WO2021100403A1 - Work system - Google Patents

Work system Download PDF

Info

Publication number
WO2021100403A1
WO2021100403A1 PCT/JP2020/039728 JP2020039728W WO2021100403A1 WO 2021100403 A1 WO2021100403 A1 WO 2021100403A1 JP 2020039728 W JP2020039728 W JP 2020039728W WO 2021100403 A1 WO2021100403 A1 WO 2021100403A1
Authority
WO
WIPO (PCT)
Prior art keywords
work
jig
actual
jigs
control unit
Prior art date
Application number
PCT/JP2020/039728
Other languages
French (fr)
Japanese (ja)
Inventor
匡隆 池尻
Original Assignee
日本電産株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 日本電産株式会社 filed Critical 日本電産株式会社
Priority to CN202080080090.3A priority Critical patent/CN114728380B/en
Priority to JP2021558236A priority patent/JPWO2021100403A1/ja
Publication of WO2021100403A1 publication Critical patent/WO2021100403A1/en

Links

Images

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B23MACHINE TOOLS; METAL-WORKING NOT OTHERWISE PROVIDED FOR
    • B23KSOLDERING OR UNSOLDERING; WELDING; CLADDING OR PLATING BY SOLDERING OR WELDING; CUTTING BY APPLYING HEAT LOCALLY, e.g. FLAME CUTTING; WORKING BY LASER BEAM
    • B23K31/00Processes relevant to this subclass, specially adapted for particular articles or purposes, but not covered by only one of the preceding main groups
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B23MACHINE TOOLS; METAL-WORKING NOT OTHERWISE PROVIDED FOR
    • B23PMETAL-WORKING NOT OTHERWISE PROVIDED FOR; COMBINED OPERATIONS; UNIVERSAL MACHINE TOOLS
    • B23P21/00Machines for assembling a multiplicity of different parts to compose units, with or without preceding or subsequent working of such parts, e.g. with programme control
    • GPHYSICS
    • G05CONTROLLING; REGULATING
    • G05BCONTROL OR REGULATING SYSTEMS IN GENERAL; FUNCTIONAL ELEMENTS OF SUCH SYSTEMS; MONITORING OR TESTING ARRANGEMENTS FOR SUCH SYSTEMS OR ELEMENTS
    • G05B19/00Programme-control systems
    • G05B19/02Programme-control systems electric
    • G05B19/418Total factory control, i.e. centrally controlling a plurality of machines, e.g. direct or distributed numerical control [DNC], flexible manufacturing systems [FMS], integrated manufacturing systems [IMS] or computer integrated manufacturing [CIM]
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02PCLIMATE CHANGE MITIGATION TECHNOLOGIES IN THE PRODUCTION OR PROCESSING OF GOODS
    • Y02P90/00Enabling technologies with a potential contribution to greenhouse gas [GHG] emissions mitigation
    • Y02P90/02Total factory control, e.g. smart factories, flexible manufacturing systems [FMS] or integrated manufacturing systems [IMS]

Definitions

  • the present invention relates to a work system.
  • Predetermined operations include, for example, various operations such as assembly, assembly, welding, length measurement, and various types of processing.
  • the expected deviation amount expected from the actual deviation amount measured for each jig in advance is stored, and the work is placed when the work is performed on the work. Correcting the work position based on the amount of misalignment associated with the jig is effective in improving work efficiency.
  • the defective jig will continue to produce a finished product with low work accuracy.
  • An object of the present invention is to provide a work system capable of both improving work efficiency and suppressing deterioration of work accuracy.
  • the work system includes a plurality of jigs, a work unit, a control unit, a storage unit, and a detection unit.
  • the working unit works on the work object placed on each of the plurality of jigs.
  • the control unit controls the work unit.
  • the storage unit stores the estimated deviation amount of the work object to be mounted from the reference mounting position for each of the plurality of jigs.
  • the detection unit detects the actual mounting position of the work object mounted on each of the plurality of jigs. When the work is performed on at least one good jig that is determined to have a good evaluation of the work among the plurality of jigs, the control unit controls the work unit based on the estimated deviation amount.
  • control unit When work is performed on a defective jig that is determined to have a poor work evaluation among a plurality of jigs, the control unit actually deviates from the reference mounting position of the actual mounting position detected by the detection unit. Control the work area based on the quantity.
  • the present invention can provide, for example, a work system capable of both improving work efficiency and suppressing a decrease in work accuracy.
  • FIG. 1 is a side view schematically showing a work system according to an embodiment.
  • FIG. 2 is a flow chart for explaining the control operation by the control unit during the learning period.
  • FIG. 3 is a flow chart for explaining the control operation by the control unit during the operation period.
  • FIG. 4 is a flow chart for explaining the cause analysis operation of the work defect by the control unit.
  • FIG. 1 is a side view schematically showing the work system 1 according to the embodiment.
  • the work system 1 is a so-called free flow type work system.
  • welding work an example of “predetermined work”
  • work the work object (hereinafter referred to as "work") W1 placed on the seven jigs 21 to 27 to complete the finished product.
  • W2 is produced.
  • the work system 1 includes a free-flow conveyor 10, seven jigs 21 to 27 (an example of "plurality of jigs"), a work position detection camera 30 (an example of a “detection unit”), and a welding torch 40 ("work unit"). An example), an inspection camera 50, a control unit 60, and a storage unit 70. In this embodiment, seven jigs 21 to 27 are used, but the number of jigs is not limited.
  • the free flow conveyor 10 continuously conveys each jig 21 to 27.
  • the jigs 21 to 27 are arranged in order on the free flow conveyor 10 at predetermined intervals.
  • Each jig 21 to 27 is attached to the free flow conveyor 10 in a positioned state.
  • the free flow conveyor 10 includes a transport path 11 and a return path 12.
  • Each jig 21 to 27 moves on the transport path 11 in a predetermined transport direction, and then moves on the return path 12 in a predetermined return direction.
  • the jigs 21 to 27 move on the return path 12 in a predetermined return direction, and then are returned to the transfer path 11.
  • the loading station ST1, the standby station ST2, the working station ST3, the inspection station ST4, and the discharging station ST5 are sequentially provided in the transport path 11 from the upstream side to the downstream side in the transport direction.
  • the transport path 11 is intermittently driven so that the jigs 21 to 27 are temporarily stopped at the stations ST1 to ST7.
  • the distance that the transport path 11 moves in one drive is the same as the distance between the stations ST1 to ST7. Therefore, the jigs 21 to 27 move from the upstream side to the downstream side along the transport direction while sequentially stopping at the stations ST1 to ST7.
  • the work W1 is mounted on each jig 21 to 27. At this time, the work W1 is positioned by being pressed against a predetermined portion of each jig 21 to 27.
  • a work position detection camera 30 is installed above the standby station ST2.
  • the work position detection camera 30 can detect the actual mounting position of the work W1 on the jigs 21 to 27 by photographing the work W1 mounted on the jigs 21 to 27.
  • the work position detection camera 30 is controlled by the control unit 60.
  • a welding torch 40 is arranged at the work station ST3. When the welding torch 40 performs welding work on the work W1, the finished product W2 is produced. In FIG. 1, a case where welding work is performed at four locations of the work W1 is shown, but the position and size of the welding work are not particularly limited.
  • the welding torch 40 is controlled by the control unit 60.
  • the welding position (an example of the working position) of the finished product W2 placed on each jig 21 to 27 is inspected.
  • An inspection camera 50 is installed above the inspection station ST4. The inspection camera 50 detects the welding position in the finished product W2 by taking an image of the finished product W2 placed on each of the jigs 21 to 27. The inspection camera 50 is controlled by the control unit 60.
  • the finished product W2 is discharged to the outside from each of the jigs 21 to 27. After the finished product W2 is discharged, the jigs 21 to 27 move to the return path 12.
  • the control unit 60 appropriately controls the work position detection camera 30, the welding torch 40, and the inspection camera 50.
  • the storage unit 70 stores information about each of the jigs 21 to 27.
  • the control unit 60 is connected to the storage unit 70.
  • control by the control unit 60 will be described.
  • FIG. 2 is a flow chart for explaining a control operation by the control unit 60 in a predetermined period (hereinafter, referred to as “learning period”) from the start of operation of the work system 1.
  • step S1 when the jigs 21 to 27 stop at the standby station ST2, the control unit 60 operates the work position detection camera 30 to actually mount the work W1 on the jigs 21 to 27. Detect the mounting position.
  • step S2 the control unit 60 acquires an actual deviation amount indicating the distance from the reference mounting position of the actual mounting position of the work W1 mounted on each jig 21 to 27.
  • the actual displacement amount is represented by the magnitude of the positional deviation of the actual mounting position on the XY plane set in the plan view of the work W1 from the reference mounting position and the vector amount indicating the direction thereof.
  • the actual deviation amount can be obtained, for example, by comparing the captured image of the work W1 with the master image of the reference mounting position.
  • step S3 the control unit 60 is at a position where welding work is performed on the work W1 mounted on the jig stopped at the standby station ST2 based on the actual deviation amount acquired in step S2 (hereinafter, "welding work position"). ".) Is decided.
  • step S4 when each jig 21 to 27 stops at the work station ST3, the control unit 60 controls each jig 21 to 27 based on the welding work position determined in step S3. Welding work is performed on the work W1 placed on the torch. In this way, during the learning period, welding work is performed on all the jigs 21 to 27 based on the actual displacement amount.
  • step S5 when the jigs 21 to 27 stop at the inspection station ST4, the control unit 60 operates the inspection camera 50 to position the finished product W2 mounted on the jigs 21 to 27 at the welding position. Is detected.
  • step S6 the control unit 60 determines whether the welding work of the jigs 21 to 27 is good or bad based on the detected welding position of the finished product W2. Specifically, the control unit 60 determines whether or not the welding position of the finished product W2 placed on the jigs 21 to 27 is within a predetermined range. When the welding position of the finished product W2 is within a predetermined range, the control unit 60 determines that the evaluation of the welding work is "good", and determines that the jig on which the finished product W2 is placed is "Ryoji". Certified as "jig".
  • control unit 60 determines that the evaluation of the welding work is “defective”, and determines that the jig on which the finished product W2 is placed is “defective”. Certified as "jig”.
  • step S7 the control unit 60 stores each jig 21 to 27 in the storage unit 70 in association with the identification number whether it is a good jig or a bad jig.
  • step S8 the control unit 60 is estimated from the reference mounting position of the work W1 mounted on each jig 21 to 27 based on the actual deviation amount of 1 or more acquired for each jig 21 to 27. Get the amount of deviation.
  • the expected deviation amount is the deviation amount that is expected to occur when the work W1 is placed on the jigs 21 to 27.
  • the expected deviation amount for example, a vector amount obtained by averaging a vector amount indicating a plurality of actual deviation amounts can be used.
  • step S9 the control unit 60 is a distance from the reference mounting position of the work W1 mounted on each jig 21 to 27 based on the actual deviation amount of 1 or more acquired for each jig 21 to 27.
  • the degree of expected variation is represented by an absolute value indicating the degree of variation in the actual amount of deviation.
  • a predetermined range determined based on the standard deviation ⁇ calculated from a plurality of actual deviation amounts, a maximum value of a plurality of actual deviation amounts, and the like can be used.
  • step S10 the control unit 60 stores the expected deviation amount and the expected variation degree in the storage unit 70 in association with the identification number for each of the jigs 21 to 27.
  • step S11 the control unit 60 determines whether or not the learning period has ended. If the learning period has not ended, the process returns to step S1. When the learning period ends, the process ends.
  • FIG. 3 is a flow chart for explaining the control operation by the control unit 60 in the period after the learning period (hereinafter, referred to as “operation period”).
  • step S20 the control unit 60 refers to the storage unit 70 and determines whether or not the jig stopped at the standby station ST2 is a good jig.
  • step S20 If it is determined in step S20 that the jig stopped at the standby station ST2 is a good jig, the process proceeds to steps S21 to S24.
  • step S21 the control unit 60 deactivates the work position detection camera 30 when the good jig stops at the standby station ST2. That is, the control unit 60 does not detect the actual mounting position of the work W1 mounted on the good jig.
  • step S22 the control unit 60 refers to the storage unit 70 and acquires the expected deviation amount of the good jig stopped at the standby station ST2.
  • step S23 the control unit 60 determines the welding work position in the work W1 placed on the good jig stopped at the standby station ST2 based on the estimated deviation amount acquired from the storage unit 70.
  • step S24 when the good jig stops at the work station ST3, the control unit 60 controls the welding torch 40 based on the welding work position determined in step S23, thereby causing the work W1 mounted on the good jig to control the welding torch 40. Welding work is performed on the surface. After that, the process proceeds to step S31.
  • step S20 determines whether the jig stopped at the standby station ST2 is a good jig (that is, it is a defective jig). If it is determined in step S20 that the jig stopped at the standby station ST2 is not a good jig (that is, it is a defective jig), the process proceeds from step S20 to steps S25 to S30.
  • step S25 when the defective jig stops at the standby station ST2, the control unit 60 detects the actual mounting position of the work W1 mounted on the defective jig by operating the work position detection camera 30. ..
  • step S26 the control unit 60 acquires an actual deviation amount indicating the distance from the reference mounting position of the actual mounting position of the work W1 mounted on the defective jig.
  • step S27 the control unit 60 determines the variation in distance from the reference mounting position of the work W1 mounted on the defective jig based on the actual deviation amount of 1 or more acquired during the operation period of the defective jig. Acquire the actual degree of variation shown.
  • the degree of actual variation is represented by an absolute value indicating the degree of variation in the amount of actual deviation.
  • the actual variation degree for example, a predetermined range determined based on the standard deviation ⁇ calculated from the plurality of actual deviation amounts, the maximum value of the plurality of actual deviation amounts, and the like can be used.
  • step S28 the control unit 60 stores the defective jig in the storage unit 70 in association with the actual variation degree acquired in step S27 in association with the identification number.
  • step S29 the control unit 60 determines the welding work position in the work W1 placed on the defective jig stopped at the standby station ST2 based on the actual deviation amount acquired in step S26.
  • step S30 when the defective jig stops at the work station ST3, the control unit 60 controls the welding torch 40 based on the welding work position determined in step S29. As a result, welding work is performed on the work W1 placed on the defective jig. After that, the process proceeds to step S31.
  • step S31 when the jigs 21 to 27 (including both good jigs and bad jigs) stop at the inspection station ST4, the control unit 60 operates the inspection camera 50 to operate the jigs 21 to 27. The welding position of the finished product W2 placed on the 27 is detected.
  • step S32 the control unit 60 determines whether the welding work of the jigs 21 to 27 is good or bad based on the detected welding position of the finished product W2. Then, as described in step S6 (see FIG. 2), the control unit 60 recertifies the good jig and the bad jig for each of the jigs 21 to 27.
  • step S33 the control unit 60 stores each jig 21 to 27 in the storage unit 70 in association with the identification number whether it is a good jig or a bad jig. After that, the process returns to step S20.
  • the control unit 60 uses the welding torch 40 based on the estimated deviation amount. Control.
  • the control unit 60 actually mounts the work position detected by the work position detection camera 30. The welding torch 40 is controlled based on the actual deviation amount from the reference mounting position of the mounting position.
  • the work efficiency can be improved by performing the welding work using the expected deviation amount without operating the work position detection camera 30. Further, with a defective jig, a decrease in work accuracy can be suppressed by operating the work position detection camera 30 and performing welding work using the actual deviation amount.
  • FIG. 4 is a flow chart for explaining an operation in which the control unit 60 analyzes the cause of the work defect when a work defect occurs in step S32 (see FIG. 3) during the operation period.
  • step S41 the control unit 60 refers to the storage unit 70 and acquires the actual variation degree of the defective jig acquired in step S27 (see FIG. 3) during the operation period.
  • step S42 the control unit 60 refers to the storage unit 70 and has a probability variation of the defective jig from the probability variation degrees of the jigs 21 to 27 acquired in step S9 (see FIG. 2) during the learning period. Select and get the degree.
  • step S43 the control unit 60 arbitrarily selects one good jig (hereinafter, referred to as "specified good jig") from at least one good jig among the jigs 21 to 27.
  • step S44 when the specified good jig stops at the standby station ST2, the control unit 60 detects the actual mounting position of the work W1 mounted on the specified good jig by operating the work position detecting camera 30. ..
  • step S45 the control unit 60 acquires an actual deviation amount indicating the distance from the reference mounting position of the actual mounting position of the work W1 mounted on the specified good jig.
  • step S46 the control unit 60 determines the variation in the distance from the reference mounting position of the work W1 mounted on the specified good jig based on the actual deviation amount of 1 or more acquired during the operation period of the specified good jig. Acquire the actual degree of variation shown.
  • step S47 the control unit 60 refers to the storage unit 70 and has a prospective variation of the specified good jig from the prospective variations of the jigs 21 to 27 acquired in step S9 (see FIG. 2) during the learning period. Select and get the degree.
  • step S48 the control unit 60 compares the actual variation degree and the expected variation degree of the defective jig, and also compares the actual variation degree and the expected variation degree of the specified good jig. Specifically, the control unit 60 determines whether or not the difference ⁇ 1 between the actual variation degree and the expected variation degree of the defective jig is larger than the first reference value TH1, and also determines the actual variation degree and the expected variation degree of the specified good jig. It is determined whether or not the degree difference ⁇ 2 is larger than the first reference value TH2.
  • step S48 when the difference ⁇ 1 for the defective jig is larger than the first reference value TH1 and the difference ⁇ 2 for the specified good jig is equal to or less than the second reference value TH2, a work defect occurs in the defective jig. .. This is because the defective jig cannot accurately position the work W1. Therefore, in step S49, the control unit 60 stops the welding work on the defective jig. In this case, the defective jig may be left attached to the free flow conveyor 10 or may be removed from the free flow conveyor 10 for repair. Even in this case, when the welding work is performed on a good jig other than the defective jig, the control unit has a misunderstanding as described in steps S21 to S24 (see FIG. 3) during the operation period. The welding torch 40 is controlled based on the amount.
  • step S48 when the difference ⁇ 1 for the defective jig is larger than the first reference value TH1 and the difference ⁇ 2 for the specified good jig is larger than the second reference value TH2, a work defect occurs in the defective jig. This is not because the defective jig itself is defective, but because another factor on the system has occurred. Therefore, in step S50, when the welding work is performed on the jigs 21 to 27, the control unit 60 is based on the actual deviation amount as described in steps S25 to S30 (see FIG. 3) during the operation period. Controls the welding torch 40.
  • step S48 when the difference ⁇ 1 for the defective jig is the first reference value TH1 or less and the difference ⁇ 2 for the specified good jig is the second reference value TH2 or less, a work defect occurs in the defective jig. To do. This is not because the defective jig itself has a defect, but because some sudden and temporary defect has occurred. Therefore, in step S51, when the welding work is performed on the jigs 21 to 27, the control unit 60 is based on the estimated deviation amount as described in steps S21 to S24 (see FIG. 3) during the operation period. Controls the welding torch 40.
  • the cause of the work defect in the defective jig is the defective jig. It is possible to more accurately analyze whether or not there is a problem with itself.
  • the work system 1 is a free flow type, but it may be a so-called index type or the like.
  • welding work is performed as an example of the work.
  • assembling parts For example, assembling parts, assembling parts, measuring the length of a predetermined place, and various kinds of processing (cutting processing and surface processing). Etc.).
  • the work system 1 is provided with the welding torch 40 as an example of the work unit, but the work unit is appropriately changed according to the work performed in the work system 1.
  • the work system 1 is provided with the work position detection camera 30 as an example of the detection unit, but the detection unit may be any one capable of detecting the position of the work W1, for example, an infrared imager. There may be.
  • the welding position (an example of the work position) is inspected by using the inspection camera 50, but the work position may be inspected visually or the like.

Landscapes

  • Engineering & Computer Science (AREA)
  • Mechanical Engineering (AREA)
  • General Engineering & Computer Science (AREA)
  • Manufacturing & Machinery (AREA)
  • Quality & Reliability (AREA)
  • Physics & Mathematics (AREA)
  • General Physics & Mathematics (AREA)
  • Automation & Control Theory (AREA)
  • Laser Beam Processing (AREA)

Abstract

[Problem] To provide a work system with which both an improvement in work efficiency and suppression of a deterioration in work accuracy can be achieved simultaneously. [Solution] A work system 1 is provided with seven jigs 21 to 27, a workpiece position detection camera 30, a welding torch 40, a control unit 60, and a storage unit 70. The storage unit 70 stores an expected amount of deviation of a placed workpiece W1 from a reference placement position, for each jig 21 to 27. The workpiece position detection camera 30 detects the actual placement position of the workpiece W1 placed in each jig 21 to 27. The control unit 60 controls the welding torch 40 on the basis of the expected amount of deviation if welding work is to be performed with a good jig from among the jigs 21 to 27. The control unit 60 controls the welding torch 40 on the basis of the actual amount of deviation of the actual placement position from the reference placement position, detected by the workpiece position detection camera 30, if welding work is to be performed with a defective jig from among the jigs 21 to 27.

Description

作業システムWork system
 本発明は、作業システムに関する。 The present invention relates to a work system.
 従来、所定の経路を連続的に巡回する複数の治具に載置された作業対象物(以下、「ワーク」という。)に対して所定の作業が行われる、いわゆるフリーフロータイプ或いはインデックスタイプなどの作業システムが知られている。所定の作業としては、例えば、組み立て、組み付け、溶接、長さの測定、各種加工など種々の作業が挙げられる。 Conventionally, a so-called free flow type or index type in which a predetermined work is performed on a work object (hereinafter referred to as "work") placed on a plurality of jigs that continuously circulate a predetermined path, etc. Work system is known. Predetermined operations include, for example, various operations such as assembly, assembly, welding, length measurement, and various types of processing.
 ワークに対する作業は、各治具におけるワークの基準載置位置に基づいて行われる。しかしながら、治具の所定部位にワークを押し当てるなどの手法によってワークが治具に対して位置決めされるため、ワークの実載置位置が基準載置位置からずれやすい。それだけでなく、実載置位置の基準載置位置からの実ずれ量は治具ごとに異なる。従って、ワークの実載置位置を治具ごとに把握する必要がある。 Work on the work is performed based on the reference placement position of the work on each jig. However, since the work is positioned with respect to the jig by a method such as pressing the work against a predetermined portion of the jig, the actual mounting position of the work tends to deviate from the reference mounting position. Not only that, the actual amount of deviation of the actual mounting position from the reference mounting position differs for each jig. Therefore, it is necessary to grasp the actual mounting position of the work for each jig.
 ここで、ワークに対して作業を行う前にカメラなどでワークの実載置位置を検出し、ワークの実ずれ量に基づいて作業位置を補正することが考えられる。しかしながら、ワークに対して作業が行われるたびにワークの実載置位置を検出すると、作業効率が低下してしまう。 Here, it is conceivable to detect the actual mounting position of the work with a camera or the like before performing the work on the work, and correct the work position based on the actual deviation amount of the work. However, if the actual mounting position of the work is detected every time the work is performed on the work, the work efficiency is lowered.
 そこで、特許文献1に記載されているように、予め治具ごとに測定した実ずれ量から見込まれる見込みずれ量を記憶しておき、ワークに対して作業を行う際に、ワークが載置された治具と関連づけられた見込みずれ量に基づいて作業位置を補正することが、作業効率の向上に有効である。 Therefore, as described in Patent Document 1, the expected deviation amount expected from the actual deviation amount measured for each jig in advance is stored, and the work is placed when the work is performed on the work. Correcting the work position based on the amount of misalignment associated with the jig is effective in improving work efficiency.
日本国公開公報:特開2004-516480号公報Japanese Publication: Japanese Patent Application Laid-Open No. 2004-516480
 しかしながら、治具自体に不具合が発生した場合に、見込みずれ量に基づいて作業位置を補正し続ければ、不具合が発生した治具では作業精度の低い完成品が生産され続けてしまう。 However, if a defect occurs in the jig itself and the work position is continuously corrected based on the estimated deviation amount, the defective jig will continue to produce a finished product with low work accuracy.
 本発明の目的は、作業効率の向上と作業精度の低下抑制とを両立可能な作業システムを提供することである。 An object of the present invention is to provide a work system capable of both improving work efficiency and suppressing deterioration of work accuracy.
 本発明の一態様に係る作業システムは、複数の治具と、作業部と、制御部と、記憶部と、検出部とを備える。作業部は、複数の治具それぞれに載置された作業対象物に対して作業を行う。制御部は、作業部を制御する。記憶部は、複数の治具それぞれについて、載置される作業対象物の基準載置位置からの見込みずれ量を記憶する。検出部は、複数の治具それぞれに載置された作業対象物の実載置位置を検出する。制御部は、複数の治具のうち作業の評価が良であると判別された少なくとも1つの良治具において作業が行われる場合、見込みずれ量に基づいて作業部を制御する。制御部は、複数の治具のうち作業の評価が不良であると判別された不良治具において作業が行われる場合、検出部により検出された実載置位置の基準載置位置からの実ずれ量に基づいて作業部を制御する。 The work system according to one aspect of the present invention includes a plurality of jigs, a work unit, a control unit, a storage unit, and a detection unit. The working unit works on the work object placed on each of the plurality of jigs. The control unit controls the work unit. The storage unit stores the estimated deviation amount of the work object to be mounted from the reference mounting position for each of the plurality of jigs. The detection unit detects the actual mounting position of the work object mounted on each of the plurality of jigs. When the work is performed on at least one good jig that is determined to have a good evaluation of the work among the plurality of jigs, the control unit controls the work unit based on the estimated deviation amount. When work is performed on a defective jig that is determined to have a poor work evaluation among a plurality of jigs, the control unit actually deviates from the reference mounting position of the actual mounting position detected by the detection unit. Control the work area based on the quantity.
 本発明は、例えば、作業効率の向上と作業精度の低下抑制とを両立可能な作業システムを提供することができる。 The present invention can provide, for example, a work system capable of both improving work efficiency and suppressing a decrease in work accuracy.
図1は、実施形態に係る作業システムを模式的に示す側面図である。FIG. 1 is a side view schematically showing a work system according to an embodiment. 図2は、学習期間における制御部による制御動作を説明するためのフロー図である。FIG. 2 is a flow chart for explaining the control operation by the control unit during the learning period. 図3は、運転期間における制御部による制御動作を説明するためのフロー図である。FIG. 3 is a flow chart for explaining the control operation by the control unit during the operation period. 図4は、制御部による作業不良の原因解析動作を説明するためのフロー図である。FIG. 4 is a flow chart for explaining the cause analysis operation of the work defect by the control unit.
 (作業システム1)
 図1は、実施形態に係る作業システム1を模式的に示す側面図である。
(Working system 1)
FIG. 1 is a side view schematically showing the work system 1 according to the embodiment.
 作業システム1は、いわゆるフリーフロータイプの作業システムである。作業システム1では、7つの治具21~27に載置される作業対象物(以下、「ワーク」という。)W1に対して溶接作業(「所定の作業」の一例)が行われて完成品W2が作製される。 The work system 1 is a so-called free flow type work system. In the work system 1, welding work (an example of "predetermined work") is performed on the work object (hereinafter referred to as "work") W1 placed on the seven jigs 21 to 27 to complete the finished product. W2 is produced.
 作業システム1は、フリーフローコンベア10、7つの治具21~27(「複数の治具」の一例)、ワーク位置検出用カメラ30(「検出部」の一例)、溶接トーチ40(「作業部」の一例)、検査用カメラ50、制御部60及び記憶部70を備える。なお、本実施形態では7つの治具21~27が用いられるが、治具の数は制限されない。 The work system 1 includes a free-flow conveyor 10, seven jigs 21 to 27 (an example of "plurality of jigs"), a work position detection camera 30 (an example of a "detection unit"), and a welding torch 40 ("work unit"). An example), an inspection camera 50, a control unit 60, and a storage unit 70. In this embodiment, seven jigs 21 to 27 are used, but the number of jigs is not limited.
 フリーフローコンベア10は、各治具21~27を連続的に搬送する。フリーフローコンベア10上において各治具21~27は、所定間隔を空けて順番に配置される。各治具21~27は、フリーフローコンベア10に位置決めされた状態で取り付けられる。 The free flow conveyor 10 continuously conveys each jig 21 to 27. The jigs 21 to 27 are arranged in order on the free flow conveyor 10 at predetermined intervals. Each jig 21 to 27 is attached to the free flow conveyor 10 in a positioned state.
 フリーフローコンベア10は、搬送路11と返送路12とを含む。各治具21~27は、搬送路11上を所定の搬送方向に向かって移動した後、返送路12上を所定の返送方向に向かって移動する。各治具21~27は、返送路12上を所定の返送方向に向かって移動した後、搬送路11上に戻される。 The free flow conveyor 10 includes a transport path 11 and a return path 12. Each jig 21 to 27 moves on the transport path 11 in a predetermined transport direction, and then moves on the return path 12 in a predetermined return direction. The jigs 21 to 27 move on the return path 12 in a predetermined return direction, and then are returned to the transfer path 11.
 搬送路11には、搬送方向の上流側から下流側に向かって、載置ステーションST1、待機ステーションST2、作業ステーションST3、検査ステーションST4及び排出ステーションST5が順番に設けられる。搬送路11は、各治具21~27が各ステーションST1~ST7で一時的に停止するよう間欠的に駆動する。搬送路11が1回の駆動で移動する距離は、各ステーションST1~ST7の間隔と同じである。従って、各治具21~27は、各ステーションST1~ST7で順次停止しながら、搬送方向に沿って上流側から下流側に移動する。 The loading station ST1, the standby station ST2, the working station ST3, the inspection station ST4, and the discharging station ST5 are sequentially provided in the transport path 11 from the upstream side to the downstream side in the transport direction. The transport path 11 is intermittently driven so that the jigs 21 to 27 are temporarily stopped at the stations ST1 to ST7. The distance that the transport path 11 moves in one drive is the same as the distance between the stations ST1 to ST7. Therefore, the jigs 21 to 27 move from the upstream side to the downstream side along the transport direction while sequentially stopping at the stations ST1 to ST7.
 載置ステーションST1では、ワークW1が各治具21~27に載置される。この際、ワークW1は、各治具21~27の所定部位に押し当てられることによって位置決めされる。 At the mounting station ST1, the work W1 is mounted on each jig 21 to 27. At this time, the work W1 is positioned by being pressed against a predetermined portion of each jig 21 to 27.
 待機ステーションST2では、ワークW1が載置された各治具21~27が作業ステーションST3に移動するまでの間、ワークW1を一時的に待機させる。待機ステーションST2の上方には、ワーク位置検出用カメラ30が設置される。ワーク位置検出用カメラ30は、各治具21~27に載置されたワークW1を撮像することによって、各治具21~27におけるワークW1の実載置位置を検出可能である。ワーク位置検出用カメラ30は、制御部60によって制御される。 At the standby station ST2, the work W1 is temporarily put on standby until each of the jigs 21 to 27 on which the work W1 is placed moves to the work station ST3. A work position detection camera 30 is installed above the standby station ST2. The work position detection camera 30 can detect the actual mounting position of the work W1 on the jigs 21 to 27 by photographing the work W1 mounted on the jigs 21 to 27. The work position detection camera 30 is controlled by the control unit 60.
 作業ステーションST3では、各治具21~27に載置されたワークW1に対して溶接作業が行われる。作業ステーションST3には、溶接トーチ40が配置される。溶接トーチ40がワークW1に対して溶接作業を行うことによって、完成品W2が作製される。図1では、ワークW1の4箇所に溶接作業が行われる場合が図示されているが、溶接作業の位置及びサイズなどは特に限られない。溶接トーチ40は、制御部60によって制御される。 At the work station ST3, welding work is performed on the work W1 placed on the jigs 21 to 27. A welding torch 40 is arranged at the work station ST3. When the welding torch 40 performs welding work on the work W1, the finished product W2 is produced. In FIG. 1, a case where welding work is performed at four locations of the work W1 is shown, but the position and size of the welding work are not particularly limited. The welding torch 40 is controlled by the control unit 60.
 検査ステーションST4では、各治具21~27に載置された完成品W2の溶接位置(作業位置の一例)の検査が行われる。検査ステーションST4の上方には、検査用カメラ50が設置される。検査用カメラ50は、各治具21~27に載置された完成品W2を撮像することによって、完成品W2における溶接位置を検出する。検査用カメラ50は、制御部60によって制御される。 At the inspection station ST4, the welding position (an example of the working position) of the finished product W2 placed on each jig 21 to 27 is inspected. An inspection camera 50 is installed above the inspection station ST4. The inspection camera 50 detects the welding position in the finished product W2 by taking an image of the finished product W2 placed on each of the jigs 21 to 27. The inspection camera 50 is controlled by the control unit 60.
 排出ステーションST5では、各治具21~27から完成品W2が外部に排出される。完成品W2が排出された後、各治具21~27は返送路12に移動する。 At the discharge station ST5, the finished product W2 is discharged to the outside from each of the jigs 21 to 27. After the finished product W2 is discharged, the jigs 21 to 27 move to the return path 12.
 制御部60は、ワーク位置検出用カメラ30、溶接トーチ40及び検査用カメラ50を適宜制御する。記憶部70は、各治具21~27についての情報を記憶する。制御部60は、記憶部70に接続される。 The control unit 60 appropriately controls the work position detection camera 30, the welding torch 40, and the inspection camera 50. The storage unit 70 stores information about each of the jigs 21 to 27. The control unit 60 is connected to the storage unit 70.
 以下、制御部60による制御について説明する。 Hereinafter, the control by the control unit 60 will be described.
 (学習期間における制御部60による制御)
 図2は、作業システム1の稼動開始から所定の期間(以下、「学習期間」という。)における制御部60による制御動作を説明するためのフロー図である。
(Control by the control unit 60 during the learning period)
FIG. 2 is a flow chart for explaining a control operation by the control unit 60 in a predetermined period (hereinafter, referred to as “learning period”) from the start of operation of the work system 1.
 ステップS1において、制御部60は、各治具21~27が待機ステーションST2に停止すると、ワーク位置検出用カメラ30を作動させることによって、各治具21~27に載置されたワークW1の実載置位置を検出する。 In step S1, when the jigs 21 to 27 stop at the standby station ST2, the control unit 60 operates the work position detection camera 30 to actually mount the work W1 on the jigs 21 to 27. Detect the mounting position.
 ステップS2において、制御部60は、各治具21~27に載置されたワークW1の実載置位置の基準載置位置からの距離を示す実ずれ量を取得する。実ずれ量は、ワークW1の平面視において設定されるXY平面上における実載置位置の基準載置位置からの位置ずれの大きさとその方向を示すベクトル量によって表される。実ずれ量は、例えば、ワークW1の撮像画像と基準載置位置のマスター画像との比較によって取得することができる。 In step S2, the control unit 60 acquires an actual deviation amount indicating the distance from the reference mounting position of the actual mounting position of the work W1 mounted on each jig 21 to 27. The actual displacement amount is represented by the magnitude of the positional deviation of the actual mounting position on the XY plane set in the plan view of the work W1 from the reference mounting position and the vector amount indicating the direction thereof. The actual deviation amount can be obtained, for example, by comparing the captured image of the work W1 with the master image of the reference mounting position.
 ステップS3において、制御部60は、ステップS2で取得した実ずれ量に基づいて、待機ステーションST2に停止した治具に載置されたワークW1において溶接作業が行われる位置(以下、「溶接作業位置」という。)を決定する。 In step S3, the control unit 60 is at a position where welding work is performed on the work W1 mounted on the jig stopped at the standby station ST2 based on the actual deviation amount acquired in step S2 (hereinafter, "welding work position"). ".) Is decided.
 ステップS4において、制御部60は、各治具21~27が作業ステーションST3に停止すると、ステップS3において決定された溶接作業位置に基づいて溶接トーチ40を制御させることによって、各治具21~27に載置されたワークW1に対して溶接作業を行う。このように、学習期間では、全ての治具21~27について実ずれ量に基づく溶接作業が行われる。 In step S4, when each jig 21 to 27 stops at the work station ST3, the control unit 60 controls each jig 21 to 27 based on the welding work position determined in step S3. Welding work is performed on the work W1 placed on the torch. In this way, during the learning period, welding work is performed on all the jigs 21 to 27 based on the actual displacement amount.
 ステップS5において、制御部60は、各治具21~27が検査ステーションST4に停止すると、検査用カメラ50を作動させることによって、各治具21~27に載置された完成品W2の溶接位置を検出する。 In step S5, when the jigs 21 to 27 stop at the inspection station ST4, the control unit 60 operates the inspection camera 50 to position the finished product W2 mounted on the jigs 21 to 27 at the welding position. Is detected.
 ステップS6において、制御部60は、検出した完成品W2の溶接位置に基づき、各治具21~27における溶接作業の良否判別を行う。具体的には、制御部60は、各治具21~27に載置された完成品W2の溶接位置が所定の範囲内に収まっているか否かを判定する。制御部60は、完成品W2の溶接位置が所定の範囲内に収まっている場合、溶接作業の評価は「良」であると判別し、当該完成品W2が載置された治具を「良治具」と認定する。制御部60は、完成品W2の溶接位置が所定の範囲内に収まっていない場合、溶接作業の評価は「不良」であると判別し、当該完成品W2が載置された治具を「不良治具」と認定する。 In step S6, the control unit 60 determines whether the welding work of the jigs 21 to 27 is good or bad based on the detected welding position of the finished product W2. Specifically, the control unit 60 determines whether or not the welding position of the finished product W2 placed on the jigs 21 to 27 is within a predetermined range. When the welding position of the finished product W2 is within a predetermined range, the control unit 60 determines that the evaluation of the welding work is "good", and determines that the jig on which the finished product W2 is placed is "Ryoji". Certified as "jig". If the welding position of the finished product W2 is not within the predetermined range, the control unit 60 determines that the evaluation of the welding work is "defective", and determines that the jig on which the finished product W2 is placed is "defective". Certified as "jig".
 ステップS7において、制御部60は、各治具21~27について、良治具であるか不良治具であるかを識別番号と関連づけて記憶部70に記憶させる。 In step S7, the control unit 60 stores each jig 21 to 27 in the storage unit 70 in association with the identification number whether it is a good jig or a bad jig.
 ステップS8において、制御部60は、各治具21~27ごとに取得した1以上の実ずれ量に基づいて、各治具21~27に載置されるワークW1の基準載置位置からの見込みずれ量を取得する。見込みずれ量とは、各治具21~27にワークW1を載置した場合に生じることが見込まれるずれ量である。見込みずれ量としては、例えば、複数の実ずれ量を示すベクトル量を平均したベクトル量を用いることができる。 In step S8, the control unit 60 is estimated from the reference mounting position of the work W1 mounted on each jig 21 to 27 based on the actual deviation amount of 1 or more acquired for each jig 21 to 27. Get the amount of deviation. The expected deviation amount is the deviation amount that is expected to occur when the work W1 is placed on the jigs 21 to 27. As the expected deviation amount, for example, a vector amount obtained by averaging a vector amount indicating a plurality of actual deviation amounts can be used.
 ステップS9において、制御部60は、各治具21~27ごとに取得した1以上の実ずれ量に基づいて、各治具21~27に載置されるワークW1の基準載置位置からの距離のばらつきを示す見込みばらつき度を取得する。見込みばらつき度は、実ずれ量のばらつきの度合いを示す絶対値によって表される。見込みばらつき度としては、例えば、複数の実ずれ量から算出した標準偏差σに基づいて定められる所定範囲や、複数の実ずれ量の最大値などを用いることができる。 In step S9, the control unit 60 is a distance from the reference mounting position of the work W1 mounted on each jig 21 to 27 based on the actual deviation amount of 1 or more acquired for each jig 21 to 27. Obtain the expected variability that indicates the variability of. The degree of expected variation is represented by an absolute value indicating the degree of variation in the actual amount of deviation. As the degree of expected variation, for example, a predetermined range determined based on the standard deviation σ calculated from a plurality of actual deviation amounts, a maximum value of a plurality of actual deviation amounts, and the like can be used.
 ステップS10において、制御部60は、各治具21~27について、見込みずれ量及び見込みばらつき度を識別番号と関連づけて記憶部70に記憶させる。 In step S10, the control unit 60 stores the expected deviation amount and the expected variation degree in the storage unit 70 in association with the identification number for each of the jigs 21 to 27.
 ステップS11において、制御部60は、学習期間が終了したか否かを判定する。学習期間が終了していない場合、処理はステップS1に戻る。学習期間が終了した場合、処理は終了する。 In step S11, the control unit 60 determines whether or not the learning period has ended. If the learning period has not ended, the process returns to step S1. When the learning period ends, the process ends.
 (運転期間における制御部60による制御)
 図3は、学習期間後の期間(以下、「運転期間」という。)における制御部60による制御動作を説明するためのフロー図である。
(Control by the control unit 60 during the operation period)
FIG. 3 is a flow chart for explaining the control operation by the control unit 60 in the period after the learning period (hereinafter, referred to as “operation period”).
 ステップS20において、制御部60は、記憶部70を参照して、待機ステーションST2に停止した治具が良治具であるか否かを判定する。 In step S20, the control unit 60 refers to the storage unit 70 and determines whether or not the jig stopped at the standby station ST2 is a good jig.
 ステップS20において、待機ステーションST2に停止した治具が良治具であると判定された場合、処理はステップS21~S24に進む。 If it is determined in step S20 that the jig stopped at the standby station ST2 is a good jig, the process proceeds to steps S21 to S24.
 ステップS21において、制御部60は、良治具が待機ステーションST2に停止すると、ワーク位置検出用カメラ30を非作動にする。すなわち、制御部60は、良治具に載置されたワークW1の実載置位置を検出しない。 In step S21, the control unit 60 deactivates the work position detection camera 30 when the good jig stops at the standby station ST2. That is, the control unit 60 does not detect the actual mounting position of the work W1 mounted on the good jig.
 ステップS22において、制御部60は、記憶部70を参照して、待機ステーションST2に停止した良治具の見込みずれ量を取得する。 In step S22, the control unit 60 refers to the storage unit 70 and acquires the expected deviation amount of the good jig stopped at the standby station ST2.
 ステップS23において、制御部60は、記憶部70から取得した見込みずれ量に基づいて、待機ステーションST2に停止した良治具に載置されたワークW1における溶接作業位置を決定する。 In step S23, the control unit 60 determines the welding work position in the work W1 placed on the good jig stopped at the standby station ST2 based on the estimated deviation amount acquired from the storage unit 70.
 ステップS24において、制御部60は、良治具が作業ステーションST3に停止すると、ステップS23において決定された溶接作業位置に基づいて溶接トーチ40を制御させることによって、良治具に載置されたワークW1に対して溶接作業を行う。その後、処理はステップS31に進む。 In step S24, when the good jig stops at the work station ST3, the control unit 60 controls the welding torch 40 based on the welding work position determined in step S23, thereby causing the work W1 mounted on the good jig to control the welding torch 40. Welding work is performed on the surface. After that, the process proceeds to step S31.
 一方、ステップS20において、待機ステーションST2に停止した治具が良治具でない(すなわち、不良治具である)と判定された場合、処理はステップS20からステップS25~S30に進む。 On the other hand, if it is determined in step S20 that the jig stopped at the standby station ST2 is not a good jig (that is, it is a defective jig), the process proceeds from step S20 to steps S25 to S30.
 ステップS25において、制御部60は、不良治具が待機ステーションST2に停止すると、ワーク位置検出用カメラ30を作動させることによって、不良治具に載置されたワークW1の実載置位置を検出する。 In step S25, when the defective jig stops at the standby station ST2, the control unit 60 detects the actual mounting position of the work W1 mounted on the defective jig by operating the work position detection camera 30. ..
 ステップS26において、制御部60は、不良治具に載置されたワークW1の実載置位置の基準載置位置からの距離を示す実ずれ量を取得する。 In step S26, the control unit 60 acquires an actual deviation amount indicating the distance from the reference mounting position of the actual mounting position of the work W1 mounted on the defective jig.
 ステップS27において、制御部60は、不良治具について運転期間中に取得した1以上の実ずれ量に基づいて、不良治具に載置されたワークW1の基準載置位置からの距離のばらつきを示す実ばらつき度を取得する。実ばらつき度は、実ずれ量のばらつきの度合いを示す絶対値によって表される。実ばらつき度としては、例えば、複数の実ずれ量から算出した標準偏差σに基づいて定められる所定範囲や、複数の実ずれ量の最大値などを用いることができる。 In step S27, the control unit 60 determines the variation in distance from the reference mounting position of the work W1 mounted on the defective jig based on the actual deviation amount of 1 or more acquired during the operation period of the defective jig. Acquire the actual degree of variation shown. The degree of actual variation is represented by an absolute value indicating the degree of variation in the amount of actual deviation. As the actual variation degree, for example, a predetermined range determined based on the standard deviation σ calculated from the plurality of actual deviation amounts, the maximum value of the plurality of actual deviation amounts, and the like can be used.
 ステップS28において、制御部60は、不良治具について、ステップS27で取得した実ばらつき度を識別番号と関連づけて記憶部70に記憶させる。 In step S28, the control unit 60 stores the defective jig in the storage unit 70 in association with the actual variation degree acquired in step S27 in association with the identification number.
 ステップS29において、制御部60は、ステップS26で取得した実ずれ量に基づいて、待機ステーションST2に停止した不良治具に載置されたワークW1における溶接作業位置を決定する。 In step S29, the control unit 60 determines the welding work position in the work W1 placed on the defective jig stopped at the standby station ST2 based on the actual deviation amount acquired in step S26.
 ステップS30において、制御部60は、不良治具が作業ステーションST3に停止すると、ステップS29において決定された溶接作業位置に基づいて溶接トーチ40を制御させる。これにより、不良治具に載置されたワークW1に対して溶接作業を行う。その後、処理はステップS31に進む。 In step S30, when the defective jig stops at the work station ST3, the control unit 60 controls the welding torch 40 based on the welding work position determined in step S29. As a result, welding work is performed on the work W1 placed on the defective jig. After that, the process proceeds to step S31.
 ステップS31において、制御部60は、各治具21~27(良治具及び不良治具の両方を含む)が検査ステーションST4に停止すると、検査用カメラ50を作動させることによって、各治具21~27に載置された完成品W2の溶接位置を検出する。 In step S31, when the jigs 21 to 27 (including both good jigs and bad jigs) stop at the inspection station ST4, the control unit 60 operates the inspection camera 50 to operate the jigs 21 to 27. The welding position of the finished product W2 placed on the 27 is detected.
 ステップS32において、制御部60は、検出した完成品W2の溶接位置に基づき、各治具21~27における溶接作業の良否判別を行う。そして、制御部60は、ステップS6(図2参照)にて説明したように、各治具21~27について、良治具と不良治具とを改めて認定する。 In step S32, the control unit 60 determines whether the welding work of the jigs 21 to 27 is good or bad based on the detected welding position of the finished product W2. Then, as described in step S6 (see FIG. 2), the control unit 60 recertifies the good jig and the bad jig for each of the jigs 21 to 27.
 ステップS33において、制御部60は、各治具21~27について、良治具であるか不良治具であるかを識別番号と関連づけて記憶部70に記憶させる。その後、処理はステップS20に戻る。 In step S33, the control unit 60 stores each jig 21 to 27 in the storage unit 70 in association with the identification number whether it is a good jig or a bad jig. After that, the process returns to step S20.
 以上のように、制御部60は、各治具21~27のうち溶接作業の評価が良であると判別された良治具において溶接作業が行われる場合、見込みずれ量に基づいて溶接トーチ40を制御する。一方、制御部60は、各治具21~27のうち溶接作業の評価が不良であると判別された不良治具において溶接作業が行われる場合、ワーク位置検出用カメラ30により検出された実載置位置の基準載置位置からの実ずれ量に基づいて溶接トーチ40を制御する。 As described above, when the welding work is performed on the good jigs 21 to 27 among the jigs 21 to 27 which are judged to have a good evaluation of the welding work, the control unit 60 uses the welding torch 40 based on the estimated deviation amount. Control. On the other hand, when the welding work is performed on the defective jig that is determined to have a poor evaluation of the welding work among the jigs 21 to 27, the control unit 60 actually mounts the work position detected by the work position detection camera 30. The welding torch 40 is controlled based on the actual deviation amount from the reference mounting position of the mounting position.
 従って、良治具ではワーク位置検出用カメラ30を作動させずに見込みずれ量を用いて溶接作業を行うことによって作業効率を向上させることができる。さらに、不良治具ではワーク位置検出用カメラ30を作動させて実ずれ量を用いて溶接作業を行うことによって作業精度の低下を抑制することができる。 Therefore, with a good jig, the work efficiency can be improved by performing the welding work using the expected deviation amount without operating the work position detection camera 30. Further, with a defective jig, a decrease in work accuracy can be suppressed by operating the work position detection camera 30 and performing welding work using the actual deviation amount.
 (制御部60による作業不良の原因解析制御)
 図4は、運転期間中のステップS32(図3参照)において作業不良が発生した場合において、制御部60が作業不良の原因を解析する動作を説明するためのフロー図である。
(Root cause analysis control of work failure by control unit 60)
FIG. 4 is a flow chart for explaining an operation in which the control unit 60 analyzes the cause of the work defect when a work defect occurs in step S32 (see FIG. 3) during the operation period.
 ステップS41において、制御部60は、記憶部70を参照して、運転期間中のステップS27(図3参照)において取得した不良治具の実ばらつき度を取得する。 In step S41, the control unit 60 refers to the storage unit 70 and acquires the actual variation degree of the defective jig acquired in step S27 (see FIG. 3) during the operation period.
 ステップS42において、制御部60は、記憶部70を参照して、学習期間中のステップS9(図2参照)において取得した各治具21~27の見込みばらつき度の中から不良治具の見込みばらつき度を選択して取得する。 In step S42, the control unit 60 refers to the storage unit 70 and has a probability variation of the defective jig from the probability variation degrees of the jigs 21 to 27 acquired in step S9 (see FIG. 2) during the learning period. Select and get the degree.
 ステップS43において、制御部60は、各治具21~27のうち少なくとも1つの良治具の中から任意に1つの良治具(以下、「特定良治具」という。)を選択する。 In step S43, the control unit 60 arbitrarily selects one good jig (hereinafter, referred to as "specified good jig") from at least one good jig among the jigs 21 to 27.
 ステップS44において、制御部60は、特定良治具が待機ステーションST2に停止すると、ワーク位置検出用カメラ30を作動させることによって、特定良治具に載置されたワークW1の実載置位置を検出する。 In step S44, when the specified good jig stops at the standby station ST2, the control unit 60 detects the actual mounting position of the work W1 mounted on the specified good jig by operating the work position detecting camera 30. ..
 ステップS45において、制御部60は、特定良治具に載置されたワークW1の実載置位置の基準載置位置からの距離を示す実ずれ量を取得する。 In step S45, the control unit 60 acquires an actual deviation amount indicating the distance from the reference mounting position of the actual mounting position of the work W1 mounted on the specified good jig.
 ステップS46において、制御部60は、特定良治具について運転期間中に取得した1以上の実ずれ量に基づいて、特定良治具に載置されたワークW1の基準載置位置からの距離のばらつきを示す実ばらつき度を取得する。 In step S46, the control unit 60 determines the variation in the distance from the reference mounting position of the work W1 mounted on the specified good jig based on the actual deviation amount of 1 or more acquired during the operation period of the specified good jig. Acquire the actual degree of variation shown.
 ステップS47において、制御部60は、記憶部70を参照して、学習期間中のステップS9(図2参照)において取得した各治具21~27の見込みばらつき度の中から特定良治具の見込みばらつき度を選択して取得する。 In step S47, the control unit 60 refers to the storage unit 70 and has a prospective variation of the specified good jig from the prospective variations of the jigs 21 to 27 acquired in step S9 (see FIG. 2) during the learning period. Select and get the degree.
 ステップS48において、制御部60は、不良治具の実ばらつき度及び見込みばらつき度を比較するとともに、特定良治具の実ばらつき度及び見込みばらつき度を比較する。具体的には、制御部60は、不良治具の実ばらつき度及び見込みばらつき度の差Δ1が第1基準値TH1より大きいか否かを判定するとともに、特定良治具の実ばらつき度及び見込みばらつき度の差Δ2が第1基準値TH2より大きいか否かを判定する。 In step S48, the control unit 60 compares the actual variation degree and the expected variation degree of the defective jig, and also compares the actual variation degree and the expected variation degree of the specified good jig. Specifically, the control unit 60 determines whether or not the difference Δ1 between the actual variation degree and the expected variation degree of the defective jig is larger than the first reference value TH1, and also determines the actual variation degree and the expected variation degree of the specified good jig. It is determined whether or not the degree difference Δ2 is larger than the first reference value TH2.
 ステップS48において、不良治具についての差Δ1が第1基準値TH1より大きく、かつ、特定良治具についての差Δ2が第2基準値TH2以下であった場合、不良治具において作業不良が発生する。これは、不良治具がワークW1を正確に位置決めできない状態であるためである。よって、ステップS49において、制御部60は、不良治具における溶接作業を中止する。この場合、不良治具は、フリーフローコンベア10に取り付けたままにしておいてもよいし、フリーフローコンベア10から取り外して修理してもよい。なお、この場合であっても、制御部は、不良治具以外の良治具において溶接作業が行われるとき、運転期間中のステップS21~S24(図3参照)にて説明したように、見込みずれ量に基づいて溶接トーチ40を制御する。 In step S48, when the difference Δ1 for the defective jig is larger than the first reference value TH1 and the difference Δ2 for the specified good jig is equal to or less than the second reference value TH2, a work defect occurs in the defective jig. .. This is because the defective jig cannot accurately position the work W1. Therefore, in step S49, the control unit 60 stops the welding work on the defective jig. In this case, the defective jig may be left attached to the free flow conveyor 10 or may be removed from the free flow conveyor 10 for repair. Even in this case, when the welding work is performed on a good jig other than the defective jig, the control unit has a misunderstanding as described in steps S21 to S24 (see FIG. 3) during the operation period. The welding torch 40 is controlled based on the amount.
 ステップS48において、不良治具についての差Δ1が第1基準値TH1より大きく、かつ、特定良治具についての差Δ2が第2基準値TH2より大きかった場合、不良治具において作業不良が発生する。これは、不良治具自体に不具合があるからではなく、システム上の別要因が生じたためである。よって、ステップS50において、制御部60は、各治具21~27において溶接作業が行われるとき、運転期間中のステップS25~S30(図3参照)にて説明したように、実ずれ量に基づいて溶接トーチ40を制御する。 In step S48, when the difference Δ1 for the defective jig is larger than the first reference value TH1 and the difference Δ2 for the specified good jig is larger than the second reference value TH2, a work defect occurs in the defective jig. This is not because the defective jig itself is defective, but because another factor on the system has occurred. Therefore, in step S50, when the welding work is performed on the jigs 21 to 27, the control unit 60 is based on the actual deviation amount as described in steps S25 to S30 (see FIG. 3) during the operation period. Controls the welding torch 40.
 ステップS48において、不良治具についての差Δ1が第1基準値TH1以下であり、かつ、特定良治具についての差Δ2が第2基準値TH2以下であった場合、不良治具において作業不良が発生する。これは、不良治具自体に不具合があるからではなく、何らかの突発的かつ一時的な不具合が発生したためである。よって、ステップS51において、制御部60は、各治具21~27において溶接作業が行われるとき、運転期間中のステップS21~S24(図3参照)にて説明したように、見込みずれ量に基づいて溶接トーチ40を制御する。 In step S48, when the difference Δ1 for the defective jig is the first reference value TH1 or less and the difference Δ2 for the specified good jig is the second reference value TH2 or less, a work defect occurs in the defective jig. To do. This is not because the defective jig itself has a defect, but because some sudden and temporary defect has occurred. Therefore, in step S51, when the welding work is performed on the jigs 21 to 27, the control unit 60 is based on the estimated deviation amount as described in steps S21 to S24 (see FIG. 3) during the operation period. Controls the welding torch 40.
 以上のように、不良治具の実ばらつき度及び見込みばらつき度の比較結果に基づいて、不良治具における作業不良発生の原因が、不良治具自体の不具合にあるのか否かを簡便に解析できる。 As described above, based on the comparison result of the actual variation degree and the expected variation degree of the defective jig, it is possible to easily analyze whether or not the cause of the work defect in the defective jig is the defect of the defective jig itself. ..
 また、特定良治具の実ばらつき度及び見込みばらつき度の比較結果を、不良治具の実ばらつき度及び見込みばらつき度の比較結果に組み合わせることによって、不良治具における作業不良発生の原因が不良治具自体の不具合にあるのか否かをより正確に解析できる。 In addition, by combining the comparison result of the actual variation and the expected variation of the specified good jig with the comparison result of the actual variation and the expected variation of the defective jig, the cause of the work defect in the defective jig is the defective jig. It is possible to more accurately analyze whether or not there is a problem with itself.
 さらに、不良治具の実ばらつき度及び見込みばらつき度の差Δ1と第1基準値TH1との比較結果と、特定良治具の実ばらつき度及び見込みばらつき度の差Δ2と第2基準値TH2との比較結果とを組み合わせることによって、作業不良発生の原因をより正確かつ具体的に解析できる。 Further, the comparison result between the difference Δ1 between the actual variation and the expected variation of the defective jig and the first reference value TH1, and the difference Δ2 between the actual variation and the expected variation of the specified good jig and the second reference value TH2. By combining with the comparison results, the cause of the occurrence of work defects can be analyzed more accurately and concretely.
 (実施形態の変形例)
 上記実施形態において、作業システム1は、フリーフロータイプであることとしたが、いわゆるインデックスタイプなどであってもよい。
(Modified example of the embodiment)
In the above embodiment, the work system 1 is a free flow type, but it may be a so-called index type or the like.
 上記実施形態において、作業システム1では、作業の一例として溶接作業が行われることとしたが、例えば、部品の組み立て、部品の組み付け、所定箇所の長さの測定、各種加工(切削加工や表面加工など)などであってもよい。 In the above embodiment, in the work system 1, welding work is performed as an example of the work. For example, assembling parts, assembling parts, measuring the length of a predetermined place, and various kinds of processing (cutting processing and surface processing). Etc.).
 上記実施形態において、作業システム1は、作業部の一例として溶接トーチ40を備えることとしたが、作業部は作業システム1において行われる作業に応じて適宜変更される。 In the above embodiment, the work system 1 is provided with the welding torch 40 as an example of the work unit, but the work unit is appropriately changed according to the work performed in the work system 1.
 上記実施形態において、作業システム1は、検出部の一例としてワーク位置検出用カメラ30を備えることとしたが、検出部はワークW1の位置を検出できるものであればよく、例えば赤外線撮像機などであってもいい。 In the above embodiment, the work system 1 is provided with the work position detection camera 30 as an example of the detection unit, but the detection unit may be any one capable of detecting the position of the work W1, for example, an infrared imager. There may be.
 上記実施形態では、作業システム1において、検査用カメラ50を用いて溶接位置(作業位置の一例)を検査することとしたが、作業位置は目視などで検査してもよい。 In the above embodiment, in the work system 1, the welding position (an example of the work position) is inspected by using the inspection camera 50, but the work position may be inspected visually or the like.
10     フリーフローコンベア
21~27  治具
30     ワーク位置検出用カメラ(「検出部」の一例)
40     溶接トーチ(「作業部」の一例)
50     検査用カメラ
60     制御部
70     記憶部
W1     作業対象物(ワーク)
W2     完成品
ST1    載置ステーション
ST2    待機ステーション
ST3    作業ステーション
ST4    検査ステーション
ST5    排出ステーション
10 Free-flow conveyor 21-27 Jig 30 Work position detection camera (an example of "detection unit")
40 Welding torch (an example of "working part")
50 Inspection camera 60 Control unit 70 Storage unit W1 Work object (work)
W2 Finished product ST1 Mounting station ST2 Standby station ST3 Work station ST4 Inspection station ST5 Discharge station

Claims (8)

  1.  複数の治具と、
     前記複数の治具それぞれに載置された作業対象物に対して作業を行う作業部と、
     前記作業部を制御する制御部と、
     前記複数の治具それぞれについて、載置される前記作業対象物の基準載置位置からの見込みずれ量を記憶する記憶部と、
     前記複数の治具それぞれにおける前記作業対象物の実載置位置を検出可能な検出部と、
    を備え、
     前記制御部は、前記複数の治具のうち前記作業の評価が良であると判別された少なくとも1つの良治具において前記作業が行われる場合、前記見込みずれ量に基づいて前記作業部を制御し、前記複数の治具のうち前記作業の評価が不良であると判別された不良治具において前記作業が行われる場合、前記検出部により検出された前記実載置位置の前記基準載置位置からの実ずれ量に基づいて前記作業部を制御する、
    作業システム。
    With multiple jigs
    A work unit that performs work on a work object placed on each of the plurality of jigs,
    A control unit that controls the work unit and
    For each of the plurality of jigs, a storage unit that stores the amount of expected deviation from the reference mounting position of the work object to be mounted, and a storage unit.
    A detection unit capable of detecting the actual mounting position of the work object on each of the plurality of jigs, and a detection unit.
    With
    When the work is performed on at least one good jig determined to have a good evaluation of the work among the plurality of jigs, the control unit controls the work unit based on the expected deviation amount. When the work is performed on the defective jig that is determined to be defective in the evaluation of the work among the plurality of jigs, the reference mounting position of the actual mounting position detected by the detection unit is used. The work unit is controlled based on the actual deviation amount of
    Working system.
  2.  前記記憶部は、前記複数の治具それぞれが前記良治具であるか前記不良治具であるかを記憶する、
    請求項1に記載の作業システム。
    The storage unit stores whether each of the plurality of jigs is the good jig or the bad jig.
    The work system according to claim 1.
  3.  前記記憶部は、前記複数の治具それぞれについて、載置される前記作業対象物の前記基準載置位置からの距離のばらつきを示す見込みばらつき度を記憶しており、
     前記制御部は、前記不良治具において前記作業が行われる場合、前記検出部により検出された前記実載置位置の前記基準載置位置からの実ずれ量に基づいて前記作業部を制御し、前記不良治具について、前記見込みばらつき度と、前記実載置位置の前記基準載置位置からの距離のばらつきを示す実ばらつき度とを比較する、
    請求項1又は2に記載の作業システム。
    The storage unit stores, for each of the plurality of jigs, the degree of expected variation indicating the variation in the distance of the work object to be mounted from the reference mounting position.
    When the work is performed on the defective jig, the control unit controls the work unit based on the actual deviation amount of the actual mounting position detected by the detection unit from the reference mounting position. For the defective jig, the expected variation degree is compared with the actual variation degree indicating the variation in the distance of the actual mounting position from the reference mounting position.
    The working system according to claim 1 or 2.
  4.  前記検出部は、前記少なくとも1つの良治具から任意に選択された1つの良治具に載置された前記作業対象物の前記実載置位置を検出し、
     前記制御部は、前記1つの良治具について、前記見込みばらつき度と、前記実載置位置の前記基準載置位置からの距離である実ばらつき度とを比較する、
    請求項3かに記載の作業システム。
    The detection unit detects the actual mounting position of the work object mounted on one good jig arbitrarily selected from the at least one good jig.
    The control unit compares the expected variation degree with the actual variation degree, which is the distance of the actual mounting position from the reference mounting position, with respect to the one good jig.
    The work system according to claim 3.
  5.  前記制御部は、前記不良治具の前記実ばらつき度と前記見込みばらつき度との差が第1基準値より大きく、かつ、前記1つの良治具の前記実ばらつき度と前記見込みばらつき度との差が第2基準値以下である場合、前記不良治具における前記作業を中止する、
    請求項4に記載の作業システム。
    In the control unit, the difference between the actual variation degree and the expected variation degree of the defective jig is larger than the first reference value, and the difference between the actual variation degree and the expected variation degree of the one good jig. When is equal to or less than the second reference value, the work in the defective jig is stopped.
    The work system according to claim 4.
  6.  前記制御部は、前記少なくとも1つの良治具において前記作業が行われるとき、前記見込みずれ量に基づいて前記作業部を制御する、
    請求項5に記載の作業システム。
    When the work is performed on the at least one good jig, the control unit controls the work unit based on the expected deviation amount.
    The work system according to claim 5.
  7.  前記制御部は、前記不良治具の前記実ばらつき度と前記見込みばらつき度との差が第1基準値より大きく、かつ、前記1つの良治具の前記実ばらつき度と前記見込みばらつき度との差が第2基準値より大きい場合であって、前記複数の治具それぞれにおいて前記作業が行われるとき、前記ずれ量に基づいて前記作業部を制御する、
    請求項4に記載の作業システム。
    In the control unit, the difference between the actual variation degree and the expected variation degree of the defective jig is larger than the first reference value, and the difference between the actual variation degree and the expected variation degree of the one good jig. Is larger than the second reference value, and when the work is performed on each of the plurality of jigs, the work unit is controlled based on the deviation amount.
    The work system according to claim 4.
  8.  前記制御部は、前記不良治具の前記実ばらつき度と前記見込みばらつき度との差が第1基準値以下であり、かつ、前記1つの良治具の前記実ばらつき度と前記見込みばらつき度との差が第2基準値以下である場合であって、前記複数の治具それぞれにおいて前記作業が行われるとき、前記見込みずれ量に基づいて前記作業部を制御する、
    請求項4に記載の作業システム。
    In the control unit, the difference between the actual variation degree of the defective jig and the expected variation degree is equal to or less than the first reference value, and the actual variation degree and the expected variation degree of the one good jig When the difference is equal to or less than the second reference value and the work is performed on each of the plurality of jigs, the work unit is controlled based on the expected deviation amount.
    The work system according to claim 4.
PCT/JP2020/039728 2019-11-20 2020-10-22 Work system WO2021100403A1 (en)

Priority Applications (2)

Application Number Priority Date Filing Date Title
CN202080080090.3A CN114728380B (en) 2019-11-20 2020-10-22 Operating system
JP2021558236A JPWO2021100403A1 (en) 2019-11-20 2020-10-22

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2019-209540 2019-11-20
JP2019209540 2019-11-20

Publications (1)

Publication Number Publication Date
WO2021100403A1 true WO2021100403A1 (en) 2021-05-27

Family

ID=75981136

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2020/039728 WO2021100403A1 (en) 2019-11-20 2020-10-22 Work system

Country Status (3)

Country Link
JP (1) JPWO2021100403A1 (en)
CN (1) CN114728380B (en)
WO (1) WO2021100403A1 (en)

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH06179129A (en) * 1992-12-15 1994-06-28 Canon Inc Work transfer method
JPH0863214A (en) * 1994-08-25 1996-03-08 Fanuc Ltd Visual tracking method
JP2001062797A (en) * 1999-08-24 2001-03-13 Olympus Optical Co Ltd Automatic endoscope forceps assembly method
JP2009214225A (en) * 2008-03-10 2009-09-24 Ihi Corp Conveying fixture, work conveying-installation part, and robot production system using this
WO2017104804A1 (en) * 2015-12-18 2017-06-22 日本精工株式会社 Production line

Family Cites Families (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP3142720B2 (en) * 1994-07-27 2001-03-07 ヤマハ発動機株式会社 Positioning method and device for mounting machine
AU2002234585A1 (en) * 2000-12-21 2002-07-01 Leica Geosystems Ag Device for measuring distances, distance measurer and stop element therefor
JP4321443B2 (en) * 2004-11-16 2009-08-26 オムロン株式会社 Specific apparatus, processing system, control method for specific apparatus, control program for specific apparatus, recording medium recording control program for specific apparatus
JP2010100421A (en) * 2008-10-27 2010-05-06 Seiko Epson Corp Workpiece detection system, picking device and picking method
JPWO2012169374A1 (en) * 2011-06-08 2015-02-23 村田機械株式会社 Work processing system
JP6396380B2 (en) * 2016-09-06 2018-09-26 ファナック株式会社 Position correction system and position correction method for tool changer

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH06179129A (en) * 1992-12-15 1994-06-28 Canon Inc Work transfer method
JPH0863214A (en) * 1994-08-25 1996-03-08 Fanuc Ltd Visual tracking method
JP2001062797A (en) * 1999-08-24 2001-03-13 Olympus Optical Co Ltd Automatic endoscope forceps assembly method
JP2009214225A (en) * 2008-03-10 2009-09-24 Ihi Corp Conveying fixture, work conveying-installation part, and robot production system using this
WO2017104804A1 (en) * 2015-12-18 2017-06-22 日本精工株式会社 Production line

Also Published As

Publication number Publication date
CN114728380A (en) 2022-07-08
CN114728380B (en) 2023-05-23
JPWO2021100403A1 (en) 2021-05-27

Similar Documents

Publication Publication Date Title
US10442051B2 (en) Processing system having function for maintaining processing accuracy
WO2015115432A1 (en) Quality management device and method for controlling quality management device
JP4700653B2 (en) Mounting line, mounting board inspection apparatus and inspection method
KR101479857B1 (en) Automated inspection system for automobile parts
US20180122623A1 (en) Wire electric discharge machine
TWI598968B (en) Die bonder and bonding methods
CN108666238B (en) Chip mounting device and method for manufacturing semiconductor device
JP2010025615A (en) Automatic inspection system of spot welding
JP4481201B2 (en) Interference detection method and apparatus
US9659357B2 (en) Device for correcting image processing data, and method for correcting image processing data
WO2021100403A1 (en) Work system
US11161239B2 (en) Work robot system and work robot
US20230152780A1 (en) Assembly system
US10003170B2 (en) Soldering system of semiconductor laser element
JP7082862B2 (en) Die bonding equipment, semiconductor equipment manufacturing method and semiconductor manufacturing system
JP6801978B2 (en) Work quality judgment method and traceability system
JP3405175B2 (en) Device and method for mounting conductive balls
JP2011018816A (en) Method for attaching electronic component
JP7080203B2 (en) Robot system, assembly method, assembly inspection method, electric hand inspection method and electric hand performance inspection jig
WO2021176384A1 (en) System for locating and treating surface defects on objects, in particular motor vehicle bodies
TWI582721B (en) Workpiece conductive feature inspecting method and workpiece conductive feature inspecting system
KR20160149507A (en) Laser processing system and laser processing method
KR101481242B1 (en) Spot welding quality inspection method
CN109865968B (en) Welding operation detection method and system
JP2009158723A (en) Inspection method for etching strip

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 20891312

Country of ref document: EP

Kind code of ref document: A1

ENP Entry into the national phase

Ref document number: 2021558236

Country of ref document: JP

Kind code of ref document: A

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 20891312

Country of ref document: EP

Kind code of ref document: A1