensor element 101]
In Experimental Examples 1 to 18, the sensor element 101 of the above-described embodiment was examined. In each of the sensor elements 101 of Experimental Examples 1 to 18, the solid electrolyte layer contained in the sensor element main body 101a is mainly composed of zirconia, and the protective layer 90 is mainly composed of alumina. Regarding the sensor element main body 101a, the thickness (length in the vertical direction) was 1.4 mm, the width (length in the horizontal direction) was 4.1 mm, and the length of the tip portion 101b was 11 mm. The buffer layer 84 is mainly composed of alumina, and the thickness of the upper buffer layer 84a and the lower buffer layer 84b is 20 μm, respectively. The temperature T1 was 700 ° C., and the temperature T2 was 1100-1200 ° C. In this case, the coefficient of linear thermal expansion αa'is 11 ppm / K, and the coefficient of linear thermal expansion αb is 8 ppm / K. The linear shrinkage rate Sa'is 0.44 to 0.55%, and the linear shrinkage rate Sb is 0.32 to 0.40%. Also, Sa ≈ Sa'is satisfied. That is, the relationship of αa'> αb and the relationship of Sa (≈Sa')> Sb are satisfied. When the protective layer 90 is changed to one containing cordierite as a main component, the linear thermal expansion coefficient αb is 2 ppm / K, and the linear contraction coefficient Sb is 0.08 to 0.10%. When the protective layer 90 contains mullite as a main component, the linear thermal expansion coefficient αb is 7 ppm / K, and the linear contraction coefficient Sb is 0.28 to 0.35%. In these cases as well, the relationship of αa'> αb and the relationship of Sa (≈Sa')> Sb are satisfied.
 実験例1~18のセンサ素子101では、表1に示すように、各側部柱状部の高さH,長さL,幅W、及び保護層90の側部90cの厚さtを調整した。表1のうち柱状部割合は、本体部90aの側部90cの内側の面積のうち側部柱状部が設けられた範囲の面積の割合、つまり、図8を用いて説明した(2Ba+2Bb+Bc+Bd)×100/(Aa+Ab+Ac+Ad)の値である。この値は、センサ素子本体101aの先端部101bの側面のうち側部柱状部と密着又は結合している部分の割合と同じである。 In the sensor elements 101 of Experimental Examples 1 to 18, as shown in Table 1, the height H, length L, width W of each side columnar portion, and the thickness t of the side portion 90c of the protective layer 90 were adjusted. .. The columnar portion ratio in Table 1 is the ratio of the area of the area inside the side portion 90c of the main body portion 90a to which the side columnar portion is provided, that is, (2Ba + 2Bb + Bc + Bd) × 100. / (Aa + Ab + Ac + Ad). This value is the same as the ratio of the portion of the side surface of the tip portion 101b of the sensor element main body 101a that is in close contact with or coupled to the side columnar portion.
[表面の残留圧縮応力]
 実験例1~18の各センサ素子101について、T1=700℃での残留圧縮応力を調べた。調査箇所は、保護層90の表面のうち、センサ素子101の使用時に最も高温となる部位(外側ポンプ電極23の直上の部分であり、ここではセンサ素子101の先端から4mmの位置)とした。結果を表1に示す。
[Residual compressive stress on the surface]
The residual compressive stress at T1 = 700 ° C. was examined for each of the sensor elements 101 of Experimental Examples 1 to 18. The surveyed part was the part of the surface of the protective layer 90 that became the hottest when the sensor element 101 was used (the part directly above the outer pump electrode 23, and here, the position 4 mm from the tip of the sensor element 101). The results are shown in Table 1.
[耐被水量]
 実験例1~18の各センサ素子101について、保護層90の表面のうち、センサ素子101の使用時に最も高温となる部位(外側ポンプ電極23の直上の部分であり、ここではセンサ素子101の先端から4mmの位置)の温度が700℃になるように、ヒータ72の出力を調整した状態での耐被水量を調べた。保護層90の耐被水量は、センサ素子101の先端から4mmの位置へ水滴を滴下し、滴下するたびに1回の滴下量を増やしていき、保護層90にクラックが生じたときの滴下量とした。結果を表1に示す。
[Water resistance]
For each of the sensor elements 101 of Experimental Examples 1 to 18, the portion of the surface of the protective layer 90 that becomes the hottest when the sensor element 101 is used (the portion directly above the outer pump electrode 23, and here, the tip of the sensor element 101). The amount of water received was examined in a state where the output of the heater 72 was adjusted so that the temperature at (4 mm position) was 700 ° C. The water resistance of the protective layer 90 is such that water droplets are dropped to a position 4 mm from the tip of the sensor element 101, and the amount of each drop is increased each time, and the amount of drops when a crack occurs in the protective layer 90. And said. The results are shown in Table 1.
Figure JPOXMLDOC01-appb-T000001
Figure JPOXMLDOC01-appb-T000001
 図20は、保護層90の表面に存在する残留圧縮応力と保護層90の耐被水量との関係を示すグラフである。図20に示すように、残留圧縮応力が大きいほど、耐被水量が増加した。このことから、本発明のように、保護層90の表面に残留圧縮応力を存在させることで、保護層90の耐被水性を高められることがわかった。また、残留圧縮応力が15MPa以上の場合に、耐被水性がより向上することがわかった。センサ素子本体101aが側部柱状部と密着又は結合している面積が多いほど、あるいは、柱状部割合が大きいほど、残留圧縮応力が大きくなり、耐被水性が向上することがわかった。また、側部柱状部の幅Wが大きいほど、側部柱状部の高さHが低いほど、本体部90aの側部90cの厚さtが薄いほど、残留圧縮応力が大きくなり、耐被水性が向上することがわかった。 FIG. 20 is a graph showing the relationship between the residual compressive stress existing on the surface of the protective layer 90 and the water resistance of the protective layer 90. As shown in FIG. 20, the larger the residual compressive stress, the higher the water resistance. From this, it was found that the water resistance of the protective layer 90 can be enhanced by the presence of residual compressive stress on the surface of the protective layer 90 as in the present invention. It was also found that the water resistance was further improved when the residual compressive stress was 15 MPa or more. It was found that the larger the area where the sensor element main body 101a is in close contact with or bonded to the side columnar portion, or the larger the proportion of the columnar portion, the larger the residual compressive stress and the better the water resistance. Further, the larger the width W of the side columnar portion, the lower the height H of the side columnar portion, and the thinner the thickness t of the side portion 90c of the main body portion 90a, the greater the residual compressive stress and the water resistance. Was found to improve.
 本出願は、2019年11月22日に出願された日本国特許出願第2019-211701号を優先権主張の基礎としており、引用によりその内容の全てが本明細書に含まれる。 This application is based on Japanese Patent Application No. 2019-211701 filed on November 22, 2019, and all of its contents are included in the present specification by citation.
 本発明は、自動車の排気ガスなどの被測定ガスにおけるNOxなどの特定ガスの濃度を検出するためのセンサ素子を備えたガスセンサの製造産業に利用可能である。 The present invention can be used in the manufacturing industry of a gas sensor provided with a sensor element for detecting the concentration of a specific gas such as NOx in a gas to be measured such as the exhaust gas of an automobile.
 1 第1基板層、2 第2基板層、3 第3基板層、4 第1固体電解質層、5 スペーサ層、6 第2固体電解質層、9 被測定ガス流通部、10 ガス導入口、11 第1拡散律速部、12 緩衝空間、13 第2拡散律速部、20 第1内部空所、21 主ポンプセル、22 内側ポンプ電極、22a 天井電極部、22b 底部電極部、23 外側ポンプ電極、25 可変電源、30 第3拡散律速部、40 第2内部空所、41 測定用ポンプセル、42 基準電極、43 基準ガス導入空間、44 測定電極、45 第4拡散律速部、46 可変電源、48 大気導入層、50 補助ポンプセル、51 補助ポンプ電極、51a 天井電極部、51b 底部電極部、52 可変電源、60 第4拡散律速部、61 第3内部空所、70 ヒータ部、71 ヒータコネクタ電極、72 ヒータ、73 スルーホール、74 ヒータ絶縁層、75 圧力放散孔、80 主ポンプ制御用酸素分圧検出センサセル、81 補助ポンプ制御用酸素分圧検出センサセル、82 測定用ポンプ制御用酸素分圧検出センサセル、83 センサセル、84 緩衝層、84a 上側緩衝層、84b 下側緩衝層、90 保護層、90a 本体部、90b 底部、90c 側部、90d 底部接続部、90e 側部接続部、91 柱状部、91a 上側柱状部、91b 下側柱状部、91c 左側柱状部、91d 右側柱状部、91e 前側柱状部、92a 上側側部、92b 下側側部、92c 左側側部、92d 右側側部、92e 前側段差部、93a~93d 後端部、94 目封止部、95 空間、95a 上側空間、95b 下側空間、95c 左側空間、95d 右側空間、95e 前側空間、100 ガスセンサ、101 センサ素子、101a センサ素子本体、101b 先端部、102a~102d 領域、110 保護カバー、111 内側保護カバー、112 外側保護カバー、120 素子封止体、122 主体金具、124 サポーター、126 圧粉体、130 ナット、140 配管、141 取付用部材、150 成形型、151 第1外型、151a 切り欠き、152 第2外型、152a 切り欠き、153 内型、153a 挿入部、190 未焼成体。 1 1st substrate layer, 2 2nd substrate layer, 3 3rd substrate layer, 4 1st solid electrolyte layer, 5 spacer layer, 6 2nd solid electrolyte layer, 9 measurement gas flow section, 10 gas inlet, 11th 1 diffusion rate control part, 12 buffer space, 13 second diffusion rate control part, 20 first internal space, 21 main pump cell, 22 inner pump electrode, 22a ceiling electrode part, 22b bottom electrode part, 23 outer pump electrode, 25 variable power supply , 30 3rd diffusion rate control section, 40 2nd internal space, 41 measurement pump cell, 42 reference electrode, 43 reference gas introduction space, 44 measurement electrode, 45 4th diffusion rate control section, 46 variable power supply, 48 atmosphere introduction layer, 50 auxiliary pump cell, 51 auxiliary pump electrode, 51a ceiling electrode part, 51b bottom electrode part, 52 variable power supply, 60 4th diffusion rate control part, 61 3rd internal space, 70 heater part, 71 heater connector electrode, 72 heater, 73 Through hole, 74 heater insulation layer, 75 pressure dissipation hole, 80 main pump control oxygen partial pressure detection sensor cell, 81 auxiliary pump control oxygen partial pressure detection sensor cell, 82 measurement pump control oxygen partial pressure detection sensor cell, 83 sensor cell, 84 buffer layer, 84a upper buffer layer, 84b lower buffer layer, 90 protective layer, 90a main body, 90b bottom, 90c side, 90d bottom connection, 90e side connection, 91 columnar, 91a upper column, 91b lower columnar part, 91c left side columnar part, 91d right side columnar part, 91e front side columnar part, 92a upper side part, 92b lower side part, 92c left side part, 92d right side part, 92e front side stepped part, 93a to 93d Rear end, 94th seal, 95 space, 95a upper space, 95b lower space, 95c left space, 95d right space, 95e front space, 100 gas sensor, 101 sensor element, 101a sensor element body, 101b tip, 102a-102d area, 110 protective cover, 111 inner protective cover, 112 outer protective cover, 120 element sealant, 122 main metal fittings, 124 supporter, 126 green compact, 130 nut, 140 piping, 141 mounting member, 150 molding Mold, 151 first outer mold, 151a notch, 152 second outer mold, 152a notch, 153 inner mold, 153a insertion part, 190 unfired body.

Claims (12)

  1.  被測定ガス中の特定ガス濃度の検出に用いられるセンサ素子であって、
     酸素イオン伝導性の固体電解質層を備え長手方向を有する素子本体と、
     前記素子本体の表面の少なくとも一部を被覆する保護層と、
     を備え、
     前記保護層は、500℃以上900℃以下の温度範囲に含まれる少なくともいずれかの温度T1[℃]において表面に残留圧縮応力が存在する、
     センサ素子。
    A sensor element used to detect a specific gas concentration in the gas to be measured.
    An element body having an oxygen ion conductive solid electrolyte layer and having a longitudinal direction,
    A protective layer that covers at least a part of the surface of the element body,
    With
    The protective layer has a residual compressive stress on its surface at at least one temperature T1 [° C.] included in the temperature range of 500 ° C. or higher and 900 ° C. or lower.
    Sensor element.
  2.  前記残留圧縮応力は、15MPa以上である、
     請求項1に記載のセンサ素子。
    The residual compressive stress is 15 MPa or more.
    The sensor element according to claim 1.
  3.  前記素子本体は、40℃~700℃での線熱膨張係数が10ppm/K以上15ppm/K以下であり、
     前記保護層は、40℃~700℃での線熱膨張係数が1ppm/K以上9ppm/K以下である、
     請求項1又は2に記載のセンサ素子。
    The element body has a linear thermal expansion coefficient of 10 ppm / K or more and 15 ppm / K or less at 40 ° C. to 700 ° C.
    The protective layer has a linear thermal expansion coefficient of 1 ppm / K or more and 9 ppm / K or less at 40 ° C. to 700 ° C.
    The sensor element according to claim 1 or 2.
  4.  前記素子本体はジルコニアを主成分とし、
     前記保護層は、アルミナ、スピネル、コージェライト及びムライトからなる群より選ばれる1以上を主成分とする、
     請求項1~3のいずれか1項に記載のセンサ素子。
    The element body is mainly composed of zirconia.
    The protective layer contains one or more selected from the group consisting of alumina, spinel, cordierite and mullite as a main component.
    The sensor element according to any one of claims 1 to 3.
  5.  前記保護層は、前記素子本体の前記長手方向の一方の端部である先端部を被覆する有底筒状の本体部と、前記本体部と前記素子本体との間に空間が形成されるように設けられた空間支持部と、を有する、
     請求項1~4のいずれか1項に記載のセンサ素子。
    The protective layer is provided so that a space is formed between the bottomed tubular main body portion that covers the tip end portion, which is one end portion in the longitudinal direction of the element main body, and the main body portion and the element main body. With a space support provided in
    The sensor element according to any one of claims 1 to 4.
  6.  前記保護層は、前記空間支持部として前記本体部の側部の内側に設けられた側部柱状部を有し、
    (a)前記側部柱状部は、前記本体部の側部の内側の2%以上35%以下の範囲に設けられているか、
    (b)前記側部柱状部は、前記素子本体のうち前記保護層の前記本体部の側部で覆われた部分の2%以上35%以下の範囲と密着又は結合しているか、
     の少なくとも一方を満たす、
     請求項5に記載のセンサ素子。
    The protective layer has a side columnar portion provided inside the side portion of the main body portion as the space support portion.
    (A) Is the side columnar portion provided in a range of 2% or more and 35% or less inside the side portion of the main body portion?
    (B) Whether the side columnar portion is in close contact with or bonded to a range of 2% or more and 35% or less of the portion of the element main body covered by the side portion of the main body portion of the protective layer.
    Meet at least one of
    The sensor element according to claim 5.
  7.  前記保護層は、前記空間支持部として前記本体部の側部の内側に設けられた側部柱状部を有し、前記側部柱状部は、前記本体部の側部からの突出長さを高さHとし、前記高さHに垂直な方向のうち長さの最も短い方向の長さを幅Wとし、前記高さH及び前記幅Wに垂直な方向の長さを長さLとしたときに、前記幅W及び前記長さLが200μm以上である、
     請求項5又は6に記載のセンサ素子。
    The protective layer has a side columnar portion provided inside the side portion of the main body portion as the space support portion, and the side columnar portion has a high protrusion length from the side portion of the main body portion. When the length in the direction perpendicular to the height H and the shortest length is the width W, and the length in the direction perpendicular to the height H and the width W is the length L. In addition, the width W and the length L are 200 μm or more.
    The sensor element according to claim 5 or 6.
  8.  前記保護層は、前記空間支持部として前記本体部の側部の内側に設けられた側部柱状部を有し、前記側部柱状部は、前記本体部の側部からの突出長さを高さHとすると、高さHが400μm以下である、
     請求項5~7のいずれか1項に記載のセンサ素子。
    The protective layer has a side columnar portion provided inside the side portion of the main body portion as the space support portion, and the side columnar portion has a high protrusion length from the side portion of the main body portion. If H, the height H is 400 μm or less.
    The sensor element according to any one of claims 5 to 7.
  9.  前記保護層は、前記本体部の側部の厚さtが600μm以下である、
     請求項5~8のいずれか1項に記載のセンサ素子。
    The protective layer has a thickness t of a side portion of the main body portion of 600 μm or less.
    The sensor element according to any one of claims 5 to 8.
  10.  請求項1~9のいずれか1項に記載のセンサ素子、
     を備えた、ガスセンサ。
    The sensor element according to any one of claims 1 to 9.
    With, gas sensor.
  11.  請求項1~9のいずれか1項に記載のセンサ素子の製造方法であって、
     焼成前又は焼成後の前記素子本体である素子本体材の表面の少なくとも一部に、焼成により前記保護層となる保護層材を配置する配置工程と、
     前記配置工程が行われた状態の前記保護層材及び前記素子本体材を温度T2[℃]で加熱し、少なくとも前記保護層材を焼成する焼成工程と、
     前記焼成工程が行われた状態の前記保護層及び前記素子本体を前記温度T2[℃]から前記温度T1[℃]以下の温度まで降温する降温工程と、
     を含み、
     前記配置工程では、前記素子本体材及び前記保護層材として、前記焼成工程と同じ工程を行った後の前記素子本体材が有する前記固体電解質層の前記温度T1[℃]~前記温度T2[℃]での線熱膨張係数αa’[ppm/K]と、前記焼成工程と同じ工程を行った後の前記保護層材の前記温度T1[℃]~前記温度T2[℃]での線熱膨張係数αb[ppm/K]とが、αa’>αbの関係を満たすものを用いる、
     センサ素子の製造方法。
    The method for manufacturing a sensor element according to any one of claims 1 to 9.
    An arrangement step of arranging the protective layer material to be the protective layer by firing on at least a part of the surface of the element main body material which is the element main body before or after firing.
    A firing step of heating the protective layer material and the element main body material in a state where the arrangement step has been performed at a temperature of T2 [° C.] and firing at least the protective layer material.
    A temperature lowering step of lowering the temperature of the protective layer and the element body in the state where the firing step has been performed from the temperature T2 [° C.] to a temperature of the temperature T1 [° C.] or lower.
    Including
    In the arrangement step, the temperature T1 [° C.] to the temperature T2 [° C.] of the solid electrolyte layer contained in the element body material after performing the same steps as the firing step as the element body material and the protective layer material. ], The coefficient of linear thermal expansion αa'[ppm / K] and the linear thermal expansion of the protective layer material at the temperature T1 [° C.] to the temperature T2 [° C.] after the same step as the firing step is performed. A coefficient αb [ppm / K] that satisfies the relationship of αa'> αb is used.
    Manufacturing method of sensor element.
  12.  前記配置工程では、前記素子本体材として、焼成後の前記素子本体を用いる、
     請求項11に記載のセンサ素子の製造方法。
    In the arrangement step, the element body after firing is used as the element body material.
    The method for manufacturing a sensor element according to claim 11.
PCT/JP2020/042047 2019-11-22 2020-11-11 Sensor element, gas sensor, and method for producing sensor element WO2021100572A1 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2021558321A JPWO2021100572A1 (en) 2019-11-22 2020-11-11

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2019-211701 2019-11-22
JP2019211701 2019-11-22

Publications (1)

Publication Number Publication Date
WO2021100572A1 true WO2021100572A1 (en) 2021-05-27

Family

ID=75981275

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2020/042047 WO2021100572A1 (en) 2019-11-22 2020-11-11 Sensor element, gas sensor, and method for producing sensor element

Country Status (2)

Country Link
JP (1) JPWO2021100572A1 (en)
WO (1) WO2021100572A1 (en)

Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS6151557A (en) * 1984-08-21 1986-03-14 Ngk Spark Plug Co Ltd Reinforced solid electrolyte function element
JP2002195980A (en) * 2000-12-27 2002-07-10 Kyocera Corp Heater-embedded oxygen sensor device
JP2016188853A (en) * 2015-03-27 2016-11-04 日本碍子株式会社 Sensor element and gas sensor

Patent Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS6151557A (en) * 1984-08-21 1986-03-14 Ngk Spark Plug Co Ltd Reinforced solid electrolyte function element
JP2002195980A (en) * 2000-12-27 2002-07-10 Kyocera Corp Heater-embedded oxygen sensor device
JP2016188853A (en) * 2015-03-27 2016-11-04 日本碍子株式会社 Sensor element and gas sensor

Also Published As

Publication number Publication date
JPWO2021100572A1 (en) 2021-05-27

Similar Documents

Publication Publication Date Title
JP7002610B2 (en) Gas sensor element
EP3029458B1 (en) Gas sensor element and gas sensor
US20170284958A1 (en) Sensor element and gas sensor
JP6810286B2 (en) Gas sensor
JP2021073477A (en) Sensor element and gas sensor
KR20010021013A (en) Solid electrolyte containing insulating ceramic grains for gas sensor, and method for fabricating same
CN110741249B (en) Sensor element and gas sensor
WO2021100572A1 (en) Sensor element, gas sensor, and method for producing sensor element
JP4730722B2 (en) Method for manufacturing laminated gas sensor element and laminated gas sensor element
JPH08114571A (en) Manufacture of oxygen sensor
WO2020174861A1 (en) Sensor element and gas sensor
JPH106324A (en) Preparation of ceramic structure
US10267762B2 (en) Sensor element and gas sensor
JP3866135B2 (en) Multilayer gas sensor element, method for manufacturing the same, and gas sensor
JP2003294697A (en) Stacked gas sensor element, its manufacturing method, and gas sensor
US20220260518A1 (en) Sensor element of gas sensor and method for forming protective layer of sensor element
JP2003294698A (en) Stacked gas sensor element, its manufacturing method, and gas sensor
JP7187679B2 (en) Gas sensor element and gas sensor
WO2021100571A1 (en) Sensor element and gas sensor
WO2021100569A1 (en) Method of manufacturing sensor element
WO2021100570A1 (en) Sensor element and gas sensor
JP7333248B2 (en) Sensor element and gas sensor
US11921078B2 (en) Sensor element and gas sensor
CN113439208B (en) Sensor element and gas sensor
JP7324127B2 (en) Sensor element and gas sensor

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 20889126

Country of ref document: EP

Kind code of ref document: A1

ENP Entry into the national phase

Ref document number: 2021558321

Country of ref document: JP

Kind code of ref document: A

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 20889126

Country of ref document: EP

Kind code of ref document: A1