WO2021098503A1 - 用于增强现实显示的装置和系统 - Google Patents

用于增强现实显示的装置和系统 Download PDF

Info

Publication number
WO2021098503A1
WO2021098503A1 PCT/CN2020/126149 CN2020126149W WO2021098503A1 WO 2021098503 A1 WO2021098503 A1 WO 2021098503A1 CN 2020126149 W CN2020126149 W CN 2020126149W WO 2021098503 A1 WO2021098503 A1 WO 2021098503A1
Authority
WO
WIPO (PCT)
Prior art keywords
function structure
optical function
optical
light beam
grating
Prior art date
Application number
PCT/CN2020/126149
Other languages
English (en)
French (fr)
Inventor
乔文
罗明辉
李瑞彬
成堂东
方宗豹
李玲
周振
于哓龙
陈林森
Original Assignee
苏州苏大维格科技集团股份有限公司
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 苏州苏大维格科技集团股份有限公司 filed Critical 苏州苏大维格科技集团股份有限公司
Publication of WO2021098503A1 publication Critical patent/WO2021098503A1/zh

Links

Images

Classifications

    • GPHYSICS
    • G02OPTICS
    • G02BOPTICAL ELEMENTS, SYSTEMS OR APPARATUS
    • G02B27/00Optical systems or apparatus not provided for by any of the groups G02B1/00 - G02B26/00, G02B30/00
    • G02B27/01Head-up displays
    • G02B27/017Head mounted
    • G02B27/0172Head mounted characterised by optical features
    • GPHYSICS
    • G02OPTICS
    • G02BOPTICAL ELEMENTS, SYSTEMS OR APPARATUS
    • G02B27/00Optical systems or apparatus not provided for by any of the groups G02B1/00 - G02B26/00, G02B30/00
    • G02B27/01Head-up displays
    • GPHYSICS
    • G02OPTICS
    • G02BOPTICAL ELEMENTS, SYSTEMS OR APPARATUS
    • G02B27/00Optical systems or apparatus not provided for by any of the groups G02B1/00 - G02B26/00, G02B30/00
    • G02B27/42Diffraction optics, i.e. systems including a diffractive element being designed for providing a diffractive effect
    • GPHYSICS
    • G02OPTICS
    • G02BOPTICAL ELEMENTS, SYSTEMS OR APPARATUS
    • G02B27/00Optical systems or apparatus not provided for by any of the groups G02B1/00 - G02B26/00, G02B30/00
    • G02B27/42Diffraction optics, i.e. systems including a diffractive element being designed for providing a diffractive effect
    • G02B27/4205Diffraction optics, i.e. systems including a diffractive element being designed for providing a diffractive effect having a diffractive optical element [DOE] contributing to image formation, e.g. whereby modulation transfer function MTF or optical aberrations are relevant

Definitions

  • the present invention relates to image display technology, in particular to a device for augmented reality display and a system for realizing augmented reality display including the device.
  • Augmented reality (AR) technology is a new display technology that "seamlessly" integrates real world information and virtual world information. It not only displays real-world information, but also displays virtual information at the same time, so as to realize the mutual complement and superposition of the two kinds of information.
  • a head-mounted display is used to present a hybrid image in which the real world and a computer-generated virtual image are superimposed to the user.
  • the mainstream near-eye augmented reality display devices adopt the principle of optical waveguide.
  • the image on the micro-display spatial light modulator such as LCOS
  • the image on the micro-display spatial light modulator is coupled to the optical waveguide through three holographic gratings, and then transmitted through the three optical waveguides, and finally passes directly in front of the human eye.
  • the corresponding holographic grating is coupled out for projection to the human eye.
  • a multilayer optical waveguide can be used.
  • the augmented reality display device based on the above working principle has many shortcomings. For example, the efficiency in the field of view is not balanced, causing the display to be bright and dark, which affects the experience.
  • An object of the present invention is to provide a device for augmented reality display, which has the advantages of a good balance of light expansion efficiency within the exit pupil range and a simple structure.
  • An apparatus for augmented reality display includes:
  • the first optical function structure, the second optical function structure and the third optical function structure arranged on the surface of the optical waveguide lens,
  • the second optical function structure is located between the first optical function structure and the third optical function structure
  • the light incident to the first optical function structure forms a first light beam and a second light beam under the action of the first optical function structure, wherein the first light beam is totally reflected in the optical waveguide lens Propagates to the second optical function structure, the second light beam propagates to the second optical function structure through total reflection in the optical waveguide lens, and under the action of the second optical function structure, the The first light beam and the second light beam propagate to the third optical function structure through total reflection in the optical waveguide lens, and exit after being merged by the third optical function structure.
  • the propagation paths of the first light beam and the second light beam in the optical waveguide lens are symmetrical with respect to a reference axis, and the reference axis is perpendicular to the horizontal axis of the device.
  • the first optical function structure, the second optical function structure, and the third optical function structure are symmetrically arranged on the surface of the optical waveguide lens with respect to the reference axis, and the second optical function structure
  • the functional structure is located between the first optical functional structure and the third optical functional structure.
  • the first optical function structure and the third optical function structure are two-dimensional gratings
  • the second optical function structure is a one-dimensional grating
  • the one-dimensional grating is configured to cause the first The light beam and the second light beam enter the third optical function structure at a symmetrical incident angle with respect to the reference axis.
  • the first optical function structure, the second optical function structure, and the third optical function structure are symmetrically arranged on the surface of the optical waveguide lens with respect to the reference axis, and the second optical function
  • the structure includes a first substructure and a second substructure symmetrically located between the first optical function structure and the third optical function structure, and the first light beam and the second light beam respectively propagate to the first substructure and The second substructure.
  • the first optical function structure and the third optical function structure are two-dimensional gratings
  • the first sub-structure and the second sub-structure are one-dimensional gratings, which are configured to cause the second A light beam and a second light beam enter the third optical function structure at incident angles symmetrical with respect to the reference axis.
  • the first optical function structure, the second optical function structure and the third optical function structure are located on the same surface of the optical waveguide lens.
  • the one-dimensional grating is one of the following: oblique grating, rectangular grating, blazed grating and volume grating.
  • Another object of the present invention is to provide a system for realizing augmented reality display, which has the advantages of good balance of light expansion efficiency within the exit pupil range and simple structure.
  • the total phase sum of the first optical function, the second optical function structure, and the third optical function structure is zero to satisfy the phase matching.
  • the two-dimensional gratings used as the first optical function structure and the third optical function structure have the same structural parameters.
  • the period of the two-dimensional grating is in the range of 300-600 nm.
  • the period of the one-dimensional grating used as the second optical function structure is set to ⁇ 2/2 times the period of the grating of the first optical function structure.
  • the system for realizing augmented reality display includes:
  • An image source configured to provide light containing image information
  • the image presentation device includes:
  • the first optical function structure, the second optical function structure and the third optical function structure arranged on the surface of the optical waveguide lens,
  • the second optical function structure is located between the first optical function structure and the third optical function structure
  • the incident light from the image source forms a first light beam and a second light beam under the action of the first optical function structure, and the first light beam propagates to all the light beams through total reflection in the optical waveguide lens.
  • the second optical function structure the second light beam propagates to the second optical function structure through total reflection in the optical waveguide lens, and under the action of the second optical function structure, the first light beam And the second light beam propagate to the third optical function structure through total reflection in the optical waveguide lens, and exit after being fused by the third optical function structure,
  • the propagation paths of the first light beam and the second light beam in the optical waveguide lens are set to have symmetry.
  • the light entering the image display device is separated into a first light beam and a second light beam, and the propagation paths of the first and second light beams before reaching the coupling-out element are symmetrical, thereby realizing the field of view range The symmetrical expansion, thus providing a good balance.
  • the image presentation device according to the above-mentioned embodiment of the present invention has a simple and compact structure, which is advantageous for reducing the overall size of the device.
  • FIG. 1A and 1B are respectively a top view and a perspective view of an apparatus for presenting an image according to an embodiment of the present invention.
  • FIGS. 2A and 2B are respectively a top view and a perspective view of an apparatus for presenting an image according to another embodiment of the present invention.
  • FIG. 3A is a schematic diagram of the effective viewable area of the device for augmented reality display of the embodiment shown in FIGS. 1A and 1B
  • FIG. 3B is the effective viewable area of the device for augmented reality display of the embodiment shown in FIGS. 2A and 2B Schematic.
  • FIGS. 4A-4C show examples of one-dimensional gratings applicable to the embodiments shown in FIGS. 1A and 1B and FIGS. 2A and 2B.
  • Fig. 5 shows an example of a two-dimensional grating applicable to the embodiments shown in Figs. 1A and 1B and Figs. 2A and 2B.
  • Fig. 6 shows the relationship curve between the incident angle of blue light and the transmission efficiency in the device for augmented reality display shown in Figs. 1A and 1B and Figs. 2A and 2B.
  • Fig. 7 shows the relationship curve between the incident angle of green light and the transmission efficiency in the device for augmented reality display shown in Figs. 1A and 1B and Figs. 2A and 2B.
  • Fig. 8 shows the relationship curve between the incident angle of red light and the transmission efficiency in the device for augmented reality display shown in Figs. 1A and 1B and Figs. 2A and 2B.
  • Fig. 9 is a schematic diagram of a system for realizing augmented reality display according to another embodiment of the present invention.
  • the light entering the image display device is separated into a first light beam and a second light beam, and the propagation paths of the first and second light beams before reaching the coupling-out element are symmetrical, thereby realizing the field of view range The symmetrical expansion, thus providing a good balance.
  • the propagation paths of the first light beam and the second light beam in the image display device are symmetrical with respect to a reference axis, which is perpendicular to the horizontal axis of the image display device (for example, for a waveguide For the lens, the horizontal axis is the axis along the left and right direction).
  • FIG. 1A and 1B are respectively a top view and a perspective view of an apparatus for presenting an image according to an embodiment of the present invention.
  • the device for augmented reality display of this embodiment may take the form of glasses lenses.
  • the device 10 for augmented reality display of this embodiment includes an optical waveguide lens 110 and a first optical function structure 121, a second optical function structure 122, and a third optical function structure disposed on the surface of the optical waveguide lens. 123.
  • the coordinate axis X axis is parallel to the horizontal axis of the device or field of view
  • the coordinate axis Y axis is parallel to the thickness direction of the optical waveguide lens
  • the coordinate axis Z axis is perpendicular to the horizontal axis of the device or field of view.
  • the first optical function structure 121, the second optical function structure 122, and the third optical function structure 123 are nanostructures to diffract incident light.
  • these optical functional structures are located on the same surface of the optical waveguide lens 110 or on different surfaces of the optical waveguide lens 110.
  • the first optical function structure 121 is disposed in the center of the upper area of the optical waveguide lens surface, and is configured to couple incident light A into the optical waveguide lens 110, so it can also be called coupling Into the area.
  • the incident light enters the first optical function structure 121 at a certain angle of incidence, and is diffracted by the first optical function structure 121 to form a first light beam and a second light beam.
  • the light A incident on the first optical functional structure 121 may be light of a single wavelength, or may include multiple wavelength bands (for example, red light component, blue light component, and green light component). In the case of multiple bands, by appropriately designing the first optical function structure 121 (for example, designing the first optical function structure in the form of a two-dimensional grating), the formed first and second light beams can have the same Band or spectrum.
  • the first light beam and the second light beam propagate in the optical waveguide lens 110 along the first path A21 and the second path A22, respectively.
  • the incident light can be formed by the diffraction action of the first optical function structure 121 to form a propagation path relative to the reference axis (for example, in the XZ plane in FIG. 1A, the X axis is perpendicular to the coordinate axis).
  • the axis T) of the symmetrical first beam and second beam can propagate in a way of total reflection.
  • the first light beam and the second light beam will propagate in a symmetrical direction with respect to the reference axis; for the multi-wavelength case, the first light beam and the second light beam The light components with the same wavelength in the two light beams will propagate in a symmetrical direction with respect to the reference axis.
  • the expression that the propagation path is symmetrical with respect to the reference axis or similar should be understood to include the above two situations.
  • the second optical function structure 122 and the third optical function structure 123 are respectively disposed in the middle area and the lower area of the surface of the optical waveguide lens 110, that is, the second optical function structure 122 is located in the first optical function Between the structure 121 and the third optical function structure 123.
  • the first light beam and the second light beam propagate in the optical waveguide lens 110 along paths A21 and A22 symmetrical to the reference axis T, and reach the second optical function structure 122 through total reflection.
  • the first light beam and the second light beam can continue to follow two paths B21 and B22 symmetrical with respect to the reference axis T under the diffraction action of the second optical function structure 122,
  • the optical waveguide lens 110 it propagates to the third optical function structure 123 in a total reflection manner. Since the second optical function structure 122 changes the propagation direction of the first light beam and the second light beam, it can also be referred to as a turning area.
  • the third optical function structure 123 is configured to merge the first light beam and the second light beam to emit from the optical waveguide lens 110 along the Y axis, thereby presenting an augmented reality image to the user. Therefore, the third optical function structure 123 can also be referred to as a decoupling region.
  • FIGS. 1A and 1B are respectively a top view and a perspective view of an apparatus for presenting an image according to another embodiment of the present invention.
  • the device for augmented reality display of this embodiment may take the form of glasses lenses.
  • the device 20 for augmented reality display of this embodiment includes an optical waveguide lens 210 and a first optical function structure 221, a second optical function structure 222, and a third optical function structure disposed on the surface of the optical waveguide lens 223.
  • the coordinate axis X axis is parallel to the horizontal axis of the device or field of view
  • the coordinate axis Y axis is parallel to the thickness direction of the optical waveguide lens
  • the coordinate axis Z axis is perpendicular to the horizontal axis of the device or field of view.
  • the first optical function structure 221, the second optical function structure 222, and the third optical function structure 223 are nanostructures to diffract incident light.
  • these optical functional structures are located on the same surface of the optical waveguide lens 210 or on different surfaces of the optical waveguide lens 210.
  • the first optical function structure or coupling area 221 is disposed in the center of the upper area of the optical waveguide lens surface, and is configured to couple incident light A′ into the optical waveguide lens 210.
  • the incident light enters the first optical function structure 221 at a certain angle of incidence, and is diffracted by the first optical function structure 221 to form a first light beam and a second light beam, wherein the first light beam and the second light beam respectively follow the first path A21 ′ And the second path A22 ′ propagate in the optical waveguide lens 210.
  • the incident light can be formed under the diffraction action of the first optical function structure 221 to form a propagation path relative to the reference axis (for example, in the XZ plane in FIG. 2A, the X axis is perpendicular to the coordinate axis).
  • the axis T′ symmetrical the first beam and the second beam.
  • the first light beam and the second light beam can propagate in a way of total reflection.
  • the second optical function structure 122 and the third optical function structure 223 are respectively disposed in the middle area and the lower area of the surface of the optical waveguide lens 210, that is, the second optical function structure 222 is located in the first optical function Between the structure 221 and the third optical function structure 223.
  • the second optical function structure 222 includes a separate first substructure 222A and a second substructure 222B, wherein the first substructure 222A is disposed on the first optical function structure 221 The second sub-structure 222B is arranged at the lower right of the first optical function structure 221 at the bottom left of the.
  • the first light beam and the second light beam propagate in the optical waveguide lens 210 along paths A21′ and A22′ symmetrical with respect to the reference axis T′, and reach the first substructure 222A and the second substructure 222A and the second substructure through total reflection.
  • Structure 222B With the appropriate design of the first sub-structure 222A and the second sub-structure 222B, the first beam and the second beam can continue to follow the axis relative to the reference axis under the diffraction action of the first sub-structure 222A and the second sub-structure 222B.
  • the two symmetrical paths B21 ′ and B22 ′ of T′ propagate to the third optical function structure 223 in a total reflection manner in the optical waveguide lens 210.
  • the second optical function structure 222 may also be referred to as a turning area.
  • the third optical function structure 223 or the lotus-out region is configured to merge the first light beam and the second light beam and then exit from the optical waveguide lens 210 along the Y axis, thereby presenting enhancement to the user Realistic image.
  • the light A′ incident on the first optical function structure 221 may also be light of a single wavelength, or may include multiple wavelength bands (for example, red light component, blue light component, and green light component).
  • multiple bands for example, red light component, blue light component, and green light component.
  • the formed first and second light beams can have the same
  • the expression of wave band or frequency spectrum, and the propagation path being symmetrical with respect to the reference axis or similar expressions should also be understood as including a single wavelength and multiple bands.
  • FIGS. 3A is a schematic diagram of the effective viewable area of the device for augmented reality display of the embodiment shown in FIGS. 1A and 1B
  • FIG. 3B is the effective viewable area of the device for augmented reality display of the embodiment shown in FIGS. 2A and 2B Schematic.
  • the grid-like area enclosed by the dotted line represents the size of the effective viewable area provided by the device.
  • the problem of efficiency imbalance in the field of view is overcome. Specifically, by making the propagation paths of the first light beam and the second light beam symmetrical with respect to the reference axis (for example, the axis T perpendicular to the coordinate axis X in FIGS. 1A and 2A), the first light beam and the second light beam are made to flow in the optical waveguide.
  • the propagation path in the lens is symmetrical, realizing a symmetrical field of view expansion, thereby making up for the lack of unidirectional field of view expansion, and eliminating problems such as uneven diffraction efficiency and chromatic aberration in the field of view.
  • the first optical function structure 121, 221 and the third optical function structure 123, 223 are implemented in the form of a two-dimensional grating
  • the second optical functional structures 122, 222 are realized in the form of a one-dimensional grating
  • the one-dimensional grating may be selected from one or more of the following groups: oblique grating, rectangular grating, blazed grating, and volume grating.
  • FIGS. 4A-4C show examples of one-dimensional gratings applicable to the embodiments shown in Figs. 1A and 1B and Figs. 2A and 2B, wherein Fig. 4A shows a schematic diagram of optical diffraction of a rectangular grating, and Fig. 4B shows an oblique A schematic diagram of the optical diffraction of a grating. FIG. 4C shows a schematic diagram of the optical diffraction of a blazed grating.
  • the orientation of the one-dimensional grating depends on the orientation of the two-dimensional grating array used as the first optical function structure, and the period depends on the periods of the two-dimensional grating array of the first optical function structure and the third optical function structure.
  • the total phase sum of the first to third optical function structures is zero to satisfy phase matching.
  • a rectangular grating 421A is formed on the surface of the optical waveguide lens 410.
  • the diffracted light includes zero order diffracted light T 0 , -1 order diffracted light T -1 and first order diffracted light T 1 .
  • the 0th order diffraction efficiency is the highest
  • the -1st order diffraction is the second
  • the 1st order diffraction efficiency is the lowest.
  • the rectangular grating 421A shown in FIG. 4A can be used to form the ⁇ 1st-order diffracted light, and then the propagation in the optical waveguide lens 410 is completed.
  • the inclined grating 421B is formed on the surface of the optical waveguide lens 410.
  • the diffracted light includes zero-order diffracted light T 0 , ⁇ 1st-order diffracted light T -1 and 1st-order diffracted light T 1 .
  • the -1 order diffraction efficiency is the highest
  • the zero order diffraction efficiency is the second
  • the first order diffraction efficiency is the lowest.
  • the wavelength selection function can be realized, that is, the diffraction efficiency of light in a certain wavelength range can be made higher, while the rest The diffraction efficiency of light in the wavelength range is low.
  • the blazed grating 421C is formed on the surface of the optical waveguide lens 410.
  • the diffracted light includes zero-order diffracted light T 0 , ⁇ 1st-order diffracted light T -1 and 1st-order diffracted light T 1 .
  • the -1 order diffraction efficiency is the highest, and the zero order diffraction and the first order diffraction efficiency are the lowest.
  • the wavelength selection function can be realized.
  • Fig. 5 shows an example of a two-dimensional grating applicable to the embodiments shown in Figs. 1A and 1B and Figs. 2A and 2B.
  • the two-dimensional grating is a two-dimensional array.
  • the incident light enters the first optical function structure at a certain angle.
  • the second optical function structure 122 may be respectively conducted to the first sub-structure 222A and the second sub-structure 222B.
  • the two-dimensional gratings used as the first optical function structure and the third optical function structure have the same structural parameters (for example, the duty ratio, period, and orientation of the grating are the same).
  • the period of the two-dimensional grating is in the range of 300 to 600 nm.
  • the grating phase of the first optical function structure is ⁇ 1 and the period is d 1
  • the grating phase of the second optical function structure is ⁇ 2
  • the period is d 2
  • the first The phase of the grating of the three optical function structure is ⁇ 3 and the period is d 3.
  • the total phase sum of the first to third optical function structures must be zero to satisfy the phase matching.
  • d is the grating period
  • is the wavelength of the incident light
  • n is the refractive index of the optical waveguide lens 210
  • is the diffraction angle of the incident light.
  • Fig. 6 shows the relationship curve between the incident angle of blue light and the transmission efficiency in the device for augmented reality display shown in Figs. 1A and 1B and Figs. 2A and 2B, where the vertical axis represents the transmission efficiency and the horizontal axis represents the incident Angle, the grating period used by the device is 420nm, the height is 250nm, and the duty cycle is 0.3.
  • the incident wavelength is 450nm
  • the incident angle that satisfies the total reflection propagation of the waveguide lens is -6.6° to 20°. It can be seen from Fig. 6 that the symmetry of the beam propagation path effectively compensates for the insufficient expansion of the unidirectional field of view, thereby improving the balance of blue light diffraction efficiency within the exit pupil.
  • Fig. 7 shows the relationship curve between the incident angle of green light and the transmission efficiency in the device for augmented reality display shown in Figs. 1A and 1B and Figs. 2A and 2B, where the vertical axis represents the projection efficiency and the horizontal axis represents the incident angle
  • the grating period used by the device is 420nm, the height is 250nm, and the duty cycle is 0.3.
  • the incident wavelength is 520nm
  • the incident angle that satisfies the total reflection propagation of the waveguide lens is -12.6° to 13.8°. It can be seen from Fig. 7 that the symmetry of the beam propagation path effectively compensates for the insufficient expansion of the unidirectional field of view, thereby improving the balance of the diffraction efficiency of the green light within the exit pupil.
  • Fig. 8 shows the relationship curve between the incident angle of red light and the transmission efficiency in the device for augmented reality display shown in Figs. 1A and 1B and Figs. 2A and 2B, where the vertical axis represents the projection efficiency and the horizontal axis represents the incident angle
  • the grating period used by the device is 420nm, the height is 250nm, and the duty cycle is 0.3.
  • the incident wavelength is 620nm
  • the incident angle that satisfies the total reflection propagation of the waveguide lens is -20.1° to 6.5°. It can be seen from Fig. 8 that the symmetry of the beam propagation path effectively compensates for the insufficient expansion of the unidirectional field of view, thereby improving the balance of the diffraction efficiency of the red light within the exit pupil.
  • Fig. 9 is a schematic diagram of a system for realizing augmented reality display according to another embodiment of the present invention.
  • the system 1 shown in FIG. 9 includes image presentation devices 10A and 10B and an image source 20.
  • the image source 20 is configured to provide light containing image information to the image presentation devices 10A and 10B.
  • the light from the image source 20 may be light of a single wavelength, or may include multiple wavelength bands (for example, red light component, blue light component, and green light component).
  • the image presentation devices 10A and 10B are configured to present augmented reality images to the user.
  • the image presentation apparatuses 10A and 10B may be implemented using the embodiments described above with reference to FIGS. 1A, 1B, 2A, 2B, 4A-4C, and FIG. 5.
  • the system 1 for realizing augmented reality display further includes a connecting component 10C, which connects the image presentation devices 10A and 10B together.

Abstract

一种图像显示技术,特别涉及用于增强现实显示的装置(10)和包含该装置的用于实现增强现实显示的系统。用于增强现实显示的装置(10)包含:光波导镜片(110);设置于光波导镜片(110)表面的第一~第三光学功能结构(121,122,123),其中,第二光学功能结构(122)位于第一光学功能结构(121)与第三光学功能结构(123)之间,入射至第一光学功能结构(121)的光线在第一光学功能结构(121)的作用下形成第一光束和第二光束,其中,第一和第二光束在光波导镜片(110)内经全反射方式传播至第二光学功能结构(122),并且在第二光学功能结构(122)的作用下,第一和第二光束在光波导镜片(110)内经全反射方式传播至第三光学功能结构(123),并经第三光学功能结构(123)融合后出射。

Description

用于增强现实显示的装置和系统 技术领域
本发明涉及图像显示技术,特别涉及用于增强现实显示的装置和包含该装置的用于实现增强现实显示的系统。
背景技术
增强现实(AR)技术是一种将真实世界信息和虚拟世界信息“无缝”集成在一起的新型显示技术。它不仅展现真实世界的信息,而且还将虚拟信息同时显示出来,从而实现两种信息的相互补充和叠加。在视觉化的增强现实中,利用头盔显示器将真实世界与计算机生成的虚拟图像叠加在一起的混合图像呈现给用户。
目前主流的近眼式增强现实显示设备大多采用光波导原理。例如,在典型的增强现实显示设备中,微显示空间光调制器(例如LCOS)上的图像经过三片全息光栅耦合至光波导,随后经三片光波导分别传输,最后在人眼正前方通过相应的全息光栅耦合输出以投影至人眼。为了实现彩色投影,可以采用多层光波导的方式。然而基于上述工作原理的增强现实显示设备存在多个缺点。例如,视场范围内效率不均衡,造成显示明暗,从而影响体验效果。
发明内容
本发明的一个目的是提供一种用于增强现实显示的装置,其具有出瞳范围内光线扩展效率均衡性好和结构简单等优点。
按照本发明一个方面的用于增强现实显示的装置包含:
光波导镜片;以及
设置于所述光波导镜片表面的第一光学功能结构、第二光学功能结构和第三光学功能结构,
其中,所述第二光学功能结构位于所述第一光学功能结构与所述第三光学功能结构之间,
其中,入射至所述第一光学功能结构的光线在所述第一光学功能结构的作用下形成第一光束和第二光束,其中,所述第一光束在所述光波导镜片内经全反射方式传播至所述第二光学功能结构,所述第二光束在所述光波导镜片内经全反射方式传播至所述第二光学功能结构,并且在所述第二光学功能结构的作用下,所述第一光束和第二光束在所述光波导镜片内经全反射方式传播至所述第三光学功能结构,并经所述第三光学功能结构融合后出射。
优选地,在上述装置中,所述第一光束和第二光束在所述光波导镜片内的传播路径相对于基准轴线具有对称性,所述基准轴线垂直于所述装置的水平轴。
优选地,在上述装置中,所述第一光学功能结构、第二光学功能结构和第三光学功能结构相对于所述基准轴线对称地设置于所述光波导镜片表面,并且所述第二光学功能结构位于所述第一光学功能结构与第三光学功能结构之间。
优选地,在上述装置中,所述第一光学功能结构和第三光学功能结构为二维光栅,所述第二光学功能结构为一维光栅,该一维光栅被配置为使所述第一光束和第二光束以相对于所述基准轴线对称的入射角进入所述第三光学功能结构。
优选地,在上述装置中,所述第一光学功能结构、第二光学功能结构和第三光学功能结构相对于所述基准轴线对称地设置于所述光波导镜片表面,所述第二光学功能结构包含对称地位于所述第一光学功能结构与第三光学功能结构之间的第一子结构和第二子结构,所述第一光束和第二光束分别传播至所述第一子结构和第二子结构。
优选地,在上述装置中,所述第一光学功能结构和第三光学功能结构为二维光栅,所述第一子结构和第二子结构为一维光栅,其被配置为使所述第一光束和第二光束以相对于所述基准轴线 对称的入射角进入所述第三光学功能结构。
优选地,在上述装置中,所述第一光学功能结构、第二光学功能结构和第三光学功能结构位于所述光波导镜片的同一表面。
优选地,在上述装置中,所述一维光栅为下列中的一种:倾斜光栅、矩形光栅、闪耀光栅和体光栅。本发明的还有一个目的是提供一种用于实现增强现实显示的系统,其具有出瞳范围内光线扩展效率均衡性好和结构简单等优点。
优选地,在上述装置中,所述第一光学功能、第二光学功能结构和第三光学功能结构的总位相和为零以满足位相匹配。
优选地,在上述装置中,用作所述第一光学功能结构和第三光学功能结构的二维光栅具有相同的结构参数。
优选地,在上述装置中,所述二维光栅的周期在300~600nm的范围内。
优选地,在上述装置中,用作所述第二光学功能结构的一维光栅的周期设定为所述第一光学功能结构的光栅周期的√2/2倍。
按照本发明另一个方面的用于实现增强现实显示的系统包含:
图像源,配置为提供包含图像信息的光线;以及
图像呈现装置,包括:
光波导镜片;以及
设置于所述光波导镜片表面的第一光学功能结构、第二光学功能结构和第三光学功能结构,
其中,所述第二光学功能结构位于所述第一光学功能结构与所述第三光学功能结构之间,
其中,来自所述图像源的入射光线在所述第一光学功能结构的作用下形成第一光束和第二光束,其中,所述第一光束在所述光波导镜片内经全反射方式传播至所述第二光学功能结构,所述第二光束在所述光波导镜片内经全反射方式传播至所述第二光学功能结构,并且在所述第二光学功能结构的作用下,所述第一光束和第二光束在所述光波导镜片 内经全反射方式传播至所述第三光学功能结构,并经所述第三光学功能结构融合后出射,
其中,所述第一光束和第二光束在所述光波导镜片内的传播路径被设置为具有对称性。
按照本发明的实施例,进入图像显示装置的光线分离为第一光束和第二光束,该第一和第二光束在到达耦出元件之前的传播路径具有对称性,由此可以实现视场范围的对称式扩展,从而提供良好的均衡性。此外,按照本发明上述实施例的图像呈现装置结构简单、紧凑,这对于装置总体尺寸的缩小是有利的。
附图说明
图1A和1B分别为按照本发明一个实施例的用于呈现图像的装置的俯视图和立体图。
图2A和2B分别为按照本发明另一个实施例的用于呈现图像的装置的俯视图和立体图。
图3A为图1A和1B所示实施例的用于增强现实显示的装置的有效可视区域示意图,图3B为图2A和2B所示实施例的用于增强现实显示的装置的有效可视区域示意图。
图4A-4C示出了可应用于图1A和1B以及图2A和2B所示实施例的一维光栅的示例。
图5示出了可应用于图1A和1B以及图2A和2B所示实施例的二维光栅的示例。
图6示出了在图1A和1B以及图2A和2B所示的用于增强现实显示的装置中,蓝色光线入射角度与透射效率的关系曲线。
图7示出了在图1A和1B以及图2A和2B所示的用于增强现实显示的装置中,绿色光线入射角度与透射效率的关系曲线。
图8示出了在图1A和1B以及图2A和2B所示的用于增强现实显示的装置中,红色光线入射角度与透射效率的关系曲线。
图9为按照本发明另一个实施例的用于实现增强现实显示的 系统的示意图。
具体实施方式
下面参照其中图示了本发明示意性实施例的附图更为全面地说明本发明。但本发明可以按不同形式来实现,而不应解读为仅限于本文给出的各实施例。给出的上述各实施例旨在使本文的披露全面完整,以将本发明的保护范围更为全面地传达给本领域技术人员。
在本说明书中,诸如“包含”和“包括”之类的用语表示除了具有在说明书和权利要求书中有直接和明确表述的单元和步骤以外,本发明的技术方案也不排除具有未被直接或明确表述的其它单元和步骤的情形。
诸如“第一”和“第二”之类的用语并不表示单元在时间、空间、大小等方面的顺序而仅仅是作区分各单元之用。
按照本发明的一个方面,进入图像显示装置的光线分离为第一光束和第二光束,该第一和第二光束在到达耦出元件之前的传播路径具有对称性,由此可以实现视场范围的对称式扩展,从而提供良好的均衡性。在本发明的一个或多个实施例中,第一光束和第二光束在图像显示装置内的传播路径相对于基准轴线具有对称性,该基准轴线垂直于图像显示装置的水平轴(例如对于波导镜片而言,水平轴为沿左右方向的轴线)。
图1A和1B分别为按照本发明一个实施例的用于呈现图像的装置的俯视图和立体图。示例性地,本实施例的用于增强现实显示的装置可以采用眼镜镜片的形式。
参见图1A和1B,本实施例的用于增强现实显示的装置10包括光波导镜片110和设置于光波导镜片表面的第一光学功能结构121、第二光学功能结构122和第三光学功能结构123。在图1A和1B中,坐标轴X轴平行于装置或视场的水平轴,坐标轴Y轴平行于光波导镜片的厚度方向,坐标轴Z轴垂直于装置或视场的水 平轴。
可选地,第一光学功能结构121、第二光学功能结构122和第三光学功能结构123为纳米结构以对入射光线进行衍射。此外,可选地,这些光学功能结构位于光波导镜片110的同一表面或位于光波导镜片110的不同表面。
在图1A和1B所示的实施例中,第一光学功能结构121设置在光波导镜片表面的上部区域的中央,其配置为将入射光线A耦合进入光波导镜片110,因此又可称为耦入区域。入射光线以某一入射角进入第一光学功能结构121,经第一光学功能结构121的衍射作用而形成第一光束和第二光束。在本实施例中,入射到第一光学功能结构121的光线A可以是单一波长的光线,也可以包含多个波段(例如红光分量、蓝光分量和绿光分量)。对于多波段的情形,通过对第一光学功能结构121的合适的光学设计(例如将第一光学功能结构设计为二维光栅的形式),可以使所形成的第一和第二光束具有相同的波段或频谱。
参见图1B,第一光束和第二光束分别沿第一路径A21和第二路径A22在光波导镜片110内传播。借助对第一光学功能结构121合适的设计,可以使入射光线在第一光学功能结构121的衍射作用下,形成传播路径相对于基准轴线(例如图1A中在X-Z平面内与坐标轴X轴垂直的轴线T)对称的第一光束和第二光束。此外,通过使光线以合适的角度入射光波导镜片,第一光束和第二光束可以全反射的方式传播。
需要指出的是,在本实施例中,在光线A为单一波长的光线时,第一光束和第二光束将沿相对于基准轴线对称的方向传播;对于多波段的情形,第一光束和第二光束中具有相同波长的光线分量将沿相对于基准轴线对称的方向传播。在本说明书中,传播路径相对于基准轴线对称或类似的表述应理解为包含上述两种情形。
继续参见图1A和1B,第二光学功能结构122和第三光学功能结构123分别设置于光波导镜片110表面的中部区域和下部区域,也就是说,第二光学功能结构122位于第一光学功能结构121与第三光学功能结构123之间。
如图1B所示,第一光束和第二光束在光波导镜片110内以相对于基准轴线T对称的路径A21、A22传播,经全反射到达第二光学功能结构122。借助对第二光学功能结构122合适的设计,可以使第一光束和第二光束在第二光学功能结构122的衍射作用下,继续沿着相对于基准轴线T对称的两个路径B21、B22,在光波导镜片110内以全反射方式传播至第三光学功能结构123。由于第二光学功能结构122改变了第一光束和第二光束的传播方向,因此又可称为转折区域。
在图1A和1B所示的实施例中,第三光学功能结构123被配置为使第一光束和第二光束融合后沿Y轴从光波导镜片110射出,从而向用户呈现增强现实的图像,因此第三光学功能结构123又可称为耦出区域。
需要指出的是,图1A和1B所示的第一~第三光学功能结构在光波导镜片上的位置仅仅是示例性的。实际上,其它能够使入射光线对称扩展的结构和布置方式也是可行的。图2A和2B分别为按照本发明另一个实施例的用于呈现图像的装置的俯视图和立体图。示例性地,本实施例的用于增强现实显示的装置可以采用眼镜镜片的形式。
参见图2A和2B,本实施例的用于增强现实显示的装置20包括光波导镜片210和设置于光波导镜片表面的第一光学功能结构221、第二光学功能结构222和第三光学功能结构223。在图2A和2B中,坐标轴X轴平行于装置或视场的水平轴,坐标轴Y轴平行于光波导镜片的厚度方向,坐标轴Z轴垂直于装置或视场的水平轴。
可选地,第一光学功能结构221、第二光学功能结构222和第三光学功能结构223为纳米结构以对入射光线进行衍射。此外,可选地,这些光学功能结构位于光波导镜片210的同一表面或位于光波导镜片210的不同表面。
在图2A和2B所示的实施例中,第一光学功能结构或耦入区域221设置在光波导镜片表面的上部区域的中央,其配置为将入射光线A′耦合进入光波导镜片210。入射光线以某一入射角进入第一光学功能结构221,经第一光学功能结构221的衍射作用而形成第一光束和第二光束,其中,第一光束和第二光束分别沿第一路径A21′和第二路径A22′在光波导镜片210内传播。借助对第一光学功能结构221合适的设计,可以使入射光线在第一光学功能结构221的衍射作用下,形成传播路径相对于基准轴线(例如图2A中在X-Z平面内与坐标轴X轴垂直的轴线T′)对称的第一光束和第二光束。此外,通过使光线以合适的角度入射光波导镜片,第一光束和第二光束可以全反射的方式传播。
继续参见图2A和2B,第二光学功能结构122和第三光学功能结构223分别设置于光波导镜片210表面的中部区域和下部区域,也就是说,第二光学功能结构222位于第一光学功能结构221与第三光学功能结构223之间。但是与图1A和1B所示实施例不同的是,第二光学功能结构222包含分立的第一子结构222A和第二子结构222B,其中,第一子结构222A设置于第一光学功能结构221的左下方,第二子结构222B设置于第一光学功能结构221的右下方。
如图2B所示,第一光束和第二光束在光波导镜片210内以相对于基准轴线T′对称的路径A21′、A22′传播,经全反射分别到达第一子结构222A和第二子结构222B。借助对第一子结构222A和第二子结构222B合适的设计,可以使第一光束和第二光束在第一子结构222A和第二子结构222B的衍射作用下,继续 沿着相对于基准轴线T′对称的两个路径B21′、B22′,在光波导镜片210内以全反射方式传播至第三光学功能结构223。同样地,第二光学功能结构222又可称为转折区域。
在图2A和2B所示的实施例中,第三光学功能结构223或藕出区域被配置为使第一光束和第二光束融合后沿Y轴从光波导镜片210射出,从而向用户呈现增强现实的图像。
在本实施例中,入射到第一光学功能结构221的光线A′同样可以是单一波长的光线,也可以包含多个波段(例如红光分量、蓝光分量和绿光分量)。对于多波段的情形,通过对第一光学功能结构221的合适的光学设计(例如将第一光学功能结构设计为二维光栅的形式),可以使所形成的第一和第二光束具有相同的波段或频谱,并且传播路径相对于基准轴线对称或类似的表述也应理解为包含单一波长和多波段的情形。
图3A为图1A和1B所示实施例的用于增强现实显示的装置的有效可视区域示意图,图3B为图2A和2B所示实施例的用于增强现实显示的装置的有效可视区域示意图。在图3A和3B中,以虚线围成范围内的网格状区域代表装置所提供有效可视区域的大小。通过比较可见,图2A和2B所示实施例提供了更大的有效可视区域,这减少了光栅衍射能量的损失。
在图1A和1B以及图2A和2B所示的用于增强现实显示的装置中,视场范围内效率非均衡性的问题得以克服。具体而言,通过使第一光束和第二光束的传播路径相对于基准轴线(例如图1A和2A中与坐标轴X轴垂直的轴线T)对称来使第一光束和第二光束在光波导镜片内的传播路径具有对称性,实现了对称式的视场扩展,从而弥补单向视场扩展的不足,消除视场范围内衍射效率的不均衡和色差等问题。
在图1A和1B以及图2A和2B所示的用于增强现实显示的装置中,示例性地,第一光学功能结构121、221和第三光学功 能结构123、223以二维光栅的形式实现,而第二光学功能结构122、222(第一子结构222A、第二子结构222B)以一维光栅的形式实现。可选地,一维光栅可选自下列组中的一种或多种:倾斜光栅、矩形光栅、闪耀光栅和体光栅。
图4A-4C示出了可应用于图1A和1B以及图2A和2B所示实施例的一维光栅的示例,其中,图4A所示为矩形光栅的光学衍射示意图,图4B所示为倾斜光栅的光学衍射示意图,图4C所示为闪耀光栅的光学衍射示意图。
在示例中,一维光栅的取向取决于用作第一光学功能结构的二维光栅阵列的取向,周期取决于第一光学功能结构和第三光学功能结构的二维光栅阵列的周期。可选地,第一~第三光学功能结构的总位相和为零以满足位相匹配。
参考图4A,矩形光栅421A形成于光波导镜片410表面,通过选择光栅高度、宽度、周期等结构参数,使得以一定角度入射至光栅表面的光线经过矩形光栅形成衍射。衍射光线包括零级衍射光T 0、-1级衍射光T -1和1级衍射光T 1。在图4A所示的情形中,0级衍射效率最高,-1级衍射次之,1级衍射效率最低。可选地,可利用图4A所示矩形光栅421A形成-1级衍射光,继而完成其在光波导镜片410内的传播。
参考图4B,倾斜光栅421B形成于光波导镜片410表面,通过选择光栅高度、宽度、周期和倾斜角度等结构参数,使得以一定角度入射至光栅表面的光线经过倾斜光栅形成衍射。类似地,衍射光线包括零级衍射光T 0、-1级衍射光T -1和1级衍射光T 1。在图4B所示的情形中,-1级衍射效率最高,零级衍射次之,1级衍射效率最低。可选地,可利用图4B所示倾斜光栅形成-1级衍射光,继而完成其在光波导镜片410内的传播。此外,通过对光栅高度、宽度、周期和倾斜角度等结构参数中的一个或多个的优化,可实现波长选择功能,即,可以使某一波长范围内的光的衍射效率较高,而其余 波长范围内的光的衍射效率较低。
参考图4C,闪耀光栅421C形成于光波导镜片410表面,通过选择光栅高度、周期和闪耀角度等结构参数,使得以一定角度入射至光栅表面的光线经过闪耀光栅形成衍射。类似地,衍射光线包括零级衍射光T 0、-1级衍射光T -1和1级衍射光T 1。在图4C所示的情形中,-1级衍射效率最高,零级衍射和1级衍射效率最低。可选地,可利用图4C所示倾斜光栅形成-1级衍射光,继而完成其在光波导镜片410内的传播。此外,通过对光栅高度、周期和闪耀角度等结构参数中的一个或多个的优化,可实现波长选择功能。
图5示出了可应用于图1A和1B以及图2A和2B所示实施例的二维光栅的示例。如图5所示,二维光栅为二维阵列。以用于第一光学功能结构的情形为例,入射光以一定角度入射第一光学功能结构,通过设计二维阵列的取向角及周期等参数,可以实现双向角度衍射,两束衍射光传导至第二光学功能结构122,或者分别传导至第一子结构222A和第二子结构222B。
优选地,用作第一光学功能结构和第三光学功能结构的二维光栅具有相同的结构参数(例如光栅的占空比、周期和取向均相同)。特别是,二维光栅的周期在300~600nm的范围内。
在图2A所示的用于呈现图像的装置中,假设第一光学功能结构的光栅相位为Φ 1,周期为d 1,第二光学功能结构的光栅相位为Φ 2,周期为d 2,第三光学功能结构的光栅相位为Φ 3,周期为d 3,为了保证出射光线的方向与入射光线的方向一致,须使第一~第三光学功能结构的总位相和为零以满足位相匹配,即
Figure PCTCN2020126149-appb-000001
Figure PCTCN2020126149-appb-000002
根据位相方程:
Figure PCTCN2020126149-appb-000003
Figure PCTCN2020126149-appb-000004
Figure PCTCN2020126149-appb-000005
其中,d为光栅周期,λ为入射光线波长,n为光波导镜片210的折射率,θ为入射光的衍射角。由Φ 2得出
Figure PCTCN2020126149-appb-000006
也就是说,用作第二光学功能结构的一维光栅的周期设定为第一光学功能结构的光栅周期的√2/2倍。
图6示出了在图1A和1B以及图2A和2B所示的用于增强现实显示的装置中,蓝色光线入射角度与透射效率的关系曲线,其中纵轴代表透射效率,横轴代表入射角度,装置所采用的光栅周期为420nm,高度为250nm,占空比为0.3,在入射波长为450nm情况下,满足波导镜片全反射传播的入射角度为-6.6°到20°。由图6可见,通过使光束传播路径的对称化,有效弥补了单向视场扩展不足,从而改善了出瞳范围内蓝色光线衍射效率的均衡性。
图7示出了在图1A和1B以及图2A和2B所示的用于增强现实显示的装置中,绿色光线入射角度与透射效率的关系曲线,其中纵轴代表投射效率,横轴代表入射角度,装置所采用的光栅周期为420nm,高度为250nm,占空比为0.3,在入射波长为520nm情况下,满足波导镜片全反射传播的入射角度为-12.6°到13.8°。由图7可见,通过使光束传播路径的对称化,有效弥补了单向视场扩展不足,从而改善了出瞳范围内绿色光线的衍射效率的均衡性。
图8示出了在图1A和1B以及图2A和2B所示的用于增强 现实显示的装置中,红色光线入射角度与透射效率的关系曲线,其中纵轴代表投射效率,横轴代表入射角度,装置所采用的光栅周期为420nm,高度为250nm,占空比为0.3,在入射波长为620nm情况下,满足波导镜片全反射传播的入射角度为-20.1°到6.5°。由图8可见,通过使光束传播路径的对称化,有效弥补了单向视场扩展不足,从而改善了出瞳范围内红色光线的衍射效率的均衡性。
图9为按照本发明另一个实施例的用于实现增强现实显示的系统的示意图。
如图9所示的系统1包括图像呈现装置10A和10B和图像源20。图像源20配置为向图像呈现装置10A和10B提供包含图像信息的光线。在本实施例中,来自图像源20的光线可以是单一波长的光线,也可以包含多个波段(例如红光分量、蓝光分量和绿光分量)。图像呈现装置10A和10B配置为向用户呈现增强现实图像。在本实施例中,示例性地,图像呈现装置10A和10B可以采用如上借助图1A、图1B、图2A、2B、图4A-4C和图5来描述的实施例来实现。
参见图9,用于实现增强现实显示的系统1还包含连接部件10C,其将图像呈现装置10A和10B连接在一起。
上文描述了本发明的原理和较佳实施例。然而,本发明不应被解释为限于所讨论的具体实施例。上述较佳实施例应该被认为是说明性的,而不是限制性的,并且应当理解的时,本领域的技术人员在不偏离下面的权利要求书所限定的本发明的范围的前提下,可以在这些实施例中作出变化。

Claims (24)

  1. 一种用于呈现图像的装置,其特征在于,包含:
    光波导镜片;以及
    设置于所述光波导镜片表面的第一光学功能结构、第二光学功能结构和第三光学功能结构,
    其中,所述第二光学功能结构位于所述第一光学功能结构与所述第三光学功能结构之间,
    其中,入射至所述第一光学功能结构的光线在所述第一光学功能结构的作用下形成第一光束和第二光束,其中,所述第一光束在所述光波导镜片内经全反射方式传播至所述第二光学功能结构,所述第二光束在所述光波导镜片内经全反射方式传播至所述第二光学功能结构,并且在所述第二光学功能结构的作用下,所述第一光束和第二光束在所述光波导镜片内经全反射方式传播至所述第三光学功能结构,并经所述第三光学功能结构融合后出射。
  2. 如权利要求1所述的装置,其中,所述第一光束和第二光束在所述光波导镜片内的传播路径相对于基准轴线具有对称性,所述基准轴线垂直于所述装置的水平轴。
  3. 如权利要求2所述的装置,其中,所述第一光学功能结构、第二光学功能结构和第三光学功能结构相对于所述基准轴线对称地设置于所述光波导镜片表面,并且所述第二光学功能结构位于所述第一光学功能结构与第三光学功能结构之间。
  4. 如权利要求3所述的装置,其中,所述第一光学功能结构和第三光学功能结构为二维光栅,所述第二光学功能结构为一维光栅,该一维光栅被配置为使所述第一光束和第二光束以相对于所述基准轴线对称的入射角进入所述第三光学功能结构。
  5. 如权利要求2所述的装置,其中,所述第一光学功能结构、第二光学功能结构和第三光学功能结构相对于所述基准轴线对称地设置于所述光波导镜片表面,所述第二光学功能结构包含 对称地位于所述第一光学功能结构与第三光学功能结构之间的第一子结构和第二子结构,所述第一光束和第二光束分别传播至所述第一子结构和第二子结构。
  6. 如权利要求5所述的装置,其中,所述第一光学功能结构和第三光学功能结构为二维光栅,所述第一子结构和第二子结构为一维光栅,其被配置为使所述第一光束和第二光束以相对于所述基准轴线对称的入射角进入所述第三光学功能结构。
  7. 如权利要求1所述的装置,其中,所述第一光学功能结构、第二光学功能结构和第三光学功能结构位于所述光波导镜片的同一表面。
  8. 如权利要求4或6所述的装置,其中,所述一维光栅为下列中的一种:倾斜光栅、矩形光栅、闪耀光栅和体光栅。
  9. 如权利要求1所述的装置,其中,所述第一光学功能、第二光学功能结构和第三光学功能结构的总位相和为零以满足位相匹配。
  10. 如权利要求4或6所述的装置,其中,用作所述第一光学功能结构和第三光学功能结构的二维光栅具有相同的结构参数。
  11. 如权利要求10所述的装置,其中,所述二维光栅的周期在300~600nm的范围内。
  12. 如权利要求4或6所述的装置,其中,用作所述第二光学功能结构的一维光栅的周期设定为所述第一光学功能结构的光栅周期的√2/2倍。
  13. 一种用于实现增强现实显示的系统,其特征在于,包含:
    图像源,配置为提供包含图像信息的光线;以及
    图像呈现装置,包括:
    光波导镜片;以及
    设置于所述光波导镜片表面的第一光学功能结构、第二光学功能结构和第三光学功能结构,
    其中,所述第二光学功能结构位于所述第一光学功能 结构与所述第三光学功能结构之间,
    其中,来自所述图像源的入射光线在所述第一光学功能结构的作用下形成第一光束和第二光束,其中,所述第一光束在所述光波导镜片内经全反射方式传播至所述第二光学功能结构,所述第二光束在所述光波导镜片内经全反射方式传播至所述第二光学功能结构,并且在所述第二光学功能结构的作用下,所述第一光束和第二光束在所述光波导镜片内经全反射方式传播至所述第三光学功能结构,并经所述第三光学功能结构融合后出射。
  14. 如权利要求13所述的系统,其中,所述第一光束和第二光束在所述光波导镜片内的传播路径相对于基准轴线具有对称性,所述基准轴线垂直于所述装置的水平轴。
  15. 如权利要求14所述的系统,其中,所述第一光学功能结构、第二光学功能结构和第三光学功能结构相对于所述基准轴线对称设置于所述光波导镜片表面,并且所述第二光学功能结构位于所述第一光学功能结构与第三光学功能结构之间。
  16. 如权利要求15所述的系统,其中,所述第一光学功能结构和第三光学功能结构为二维光栅,所述第二光学功能结构为一维光栅,该一维光栅被配置为使所述第一光束和第二光束以相对于所述基准轴线对称的入射角进入所述第三光学功能结构。
  17. 如权利要求14所述的系统,其中,所述第一光学功能结构、第二光学功能结构和第三光学功能结构相对于所述基准轴线对称地设置于所述光波导镜片表面,所述第二光学功能结构包含对称地位于所述第一光学功能结构与第三光学功能结构之间的第一子结构和第二子结构,所述第一光束和第二光束分别传播至所述第一子结构和第二子结构。
  18. 如权利要求17所述的系统,其中,所述第一光学功能结构和第三光学功能结构为二维光栅,所述第一子结构和第二子结构为一维光栅,其被配置为使所述第一光束和第二光束以相对于所述基准轴线对称的入射角进入所述第三光学功能结构。
  19. 如权利要求13所述的系统,其中,所述第一光学功能结构、第二光学功能结构和第三光学功能结构位于所述光波导镜片的同一表面。
  20. 如权利要求16或18所述的系统,其中,所述一维光栅为下列中的一种:倾斜光栅、矩形光栅、闪耀光栅和体光栅。
  21. 如权利要求13所述的系统,其中,所述第一光学功能、第二光学功能结构和第三光学功能结构的总位相和为零以满足位相匹配。
  22. 如权利要求16或18所述的系统,其中,用作所述第一光学功能结构和第三光学功能结构的二维光栅具有相同的结构参数。
  23. 如权利要求22所述的系统,其中,所述二维光栅的周期在300~600nm的范围内。
  24. 如权利要求16或18所述的系统,其中,用作所述第二光学功能结构的一维光栅的周期设定为所述第一光学功能结构的光栅周期的√2/2倍。
PCT/CN2020/126149 2019-11-18 2020-11-03 用于增强现实显示的装置和系统 WO2021098503A1 (zh)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
CN201911127324.0A CN112817150A (zh) 2019-11-18 2019-11-18 用于增强现实显示的装置和系统
CN201911127324.0 2019-11-18

Publications (1)

Publication Number Publication Date
WO2021098503A1 true WO2021098503A1 (zh) 2021-05-27

Family

ID=75852214

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2020/126149 WO2021098503A1 (zh) 2019-11-18 2020-11-03 用于增强现实显示的装置和系统

Country Status (2)

Country Link
CN (1) CN112817150A (zh)
WO (1) WO2021098503A1 (zh)

Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN101688977A (zh) * 2007-06-04 2010-03-31 诺基亚公司 衍射扩束器和基于衍射扩束器的虚拟显示器
US20100296163A1 (en) * 2007-12-18 2010-11-25 Pasi Saarikko Exit Pupil Expanders with Wide Field-of-View
CN106842397A (zh) * 2017-01-05 2017-06-13 苏州苏大维格光电科技股份有限公司 一种树脂全息波导镜片及其制备方法、及三维显示装置
CN109073883A (zh) * 2016-04-13 2018-12-21 微软技术许可有限责任公司 具有扩展视场的波导
CN109073884A (zh) * 2016-04-13 2018-12-21 微软技术许可有限责任公司 具有改进的强度分布的波导出射光瞳扩展器
CN210720886U (zh) * 2019-11-18 2020-06-09 苏州苏大维格科技集团股份有限公司 用于增强现实显示的装置和系统

Patent Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN101688977A (zh) * 2007-06-04 2010-03-31 诺基亚公司 衍射扩束器和基于衍射扩束器的虚拟显示器
US20100296163A1 (en) * 2007-12-18 2010-11-25 Pasi Saarikko Exit Pupil Expanders with Wide Field-of-View
CN109073883A (zh) * 2016-04-13 2018-12-21 微软技术许可有限责任公司 具有扩展视场的波导
CN109073884A (zh) * 2016-04-13 2018-12-21 微软技术许可有限责任公司 具有改进的强度分布的波导出射光瞳扩展器
CN106842397A (zh) * 2017-01-05 2017-06-13 苏州苏大维格光电科技股份有限公司 一种树脂全息波导镜片及其制备方法、及三维显示装置
CN210720886U (zh) * 2019-11-18 2020-06-09 苏州苏大维格科技集团股份有限公司 用于增强现实显示的装置和系统

Also Published As

Publication number Publication date
CN112817150A (zh) 2021-05-18

Similar Documents

Publication Publication Date Title
JP6960994B2 (ja) 拡張現実システムのための外部結合回折格子
WO2019010857A1 (zh) 一种全息波导镜片及增强现实显示装置
CN108254925B (zh) 一种高衍射效率的全息波导显示装置及其光栅耦合方法
WO2022147866A1 (zh) 一种大视场角的光学扩瞳装置、显示装置及方法
US11249255B2 (en) Color separation in planar waveguides using an optical filter between two diffractive optical elements (DOE)
KR20200002791A (ko) 증강 현실 또는 가상 현실 디스플레이를 위한 도파관
US11774765B2 (en) Method and system for dual projector waveguide displays with wide field of view
KR20180114162A (ko) 낮은 광 누설을 가진 편광 빔 분할기
CN106471428A (zh) 全息穿透式光学设备、立体成像系统及多媒体头戴式系统
US20220057552A1 (en) Optical device
WO2021218453A1 (zh) 镜片单元和包括镜片单元的ar设备
US20220357579A1 (en) Optical device for coupling a high field of view of incident light
US20230176382A1 (en) Waveguide display with cross-polarized eye pupil expanders
WO2021098744A1 (zh) 波导镜片及增强现实眼镜
CN108732767A (zh) 一种紧凑型自由曲面波导近眼显示光学装置
WO2021169407A1 (zh) 一种光波导镜片及增强现实显示装置
CN106383406A (zh) 仿昆虫复眼的大视场单目3d头戴显示系统和显示方法
CN210720886U (zh) 用于增强现实显示的装置和系统
CN212647164U (zh) 一种近眼显示设备
WO2021218454A1 (zh) 镜片单元和包括镜片单元的ar设备
WO2021027841A1 (zh) 用于呈现图像的装置和用于实现增强现实显示的系统
WO2021191132A1 (en) Waveguide display system with wide field of view
WO2021098503A1 (zh) 用于增强现实显示的装置和系统
CN114911058A (zh) 利用衍射光波导实现单片全彩的方法、衍射光波导及设备
CN116679457B (zh) 一种衍射光波导

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 20889079

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 20889079

Country of ref document: EP

Kind code of ref document: A1