WO2021099726A1 - Système d'alimentation en gaz d'au moins un appareil consommateur de gaz équipant un navire - Google Patents

Système d'alimentation en gaz d'au moins un appareil consommateur de gaz équipant un navire Download PDF

Info

Publication number
WO2021099726A1
WO2021099726A1 PCT/FR2020/052094 FR2020052094W WO2021099726A1 WO 2021099726 A1 WO2021099726 A1 WO 2021099726A1 FR 2020052094 W FR2020052094 W FR 2020052094W WO 2021099726 A1 WO2021099726 A1 WO 2021099726A1
Authority
WO
WIPO (PCT)
Prior art keywords
gas
compression member
pressure
tank
heat exchanger
Prior art date
Application number
PCT/FR2020/052094
Other languages
English (en)
Inventor
Bernard Aoun
Romain NARME
Martin BUISSART
Original Assignee
Gaztransport Et Technigaz
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Gaztransport Et Technigaz filed Critical Gaztransport Et Technigaz
Priority to JP2022529339A priority Critical patent/JP2023502422A/ja
Priority to EP20823901.2A priority patent/EP4062046A1/fr
Priority to KR1020227020533A priority patent/KR20220100692A/ko
Priority to US17/778,032 priority patent/US20230032594A1/en
Priority to CN202080080954.1A priority patent/CN114729612A/zh
Publication of WO2021099726A1 publication Critical patent/WO2021099726A1/fr

Links

Classifications

    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F02COMBUSTION ENGINES; HOT-GAS OR COMBUSTION-PRODUCT ENGINE PLANTS
    • F02MSUPPLYING COMBUSTION ENGINES IN GENERAL WITH COMBUSTIBLE MIXTURES OR CONSTITUENTS THEREOF
    • F02M21/00Apparatus for supplying engines with non-liquid fuels, e.g. gaseous fuels stored in liquid form
    • F02M21/02Apparatus for supplying engines with non-liquid fuels, e.g. gaseous fuels stored in liquid form for gaseous fuels
    • F02M21/0218Details on the gaseous fuel supply system, e.g. tanks, valves, pipes, pumps, rails, injectors or mixers
    • F02M21/0221Fuel storage reservoirs, e.g. cryogenic tanks
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F02COMBUSTION ENGINES; HOT-GAS OR COMBUSTION-PRODUCT ENGINE PLANTS
    • F02MSUPPLYING COMBUSTION ENGINES IN GENERAL WITH COMBUSTIBLE MIXTURES OR CONSTITUENTS THEREOF
    • F02M21/00Apparatus for supplying engines with non-liquid fuels, e.g. gaseous fuels stored in liquid form
    • F02M21/02Apparatus for supplying engines with non-liquid fuels, e.g. gaseous fuels stored in liquid form for gaseous fuels
    • F02M21/0218Details on the gaseous fuel supply system, e.g. tanks, valves, pipes, pumps, rails, injectors or mixers
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F02COMBUSTION ENGINES; HOT-GAS OR COMBUSTION-PRODUCT ENGINE PLANTS
    • F02MSUPPLYING COMBUSTION ENGINES IN GENERAL WITH COMBUSTIBLE MIXTURES OR CONSTITUENTS THEREOF
    • F02M21/00Apparatus for supplying engines with non-liquid fuels, e.g. gaseous fuels stored in liquid form
    • F02M21/02Apparatus for supplying engines with non-liquid fuels, e.g. gaseous fuels stored in liquid form for gaseous fuels
    • F02M21/0218Details on the gaseous fuel supply system, e.g. tanks, valves, pipes, pumps, rails, injectors or mixers
    • F02M21/023Valves; Pressure or flow regulators in the fuel supply or return system
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B63SHIPS OR OTHER WATERBORNE VESSELS; RELATED EQUIPMENT
    • B63BSHIPS OR OTHER WATERBORNE VESSELS; EQUIPMENT FOR SHIPPING 
    • B63B25/00Load-accommodating arrangements, e.g. stowing, trimming; Vessels characterised thereby
    • B63B25/02Load-accommodating arrangements, e.g. stowing, trimming; Vessels characterised thereby for bulk goods
    • B63B25/08Load-accommodating arrangements, e.g. stowing, trimming; Vessels characterised thereby for bulk goods fluid
    • B63B25/12Load-accommodating arrangements, e.g. stowing, trimming; Vessels characterised thereby for bulk goods fluid closed
    • B63B25/14Load-accommodating arrangements, e.g. stowing, trimming; Vessels characterised thereby for bulk goods fluid closed pressurised
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B63SHIPS OR OTHER WATERBORNE VESSELS; RELATED EQUIPMENT
    • B63BSHIPS OR OTHER WATERBORNE VESSELS; EQUIPMENT FOR SHIPPING 
    • B63B27/00Arrangement of ship-based loading or unloading equipment for cargo or passengers
    • B63B27/24Arrangement of ship-based loading or unloading equipment for cargo or passengers of pipe-lines
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F02COMBUSTION ENGINES; HOT-GAS OR COMBUSTION-PRODUCT ENGINE PLANTS
    • F02MSUPPLYING COMBUSTION ENGINES IN GENERAL WITH COMBUSTIBLE MIXTURES OR CONSTITUENTS THEREOF
    • F02M21/00Apparatus for supplying engines with non-liquid fuels, e.g. gaseous fuels stored in liquid form
    • F02M21/02Apparatus for supplying engines with non-liquid fuels, e.g. gaseous fuels stored in liquid form for gaseous fuels
    • F02M21/0218Details on the gaseous fuel supply system, e.g. tanks, valves, pipes, pumps, rails, injectors or mixers
    • F02M21/0287Details on the gaseous fuel supply system, e.g. tanks, valves, pipes, pumps, rails, injectors or mixers characterised by the transition from liquid to gaseous phase ; Injection in liquid phase; Cooling and low temperature storage
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F02COMBUSTION ENGINES; HOT-GAS OR COMBUSTION-PRODUCT ENGINE PLANTS
    • F02MSUPPLYING COMBUSTION ENGINES IN GENERAL WITH COMBUSTIBLE MIXTURES OR CONSTITUENTS THEREOF
    • F02M21/00Apparatus for supplying engines with non-liquid fuels, e.g. gaseous fuels stored in liquid form
    • F02M21/02Apparatus for supplying engines with non-liquid fuels, e.g. gaseous fuels stored in liquid form for gaseous fuels
    • F02M21/06Apparatus for de-liquefying, e.g. by heating
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F17STORING OR DISTRIBUTING GASES OR LIQUIDS
    • F17CVESSELS FOR CONTAINING OR STORING COMPRESSED, LIQUEFIED OR SOLIDIFIED GASES; FIXED-CAPACITY GAS-HOLDERS; FILLING VESSELS WITH, OR DISCHARGING FROM VESSELS, COMPRESSED, LIQUEFIED, OR SOLIDIFIED GASES
    • F17C9/00Methods or apparatus for discharging liquefied or solidified gases from vessels not under pressure
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25JLIQUEFACTION, SOLIDIFICATION OR SEPARATION OF GASES OR GASEOUS OR LIQUEFIED GASEOUS MIXTURES BY PRESSURE AND COLD TREATMENT OR BY BRINGING THEM INTO THE SUPERCRITICAL STATE
    • F25J1/00Processes or apparatus for liquefying or solidifying gases or gaseous mixtures
    • F25J1/0002Processes or apparatus for liquefying or solidifying gases or gaseous mixtures characterised by the fluid to be liquefied
    • F25J1/0022Hydrocarbons, e.g. natural gas
    • F25J1/0025Boil-off gases "BOG" from storages
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25JLIQUEFACTION, SOLIDIFICATION OR SEPARATION OF GASES OR GASEOUS OR LIQUEFIED GASEOUS MIXTURES BY PRESSURE AND COLD TREATMENT OR BY BRINGING THEM INTO THE SUPERCRITICAL STATE
    • F25J1/00Processes or apparatus for liquefying or solidifying gases or gaseous mixtures
    • F25J1/003Processes or apparatus for liquefying or solidifying gases or gaseous mixtures characterised by the kind of cold generation within the liquefaction unit for compensating heat leaks and liquid production
    • F25J1/0032Processes or apparatus for liquefying or solidifying gases or gaseous mixtures characterised by the kind of cold generation within the liquefaction unit for compensating heat leaks and liquid production using the feed stream itself or separated fractions from it, i.e. "internal refrigeration"
    • F25J1/0045Processes or apparatus for liquefying or solidifying gases or gaseous mixtures characterised by the kind of cold generation within the liquefaction unit for compensating heat leaks and liquid production using the feed stream itself or separated fractions from it, i.e. "internal refrigeration" by vaporising a liquid return stream
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25JLIQUEFACTION, SOLIDIFICATION OR SEPARATION OF GASES OR GASEOUS OR LIQUEFIED GASEOUS MIXTURES BY PRESSURE AND COLD TREATMENT OR BY BRINGING THEM INTO THE SUPERCRITICAL STATE
    • F25J1/00Processes or apparatus for liquefying or solidifying gases or gaseous mixtures
    • F25J1/02Processes or apparatus for liquefying or solidifying gases or gaseous mixtures requiring the use of refrigeration, e.g. of helium or hydrogen ; Details and kind of the refrigeration system used; Integration with other units or processes; Controlling aspects of the process
    • F25J1/0201Processes or apparatus for liquefying or solidifying gases or gaseous mixtures requiring the use of refrigeration, e.g. of helium or hydrogen ; Details and kind of the refrigeration system used; Integration with other units or processes; Controlling aspects of the process using only internal refrigeration means, i.e. without external refrigeration
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25JLIQUEFACTION, SOLIDIFICATION OR SEPARATION OF GASES OR GASEOUS OR LIQUEFIED GASEOUS MIXTURES BY PRESSURE AND COLD TREATMENT OR BY BRINGING THEM INTO THE SUPERCRITICAL STATE
    • F25J1/00Processes or apparatus for liquefying or solidifying gases or gaseous mixtures
    • F25J1/02Processes or apparatus for liquefying or solidifying gases or gaseous mixtures requiring the use of refrigeration, e.g. of helium or hydrogen ; Details and kind of the refrigeration system used; Integration with other units or processes; Controlling aspects of the process
    • F25J1/0228Coupling of the liquefaction unit to other units or processes, so-called integrated processes
    • F25J1/0229Integration with a unit for using hydrocarbons, e.g. consuming hydrocarbons as feed stock
    • F25J1/023Integration with a unit for using hydrocarbons, e.g. consuming hydrocarbons as feed stock for the combustion as fuels, i.e. integration with the fuel gas system
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25JLIQUEFACTION, SOLIDIFICATION OR SEPARATION OF GASES OR GASEOUS OR LIQUEFIED GASEOUS MIXTURES BY PRESSURE AND COLD TREATMENT OR BY BRINGING THEM INTO THE SUPERCRITICAL STATE
    • F25J1/00Processes or apparatus for liquefying or solidifying gases or gaseous mixtures
    • F25J1/02Processes or apparatus for liquefying or solidifying gases or gaseous mixtures requiring the use of refrigeration, e.g. of helium or hydrogen ; Details and kind of the refrigeration system used; Integration with other units or processes; Controlling aspects of the process
    • F25J1/0243Start-up or control of the process; Details of the apparatus used; Details of the refrigerant compression system used
    • F25J1/0244Operation; Control and regulation; Instrumentation
    • F25J1/0245Different modes, i.e. 'runs', of operation; Process control
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25JLIQUEFACTION, SOLIDIFICATION OR SEPARATION OF GASES OR GASEOUS OR LIQUEFIED GASEOUS MIXTURES BY PRESSURE AND COLD TREATMENT OR BY BRINGING THEM INTO THE SUPERCRITICAL STATE
    • F25J1/00Processes or apparatus for liquefying or solidifying gases or gaseous mixtures
    • F25J1/02Processes or apparatus for liquefying or solidifying gases or gaseous mixtures requiring the use of refrigeration, e.g. of helium or hydrogen ; Details and kind of the refrigeration system used; Integration with other units or processes; Controlling aspects of the process
    • F25J1/0243Start-up or control of the process; Details of the apparatus used; Details of the refrigerant compression system used
    • F25J1/0257Construction and layout of liquefaction equipments, e.g. valves, machines
    • F25J1/0262Details of the cold heat exchange system
    • F25J1/0264Arrangement of heat exchanger cores in parallel with different functions, e.g. different cooling streams
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25JLIQUEFACTION, SOLIDIFICATION OR SEPARATION OF GASES OR GASEOUS OR LIQUEFIED GASEOUS MIXTURES BY PRESSURE AND COLD TREATMENT OR BY BRINGING THEM INTO THE SUPERCRITICAL STATE
    • F25J1/00Processes or apparatus for liquefying or solidifying gases or gaseous mixtures
    • F25J1/02Processes or apparatus for liquefying or solidifying gases or gaseous mixtures requiring the use of refrigeration, e.g. of helium or hydrogen ; Details and kind of the refrigeration system used; Integration with other units or processes; Controlling aspects of the process
    • F25J1/0243Start-up or control of the process; Details of the apparatus used; Details of the refrigerant compression system used
    • F25J1/0257Construction and layout of liquefaction equipments, e.g. valves, machines
    • F25J1/0275Construction and layout of liquefaction equipments, e.g. valves, machines adapted for special use of the liquefaction unit, e.g. portable or transportable devices
    • F25J1/0277Offshore use, e.g. during shipping
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F17STORING OR DISTRIBUTING GASES OR LIQUIDS
    • F17CVESSELS FOR CONTAINING OR STORING COMPRESSED, LIQUEFIED OR SOLIDIFIED GASES; FIXED-CAPACITY GAS-HOLDERS; FILLING VESSELS WITH, OR DISCHARGING FROM VESSELS, COMPRESSED, LIQUEFIED, OR SOLIDIFIED GASES
    • F17C2201/00Vessel construction, in particular geometry, arrangement or size
    • F17C2201/05Size
    • F17C2201/052Size large (>1000 m3)
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F17STORING OR DISTRIBUTING GASES OR LIQUIDS
    • F17CVESSELS FOR CONTAINING OR STORING COMPRESSED, LIQUEFIED OR SOLIDIFIED GASES; FIXED-CAPACITY GAS-HOLDERS; FILLING VESSELS WITH, OR DISCHARGING FROM VESSELS, COMPRESSED, LIQUEFIED, OR SOLIDIFIED GASES
    • F17C2205/00Vessel construction, in particular mounting arrangements, attachments or identifications means
    • F17C2205/03Fluid connections, filters, valves, closure means or other attachments
    • F17C2205/0302Fittings, valves, filters, or components in connection with the gas storage device
    • F17C2205/0323Valves
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F17STORING OR DISTRIBUTING GASES OR LIQUIDS
    • F17CVESSELS FOR CONTAINING OR STORING COMPRESSED, LIQUEFIED OR SOLIDIFIED GASES; FIXED-CAPACITY GAS-HOLDERS; FILLING VESSELS WITH, OR DISCHARGING FROM VESSELS, COMPRESSED, LIQUEFIED, OR SOLIDIFIED GASES
    • F17C2205/00Vessel construction, in particular mounting arrangements, attachments or identifications means
    • F17C2205/03Fluid connections, filters, valves, closure means or other attachments
    • F17C2205/0302Fittings, valves, filters, or components in connection with the gas storage device
    • F17C2205/0338Pressure regulators
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F17STORING OR DISTRIBUTING GASES OR LIQUIDS
    • F17CVESSELS FOR CONTAINING OR STORING COMPRESSED, LIQUEFIED OR SOLIDIFIED GASES; FIXED-CAPACITY GAS-HOLDERS; FILLING VESSELS WITH, OR DISCHARGING FROM VESSELS, COMPRESSED, LIQUEFIED, OR SOLIDIFIED GASES
    • F17C2205/00Vessel construction, in particular mounting arrangements, attachments or identifications means
    • F17C2205/03Fluid connections, filters, valves, closure means or other attachments
    • F17C2205/0302Fittings, valves, filters, or components in connection with the gas storage device
    • F17C2205/0352Pipes
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F17STORING OR DISTRIBUTING GASES OR LIQUIDS
    • F17CVESSELS FOR CONTAINING OR STORING COMPRESSED, LIQUEFIED OR SOLIDIFIED GASES; FIXED-CAPACITY GAS-HOLDERS; FILLING VESSELS WITH, OR DISCHARGING FROM VESSELS, COMPRESSED, LIQUEFIED, OR SOLIDIFIED GASES
    • F17C2221/00Handled fluid, in particular type of fluid
    • F17C2221/03Mixtures
    • F17C2221/032Hydrocarbons
    • F17C2221/033Methane, e.g. natural gas, CNG, LNG, GNL, GNC, PLNG
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F17STORING OR DISTRIBUTING GASES OR LIQUIDS
    • F17CVESSELS FOR CONTAINING OR STORING COMPRESSED, LIQUEFIED OR SOLIDIFIED GASES; FIXED-CAPACITY GAS-HOLDERS; FILLING VESSELS WITH, OR DISCHARGING FROM VESSELS, COMPRESSED, LIQUEFIED, OR SOLIDIFIED GASES
    • F17C2223/00Handled fluid before transfer, i.e. state of fluid when stored in the vessel or before transfer from the vessel
    • F17C2223/01Handled fluid before transfer, i.e. state of fluid when stored in the vessel or before transfer from the vessel characterised by the phase
    • F17C2223/0146Two-phase
    • F17C2223/0153Liquefied gas, e.g. LPG, GPL
    • F17C2223/0161Liquefied gas, e.g. LPG, GPL cryogenic, e.g. LNG, GNL, PLNG
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F17STORING OR DISTRIBUTING GASES OR LIQUIDS
    • F17CVESSELS FOR CONTAINING OR STORING COMPRESSED, LIQUEFIED OR SOLIDIFIED GASES; FIXED-CAPACITY GAS-HOLDERS; FILLING VESSELS WITH, OR DISCHARGING FROM VESSELS, COMPRESSED, LIQUEFIED, OR SOLIDIFIED GASES
    • F17C2223/00Handled fluid before transfer, i.e. state of fluid when stored in the vessel or before transfer from the vessel
    • F17C2223/03Handled fluid before transfer, i.e. state of fluid when stored in the vessel or before transfer from the vessel characterised by the pressure level
    • F17C2223/033Small pressure, e.g. for liquefied gas
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F17STORING OR DISTRIBUTING GASES OR LIQUIDS
    • F17CVESSELS FOR CONTAINING OR STORING COMPRESSED, LIQUEFIED OR SOLIDIFIED GASES; FIXED-CAPACITY GAS-HOLDERS; FILLING VESSELS WITH, OR DISCHARGING FROM VESSELS, COMPRESSED, LIQUEFIED, OR SOLIDIFIED GASES
    • F17C2223/00Handled fluid before transfer, i.e. state of fluid when stored in the vessel or before transfer from the vessel
    • F17C2223/03Handled fluid before transfer, i.e. state of fluid when stored in the vessel or before transfer from the vessel characterised by the pressure level
    • F17C2223/035High pressure (>10 bar)
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F17STORING OR DISTRIBUTING GASES OR LIQUIDS
    • F17CVESSELS FOR CONTAINING OR STORING COMPRESSED, LIQUEFIED OR SOLIDIFIED GASES; FIXED-CAPACITY GAS-HOLDERS; FILLING VESSELS WITH, OR DISCHARGING FROM VESSELS, COMPRESSED, LIQUEFIED, OR SOLIDIFIED GASES
    • F17C2223/00Handled fluid before transfer, i.e. state of fluid when stored in the vessel or before transfer from the vessel
    • F17C2223/04Handled fluid before transfer, i.e. state of fluid when stored in the vessel or before transfer from the vessel characterised by other properties of handled fluid before transfer
    • F17C2223/042Localisation of the removal point
    • F17C2223/043Localisation of the removal point in the gas
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F17STORING OR DISTRIBUTING GASES OR LIQUIDS
    • F17CVESSELS FOR CONTAINING OR STORING COMPRESSED, LIQUEFIED OR SOLIDIFIED GASES; FIXED-CAPACITY GAS-HOLDERS; FILLING VESSELS WITH, OR DISCHARGING FROM VESSELS, COMPRESSED, LIQUEFIED, OR SOLIDIFIED GASES
    • F17C2227/00Transfer of fluids, i.e. method or means for transferring the fluid; Heat exchange with the fluid
    • F17C2227/01Propulsion of the fluid
    • F17C2227/0128Propulsion of the fluid with pumps or compressors
    • F17C2227/0135Pumps
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F17STORING OR DISTRIBUTING GASES OR LIQUIDS
    • F17CVESSELS FOR CONTAINING OR STORING COMPRESSED, LIQUEFIED OR SOLIDIFIED GASES; FIXED-CAPACITY GAS-HOLDERS; FILLING VESSELS WITH, OR DISCHARGING FROM VESSELS, COMPRESSED, LIQUEFIED, OR SOLIDIFIED GASES
    • F17C2227/00Transfer of fluids, i.e. method or means for transferring the fluid; Heat exchange with the fluid
    • F17C2227/01Propulsion of the fluid
    • F17C2227/0128Propulsion of the fluid with pumps or compressors
    • F17C2227/0157Compressors
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F17STORING OR DISTRIBUTING GASES OR LIQUIDS
    • F17CVESSELS FOR CONTAINING OR STORING COMPRESSED, LIQUEFIED OR SOLIDIFIED GASES; FIXED-CAPACITY GAS-HOLDERS; FILLING VESSELS WITH, OR DISCHARGING FROM VESSELS, COMPRESSED, LIQUEFIED, OR SOLIDIFIED GASES
    • F17C2227/00Transfer of fluids, i.e. method or means for transferring the fluid; Heat exchange with the fluid
    • F17C2227/01Propulsion of the fluid
    • F17C2227/0128Propulsion of the fluid with pumps or compressors
    • F17C2227/0171Arrangement
    • F17C2227/0178Arrangement in the vessel
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F17STORING OR DISTRIBUTING GASES OR LIQUIDS
    • F17CVESSELS FOR CONTAINING OR STORING COMPRESSED, LIQUEFIED OR SOLIDIFIED GASES; FIXED-CAPACITY GAS-HOLDERS; FILLING VESSELS WITH, OR DISCHARGING FROM VESSELS, COMPRESSED, LIQUEFIED, OR SOLIDIFIED GASES
    • F17C2227/00Transfer of fluids, i.e. method or means for transferring the fluid; Heat exchange with the fluid
    • F17C2227/01Propulsion of the fluid
    • F17C2227/0128Propulsion of the fluid with pumps or compressors
    • F17C2227/0171Arrangement
    • F17C2227/0185Arrangement comprising several pumps or compressors
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F17STORING OR DISTRIBUTING GASES OR LIQUIDS
    • F17CVESSELS FOR CONTAINING OR STORING COMPRESSED, LIQUEFIED OR SOLIDIFIED GASES; FIXED-CAPACITY GAS-HOLDERS; FILLING VESSELS WITH, OR DISCHARGING FROM VESSELS, COMPRESSED, LIQUEFIED, OR SOLIDIFIED GASES
    • F17C2227/00Transfer of fluids, i.e. method or means for transferring the fluid; Heat exchange with the fluid
    • F17C2227/03Heat exchange with the fluid
    • F17C2227/0302Heat exchange with the fluid by heating
    • F17C2227/0306Heat exchange with the fluid by heating using the same fluid
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F17STORING OR DISTRIBUTING GASES OR LIQUIDS
    • F17CVESSELS FOR CONTAINING OR STORING COMPRESSED, LIQUEFIED OR SOLIDIFIED GASES; FIXED-CAPACITY GAS-HOLDERS; FILLING VESSELS WITH, OR DISCHARGING FROM VESSELS, COMPRESSED, LIQUEFIED, OR SOLIDIFIED GASES
    • F17C2227/00Transfer of fluids, i.e. method or means for transferring the fluid; Heat exchange with the fluid
    • F17C2227/03Heat exchange with the fluid
    • F17C2227/0337Heat exchange with the fluid by cooling
    • F17C2227/0339Heat exchange with the fluid by cooling using the same fluid
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F17STORING OR DISTRIBUTING GASES OR LIQUIDS
    • F17CVESSELS FOR CONTAINING OR STORING COMPRESSED, LIQUEFIED OR SOLIDIFIED GASES; FIXED-CAPACITY GAS-HOLDERS; FILLING VESSELS WITH, OR DISCHARGING FROM VESSELS, COMPRESSED, LIQUEFIED, OR SOLIDIFIED GASES
    • F17C2260/00Purposes of gas storage and gas handling
    • F17C2260/01Improving mechanical properties or manufacturing
    • F17C2260/013Reducing manufacturing time or effort
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F17STORING OR DISTRIBUTING GASES OR LIQUIDS
    • F17CVESSELS FOR CONTAINING OR STORING COMPRESSED, LIQUEFIED OR SOLIDIFIED GASES; FIXED-CAPACITY GAS-HOLDERS; FILLING VESSELS WITH, OR DISCHARGING FROM VESSELS, COMPRESSED, LIQUEFIED, OR SOLIDIFIED GASES
    • F17C2260/00Purposes of gas storage and gas handling
    • F17C2260/02Improving properties related to fluid or fluid transfer
    • F17C2260/021Avoiding over pressurising
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F17STORING OR DISTRIBUTING GASES OR LIQUIDS
    • F17CVESSELS FOR CONTAINING OR STORING COMPRESSED, LIQUEFIED OR SOLIDIFIED GASES; FIXED-CAPACITY GAS-HOLDERS; FILLING VESSELS WITH, OR DISCHARGING FROM VESSELS, COMPRESSED, LIQUEFIED, OR SOLIDIFIED GASES
    • F17C2265/00Effects achieved by gas storage or gas handling
    • F17C2265/03Treating the boil-off
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F17STORING OR DISTRIBUTING GASES OR LIQUIDS
    • F17CVESSELS FOR CONTAINING OR STORING COMPRESSED, LIQUEFIED OR SOLIDIFIED GASES; FIXED-CAPACITY GAS-HOLDERS; FILLING VESSELS WITH, OR DISCHARGING FROM VESSELS, COMPRESSED, LIQUEFIED, OR SOLIDIFIED GASES
    • F17C2265/00Effects achieved by gas storage or gas handling
    • F17C2265/03Treating the boil-off
    • F17C2265/032Treating the boil-off by recovery
    • F17C2265/033Treating the boil-off by recovery with cooling
    • F17C2265/034Treating the boil-off by recovery with cooling with condensing the gas phase
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F17STORING OR DISTRIBUTING GASES OR LIQUIDS
    • F17CVESSELS FOR CONTAINING OR STORING COMPRESSED, LIQUEFIED OR SOLIDIFIED GASES; FIXED-CAPACITY GAS-HOLDERS; FILLING VESSELS WITH, OR DISCHARGING FROM VESSELS, COMPRESSED, LIQUEFIED, OR SOLIDIFIED GASES
    • F17C2265/00Effects achieved by gas storage or gas handling
    • F17C2265/03Treating the boil-off
    • F17C2265/032Treating the boil-off by recovery
    • F17C2265/037Treating the boil-off by recovery with pressurising
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F17STORING OR DISTRIBUTING GASES OR LIQUIDS
    • F17CVESSELS FOR CONTAINING OR STORING COMPRESSED, LIQUEFIED OR SOLIDIFIED GASES; FIXED-CAPACITY GAS-HOLDERS; FILLING VESSELS WITH, OR DISCHARGING FROM VESSELS, COMPRESSED, LIQUEFIED, OR SOLIDIFIED GASES
    • F17C2265/00Effects achieved by gas storage or gas handling
    • F17C2265/06Fluid distribution
    • F17C2265/066Fluid distribution for feeding engines for propulsion
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F17STORING OR DISTRIBUTING GASES OR LIQUIDS
    • F17CVESSELS FOR CONTAINING OR STORING COMPRESSED, LIQUEFIED OR SOLIDIFIED GASES; FIXED-CAPACITY GAS-HOLDERS; FILLING VESSELS WITH, OR DISCHARGING FROM VESSELS, COMPRESSED, LIQUEFIED, OR SOLIDIFIED GASES
    • F17C2270/00Applications
    • F17C2270/01Applications for fluid transport or storage
    • F17C2270/0102Applications for fluid transport or storage on or in the water
    • F17C2270/0105Ships
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25JLIQUEFACTION, SOLIDIFICATION OR SEPARATION OF GASES OR GASEOUS OR LIQUEFIED GASEOUS MIXTURES BY PRESSURE AND COLD TREATMENT OR BY BRINGING THEM INTO THE SUPERCRITICAL STATE
    • F25J2230/00Processes or apparatus involving steps for increasing the pressure of gaseous process streams
    • F25J2230/30Compression of the feed stream
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25JLIQUEFACTION, SOLIDIFICATION OR SEPARATION OF GASES OR GASEOUS OR LIQUEFIED GASEOUS MIXTURES BY PRESSURE AND COLD TREATMENT OR BY BRINGING THEM INTO THE SUPERCRITICAL STATE
    • F25J2230/00Processes or apparatus involving steps for increasing the pressure of gaseous process streams
    • F25J2230/60Processes or apparatus involving steps for increasing the pressure of gaseous process streams the fluid being hydrocarbons or a mixture of hydrocarbons
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25JLIQUEFACTION, SOLIDIFICATION OR SEPARATION OF GASES OR GASEOUS OR LIQUEFIED GASEOUS MIXTURES BY PRESSURE AND COLD TREATMENT OR BY BRINGING THEM INTO THE SUPERCRITICAL STATE
    • F25J2235/00Processes or apparatus involving steps for increasing the pressure or for conveying of liquid process streams
    • F25J2235/60Processes or apparatus involving steps for increasing the pressure or for conveying of liquid process streams the fluid being (a mixture of) hydrocarbons
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25JLIQUEFACTION, SOLIDIFICATION OR SEPARATION OF GASES OR GASEOUS OR LIQUEFIED GASEOUS MIXTURES BY PRESSURE AND COLD TREATMENT OR BY BRINGING THEM INTO THE SUPERCRITICAL STATE
    • F25J2245/00Processes or apparatus involving steps for recycling of process streams
    • F25J2245/02Recycle of a stream in general, e.g. a by-pass stream
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25JLIQUEFACTION, SOLIDIFICATION OR SEPARATION OF GASES OR GASEOUS OR LIQUEFIED GASEOUS MIXTURES BY PRESSURE AND COLD TREATMENT OR BY BRINGING THEM INTO THE SUPERCRITICAL STATE
    • F25J2290/00Other details not covered by groups F25J2200/00 - F25J2280/00
    • F25J2290/34Details about subcooling of liquids
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25JLIQUEFACTION, SOLIDIFICATION OR SEPARATION OF GASES OR GASEOUS OR LIQUEFIED GASEOUS MIXTURES BY PRESSURE AND COLD TREATMENT OR BY BRINGING THEM INTO THE SUPERCRITICAL STATE
    • F25J2290/00Other details not covered by groups F25J2200/00 - F25J2280/00
    • F25J2290/62Details of storing a fluid in a tank
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25JLIQUEFACTION, SOLIDIFICATION OR SEPARATION OF GASES OR GASEOUS OR LIQUEFIED GASEOUS MIXTURES BY PRESSURE AND COLD TREATMENT OR BY BRINGING THEM INTO THE SUPERCRITICAL STATE
    • F25J2290/00Other details not covered by groups F25J2200/00 - F25J2280/00
    • F25J2290/72Processing device is used off-shore, e.g. on a platform or floating on a ship or barge
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02TCLIMATE CHANGE MITIGATION TECHNOLOGIES RELATED TO TRANSPORTATION
    • Y02T10/00Road transport of goods or passengers
    • Y02T10/10Internal combustion engine [ICE] based vehicles
    • Y02T10/30Use of alternative fuels, e.g. biofuels

Definitions

  • the present invention relates to the field of ships the engine or engines of which is / are powered by natural gas and which also make it possible to contain and / or transport this liquefied natural gas.
  • Such ships thus conventionally include a vessel which contains natural gas in the liquid state. Natural gas is liquid at temperatures below -162 ° C at atmospheric pressure. These tanks are never perfectly thermally insulated so that the natural gas at least partially evaporates there. Thus, these tanks include both natural gas in liquid form and natural gas in gaseous form. This natural gas in gaseous form forms the vessel head and the pressure of this vessel head must be controlled so as not to damage the vessel. In a known manner, at least part of the natural gas present in the tank in gaseous form is thus used to supply, among other things, the engine or engines of the ship.
  • the systems for supplying the engines and for reliquefying the gas which cannot be sent to these engines currently in use are very expensive.
  • certain constituent elements of these power supply systems are provided in duplicate in order to ensure redundancy, that is to say to ensure continuous power supply to the motors, even in the event of failure of one of these elements. This is the case, for example, with compression devices which make it possible to compress the gas to pressures compatible with the needs of the engines.
  • the present invention aims to solve this drawback by proposing a gas treatment system comprising fewer components than the current systems, thus making it possible to reduce the costs of implementing such systems, while being at least as efficient.
  • An object of the present invention thus relates to a gas supply system for at least one gas consuming device fitted to a ship, the supply system comprising at least:
  • a gas supply line of at least one gas consuming device configured to be traversed by gas taken in liquid state from a tank and subjected to a pressure lower than a gas pressure in a tank head ,
  • a first compression member configured to compress the gas coming from the gas supply line of at least one gas consuming device
  • the first compression member and the second compression member alternately compress gas in the gaseous state from the gas supply line and gas taken in the gaseous state from a head of the vessel.
  • the first compression member and the second compression member are configured to independently supply the at least one gas consuming device. It is understood here that the two compression members are configured to ensure the supply of compressed gas to the gas consuming device. The two compression members are thus redundant with respect to each other.
  • the vessel includes the vessel configured to contain the liquefied gas.
  • top of the vessel is understood to mean a portion of the vessel in which gas accumulates in the gaseous state generated by natural evaporation of the gas present in the liquid state in the rest of the vessel.
  • bottom of the tank is understood to mean a portion of the tank which extends from a bottom wall of this tank and a plane parallel to this bottom wall and arranged, at most, at 20% of a total height of the tank, this total height being measured along a straight line perpendicular to the bottom wall of the tank between two opposite ends of this tank, along this straight line.
  • the plane parallel to the bottom wall which participates in delimiting the "bottom of the tank” for wandering arranged at 10% of the total height of the tank.
  • the at least one appliance consuming evaporated gas for example wanders an electric generator of the DFDE (Dual Fuel Diesel Electric) type, that is to say a gas consuming appliance configured to supply the vessel with electricity, or a ship's propulsion engine, such as an ME-GI or XDF engine.
  • DFDE Direct Fuel Diesel Electric
  • the at least one gas consuming device advantageously makes it possible to consume, at least in part, the gas present in the gaseous state in the head of the vessel and thus prevent the latter from accumulating in the vessel. , which would lead to an increase in the pressure undergone by the tank, which could ultimately damage this tank.
  • the first compression member and the second compression member are interchangeable for powering the at least one gas consuming device.
  • the first compression member and the second compression member are both adapted to compress the gas in the gaseous state to similar pressures and compatible with the needs of the at least one gas consuming device.
  • the other can take over and thus ensure a continuous supply of at least one gas-consuming device while maintaining an acceptable pressure in the tank, c 'That is to say a pressure which does not risk damaging this tank, at a lower cost.
  • the first compression member and the second compression member are both configured to compress the gas from the supply line from a pressure lower than a pressure of the gas present in the head of the vessel to at a pressure greater than or equal to this gas pressure in the vessel head.
  • Each of the compression members is thus able to suck into the supply line when the latter is under negative pressure, that is to say subjected to a pressure lower than the pressure of the supply line.
  • gas present in the head of the vessel thanks to an expansion operated upstream of this supply line.
  • the pressure of the gas in the top of the vessel is equal to or substantially equal to 1.1 bar.
  • the system comprises at least one heat exchanger configured to operate a heat exchange between the gas which circulates in the supply line and the gas taken in the liquid state from the tank.
  • the heat exchanger can for example be equipped with at least one first pass configured to wander supplied by the gas taken in the liquid state from the vessel of the vessel and at least a second pass configured for wandering supplied by gas subjected to a pressure lower than the gas pressure in a tank top.
  • the second pass of the heat exchanger participates in forming the supply line.
  • the system according to this embodiment of the present invention comprises at least a first pump configured to feed the first pass of the heat exchanger, a second pump configured to feed the second pass of the heat exchanger, at least one means expansion being arranged on the supply line between the second pump and the second pass of the heat exchanger.
  • the heat exchanger is equipped with a single pass which participates in forming the supply line and this heat exchanger is arranged in the tank, that is to say in contact with the liquid gas contained in this tank.
  • a heat exchange therefore takes place between the gas subjected to a pressure lower than the pressure of the gas in the head cap which circulates in the first pass of the heat exchanger and the gas present in the liquid state in the tank with which the heat exchanger is in contact.
  • the first compression member and the second compression member suck the gas taken from the vessel head.
  • the first compression member and the second compression member are configured to compress the gas to the pressure compatible with the needs of the at least one gas consuming device.
  • an expansion device can be arranged downstream of the first compression member and of the second compression member, this expansion device being configured to reduce the pressure of the gas compressed by the first and / or the second compression member to the pressure compatible with the needs of the at least one gas consuming device.
  • the gas is compressed to a pressure greater than the pressure compatible with the needs of the at least one gas consuming device, then the gas undergoes an expansion, that is to say a reduction of its pressure up to the pressure compatible with the needs of the at least gas consuming device.
  • the feed system comprises as a compression member only the first compression member and the second compression member.
  • the feed system according to the invention may also include at least one reliquefaction system for the gas compressed by the first compression member and / or by the second compression member.
  • a reliquefaction system advantageously makes it possible to recycle the gas in the gaseous state which is not consumed by at least one gas consuming device by condensing it and then returning it to the tank.
  • the reliquefaction system comprises at least a first heat exchanger equipped with at least a first pass configured to be traversed by gas compressed by the first compression member and / or by the second member. compression and at least one second pass configured to be traversed by gas taken in the gaseous state from the top of the vessel.
  • the first heat exchanger of this reliquefaction system is configured to operate a heat exchange between the gas compressed by the first compression member and / or by the second compression member and the gas withdrawn in the state. gas in the top of the tank.
  • the reliquefaction system can also include at least a second heat exchanger configured to operate a heat exchange between the compressed gas which leaves the first heat exchanger and gas taken from the tank in the liquid state.
  • this second heat exchanger comprises at least a first pass configured to be supplied with the compressed gas which leaves the first heat exchanger and at least a second pass configured to be supplied with the gas withdrawn in the liquid state from the tank.
  • At least a first duct is arranged between the first pump and the first pass of the heat exchanger and at least one additional duct is arranged between the first duct and the second exchanger.
  • thermal, at least a first control valve being arranged on this additional duct.
  • the first pump is configured to feed, at least, the first pass of the heat exchanger and the second heat exchanger of the reliquefaction system.
  • the first control valve arranged on the additional duct that is to say upstream of the second heat exchanger with respect to a direction of gas flow in this additional duct, is configured to take an open position in which it allows the circulation of liquid gas in the additional conduit and a closed position in which it prohibits the flow of gas in this additional conduit. It is understood that this is only an exemplary embodiment and that provision could be made for the second pump to supply only the first pass of the heat exchanger and for a third pump to be put into operation. place to supply the second heat exchanger without departing from the context of the present invention.
  • the reliquefaction system is devoid of the second heat exchanger and the compressed gas which leaves the first heat exchanger is returned directly to the tank, for example via a bubbling member placed at the bottom of the tank.
  • the gas from the first heat exchanger is then released in the form of bubbles which condense on contact with the gas present in the liquid state in the tank.
  • the first compression member is configured to wander supplied with gas having a pressure of between 0.35 and 0.7 bar and to compress this gas to a pressure of between 2 bar and 13 bar. bar and in which the second compression member is configured to wander supplied with gas having a pressure equivalent to 1 bar and to compress it to a pressure of between 5 bar and 20 bar.
  • At least one pipe is arranged between the tank top and an intermediate inlet of the first compression member, at least one regulating member being arranged on this at least one pipe.
  • the regulator can wander a turn or nothing valve, that is to say a valve configured to take an open position in which it allows the circulation of gas in the pipe and a closed position in which it blocks. the circulation of gas in this pipe.
  • the first compression member comprises at least one main inlet through which it is supplied with the gas coming from the supply line and at least the intermediate input through which it is supplied with gas taken from the supply line. gaseous state in the tank top.
  • the first compression member is adapted to be supplied, alternately or simultaneously, with evaporated gas and with gas taken directly in the gaseous state from the top of the tank.
  • the regulator allows the gas to pass through the pipe so that the gas taken in the gaseous state in the vessel head can roam compressed. by the first compression member in order to be sent to the at least one gas consuming device.
  • the second compression member is configured to supply the at least one gas consuming device with gas taken in the gaseous state from the vessel head. In other words, whatever evening the compression member on which a failure occurs, the power supply of at least one consumer device of gas by the gas taken from the gaseous erar in the head of the vessel is ensured, and thus, the pressure in the vessel is maintained at an acceptable value for this vessel.
  • the first compression member and the second compression member are mounted in series with respect to the other.
  • at least a first conduit esr arranged between an outlet of the first compression member and an inlet of the second compression member, at least one pressure regulating means being arranged on this at least one first conduit.
  • the pressure regulating means can wander an expansion member, that is to say a member configured to reduce a pressure of the gas flowing in this first conduit.
  • this allows the first compression member to compress the gas evaporated by the heat exchanger with a pressure difference sufficient to ensure its correct operation and limit its wear.
  • the gas thus compressed by the first compression member is then released by the pressure regulating means before being compressed by the second compression member to the pressure compatible with the needs of the at least one gas consuming device. .
  • the first compression member esr for example configured to wander supplied with gas having a pressure of between 0.35 bar and 0.7 bar to compress it to a pressure of between 2 bar. 6 bar
  • the second compression member esr for its part configured to wander supplied with gas having a pressure equivalent, or substantially equivalent, to 1 bar to compress it to a pressure between 5 bar and 20 bar.
  • this series of compressions compresses the gas to a pressure greater than the needs of the at least one gas consuming device and at least one expansion device arranged between the second compression member and the at least one consuming device. gas, this expansion device then being configured to reduce the pressure of the gas compressed by the first compression member and by the second compression member to the pressure compatible with the needs of the at least one gas consuming device.
  • at least a second pipe can be arranged between an outlet of the second pass of the first heat exchanger and an inlet of the first compression member, at least one first flow regulation means being arranged on this at least a second drive.
  • This first flow regulation means for example wanders a turn or nothing valve, that is to say a valve configured to take an open position in which it allows gas to circulate in the second pipe and at least one closed position. in which it prohibits this circulation of gas in the second lead.
  • the first compression member fails, the gas consuming device is supplied with gas taken in the gaseous state from the head of the vessel and compressed by the second compression member.
  • the first flow control means can be moved to the open position in order to allow the gas taken in the gaseous state in the head of the vessel to feed the first compression member and thus ensure the supply of the gas consuming device with gas taken in gaseous state from the head of the vessel.
  • the first flow rate regulator means wanders a pressure regulator.
  • the second compression member fails, the gas withdrawn in the gaseous state in the vessel head is directed towards the second conduit, along which it is derated by the first flow regulation means, c 'that is to say that its pressure is reduced, to a pressure equivalent to the pressure of the gas issuing from the supply line, that is to say a pressure between 0.35 bar and 0.7 bar.
  • This alternative thus makes it possible, advantageously, to supply the first compression member, simultaneously, with gas taken in the gaseous state in the head of the vessel and in gas taken in the liquid state in the vessel and evaporated by the line of. food.
  • the second exemplary embodiment of the present invention makes it possible to ensure an uninterrupted supply of at least one gas consuming device, at least, with gas taken in the gaseous state from the head of the vessel, which allows to maintain a acceptable pressure in the tank, that is to say a pressure which does not risk damaging this tank.
  • the supply system comprises at least one means for distributing the gas in the liquid state coming from the heat exchanger in a bottom of the tank.
  • this distribution means is formed by a ramp equipped with a plurality of orifices.
  • the orifices are distributed over a longitudinal dimension of the ramp, each of these orifices being adapted to allow the ejection of gas in the liquid state from the heat exchanger.
  • an outlet of the second heat exchanger of the reliquefaction system by which gas in the liquid or two-phase state leaves this second heat exchanger can also be connected to this distribution means in order to be returned to the tank.
  • a ramp makes it possible to distribute the gas in the liquid state coming from the heat exchanger and / or from the second heat exchanger in the bottom of the tank so that it makes it possible to lower the overall temperature of the gas present. in the liquid state in this tank, and thus contributes to limiting the phenomenon of evaporation which tends to generate the accumulation of gas in the gaseous state in the tank.
  • the distribution means is formed by a simple pipe.
  • the present invention also relates to a liquefied gas transport vessel, comprising at least one tank of a liquefied gas cargo, at least one appliance consuming evaporated gas and at least one gas supply system for the appliance consuming gas.
  • gas according to the invention.
  • a tank of a liquefied gas cargo is understood to mean both a tank which serves both for transporting liquefied gas and as a tank for liquefied gas used as fuel for supplying at least one consuming device.
  • gas a tank which serves only as a liquefied gas tank for supplying the at least one gas consuming device.
  • the vessel comprises at least a first gas consuming device configured to be supplied with compressed gas at a first pressure, and at least a second consuming device.
  • gas configured to be supplied with gas compressed at a second pressure
  • the first gas consuming apparatus and the second gas consuming apparatus both being configured to be supplied by the at least one supply system according to the invention, and the first supply pressure of the first gas consuming apparatus being greater than the second supply pressure of the second gas consuming apparatus.
  • the present invention also relates to a system for charging or discharging a gas in the liquid state which combines at least one means on land and at least one vessel for transporting gas in the liquid state according to the invention.
  • the invention relates to a method of loading or unloading a gas in the liquid state from a gas transport vessel according to the invention.
  • FIG. 1 illustrates, schematically, a gas supply system of at least one gas consuming device according to a first embodiment of the present invention
  • FIG. 2 illustrates, schematically, a first mode of operation of the gas supply system according to the first embodiment illustrated in Figure 1;
  • FIG. 3 illustrates, schematically, a second mode of operation of the gas supply system according to the first embodiment illustrated in Figure 1;
  • FIG. 4 illustrates, schematically, a third mode of operation of the gas supply system according to the first embodiment illustrated in Figure 1;
  • FIG. 5 illustrates, schematically, the gas supply system according to the first embodiment of the present invention, in which a first compression member fails;
  • FIG. 6 illustrates, schematically, the gas supply system according to the first exemplary embodiment of the present invention, in which a second compression member fails;
  • FIG. 7 illustrates, schematically, the gas supply system of at least one gas consuming device according to a second embodiment of the present invention
  • FIG. 8 illustrates, schematically, a first mode of operation of the gas supply system according to the second embodiment illustrated in Figure 7;
  • FIG. 9 illustrates, schematically, a second mode of operation of the gas supply system according to the second embodiment illustrated in Figure 7;
  • FIG. 10 illustrates, schematically, a third mode of operation of the gas supply system according to the second embodiment illustrated in Figure 7;
  • FIG. 11 illustrates, schematically, the gas supply system according to the second embodiment of the present invention in which a first compression member fails;
  • FIG. 12 illustrates, schematically, the gas supply system according to the second embodiment of the present invention, in which a second compression member fails;
  • FIG. 13 illustrates, schematically, a fourth mode of operation of the gas supply system according to the second embodiment illustrated in Figure 7
  • FIG. 14 illustrates, schematically, a fifth mode of operation of the gas supply system according to the second embodiment illustrated in Figure 7
  • FIG. 15 is a cut-away schematic representation of an LNG vessel tank and a terminal for loading and / or unloading this tank.
  • upstream and downstream are understood in a direction of circulation of a gas in the liquid, gaseous or two-phase state through the element concerned.
  • the solid lines represent portions of the circuit in which gas circulates in the liquid, gaseous or two-phase state
  • the dotted lines represent portions of the circuit in which gas does not circulate.
  • the space of the tank 200 occupied by the gas in the gaseous state is called “sky 201 of the tank 200” and the terms “gas supply system 100 of at least one gas consuming appliance 300”. , "Power system 100" and "system 100” will be used without distinction.
  • the vessel 200 of a ship contains natural gas, that is to say a gas predominantly composed of methane. It is understood that this is only an example of application and that the gas supply system 100 of at least one gas consuming appliance 300 according to the invention can be used with other types. gases, such as, for example, hydrocarbon or hydrogen gases.
  • the vessel 200 of this vessel can serve exclusively as a reservoir containing the gas intended for the gas supply of at least one gas consuming appliance 300, or, alternatively, this vessel 200 can serve both gas tank and gas transport tank.
  • FIGS. 1 and 7 thus firstly illustrate, schematically, the gas supply system 100, when stopped, according to, respectively, the first embodiment of the present invention and the second embodiment of the present invention.
  • the system 100 comprises at least one heat exchanger 110, at least a first compression member 120, at least a second compression member 130 and at least one gas consuming device 300.
  • the system 100 further comprises a gas reliquefaction system 400.
  • the supply system 100 comprises only two compression members as compression means for supplying the gas consuming device 300, for example an engine.
  • the reliquefaction system 400 comprises at least a first heat exchanger 410 and / or at least a second heat exchanger 420 arranged in series for at least one flow which passes through them.
  • the first heat exchanger 410 comprises at least a first pass 411 configured to be traversed by gas compressed by the first compression member 120 and / or by the second compression member 130, and at least one second pass 412 configured to be traversed by gas taken in the gaseous state in the top 201 of the tank 200.
  • the second heat exchanger 420 has for its part at least one first pass 421 configured to be traversed by the compressed gas which leaves the first pass 411 of the first heat exchanger 410 and at least one second pass 422 configured to be traversed by gas taken in the liquid state in the tank 200. As described below, this gas taken in the liquid state in the tank 200 can be expanded, c 'that is to say undergo a decrease in its pressure before being sent to the second pass 422 of the second heat exchanger 420.
  • the first heat exchanger 410 is thus configured to operate a heat exchange between the compressed gas and the gas taken, in the gaseous state, from the top 201 of the tank 200.
  • the result is that the compressed gas leaves the first pass 411. of the first heat exchanger 410 in the gaseous or two-phase state, that is to say a mixture of gas and liquid, and that the gas taken in the gaseous state in the head 201 of the tank 200 is heated by its passage through the second pass 412 of the first heat exchanger 410.
  • the gas heated by its passage through the first heat exchanger 410 is then sent to one of the compression members 120, 130 in order to be compressed and then sent, at least in part, to at least one gas consuming appliance 300.
  • the second heat exchanger 420 is for its part configured to operate a heat exchange between the two-phase gas issuing from the first pass 411 of the first heat exchanger 410 and the gas taken in the liquid state in the tank 200.
  • the two-phase gas is condensed. by its passage through the second heat exchanger 420 in order to be then returned to a bottom 203 of the tank 200 and the gas withdrawn in the liquid state in the tank 200 is in turn heated by its passage through the second heat exchanger 420.
  • the reliquefaction system may be without the second heat exchanger.
  • the first pass of the first heat exchanger is connected for example to a bubbling member arranged in the bottom of the tank.
  • the gas in the two-phase state from the first heat exchanger is then ejected into the bottom of the tank in the form of bubbles which condense on contact with the gas in the liquid state present in the bottom of this tank.
  • bottom 203 of the tank 200 is understood to mean a portion of the tank 200 which extends between a bottom wall 202 of the tank 200 and a plane parallel to this bottom wall 202 and arranged, at most, at 20%. of the total height h of the tank, this total height h being measured along a straight line perpendicular to the bottom wall 202 of the tank 200 between two opposite ends of this tank 200, along this straight line.
  • the plane parallel to the bottom wall 202 which participates in delimiting the “bottom of the tank” can be arranged at 10% of the total height h of the tank.
  • a reliquefaction system could be provided which comprises a separate refrigerant fluid circuit.
  • the supply system 100 comprises at least one supply line 123 of the at least one gas consuming device 300 configured to be traversed by gas taken in the liquid state in the tank 200 and subjected at a pressure lower than a pressure of the gas in a head 201 of the tank 200.
  • the gas in the head 201 of the tank 200 has a pressure equivalent to, or substantially equivalent to the pressure atmospheric, that is to say a pressure of the order of 1 bar.
  • the supply system 100 comprises at least one pump 141 arranged in the bottom 203 of the tank 200 and at least one expansion means 170 arranged between this pump 141 and the supply line 123, the pump 141 and way to trigger 170 being configured to ensure the supply of the supply line 123.
  • the following description gives an exemplary embodiment of this supply line 123 but it is understood that this supply line 123 could take a different form without depart from the context of the present invention.
  • At least a first duct 101 is arranged between a first pump 140 and a first pass 111 of the heat exchanger 110.
  • At least a second duct 102 is arranged between a second pump 141 and a second pass 112 of the exchanger. heat 110.
  • the first pump 140 and the second pump 141 are both arranged at the bottom 203 of the tank 200, so as to take the gas in the liquid state to send it to the first and second passes 111, 112 of the heat exchanger 110.
  • a third duct 103 extends between the second pass 112 of the heat exchanger 110 and the first compression member 120, this second pass 112 and the third duct 103 forming, at least partially, the supply line 123 of at least one gas consuming appliance 300 mentioned above. More particularly, this third duct 103 extends between the second pass 112 of the heat exchanger 110 and a main inlet 121 of the first compression member 120.
  • At least one expansion means 170 is arranged on the second duct 102, that is to say between the second pump 141 and the second pass 112 of the heat exchanger 110.
  • This expansion means 170 is thus configured to expand the gas in the liquid state conveyed by the second pump 141, that is to say to decrease the pressure of this gas in the liquid state, before the latter joins the second pass 112 of the heat exchanger 110.
  • the expansion means 170 arranged upstream of the heat exchanger 110 makes it possible to create a pressure difference between the gas which circulates in the first pass 111 and the gas which circulates in the second pass 112 of this heat exchanger 110.
  • the gas in the liquid state circulating in the first pass 111 of the heat exchanger 110 thus has an identical pressure, or substantially identical to the pressure of the gas contained in the heat exchanger 110.
  • liquid state in the tank 200 and the gas circulating in the second pass 112 of the ec heat exchanger 110 present as to him a pressure lower than the pressure of the gas contained in the liquid state in the tank 200.
  • the gas which thus circulates in the second pass 112 vaporizes as it travels in the second pass 112 of the heat exchanger 110.
  • the heat exchanger could comprise a single first pass supplied with the gas subjected to a pressure lower than the pressure of the gas in the head cap and submerged in contact with the gas. contained in the liquid state in the tank.
  • a heat exchange similar to that which has just been described then takes place between the derated gas which circulates in the heat exchanger and the liquid gas in contact with which this heat exchanger is arranged.
  • An additional duct 423 is arranged between the first duct 101 and the second pass 422 of the second heat exchanger 420, at least a first regulating valve 171 being arranged on this additional duct 423.
  • This first regulating valve 171 is configured to take a position open in which it allows the circulation of liquid gas in the additional duct 423 and a closed position in which it prohibits the circulation of gas in this additional duct
  • a fourth duct 104 is arranged between the first pass 111 of the heat exchanger 110 and the bottom 203 of the tank 200. As illustrated, this fourth duct 104 is more specifically arranged between the first pass 111 of the heat exchanger. heat 110 and a means 210 for distributing the gas in the liquid state in the bottom 203 of the tank 200.
  • this distribution means 210 is formed by a ramp 212 arranged at the bottom 203 of the tank 200. As will be more fully derailed below, this ramp 212 advantageously makes it possible to distribute the cooled gas by its passage. through the heat exchanger 110 in the bottom 203 of the tank 200. According to a exemplary embodiment not illustrated here, this distribution means 210 can wander simply formed by the fourth duct 104 which then opens directly into the bottom 203 of the tank 200.
  • a fifth conduit 105 extends between the first compression member 120 and a sixth conduit 106 for its part connected to at least one gas consuming device 300.
  • the gas withdrawn in the liquid state in the tank 200 by the second pump 141 and evaporated by its passage through the second pass 112 of the heat exchanger 110 is intended for the supply of at least one gas consuming device 300.
  • a seventh duct 107 is arranged between the second compression member 130 and the sixth duct 106. This seventh duct 107 makes it possible in particular to supply the at least one gas consuming appliance 300 with gas taken from the state. gas in the top 201 of the tank 200 and compressed by the second compression member 130.
  • the first compression member 120 and the second compression member 130 are both suitable for supplying, independently, at least one gas consuming device 300.
  • the first compression member 120 and the second compression member 130 are both configured to compress the gas to a pressure compatible with the needs of the gas consuming apparatus 300, i.e. an absolute pressure between 5 bar and 20 bar or a pressure greater than 150 bar depending on the type of gas consuming device 300 to be supplied.
  • the first compression member 120 is also suitable for compressing the gas coming from the second pass 112 of the heat exchanger 110 to a pressure lower than a pressure of the gas present in the gaseous state in the head 201 of the vessel 200.
  • the first compression member 120 is suitable for compressing the gas issuing from the second pass 112 of the heat exchanger 110 with an absolute pressure between 0.35 bar and 0.7 bar up to the pressure compatible with the needs of at least one gas consuming device 300, greater than 1.1 bar, for example a pressure between 5 bar and 20 bar.
  • the second compression member 130 which is adapted to compress the gas coming from the second pass 112 of the heat exchanger 110 to a pressure lower than the pressure of the gas present in the gaseous state in the gas.
  • head 201 of the vessel 200 up to a pressure greater than or equal to this pressure of the gas present in the gaseous state in the head 201 of the vessel 200.
  • the second compression member 130 is suitable for compressing the gas obtained from the second pass 112 of the heat exchanger 110 at an absolute pressure of between 0.35 bar and 0.7 bar up to the pressure compatible with the needs of the at least one gas consuming appliance 300, this is ie a pressure greater than 1.1 bar, for example a pressure between 5 bar and 20 bar.
  • the first compression member and the second compression member are configured to compress the gas which supplies them respectively to a pressure greater than the pressure compatible with the needs of the at least one consumer device. gas.
  • at least one expansion device is arranged downstream of the first compression member and of the second compression member and upstream of the gas consuming device, this expansion device being configured to reduce the gas pressure. compressed by the first compression member and / or by the second compression member to the pressure compatible with the needs of the gas consuming device.
  • this expansion device can thus be arranged on the sixth duct.
  • An eighth duct 108 extends between the sixth duct 106 and the reliquefaction system 400 described above, that is to say between the sixth duct 106 and the first pass 411 of the first heat exchanger 410 of this reliquefaction system. 400.
  • at least a second control valve 180 is arranged on this eighth conduit 108 in order to allow or prohibit the passage of compressed gas which circulates in the sixth conduit 106.
  • the second control valve 180 can be an “all or nothing” valve, that is to say a valve configured to take an open position in which it allows the passage of compressed gas in the eighth conduit 108 and a closed position in which it prohibits the flow of gas in this eighth conduit 108.
  • a ninth duct 109 is arranged between the second pass 412 of the first heat exchanger 410 and one or the other of the compression members 120, 130.
  • this ninth duct 109 ensures the supply of the first compression member and / or of the second compression member 130 with gas taken in the gaseous state in the head 201 of the tank 200 and intended for the supply of the gas. at least one gas consuming device 300.
  • a pipe 119 is also arranged between the ninth duct 109 and an intermediate inlet 122 of the first compression member 120, at least one regulation member 181 being arranged on this pipe 119. It is noted that the intermediate inlet 122 of the first compression member 120 through which this first compression member 120 is supplied with gas taken in the gaseous state in the head 201 of the tank
  • the evaporated gas leaves the heat exchanger 110 at a pressure lower than the pressure of the gas present in the gaseous state in the top 201 of the tank 200.
  • the evaporated gas leaves the heat exchanger 110 at an absolute pressure less than 1 bar, between 0.35 bar and 0.7 bar, while the gas taken in the gaseous state in the top 201 of the tank 200 has an absolute pressure of about 1 bar.
  • the intermediate inlet 122 thus allows the gas taken in the gaseous state in the top 201 of the tank 200 to join the compressed flow after intermediate compression of the flow coming from the heat exchanger 110.
  • at least a first conduit 128 is arranged between the fifth conduit 105 and the ninth conduit 109, at least one pressure regulating means 182 being arranged on this first conduit 128.
  • this first conduit 128 extends between an outlet 124 of the first compression member 120 and an inlet 131 of the second compression member 130 and allows the second compression member 130 to be supplied with gas evaporated by the heat exchanger 110 and compressed by the first compression member 120.
  • the pressure regulating means 182 can for example wander an expansion member configured to reduce the pressure of the gas compressed by the first compression member 120 before this gas feeds the second compression member 130.
  • this pressure regulating means 182 is configured to take a closed position in which it prohibits the flow of gas in the first pipe. re 128.
  • this pressure regulating means 182 makes it possible to have a pressure difference between the inlet 125 and the outlet 124 of the first compression member 120 sufficient to allow optimal operation of this first compression member 120. Otherwise dir, the gas is compressed to a first pressure by the first compression member 120, then it is expanded by the pressure regulating means 182 before being again compressed by the second compression member 130 to the compatible pressure with the needs of the gas consuming apparatus 300.
  • the first compression member 120 is configured to compress the gas from a pressure of between 0.35 bar and 0.7 bar to a pressure of between 2 bar and 6 bar.
  • the gas is then released to a pressure of about 1 bar by the pressure regulating means 182, then the second compression member 130 is configured to compress this gas from its pressure of 1 bar to a pressure between 5 bar and 20 bar, i.e. the pressure compatible with the needs of the gas consuming device 300.
  • At least a second conduit 129 is arranged between the ninth conduit 109 and an inlet 125 of the first compression member 120, at least one first flow rate regulating means 183 being arranged on this second conduit 129.
  • a second means of flow regulation 184 is further arranged on the fifth conduit 105, that is to say between the first compression member 120 and the gas consuming apparatus 300.
  • the first flow regulating means 183 and the second flow regulation means 184 can wander "turn or nothing" valves, that is to say valves configured to take an open position in which they allow the passage of gas in the pipe on which they are arranged or a closed position in which they prevent the passage of gas in this conduit.
  • the first flow rate regulating means 183 wanders a pressure regulating member, that is to say a member configured to reduce a flow rate. pressure of the gas passing through it.
  • the first flow rate regulating means 183 wanders a turn-or-nothing valve and a supporting branch of a pressure regulating member wanders arranged in parallel with this second pipe 129 carrying the first pressure regulating means. flow rate, the gas being adapted to take the second conduit 129 or the branch parallel to this second conduit 129 depending on the operating mode of the system 100.
  • the second exemplary embodiment of the present invention differs from the first exemplary embodiment in that two gas recirculation pipes - not shown here - are formed in parallel, respectively, of the first compression member 120 and of the second pressure member. compression 130, each of these recirculation pipes carrying at least one pressure control means.
  • these pressure control means allow the first compression member 120 and the second compression member 130 to compress the gas supplied to it at different pressures depending, for example, on the needs of the at least one consuming device. of gas 300.
  • At least one gas consuming device 300 is wandering an electric generator of the DFDE (Dual Fuel Diesel Electric) type, that is to say a gas consuming device configured to supply the vessel with electricity.
  • the gas-consuming device 300 is also afraid of at least one propulsion motor vessel, such as an ME-GI or XDF engine. It is understood that this is only an exemplary embodiment of the present invention and that provision can be made for the installation of appliances consuming different gases without departing from the context of the present invention.
  • a first operating mode in which only part of the gas present in the gaseous state in the head 201 of the tank 200 is consumed by at least one gas consuming device 300 and in which another part of this gas present in the gaseous state in the top 201 of the tank 200 is reliquefied by the reliquefaction system 400 before being returned to the bottom of the the tank 203 and a second and a third operating modes in which the quantity of gas present in the gaseous state in the head 201 of the tank 200 is insufficient to supply the at least one gas consuming device 300 and in which gas is taken in the liquid state in the tank 200 and evaporated by the heat exchanger 110 in order to overcome this insufficiency.
  • the second operating mode differs from the third operating mode in that in the second operating mode at least one gas consuming device 300 is supplied with gas compressed by the first compression member 120. and by gas compressed by the second compression member 130 while in the third mode of operation, the at least one gas consuming device 300 is supplied with gas compressed only by the first compression member.
  • FIG. 2 thus illustrates the first mode of operation of the system 100 according to the first exemplary embodiment of the present invention.
  • at least one gas consuming device 300 is supplied with gas taken in the gaseous state in the top 201 of the tank 200 which passes through the first heat exchanger 410 before being compressed by the second control member.
  • compression 130 to a pressure compatible with the needs of this at least one gas consuming device 300.
  • Part of the gas thus compressed supplies the gas consuming device 300, while another part of this compressed gas is sent to the reliquefaction system 400. This situation arises for example when the gas consuming apparatus 300 consumes less than the quantity of gas which evaporates in the tank 200.
  • the part of the compressed gas sent to the reliquefaction system 400 is thus first of all partially cooled by heat exchange with gas taken in the gaseous state in the top 201 of the tank 200, within the first heat exchanger 410 , then this gas which leaves the first heat exchanger 410 in the gaseous or two-phase state ends its condensation by an exchange of heat with gas taken in the liquid state in the tank 200 and expanded by the first control valve 171, this heat exchange being carried out within the second heat exchanger 420.
  • the gas thus condensed at the outlet of the second heat exchanger 420 is returned to the bottom of the vessel via the fourth pipe 104.
  • this fourth pipe 104 is connected to a ramp 212 which has a plurality of orifices 211 configured to allow the release and distribution over a large area of the gas in the liquid state which reaches it.
  • the heat exchanger 110 is not powered, that is, the second pump 141 is stopped. Indeed, as previously described, this heat exchanger 110 makes it possible to evaporate the gas taken in the liquid state in the tank 200 in order to supply the gas consuming appliance 300. When the gas present in the gaseous state in the top 201 of the tank 200 is sufficient to supply this gas consuming device 300, this heat exchanger 110 does not need to operate and the second pump 141 can therefore be stopped.
  • the second pump 141 is put into operation so as to supply the exchanger. heat 110.
  • FIG. 3 represents the second mode of operation of the system 100 according to the first exemplary embodiment of the present invention.
  • the first pump 140 and the second pump 141 are both put into operation in order to supply the heat exchanger 110 and thus supply the device.
  • At least one gas consuming device 300 is supplied with gas taken in the liquid state in the tank 200, evaporated in the heat exchanger 110 and compressed by the first compression member 120 and also by gas taken in the gaseous state in the top 201 of the tank 200 and compressed by the second compression member 130.
  • the supply system 100 also makes it possible, advantageously, to use only the first compression member 120 to supply the at least one gas consuming device 300 with gas drawn off at the gaseous state in the top 201 of the tank 200 and with gas taken off in the liquid state and evaporated.
  • Such an operating mode corresponds to the third operating mode illustrated in FIG. 4.
  • This third operating mode differs from the second operating mode in particular in that the second compression member 130 is stationary and the regulating member 181 is in its open position, thus allowing the circulation of gas in the pipe 119.
  • the gas evaporated by its passage through the heat exchanger 110 reaches the first compression member 120 in which it is compressed to a pressure compatible with the needs of the gas consuming apparatus 300.
  • the gas taken in the gaseous state in the top 201 of the tank 200 passes through the first heat exchanger 410 in which it undergoes no other temperature or pressure change than those related to its suction and losses of load inherent in the transport of this type of fluid, and then follows the pipe 119 through which it joins the first compression member 120 through its intermediate inlet 122.
  • the first compression member 120 is then configured to compress this gas to the pressure compatible with the needs of the gas consuming device 300.
  • the first compression member 120 for example wanders a multistage compressor.
  • the evaporated gas which feeds the first compression member 120 through its main inlet 121 is compressed to a pressure equivalent to the pressure of the gas present in the gaseous state in the head 201 of the tank 200.
  • the intermediate inlet 122 of the first compression member 120 is then arranged so that the gas taken in the gaseous state in the top 201 of the tank 200 mixes with the gas evaporated at a point of the first compression member 120 at which this gas evaporated esr already compressed to the pressure of the gas present in the top 201 of the tank 200.
  • the first compression member 120 is then adapted to compress the gas mixture thus formed to the pressure compatible with the needs of the at least a gas consuming appliance 300.
  • this third mode of operation also makes it possible to alleviate a possible failure of the second compression member 130, that is to say to maintain a supply of at least one gas consuming device 300 with gas taken from the gas. gaseous state in the head 201 of the tank 200 and by gas taken in the liquid state in the tank 200 and evaporated by the heat exchanger 110.
  • FIG. 5 illustrates the gas supply system 100 according to the first exemplary embodiment of the present invention in which the first compression member 120 fails. It will be understood from this FIG. 5 that in the event of failure of the first compression 120, the supply of the gas consuming appliance 300 remains ensured by the gas taken in the gaseous state in the top 201 of the tank 200, which also makes it possible to maintain the pressure in the tank 200 at a value acceptable. In this situation, this FIG. 5 illustrates a mode identical to the first mode of operation of the system 100 illustrated in FIG. 2.
  • FIG. 6 illustrates for its part the first mode of operation applied to the first exemplary embodiment, in which the second compression member 130 has failed.
  • the regulating member 181 is open in order to allow the gas taken in the gaseous state in the vessel head 200 to reach the first compression member 120 in in which its pressure is increased to the pressure compatible with the needs of the gas consuming appliance 300.
  • This figure illustrates the first mode of operation, the reliquefaction system is active, that is to say the second valve control 180 is open and the first pump 140 operates to supply the second heat exchanger 420 while the heat exchanger 110 is stopped.
  • the description of Figure 2 applies mutatis mutandis to Figure 5.
  • the gas supply system 100 thus allows an uninterrupted supply of at least one gas consuming device 300 with gas taken in the gaseous state in the head 201 of the tank. 200, which ensures that the pressure in the tank 200 is maintained at an acceptable value for this tank 200, that is to say a pressure which does not risk damaging the latter.
  • the two compression members are also designed to suck the gas evaporated in the first pass 112 of the heat exchanger 110 at an absolute pressure of between 0.35 bar and 0.7 bar and to bring this gas to an absolute pressure between 5 bar and 20 bar, or greater than 150 bar depending on the gas consuming device 300 concerned.
  • the description of the first mode of operation which has just been given with reference to the first exemplary embodiment applies mutatis mutandis to the first mode of operation of the second exemplary embodiment illustrated in FIG. 8. Otherwise said, according to the first mode of operation, the second pump 141 is stopped, the pressure regulating means 182, the first flow regulating means 183 and the second flow regulating means 184 are all three in their position closed and the first compression member 120 is stopped, the supply of the gas consuming device 300 being provided by the gas taken in the gaseous state in the top 201 of the tank 200 and compressed by the second member compression 130.
  • the description given above with reference to Figure 2 applies.
  • the system 100 according to the second exemplary embodiment differs from the first exemplary embodiment, in particular in that the first compression member 120 and the second compression member 130 operate in series, on gas flow.
  • FIG. 9 illustrates this second mode of operation applied to the second exemplary embodiment of the present invention.
  • the elements which distinguish the second mode of operation applied to the second exemplary embodiment from the second mode of operation applied to the first exemplary embodiment are described.
  • the evaporated gas which leaves the second pass 112 of the heat exchanger 110 is first of all compressed by the first compression member 120, then it takes the first pipe 128 for join the second compression member 130 in which it undergoes a second compression before supplying the gas consuming device 300.
  • the pressure regulating means 182 allows the circulation of gas in the first pipe 128, while the first flow regulating means 183 and second flow regulating means 184 are in their closed position.
  • the evaporated gas leaves the heat exchanger 110 at an absolute pressure of between 0.35 bar and 0.7 bar and it is compressed to an absolute pressure of between 2 bar and 6 bar, advantageously at a pressure of approximately 3 bar, by the first compression member 120.
  • This gas at an absolute pressure of approximately 3 bar then borrows the first conduct 128 along which it undergoes a derenre operated by the pressure regulating means 182, ie its pressure is reduced to a pressure equal to or substantially equal to 1 bar.
  • the gas is then compressed by the second compression member 130 to a pressure compatible with the needs of the gas consuming device 300, for example a pressure between 5 bar and 20 bar or greater than 150 bar, depending on the consuming device. of gas 300 is a consumer dir low pressure or high pressure.
  • FIG. 10 illustrates for its part a third mode of operation of the second exemplary embodiment in which at least one gas consuming device 300 is supplied by gas taken in the liquid state in the tank 200, evaporated by the exchanger 110 and compressed by the first compression member 120, and also by gas taken in the gaseous state in the top 201 of the tank 200 and compressed by the second compression member 130.
  • the pressure regulating means 182 and the first flow regulating means 183 are in their closed positions while the second flow regulating means 184 is in its open position.
  • the gas taken in the gaseous state in the head 201 of the tank 200 thus passes into the first heat exchanger 410 in which it does not undergo any significant change in temperature or pressure before being compressed to the pressure compatible with the need of the gas consuming device 300 by the second compression member 130 then it is sent to this gas consuming device 300.
  • the gas taken in the liquid state in the tank 200 is evaporated through the exchange of heat which takes place in the heat exchanger 110 then it is compressed to the pressure compatible with the needs of the gas consuming device 300 by the first compression member 120 in order to then be able to supply this consuming device. gas 300.
  • the first compression member 120 is configured to compress the gas issuing from the heat exchanger 110 with a pressure of between 0.35 bar and 0.7 bar up to a press ion between 5 bar and 20 bar, or greater than 150 bar depending on the gas consuming device to be supplied and the second compression member 130 esr configured to compress the gas taken in the gaseous state in the air 201 of the tank 200 from a pressure approximately equal to 1 bar up to a pressure between 5 bar and 20 bar or greater than 150 bar depending on the gas consuming device to be supplied.
  • the power supply system 100 provides for redundancy of the compression members 120, 130 in order to ensure, on the one hand, a continuous supply of the gas consuming device 300 and, on the other hand, a maintenance of the pressure in the tank 200 at an acceptable value for this tank 200.
  • FIGS 11 and 12 illustrate this redundancy of the compression members 120, 130.
  • FIG. 11 illustrates the gas supply system 100 according to the second embodiment of the present invention in which the first compression member 120 has failed.
  • the supply of the gas consuming device 300 with gas taken in the gaseous state from the top 201 of the tank 200 is provided by the second compression member 130, the pressure regulating means 182, the first flow regulating means 183 and the second flow regulating means 184 being all three in their closed position, i.e. preventing the flow of gas, respectively, in the first conduit 128, in the second conduit 129 and in the fifth conduit 105.
  • this FIG. 9 illustrates a mode identical to the first operating mode of the system 100 illustrated in FIG. 8 and reference may be made to the description do above with reference to this figure 8.
  • FIG. 12 illustrates the gas supply system 100 of at least one gas consuming appliance 300 according to the second exemplary embodiment of the present invention in which the second compression member 130 fails.
  • the pressure regulating means 182 is put in its closed position, so that no gas circulates in the first duct 128, the first flow regulating means 183 is put in its open position and the second means flow control valve 184 is also placed in its open position.
  • the gas taken in the gaseous state in the air 201 of the tank 200 borrows the second lead 129 to join the first compression member 120 configured to compress the gas to the pressure compatible with the needs of the gas consuming appliance 300.
  • the gas thus compressed then takes the fifth conduit 105 and the sixth conduit 106 to reach the appliance gas consumer 300.
  • the second pump 141 is for its part stopped so that no heat exchange takes place in the heat exchanger 110.
  • the system 100 makes it possible to ensure the supply of the gas consuming device 300 with gas taken in the gaseous state in the head 201 of the tank 200, thus ensuring the maintenance of the gas. pressure in the tank 200 to an acceptable value for this tank 200 under the circumstances, and in particular in the event of failure of the first compression member 120 or of the second compression member 130.
  • FIGS. 13 and 14 illustrate a fourth mode of operation and a fifth mode of operation of the system 100 according to the second exemplary embodiment of the present invention.
  • FIG. 13 thus illustrates the fourth operating mode of the system 100.
  • the first flow regulation means 183 carried by the second conduit 129 is a pressure regulating member.
  • This fourth operating mode corresponds to an operating mode in which the quantity of gas taken in the gaseous state in the top 201 of the tank 200 is insufficient to correctly supply the at least one gas consuming device 300.
  • the first pump 140 is therefore put into operation so as to allow the supply of at least one gas consuming device 300 with gas evaporated by the heat exchanger 110.
  • the circulation of gas in the seventh pipe 107 is interrupted - for example by means of a turn-or-nothing valve not shown here - so that the gas taken in the gaseous state in the head 201 of the tank 200 is directed towards the second pipe 129 along from which it undergoes an expansion operated by the first flow regulating means 183.
  • the gas sampled at a pressure of approximately 1 bar absolute is thus expanded to a pressure between 0.35 bar and 0.7 bar in order to be able to wander mixed with the gas taken in the liquid state in the tank 200 and evaporated by the heat exchanger 110, then to be compressed by the first compression member 120 and finally to be used to supply the gas consuming apparatus 300.
  • this fourth operating mode advantageously makes it possible to supply the first compression member 120 with gas taken in the liquid state from the tank 200 and evaporated. by the heat exchanger 110 and in gas taken in the gaseous state in the top 201 of the tank 200 by the same inlet 125 of this first compression member 120.
  • FIG. 14 illustrates for its part the fifth mode of operation of the system 100 according to the second exemplary embodiment.
  • the system 100 is configured to supply two gas consuming appliances 300, 301, a first gas consuming appliance 300 being configured to be supplied with gas at a first pressure and a second gas consuming appliance. 301 being configured to be supplied with gas at a second pressure, the second pressure being lower than the first pressure.
  • a tenth duct 190 extends between the second flow regulating means 184 and the second gas consuming device 301, so that the first compression member 120 and the second compression member 130 are after in supplying, in parallel and independently of each other, the first gas consuming device 300 and the second gas consuming device 301.
  • An eleventh conduit 191 is further arranged between this tenth conduit 190 and the sixth conduit 106 connected to the first gas-consuming device 300, this eleventh pipe 191 carrying a pressure regulator 192.
  • This fifth operating mode illustrated in FIG. 14 corresponds to an operating mode in which the quantity of gas present in the gaseous state in the head 201 of the tank 200 is insufficient to correctly supply the gas consuming devices 300, 301, so that the first pump 140 is put into operation and supplies the heat exchanger 110.
  • the gas taken in the liquid state in the tank 200 is thus evaporated by its passage through the heat exchanger 110 and can then participate in the supply of gas consuming devices 300, 301.
  • the first compression member 120 is configured to compress the gas withdrawn from it.
  • the second compression member 130 is for its part configured to compress the gas withdrawn in the gaseous state in the head 201 of the tank 200 from a pressure of about 1 bar absolute up to a pressure between 5 bar and 20 bar, which corresponds to the supply pressure of the first gas consuming device 300.
  • the pressure regulator 192 carried by the eleventh conduit 19 1 can be put in an open position, thus allowing the passage of gas compressed by the second compression member 130 in this eleventh conduit 191. The gas from this second compression member 130 is thus expanded so as to be able to supply the second device. gas consumer 301 if necessary.
  • FIG. 14 more particularly illustrates a situation in which the quantity of gas withdrawn in the liquid state and evaporated by the heat exchanger 110 is greater than the quantity of gas necessary for the supply of the second gas consuming device 301.
  • the pressure regulating means 182 carried by the first pipe 128 is placed in its open position so as to allow the passage of the gas compressed by the first compression member 120 in this first pipe 128.
  • the regulating means 182 is configured to reduce the pressure of the gas passing through it.
  • the gas leaves the first compression member 120 at a pressure of between 2 bar and 6 bar undergoes an expansion operated by the regulating means 182 to a pressure of approximately 1 bar, and can thus be mixed with the gas sampled.
  • FIG. 15 is a cut-away view of a ship 70 which shows the tank 200 which conrienr the natural gas in the liquid state and in the gaseous state, this tank 200 being of generally prismatic shape mounted in a double hull 72 of the ship.
  • This tank 200 can be part of an LNG carrier but it can also be a tank when the gas is used as fuel for the gas consuming device.
  • the wall of the tank 200 comprises a primary sealing membrane intended to wander in contact with the gas in the liquid state contained in the tank, a secondary sealing membrane arranged between the primary sealing membrane and the double shell 72 of the ship 70, and two insulating barriers arranged respectively between the primary waterproofing membrane and the secondary waterproofing membrane and between the secondary waterproofing membrane and the double hull 72.
  • Loading and / or unloading lines 73 arranged on the upper deck of the vessel can be connected, by means of suitable connectors, to a marine or port terminal to transfer the cargo of natural gas in the liquid state from or to the tank. 200.
  • FIG. 15 also shows an example of a marine terminal comprising a loading and / or unloading station 75, an underwater conduit 76 and an onshore installation 77.
  • the loading and / or unloading station 75 is a fixed off-site installation.
  • -shore comprising a movable arm 74 and a tower 78 which supports the movable arm 74.
  • the movable arm 74 carries a bundle of isolated pipes 79 which can be connected to the loading and / or unloading pipes 73.
  • the movable arm 74 can be steered. adapts to all ship sizes.
  • the loading and unloading station 75 allows the loading and / or unloading of the ship 70 from or to the onshore installation 77.
  • the latter comprises liquefied gas storage tanks 80 and connecting pipes 81 connected by the drive submarine 76 to the post of loading or unloading 75.
  • the submarine conduit 76 allows the transfer of the liquefied gas between the loading or unloading station 75 and the onshore installation 77 over a great distance, for example five km, which makes it possible to keep the ship 70 at a great distance from the coast during loading and / or unloading operations.
  • the present invention thus proposes a gas supply system for at least one gas consuming device which makes it possible to supply gas consuming devices present on a ship while maintaining a pressure in the tank fitted to this ship. and containing the gas, at an acceptable value for this tank in all circumstances and, advantageously, at a limited cost since it only requires two compression members.

Landscapes

  • Engineering & Computer Science (AREA)
  • Mechanical Engineering (AREA)
  • General Engineering & Computer Science (AREA)
  • Chemical & Material Sciences (AREA)
  • Physics & Mathematics (AREA)
  • Thermal Sciences (AREA)
  • Combustion & Propulsion (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • General Chemical & Material Sciences (AREA)
  • Oil, Petroleum & Natural Gas (AREA)
  • Ocean & Marine Engineering (AREA)
  • Filling Or Discharging Of Gas Storage Vessels (AREA)

Abstract

La présente invention a pour objet un système (100) d´alimentation en gaz d´au moins un appareil consommateur de gaz (300) équipant un navire (70), le système (100) d´alimentation comprenant au moins : une ligne d´alimentation (123) en gaz de l´au moins un appareil consommateur de gaz (300) configurée pour être parcourue par du gaz prélevé à l´état liquide dans une cuve (200) et soumis à une pression inférieure à une pression du gaz dans un ciel (201) de la cuve (200), un premier organe de compression (120) configuré pour comprimer le gaz issu de la ligne d´alimentation (123) en gaz de l´au moins un appareil consommateur de gaz (300), un deuxième organe de compression (130), caractérisé en ce que le premier organe de compression (120) et le deuxième organe de compression (130) compriment alternativement du gaz à l´état gazeux issu de la ligne d´alimentation (123) en gaz et du gaz prélevé à l'état gazeux dans le ciel (201) de la cuve (200).

Description

Description
Titre : Système d’alimentation en gaz d’au moins un appareil consommateur de gaz équipant un navire
La présente invention concerne le domaine des navires dont le ou les moteurs est/sont alimenté(s) par du gaz naturel et qui permettent en outre de contenir et/ou transporter ce gaz naturel liquéfié.
De tels navires comprennent ainsi classiquement une cuve qui contient du gaz naturel à l’état liquide. Le gaz naturel est liquide à des températures inférieures à - 162°C, à pression atmosphérique. Ces cuves ne sont jamais parfaitement isolées thermiquement de sorte que le gaz naturel s’y évapore au moins partiellement. Ainsi, ces cuves comprennent à la fois du gaz naturel sous une forme liquide et du gaz naturel sous forme gazeuse. Ce gaz naturel sous forme gazeuse forme le ciel de cuve et la pression de ce ciel de cuve doit être contrôlée afin de ne pas endommager la cuve. De façon connue, au moins une partie du gaz naturel présent dans la cuve sous forme gazeuse est ainsi utilisée pour alimenter, entre autres, le ou les moteurs du navire.
Toutefois, lorsque le navire est à l’arrêt, la consommation de gaz naturel gazeux par ces moteurs est nulle, ou quasiment nulle, le gaz naturel présent à l’état gazeux dans la cuve n’étant plus consommé par ces moteurs. Des systèmes de reliquéfaction qui permettent de condenser le gaz naturel évaporé présent dans la cuve sont ainsi mis en place sur le navire, afin de le renvoyer vers cette cuve, à l’état liquide.
Les systèmes d’alimentation des moteurs et de reliquéfaction du gaz qui ne peut être envoyé vers ces moteurs actuellement utilisés sont très coûteux. Notamment, certains éléments constitutifs de ces systèmes d’alimentation sont prévus en double afin d’assurer une redondance, c’est-à-dire assurer une alimentation continue des moteurs, même en cas de défaillance de l’un de ces éléments. C’est par exemple le cas des dispositifs de compression qui permettent de comprimer le gaz à des pressions compatibles avec les besoins des moteurs. La présente invention vise à résoudre cet inconvénient en proposant un système de traitement du gaz comprenant moins de composants que les systèmes actuels, permettant ainsi de réduire les coûts de mise en œuvre de tels systèmes, tout en étant au moins aussi performant.
Un objet de la présente invention concerne ainsi un système d’alimentation en gaz d’au moins un appareil consommateur de gaz équipant un navire, le système d’alimentation comprenant au moins :
- une ligne d’alimentation en gaz de l’au moins un appareil consommateur de gaz configurée pour être parcourue par du gaz prélevé à l’état liquide dans une cuve et soumis à une pression inférieure à une pression du gaz dans un ciel de cuve,
- un premier organe de compression configuré pour comprimer le gaz issu de la ligne d’alimentation en gaz de l’au moins un appareil consommateur de gaz,
- un deuxième organe de compression.
Selon l’invention, le premier organe de compression et le deuxième organe de compression compriment alternativement du gaz à l’état gazeux issu de la ligne d’alimentation en gaz et du gaz prélevé à l’état gazeux dans un ciel de la cuve.
De manière avantageuse, le premier organe de compression et le deuxième organe de compression sont configurés pour alimenter indépendamment l’au moins un appareil consommateur de gaz. On comprend ici que les deux organes de compression sont configurés pour assurer l’alimentation en gaz comprimé de l’appareil consommateur de gaz. Les deux organes de compression sont ainsi redondants l’un par rapport à l’autre.
Le navire comprend la cuve configurée pour contenir le gaz liquéfié. On entend par « ciel de la cuve » une portion de la cuve dans laquelle s’accumule du gaz à l’état gazeux généré par une évaporation naturelle du gaz présent à l’état liquide dans le reste de la cuve. On entend par « fond de la cuve » une portion de la cuve qui s’étend depuis une paroi de fond de cette cuve et un plan parallèle à cette paroi de fond et agencé, au maximum, à 20% d’une hauteur totale de la cuve, cette hauteur totale étant mesurée selon une droite perpendiculaire à la paroi de fond de la cuve entre deux extrémités opposées de cette cuve, le long de cette droite. Avantageusement, le plan parallèle à la paroi de fond qui participe à délimiter le « fond de la cuve » peur erre agencé à 10% de la hauteur totale de la cuve.
L’au moins un appareil consommateur de gaz évaporé peur par exemple erre une génératrice électrique de type DFDE (Dual Fuel Diesel Electric), c’ est- à-dire un appareil consommateur de gaz configuré pour assurer l’alimentation électrique du navire, ou un moteur de propulsion du navire, tel qu’un moteur ME-GI ou XDF. Il est entendu qu’il ne s’agir que d’un exemple de réalisation de la présente invention et qu’on pourra prévoir l’installation d’appareils consommateurs de gaz différents sans sortir du contexte de la présente invention.
Selon l’invenrion, l’au moins un appareil consommateur de gaz permet avantageusement de consommer, au moins en partie, le gaz présent à l’état gazeux dans le ciel de cuve et ainsi éviter que celui-ci s’accumule dans la cuve, ce qui entraînerait une augmentation de la pression subie par la cuve, pouvant, à termes, endommager cette cuve.
Selon l’invenrion, le premier organe de compression et le deuxième organe de compression sont interchangeables pour l’alimentation de l’au moins un appareil consommateur de gaz. En d’autres termes, le premier organe de compression et le deuxième organe de compression sont tous deux adaptés pour comprimer le gaz à l’état gazeux à des pressions similaires et compatibles avec les besoins de l’au moins un appareil consommateur de gaz. De la sorte, si l’un des deux organes de compression est défaillant, l’autre peur prendre le relais et ainsi assurer une alimentation continue de l’au moins un appareil consommateur de gaz tour en maintenant une pression acceptable dans la cuve, c’ est- à-dire une pression qui ne risque pas d’endommager cette cuve, à moindre coûr.
C’est ainsi que le premier organe de compression et le deuxième organe de compression sont tous deux configurés pour comprimer le gaz issu de la ligne d’alimentation d’une pression inférieure à une pression du gaz présent dans le ciel de la cuve jusqu’à une pression supérieure ou égale à cette pression du gaz dans le ciel de cuve. Chacun des organes de compression est ainsi en mesure d’aspirer dans la ligne d’alimentation quand celle-ci est en dépression, c’est- à-dire soumise à une pression inférieure à la pression du gaz présent dans le ciel de cuve, grâce à une détente opérée en amont de cette ligne d’alimentation. Selon un exemple d’application de l’invention, la pression du gaz dans le ciel de cuve est égale, ou sensiblement égale à 1 , 1 bar.
Selon une caractéristique de la présente invention, le système comprend au moins un échangeur de chaleur configuré pour opérer un échange de chaleur entre le gaz qui circule dans la ligne d’alimentation et du gaz prélevé à l’état liquide dans la cuve. Selon un mode de réalisation de la présente invention, l’échangeur de chaleur peut par exemple être équipé d’au moins une première passe configurée pour erre alimentée par le gaz prélevé à l'état liquide dans la cuve du navire et au moins une deuxième passe configurée pour erre alimentée par le gaz soumis à une pression inférieure à la pression du gaz dans un ciel de cuve. Autrement dir, selon ce mode de réalisation, la deuxième passe de l’échangeur de chaleur participe à former la ligne d’alimentation.
Le système selon ce mode de réalisation de la présente invention comprend au moins une première pompe configurée pour alimenter la première passe de l’échangeur de chaleur, une deuxième pompe configurée pour alimenter la deuxième passe de l’échangeur de chaleur, au moins un moyen de détente étant agencé sur la ligne d’alimentation entre la deuxième pompe et la deuxième passe de l’échangeur de chaleur.
Selon un autre mode de réalisation de la présente invention, l’échangeur de chaleur est équipé d’une unique passe qui participe à former la ligne d’alimentation et cet échangeur de chaleur est agencé dans la cuve, c’est-à-dire au contact du gaz liquide contenu dans cette cuve. Selon cet autre mode de réalisation de la présente invention, un échange de chaleur s’opère donc entre le gaz soumis à une pression inférieure à la pression du gaz dans le ciel de cuve qui circule dans la première passe de l’échangeur de chaleur et le gaz présent à l'état liquide dans la cuve avec lequel l’échangeur de chaleur est en contact.
Selon un mode de fonctionnement du système selon l’invenrion, le premier organe de compression et le deuxième organe de compression aspirent le gaz prélevé dans le ciel de cuve. Selon ce mode de fonctionnement, le premier organe de compression et le deuxième organe de compression sont configurés pour comprimer le gaz jusqu’à la pression compatible avec les besoins de l’au moins un appareil consommateur de gaz. Alternativement, un appareil de détente peut être agencé en aval du premier organe de compression et du deuxième organe de compression, cet appareil de détente étant configuré pour réduire la pression du gaz comprimé par le premier et/ ou le deuxième organe de compression jusqu’à la pression compatible avec les besoins de l’au moins un appareil consommateur de gaz. Autrement dit, selon cette alternative, le gaz est comprimé à une pression supérieure à la pression compatible avec les besoins de l’au moins un appareil consommateur de gaz, puis le gaz subit une détente, c’est-à-dire une diminution de sa pression jusqu’à la pression compatible avec les besoins de l’au moins appareil consommateur de gaz.
Selon une caractéristique de la présente invention, le système d’alimentation comprend en tant qu’organe de compression uniquement le premier organe de compression et le deuxième organe de compression.
Le système d’alimentation selon l’invention peut comprendre également au moins un système de reliquéfaction du gaz comprimé par le premier organe de compression et/ou par le deuxième organe de compression. Un tel système de reliquéfaction permet avantageusement de recycler le gaz à l’état gazeux qui n’est pas consommé par l’au moins un appareil consommateur de gaz en le condensant, puis en le renvoyant dans la cuve.
Selon un mode de réalisation de la présente invention, le système de reliquéfaction comprend au moins un premier échangeur thermique équipé d’au moins une première passe configurée pour être parcourue par du gaz comprimé par le premier organe de compression et/ou par le deuxième organe de compression et d’au moins une deuxième passe configurée pour être parcourue par du gaz prélevé à l’état gazeux dans le ciel de la cuve. Autrement dit, on comprend que le premier échangeur thermique de ce système de reliquéfaction est configuré pour opérer un échange de chaleur entre le gaz comprimé par le premier organe de compression et/ou par le deuxième organe de compression et du gaz prélevé à l’état gazeux dans le ciel de la cuve. Par exemple, le système de reliquéfaction peut également comprendre au moins un deuxième échangeur thermique configuré pour opérer un échange de chaleur entre le gaz comprimé qui quitte le premier échangeur thermique et du gaz prélevé dans la cuve à l’état liquide. En d’autres termes, ce deuxième échangeur thermique comprend au moins un première passe configurée pour être alimentée par le gaz comprimé qui quitte le premier échangeur thermique et au moins une deuxième passe configurée pour être alimentée par le gaz prélevé à l’état liquide dans la cuve.
Selon une caractéristique de ce mode de réalisation de la présente invention, au moins un premier conduit est agencé entre la première pompe et la première passe de l’échangeur de chaleur et au moins un conduit supplémentaire est agencé entre le premier conduit et le deuxième échangeur thermique, au moins une première vanne de régulation étant agencée sur ce conduit supplémentaire. En d’autres termes, on comprend que la première pompe est configurée pour alimenter, au moins, la première passe de l’échangeur de chaleur et le deuxième échangeur thermique du système de reliquéfaction.
La première vanne de régulation agencée sur le conduit supplémentaire, c’est-à-dire en amont du deuxième échangeur thermique par rapport à un sens de circulation du gaz dans ce conduit supplémentaire, est configurée pour prendre une position ouverte dans laquelle elle autorise la circulation de gaz liquide dans le conduit supplémentaire et une position fermée dans laquelle elle interdit la circulation de gaz dans ce conduit supplémentaire. Il est entendu qu’il ne s’agit que d’un exemple de réalisation et que l’on pourra prévoir que la deuxième pompe n’alimente que la première passe de l’échangeur de chaleur et qu’une troisième pompe soit mise en place pour alimenter le deuxième échangeur thermique sans sortir du contexte de la présente invention.
Alternativement, le système de reliquéfaction est dépourvu du deuxième échangeur thermique et le gaz comprimé qui quitte le premier échangeur thermique en renvoyé directement dans la cuve par exemple par l’intermédiaire d’un organe de bullage disposé au fond de la cuve. Selon cette alternative, le gaz issu du premier échangeur thermique est alors libéré sous forme de bulles qui se condensent au contact du gaz présent à l’état liquide dans la cuve.
Il est entendu qu’il ne s’agit que d’exemples de réalisation et que tout autre système de reliquéfaction compatible avec l’invention pourra être envisagé. Selon une caractéristique de la présente invention, le premier organe de compression est configuré pour erre alimenté par du gaz présentant une pression comprise entre 0,35 et 0,7 bar et pour comprimer ce gaz jusqu’à une pression comprise entre 2 bar et 13 bar et dans lequel le deuxième organe de compression est configuré pour erre alimenté par du gaz présentant une pression équivalente à 1 bar et pour le comprimer jusqu’à une pression comprise entre 5 bar et 20 bar.
Selon un premier exemple de réalisation de la présente invention, au moins une canalisation est agencée entre le ciel de cuve et une entrée intermédiaire du premier organe de compression, au moins un organe de régulation étant agencé sur cette au moins une canalisation.
Par exemple, l’organe de régulation peur erre une vanne tour ou rien, c’est-à-dire une vanne configurée pour prendre une position ouverte dans laquelle elle permet la circulation du gaz dans la canalisation et une position fermée dans laquelle elle bloque la circulation de gaz dans cette canalisation.
Selon ce premier exemple de réalisation, le premier organe de compression comprend au moins une entrée principale par laquelle il est alimenté par le gaz issu de la ligne d’alimentation et au moins l’enrrée intermédiaire par laquelle il est alimenté en gaz prélevé à l'état gazeux dans le ciel de cuve. Autrement dit, on comprend que le premier organe de compression est adapté pour erre alimenté, alternativement ou simultanément, en gaz évaporé et en gaz prélevé directement à l'état gazeux dans le ciel de la cuve.
Ainsi, selon ce premier exemple de réalisation, si le deuxième organe de compression est défaillant, l’organe de régulation autorise le passage du gaz dans la canalisation de sorte que le gaz prélevé à l'état gazeux dans le ciel de cuve puisse erre comprimé par le premier organe de compression afin d’êrre envoyé vers l’au moins un appareil consommateur de gaz. Selon ce premier exemple de réalisation, le deuxième organe de compression est configuré pour alimenter l’au moins un appareil consommateur de gaz en gaz prélevé à l'état gazeux dans le ciel de cuve. Autrement dit, quel que soir l’organe de compression sur lequel survient une panne, l'alimentation de l’au moins un appareil consommateur de gaz par le gaz prélevé à l’érar gazeux dans le ciel de cuve esr assurée, er ainsi, la pression dans la cuve esr maintenue à une valeur acceptable pour cette cuve.
Selon un deuxième exemple de réalisation de la présente invention, le premier organe de compression er le deuxième organe de compression sont montés en série l’un par rapport à l’aurre. Selon ce deuxième exemple de réalisation, au moins une première conduire esr agencée entre une sortie du premier organe de compression er une entrée du deuxième organe de compression, au moins un moyen de régulation de pression étant agencé sur cette au moins une première conduire. Par exemple, le moyen de régulation de pression peur erre un organe de détente, c’est- à-dire un organe configuré pour réduire une pression du gaz qui circule dans cette première conduire. Avantageusement, cela permet au premier organe de compression de comprimer le gaz évaporé par l’échangeur de chaleur avec un écart de pression suffisant pour assurer son bon fonctionnement er limiter son usure. Le gaz ainsi comprimé par le premier organe de compression esr ensuite dérendu par le moyen de régulation de pression avant d’êrre comprimé par le deuxième organe de compression jusqu’à la pression compatible avec les besoins de l’au moins un appareil consommateur de gaz.
Selon ce deuxième exemple de réalisation, le premier organe de compression esr par exemple configuré pour erre alimenté par du gaz présentant une pression comprise entre 0,35 bar er 0,7 bar er pour le comprimer jusqu’à une pression comprise entre 2 bar er 6 bar, er le deuxième organe de compression esr quant à lui configuré pour erre alimenté par du gaz présentant une pression équivalente, ou sensiblement équivalente, à 1 bar er pour le comprimer jusqu’à une pression comprise entre 5 bar er 20 bar.
Alternativement, cette série de compressions comprime le gaz jusqu’à une pression supérieure aux besoins de l’au moins un appareil consommateur de gaz er au moins un appareil de détente esr agencé entre le deuxième organe de compression er l’au moins un appareil consommateur de gaz, cet appareil de détente étant alors configuré pour réduire la pression du gaz comprimé par le premier organe de compression er par le deuxième organe de compression jusqu’à la pression compatible avec les besoins de l’au moins un appareil consommateur de gaz. Selon le deuxième exemple de réalisation de la présente invention, au moins une deuxième conduite peut être agencée entre une sortie de la deuxième passe du premier échangeur thermique et une entrée du premier organe de compression, au moins un premier moyen de régulation de débit étant agencé sur cette au moins une deuxième conduire. Ce premier moyen de régulation de débit peur par exemple erre une vanne tour ou rien, c’est-à-dire une vanne configurée pour prendre une position ouverte dans laquelle elle autorise une circulation de gaz dans la deuxième conduire et au moins une position fermée dans laquelle elle interdit cette circulation de gaz dans la deuxième conduire. Ainsi, selon ce deuxième exemple de réalisation, lorsque le premier organe de compression est défaillant, l’appareil consommateur de gaz est alimenté par du gaz prélevé à l'état gazeux dans le ciel de cuve et comprimé par le deuxième organe de compression. Lorsque le deuxième organe de compression est défaillant, le premier moyen de régulation de débit peur erre mis en position ouverte afin de permettre au gaz prélevé à l'état gazeux dans le ciel de cuve d’alimenter le premier organe de compression et ainsi assurer l'alimentation de l’appareil consommateur de gaz par du gaz prélevé à l'état gazeux dans le ciel de cuve.
Alternativement, le premier moyen de régulation de débit peur erre un organe de régulation de pression. Selon cette alternative, lorsque le deuxième organe de compression est défaillant, le gaz prélevé à l'état gazeux dans le ciel de cuve est dirigé vers la deuxième conduire, le long de laquelle il est dérendu par le premier moyen de régulation de débit, c’est-à-dire que sa pression est diminuée, jusqu’à une pression équivalente à la pression du gaz issu de la ligne d’alimentation, c’est-à-dire une pression comprise entre 0,35 bar et 0.7 bar. Cette alternative permet ainsi, avantageusement, d’alimenter le premier organe de compression, simultanément, en gaz prélevé à l'état gazeux dans le ciel de cuve et en gaz prélevé à l'état liquide dans la cuve et évaporé par la ligne d’alimentation.
Ainsi, le deuxième exemple de réalisation de la présente invention permet d’assurer une alimentation ininterrompue de l’au moins un appareil consommateur de gaz, au moins, par du gaz prélevé à l'état gazeux dans le ciel de cuve, ce qui permet de maintenir une pression acceptable dans la cuve, c’est-à-dire une pression qui ne risque pas d’endommager cette cuve.
Selon une caractéristique de la présente invention, le système d’alimentation comprend au moins un moyen de répartition du gaz à l’état liquide issu de l’échangeur de chaleur dans un fond de la cuve. Par exemple, ce moyen de répartition est formé par une rampe équipée d’une pluralité d’orifices. Selon cet exemple, les orifices sont répartis sur route une dimension longitudinale de la rampe, chacun de ces orifices étant adapté pour permettre l'éjection de gaz à l'état liquide issu de l’échangeur de chaleur.
Optionnellement, une sortie du deuxième échangeur thermique du système de reliquéfaction par laquelle du gaz à l'état liquide ou diphasique quitte ce deuxième échangeur thermique peut également être connecté à ce moyen de répartition afin d’être retourné dans la cuve. Avantageusement, une telle rampe permet de répartir le gaz à l’état liquide issu de l’échangeur de chaleur et/ ou du deuxième échangeur thermique dans le fond de la cuve de sorte qu’il permet d’abaisser la température globale du gaz présent à l’état liquide dans cette cuve, et ainsi participe à limiter le phénomène d’évaporation qui tend à générer l’accumulation de gaz à l’état gazeux dans la cuve. Alternativement, le moyen de répartition est formé par une simple conduite.
La présente invention concerne également un navire de transport de gaz liquéfié, comprenant au moins une cuve d’une cargaison de gaz liquéfié, au moins un appareil consommateur de gaz évaporé et au moins un système d’alimentation en gaz de l’appareil consommateur de gaz selon l’invention. On entend par « une cuve d’une cargaison de gaz liquéfié », aussi bien une cuve qui sert à la fois au transport du gaz liquéfié et de réservoir de gaz liquéfié utilisé comme carburant pour l’alimentation de l’au moins un appareil consommateur de gaz, qu’une cuve qui sert uniquement de réservoir de gaz liquéfié destiné à l’alimentation de l’au moins un appareil consommateur de gaz.
Selon une caractéristique de la présente invention, le navire comprend au moins un premier appareil consommateur de gaz configuré pour être alimenté par du gaz comprimé à une première pression, et au moins un deuxième appareil consommateur de gaz configuré pour être alimenté par du gaz comprimé à une deuxième pression, le premier appareil consommateur de gaz et le deuxième appareil consommateur de gaz étant tous deux configurés pour être alimentés par l’au moins un système d’alimentation selon l’invention, et la première pression d’alimentation du premier appareil consommateur de gaz étant supérieure à la deuxième pression d’alimentation du deuxième appareil consommateur de gaz.
La présente invention concerne aussi un système pour charger ou décharger un gaz à l’état liquide qui combine au moins un moyen à terre et au moins un navire de transport de gaz à l’état liquide selon l’invention.
Enfin, l’invention concerne un procédé de chargement ou de déchargement d’un gaz à l’état liquide d’un navire de transport de gaz selon l’invention.
D’autres caractéristiques, détails et avantages de l’invention ressortiront plus clairement à la lecture de la description qui suit d’une part, et d’un exemple de réalisation donné à titre indicatif et non limitatif en référence aux dessins annexés d’autre part, sur lesquels :
[Fig. 1] illustre, schématiquement, un système d’alimentation en gaz d’au moins un appareil consommateur de gaz selon un premier exemple de réalisation de la présente invention ;
[Fig. 2] illustre, schématiquement, un premier mode de fonctionnement du système d’alimentation en gaz selon le premier exemple de réalisation illustré sur la figure 1 ;
[Fig. 3] illustre, schématiquement, un deuxième mode de fonctionnement du système d’alimentation en gaz selon le premier exemple de réalisation illustré sur la figure 1 ;
[Fig. 4] illustre, schématiquement, un troisième mode de fonctionnement du système d’alimentation en gaz selon le premier exemple de réalisation illustré sur la figure 1 ;
[Fig. 5] illustre, schématiquement, le système d’alimentation en gaz selon le premier exemple de réalisation de la présente invention, dans lequel un premier organe de compression est défaillant ;
[Fig. 6] illustre, schématiquement, le système d’alimentation en gaz selon le premier exemple de réalisation de la présente invention, dans lequel un deuxième organe de compression est défaillant ;
[Fig. 7] illustre, schématiquement, le système d’alimentation en gaz d’au moins un appareil consommateur de gaz selon un deuxième exemple de réalisation de la présente invention ;
[Fig. 8] illustre, schématiquement, un premier mode de fonctionnement du système d’alimentation en gaz selon le deuxième exemple de réalisation illustré sur la figure 7 ;
[Fig. 9] illustre, schématiquement, un deuxième mode de fonctionnement du système d’alimentation en gaz selon le deuxième exemple de réalisation illustré sur la figure 7 ;
[Fig. 10] illustre, schématiquement, un troisième mode de fonctionnement du système d’alimentation en gaz selon le deuxième exemple de réalisation illustré sur la figure 7 ;
[Fig. 11] illustre, schématiquement, le système d’alimentation en gaz selon le deuxième exemple de réalisation de la présente invention dans lequel un premier organe de compression est défaillant ;
[Fig. 12] illustre, schématiquement, le système d’alimentation en gaz selon le deuxième exemple de réalisation de la présente invention, dans lequel un deuxième organe de compression est défaillant ;
[Fig. 13] illustre, schématiquement, un quatrième mode de fonctionnement du système d’alimentation en gaz selon le deuxième exemple de réalisation illustré sur la figure 7
[Fig. 14] illustre, schématiquement, un cinquième mode de fonctionnement du système d’alimentation en gaz selon le deuxième exemple de réalisation illustré sur la figure 7
[Fig. 15] est une représentation schématique écorchée d’une cuve de navire méthanier et d’un terminal de chargement et/ou de déchargement de cette cuve.
Dans la suite de la description, les termes « amont » et « aval » s’entendent selon un sens de circulation d’un gaz à l’état liquide, gazeux ou diphasique à travers l’élément concerné. Sur les figures 2 à 6 et 8 à 14, les traits pleins représentent des portions de circuit dans lesquelles circule du gaz à l’état liquide, gazeux ou diphasique, tandis que les traits pointillés représentent des portions de circuit dans lesquelles le gaz ne circule pas. Enfin, l’espace de la cuve 200 occupé par le gaz à l’état gazeux est appelé « ciel 201 de la cuve 200 » et les termes « système 100 d’alimentation en gaz d’au moins un appareil consommateur de gaz 300 », « système 100 d’alimentation » et « système 100 » seront utilisés sans distinction.
La description donnée ci- après concerne deux exemples particuliers d’application de la présente invention dans lesquels la cuve 200 d’un navire contient du gaz naturel, c’est-à- dire un gaz en majorité composé de méthane. Il est entendu qu’il ne s’agit que d’un exemple d’application et que le système 100 d’alimentation en gaz d’au moins un appareil consommateur de gaz 300 selon l’invention peut être utilisé avec d’autres types de gaz, tels que par exemple des gaz d’hydrocarbures ou hydrogène. Selon l’invention, la cuve 200 de ce navire peut servir exclusivement de réservoir contenant le gaz destiné à l’alimentation en gaz de l’au moins un appareil consommateur de gaz 300, ou, alternativement, cette cuve 200 peut servir à la fois de réservoir en gaz et de cuve de transport de ce gaz.
Les figures 1 et 7 illustrent ainsi tout d’abord, schématiquement, le système 100 d’alimentation en gaz, à l’arrêt, selon, respectivement, le premier exemple de réalisation de la présente invention et le deuxième exemple de réalisation de la présente invention. Le système 100 comprend au moins un échangeur de chaleur 110, au moins un premier organe de compression 120, au moins un deuxième organe de compression 130 et au moins un appareil consommateur de gaz 300. Selon l’un quelconque des premier et deuxième exemples de réalisation de la présente invention illustrés ici, le système 100 comprend en outre, un système de reliquéfaction 400 du gaz.
De manière avantageuse, selon les deux exemples de réalisation de l’invention, le système d’alimentation 100 comprend uniquement deux organes de compression au titre des moyens de compression pour alimenter l’appareil consommateur de gaz 300, par exemple un moteur. Ceci est particulièrement avantageux compte tenu des coûts très élevés de ces composants et de l’obligation de constamment avoir un moyen de secours pour alimenter l’appareil consommateur de gaz 300. Le système de reliquéfaction 400 selon l’invention comprend au moins un premier échangeur thermique 410 et/ou au moins un deuxième échangeur thermique 420 agencés en série pour au moins un flux qui les traverse. Le premier échangeur thermique 410 comprend au moins une première passe 411 configurée pour être parcourue par du gaz comprimé par le premier organe de compression 120 et/ou par le deuxième organe de compression 130, et au moins une deuxième passe 412 configurée pour être parcourue par du gaz prélevé à l’état gazeux dans le ciel 201 de la cuve 200. Le deuxième échangeur thermique 420 présente quant à lui au moins une première passe 421 configurée pour être parcourue par le gaz comprimé qui quitte la première passe 411 du premier échangeur thermique 410 et au moins une deuxième passe 422 configurée pour être parcourue par du gaz prélevé à l’état liquide dans la cuve 200. Tel que décrit ci- dessous, ce gaz prélevé à l’état liquide dans la cuve 200 peut être détendu, c’est-à-dire subir une diminution de sa pression avant d’être envoyé vers la deuxième passe 422 du deuxième échangeur thermique 420.
Le premier échangeur thermique 410 est ainsi configuré pour opérer un échange de chaleur entre du gaz comprimé et du gaz prélevé, à l’état gazeux, dans le ciel 201 de la cuve 200. Il en résulte que le gaz comprimé quitte la première passe 411 du premier échangeur thermique 410 à l’état gazeux ou diphasique, c’est-à-dire un mélange de gaz et de liquide, et que le gaz prélevé à l’état gazeux dans le ciel 201 de la cuve 200 est réchauffé par son passage à travers la deuxième passe 412 du premier échangeur thermique 410. Le gaz réchauffé par son passage à travers le premier échangeur thermique 410 est alors envoyé vers l’un des organes de compression 120, 130 afin d’être comprimé puis envoyé, au moins en partie, vers l’au moins un appareil consommateur de gaz 300.
Le deuxième échangeur thermique 420 est quant à lui configuré pour opérer un échange de chaleur entre le gaz diphasique issu de la première passe 411 du premier échangeur thermique 410 et le gaz prélevé à l’état liquide dans la cuve 200. Le gaz diphasique est condensé par son passage à travers le deuxième échangeur thermique 420 afin d’être ensuite renvoyé dans un fond 203 de la cuve 200 et le gaz prélevé à l’état liquide dans la cuve 200 est quant à lui réchauffé par son passage à travers le deuxième échangeur thermique 420.
Selon un exemple de réalisation non illustré ici, le système de reliquéfaction peut être dépourvu du deuxième échangeur thermique. Selon cet exemple de réalisation, la première passe du premier échangeur thermique est connectée par exemple à un organe de bullage agencé dans le fond de la cuve. Le gaz à l’état diphasique issu du premier échangeur thermique est alors éjecté dans le fond de la cuve sous forme de bulles qui se condensent au contact du gaz à l’état liquide présent dans le fond de cette cuve.
On entend par « fond 203 de la cuve 200 » une portion de la cuve 200 qui s’étend entre une paroi de fond 202 de la cuve 200 et un plan parallèle à cette paroi de fond 202 et agencé, au maximum, à 20% de la hauteur h totale de la cuve, cette hauteur h totale étant mesurée selon une droite perpendiculaire à la paroi de fond 202 de la cuve 200 entre deux extrémités opposées de cette cuve 200, le long de cette droite. Avantageusement, le plan parallèle à la paroi de fond 202 qui participe à délimiter le « fond de la cuve » peut être agencé à 10% de la hauteur h totale de la cuve.
Il est entendu qu’il ne s’agit que d’exemples de réalisation de la présente invention et que tout autre système de reliquéfaction compatible avec l’invention pourrait être utilisé sans sortir du contexte de la présente invention. Par exemple, on pourra prévoir un système de reliquéfaction qui comprend un circuit séparé de fluide réfrigérant.
Selon l’invention, le système d’alimentation 100 comprend au moins une ligne d’alimentation 123 de l’au moins un appareil consommateur de gaz 300 configurée pour être parcourue par du gaz prélevé à l’état liquide dans la cuve 200 et soumis à une pression inférieure à une pression du gaz dans un ciel 201 de la cuve 200. Selon un exemple d’application de la présente invention, le gaz dans le ciel 201 de la cuve 200 présente une pression équivalente, ou sensiblement équivalente à la pression atmosphérique, c’est-à-dire une pression de l’ordre de 1 bar.
Le système d’alimentation 100 selon l’invention comprend au moins une pompe 141 agencée dans le fond 203 de la cuve 200 et au moins un moyen de détente 170 agencé entre cette pompe 141 et la ligne d’alimentation 123, la pompe 141 et le moyen de détente 170 étant configurés pour assurer l’alimentation de la ligne d’alimentation 123. La description qui suit donne un exemple de réalisation de cette ligne d’alimentation 123 mais il est entendu que cette ligne d’alimentation 123 pourrait prendre une forme différente sans sortir du contexte de la présente invention.
Ainsi, au moins un premier conduit 101 est agencé entre une première pompe 140 et une première passe 111 de l’échangeur de chaleur 110. Au moins un deuxième conduit 102 est agencé entre une deuxième pompe 141 et une deuxième passe 112 de l’échangeur de chaleur 110. La première pompe 140 et la deuxième pompe 141 sont toutes deux agencées au fond 203 de la cuve 200, de sorte à prélever le gaz à l’état liquide pour l’envoyer vers les première et deuxième passes 111, 112 de l’échangeur de chaleur 110. Un troisième conduit 103 s’étend entre la deuxième passe 112 de l’échangeur de chaleur 110 et le premier organe de compression 120, cette deuxième passe 112 et le troisième conduit 103 formant, au moins partiellement, la ligne d’alimentation 123 de l’au moins un appareil consommateur de gaz 300 mentionnée ci- dessus. Plus particulièrement, ce troisième conduit 103 s’étend entre la deuxième passe 112 de l’échangeur de chaleur 110 et une entrée principale 121 du premier organe de compression 120.
Selon l’invention, au moins un moyen de détente 170 est agencé sur le deuxième conduit 102, c’est-à-dire entre la deuxième pompe 141 et la deuxième passe 112 de l’échangeur de chaleur 110. Ce moyen de détente 170 est ainsi configuré pour détendre le gaz à l’état liquide acheminé par la deuxième pompe 141, c’est-à-dire pour diminuer la pression de ce gaz à l’état liquide, avant que ce dernier ne rejoigne la deuxième passe 112 de l’échangeur de chaleur 110. En d’autres termes, le moyen de détente 170 agencé en amont de l’échangeur de chaleur 110 permet de créer une différence de pression entre le gaz qui circule dans la première passe 111 et le gaz qui circule dans la deuxième passe 112 de cet échangeur de chaleur 110. Le gaz à l’état liquide circulant dans la première passe 111 de l’échangeur de chaleur 110 présente ainsi une pression identique, ou sensiblement identique à la pression du gaz contenu à l’état liquide dans la cuve 200 et le gaz circulant dans la deuxième passe 112 de l’échangeur de chaleur 110 présente quant à lui une pression inférieure à la pression du gaz contenu à l'état liquide dans la cuve 200. Le gaz qui circule ainsi dans la deuxième passe 112 se vaporise pendant son parcourt dans la deuxième passe 112 de l’échangeur de chaleur 110.
Il en résulte qu’un échange de chaleur s’opère dans cet échangeur de chaleur 110 de sorte que le gaz à l'état liquide est refroidi lors de son passage dans la première passe 111 de l’échangeur de chaleur 110 et que le gaz à l'état liquide dérendu est évaporé par son passage à travers la deuxième passe 112 de l’échangeur de chaleur 110.
Selon un exemple de réalisation de l'invention non illustré ici, l’échangeur de chaleur pourrait comprendre une unique première passe alimentée par le gaz soumis à une pression inférieure à la pression du gaz dans le ciel de cuve et erre plongé au contact du gaz contenu à l'état liquide dans la cuve. Selon cet exemple de réalisation, un échange de chaleur similaire à celui qui vient d’être décrit s’opère alors entre le gaz dérendu qui circule dans l’échangeur de chaleur et le gaz liquide au contact duquel est agencé cet échangeur de chaleur. Un conduit supplémentaire 423 est agencé entre le premier conduit 101 et la deuxième passe 422 du deuxième échangeur thermique 420, au moins une première vanne de régulation 171 étant agencée sur ce conduit supplémentaire 423. Cette première vanne de régulation 171 est configurée pour prendre une position ouverte dans laquelle elle autorise la circulation de gaz liquide dans le conduit supplémentaire 423 et une position fermée dans laquelle elle interdit la circulation de gaz dans ce conduit supplémentaire
423.
Un quatrième conduit 104 est agencé entre la première passe 111 de l’échangeur de chaleur 110 et le fond 203 de la cuve 200. Tel qu’illustré, ce quatrième conduit 104 est plus parriculièremenr agencé entre la première passe 111 de l’échangeur de chaleur 110 et un moyen de répartition 210 du gaz à l'état liquide dans le fond 203 de la cuve 200.
Selon les exemples illustrés ici, ce moyen de répartition 210 est formé par une rampe 212 agencée au fond 203 de la cuve 200. Tel que cela sera plus amplement déraillé ci- dessous, cette rampe 212 permet avantageusement de répartir le gaz refroidi par son passage à travers l’échangeur de chaleur 110 dans le fond 203 de la cuve 200. Selon un exemple de réalisation non illustré ici, ce moyen de répartition 210 peur erre formé simplement par le quatrième conduit 104 qui débouche alors directement dans le fond 203 de la cuve 200.
Un cinquième conduit 105 s’étend entre le premier organe de compression 120 et un sixième conduit 106 quant à lui connecté à l’au moins un appareil consommateur de gaz 300. En d’autres termes, le gaz prélevé à l'état liquide dans la cuve 200 par la deuxième pompe 141 et évaporé par son passage à travers la deuxième passe 112 de l’échangeur de chaleur 110 est destiné à l'alimentation de l’au moins un appareil consommateur de gaz 300.
On note également qu’un septième conduit 107 est agencé entre le deuxième organe de compression 130 et le sixième conduit 106. Ce septième conduit 107 permet notamment d’alimenter l’au moins un appareil consommateur de gaz 300 en gaz prélevé à l’état gazeux dans le ciel 201 de la cuve 200 et comprimé par le deuxième organe de compression 130.
Autrement dit, on comprend que le premier organe de compression 120 et le deuxième organe de compression 130 sont tous deux adaptés pour alimenter, indépendamment, l’au moins un appareil consommateur de gaz 300. Ainsi, le premier organe de compression 120 et le deuxième organe de compression 130 sont tous deux configurés pour comprimer le gaz à une pression compatible avec les besoins de l’appareil consommateur de gaz 300, c’est- à-dire une pression absolue comprise entre 5 bar et 20 bar ou une pression supérieure à 150 bar en fonction du type d’appareil consommateur de gaz 300 à alimenter. Le premier organe de compression 120 est en outre adapté pour comprimer le gaz issu de la deuxième passe 112 de l’échangeur de chaleur 110 d’une pression inférieure à une pression du gaz présent à l'état gazeux dans le ciel 201 de cuve 200, jusqu’à une pression supérieure ou égale à cette pression du gaz présent à l'état gazeux dans le ciel 201 de cuve 200. Par exemple, le premier organe de compression 120 est adapté pour comprimer le gaz issu de la deuxième passe 112 de l’échangeur de chaleur 110 d’une pression absolue comprise entre 0,35 bar et 0,7 bar jusqu’à la pression compatible avec les besoins de l’au moins un appareil consommateur de gaz 300, supérieure à 1.1 bar, par exemple une pression comprise entre 5 bar et 20 bar.
Il en va de même pour le deuxième organe de compression 130 qui est adapté pour comprimer le gaz issu de la deuxième passe 112 de l’échangeur de chaleur 110 d’une pression inférieure à la pression du gaz présent à l’état gazeux dans le ciel 201 de cuve 200 jusqu’à une pression supérieure ou égale à cette pression du gaz présent à l’état gazeux dans le ciel 201 de cuve 200. Par exemple, le deuxième organe de compression 130 est adapté pour comprimer le gaz issu de la deuxième passe 112 de l’échangeur de chaleur 110 d’une pression absolue comprise entre 0,35 bar et 0,7 bar jusqu’à la pression compatible avec les besoins de l’au moins un appareil consommateur de gaz 300, c’est-à- dire une pression supérieure à 1.1 bar, par exemple une pression comprise entre 5 bar et 20 bar.
Selon un exemple de réalisation non illustré ici, le premier organe de compression et le deuxième organe de compression sont configurés pour comprimer le gaz qui les alimente respectivement à une pression supérieure à la pression compatible avec les besoins de l’au moins un appareil consommateur de gaz. Selon cet exemple de réalisation, au moins un appareil de détente est agencé en aval du premier organe de compression et du deuxième organe de compression et en amont de l’appareil consommateur de gaz, cet appareil de détente étant configuré pour réduire la pression du gaz comprimé par le premier organe de compression et/ou par le deuxième organe de compression jusqu’à la pression compatible avec les besoins de l’appareil consommateur de gaz. Par exemple cet appareil de détente peut ainsi être agencé sur le sixième conduit.
Un huitième conduit 108 s’étend entre le sixième conduit 106 et le système de reliquéfaction 400 décrit ci-dessus, c’est-à-dire entre le sixième conduit 106 et la première passe 411 du premier échangeur thermique 410 de ce système de reliquéfaction 400. Tel que cela sera plus amplement détaillé ci-après, au moins une deuxième vanne de régulation 180 est agencée sur ce huitième conduit 108 afin d’y autoriser ou d’y interdire le passage de gaz comprimé qui circule dans le sixième conduit 106. Par exemple, la deuxième vanne de régulation 180 peut être une vanne « tout ou rien », c’est-à-dire une vanne configurée pour prendre une position ouverte dans laquelle elle autorise le passage du gaz comprimé dans le huitième conduit 108 et une position fermée dans laquelle elle interdit la circulation de gaz dans ce huitième conduit 108.
Enfin, un neuvième conduit 109 est agencé entre la deuxième passe 412 du premier échangeur thermique 410 et l’un ou l’autre des organes de compression 120, 130.
Autrement dit, ce neuvième conduit 109 assure l’alimentation du premier organe de compression et/ou du deuxième organe de compression 130 en gaz prélevé à l’état gazeux dans le ciel 201 de la cuve 200 et destiné à l’alimentation de l’au moins un appareil consommateur de gaz 300. Selon le premier exemple de réalisation par exemple illustré sur la figure 1, une canalisation 119 est en outre agencée entre le neuvième conduit 109 et une entrée intermédiaire 122 du premier organe de compression 120, au moins un organe de régulation 181 étant agencé sur cette canalisation 119. On note que l’entrée intermédiaire 122 du premier organe de compression 120 par laquelle ce premier organe de compression 120 est alimenté en gaz prélevé à l’état gazeux dans le ciel 201 de la cuve
200 est distincte de l’entrée principale 121 de ce premier organe de compression 120 par laquelle ce dernier est alimenté en gaz évaporé par son passage à travers l’échangeur de chaleur 110. Ces deux entrées distinctes permettent une alimentation du premier organe de compression 120 à deux niveaux de compression différents. En effet, tel que précédemment évoqué, le gaz évaporé quitte l’échangeur de chaleur 110 à une pression inférieure à la pression du gaz présent à l’état gazeux dans le ciel 201 de la cuve 200. Par exemple, le gaz évaporé quitte l’échangeur de chaleur 110 à une pression absolue inférieure à 1 bar, comprise entre 0,35 bar et 0,7 bar, tandis que le gaz prélevé à l’état gazeux dans le ciel 201 de la cuve 200 présente une pression absolue d’environ 1 bar. L’entrée intermédiaire 122 permet ainsi au gaz prélevé à l’état gazeux dans le ciel 201 de la cuve 200 de rejoindre le flux compressé après compression intermédiaire du flux provenant de l’échangeur de chaleur 110. C’est notamment le cas lorsque le premier organe de compression 120 et/ou le deuxième organe de compression 130 sont multi- étagés. Selon le deuxième exemple de réalisation illustré sur la figure 7, au moins une première conduire 128 est agencée entre le cinquième conduit 105 et le neuvième conduit 109, au moins un moyen de régulation de pression 182 étant agencé sur cette première conduire 128. Ainsi, cette première conduire 128 s’étend entre une sortie 124 du premier organe de compression 120 et un entrée 131 du deuxième organe de compression 130 et permet une alimentation du deuxième organe de compression 130 par du gaz évaporé par l’échangeur de chaleur 110 et comprimé par le premier organe de compression 120. Le moyen de régulation de pression 182 peur par exemple erre un organe de détente configuré pour réduire la pression du gaz comprimé par le premier organe de compression 120 avant que ce gaz n’alimente le deuxième organe de compression 130. En outre, ce moyen de régulation de pression 182 est configuré pour prendre une position fermée dans laquelle il interdit la circulation de gaz dans la première conduire 128. Avantageusement, ce moyen de régulation de pression 182 permet d’avoir un écart de pression entre l'entrée 125 et la sortie 124 du premier organe de compression 120 suffisant pour permet un fonctionnement optimal de ce premier organe de compression 120. Autrement dir, le gaz est comprimé à une première pression par le premier organe de compression 120, puis il est dérendu par le moyen de régulation de pression 182 avant d’être à nouveau comprimé par le deuxième organe de compression 130 jusqu’à la pression compatible avec les besoins de l’appareil consommateur de gaz 300. Par exemple, le premier organe de compression 120 est configuré pour comprimer le gaz d’une pression comprise entre 0,35 bar et 0,7 bar jusqu’à une pression comprise entre 2 bar et6 bar. Le gaz est alors dérendu jusqu’à une pression d’environ 1 bar par le moyen de régulation de pression 182, puis le deuxième organe de compression 130 est configuré pour comprimer ce gaz de sa pression de 1 bar jusqu’à une pression comprise entre 5 bar et 20 bar, c’est-à-dire la pression compatible avec les besoins de l’appareil consommateur de gaz 300.
Au moins une deuxième conduire 129 est agencée entre le neuvième conduit 109 et une entrée 125 du premier organe de compression 120, au moins un premier moyen de régulation de débit 183 étant agencé sur cette deuxième conduire 129. Selon ce deuxième exemple de réalisation de la présente invention, un deuxième moyen de régulation de débit 184 est en outre agencé sur le cinquième conduit 105, c’est-à-dire entre le premier organe de compression 120 et l’appareil consommateur de gaz 300. Par exemple, le premier moyen de régulation de débit 183 et le deuxième moyen de régulation de débit 184 peuvent erre des vannes « tour ou rien », c’est- à-dire des vannes configurées pour prendre une position ouverte dans laquelle elles autorisent le passage du gaz dans la conduire sur laquelle elles sont agencées ou une position fermée dans laquelle elles empêchent le passage du gaz dans cette conduire. Alternativement, et tel que cela sera plus amplement déraillé ci- après en référence à la figure 13, le premier moyen de régulation de débit 183 peur erre un organe de régulation de pression, c’est-à- dire un organe configuré pour réduire une pression du gaz qui le traverse. Selon encore une autre alternative, le premier moyen de régulation de débit 183 peur erre une vanne tour ou rien et une branche porteuse d’un organe de régulation de pression peur erre agencé en parallèle de cette deuxième conduire 129 porteuse du premier moyen de régulation de débit, le gaz étant adapté pour emprunter la deuxième conduire 129 ou la branche parallèle à cette deuxième conduire 129 selon le mode de fonctionnement du système 100.
Enfin, le deuxième exemple de réalisation de la présente invention se distingue du premier exemple de réalisation en ce que deux conduites de recirculation du gaz — non illustrées ici - sont ménagées en parallèles, respectivement, du premier organe de compression 120 et du deuxième organe de compression 130, chacune de ces conduites de recirculation étant porteuse d’au moins un moyen de contrôle de pression. Avantageusement, ces moyens de contrôle de pression permettent au premier organe de compression 120 et au deuxième organe de compression 130 de comprimer le gaz qui l’alimenre à des pressions différentes en fonction, par exemple, des besoins de l’au moins un appareil consommateur de gaz 300.
Par exemple, l’au moins un appareil consommateur de gaz 300 peur erre une génératrice électrique de type DFDE (Dual Fuel Diesel Electric), c’est-à-dire un appareil consommateur de gaz configuré pour assurer l’alimentation électrique du navire. L’appareil consommateur de gaz 300 peur aussi erre au moins un moteur de propulsion du navire, tel qu’un moteur ME-GI ou XDF. Il est entendu qu’il ne s’agit que d’un exemple de réalisation de la présente invention et qu’on pourra prévoir l’installation d’appareils consommateurs de gaz différents sans sortir du contexte de la présente invention.
En référence au premier exemple de réalisation de la présente invention, nous allons maintenant décrire trois modes de fonctionnement, un premier mode de fonctionnement dans lequel seule une partie du gaz présent à l’état gazeux dans le ciel 201 de la cuve 200 est consommée par l’au moins un appareil consommateur de gaz 300 et dans lequel une autre partie de ce gaz présent à l’état gazeux dans le ciel 201 de la cuve 200 est reliquéfié par le système de reliquéfaction 400 avant d’être renvoyé dans le fond de la cuve 203 et un deuxième et un troisième modes de fonctionnement dans lesquels la quantité de gaz présent à l’état gazeux dans le ciel 201 de la cuve 200 est insuffisante pour alimenter l’au moins un appareil consommateur de gaz 300 et dans lesquels du gaz est prélevé à l’état liquide dans la cuve 200 et évaporé par l’échangeur de chaleur 110 afin de pallier cette insuffisance. Tel que décrit ci-dessous, le deuxième mode de fonctionnement diffère du troisième mode de fonctionnement en ce que dans le deuxième mode de fonctionnement l’au moins un appareil consommateur de gaz 300 est alimenté par du gaz comprimé par le premier organe de compression 120 et par du gaz comprimé par le deuxième organe de compression 130 tandis que dans le troisième mode de fonctionnement, l’au moins un appareil consommateur de gaz 300 est alimenté par du gaz comprimé uniquement par le premier organe de compression.
La figure 2 illustre ainsi le premier mode de fonctionnement du système 100 selon le premier exemple de réalisation de la présente invention. Tel que représenté, l’au moins un appareil consommateur de gaz 300 est alimenté par du gaz prélevé à l’état gazeux dans le ciel 201 de la cuve 200 qui traverse le premier échangeur thermique 410 avant d’être comprimé par le deuxième organe de compression 130 jusqu’à une pression compatible avec les besoins de cet au moins un appareil consommateur de gaz 300. Une partie du gaz ainsi comprimé alimente l’appareil consommateur de gaz 300, tandis qu’une autre partie de ce gaz comprimé est envoyé vers le système de reliquéfaction 400. Cette situation apparaît par exemple quand l’appareil consommateur de gaz 300 consomme moins que la quantité de gaz qui s’évapore dans la cuve 200.
La partie du gaz comprimé envoyée vers le système de reliquéfaction 400 est ainsi tout d’abord partiellement refroidie par un échange de chaleur avec du gaz prélevé à l’état gazeux dans le ciel 201 de la cuve 200, au sein du premier échangeur thermique 410, puis ce gaz qui quitte le premier échangeur thermique 410 à l’état gazeux ou diphasique termine sa condensation par un échange de chaleur avec du gaz prélevé à l’état liquide dans la cuve 200 et détendu par la première vanne de régulation 171, cet échange de chaleur étant opéré au sein du deuxième échangeur thermique 420. Le gaz ainsi condensé en sortie du deuxième échangeur thermique 420 est renvoyé au fond de la cuve par le quatrième conduit 104. Tel que précédemment mentionné, ce quatrième conduit 104 est connecté à une rampe 212 qui présente une pluralité d’orifices 211 configurés pour permettre la libération et la répartition sur une grande surface du gaz à l’état liquide qui y parvient.
Par ailleurs, l’échangeur de chaleur 110 n’est pas alimenté, c’est-à-dire que la deuxième pompe 141 est à l’arrêt. En effet, tel que précédemment décrit, cet échangeur de chaleur 110 permet d’évaporer du gaz prélevé à l’état liquide dans la cuve 200 afin d’alimenter l’appareil consommateur de gaz 300. Lorsque le gaz présent à l’état gazeux dans le ciel 201 de la cuve 200 suffit à alimenter cet appareil consommateur de gaz 300, cet échangeur de chaleur 110 n’a pas besoin de fonctionner et la deuxième pompe 141 peut donc être arrêtée.
En revanche, lorsque la quantité de gaz présente à l’état gazeux dans le ciel 201 de la cuve 200 est insuffisante pour alimenter l’appareil consommateur de gaz 300, alors la deuxième pompe 141 est mise en fonctionnement de sorte à alimenter l’échangeur de chaleur 110. C’est par exemple ce qui est illustré sur la figure 3 qui représente le deuxième mode de fonctionnement du système 100 selon le premier exemple de réalisation de la présente invention. Ainsi, selon ce deuxième mode de fonctionnement, la première pompe 140 et la deuxième pompe 141 sont toutes deux mises en fonctionnement pour alimenter l’échangeur de chaleur 110 et ainsi alimenter l’appareil consommateur de gaz 300 en gaz évaporé et le système de reliquéfaction 400 est quant à lui mis à l’arrêt, c’est-à-dire que la deuxième vanne de régulation 180 est dans sa position fermée et que la première vanne de régulation 171 empêche la circulation de gaz dans la conduite supplémentaire 423, la totalité du gaz présent à l’état gazeux dans le ciel 201 de la cuve 200 et comprimé par le deuxième organe de compression 130 étant consommé par l’appareil consommateur de gaz 300. Ainsi, selon ce deuxième mode de fonctionnement, l’au moins un appareil consommateur de gaz 300 est alimenté par du gaz prélevé à l’état liquide dans la cuve 200, évaporé dans l’échangeur de chaleur 110 et comprimé par le premier organe de compression 120 et également par du gaz prélevé à l’état gazeux dans le ciel 201 de la cuve 200 et comprimé par le deuxième organe de compression 130.
Tel que précédemment évoqué, le système d’alimentation 100 selon l’invention permet également, de façon avantageuse, de n’utiliser que le premier organe de compression 120 pour alimenter l’au moins un appareil consommateur de gaz 300 avec du gaz prélevé à l’état gazeux dans le ciel 201 de la cuve 200 et avec du gaz prélevé à l’état liquide et évaporé. Un tel mode de fonctionnement correspond au troisième mode de fonctionnement illustré sur la figure 4.
Ce troisième mode de fonctionnement diffère du deuxième mode de fonctionnement notamment en ce que le deuxième organe de compression 130 est à l’arrêt et l’organe de régulation 181 est dans sa position ouverte, autorisant ainsi la circulation de gaz dans la canalisation 119. Tel que décrit ci-dessus, le gaz évaporé par son passage à travers l’échangeur de chaleur 110 rejoint le premier organe de compression 120 dans lequel il est comprimé à une pression compatible avec les besoins de l’appareil consommateur de gaz 300. Le gaz prélevé à l’état gazeux dans le ciel 201 de la cuve 200 passe quant à lui à travers le premier échangeur thermique 410 dans lequel il ne subit d’autre modification de température ou de pression que celles liées à son aspiration et aux pertes de charge inhérentes au transport de ce genre de fluide, et emprunte ensuite la canalisation 119 par laquelle il rejoint le premier organe de compression 120 par son entrée intermédiaire 122. Le premier organe de compression 120 esr alors configuré pour comprimer ce gaz jusqu’à la pression compatible avec les besoins de l’appareil consommateur de gaz 300.
Selon ce troisième mode de fonctionnement, le premier organe de compression 120 peur par exemple erre un compresseur multi-étagé. Ainsi, le gaz évaporé qui alimente le premier organe de compression 120 par son entrée principale 121 esr comprimé jusqu’à une pression équivalente à la pression du gaz présent à l'état gazeux dans le ciel 201 de la cuve 200. L’enrrée intermédiaire 122 du premier organe de compression 120 esr alors ménagée de sorte à ce que le gaz prélevé à l'état gazeux dans le ciel 201 de la cuve 200 se mélange au gaz évaporé en un point du premier organe de compression 120 au niveau duquel ce gaz évaporé esr déjà comprimé à la pression du gaz présent dans le ciel 201 de la cuve 200. Le premier organe de compression 120 esr alors adapté pour comprimer le mélange de gaz ainsi formé jusqu’à la pression compatible avec les besoins de l’au moins un appareil consommateur de gaz 300.
Avantageusement, ce troisième mode de fonctionnement permet également de pallier une éventuelle défaillance du deuxième organe de compression 130, c’est- à-dire de maintenir une alimentation de l’au moins un appareil consommateur de gaz 300 par du gaz prélevé à l'état gazeux dans le ciel 201 de la cuve 200 et par du gaz prélevé à l'état liquide dans la cuve 200 et évaporé par l’échangeur de chaleur 110.
Il existe en outre un quatrième mode de fonctionnement non illustré ici, dir « à l’équilibre » dans lequel la quantité de gaz contenu dans le ciel de cuve à l'état gazeux esr équivalente, ou sensiblement équivalente au besoin de l’au moins un appareil consommateur de gaz. Selon ce quatrième mode de fonctionnement, la première pompe et la deuxième pompe sont ainsi à l'arrêt, et ni l’échangeur de chaleur, ni le système de reliquéfaction ne fonctionne, l’appareil consommateur de gaz étant alors alimenté par le premier organe de compression ou par le deuxième organe de compression qui aspire le gaz à l'état gazeux présent dans le ciel 201 de la cuve 200.
La figure 5 illustre le système 100 d’alimentation en gaz selon le premier exemple de réalisation de la présente invention dans lequel le premier organe de compression 120 esr défaillant. On comprend de cette figure 5 qu’en cas de défaillance du premier organe de compression 120, l’alimentation de l’appareil consommateur de gaz 300 reste assurée par le gaz prélevé à l’état gazeux dans le ciel 201 de la cuve 200, ce qui permet également un maintien de la pression dans la cuve 200 à une valeur acceptable. Dans cette situation, cette figure 5 illustre un mode identique au premier mode de fonctionnement du système 100 illustré à la figure 2.
La figure 6 illustre quant à elle le premier mode de fonctionnement appliqué au premier exemple de réalisation, dans lequel le deuxième organe de compression 130 est défaillant. Tel qu’illustré, en cas de défaillance du deuxième organe de compression 130, l’organe de régulation 181 est ouvert afin de permettre au gaz prélevé à l’état gazeux dans le ciel de cuve 200 de rejoindre le premier organe de compression 120 dans lequel sa pression est augmentée jusqu’à la pression compatible avec les besoins de l’appareil consommateur de gaz 300. Cette figure illustrant le premier mode de fonctionnement, le système de reliquéfaction est actif, c’est-à-dire que la deuxième vanne de régulation 180 est ouverte et que la première pompe 140 fonctionne pour alimenter le deuxième échangeur thermique 420 tandis que l’échangeur de chaleur 110 est à l’arrêt. Pour ces aspects, la description de la figure 2 s’applique mutatis mutandis à la figure 5.
Le système 100 d’alimentation en gaz selon le premier exemple de réalisation de la présente invention permet ainsi une alimentation ininterrompue de l’au moins un appareil consommateur de gaz 300 par du gaz prélevé à l’état gazeux dans le ciel 201 de la cuve 200, ce qui assure un maintien de la pression dans la cuve 200 à une valeur acceptable pour cette cuve 200, c’est-à-dire une pression qui ne risque pas d’endommager cette dernière. En parallèle de cet aspect, les deux organes de compression sont également conçus pour aspirer le gaz évaporé dans la première passe 112 de l’échangeur de chaleur 110 à une pression absolue comprise entre 0.35 bar et 0,7 bar et pour porter ce gaz à une pression absolue comprise entre 5 bar et 20 bar, ou supérieure à 150 bar en fonction de l’appareil consommateur de gaz 300 concerné.
La description du premier mode de fonctionnement qui vient d’être donnée en référence au premier exemple de réalisation s’applique mutatis mutandis au premier mode de fonctionnement du deuxième exemple de réalisation illustré sur la figure 8. Autrement dit, selon le premier mode de fonctionnement, la deuxième pompe 141 est à l’arrêt, le moyen de régulation de pression 182, le premier moyen de régulation de débit 183 et le deuxième moyen de régulation de débit 184 sont tous trois dans leur position fermée et le premier organe de compression 120 est à l’arrêt, l’alimentation de l’appareil consommateur de gaz 300 étant assurée par le gaz prélevé à l’état gazeux dans le ciel 201 de la cuve 200 et comprimé par le deuxième organe de compression 130. Pour le fonctionnement du système de reliquéfaction, la description donnée ci-dessus en référence à la figure 2 s’applique.
Concernant le deuxième mode de fonctionnement illustré à la figure 9, le système 100 selon le deuxième exemple de réalisation diffère du premier exemple de réalisation, notamment en ce que le premier organe de compression 120 et le deuxième organe de compression 130 fonctionnent en série, sur le flux de gaz.
La figure 9 illustre ce deuxième mode de fonctionnement appliqué au deuxième exemple de réalisation de la présente invention. Dans la description qui suit, seuls les éléments qui distinguent le deuxième mode de fonctionnement appliqué au deuxième exemple de réalisation du deuxième mode de fonctionnement appliqué au premier exemple de réalisation sont décrits.
Tel qu’illustré, selon ce deuxième exemple de réalisation, le gaz évaporé qui quitte la deuxième passe 112 de l’échangeur de chaleur 110 est tout d’abord comprimé par le premier organe de compression 120, puis il emprunte la première conduite 128 pour rejoindre le deuxième organe de compression 130 dans lequel il subit une deuxième compression avant d’alimenter l’appareil consommateur de gaz 300. Autrement dit, le moyen de régulation de pression 182 autorise la circulation de gaz dans la première conduite 128, tandis que le premier moyen de régulation de débit 183 et le deuxième moyen de régulation de débit 184 sont dans leur position fermée. Selon l’invention, le gaz évaporé quitte l’échangeur de chaleur 110 à une pression absolue comprise entre 0,35 bar et 0,7 bar et il est comprimé à une pression absolue comprise entre 2 bar et 6 bar, avantageusement à une pression d’environ 3 bar, par le premier organe de compression 120. Ce gaz à une pression absolue d’environ 3 bar emprunte alors la première conduire 128 le long de laquelle il subir une dérenre opérée par le moyen de régulation de pression 182, c’esr- à-dire que sa pression esr réduire jusqu’à une pression égale, ou sensiblement égale, à 1 bar. Le gaz esr ensuite comprimé par le deuxième organe de compression 130 à une pression compatible avec les besoins de l’appareil consommateur de gaz 300, par exemple une pression comprise entre 5 bar et 20 bar ou supérieure à 150 bar, selon l’appareil consommateur de gaz 300 esr un consommateur dir basse pression ou haute pression.
La figure 10 illustre quant à elle un troisième mode de fonctionnement du deuxième exemple de réalisation dans lequel l’au moins un appareil consommateur de gaz 300 esr alimenté par du gaz prélevé à l'état liquide dans la cuve 200, évaporé par l’échangeur de chaleur 110 et comprimé par le premier organe de compression 120, et également par du gaz prélevé à l’état gazeux dans le ciel 201 de la cuve 200 et comprimé par le deuxième organe de compression 130. Ainsi, tel qu’illustré, selon ce troisième mode de fonctionnement, le moyen de régulation de pression 182 et le premier moyen de régulation de débit 183 sont dans leurs positions fermées tandis que le deuxième moyen de régulation de débit 184 esr dans sa position ouverte. Le gaz prélevé à l'état gazeux dans le ciel 201 de la cuve 200 passe ainsi dans le premier échangeur thermique 410 dans lequel il ne subir aucun changement de température ou de pression significatif avant d’être comprimé jusqu’à la pression compatible avec les besoin de l’appareil consommateur de gaz 300 par le deuxième organe de compression 130 puis il esr envoyé vers cet appareil consommateur de gaz 300. Le gaz prélevé à l'état liquide dans la cuve 200 esr quant à lui évaporé grâce à l’échange de chaleur qui s’opère dans l’échangeur de chaleur 110 puis il esr comprimé jusqu’à la pression compatible avec les besoins de l’appareil consommateur de gaz 300 par le premier organe de compression 120 afin de pouvoir ensuite alimenter cet appareil consommateur de gaz 300. Ainsi, selon ce deuxième exemple de réalisation, le premier organe de compression 120 esr configuré pour comprimer le gaz issu de l’échangeur de chaleur 110 d’une pression comprise entre 0,35 bar et 0,7 bar jusqu’à une pression comprise entre 5 bar et 20 bar, ou supérieure à 150 bar selon l’appareil consommateur de gaz à alimenter et le deuxième organe de compression 130 esr configuré pour comprimer le gaz prélevé à l’état gazeux dans le ciel 201 de la cuve 200 d’une pression environ égale à 1 bar jusqu’à une pression comprise entre 5 bar et 20 bar ou supérieure à 150 bar en fonction de l’appareil consommateur de gaz à alimenter.
De façon similaire à ce qui a été décrit ci-dessus en référence aux figures 5 et 6, le système d’alimentation 100 selon le deuxième exemple de réalisation prévoir une redondance des organes de compression 120, 130 afin d’assurer, d’une part, une alimentation continue de l’appareil consommateur de gaz 300 et, d’autre part, un maintien de la pression dans la cuve 200 à une valeur acceptable pour cette cuve 200.
Les figures 11 et 12 illustrent cette redondance des organes de compression 120, 130.
La figure 11 illustre le système 100 d’alimen ration en gaz selon le deuxième exemple de réalisation de la présente invention dans lequel le premier organe de compression 120 est défaillant. Tel que représenté, en cas de défaillance du premier organe de compression 120, l’alimenrarion de l’appareil consommateur de gaz 300 en gaz prélevé à l'état gazeux dans le ciel 201 de la cuve 200 est assurée par le deuxième organe de compression 130, le moyen de régulation de pression 182, le premier moyen de régulation de débit 183 et le deuxième moyen de régulation de débit 184 étant tous trois dans leur position fermée, c’est- à-dire interdisant la circulation de gaz, respectivement, dans la première conduire 128, dans la deuxième conduire 129 et dans le cinquième conduit 105. Dans cette situation, cette figure 9 illustre un mode identique au premier mode de fonctionnement du système 100 illustré à la figure 8 et on pourra se référer à la description faire ci-dessus en référence à cette figure 8.
La figure 12 illustre le système 100 d’alimentation en gaz d’au moins un appareil consommateur de gaz 300 selon le deuxième exemple de réalisation de la présente invention dans lequel le deuxième organe de compression 130 est défaillant. Dans cette situation, le moyen de régulation de pression 182 est mis dans sa position fermée, de sorte qu’aucun gaz ne circule dans la première conduire 128, le premier moyen de régulation de débit 183 est mis dans sa position ouverte et le deuxième moyen de régulation de débit 184 est lui aussi mis dans sa position ouverte. Ainsi, le gaz prélevé à l'état gazeux dans le ciel 201 de la cuve 200 emprunte la deuxième conduire 129 pour rejoindre le premier organe de compression 120 configuré pour comprimer le gaz jusqu’à la pression compatible avec les besoins de l’appareil consommateur de gaz 300. Le gaz ainsi comprimé emprunte alors le cinquième conduit 105 et le sixième conduit 106 pour rejoindre l’appareil consommateur de gaz 300. La deuxième pompe 141 est quant à elle arrêtée de sorte qu’aucun échange de chaleur ne s’opère dans l’échangeur de chaleur 110.
Ainsi, le système 100 selon le deuxième exemple de réalisation permet d’assurer l’alimenrarion de l’appareil consommateur de gaz 300 par du gaz prélevé à l'état gazeux dans le ciel 201 de la cuve 200, assurant ainsi le maintien de la pression dans la cuve 200 à une valeur acceptable pour cette cuve 200 en route circonstance, et notamment en cas de défaillance du premier organe de compression 120 ou du deuxième organe de compression 130.
Les figures 13 et 14 illustrent un quatrième mode de fonctionnement et un cinquième mode de fonctionnement du système 100 selon le deuxième exemple de réalisation de la présente invention.
La figure 13 illustre ainsi le quatrième mode de fonctionnement du système 100. Selon ce quatrième mode de fonctionnement, le premier moyen de régulation de débit 183 porté par la deuxième conduire 129 est un organe de régulation de pression. Ce quatrième mode de fonctionnement correspond à un mode de fonctionnement dans lequel la quantité de gaz prélevé à l'état gazeux dans le ciel 201 de la cuve 200 est insuffisante pour alimenter correctement l’au moins un appareil consommateur de gaz 300. La première pompe 140 est donc mise en fonctionnement de sorte à permettre l’alimenrarion de l’au moins un appareil consommateur de gaz 300 en gaz évaporé par l’échangeur de chaleur 110. En outre, selon ce quatrième mode de fonctionnement, la circulation de gaz dans le septième conduit 107 est interrompue — par exemple au moyen d’une vanne tour ou rien non illustrée ici - de sorte que le gaz prélevé à l'état gazeux dans le ciel 201 de la cuve 200 est dirigé vers la deuxième conduire 129 le long de laquelle il subir une détente opérée par le premier moyen de régulation de débit 183. Le gaz prélevé à une pression d’environ 1 bar absolu est ainsi dérendu jusqu’à une pression comprise entre 0,35 bar et 0,7 bar afin de pouvoir erre mélangé au gaz prélevé à l'état liquide dans la cuve 200 et évaporé par l’échangeur de chaleur 110, puis d’être comprimé par le premier organe de compression 120 et enfin d’êrre utilisé pour alimenter l’appareil consommateur de gaz 300. Autrement dir, ce quatrième mode de fonctionnement permet avantageusement d’alimenter le premier organe de compression 120 en gaz prélevé à l'état liquide dans la cuve 200 et évaporé par l’échangeur de chaleur 110 et en gaz prélevé à l'état gazeux dans le ciel 201 de la cuve 200 par une même entrée 125 de ce premier organe de compression 120.
La figure 14 illustre quant à elle le cinquième mode de fonctionnement du système 100 selon le deuxième exemple de réalisation. Selon ce cinquième mode de fonctionnement illustré, le système 100 est configuré pour alimenter deux appareils consommateurs de gaz 300, 301, un premier appareil consommateur de gaz 300 étant configuré pour être alimenté par du gaz à une première pression et un deuxième appareil consommateur de gaz 301 étant configuré pour être alimenté par du gaz à une deuxième pression, la deuxième pression étant inférieure à la première pression.
Selon ce cinquième mode de fonctionnement, un dixième conduit 190 s’étend entre le deuxième moyen de régulation du débit 184 et le deuxième appareil consommateur de gaz 301, de sorte que le premier organe de compression 120 et le deuxième organe de compression 130 sont apres à alimenter, en parallèle et indépendamment l’un de l'autre, le premier appareil consommateur de gaz 300 et le deuxième appareil consommateur de gaz 301. Un onzième conduit 191 est en outre agencé entre ce dixième conduit 190 et le sixième conduit 106 connecté au premier appareil consommateur de gaz 300, ce onzième conduit 191 étant porteur d’un organe de régulation de pression 192.
Ce cinquième mode de fonctionnement illustré sur la figure 14 correspond à un mode de fonctionnement dans lequel la quantité de gaz présent à l'état gazeux dans le ciel 201 de la cuve 200 est insuffisante pour alimenter correctement les appareils consommateurs de gaz 300, 301, de sorte que la première pompe 140 est mise en fonctionnement et alimente l’échangeur de chaleur 110. De façon similaire à ce qui a été décrit précédemment, le gaz prélevé à l'état liquide dans la cuve 200 est ainsi évaporé par son passage à travers l’échangeur de chaleur 110 et peut ensuite participer à l’alimentation des appareils consommateurs de gaz 300, 301. Ainsi, selon ce cinquième mode de fonctionnement, le premier organe de compression 120 est configuré pour comprimer le gaz prélevé à l’état liquide dans la cuve 200 et évaporé par son passage à travers l’échangeur de chaleur 110 d’une pression absolue comprise entre 0,35 bar et 0.7 bar jusqu’à une pression comprise entre 2 bar et 6 bar, c’est-à-dire une pression correspondant à la pression d’alimentation du deuxième appareil consommateur de gaz 301. Le deuxième organe de compression 130 est quant à lui configuré pour comprimer le gaz prélevé à l’état gazeux dans le ciel 201 de la cuve 200 d’une pression d’environ 1 bar absolu jusqu’à une pression comprise entre 5 bar et 20 bar, ce qui correspond à la pression d’alimentation du premier appareil consommateur de gaz 300. Optionnellement, l’organe de régulation de pression 192 porté par le onzième conduit 191 peut être mis dans une position ouverte, autorisant ainsi le passage de gaz comprimé par le deuxième organe de compression 130 dans ce onzième conduit 191. Le gaz issu de ce deuxième organe de compression 130 est ainsi détendu de sorte à pouvoir alimenter le deuxième appareil consommateur de gaz 301 si besoin.
La figure 14 illustre plus particulièrement une situation dans laquelle la quantité de gaz prélevé à l’état liquide et évaporé par l’échangeur de chaleur 110 est supérieure à la quantité de gaz nécessaire à l’alimentation du deuxième appareil consommateur de gaz 301. Dans ce cas, le moyen de régulation de pression 182 porté par la première conduite 128 est mis dans sa position ouverte de sorte à autoriser le passage du gaz comprimé par le premier organe de compression 120 dans cette première conduite 128. Tel que précédemment évoqué, le moyen de régulation 182 est configuré pour réduire la pression du gaz qui le traverse. Ainsi, le gaz quitte le premier organe de compression 120 à une pression comprise entre 2 bar et 6 bar subit une détente opérée par le moyen de régulation 182 jusqu’à une pression d’environ 1 bar, et peut ainsi être mélangé au gaz prélevé à l’état gazeux dans le ciel 201 de la cuve 200 pour être comprimé par le deuxième organe de compression 130 jusqu’à une pression comprise entre 5 bar et 20 bar afin de pouvoir ensuite alimenter le premier appareil consommateur de gaz 300. La description des systèmes de redondance prévus en cas de défaillance du premier organe de compression 120 ou du deuxième organe de compression 130 donnée précédemment en référence aux figures 11 et 12 s’applique mutatis mutandis à ces quatrième et cinquième modes de fonctionnement.
Enfin, la figure 15 est une vue écorchée d’un navire 70 qui montre la cuve 200 qui conrienr le gaz naturel à l'état liquide et à l'état gazeux, cette cuve 200 étant de forme générale prismatique montée dans une double coque 72 du navire. Cette cuve 200 peur faire partie d’un méthanier mais il peur également s’agir d’un réservoir quand le gaz est exploité comme carburant de l’appareil consommateur de gaz.
La paroi de la cuve 200 comporte une membrane d'étanchéité primaire destinée à erre en contact avec le gaz à l'état liquide contenu dans la cuve, une membrane d'étanchéité secondaire agencée entre la membrane d'étanchéité primaire et la double coque 72 du navire 70, et deux barrières isolantes agencées respectivement entre la membrane d'étanchéité primaire et la membrane d'étanchéité secondaire et entre la membrane d'étanchéité secondaire et la double coque 72.
Des canalisations de chargement et/ou de déchargement 73 disposées sur le pont supérieur du navire peuvent erre raccordées, au moyen de connecteurs appropriées, à un terminal maritime ou portuaire pour transférer la cargaison de gaz naturel à l'état liquide depuis ou vers la cuve 200.
La figure 15 représente également un exemple de terminal maritime comportant un poste de chargement et/ou de déchargement 75, une conduire sous-marine 76 et une installation à terre 77. Le poste de chargemenr et/ou de déchargement 75 est une installation fixe off-shore comportant un bras mobile 74 et une tour 78 qui supporte le bras mobile 74. Le bras mobile 74 porte un faisceau de canalisations isolées 79 pouvant se connecter aux canalisations de chargemenr et/ou de déchargement 73. Le bras mobile 74 orientable s'adapte à tous les gabarits de navire. Le poste de chargemenr et de déchargement 75 permet le chargemenr et/ou le déchargement du navire 70 depuis ou vers l'installation à terre 77. Celle-ci comporte des cuves de stockage de gaz liquéfié 80 et des conduites de liaison 81 reliées par la conduire sous-marine 76 au poste de chargement ou de déchargement 75. La conduire sous-marine 76 permet le transfert du gaz liquéfié entre le poste de chargement ou de déchargement 75 et l'installation à terre 77 sur une grande distance, par exemple cinq km, ce qui permet de garder le navire 70 à grande distance de la côte pendant les opérations de chargement et/ ou de déchargement. Pour engendrer la pression nécessaire au rransferr du gaz liquéfié, on mer en œuvre une ou des pompes de déchargement portées par la tour de chargement et/ou de déchargement de la cuve 200 et/ou des pompes équipant l'installation à terre 77 et/ou des pompes équipant le poste de chargement et de déchargement 75.
Bien sûr, l’invenrion n’est pas limitée aux exemples qui viennent d’êrre décrit et de nombreux aménagements peuvent être apportés à ces exemples sans sortir du cadre de l’invention.
La présente invention propose ainsi un système d’alimentation en gaz d’au moins un appareil consommateur de gaz qui permet d’alimenter les appareils consommateurs de gaz présents sur un navire tout en assurant un maintien d’une pression dans la cuve équipant ce navire et contenant le gaz, à une valeur acceptable pour cette cuve en toutes circonstances et, avantageusement, pour un coût limité puisqu’il ne nécessite que deux organes de compression.
La présente invention ne saurait toutefois se limiter aux moyens et configurations décrits et illustrés ici et elle s’étend également à tout moyen et toute configuration équivalents ainsi qu’à toute combinaison techniquement opérante de tels moyens. Notamment, les caractéristiques décrites en référence aux différents exemples de réalisation peuvent être combinées dans la mesure où elles ne sont pas incompatibles entre elles.

Claims

REVENDICATIONS
1. Système (100) d’alimentation en gaz d’au moins un appareil consommateur de gaz (300) équipant un navire (70), le système (100) d’alimentation comprenant au moins :
- une ligne d’alimentation (123) en gaz de l’au moins un appareil consommateur de gaz (300) configurée pour être parcourue par du gaz prélevé à l’état liquide dans une cuve (200) et soumis à une pression inférieure à une pression du gaz dans un ciel (201) de la cuve (200),
- un premier organe de compression (120) configuré pour comprimer le gaz issu de la ligne d’alimentation (123) en gaz de l’au moins un appareil consommateur de gaz (300),
- un deuxième organe de compression (130), caractérisé en ce que le premier organe de compression (120) et le deuxième organe de compression (130) compriment alternativement du gaz à l’état gazeux issu de la ligne d’alimentation (123) en gaz et du gaz prélevé à l’état gazeux dans le ciel (201) de la cuve (200).
2. Système (100) d’alimentation en gaz selon la revendication précédente, comprenant au moins un échangeur de chaleur (110) configuré pour opérer un échange de chaleur entre le gaz qui circule dans la ligne d’alimentation (123) et du gaz prélevé à l’état liquide dans la cuve (200).
3. Système (100) d’alimentation en gaz selon la revendication précédente, dans lequel l’échangeur de chaleur (110) est équipé d’au moins une première passe (111) configurée pour être alimentée par le gaz prélevé à l’état liquide dans la cuve (200) du navire (70) et au moins une deuxième passe (112) configurée pour être alimentée par le gaz soumis à une pression inférieure à la pression du gaz dans le ciel (201) de la cuve (200),
4. Système (100) selon la revendication précédente, comprenant au moins une première pompe (140) configurée pour alimenter la première passe (111) de l’échangeur de chaleur (110), une deuxième pompe (141) configurée pour alimenter la deuxième passe (112) de l’échangeur de chaleur (110), au moins un moyen de détente (170) étant agencé sur la ligne d’alimentation (123), entre la deuxième pompe (141) et la deuxième passe (112) de l’échangeur de chaleur (110).
5. Système (100) selon l’une quelconque des revendications précédentes, dans lequel le premier organe de compression (120) et le deuxième organe de compression (130) aspirent le gaz prélevé dans le ciel (201) de la cuve (200).
6. Système (100) selon l’une quelconque des revendications précédentes, comprenant en tant qu’organe de compression uniquement le premier organe de compression (120) et le deuxième organe de compression (130).
7. Système (100) selon l’une quelconque des revendications précédentes, comprenant au moins un système de reliquéfaction (400) du gaz comprimé par le premier organe de compression (120) et/ou par le deuxième organe de compression (130).
8. Système (100) selon la revendication précédente, dans lequel le système de reliquéfaction (400) comprend au moins un premier échangeur thermique (410) équipé d’au moins une première passe (411) configurée pour être parcourue par du gaz comprimé par le premier organe de compression (120) et/ou par le deuxième organe de compression (130) et d’au moins une deuxième passe (412) configurée pour être parcourue par du gaz prélevé à l’état gazeux dans le ciel (201) de la cuve (200).
9. Système (100) selon la revendication précédente, dans lequel le système de reliquéfaction (400) comprend au moins un deuxième échangeur thermique (420) configuré pour opérer un échange de chaleur entre le gaz comprimé qui quitte la première passe (411) du premier échangeur thermique (410) et du gaz prélevé à l’état liquide dans la cuve (200).
10. Système (100) selon l’une quelconque des revendications précédentes, dans lequel le premier organe de compression (120) est configuré pour être alimenté par du gaz présentant une pression comprise entre 0,35 et 0,7 bar et pour comprimer ce gaz jusqu’à une pression comprise entre 2 bar et 13 bar et dans lequel le deuxième organe de compression (130) est configuré pour être alimenté par du gaz présentant une pression équivalente à 1 bar et pour le comprimer jusqu’à une pression comprise entre 5 bar et 20 bar.
11. Système (100) selon l’une quelconque des revendications précédentes, dans lequel au moins une canalisation (119) est agencée entre le ciel (201) de la cuve (200) et une entrée intermédiaire (122) du premier organe de compression (120), au moins un organe de régulation (181) étant agencée sur cette au moins une canalisation (119).
12. Système (100) selon l’une quelconque des revendications 1 à 10, dans lequel le premier organe de compression (120) et le deuxième organe de compression (130) sont montés en série l’un par rapport à l’autre.
13. Système (100) selon la revendication précédente, dans lequel au moins une première conduite (128) est agencée entre une sortie (124) du premier organe de compression (120) et une entrée (131) du deuxième organe de compression (130), au moins un moyen de régulation de pression (182) étant agencé sur cette au moins une première conduite (128).
14. Système (100) selon la revendication précédente, dans lequel au moins une deuxième conduite (129) est agencée entre une sortie de la deuxième passe (412) du premier échangeur thermique (410) et une entrée (125) du premier organe de compression (120), au moins un premier moyen de régulation de débit (183) étant agencé sur cette au moins une deuxième conduite (129).
15. Système (100) selon l’une quelconque des revendications 12 à 14, dans lequel le premier organe de compression (120) est configuré pour être alimenté par du gaz présentant une pression comprise entre 0,35 bar et 0,7 bar et pour le comprimer jusqu’à une pression comprise entre 2 bar et 6 bar, et dans lequel le deuxième organe de compression (130) est configuré pour être alimenté par du gaz présentant une pression équivalente, ou sensiblement équivalente, à 1 bar et pour le comprimer jusqu’à une pression comprise entre 5 bar et 20 bar.
16. Navire (70) de transport de gaz liquéfié, comprenant au moins une cuve (200) d’une cargaison de gaz liquéfié, au moins un appareil consommateur de gaz (300) évaporé et au moins un système (100) d’alimentation en gaz de l’au moins un appareil consommateur de gaz (300) selon l’une quelconque des revendications précédentes.
17. Navire (70) selon la revendication précédente, comprenant au moins un premier appareil consommateur de gaz (300) configuré pour être alimenté par du gaz comprimé à une première pression, et au moins un deuxième appareil consommateur de gaz (301) configuré pour être alimenté par du gaz comprimé à une deuxième pression, le premier appareil consommateur de gaz (300) et le deuxième appareil consommateur de gaz (301) étant tous deux configurés pour être alimentés par l’au moins un système (100) d’alimentation, et la première pression d’alimentation du premier appareil consommateur de gaz (300) étant supérieure à la deuxième pression d’alimentation du deuxième appareil consommateur de gaz (301).
18. Système (100) pour charger ou décharger un gaz à l'état liquide qui combine au moins un moyen à terre et au moins un navire (70) de transport de gaz à l'état liquide selon la revendication précédente.
19. Procédé de chargement ou de déchargement d’un gaz à l'état liquide d’un navire (70) de transport de gaz selon la revendication 16.
PCT/FR2020/052094 2019-11-20 2020-11-17 Système d'alimentation en gaz d'au moins un appareil consommateur de gaz équipant un navire WO2021099726A1 (fr)

Priority Applications (5)

Application Number Priority Date Filing Date Title
JP2022529339A JP2023502422A (ja) 2019-11-20 2020-11-17 船舶に搭載される少なくとも1つのガス消費装置へガスを供給するシステム
EP20823901.2A EP4062046A1 (fr) 2019-11-20 2020-11-17 Système d'alimentation en gaz d'au moins un appareil consommateur de gaz équipant un navire
KR1020227020533A KR20220100692A (ko) 2019-11-20 2020-11-17 선박에 장착되는 적어도 하나의 가스 소비 기구에 가스를 공급하는 시스템
US17/778,032 US20230032594A1 (en) 2019-11-20 2020-11-17 System for supplying gas to at least one gas-consuming appliance equipping a ship
CN202080080954.1A CN114729612A (zh) 2019-11-20 2020-11-17 用于向装备在船上的至少一个气体消耗设备供应气体的系统

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
FR1912982A FR3103227B1 (fr) 2019-11-20 2019-11-20 Système d’alimentation en gaz d’au moins un appareil consommateur de gaz équipant un navire
FRFR1912982 2019-11-20

Publications (1)

Publication Number Publication Date
WO2021099726A1 true WO2021099726A1 (fr) 2021-05-27

Family

ID=69903316

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/FR2020/052094 WO2021099726A1 (fr) 2019-11-20 2020-11-17 Système d'alimentation en gaz d'au moins un appareil consommateur de gaz équipant un navire

Country Status (7)

Country Link
US (1) US20230032594A1 (fr)
EP (1) EP4062046A1 (fr)
JP (1) JP2023502422A (fr)
KR (1) KR20220100692A (fr)
CN (1) CN114729612A (fr)
FR (1) FR3103227B1 (fr)
WO (1) WO2021099726A1 (fr)

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
FR3137363A1 (fr) * 2022-06-30 2024-01-05 Gaztransport Et Technigaz Système de gestion d’un gaz contenu dans un ouvrage flottant

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2014092369A1 (fr) * 2012-12-11 2014-06-19 대우조선해양 주식회사 Système de traitement de gaz liquéfié pour navire
FR3066257A1 (fr) * 2018-01-23 2018-11-16 Gaztransport Et Technigaz Pompe a chaleur cryogenique et son utilisation pour le traitement de gaz liquefie
EP3483419A1 (fr) * 2016-07-05 2019-05-15 Kawasaki Jukogyo Kabushiki Kaisha Navire
FR3077867A1 (fr) * 2018-02-09 2019-08-16 Gaztransport Et Technigaz Procede et systeme de traitement de gaz d'une installation de stockage de gaz pour un navire de transport de gaz

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2014092369A1 (fr) * 2012-12-11 2014-06-19 대우조선해양 주식회사 Système de traitement de gaz liquéfié pour navire
EP3483419A1 (fr) * 2016-07-05 2019-05-15 Kawasaki Jukogyo Kabushiki Kaisha Navire
FR3066257A1 (fr) * 2018-01-23 2018-11-16 Gaztransport Et Technigaz Pompe a chaleur cryogenique et son utilisation pour le traitement de gaz liquefie
FR3077867A1 (fr) * 2018-02-09 2019-08-16 Gaztransport Et Technigaz Procede et systeme de traitement de gaz d'une installation de stockage de gaz pour un navire de transport de gaz

Also Published As

Publication number Publication date
FR3103227A1 (fr) 2021-05-21
JP2023502422A (ja) 2023-01-24
US20230032594A1 (en) 2023-02-02
KR20220100692A (ko) 2022-07-15
CN114729612A (zh) 2022-07-08
EP4062046A1 (fr) 2022-09-28
FR3103227B1 (fr) 2021-10-15

Similar Documents

Publication Publication Date Title
EP2984385B1 (fr) Procede et systeme de traitement et d'acheminement de gaz naturel vers un equipement de production d'energie pour la propulsion d'un navire
FR3066257A1 (fr) Pompe a chaleur cryogenique et son utilisation pour le traitement de gaz liquefie
WO2019145342A1 (fr) Procede et systeme de traitement de gaz d'une installation de stockage de gaz pour un navire de transport de gaz
FR3028306A1 (fr) Dispositif et procede de refroidissement d'un gaz liquefie
FR3049331A1 (fr) Installation d'alimentation en gaz combustible d'un organe consommateur de gaz et de liquefaction dudit gaz combustible
FR3077867A1 (fr) Procede et systeme de traitement de gaz d'une installation de stockage de gaz pour un navire de transport de gaz
EP4062046A1 (fr) Système d'alimentation en gaz d'au moins un appareil consommateur de gaz équipant un navire
EP4018119A1 (fr) Système de traitement de gaz contenu dans une cuve de stockage et/ou de transport de gaz à l'état liquide et à l'état gazeux équipant un navire
WO2022208003A1 (fr) Procédé de refroidissement d'un échangeur thermique d'un système d'alimentation en gaz d'un appareil consommateur de gaz d'un navire
EP2984386B1 (fr) Systeme perfectionne de traitement et d'acheminement de gaz naturel comportant un circuit de chauffage de la cuve
WO2022157446A1 (fr) Système d'alimentation en gaz pour appareils consommateurs de gaz à haute et basse pression
WO2021064318A1 (fr) Fluide réfrigérant destiné à un circuit de fluide réfrigérant d'un système de traitement de gaz naturel
WO2020188199A1 (fr) Système de contrôle de pression dans une cuve de gaz naturel liquéfié
WO2020109607A1 (fr) Dispositif de generation de gaz sous forme gazeuse a partir de gaz liquefie
WO2021064319A1 (fr) Système de traitement d'un gaz contenu dans une cuve de stockage et/ou de transport de gaz à l'état liquide et gazeux
FR3124830A1 (fr) Système d’alimentation en gaz pour appareils consommateurs de gaz à haute et basse pression
WO2022069833A1 (fr) Système d'alimentation en gaz pour appareils consommateurs de gaz à haute et basse pression
WO2024084154A1 (fr) Procede de gestion d'un fluide sous forme liquide contenu dans une cuve
FR3116507A1 (fr) Système d’alimentation en gaz d’au moins un appareil consommateur de gaz équipant un navire
FR3114797A1 (fr) Système d’alimentation en gaz pour appareils consommateurs de gaz à haute et basse pression
FR3123717A1 (fr) Circuit de reliquéfaction d’un fluide et d’alimentation d’un consommateur.
WO2022234206A1 (fr) Ouvrage flottant comprenant un système d'alimentation d'un consommateur en un carburant préparé à partir de gaz naturel liquéfié ou d'un mélange de méthane et d'un alcane comportant au moins deux atomes de carbone
FR3123716A1 (fr) Système de gestion de l’état de fluides
WO2023194670A1 (fr) Système d'alimentation en gaz pour appareils consommateurs de gaz à haute et basse pression et procédé de contrôle d'un tel système
WO2022013501A1 (fr) Système de chargement de gaz naturel liquide

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 20823901

Country of ref document: EP

Kind code of ref document: A1

ENP Entry into the national phase

Ref document number: 2022529339

Country of ref document: JP

Kind code of ref document: A

ENP Entry into the national phase

Ref document number: 20227020533

Country of ref document: KR

Kind code of ref document: A

NENP Non-entry into the national phase

Ref country code: DE

ENP Entry into the national phase

Ref document number: 2020823901

Country of ref document: EP

Effective date: 20220620