WO2021099723A1 - Source d'electrons basee sur l'emission par effet de champ et son procede de fabrication - Google Patents

Source d'electrons basee sur l'emission par effet de champ et son procede de fabrication Download PDF

Info

Publication number
WO2021099723A1
WO2021099723A1 PCT/FR2020/052087 FR2020052087W WO2021099723A1 WO 2021099723 A1 WO2021099723 A1 WO 2021099723A1 FR 2020052087 W FR2020052087 W FR 2020052087W WO 2021099723 A1 WO2021099723 A1 WO 2021099723A1
Authority
WO
WIPO (PCT)
Prior art keywords
substrate
crystal
electron source
conductor
nanopipette
Prior art date
Application number
PCT/FR2020/052087
Other languages
English (en)
Inventor
Alain Degiovanni
Evelyne SALANCON
Laurent LAPENA
Roger Morin
Original Assignee
Centre National De La Recherche Scientifique
Université D'aix-Marseille
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Centre National De La Recherche Scientifique, Université D'aix-Marseille filed Critical Centre National De La Recherche Scientifique
Priority to US17/756,248 priority Critical patent/US20230005695A1/en
Priority to EP20824299.0A priority patent/EP4049299A1/fr
Publication of WO2021099723A1 publication Critical patent/WO2021099723A1/fr

Links

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01JELECTRIC DISCHARGE TUBES OR DISCHARGE LAMPS
    • H01J9/00Apparatus or processes specially adapted for the manufacture, installation, removal, maintenance of electric discharge tubes, discharge lamps, or parts thereof; Recovery of material from discharge tubes or lamps
    • H01J9/02Manufacture of electrodes or electrode systems
    • H01J9/022Manufacture of electrodes or electrode systems of cold cathodes
    • H01J9/025Manufacture of electrodes or electrode systems of cold cathodes of field emission cathodes
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01JELECTRIC DISCHARGE TUBES OR DISCHARGE LAMPS
    • H01J1/00Details of electrodes, of magnetic control means, of screens, or of the mounting or spacing thereof, common to two or more basic types of discharge tubes or lamps
    • H01J1/02Main electrodes
    • H01J1/30Cold cathodes, e.g. field-emissive cathode
    • H01J1/304Field-emissive cathodes
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01JELECTRIC DISCHARGE TUBES OR DISCHARGE LAMPS
    • H01J29/00Details of cathode-ray tubes or of electron-beam tubes of the types covered by group H01J31/00
    • H01J29/46Arrangements of electrodes and associated parts for generating or controlling the ray or beam, e.g. electron-optical arrangement
    • H01J29/48Electron guns
    • H01J29/481Electron guns using field-emission, photo-emission, or secondary-emission electron source
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01JELECTRIC DISCHARGE TUBES OR DISCHARGE LAMPS
    • H01J29/00Details of cathode-ray tubes or of electron-beam tubes of the types covered by group H01J31/00
    • H01J29/46Arrangements of electrodes and associated parts for generating or controlling the ray or beam, e.g. electron-optical arrangement
    • H01J29/48Electron guns
    • H01J29/485Construction of the gun or of parts thereof
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01JELECTRIC DISCHARGE TUBES OR DISCHARGE LAMPS
    • H01J37/00Discharge tubes with provision for introducing objects or material to be exposed to the discharge, e.g. for the purpose of examination or processing thereof
    • H01J37/02Details
    • H01J37/04Arrangements of electrodes and associated parts for generating or controlling the discharge, e.g. electron-optical arrangement or ion-optical arrangement
    • H01J37/06Electron sources; Electron guns
    • H01J37/065Construction of guns or parts thereof
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01JELECTRIC DISCHARGE TUBES OR DISCHARGE LAMPS
    • H01J37/00Discharge tubes with provision for introducing objects or material to be exposed to the discharge, e.g. for the purpose of examination or processing thereof
    • H01J37/02Details
    • H01J37/04Arrangements of electrodes and associated parts for generating or controlling the discharge, e.g. electron-optical arrangement or ion-optical arrangement
    • H01J37/06Electron sources; Electron guns
    • H01J37/073Electron guns using field emission, photo emission, or secondary emission electron sources
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01JELECTRIC DISCHARGE TUBES OR DISCHARGE LAMPS
    • H01J2209/00Apparatus and processes for manufacture of discharge tubes
    • H01J2209/01Generalised techniques
    • H01J2209/012Coating
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01JELECTRIC DISCHARGE TUBES OR DISCHARGE LAMPS
    • H01J2237/00Discharge tubes exposing object to beam, e.g. for analysis treatment, etching, imaging
    • H01J2237/06Sources
    • H01J2237/063Electron sources
    • H01J2237/06325Cold-cathode sources
    • H01J2237/06341Field emission
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01JELECTRIC DISCHARGE TUBES OR DISCHARGE LAMPS
    • H01J2237/00Discharge tubes exposing object to beam, e.g. for analysis treatment, etching, imaging
    • H01J2237/26Electron or ion microscopes
    • H01J2237/262Non-scanning techniques
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01JELECTRIC DISCHARGE TUBES OR DISCHARGE LAMPS
    • H01J2237/00Discharge tubes exposing object to beam, e.g. for analysis treatment, etching, imaging
    • H01J2237/26Electron or ion microscopes
    • H01J2237/28Scanning microscopes
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01JELECTRIC DISCHARGE TUBES OR DISCHARGE LAMPS
    • H01J2237/00Discharge tubes exposing object to beam, e.g. for analysis treatment, etching, imaging
    • H01J2237/26Electron or ion microscopes
    • H01J2237/28Scanning microscopes
    • H01J2237/2802Transmission microscopes
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01JELECTRIC DISCHARGE TUBES OR DISCHARGE LAMPS
    • H01J2329/00Electron emission display panels, e.g. field emission display panels
    • H01J2329/02Electrodes other than control electrodes
    • H01J2329/04Cathode electrodes
    • H01J2329/0407Field emission cathodes
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01JELECTRIC DISCHARGE TUBES OR DISCHARGE LAMPS
    • H01J37/00Discharge tubes with provision for introducing objects or material to be exposed to the discharge, e.g. for the purpose of examination or processing thereof
    • H01J37/26Electron or ion microscopes; Electron or ion diffraction tubes
    • H01J37/28Electron or ion microscopes; Electron or ion diffraction tubes with scanning beams

Definitions

  • the present invention relates to a field emission electron source. Electron sources are commonly used in scanning electron microscopes, as well as in cold cathode-based flat panel displays and vacuum microelectronics applications.
  • the electron sources currently used in electron microscopes or flat panel displays are based on field emission, or thermionic emission.
  • a material (usually a metal or a semiconductor) can spontaneously emit electrons only if it receives and absorbs an energy greater than the work of leaving the material.
  • Energy can be provided by many means, such as, for example, in the form of heat, by an electric field, or light irradiation.
  • thermionic emission the energy is supplied by the incidence of radiation, in particular light or by heating the substrate.
  • the thermionic emission produces intense beams in a low vacuum (greater than 10 2 Pa), the equivalent source being of relatively large size (greater than 10 ⁇ m).
  • the brightness of such a source is relatively low (10 9 A / m 2 .sr), knowing that it conditions the resolution accessible with this type of source in a microscope.
  • field emission In field emission (or cold emission), the material is subjected to an electric field of the order of 1 V / nm. Under the effect of such a field, electrons tunnel through a potential barrier from the Fermi level, at room temperature. In thermionic emission, heating the material makes it possible to lower the Fermi level to the vacuum level, which frees electrons.
  • a source based on this principle can reach a size of less than 10 nm. The brilliance of such a source can reach values of the order of 10 13 A / m 2 .sr.
  • the field emission requires a high vacuum (less than 10 6 Pa) for a lifetime greater than 1000 hours. At higher pressures, the state of the tip deteriorates rapidly and no longer emits.
  • the Schottky emission is based on the field effect and on the thermionic emission, by application of an electric field to a point, combined with the heating of the substrate.
  • the Schottky emission makes it possible to produce intense beams in a low vacuum of about 10 4 Pa, the equivalent size of the source being about 15 nm.
  • the brightness of such a beam is therefore also relatively low, of the order of 5.10 10 A / m 2 .sr.
  • the shape of the field emitting material affects the emission characteristics. This is because the field emission is very easily obtained from very sharp needles or points, the ends of which have been polished to obtain a substantially hemispherical shape, the radius of which may be less than 100 nm. When polarization is applied, the electric field lines diverge radially from the tip and the paths of the emitted electrons initially follow these field lines.
  • This electron source requires an electric field of a few V / pm and can work at pressures greater than 1 Pa , the emissive zone being protected by the crystal.However, this source presents significant instabilities and sometimes exhibits several emission points, which makes it difficult to use in conventional scanning electron microscopy.
  • an electron source which is sufficiently stable and bright, in particular to be able to offer a large resolution when used in a scanning electron microscope, without requiring a large input of energy. It is also desirable that this source be robust and have a long lifetime, while being able to be used at relatively high pressures, compared to the sources of the prior art which generally require a high vacuum.
  • Embodiments relate to a method of manufacturing an electron source, comprising the steps of: forming a conductive substrate, and arranging a conductor facing the substrate.
  • the method comprises steps consisting in: placing an electrically insulating crystal on the substrate facing the conductor, the substrate delimiting with the crystal an empty space comprising at least one roughness located at a distance from the crystal, the crystal having , in a plane parallel to the substrate, dimensions less than 100 nm, and in a direction perpendicular to the plane, a thickness less than 50 nm.
  • the method comprises a step of depositing the crystal on the substrate, the substrate exhibiting a natural roughness forming the empty space between the substrate and the crystal.
  • the deposition of the crystal on the substrate is carried out by depositing on the substrate a drop containing crystals suspended in deionized water, the drop being produced at an outlet orifice at the tapered end of a nanopipette by exerting pressure on an inlet port of the nanopipette.
  • the method comprises steps of: partial filling of the nanopipette with deionized water, local heating of the nanopipette to vaporize the water, the water in vapor form being condensed in the vicinity of the end tapering the micropipette, and filling the nanopipette with deionized water containing suspended crystals.
  • the method comprises steps of machining the end of a conductive wire to form a point and, at the top of the point, a plate constituting the conductive substrate.
  • the extent of the plateau and the inclination of the tip are adjusted according to a desired divergence of an electron beam produced by the electron source.
  • the method comprises steps consisting in: forming a nanotip in the substrate, depositing an insulating layer on the substrate, forming a well in the insulating layer to release the nanotip, filling the well with a sacrificial layer, deposit on the insulating layer and the sacrificial layer a monocrystalline layer, etching the monocrystalline layer to form a monocrystalline plate having an edge plumb with a top of the nanotip, and removing the sacrificial layer to form the empty space between the substrate and single crystal plate.
  • Embodiments may also relate to an electron source comprising a conductive substrate and a conductor disposed opposite the substrate, the electron source emitting an electron beam when the conductor is positively polarized with respect to the substrate.
  • the source of electrons comprises an electrically insulating crystal arranged on the substrate, facing the conductor, the substrate delimiting with the crystal an empty space comprising at least one roughness located at a distance from the crystal, the crystal having, in a plane parallel to the substrate, dimensions less than 100 nm and a thickness less than 50 nm.
  • the crystal is placed on the substrate, the substrate exhibiting a natural roughness forming the empty space between the crystal and the substrate, the crystal being supported by asperities on the surface of the substrate.
  • the substrate is formed by a plate at the top of a point at one end of a wire.
  • the plate has a width of between 5 and 50 ⁇ m.
  • the substrate has a nanotip located at a distance from the substrate, in the empty space under the crystal or in the vicinity of an edge of the crystal, the empty space being formed by a well formed around and above of the nanotip in an electrically insulating layer supporting the crystal.
  • the substrate is made of tungsten or of carbon, and the crystal is of diamond or talc.
  • the crystal has a width of 50 nm and a thickness of 10 nm, these dimensions being defined to within + or - 10%.
  • FIG. 1 is a schematic view of an electron source, according to one embodiment
  • FIG. 2 is an enlarged schematic view of the electron source
  • FIG. 3 diagrammatically represents an electron microscope head integrating the electron source of FIG. 1
  • FIG. 4 diagrammatically represents in section a substrate comprising several sources of electrons, according to another embodiment.
  • Figures 1 and 2 show an electron source, according to one embodiment.
  • This electron source can be used in particular in a scanning microscope.
  • the electron source comprises a conductive wire 1, one end of which is cut into a point 10, and the point is machined to form a plate 11.
  • a crystal 20 of an insulating material is deposited on the plate 11.
  • the conductive wire 1 can have a diameter D of 100 ⁇ m or more and a length of a few mm.
  • the plate 11 may have a diameter d of between 5 to 50 ⁇ m, for example of around one hundred ⁇ m.
  • the crystal 20 may have a width (or length) L less than 100 nm, preferably between 10 and 100 nm, for example 50 nm (to within + or - 10%), and a thickness E of less than 50 nm, preferably between 1 and 50 nm, for example 10 nm (within + or - 10%).
  • the plate 11 has a natural roughness, comparable to the thickness E of the crystal 20, for example equal to the thickness E to within + or - 50%.
  • the roughness of the surface of a material corresponds to the maximum height of the hollows and asperities appearing in this surface, defined in absolute value with respect to the average height of this surface, on the scale of the dimensions of the crystal.
  • the shape and dimensions of these asperities being random, some of the asperities of the plate 11, in the space delimited between the plate 11 and the crystal 20, are located at a distance less than the thickness of the plate.
  • crystal 20 without this distance being zero, the faces of the crystal being substantially plane (the roughness of the crystal may be less than 0.5 nm).
  • the simple deposition of the crystal 20 on the plate 11, combined with the roughness of the latter makes it possible to form a conductive / vacuum / insulating assembly, in which the vacuum is formed by the spaces 14 between the asperities of the plate 11 and the crystal 20. Due to the very small dimensions of crystal 20, it is held firmly on plate 11 by the forces of van der Walls.
  • the angle ⁇ formed between the direction of the wire and a generator of the conical tip 10 can be adjusted according to the desired divergence of the electron beam generated at the tip 10, knowing that the smaller the angle ⁇ , the smaller the beam. of electrons produced is divergent.
  • the diameter d of the plate also has an influence on the divergence of the electron beam produced, knowing that the larger the diameter d of the plate 11, the less the angle a of the conical part influences the divergence of the beam.
  • the wire 1 is made of a conductive material such as carbon or tungsten.
  • Tungsten has the advantage of being easy to machine.
  • Crystal 20 can be diamond or talc.
  • the electron source described above has a relatively long lifetime, even when used at relatively high pressures, of the order of 10 4 Pa or higher.
  • the tip 10 at the end of the wire can be produced, for example, by electrochemical etching.
  • the plate 11 can be produced by erosion.
  • the crystal 20 can be deposited on the plate 11 either using a nanomanipulator (for example of the piezoelectric type), or using a micropipette into which deionized water has been introduced into which several crystals. are in suspension.
  • the micropipette makes it possible to produce a microdrop of this mixture at the outlet of the micropipette.
  • the drop is then captured by capillary action, by simple contact of the drop with the tip 10.
  • the drop on the tip 10 dries quickly and deposits the crystal present in the drop. Crystals can be broken down in water using ultrasound.
  • the concentration of water in crystals is adjusted so that the number of crystals per drop is close to one, taking into account the volume of a drop.
  • the outlet of the micropipette may be less than 10 ⁇ m in diameter to produce drops of substantially this size by applying pressure. less than 10 kPa, for example 1.5 kPa, at the inlet of the micropipette.
  • the micropipette can be manufactured conventionally by stretching a capillary tube using a stretching machine such as the P2000 stretching machine sold by the company SUTTER INSTRUMENT®.
  • a nanopipette is used, the outlet orifice of which is less than 500 nm, and partially filled with deionized water, for example using the method described in patent application WO 2013/079874 so that the water reaches the tapered part in the vicinity of the exit orifice of the nanopipette.
  • the mixture of deionized water and crystals is then introduced through the inlet of the nanopipette, and naturally mixes by diffusion with the water already present in the nanopipette up to the outlet.
  • a drop can be deposited on a support using the nanopipette, then captured by capillary action by the tip 10 by bringing it into contact with the drop.
  • the dimensions of the drop deposited on the support depend on the speed at which the nanopipette moves along the support during the ejection of the drop and the pressure exerted at the inlet of the nanopipette.
  • the water from the drop on tray 11 evaporates very quickly and only a crystal 20 remains.
  • FIG. 3 represents an electron microscope head 40, integrating the source of electrons placed opposite a screen, according to one embodiment.
  • the electron microscope may for example be of the scanning, projection or transmission type.
  • the wire 1 is fixed to a piezoelectric displacer 42, the tip 10 being placed opposite a diaphragm 41.
  • the wire 1 and the diaphragm 41 are connected to a voltage source 43, so as to positively bias the diaphragm 41 which serves thus anode or extractor relative to the wire 1 serving as cathode.
  • All the elements of the microscope can be placed in a vacuum chamber (not shown) in which the pressure is lowered to a sufficiently low value, for example to a value between 10 3 and 10 5 Pa.
  • the actuator 42 is arranged to adjust the distance between crystal 20 and diaphragm 41.
  • An ammeter 47 can be placed between diaphragm 41 and ground to detect the presence of electron beam 15 and measure the intensity of the latter.
  • the voltage supplied by the voltage source 43 is gradually increased, the appearance of an electron beam is observed, a non-zero current being detected by the ammeter 47, from approximately 400 V, the diaphragm 41 being at a distance of between 0.5 and 1.5 mm from the crystal 20 or the plate 11. If the voltage supplied by the voltage source 43 is gradually lowered, the measured current stabilizes at a few hundred nA.
  • the diaphragm 41 has a diameter of 1 mm.
  • the conductor / vacuum / insulator structure makes it possible, thanks to an electric field of the order of a few V / pm, to obtain an electron source with an intensity of the order of a hundred nA. It can be observed that this electron source is very stable and follows a Fowler-Nordheim type regime in a current strength band of ten orders of magnitude. It can also be observed a saturation regime reached at about 10 mA for a voltage applied between the source 1 and the gate 41 of 500 V. Knowing that this phenomenon is generally observed with an electric field of the order of V / nm, it can be assumed that there is an enhancement of the electric field in the volume at the interface between the conductive plate 11 and the insulating crystal 20.
  • the tip 10 associated with the crystal 20 produces a beam having a low energy dispersion DE of between 0.2 and 0.4 eV, an equivalent source size of between 0 , 5 and 1.5 nm, and high stability.
  • the brightness of this source can reach high values of the order of 10 13 to 10 14 A / m2.sr. This source has an acceptable life of greater than 1000 hours even when it is used under a relatively high pressure (less than 10 3 Pa).
  • FIG. 4 represents a multilayer structure, according to one embodiment.
  • This structure comprises a substrate 50 on which is deposited a conductive layer 51 which has been etched to form nanotips 31 of a few nanometers in height.
  • An insulating layer 52 was then deposited on the conductive layer 51.
  • the thickness of the conductive layer 51 is slightly greater than the height of the nanotips 31, so that the height between the top 32 of the nanotips 31 and the upper face of the insulating layer 52 is a few nanometers.
  • a monocrystalline layer 53 is formed for example by chemical vapor deposition (CVD - “Chemical Vapor Deposition”). ) using a raw gas containing hydrocarbons and hydrogen.
  • the thickness of the layer 53 can be between 5 and 50 nm, for example 10 nm.
  • Layer 53 is then etched to form a single crystal plate 21 per nanotip 31, the top 32 of each nanotip being under one of the plates 21 or directly above an edge of one of these.
  • an electrically insulating layer 54 is deposited on the plates 21 and the sacrificial layer, then etched to form wells substantially in line with the wells around the nanotips 31.
  • the wells are filled with the material of the sacrificial layer, and the whole of the insulating layer 54 and of the sacrificial layer is covered with a conductive layer 55 which is then etched to form the anodes 56. All of the sacrificial material is then removed from the wells to release the nanotips, and thus obtain l arrangement shown in Figure 4.
  • the nanotips 31 can be arranged in rows and in columns so as to form a matrix of nanotips which can be used to produce a flat screen operating by cathodo-luminescence, to display moving images.
  • the nanotips can be connected to one another row by row and controlled by conductive strips forming anodes 56 arranged in columns, in order to be able to excite a single nanotip located on the row and the column subjected to a voltage.
  • the present invention is susceptible of various variant embodiments and various applications.
  • the invention is not limited to the materials previously described for the conductive material and the insulating crystal, nor to the shape of the substrate formed at the top of a point.
  • the surface of the substrate covered by the crystal can be flat, the natural roughness of the substrate being exploited to form the empty space under the crystal.

Landscapes

  • Chemical & Material Sciences (AREA)
  • Analytical Chemistry (AREA)
  • Engineering & Computer Science (AREA)
  • Manufacturing & Machinery (AREA)
  • Cold Cathode And The Manufacture (AREA)

Abstract

L'invention concerne une source d'électrons comprenant un substrat (11) conducteur, un conducteur disposé en regard du substrat, la source d'électrons émettant un faisceau d'électrons lorsque le conducteur est polarisé positivement par rapport au substrat, et un cristal (20) électriquement isolant agencé sur le substrat, en regard du conducteur, le substrat délimitant avec le cristal un espace vide (14) comportant au moins une aspérité (12) située à distance du cristal, le cristal présentant, dans un plan parallèle au substrat, des dimensions inférieures à 100 nm et une épaisseur inférieure à 50 nm.

Description

Description
Titre : SOURCE D’ELECTRONS BASEE SUR L’EMISSION PAR EFFET DE CHAMP ET SON PROCEDE DE FABRICATION
La présente invention concerne une source d’électrons à émission de champ. Les sources d’électrons sont généralement utilisées dans les microscopes électroniques à balayage, ainsi que dans les écrans plats à base de cathode froide et les applications de la microélectronique sous vide.
Les sources d’électrons actuellement utilisées dans les microscopes électroniques ou les écrans plats sont basées sur l’émission de champ, ou sur l’émission thermoïonique.
Un matériau (généralement un métal ou un semi-conducteur) ne peut émettre spontanément des électrons que s’il reçoit et absorbe une énergie supérieure au travail de sortie du matériau. L'énergie peut être fournie par de nombreux moyens, tels que par exemple sous la forme de chaleur, par un champ électrique, ou une irradiation lumineuse. Il existe ainsi plusieurs types d'émissions d'électrons, en fonction de la source d’énergie employée. En émission thermoionique, l'énergie est fournie par l'incidence de radiations, notamment de lumière ou par chauffage du substrat. L’émission thermoïonique produit des faisceaux intenses dans un vide peu poussé (supérieur à 102 Pa), la source équivalente étant de relativement grande taille (supérieure à 10 pm). La brillance d’une telle source est relativement faible (109 A/m2.sr), sachant qu’elle conditionne la résolution accessible avec ce type de source dans un microscope.
En émission de champ (ou émission à froid), le matériau est soumis à un champ électrique de l’ordre de 1 V/nm. Sous l’effet d’un tel champ, des électrons traversent par effet tunnel une barrière de potentiel depuis le niveau de Fermi, à température ambiante. En émission thermoionique, le chauffage du matériau permet d’abaisser le niveau de Fermi au niveau du vide, ce qui libère des électrons. L’émission de champ à l’aide d’une pointe métallique, produit un faisceau ayant une faible dispersion énergétique (DE = 0,3 eV). Une source reposant sur ce principe peut atteindre une taille inférieure à 10 nm. La brillance d’une telle source peut atteindre des valeurs de l’ordre de 1013 A/m2.sr. Cependant, l’émission de champ nécessite un vide poussé (inférieur à 106 Pa) pour une durée de vie supérieure à 1000 heures. A des pressions plus élevées, l’état de la pointe s’altère rapidement et n’émet plus.
L'émission Schottky repose sur l’effet de champ et sur l'émission thermoionique, par application d’un champ électrique à une pointe, combiné au chauffage du substrat. L'émission Schottky permet de produire des faisceaux intenses dans un vide peu poussé d’environ 104 Pa, la taille équivalente de la source étant d’environ 15 nm. La brillance d’un tel faisceau est donc également relativement faible, de l’ordre de 5.1010 A/m2.sr.
La forme du matériau émetteur de champ affecte les caractéristiques d'émission. En effet, l’émission de champ s’obtient très facilement à partir d’aiguilles ou de pointes très effilées, dont l’extrémité a été polie pour obtenir une forme sensiblement hémisphérique dont le rayon peut être inférieur à 100 nm. Lorsqu'une polarisation est appliquée, les lignes de champ électrique divergent radialement à partir de la pointe et les trajectoires des électrons émis suivent initialement ces lignes de champ.
Lorsque le flux d’électrons émis est suffisamment intense, l’objet soumis au flux d’électrons peut émettre des photons. Ce phénomène appelé "cathodo-luminescence" est exploité notamment dans certains écrans plats.
La publication " A low-energy électron point-source projection microscope not using a Sharp métal tip performs well in long -range imaging”, E. Salançon, A. Degiovanni, L. Lapena, M. Lagaize, R. Morin, Ultramicroscopy Vol. 200 (2019), pp 125-131 , décrit une source d’électrons formée à l’extrémité d’un fil de carbone de 10 pm de diamètre et d’un cristal de céladonite de 0.5 x 1 pm et de 50 nm d’épaisseur, déposé à l’extrémité du fil dans une goutte d’eau désionisée à l’aide d’une micropipette. Cette source d’électrons nécessite un champ électrique de quelques V/pm et peut travailler à des pressions supérieures à 1 Pa, la zone émissive étant protégée par le cristal. Cependant, cette source présente des instabilités importantes et exhibe parfois plusieurs points d’émission, ce qui la rend difficilement utilisable en microscopie électronique à balayage conventionnelle.
Ainsi, il est souhaitable de réaliser une source d’électrons, qui soit suffisamment stable et brillante, notamment pour pouvoir offrir une grande résolution lorsqu’elle est utilisée dans un microscope électronique à balayage, sans nécessiter un apport important d’énergie. Il est également souhaitable que cette source soit robuste et présente une grande durée de vie, tout en pouvant être utilisée à des pressions relativement élevées, par comparaison avec les sources de l’art antérieur qui nécessitent généralement un vide poussé.
Des modes de réalisation concernent un procédé de fabrication d’une source d’électrons, comprenant des étapes consistant à : former un substrat conducteur, et agencer un conducteur en regard du substrat. Selon un mode de réalisation, le procédé comprend des étapes consistant à : disposer un cristal électriquement isolant sur le substrat en regard du conducteur, le substrat délimitant avec le cristal un espace vide comportant au moins une aspérité située à distance du cristal, le cristal présentant, dans un plan parallèle au substrat, des dimensions inférieures à 100 nm, et dans une direction perpendiculaire au plan, une épaisseur inférieure à 50 nm.
Selon un mode de réalisation, le procédé comprend une étape de dépôt du cristal sur le substrat, le substrat présentant une rugosité naturelle formant l’espace vide entre le substrat et le cristal.
Selon un mode de réalisation, le dépôt du cristal sur le substrat est effectué en déposant sur le substrat une goutte contenant des cristaux en suspension dans de l’eau désionisée, la goutte étant produite à un orifice de sortie à l’extrémité effilée d’une nanopipette en exerçant une pression sur un orifice d’entrée de la nanopipette.
Selon un mode de réalisation, le procédé comprend des étapes de : remplissage partiel de la nanopipette avec de l’eau désionisée, chauffage local de la nanopipette pour vaporiser l’eau, l’eau sous forme vapeur étant condensée au voisinage de l’extrémité effilée de la micropipette, et remplissage de la nanopipette avec de l’eau désionisée contenant des cristaux en suspension.
Selon un mode de réalisation, le procédé comprend des étapes d’usinage de l’extrémité d’un fil conducteur pour former une pointe et, au sommet de la pointe, un plateau constituant le substrat conducteur.
Selon un mode de réalisation, l’étendue du plateau et l’inclinaison de la pointe sont ajustées en fonction d’une divergence souhaitée d’un faisceau d’électrons produit par la source d’électrons. Selon un mode de réalisation, le procédé comprend des étapes consistant à : former une nanopointe dans le substrat, déposer une couche isolante sur le substrat, former un puits dans la couche isolante pour dégager la nanopointe, remplir le puits d’une couche sacrificielle, déposer sur la couche isolante et la couche sacrificielle une couche monocristalline, graver la couche monocristalline pour former une plaque monocristalline présentant un bord à l’aplomb d’un sommet de la nanopointe, et retirer la couche sacrificielle pour former l’espace vide entre le substrat et la plaque monocristalline.
Des modes de réalisation peuvent également concerner une source d’électrons comprenant un substrat conducteur et un conducteur disposé en regard du substrat, la source d’électrons émettant un faisceau d’électrons lorsque le conducteur est polarisé positivement par rapport au substrat. Selon un mode de réalisation, la source d’électrons comprend un cristal électriquement isolant agencé sur le substrat, en regard du conducteur, le substrat délimitant avec le cristal un espace vide comportant au moins une aspérité située à distance du cristal, le cristal présentant, dans un plan parallèle au substrat, des dimensions inférieures à 100 nm et une épaisseur inférieure à 50 nm.
Selon un mode de réalisation, le cristal est posé sur le substrat, le substrat présentant une rugosité naturelle formant l’espace vide entre le cristal le substrat, le cristal étant supporté par des aspérités à la surface du substrat.
Selon un mode de réalisation, le substrat est formé par un plateau au sommet d’une pointe à une extrémité d’un fil.
Selon un mode de réalisation, le plateau présente une largeur comprise entre 5 et 50 pm.
Selon un mode de réalisation, le substrat présente une nanopointe située à distance du substrat, dans l’espace vide sous le cristal ou au voisinage d’un bord du cristal, l’espace vide étant formé par un puits formé autour et au-dessus de la nanopointe dans une couche électriquement isolante supportant le cristal.
Selon un mode de réalisation, le substrat est en tungstène ou en carbone, et le cristal est en diamant ou en talc. Selon un mode de réalisation, le cristal présente une largeur de 50 nm et une épaisseur de 10 nm, ces dimensions étant définies à + ou - 10% près.
Des exemples de réalisation de l’invention seront décrits dans ce qui suit, à titre non limitatif en relation avec les figures jointes parmi lesquelles : la figure 1 est une vue schématique, d’une source d’électrons, selon un mode de réalisation, la figure 2 est une vue schématique agrandie de la source d’électrons, la figure 3 représente schématiquement une tête de microscope électronique intégrant la source d’électrons de la figure 1 , la figure 4 représente schématiquement en coupe un substrat comportant plusieurs sources d’électrons, selon un autre mode de réalisation.
Les figures 1 et 2 représentent une source d’électrons, selon un mode de réalisation. Cette source d’électrons peut être utilisée notamment dans un microscope à balayage. La source d’électrons comprend un fil conducteur 1 dont une extrémité est taillée en pointe 10, et la pointe est usinée pour former un plateau 11. Un cristal 20 en un matériau isolant est déposé sur le plateau 11.
Le fil conducteur 1 peut présenter un diamètre D de 100 pm ou plus et une longueur de quelques mm. Le plateau 11 peut présenter un diamètre d compris entre 5 à 50 miti, par exemple d’une centaine de pm. Le cristal 20 peut présenter une largeur (ou longueur) L inférieure à 100 nm, de préférence comprise entre 10 et 100 nm, par exemple de 50 nm (à + ou - 10% près), et une épaisseur E inférieure à 50 nm, de préférence comprise entre 1 et 50 nm, par exemple de 10 nm (à+ ou - 10% près).
Sur la figure 2, le plateau 11 présente une rugosité naturelle, comparable à l’épaisseur E du cristal 20, par exemple égal à l’épaisseur E à + ou - 50% près. Ici, la rugosité de la surface d’un matériau correspond à la hauteur maximum des creux et des aspérités apparaissant dans cette surface, définie en valeur absolue par rapport à la hauteur moyenne de cette surface, à l’échelle des dimensions du cristal.
Ainsi, la forme et les dimensions de ces aspérités étant aléatoires, certaines des aspérités du plateau 11 , dans l’espace délimité entre le plateau 11 et le cristal 20, se trouvent à une distance inférieure à l’épaisseur du cristal 20 sans que cette distance soit nulle, les faces du cristal étant sensiblement planes (la rugosité du cristal peut être inférieure à 0,5 nm). Le simple dépôt du cristal 20 sur le plateau 11 , combiné à la rugosité de ce dernier permet de former un assemblage conducteur / vide / isolant, dans lequel le vide est formé par les espaces 14 entre les aspérités du plateau 11 et le cristal 20. Compte tenu des très petites dimensions du cristal 20, celui-ci est maintenu fermement sur le plateau 11 par les forces de van der Walls.
L’angle a formé entre la direction du fil et une génératrice de la pointe conique 10 peut être ajusté en fonction de la divergence souhaitée du faisceau d’électrons généré à la pointe 10, sachant que plus l’angle a est petit plus le faisceau d’électrons produit est divergent. Le diamètre d du plateau présente également une influence sur la divergence du faisceau d’électrons produit, sachant que plus le diamètre d du plateau 11 est grand moins l’angle a de la partie conique influence la divergence du faisceau.
Selon divers modes de réalisation, le fil 1 est réalisé en matériau conducteur tel que le carbone ou le tungstène. Le tungstène présente l’avantage d’être facile à usiner. Le cristal 20 peut être en diamant ou en talc. La source d’électrons précédemment décrite présente une relativement longue durée de vie, même lorsqu’elle est utilisée sous des pressions relativement élevées, de l’ordre de 104 Pa ou supérieures.
Selon un mode de réalisation, la pointe 10 à l’extrémité du fil, peut être réalisée par exemple par attaque électrochimique. Le plateau 11 peut être réalisé par érosion. Le cristal 20 peut être déposé sur le plateau 11 soit à l’aide d’un nanomanipulateur (par exemple de type piézoélectrique), soit à l’aide d’une micropipette dans laquelle on a introduit de l’eau désionisée dans laquelle plusieurs cristaux sont en suspension. La micropipette permet de produire une microgoutte de ce mélange à l’orifice de sortie de la micropipette. La goutte est ensuite captée par capillarité, par simple contact de la goûte avec la pointe 10. La goutte sur la pointe 10 sèche rapidement et dépose le cristal présent dans la goutte. Les cristaux peuvent être désagrégés dans l’eau au moyen d’ultrasons. La concentration de l’eau en cristaux est ajustée de manière à ce que le nombre de cristaux par goutte soit voisin de un, compte tenu du volume d’une goutte. L’orifice de sortie de la micropipette peut être inférieur à 10 pm de diamètre pour produire des gouttes ayant sensiblement cette dimension, en appliquant une pression inférieure à 10 kPa, par exemple 1.5 kPa, à l’orifice d’entrée de la micropipette. La micropipette peut être fabriquée classiquement en étirant un tube capillaire à l’aide d’une étireuse telle que l’étireuse P2000 commercialisée par la société SUTTER INSTRUMENT®.
Selon un mode de réalisation, on utilise une nanopipette, dont l’orifice de sortie est inférieur à 500 nm, et remplie partiellement en eau désionisée, par exemple à l’aide du procédé décrit dans la demande de brevet WO 2013/079874 pour que l’eau atteigne la partie effilée au voisinage de l’orifice de sortie de la nanopipette. Le mélange d’eau désionisée et cristaux est ensuite introduit par l’orifice d’entrée de la nanopipette, et se mélange naturellement par diffusion avec l’eau déjà présente dans la nanopipette jusqu’à l’orifice de sortie. Une goutte peut être déposée sur un support à l’aide de la nanopipette, puis captée par capillarité par la pointe 10 en la mettant en contact avec la goutte. Les dimensions de la goutte déposée sur le support dépendent de la vitesse de déplacement de la nanopipette le long du support lors de l’éjection de la goutte et de la pression exercée à l’orifice d’entrée de la nanopipette. L’eau de la goutte sur le plateau 11 s’évapore très rapidement et seul subsiste un cristal 20.
La figure 3 représente une tête de microscope électronique 40, intégrant la source d’électrons placée en regard d’un écran, selon un mode de réalisation. Le microscope électronique peut être par exemple de type à balayage, à projection ou à transmission. Le fil 1 est fixé à un déplaceur piézoélectrique 42, la pointe 10 étant placée en regard d’un diaphragme 41. Le fil 1 et le diaphragme 41 sont reliés à une source de tension 43, de manière à polariser positivement le diaphragme 41 qui sert ainsi d’anode ou d’extracteur par rapport au fil 1 servant cathode. L’ensemble des éléments du microscope peut être placé dans une enceinte à vide (non représentée) dans laquelle la pression est abaissée à une valeur suffisamment faible, par exemple à une valeur comprise entre 103 et 105 Pa. L’actionneur 42 est agencé pour ajuster la distance entre le cristal 20 et le diaphragme 41.
Un ampèremètre 47 peut être placé entre le diaphragme 41 et la masse pour détecter la présence du faisceau d’électrons 15 et mesurer l’intensité de ce dernier. Lorsqu’on augmente progressivement la tension fournie par la source de tension 43, on observe l’apparition d’un faisceau d’électrons, un courant non nul étant détecté par l’ampèremètre 47, à partir d’environ 400 V, le diaphragme 41 se trouvant à une distance comprise entre 0,5 et 1 ,5 mm du cristal 20 ou du plateau 11 . Si l’on abaisse progressivement la tension fournie par la source de tension 43, le courant mesuré se stabilise à quelques centaines de nA. Selon un exemple de réalisation, le diaphragme 41 présente un diamètre de 1 mm.
Ainsi, la structure conducteur / vide / isolant permet, grâce à un champ électrique de l’ordre de quelques V/pm, d’obtenir une source d’électrons présentant une intensité de l’ordre d’une centaine de nA. Il peut être observé que cette source d’électrons est très stable et suit un régime de type Fowler-Nordheim dans une bande d’intensité de courant de dix ordres de grandeur. Il peut également être observé un régime de saturation atteint à environ 10 mA pour une tension appliquée entre la source 1 et la grille 41 de 500 V. Sachant que ce phénomène est généralement observé avec un champ électrique de l’ordre du V/nm, il peut être supposé qu’il se produit une exaltation du champ électrique dans le volume à l’interface entre le plateau conducteur 11 et le cristal isolant 20.
Il peut être observé qu’à une tension de polarisation de 500 V, la pointe 10 associée au cristal 20 produit un faisceau ayant une faible dispersion énergétique DE comprise entre 0,2 et 0,4 eV, une taille équivalente de source comprise entre 0,5 et 1 ,5 nm, et une grande stabilité. La brillance de cette source peut atteindre des valeurs élevées de l’ordre de 1013 à 1014 A/m2.sr. Cette source présente une durée de vie acceptable supérieure à 1000 heures même lorsqu’elle est utilisée sous une pression relativement élevée (inférieure à 103 Pa).
La structure conducteur / vide / isolant n’est pas nécessairement obtenue en exploitant la rugosité de la surface du conducteur supportant l’isolant. En effet, cette structure peut être entièrement fabriquée à l’aide des techniques classiques de la microélectronique. Ainsi, la figure 4 représente une structure multicouches, selon un mode de réalisation. Cette structure comprend un substrat 50 sur lequel est déposée une couche conductrice 51 qui a été gravée pour former des nanopointes 31 de quelques nanomètres de hauteur. Une couche isolante 52 a ensuite été déposée sur la couche conductrice 51. L’épaisseur de la couche conductrice 51 est légèrement supérieure à la hauteur des nanopointes 31 , de sorte que la hauteur entre le sommet 32 des nanopointes 31 et la face supérieure de la couche isolante 52 est de quelques nanomètres. Des puits sont ensuite creusés dans la couche isolante 52 pour dégager les nanopointes 31 et la couche 51 autour de celles-ci. Les puits sont ensuite remplis d’une couche sacrificielle, de manière à obtenir une surface plane incluant la face supérieure de la couche isolante 52. Une couche monocristalline 53 est formée par exemple par dépôt chimique en phase vapeur (CVD - "Chemical Vapor Déposition") en utilisant un gaz brut contenant des hydrocarbones et de l'hydrogène. L’épaisseur de la couche 53 peut être comprise entre 5 et 50 nm, par exemple 10 nm. La couche 53 est ensuite gravée pour former une plaque monocristalline 21 par nanopointe 31 , le sommet 32 de chaque nanopointe se trouvant sous une des plaques 21 ou à l’aplomb d’un bord d’une de celles-ci.
Les anodes sont ensuite réalisées. A cet effet, une couche 54 électriquement isolante est déposée sur les plaques 21 et la couche sacrificielle, puis gravée pour former des puits sensiblement à l’aplomb des puits autour des nanopointes 31. Les puits sont remplis du matériau de la couche sacrificielle, et l’ensemble de la couche isolante 54 et de la couche sacrificielle est recouvert d’une couche conductrice 55 qui est ensuite gravée pour former les anodes 56. La totalité du matériau sacrificiel est ensuite retiré des puits pour dégager les nanopointes, et ainsi obtenir l’agencement représenté sur la figure 4.
Les nanopointes 31 peuvent être agencées en lignes et en colonne de manière à former une matrice de nanopointes utilisable pour réaliser un écran plat fonctionnant par cathodo-luminescence, pour afficher des images animées. Les nanopointes peuvent être connectées entre elles ligne par ligne et commandées par des bandes conductrices formant des anodes 56 agencées en colonnes, afin de pouvoir exciter une seule nanopointe se trouvant sur la ligne et la colonne soumis à une tension.
Il va de soi que d’autres techniques utilisées pour la fabrication de composants microélectroniques peuvent utilisées pour fabriquer la structure représentée sur la figure 4. En outre, certains aspects de cette structure peuvent varier selon les applications visées.
Il apparaîtra clairement à l'homme de l'art que la présente invention est susceptible de diverses variantes de réalisation et diverses applications. En particulier, l’invention n’est pas limitée aux matériaux précédemment décrits pour le matériau conducteur et le cristal isolant, ni à la forme du substrat formé au sommet d’une pointe. En effet, la surface du substrat recouverte par le cristal peut être plane, la rugosité naturelle du substrat étant exploitée pour former l’espace vide sous le cristal.

Claims

Revendications
1. Procédé de fabrication d’une source d’électrons, comprenant des étapes consistant à : former un substrat conducteur (1 , 11 , 51 , 31 ), et agencer un conducteur (41 , 55) en regard du substrat, caractérisé en ce qu’il comprend des étapes consistant à : disposer un cristal (20, 21) électriquement isolant sur le substrat en regard du conducteur (41 , 55), le substrat délimitant avec le cristal un espace vide (14, 34) comportant au moins une aspérité (12, 31) située à distance du cristal, le cristal présentant, dans un plan parallèle au substrat, des dimensions inférieures à 100 nm, et dans une direction perpendiculaire au plan, une épaisseur inférieure à 50 nm.
2. Procédé selon la revendication 1 , comprenant une étape de dépôt du cristal (20) sur le substrat (1 , 11 ), le substrat présentant une rugosité naturelle formant l’espace vide (14) entre le substrat et le cristal.
3. Procédé selon la revendication 2, dans lequel le dépôt du cristal (20) sur le substrat (1 , 11 ) est effectué en déposant sur le substrat une goutte contenant des cristaux en suspension dans de l’eau désionisée, la goutte étant produite à un orifice de sortie à l’extrémité effilée d’une nanopipette en exerçant une pression sur un orifice d’entrée de la nanopipette.
4. Procédé selon la revendication 3, comprenant des étapes de : remplissage partiel de la nanopipette avec de l’eau désionisée, chauffage local de la nanopipette pour vaporiser l’eau, l’eau sous forme vapeur étant condensée au voisinage de l’extrémité effilée de la micropipette, et remplissage de la nanopipette avec de l’eau désionisée contenant des cristaux en suspension.
5. Procédé selon l'une des revendications 1 à 4, comprenant des étapes d’usinage de l’extrémité d’un fil conducteur (1) pour former une pointe (10) et, au sommet de la pointe, un plateau (11) constituant le substrat conducteur.
6. Procédé selon la revendication 5, dans lequel l’étendue du plateau (11) et l’inclinaison de la pointe (10) sont ajustées en fonction d’une divergence souhaitée d’un faisceau d’électrons (15) produit par la source d’électrons.
7. Procédé selon la revendication 1 , comprenant des étapes consistant à : former une nanopointe (32) dans le substrat (51), déposer une couche isolante (52) sur le substrat, former un puits dans la couche isolante pour dégager la nanopointe, remplir le puits d’une couche sacrificielle, déposer sur la couche isolante et la couche sacrificielle une couche monocristalline (53), graver la couche monocristalline pour former une plaque monocristalline (21) présentant un bord à l’aplomb d’un sommet de la nanopointe, et retirer la couche sacrificielle pour former l’espace vide (34) entre le substrat et la plaque monocristalline.
8. Source d’électrons comprenant un substrat (1 , 11 , 51 , 31) conducteur et un conducteur (41 , 55) disposé en regard du substrat, la source d’électrons émettant un faisceau d’électrons (15) lorsque le conducteur est polarisé positivement par rapport au substrat, caractérisée en ce qu’elle comprend un cristal (20, 21) électriquement isolant agencé sur le substrat (1 , 11 , 51 , 31 ), en regard du conducteur (41 ), le substrat délimitant avec le cristal un espace vide (14, 34) comportant au moins une aspérité (12, 31) située à distance du cristal, le cristal présentant, dans un plan parallèle au substrat, des dimensions inférieures à 100 nm et une épaisseur inférieure à 50 nm.
9. Source d’électrons selon la revendication 8, dans laquelle le cristal (20) est posé sur le substrat (11), le substrat présentant une rugosité naturelle formant l’espace vide (14) entre le cristal le substrat, le cristal étant supporté par des aspérités (12) à la surface du substrat.
10. Source d’électrons selon la revendication 8 ou 9, dans laquelle le substrat (1 , 11 ) est formé par un plateau (11 ) au sommet d’une pointe (10) à une extrémité d’un fil (1).
11. Source d’électrons selon la revendication 10, dans laquelle le plateau présente une largeur comprise entre 5 et 50 pm.
12. Source d’électrons selon la revendication 8, dans laquelle le substrat (51) présente une nanopointe (32) située à distance du substrat, dans l’espace vide (34) sous le cristal (21) ou au voisinage d’un bord du cristal, l’espace vide (34) étant formé par un puits (14) formé autour et au-dessus de la nanopointe dans une couche électriquement isolante (52) supportant le cristal.
13. Source d’électrons selon l'une des revendications 8 à 12, dans laquelle le substrat (11 , 51) est en tungstène ou en carbone, et le cristal (20, 21 ) est en diamant ou en talc.
14. Source d’électrons selon l'une des revendications 8 à 13, dans laquelle le cristal (20, 21) présente une largeur de 50 nm et une épaisseur de 10 nm, ces dimensions étant définies à + ou - 10% près.
PCT/FR2020/052087 2019-11-19 2020-11-16 Source d'electrons basee sur l'emission par effet de champ et son procede de fabrication WO2021099723A1 (fr)

Priority Applications (2)

Application Number Priority Date Filing Date Title
US17/756,248 US20230005695A1 (en) 2019-11-19 2020-11-16 Electron source based on field emission and production process for same
EP20824299.0A EP4049299A1 (fr) 2019-11-19 2020-11-16 Source d'electrons basee sur l'emission par effet de champ et son procede de fabrication

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
FR1912909A FR3103311B1 (fr) 2019-11-19 2019-11-19 Source d’electrons basee sur l’emission par effet de champ et son procede de fabrication
FRFR1912909 2019-11-19

Publications (1)

Publication Number Publication Date
WO2021099723A1 true WO2021099723A1 (fr) 2021-05-27

Family

ID=70154487

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/FR2020/052087 WO2021099723A1 (fr) 2019-11-19 2020-11-16 Source d'electrons basee sur l'emission par effet de champ et son procede de fabrication

Country Status (4)

Country Link
US (1) US20230005695A1 (fr)
EP (1) EP4049299A1 (fr)
FR (1) FR3103311B1 (fr)
WO (1) WO2021099723A1 (fr)

Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2013079874A1 (fr) 2011-11-30 2013-06-06 Centre National De La Recherche Scientifique - Cnrs - Procede et dispositif de remplissage de nanopipettes par microdistillation dynamique

Family Cites Families (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2016140177A1 (fr) * 2015-03-02 2016-09-09 国立研究開発法人物質・材料研究機構 Émetteur, canon à électrons l'utilisant, dispositif électronique l'utilisant et procédé de production

Patent Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2013079874A1 (fr) 2011-11-30 2013-06-06 Centre National De La Recherche Scientifique - Cnrs - Procede et dispositif de remplissage de nanopipettes par microdistillation dynamique

Non-Patent Citations (6)

* Cited by examiner, † Cited by third party
Title
DATABASE INSPEC [online] THE INSTITUTION OF ELECTRICAL ENGINEERS, STEVENAGE, GB; 5 November 2019 (2019-11-05), SALANCON E ET AL: "Preparing a celadonite electron source and estimating its brightness", XP002800014, Database accession no. 19276081 *
DATABASE INSPEC [online] THE INSTITUTION OF ELECTRICAL ENGINEERS, STEVENAGE, GB; May 2015 (2015-05-01), SALANÇON E ET AL: "Single mineral particle makes an electron point source", XP002800013, Database accession no. 15067614 *
E. SALANÇONA. DEGIOVANNIL. LAPENAM. LAGAIZER. MORIN: "A low-energy electron point-source projection microscope not using a sharp métal tip performs well in long-range imaging", ULTRAMICROSCOPY, vol. 200, 2019, pages 125 - 131, XP085668860, DOI: 10.1016/j.ultramic.2019.02.022
JOURNAL OF VACUUM SCIENCE & TECHNOLOGY B (NANOTECHNOLOGY AND MICROELECTRONICS: MATERIALS, PROCESSING, MEASUREMENT, AND PHENOMENA) AIP - AMERICAN INSTITUTE OF PHYSICS USA, vol. 33, no. 3, 1 May 2015 (2015-05-01) - 1 June 2015 (2015-06-01), XP055726602, ISSN: 1071-1023, DOI: 10.1116/1.4916237 *
JOVE - JOURNAL OF VISUALIZED EXPERIMENTS MYJOVE CORPORATION USA, vol. 153, 1 November 2019 (2019-11-01), XP009522157, ISSN: 1940-087X, DOI: 10.3791/59513 *
RECH J ET AL: "Low-voltage electron emission from mineral films", JOURNAL OF VACUUM SCIENCE AND TECHNOLOGY: PART B, AVS / AIP, MELVILLE, NEW YORK, NY, US, vol. 20, no. 1, 1 January 2002 (2002-01-01), pages 5 - 9, XP012009241, ISSN: 1071-1023, DOI: 10.1116/1.1426366 *

Also Published As

Publication number Publication date
US20230005695A1 (en) 2023-01-05
EP4049299A1 (fr) 2022-08-31
FR3103311A1 (fr) 2021-05-21
FR3103311B1 (fr) 2021-10-15

Similar Documents

Publication Publication Date Title
EP1614765B1 (fr) Croissance à basse températurede nanotubes de carbone orientés
JP3631015B2 (ja) 電子放出素子及びその製造方法
FR2925039A1 (fr) Procede de fabrication collective de nanofibres de carbone a la surface de micromotifs elabores a la surface d'un substrat et structure comprenant des nanofibres a la surface de micromotifs
US9058954B2 (en) Carbon nanotube field emission devices and methods of making same
EP0712146B1 (fr) Source d'électrons à effet de champ et procédé de fabrication de cette source, application aux dispositifs de visualisation par cathodoluminescence
FR2974940A1 (fr) Procede de realisation de nanocristaux de semi-conducteur orientes selon une direction pre-definie
TW201830448A (zh) 具有釕塗層之電子束發射器
FR2789223A1 (fr) Corps de cathode ferroelectrique pour la production d'electrons
JP2012031000A (ja) 配列化ダイヤモンド膜およびその製造方法
FR2900499A1 (fr) Dispositif a emission de champ
WO2021099723A1 (fr) Source d'electrons basee sur l'emission par effet de champ et son procede de fabrication
US7755271B2 (en) Field emission electrode, manufacturing method thereof, and electronic device
FR2723255A1 (fr) Dispositif d'affichage a emission de champ et procede pour fabriquer de tels dispositifs
JP2021524650A (ja) 拡散障壁を有する電子エミッタ向けの金属保護層
EP3679597A1 (fr) Générateur de faisceau ionique à nanofils
EP2617049B1 (fr) Canon à électrons émettant sous haute tension, destiné notamment à la microscopie électronique
FR2777113A1 (fr) Canon a electrons de type "torche a electrons"
JP2008293844A (ja) 電子源用探針およびその製造方法
EP3325696B1 (fr) Elimination des dislocations dans un monocristal
Musa et al. Raman spectra of carbon thin films
TWI738109B (zh) 檢測基板及其製作方法、檢測裝置
FR2759202A1 (fr) Dispositif emetteur d'electrons et dispositif d'affichage pourvu d'un tel dispositif
Lee et al. High-Density Hollow Cathode Plasma Etching for Field Emission Display Applications
FR2857379A1 (fr) Croissance catalytique et directionnelle de nanotubes de carbone individuels, applications a des sources froides d'electrons
BE1026449B1 (fr) Procédé et dispositif de synthèse de diamant par CVD

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 20824299

Country of ref document: EP

Kind code of ref document: A1

ENP Entry into the national phase

Ref document number: 2020824299

Country of ref document: EP

Effective date: 20220524

NENP Non-entry into the national phase

Ref country code: DE