WO2022147866A1 - 一种大视场角的光学扩瞳装置、显示装置及方法 - Google Patents

一种大视场角的光学扩瞳装置、显示装置及方法 Download PDF

Info

Publication number
WO2022147866A1
WO2022147866A1 PCT/CN2021/074585 CN2021074585W WO2022147866A1 WO 2022147866 A1 WO2022147866 A1 WO 2022147866A1 CN 2021074585 W CN2021074585 W CN 2021074585W WO 2022147866 A1 WO2022147866 A1 WO 2022147866A1
Authority
WO
WIPO (PCT)
Prior art keywords
light
unit
pupil
doe3
doe1
Prior art date
Application number
PCT/CN2021/074585
Other languages
English (en)
French (fr)
Inventor
利沃拉·塔帕尼·卡列沃
蒋厚强
朱以胜
Original Assignee
深圳市光舟半导体技术有限公司
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 深圳市光舟半导体技术有限公司 filed Critical 深圳市光舟半导体技术有限公司
Priority to EP21916919.0A priority Critical patent/EP4239393A4/en
Publication of WO2022147866A1 publication Critical patent/WO2022147866A1/zh

Links

Images

Classifications

    • GPHYSICS
    • G02OPTICS
    • G02BOPTICAL ELEMENTS, SYSTEMS OR APPARATUS
    • G02B6/00Light guides; Structural details of arrangements comprising light guides and other optical elements, e.g. couplings
    • G02B6/0001Light guides; Structural details of arrangements comprising light guides and other optical elements, e.g. couplings specially adapted for lighting devices or systems
    • G02B6/0011Light guides; Structural details of arrangements comprising light guides and other optical elements, e.g. couplings specially adapted for lighting devices or systems the light guides being planar or of plate-like form
    • G02B6/0075Arrangements of multiple light guides
    • GPHYSICS
    • G02OPTICS
    • G02BOPTICAL ELEMENTS, SYSTEMS OR APPARATUS
    • G02B27/00Optical systems or apparatus not provided for by any of the groups G02B1/00 - G02B26/00, G02B30/00
    • G02B27/01Head-up displays
    • G02B27/0101Head-up displays characterised by optical features
    • GPHYSICS
    • G02OPTICS
    • G02BOPTICAL ELEMENTS, SYSTEMS OR APPARATUS
    • G02B27/00Optical systems or apparatus not provided for by any of the groups G02B1/00 - G02B26/00, G02B30/00
    • G02B27/0081Optical systems or apparatus not provided for by any of the groups G02B1/00 - G02B26/00, G02B30/00 with means for altering, e.g. enlarging, the entrance or exit pupil
    • GPHYSICS
    • G02OPTICS
    • G02BOPTICAL ELEMENTS, SYSTEMS OR APPARATUS
    • G02B27/00Optical systems or apparatus not provided for by any of the groups G02B1/00 - G02B26/00, G02B30/00
    • G02B27/01Head-up displays
    • G02B27/017Head mounted
    • G02B27/0172Head mounted characterised by optical features
    • GPHYSICS
    • G02OPTICS
    • G02BOPTICAL ELEMENTS, SYSTEMS OR APPARATUS
    • G02B5/00Optical elements other than lenses
    • G02B5/18Diffraction gratings
    • G02B5/1814Diffraction gratings structurally combined with one or more further optical elements, e.g. lenses, mirrors, prisms or other diffraction gratings
    • GPHYSICS
    • G02OPTICS
    • G02BOPTICAL ELEMENTS, SYSTEMS OR APPARATUS
    • G02B6/00Light guides; Structural details of arrangements comprising light guides and other optical elements, e.g. couplings
    • G02B6/0001Light guides; Structural details of arrangements comprising light guides and other optical elements, e.g. couplings specially adapted for lighting devices or systems
    • G02B6/0011Light guides; Structural details of arrangements comprising light guides and other optical elements, e.g. couplings specially adapted for lighting devices or systems the light guides being planar or of plate-like form
    • G02B6/0013Means for improving the coupling-in of light from the light source into the light guide
    • G02B6/0015Means for improving the coupling-in of light from the light source into the light guide provided on the surface of the light guide or in the bulk of it
    • G02B6/0016Grooves, prisms, gratings, scattering particles or rough surfaces
    • GPHYSICS
    • G02OPTICS
    • G02BOPTICAL ELEMENTS, SYSTEMS OR APPARATUS
    • G02B6/00Light guides; Structural details of arrangements comprising light guides and other optical elements, e.g. couplings
    • G02B6/0001Light guides; Structural details of arrangements comprising light guides and other optical elements, e.g. couplings specially adapted for lighting devices or systems
    • G02B6/0011Light guides; Structural details of arrangements comprising light guides and other optical elements, e.g. couplings specially adapted for lighting devices or systems the light guides being planar or of plate-like form
    • G02B6/0033Means for improving the coupling-out of light from the light guide
    • G02B6/0035Means for improving the coupling-out of light from the light guide provided on the surface of the light guide or in the bulk of it
    • GPHYSICS
    • G02OPTICS
    • G02BOPTICAL ELEMENTS, SYSTEMS OR APPARATUS
    • G02B27/00Optical systems or apparatus not provided for by any of the groups G02B1/00 - G02B26/00, G02B30/00
    • G02B27/01Head-up displays
    • G02B27/0101Head-up displays characterised by optical features
    • G02B2027/0112Head-up displays characterised by optical features comprising device for genereting colour display
    • GPHYSICS
    • G02OPTICS
    • G02BOPTICAL ELEMENTS, SYSTEMS OR APPARATUS
    • G02B27/00Optical systems or apparatus not provided for by any of the groups G02B1/00 - G02B26/00, G02B30/00
    • G02B27/01Head-up displays
    • G02B27/0101Head-up displays characterised by optical features
    • G02B2027/0123Head-up displays characterised by optical features comprising devices increasing the field of view
    • GPHYSICS
    • G02OPTICS
    • G02BOPTICAL ELEMENTS, SYSTEMS OR APPARATUS
    • G02B27/00Optical systems or apparatus not provided for by any of the groups G02B1/00 - G02B26/00, G02B30/00
    • G02B27/01Head-up displays
    • G02B27/017Head mounted
    • G02B27/0172Head mounted characterised by optical features
    • G02B2027/0174Head mounted characterised by optical features holographic
    • GPHYSICS
    • G02OPTICS
    • G02BOPTICAL ELEMENTS, SYSTEMS OR APPARATUS
    • G02B27/00Optical systems or apparatus not provided for by any of the groups G02B1/00 - G02B26/00, G02B30/00
    • G02B27/01Head-up displays
    • G02B27/017Head mounted
    • G02B2027/0178Eyeglass type

Definitions

  • the present application relates to an optical pupil dilation device, a display device and a method with a large field of view, which can be used in a virtual display device.
  • the pupil dilating device EPE0 includes a waveguide plate SUB01, which further includes a diffractive entrance pupil unit DOE01, a diffractive pupil expansion unit DOE02 and a diffractive exit pupil unit DOE03.
  • a beam of input light IN1 is expanded by multiple diffractions in the pupil dilating device EPE0, and finally output light OUT1.
  • the input light IN1 is emitted by the optical engine ENG1.
  • the optical engine ENG1 may be composed of a microdisplay DISP1 and a collimating optical device LNS1.
  • the diffractive entrance pupil unit DOE01 diffracts the input light IN1 into the first transmitted light B1 through diffraction.
  • the first guided light B1 is diffracted by the diffractive pupil expansion unit DOE02 to form the expanded second guided light B2.
  • the expanded second transmitted light B2 is diffracted into output light OUT1 by the diffractive exit pupil unit DOE03.
  • the pupil dilating device EPE0 can expand the light beam in both the direction SX and in the direction SY.
  • the width of the output light OUT1 is much larger than the width of the input light IN1.
  • the pupil dilating device EPE0 can be used to expand the pupil of the virtual display device, so that the eye EYE1 has a larger comfortable observation position (large eyebox, large eye movement range) relative to the observation position of the virtual display device.
  • the observer's eye EYE1 can see the completed virtual image within the viewing position of the output beam.
  • the output light may comprise one or more output light beams, wherein each output light beam may correspond to a different image position of the displayed virtual image VIMG1.
  • the pupil dilating device may also be called eg a pupil dilating unit, a pupil dilating device or the like.
  • the virtual image VIMG1 has an angular magnitude of LIM1.
  • Figure 1 shows the way of displaying a full-color virtual image VIMG1 by using the pupil dilating device EPE0. Due to the corner rays of the virtual image VIMG1 corresponding to red and blue, the total reflection condition of the waveguide plate SUB01 cannot be satisfied during the transmission process. Therefore, the corners of the virtual image VIMG1 may be missing red or blue.
  • the present application proposes a new pupil dilating device, a method for expanding a light beam, a display device, and a method for displaying an image, which can provide a larger field of view (FOV).
  • FOV field of view
  • the present application proposes an optical pupil expanding device (EPE1), the key parts are as follows:
  • Waveguide plate (SUB1) containing:
  • an entrance pupil unit (DOE1) by which the input light (IN1) is diffracted by the entrance pupil unit (DOE1) to form a first guided light (B1a) and a second guided light (B1b);
  • DOE3 exit pupil unit
  • the exit pupil unit (DOE3) combines the first output light (OB3a) and the second output light (OB3b) to form a combined output light (OUT1); wherein the entrance pupil unit (DOE1) has a function for forming all the the first grating period (d 1a ) of the first transmitted light (B1a), and the entrance pupil unit (DOE1) has a different second grating period (d 1b ) for forming the second transmitted light (B1b) ).
  • the pupil dilation device may be used to display a color image, wherein the display width of the color image is increased.
  • Color images can be RGB images containing red (R) light, green (G) light and blue (B) light.
  • Increasing the width of the displayed image may cause blue and/or red light leakage at the corners of the displayed image.
  • the red or blue light formed by the entrance pupil unit of the pupil dilating device cannot all be confined within the waveguide plate by total internal reflection.
  • the pupil dilating device can be designed to include two different optical paths, so as to overcome the limitation of light of different colors in the corresponding transmission directions when the waveguide plate transmits a wide image.
  • the pupil dilating device may split the input light to propagate to the exit pupil unit via the first path and via the second path, respectively.
  • the first path may be realized from the entrance pupil unit to the exit pupil unit through the first pupil dilation unit.
  • the second path can be realized from the entrance pupil unit to the exit pupil unit through the second pupil dilation unit.
  • the first path may have red light loss at the corner points of the displayed image
  • the second path may have blue light loss at the corner points of the displayed image.
  • red light propagating along the second path may at least partially compensate for the loss of red light from the first path.
  • Blue light propagating along the first path may at least partially compensate for the loss of blue light from the second path.
  • the entrance pupil unit may contain first diffractive features to diffract light to the first pupil dilation unit.
  • the entrance pupil unit may contain second diffractive features to diffract light to the second pupil dilation unit.
  • the first diffractive features may have a first grating period, and the second diffractive features may have a second, different grating period.
  • the first grating period can be chosen to ensure that the blue transmitted light at the corner points is confined within the waveguide plate.
  • the second grating period can be chosen to ensure that the red transmitted light at the corner points is confined within the waveguide plate.
  • the first diffractive features may have a first orientation and the second diffractive features may have a second, different orientation.
  • the two paths may at least partially compensate for color deviations in the corner points of the displayed image.
  • Two paths can reduce or avoid color errors at the corners of wide color display images.
  • Two paths can improve the color uniformity of wide color display images.
  • the exit pupil unit may form the first output light by diffracting the third transmitted light propagating along the first path.
  • the diffracted third transmitted light comes from the first pupil dilation unit.
  • the exit pupil unit may form the second output light by diffracting the fourth transmitted light propagating along the second path.
  • the diffracted fourth transmitted light comes from the second pupil dilation unit.
  • the first output light may spatially overlap the second output light. By combining the first output light with the second output light, a combined output light is formed at the exit pupil unit.
  • the exit pupil unit may contain first diffractive features to diffract the transmitted light received from the first pupil dilation unit.
  • the exit pupil unit may contain second diffractive features to diffract the transmitted light received from the second pupil dilation unit.
  • the first diffractive features may have a first grating period, and the second diffractive features may have a second, different grating period.
  • the first grating period can be chosen to ensure that the blue transmitted light at the corner points is confined within the waveguide plate.
  • the second grating period can be chosen to ensure that the red transmitted light at the corner points is confined within the waveguide plate.
  • the first diffractive features may have a first orientation and the second diffractive features may have a second, different orientation.
  • the first diffractive feature may be very low or negligible for the out-coupling efficiency of the light received from the second pupil dilation unit.
  • the second diffractive feature may be very low or negligible for the out-coupling efficiency of the light received from the first pupil dilation unit.
  • 1 is a schematic structural diagram of a conventional pupil dilation device 20
  • Figures 2a-2e are three-dimensional views showing examples of forming incident rays using an optical engine
  • 2f is an example of a display process for representing a virtual image in a three-dimensional view
  • Figure 2g is an example of the horizontal angular amplitude (angular width) of the virtual image
  • Figure 2h is an example of the pitch angle amplitude (angular height) of the virtual image
  • Figure 3a is an example of a front view of a pupil dilation device providing two different paths for entrance pupil rays
  • 3b is an example of a front view of different exit pupil regions of the exit pupil unit in the pupil dilation device
  • Figure 4a is a three-dimensional view showing an example of a display device including a pupil dilation device
  • 4b is a three-dimensional view showing an example of forming a combined output light by superimposing the first output light and the second output light;
  • 4c is a cross-sectional view showing an example of a display device including a pupil dilation device
  • Fig. 5 is the front view of the pupil dilation device in the embodiment of the application marked with relevant dimensions and structural details;
  • 6a is an example of a vector diagram of the blue light wave vector propagating along the first path of the pupil dilation device in the embodiment of the application;
  • 6b is an example of a vector diagram of the red light wave vector propagating along the first path of the pupil dilation device in the embodiment of the application,
  • 6c is an example of a vector diagram of a blue light wave vector at a corner point of an image in an embodiment of the present application
  • FIG. 6d is an example of a vector diagram of the blue light wave vector at the corner point of the image in the embodiment of the present application.
  • FIG. 6e is an example of a vector diagram of the red light wave vector at the corner point of the image in the embodiment of the present application.
  • 6f is an example of a vector diagram of the red light wave vector at the corner point of the image in the embodiment of the present application.
  • FIG. 6g shows the first transmission light formed by coupling the input light beam into the waveguide plate in the embodiment of the application, wherein the inclination angle of the first transmission light is close to the critical angle of total internal reflection;
  • Fig. 6h shows the first guided light formed by coupling the input light beam into the waveguide plate in the embodiment of the application, wherein the inclination angle of the first guided light is close to 90 degrees;
  • FIG. 6i is the relationship between the wave vector angle of the first transmitted light and the wave vector angle of the input light in the embodiment of the application.
  • 7a is an example of a vector diagram of the blue light wave vector propagating along the second path of the pupil dilation device in the embodiment of the application;
  • 7b is an example of a vector diagram of the red light wave vector propagating along the second path of the pupil dilation device in the embodiment of the application;
  • 7c is an example of a vector diagram of the blue light wave vector at the corner point of the image in the embodiment of the present application.
  • FIG. 7d is an example of a vector diagram of the blue light wave vector at the corner point of the image in the embodiment of the present application.
  • FIG. 8a is an example of the light propagation mode of the first corner point of the pupil dilation device in the embodiment of the application.
  • FIG. 8b is an example of the light propagation mode of the center point of the pupil dilation device in the embodiment of the application.
  • FIG. 8c is an example of the light propagation mode of the third corner point of the pupil dilation device in the embodiment of the application.
  • FIG. 8d is an example of the light propagation mode of the second corner point of the pupil dilation device in the embodiment of the application.
  • FIG. 8e is an example of the light propagation mode of the fourth corner point of the pupil dilation device in the embodiment of the present application.
  • the optical engine ENG1 may be composed of a display DISP1 and a collimating optical device LNS1.
  • the display DISP1 may be set to display the input image IMG0.
  • the display DISP1 may also be referred to as a microdisplay or a microdisplay.
  • the display DISP1 may also be referred to as a spatial intensity modulator.
  • the input image IMG0 may also be referred to as an image source.
  • the input image IMG0 may contain a center point P0 and four corner points P1, P2, P3, and P4.
  • P1 can represent the upper left corner drop point.
  • P2 can represent the drop point in the upper right corner.
  • P3 can represent the lower left corner point.
  • P4 can represent the lower right corner point.
  • the input image IMG0 may contain graphic characters such as "F", "G” and "H”.
  • the input image IMG0 may be a color image.
  • the input image IMG0 may be, for example, an RGB image, which may contain a red partial image, a green partial image and a blue partial image. Each image point can provide eg red light, green light and/or blue light.
  • the light of the red light beam may have a red color, eg, a wavelength of 650 nm
  • the light of the green light beam may have a green color, for example, a wavelength of 510 nm.
  • the light of the blue light beam may have a blue color, eg, a wavelength of 470 nm.
  • the light of the corner points of the color image IMG0 may contain red light and blue light.
  • Optical engine ENG1 may provide input light IN1, which may contain a plurality of substantially collimated light beams (B0). Each red beam can travel in a different direction and can correspond to a different point of the input image IMG0.
  • the red light beam B0 P1,R may correspond to the image point P1 and propagate in the direction of the wave vector k0 P1,R .
  • the blue light beam (B0 P1,B ) may correspond to the same image point P1 and propagate in the direction of the wave vector (k0 P1,B ).
  • the propagation direction (k0 P1,B ) of the blue light beam (B0 P1,B ) corresponding to the first corner point P1 of the input image IMG0 can be parallel to the red light beam (B0 P1,B ) corresponding to the first corner point P1.
  • the propagation direction (k0 P2,B ) of the blue light beam (B0 P2,B ) corresponding to the second corner point P2 of the input image IMG0 can be parallel to the red light beam (B0 P2,B ) corresponding to the second corner point P2.
  • P2,R propagation direction (k0 P2,R ).
  • the red light beam B0 P2,R may correspond to the image point P2 and propagate in the direction of the wave vector k0 P2,R .
  • the red light beam B0 P3,R may correspond to the image point P3 and propagate in the direction of the wave vector k0 P3,R .
  • the red light beam B0 P4,R may correspond to the image point P4 and propagate in the direction of the wave vector k0 P4,R .
  • the red light beam B0 P0,R may correspond to the central image point P1 and propagate in the direction of the wave vector k0 P0,R .
  • the wave vector (k) of light can be defined as a vector having the direction of propagation of the light and having an amplitude given by 2 ⁇ / ⁇ , where ⁇ is the wavelength of the light.
  • the output light OUT1 (ie, the combined output light OUT1) may contain a plurality of output light beams, which may correspond to the displayed virtual image VIMG1.
  • Each output beam may correspond to a point of the image.
  • a red light beam propagating in the direction of the wave vector k3 P0,R may correspond to point P0' of the virtual image VIMG1.
  • the red light beam propagating in the direction of the wave vector k3 P1,R may correspond to the point P1' of the virtual image VIMG1.
  • the red light beam propagating in the direction of the wave vector k3 P2,R may correspond to the point P2' of the virtual image VIMG1.
  • the red light beam propagating in the direction of the wave vector k3 P3,R may correspond to the point P3' of the virtual image VIMG1.
  • the red light beam propagating in the direction of the wave vector k3 P4,R may correspond to the point P4' of the virtual image VIMG1.
  • the pupil dilating device EPE1 may form the output light OUT1 by expanding the exit pupil of the optical engine ENG1.
  • the output light OUT1 may contain a plurality of output light beams, which correspond to the displayed virtual image VIMG1.
  • the output light beam OUT1 may be irradiated on the observer's eye EYE1, so that the observer can see the displayed virtual image VIMG1.
  • the displayed virtual image VIMG1 may have a center point P0' and four corner points P1', P2', P3', P4'.
  • the input light IN1 may contain a plurality of light beams corresponding to the points P0, P1, P2, P3, P4 of the input image IMG0.
  • the pupil dilating device EPE1 may form the point P0' of the displayed virtual image VIMG1 by diffracting and conducting light from the point P0 of the input image IMG0.
  • the pupil dilating device EPE1 can form points P1', P2', P3', P4' by diffracting and conducting light from the points P1, P2, P3, P4, respectively.
  • the pupil dilating device EPE1 may form an output light OUT1 comprising a plurality of propagating in different directions specified by wave vectors k3 P0,R , k3 P1,R , k3 P2,R , k3 P3,R , k3 P4,R etc. beam.
  • the red light beam corresponding to the point P0' of the displayed virtual image VIMG1 has a wave vector k3 P0,R .
  • the red light beam corresponding to the point P1' of the virtual image VIMG1 has a wave vector k3 P1,R .
  • the red light beam corresponding to point P2' of virtual image VIMG1 has wave vector k3 P2,R .
  • the red light beam corresponding to point P3' of virtual image VIMG1 has wave vector k3 P3,R .
  • the red light beam corresponding to point P4' of virtual image VIMG1 has wave vector k3 P4,R .
  • the pupil dilation unit EPE1 can be designed such that the wave vector k3 P1, R is parallel to the wave vector k0 P1,R of the red light beam at the point P1 in the input light IN1.
  • the wave vector k3 P0,R may be parallel to the wave vector k0 P0,R of the point P0 in the input light IN1.
  • the wave vector k3 P2,R may be parallel to the wave vector k0 P2,R of the point P2 in the input light IN1.
  • the wave vector k3 P3,R may be parallel to the wave vector k0 P3,R of the point P3 in the input light IN1.
  • the wave vector k3 P4,R may be parallel to the wave vector k0 P4,R of the point P4 in the input light IN1.
  • the displayed virtual image VIMG1 has an angular width and angular height ⁇ .
  • the displayed virtual image VIMG1 may have, for example, a first corner point P1' to the left of the virtual image VIMG1, and a second corner point P2', for example, to the right of the virtual image VIMG1.
  • the angular width of the virtual image VIMG1 may be equal to the horizontal angle between the wave vectors k3 P1,R and k3 P2,R of the corner points P1', P2'.
  • the displayed virtual image VIMG1 may have an upper corner point P1' and a lower corner point P3'.
  • the angular height ⁇ of the virtual image VIMG1 may be equal to the vertical angle between the wave vectors k3 P1,R and k3 P3,R of the corner points P1', P3'.
  • the two paths of the pupil dilating device EPE1 may allow a wide color virtual image VIMG1 to be displayed.
  • Two paths of pupil dilating device EPE1 can allow display with expanded angular width Color virtual image VIMG1.
  • the angle between the wave vector and the reference plane REF1 can be represented.
  • the reference plane REF1 can be defined as the plane of the directions SZ and SY.
  • the angle ⁇ may represent the angle between the wave vector and the reference plane REF2.
  • the reference plane REF2 can be defined as the plane of the directions SZ and SX.
  • the pupil dilating device EPE1 may comprise a substantially planar waveguide plate SUB1 which in turn comprises an entrance pupil unit DOE1, a first pupil dilation unit DOE2a, a second pupil expansion unit DOE2b and an exit pupil unit DOE3.
  • the grating unit used may be on the first surface or the second surface of the waveguide plate SUB1.
  • the entrance pupil unit DOE1 may receive input light IN1, and the exit pupil unit DOE3 may provide output light OUT1.
  • the input light IN1 may contain multiple light beams propagating in different directions.
  • the output light OUT1 may contain a plurality of expanded light beams formed from the light beam (B0) in the input light IN1.
  • the width w OUT1 of the output light OUT1 may be greater than the width w IN1 of the input light IN1 .
  • the pupil dilating device EPE1 can expand the input light IN1 two-dimensionally (eg, in the horizontal direction SX and in the vertical direction SY).
  • the dilation process may also be referred to as pupil dilation.
  • the pupil dilating device EPE1 may be referred to as a beam dilating device or an exit pupil dilating device.
  • the entrance pupil unit DOE1 may form the first guided light B1a and the second guided light B1b by diffracting the input light IN1.
  • the first guided light B1a and the second guided light B1b may propagate within the planar waveguide plate SUB1.
  • the first guided light B1a and the second guided light B1b may be confined within the waveguide plate SUB1 by total internal reflection.
  • conducting may refer to light propagating within a planar waveguide plate SUB1, thereby confining the light beam within the waveguide plate by total internal reflection (TIR).
  • TIR total internal reflection
  • conducting may mean the same as the term "waveguide”.
  • the entrance pupil unit DOE1 may couple the input light IN1 to propagate to the exit pupil unit DOE3 via two different paths, namely via a first pupil dilation unit DOE2a and a second pupil dilation unit DOE2b.
  • the entrance pupil unit DOE1 is optically coupled, then passes through the first pupil dilation unit DOE2a, and finally reaches the exit pupil unit DOE3.
  • it can enter the pupil unit DOE1 through optical coupling, then pass through the second pupil dilation unit DOE2b, and finally reach the exit pupil unit DOE3.
  • the pupil dilation device EPE1 may provide a first path from the entrance pupil unit DOE1 to the exit pupil unit DOE3 via the first pupil expansion unit DOE2a.
  • the pupil dilation device EPE1 may provide a second path from the entrance pupil unit DOE1 to the exit pupil unit DOE3 via the second pupil expansion unit DOE2b.
  • the first path may represent an optical path from the entrance pupil unit DOE1 to the exit pupil unit DOE3, and through the first pupil dilation unit DOE2a.
  • the second path may refer to an optical path from the entrance pupil unit DOE1 to the exit pupil unit DOE3, and through the second pupil dilation unit DOE2b.
  • the first transmitted light B1a may propagate from the entrance pupil unit DOE1 to the first pupil dilation unit DOE2a mainly along the first direction DIR1a.
  • the first pupil dilation unit DOE2a may form the third transmitted light B2a by diffracting the first transmitted light B1a.
  • the lateral dimension of the third guided light B2a may be larger than the corresponding lateral dimension of the input light IN1.
  • the third guided light B2a may also be referred to as extended guided light B2a.
  • the expanded conducted light B2a may propagate from the first pupil dilation unit DOE2a to the exit pupil unit DOE3.
  • the expanded guided light B2a can be confined within the waveguide plate SUB1 by total internal reflection.
  • the exit pupil unit DOE3 may form the first output light OB3a by diffracting the expanded transmitted light B2a.
  • the second transmitted light B1b may propagate from the entrance pupil unit DOE1 to the second pupil dilation unit DOE2b mainly along the second direction DIR1b.
  • the second pupil dilating unit DOE2b may form the fourth transmitted light B2b by diffracting the second transmitted light B1b.
  • the lateral dimension of the fourth guided light B2a may be larger than the corresponding lateral dimension of the input light IN1.
  • the fourth guided light B2b may also be referred to as extended guided light B2b.
  • the expanded conducted light B2b may propagate from the second pupil dilation unit DOE2b to the exit pupil unit DOE3.
  • the expanded guided light B2b can be confined within the waveguide plate SUB1 by total internal reflection.
  • the exit pupil unit DOE3 may form the second output light OB3b by diffracting the expanded transmitted light B2b.
  • the exit pupil unit DOE3 may diffract the third transmitted light B2a received from the first pupil dilation unit DOE2a, while the exit pupil unit DOE3 may diffract the fourth transmitted light B2b received from the second pupil dilation unit DOE2b.
  • the first direction DIR1a may represent an average propagation direction of the first guided light B1a.
  • the first direction DIR1a may also represent the central axis of the propagation of the first guided light B1a.
  • the second direction DIR1b may represent an average propagation direction of the second transmitted light B1b.
  • the second direction DIR1b may also represent the central axis of the propagation of the second guided light B1b.
  • the angle ⁇ 1ab between the first direction DIR1a and the second direction DIR1b may be in the range of 60° to 120°.
  • the extended transmitted light B2a may propagate in a third direction DIR2a, which may be substantially parallel to the second direction DIR1b.
  • the extended transmitted light B2b may propagate in a fourth direction DIR2b, which may be substantially parallel to the first direction DIR1a.
  • the waveguide plate SUB1 may contain one or more optical isolation units ISO1 to prevent direct optical coupling between the first pupil dilating unit DOE2a and the second pupil dilating unit DOE2b.
  • Optical isolation unit ISO1 can be achieved by depositing (black) absorbing material on the surface of the waveguide plate, or (and) by adding (black) absorbing material to the area of the waveguide plate, or (and) by forming a or multiple openings.
  • SX, SY and SZ are orthogonal directions.
  • the waveguide plate SUB1 may be parallel to the plane defined by SX and SY.
  • the first pupil dilation unit DOE2a may be configured to distribute the third conducted light B2a to the first exit pupil region REG3a of the exit pupil unit DOE3.
  • the first exit pupil region REG3a may diffract the third transmitted light B2a from the waveguide plate SUB1.
  • the second pupil dilation unit DOE2b may be arranged to distribute the fourth conducted light B2b to the second exit pupil region REG3b of the exit pupil unit DOE3.
  • the second exit pupil region REG3b may diffract the fourth guided light B2b out of the waveguide plate SUB1.
  • the first exit pupil region REG3a may overlap with the second exit pupil region REG3b.
  • the common overlapping region COM1 of the first exit pupil region REG3a and the second exit pupil region REG3b may diffract the third guided light B2a and the fourth guided light B2b from the waveguide plate SUB1.
  • the area of the common overlapping area COM1 may be greater than 50% of the one-sided area of the exit pupil unit DOE3, preferably greater than 70%.
  • the pupil dilating device EPE1 may form the output light OUT1 by diffracting and conducting the input light IN1 obtained from the optical engine ENG1.
  • the display device 500 may include an optical engine ENG1 and a pupil expanding device EPE1.
  • the input light IN1 may contain multiple light beams propagating in different directions. Each beam of the input light IN1 may correspond to a different point of the input image IMG0.
  • the output light OUT1 may contain a plurality of light beams propagating in different directions. Each light beam of the output light OUT1 may correspond to a different point of the displayed virtual image VIMG1.
  • the pupil dilating unit EPE1 may form the output light OUT1 from the input light IN1 so that the direction and intensity of the light beam of the output light OUT1 corresponds to the point of the input image IMG0.
  • the light beam of the input light IN1 may correspond to a single image point (P0) of the display image.
  • the pupil dilating device EPE1 can form an output beam from the beam of the input light IN1 such that the direction (k 3 , P0 , R ) of the output beam is parallel to the direction (k 0 , P0 , R ) of the beam of the corresponding input light IN1 .
  • the display device 500 may include an optical engine ENG1 to form a main image IMG0 (ie, the input image IMG0) and convert the main image IMG0 into a plurality of light beams of the input light IN1.
  • the light of the optical engine ENG1 can be coupled in from the entrance pupil unit DOE1 of the pupil dilation device EPE1.
  • the input light IN1 may be coupled in from the entrance pupil unit DOE1 of the pupil expansion device EPE1.
  • the display apparatus 500 may be a display device for displaying a virtual image.
  • the display device 500 may also be a myopic optical device.
  • the pupil dilation device EPE1 may propagate the content of the virtual image from the optical engine ENG1 to the front of the user's eye EYE1.
  • the pupil expansion device EPE1 can expand the pupil, thereby expanding the eyebox.
  • the optical engine ENG1 may contain the microdisplay DISP1 to generate the main image IMG0.
  • the microdisplay DISP1 may contain a two-dimensional array of light-emitting pixels.
  • the display DISP1 can produce, for example, the main image IMG0 with a resolution of 1280 ⁇ 720.
  • the display DISP1 can produce, for example, the main image IMG0 with a resolution of 1920 ⁇ 1080 (Full HD).
  • the display DISP1 can produce, for example, the main image IMG0 with a resolution of 3840 ⁇ 2160 (4K UHD).
  • the main image IMG0 may contain a plurality of image points P0, P1, P2, . . .
  • the optical engine ENG1 may contain collimation optics LNS1 to form a different light beam for each image pixel.
  • the optical engine ENG1 may contain collimating optics LNS1 to form a substantially collimated beam of light from the image point P0.
  • the beam corresponding to the image point P0 can propagate in the direction specified by the wave vector k0 P0,R .
  • Light beams corresponding to different image points P1 may propagate in directions k0 P1, R different from directions k0 P0,R .
  • the optical engine ENG1 may provide a plurality of light beams corresponding to the generated main image IMG0. One or more light beams provided by optical engine ENG1 may be coupled into pupil dilating device EPE1 as input light IN1.
  • the optical engine ENG1 may contain, for example, one or more light emitting diodes (LEDs).
  • the display DISP1 may comprise one or more microdisplay imagers such as liquid crystal on silicon (LCOS), liquid crystal display (LCD), digital micromirror device (DMD).
  • LCOS liquid crystal on silicon
  • LCD liquid crystal display
  • DMD digital micromirror device
  • the exit pupil unit DOE3 may form the first output light OB3a by diffracting the third conducted light B2a received from the first pupil dilation unit DOE2a.
  • the exit pupil unit DOE3 may form the second output light OB3b by diffracting the fourth transmitted light B2b received by the second pupil dilation unit DOE2b.
  • the pupil dilating device EPE1 may be arranged such that the direction of light of a given image point (eg P0) in the first output light OB3a is the same as the direction of light of a given image point (P0) of the second output light OB3b parallel. Therefore, combining the first output light OB3a with the second output light OB3b, a combined light beam corresponding to a given image point (P0) can be formed.
  • Each unit DOE1, DOE2a, DOE2b, DOE3 may contain one or more diffraction gratings, having the diffraction function described above.
  • the diffraction period (d) and the orientation ( ⁇ ) of the diffraction gratings of the optical units DOE1, DOE2a, DOE2b, DOE3 can be selected so that the direction of each beam of the output light OUT1 can be parallel to the direction of the corresponding beam of the input light IN1.
  • the grating period (d) and direction ( ⁇ ) of the grating vector can satisfy the condition that the vector sum (m 1a V 1a +m 2a V 2a +m 3a V 3a ) is zero for predetermined integers m 1a , m 2a , m 3a . .
  • V 1a represents the raster vector of the entrance pupil element DOE1.
  • V 2a represents the raster vector of the first pupil dilation element DOE2a.
  • V 3a represents the raster vector of the exit pupil element DOE3.
  • the value of these predetermined integers is usually +1 or -1.
  • the value of the integer m 1a can be +1 or -1.
  • the value of the integer m 2a can be +1 or -1.
  • the value of the integer m 3a can be +1 or -1.
  • the grating period (d) and direction ( ⁇ ) of the grating vector can satisfy the condition that the vector sum (m 1b V 1b + m 2b V 2b +m 3b V 3b ) is zero for predetermined integers m 1b , m 2b , m 3b .
  • V 1b represents the raster vector of the entrance pupil element DOE1.
  • V 2b represents the raster vector of the second pupil dilation unit DOE2b.
  • V 3b represents the raster vector of the exit pupil element DOE3.
  • the value of these predetermined integers is usually +1 or -1.
  • the value of the integer m 1b can be +1 or -1.
  • the value of the integer m 2b can be +1 or -1.
  • the value of the integer m 3b can be +1 or -1.
  • the waveguide plate may have a thickness t SUB1 .
  • the waveguide plate contains the planar waveguide core.
  • the waveguide plate SUB1 may optionally include, for example, one or more cladding layers, one or more protective layers and/or one or more mechanical support layers.
  • the thickness t SUB1 may refer to the thickness of the planar waveguide core portion of the waveguide plate SUB1.
  • the pupil dilating device EPE1 can expand the light beam in two directions: in the direction SX and in the direction SY.
  • the width (in the SX direction) of the output light OUT1 may be larger than the width of the input light IN1, and the height (in the SY direction) of the output light OUT1 may be larger than the height of the input light IN1.
  • the pupil dilating device EPE1 may be arranged to expand the pupil of the virtual display device 500 to facilitate the positioning of the eye EYE1 relative to the display device 500 .
  • the output light OUT1 may contain one or more output light beams, wherein each output light beam may correspond to a different image point (P0', P1') of the displayed virtual image VIMG1.
  • the optical engine ENG1 may contain a microdisplay DISP1 for displaying the main image IMG0.
  • the optical engine ENG1 and the pupil dilating device EPE1 may be arranged to convert the main image IMG0 into a plurality of input light beams (eg, B0 P0,R , B0 P1,R , B0 P2,R , B0 P3,R , B0 P4,R ,. .., B0 P0,B , B0 P1,B , B0 P2,B , B0 P3,B , B0 P4,B ,...), and form the output light OUT1 by expanding the input beam.
  • the symbol B0 P2,R may represent the input beam, which corresponds to the image point P2 and has a red color (R).
  • the notation B0 P2,B may represent the input beam, which corresponds to the image point P2 and has a blue color (B).
  • the input light beams may together constitute input light IN1.
  • Input light IN1 may contain multiple input light beams (eg, B0 P0,R ,B0 P1,R ,B0 P2,R ,B0 P3,R ,B0 P4,R ,...B0 P0,B ,B0 P1,B , B0 P2,B ,B0 P3,B ,B0 P4,B ,).
  • the output light OUT1 may contain a plurality of output light beams, and each output light beam may form a different image point (P0', P1') of the virtual image VIMG1.
  • the main image IMG0 may be represented, for example, as graphics and/or text.
  • the main image IMG0 can be represented, for example, as a video.
  • the optical engine ENG1 and the pupil dilating device EPE1 may be arranged to display the virtual image VIMG1 such that each image point (P0', P1') of the virtual image VIMG1 corresponds to a different image point on the main image IMG0.
  • the waveguide plate SUB1 may have a first main surface SRF1 and a second main surface SRF2.
  • the first main surface SRF1, the second main surface SRF2 may be substantially parallel to the plane defined by the directions SX and SY.
  • each unit DOE1, DOE2a, DOE2b, DOE3 may contain one or more diffraction gratings to diffract light as described above.
  • cell DOE1 may contain one or more gratings G1a, G1b.
  • cell DOE2a may contain grating G2a.
  • cell DOE2b may contain grating G2b.
  • cell DOE3 may contain one or more gratings G3a, G3b.
  • the grating period (d) of the diffraction grating and the direction ( ⁇ ) of the diffractive features of the diffraction grating can be determined by the grating vector V of the diffraction grating.
  • Diffraction gratings contain a plurality of diffractive features (F) that can be used as diffractive lines.
  • Diffractive features can be, for example, tiny ridges or grooves.
  • Diffractive features can also be, for example, microscopic protrusions (or depressions), where adjacent protrusions (or depressions) can act as diffraction lines.
  • the grating vector V can be defined as a vector having a direction perpendicular to the diffraction lines of the diffraction grating and an amplitude given by 2 ⁇ /d, where d is the grating period.
  • the entrance pupil element DOE1 may have raster vectors V 1a , V 1b .
  • the first pupil dilation unit DOE2a may have a raster vector V 2a .
  • the second pupil dilation unit DOE2b may have a raster vector V 2b .
  • the exit pupil element DOE3 may have raster vectors V 3a , V 3b .
  • the grating vector V 1a has a direction ⁇ 1a and a magnitude of 2 ⁇ /d 1a .
  • the grating vector V 1b has a direction ⁇ 1b and a magnitude 2 ⁇ /d 1b .
  • the grating vector V 2a has a direction ⁇ 2a and an amplitude 2 ⁇ /d 2a .
  • the grating vector V 2b has a direction ⁇ 2b and a magnitude 2 ⁇ /d 2b .
  • the grating vector V 3a has a direction ⁇ 3a and an amplitude 2 ⁇ /d 3b .
  • the grating vector V 3b has a direction ⁇ 3b and an amplitude 2 ⁇ /d 3b .
  • the direction ( ⁇ ) of the grating vector can be defined as the angle between the grating vector and a reference direction (eg, direction SX).
  • the grating period (d) and the direction ( ⁇ ) of the diffraction grating of the optical units DOE1, DOE2a, DOE3 can be chosen such that the light propagation direction (k3 P0,R ) at the center point P0 in the first output light OB3a is parallel to the input The propagation direction (k0 P0,R ) of the light at the center point P0 in the light IN1.
  • the grating period (d) and the diffraction grating direction ( ⁇ ) of the optical units DOE1, DOE2b, DOE3 can be selected so that the light propagation direction (k3 P0, R ) of the center point P0 of the second output light OB3b is the same as the input light IN1.
  • the light propagation direction (k0 P0,R ) of the center point P0 is parallel.
  • the diffraction period (d) and the direction ( ⁇ ) of the diffraction grating of the optical units DOE1, DOE2a, DOE2b, DOE3 can be selected so that the propagation direction (k3 P0,R ) of the light at the center point P0 of the combined output light OUT1 and the input light
  • the propagation directions (k0 P0,R ) of the light at the center point P0 in IN1 are parallel.
  • the angle between the directions of the grating vectors V 1a , V 1b of the entrance pupil unit DOE1 may be, for example, in the range of 60° to 120°.
  • the first grating period d 1a of the entrance pupil unit DOE1 may be different from the second grating period d 1b of the entrance pupil unit DOE1 to optimize the first path for a first color and the second path for a second different color.
  • the first grating period d 3a of the exit pupil unit DOE3 may be different from the second grating period d 3b of the exit pupil unit DOE3 to optimize the first path for a first color and the second path for a second different color.
  • the first grating period d 1a of the entrance pupil unit DOE1 may be different from the second grating period d 1b of the entrance pupil unit DOE1 , eg, a first path for optimizing blue, and a second path for red.
  • the first grating period d 3a of the exit pupil unit DOE3 may be different from the second grating period d 3b of the exit pupil unit DOE3, eg, a first path for optimizing blue, and a second path for red.
  • the grating period (d) and direction ( ⁇ ) of the grating vector can satisfy the condition that the vector sum (m 1a V 1a +m 2a V 2a +m 3a V 3a ) is zero for predetermined integers m 1a , m 2a , m 3a . .
  • V 1a represents the raster vector of element DOE1.
  • V 2a represents the raster vector of element DOE2a.
  • V 3a represents the raster vector of cell DOE3.
  • the value of these predetermined integers is usually +1 or -1.
  • the value of the integer m 1a can be +1 or -1.
  • the value of the integer m 2a can be +1 or -1.
  • the value of the integer m 3a can be +1 or -1.
  • the grating period (d) and direction ( ⁇ ) of the grating vector can satisfy the condition that the vector sum (m 1b V 1b + m 2b V 2b +m 3b V 3b ) is zero for predetermined integers m 1b , m 2b , m 3b .
  • V1b represents the raster vector of element DOE1.
  • V 2b represents the raster vector of cell DOE2b.
  • V 3b represents the raster vector of cell DOE3.
  • the value of these predetermined integers is usually +1 or -1.
  • the value of the integer m1b can be +1 or -1.
  • the value of the integer m 2b can be +1 or -1.
  • the value of the integer m 3b can be +1 or -1.
  • the entrance pupil element DOE1 may have a first grating vector V 1a to form a first transmitted light B1a in direction DIR1a, and a second grating vector V 1b to form a second transmitted light B1b in direction DIR1b.
  • the entrance pupil element DOE1 may have a first diffractive feature F1a to provide a first grating with a grating period d1a and a direction ⁇ 1a (relative to the reference direction SX).
  • the entrance pupil element DOE1 may have a second diffractive feature F1b to provide a second grating with a grating period d 1b and a direction ⁇ 1b (relative to the reference direction SX).
  • the entrance pupil unit DOE1 can be realized by, for example, a cross grating or two linear gratings.
  • the entrance pupil unit DOE1 may be such that a first area of the entrance pupil unit DOE1 contains diffractive features F1a, while a second area of the entrance pupil unit DOE1 contains diffractive features F1b.
  • a first linear grating with diffractive features F1a may be provided on the first main surface of the waveguide plate SUB1 (eg, on the input side surface SRF1), and a second linear grating with diffractive features F1b may be provided on the first main surface of the waveguide plate SUB1.
  • Two major surfaces eg on the output side surface SRF2).
  • the diffractive features may be, for example, tiny ridges or tiny protrusions.
  • the first pupil dilation unit DOE2a may have a grating vector V2a, and the third transmitted light B2a is formed by diffracting the first transmitted light B1a.
  • the first pupil dilating unit DOE2a may have diffractive features F2a to provide a grating G2a with a grating period d 2a and a direction ⁇ 2a (relative to the reference direction SX).
  • the second pupil dilating unit DOE2b may have a grating vector V2b, and the fourth transmitted light B2b is formed by diffracting the second transmitted light B1b.
  • the second pupil dilating unit DOE2b may have diffractive features F2b to provide a grating G2b with a grating period d 2b and a direction ⁇ 2b (relative to the reference direction SX).
  • the exit pupil unit DOE3 may have a first grating vector V3a to couple the expanded third guided light B2a out of the waveguide plate SUB1.
  • the exit pupil unit DOE3 may have a second grating vector V3b to couple the expanded fourth guided light B2b out of the waveguide plate SUB1.
  • the exit pupil element DOE3 may have diffractive features F3a to provide a grating G3a with a grating period d3a and a direction ⁇ 3a (relative to the reference direction SX).
  • the exit pupil element DOE3 may have diffractive features F3b to provide a grating G3b with a grating period d3b and a direction ⁇ 3b (relative to the reference direction SX).
  • the exit pupil unit DOE3 can be implemented by a cross grating or two linear gratings.
  • a first linear grating G3a having diffractive features F3a may be implemented on a first major surface (eg, SRF1) of the waveguide plate SUB1
  • a second linear grating G3b having diffractive features F3b may be implemented on a second major surface (eg, SRF1) of the waveguide plate SUB1.
  • SRF1 first major surface
  • SRF1 first major surface
  • SRF1 first major surface
  • SRF1 second major surface
  • SRF1 second major surface
  • the entrance pupil unit DOE1 may have a width w 1 and a height h 1 .
  • the first pupil dilation unit DOE2a may have a width w 2a and a height h 2a .
  • the second pupil dilation unit DOE2b may have a width w 2b and a height h 2b .
  • the exit pupil unit DOE3 may have a width w 3 and a height h 3 .
  • the width can represent the dimension in the direction SX, and the height can represent the dimension in the direction SY.
  • the exit pupil element DOE3 may be, for example, substantially rectangular.
  • the edges of the exit pupil element DOE3 may, for example, be along the directions SX and SY.
  • the width w 2a of the pupil dilation unit DOE2a may be substantially larger than the width w 1 of the entrance pupil unit DOE1.
  • the width of the expanded third transmitted light B2a may be substantially larger than the width w 1 of the entrance pupil unit DOE1 .
  • the waveguide plate SUB1 may comprise or consist essentially of a transparent solid material.
  • the waveguide plate SUB1 may comprise, for example, glass, polycarbonate or polymethyl methacrylate (PMMA).
  • the diffractive optical elements DOE1, DOE2a, DOE2b, DOE3 can be formed, for example, by moulding, embossing and/or etching.
  • the elements DOE1, DOE2a, DOE2b, DOE3 can be realized, for example, by one or more surface diffraction gratings or by one or more volume diffraction gratings.
  • the spatial distribution of the diffraction efficiency can be adjusted arbitrarily, for example by selecting the local heights of the microscopic diffractive features F. Therefore, the height of the microscopic diffractive features F of the exit pupil unit DOE3 can be selected to further uniformize the intensity distribution of the output light OUT1.
  • Figure 6a plots, by way of example, a wave vector diagram of blue light propagating within the waveguide plate SUB1 along a first path.
  • the first path may be, for example, a clockwise direction.
  • the wave vector of the input light IN1 may be within a region BOX0 of the wave vector space defined by the initial wave vectors k x and ky . Each corner of the region BOX0 may represent the wave vector of the light at the corner point of the input image IMG0 (Fig. 7a).
  • the wave vector of the first guided light B1a may be within the region BOX1a.
  • the wave vector of the third guided light B2a may be within the region BOX2a.
  • the wave vector of the first output light OB3a may be within the region BOX3.
  • the entrance pupil unit DOE1 may form the first transmitted light B1a by diffracting the input light IN1. Diffraction can be represented by adding the grating vector m 1a V 1a of the entrance pupil element DOE1 to the wave vector of the input light IN1.
  • the wave vector of the first transmitted light B1a can be determined by adding the grating vector m 1a V 1a to the wave vector of the input light IN1.
  • the wave vector of the third guided light B2a can be determined by adding the grating vector m 2a V 2a to the wave vector of the first guided light B1a.
  • the wave vector of the first output light OB3a can be determined by adding the grating vector m 3a V 3a to the wave vector of the second transmitted light B2a.
  • BND1 represents the first boundary for satisfying the total internal reflection (TIR) standard in the waveguide plate SUB1.
  • BND2 represents the second boundary of the largest wave vector in the waveguide plate SUB1.
  • the maximum wave vector can be determined by the refractive index of the waveguide plate.
  • the light can be guided in the waveguide plate SUB1 only when the wave vector of the light is in the zone ZONE1 between the first boundary BND1 and the second boundary BND2. If the wave vector of the light is outside the zone ZONE1, the light may leak out of the waveguide plate or not propagate at all.
  • the grating period d 1a of the entrance pupil element DOE1 can be chosen such that, for example, all wave vectors of the blue first transmitted light B1a are within the zone ZONE1 defined by the boundaries BND1, BND2.
  • Figure 6b shows, by way of example, a wave vector diagram of red light propagating within the waveguide plate SUB1 along a first path.
  • the wave vectors of the red light at some corner points may be in the zone Outside ZONE1.
  • the waveguide plate SUB1 cannot confine or guide the red light input to some corner points of the image IMG0.
  • the wave vector falling in the sub-region FAIL1 of the region BOX1a corresponds to the situation that the input unit DOE1 cannot form the transmitted light by diffracting the input light. In other words, there is no correct practical solution to the diffraction equation for the wave vector that exists within the sub-region FAIL1 of the region BOX1a. Therefore, with the wave vector of the transmitted light outside the zone ZONE1, it is not possible to couple red light into the waveguide plate for some image points.
  • the leakage of red light may limit the angular width of the displayed virtual image VIMG1 for some (other) image points.
  • the boundaries BND1, BND2 of the zone ZONE1 can limit the angular width of the displayed virtual image VIMG1 Forming a wave vector outside the zone ZONE1 may mean light leakage from the waveguide plate or optical coupling failure.
  • k x represents a direction in wave vector space, where the direction k x is parallel to the direction SX in real space.
  • ky represents the direction in the wave vector space, where the ky direction is parallel to the SY direction in real space.
  • the symbol k z (not shown in the figure) denotes a direction in wave vector space, wherein the direction k z is parallel to the direction SZ of the real space.
  • the wave vector k may have components in the directions k x , ky and/or k z .
  • Figures 6c and 6d give, by way of example, the wavevectors of blue light for image points (P0, P1, P2, P3, P4) in the wavevector space.
  • Figures 6e and 6f give, by way of example, the wavevectors of red light at image points (P0, P1, P2, P3, P4) in wave vector space.
  • Figure 6g shows, in a cross-sectional side view, coupling the input light into the waveguide plate to form the first guided light, wherein the angle of inclination of the first guided light Close to the critical angle of total internal reflection of SUB1
  • the situation of FIG. 6g corresponds to the operation in the vicinity of the first boundary BND1 of the zone ZONE1.
  • Figure 6h shows the coupling of the input light into the waveguide plate to form the first guided light in a cross-sectional side view, wherein the angle of inclination of the first guided light close to 90 degrees.
  • the situation of FIG. 6h may correspond to an operation near the second boundary BND2 of the zone ZONE1.
  • the curve CRV1 in Fig. 6i shows the functional relationship between the inclination angle ⁇ k1 of the wave vector k1 of the first transmitted light B1a and the input angle ⁇ k0 of the wave vector k0 of the input light B0.
  • the tilt angle ⁇ k1 may represent the angle between the wave vector and the direction SZ and the reference plane REF1 defined by SY.
  • the angle of inclination is calculated from the grating period of the entrance pupil unit DOE1 and the refractive index of the waveguide plate SUB1
  • the first angle limit ⁇ BND1 may correspond to the inclination angle ⁇ k1 of the first transmitted light equal to the critical angle of total internal reflection Case.
  • the second angle limit ⁇ BND2 may correspond to the case where the inclination angle ⁇ k1 of the first transmitted light is equal to 90 degrees.
  • Figure 7a gives, by way of example, a wave vector diagram of blue light propagating within the waveguide plate SUB1 along the second path.
  • the second path may be, for example, a counterclockwise path.
  • Figure 7b gives by way of example the wave vector diagram of red light propagating within the waveguide plate SUB1 along the second path.
  • Figures 7c and 7d give, by way of example, the wavevectors of blue light for image points (P0, P1, P2, P3, P4) in the wavevector space.
  • the grating period d 1b of the coupling-in pupil element DOE1 can be chosen such that, for example, all wave vectors of the red second transmitted light B1b are within the zone ZONE1 defined by the boundaries BND1, BND2.
  • the wave vectors of blue light at some corner points may be outside the zone ZONE1 .
  • the waveguide plate SUB1 cannot limit the blue light of some corner points of the input image IMG0.
  • the leakage of blue light may limit the angular width of the displayed virtual image VIMG1.
  • the wave vector falling in the sub-region LEAK1 of the region BOX2b represents the light that is not confined within the waveguide plate by total internal reflection.
  • the pupil dilating device EPE1 may be arranged to provide the first path and the second path.
  • the first path can provide the full width of the blue virtual image VIMG1
  • the second path can provide the full width of the red virtual image VIMG1
  • the pupil dilating device EPE1 can be set to display a full width Color virtual image VIMG1.
  • the pupil dilating device EPE1 can be set to display all corner points (P1, P2, P3, P4) of the color virtual image VIMG1 in red and blue, wherein the color virtual image VIMG1 has the full width of the full color
  • the angular width of the color virtual image VIMG1 displayed by using two paths It can be substantially larger than the maximum angular width (LIM1, predetermined limit) of other pupil dilation devices (EPE0) that do not use the second path.
  • the pupil dilating device EPE1 with two paths can be set to display a color virtual image VIMG1 with an expanded angular width
  • the first path may be set to limit the blue component of the input image while allowing leakage of red light from one or more corner points of the input image.
  • the second path may be set to limit the red component of the input image while allowing blue light to leak from one or more corner points of the input image.
  • the entrance pupil unit (DOE1) can be set to provide:
  • raster vectors (m 1a V 1a , m 2a V 2a , m 3a V 3a , m 1b V 1b , m 2b V 2b , m 3b V 3b ) for each element (DOE1, DOE2a, DOE2b, DOE3) are chosen so that:
  • the red light at the first corner point (P1) is directed from the entrance pupil unit (DOE1) to the exit pupil unit (DOE3) through the second pupil dilation unit (DOE2b),
  • the red light at the first corner point (P1) is not directed from the entrance pupil unit (DOE1) to the exit pupil unit (DOE3) through the first pupil dilation unit (DOE2a).
  • the entrance pupil unit (DOE1) can be set to provide:
  • raster vectors (m 1a V 1a , m 2a V 2a , m 3a V 3a , m1bV 1b , m 2b V 2b , m 3b V 3b ) of cells (DOE1, DOE2a, DOE2b, DOE3) are chosen so that:
  • the blue light at the second corner point (P2) is directed from the entrance pupil unit (DOE1) to the exit pupil unit (DOE3) through the first pupil dilation unit (DOE2a), and
  • the blue light at the second corner point (P2) is not directed from the entrance pupil unit (DOE1) to the exit pupil unit (DOE3) through the second pupil dilation unit (DOE2b).
  • the entrance pupil unit (DOE1) can be set to provide:
  • raster vectors (m 1a V 1a , m 2a V 2a , m 3a V 3a , m 1b V 1b , m 2b V 2b , m 3b V 3b ) for each element (DOE1, DOE2a, DOE2b, DOE3) are chosen so that:
  • the red light at the first corner point (P1) is directed from the entrance pupil unit (DOE1) to the exit pupil unit (DOE3) through the second pupil dilation unit (DOE2b),
  • the red light at the first corner point (P1) is not directed from the entrance pupil unit (DOE1) to the exit pupil unit (DOE3) through the first pupil dilation unit (DOE2a),
  • the blue light at the second corner point (P2) is directed from the entrance pupil unit (DOE1) to the exit pupil unit (DOE3) through the first pupil dilation unit (DOE2a), and
  • the blue light at the second corner point (P2) is not directed from the entrance pupil unit (DOE1) to the exit pupil unit (DOE3) through the second pupil dilation unit (DOE2b).
  • the entrance pupil unit (DOE1) can be set to provide:
  • raster vectors (m 1a V 1a , m 2a V 2a , m 3a V 3a , m 1b V 1b , m 2b V 2b , m 3b V 3b ) for each element (DOE1, DOE2a, DOE2b, DOE3) are chosen so that:
  • the red light at the first corner point (P1) is directed from the entrance pupil unit (DOE1) to the exit pupil unit (DOE3) through the second pupil dilation unit (DOE2b),
  • the red light at the first corner point (P1) is not directed from the entrance pupil unit (DOE1) to the exit pupil unit (DOE3) through the first pupil dilation unit (DOE2a),
  • the blue light at the first corner point (P1) is directed from the entrance pupil unit (DOE1) to the exit pupil unit (DOE3) through the first pupil dilation unit (DOE2a),
  • the blue light at the first corner point (P1) is directed from the entrance pupil unit (DOE1) to the exit pupil unit (DOE3) through the second pupil dilation unit (DOE2a),
  • the red light at the second corner point (P2) is directed from the entrance pupil unit (DOE1) to the exit pupil unit (DOE3) through the first pupil dilation unit (DOE2a),
  • the red light at the second corner point (P2) is directed from the entrance pupil unit (DOE1) to the exit pupil unit (DOE3) through the second pupil dilation unit (DOE2b),
  • the blue light at the second corner point (P2) is directed from the entrance pupil unit (DOE1) to the exit pupil unit (DOE3) through the first pupil dilation unit (DOE2a), and
  • the blue light at the second corner point (P2) is not directed from the entrance pupil unit (DOE1) to the exit pupil unit (DOE3) through the second pupil dilation unit (DOE2b).
  • the pupil dilating device EPE1 may be arranged to operate such that, in the case where the blue transmitted light propagates via the first path of the pupil expanding means EPE1, the wave vector of the blue transmitted light falls within the zone ZONE1, and the pupil expanding means EPE1 may be arranged to Therefore, when the red guided light propagates through the second path of the pupil dilating device EPE1, the wave vector of the red guided light is within the zone ZONE1.
  • Fig. 8a shows, by way of example, the propagation of light at the corner point P1 in the waveguide plate SUB1.
  • Fig. 8b shows, by way of example, the propagation of light at the center point P0 in the waveguide plate SUB1.
  • Fig. 8c shows, by way of example, the propagation of light at the corner point P3 in the waveguide plate SUB1.
  • Fig. 8d shows, by way of example, the propagation of light at the corner point P2 in the waveguide plate SUB1.
  • FIG. 8e shows, by way of example, the propagation of light at the corner point P4 in the waveguide plate SUB1.
  • the display apparatus 500 may be a virtual reality apparatus 500 .
  • the display apparatus 500 may be an augmented reality device 500 .
  • the display apparatus 500 may be a near-eye device.
  • the display apparatus 500 may be a wearable device, for example, an earphone.
  • the display apparatus 500 may include, for example, a headband through which the display apparatus 500 may be worn on the user's head.
  • the exit pupil unit DOE3 may be positioned in front of the user's left eye EYE1 or right eye EYE1.
  • the display apparatus 500 may project the output light OUT1 into the user's eyes EYE1.
  • the display device 500 may include two optical engines ENG1 and/or two pupil expansion devices EPE1 to display stereoscopic images.
  • the optical engine ENG1 may be arranged to generate still images and/or video.
  • the optical engine ENG1 can generate the real master image IMG0 from the digital image.
  • the optical engine ENG1 can receive one or more digital images from an internet server or a smartphone.
  • the display device 500 may be a smartphone.
  • the displayed image can be viewed by a human being, but also by an animal or machine (which may include, for example, a camera) to view the displayed image.
  • k-vector may be the same as the term "wave vector”.

Landscapes

  • Physics & Mathematics (AREA)
  • General Physics & Mathematics (AREA)
  • Optics & Photonics (AREA)
  • Diffracting Gratings Or Hologram Optical Elements (AREA)

Abstract

一种大视场角的光学扩瞳装置(EPE1),显示装置(500)及方法,光学扩瞳装置(EPE1)包含波导板(SUB1),波导板(SUB1)又包含:通过衍射输入光形成第一传导光(B1a)和第二传导光(B1b)的入瞳单元(DOE1),通过衍射第一传导光(B1a)形成第三传导光(B2a)的第一扩瞳单元(DOE2a),通过衍射第二传导光(B1b)形成第四传导光(B2b)的第二扩瞳单元(DOE2b),以及通过衍射第三传导光(B2a)形成第一输出光(OB3a),并通过衍射第四传导光(B2b)形成第二输出光(OB3b)的出瞳单元(DOE3),出瞳单元(DOE3)将第一输出光(OB3a)与第二输出光(OB3b)组合而形成组合输出光(OUT1);入瞳单元(DOE1)具有用于形成第一传导光(B1a)的第一光栅周期(d 1a)和用于形成第二传导光(B1b)的不同的第二光栅周期(d 1b)。

Description

一种大视场角的光学扩瞳装置、显示装置及方法
本申请是以申请号为202110006780.0、申请日为2021年1月5日的中国专利申请为基础,并主张其优先权,该申请的全部内容在此作为整体引入本申请中。
技术领域
本申请涉及大视场角的光学扩瞳装置、显示装置及方法,可以用于虚拟显示设备中。
背景技术
参照图1,扩瞳装置EPE0包含波导板SUB01,该波导板又包含衍射入瞳单元DOE01,衍射扩瞳单元DOE02和衍射出瞳单元DOE03。一束输入光IN1在扩瞳装置EPE0中,通过多次衍射进行扩大,最后输出光OUT1。
输入光IN1由光学引擎ENG1发出。光学引擎ENG1可以由微型显示器DISP1和准直光学器件LNS1组成。
该衍射入瞳单元DOE01通过衍射,将输入光IN1衍射成第一传导光B1。通过衍射扩瞳单元DOE02使第一传导光B1衍射而形成扩展的第二传导光B2。通过所述衍射出瞳单元DOE03将扩展的第二传导光B2衍射为输出光OUT1。
扩瞳装置EPE0可以在方向SX和在方向SY这两个方向上扩展光束。输出光OUT1的宽度远大于输入光IN1的宽度。扩瞳装置EPE0可以用于扩展虚拟显示设备的视瞳,以便于眼睛EYE1相对于虚拟显示设备的观察位置有更大的舒适观察位置(大eyebox,大眼动范围)。观察者的眼睛EYE1可以在输出光束的观察位置内看到完成的虚拟图像。输出光可以包含一个或多个输出光束,其中每个输出光束可以对应于显示的虚拟图像VIMG1的不同图像位置。扩瞳装置也可以称为例如扩瞳单元,扩瞳装置件等。
虚拟图像VIMG1具有的角幅度为LIM1。图1是利用扩瞳装置EPE0实现显示全彩的虚拟图像VIMG1的方式,由于红色和蓝色对应的虚拟图像VIMG1的角落光线,在传输过程中处无法满足波导板SUB01的全反射条件。因此,虚拟图像VIMG1的角落会出现缺少红色或者蓝色。
申请内容
本申请提出一种新的扩瞳装置,同时提出一种扩展光束的方法,同时提出一种显示装置,并提出一种用于显示图像的方法,可以提供更大的视场角度(FOV)。
根据外形结构,本申请提出了一种光学扩瞳装置(EPE1),关键部分如下:
波导板(SUB1),包含:
-入瞳单元(DOE1),通过入瞳单元(DOE1)衍射输入光(IN1)从而形成第一传导光(B1a)和第二传导光(B1b);
-第一扩瞳单元(DOE2a),通过衍射第一传导光(B1a)从而形成第三传导光(B2a);
-第二扩瞳单元(DOE2b),通过衍射第二传导光(B1b)从而形成第四传导光(B2b);以及
-出瞳单元(DOE3),通过衍射第三传导光(B2a)从而形成第一输出光(OB3a),同时通过衍射第四传导光(B2b)从而形成第二输出光(OB3b);
其中,出瞳单元(DOE3)将第一输出光(OB3a)和第二输出光(OB3b)进行组合,形成组合输出光(OUT1);其中,所述入瞳单元(DOE1)具有用于形成所述第一传导光(B1a)的第一光栅周期(d 1a),并且所述入瞳单元(DOE1)具有用于形成所述第二传导光(B1b)的不同的第二光栅周期(d 1b)。
其他实施例定义在权利要求当中。
本申请的各个实施例所寻求的保护范围由独立权利要求规定。本申请中描述的不属于独立权利要求范围的实施例(如果有的话)将被解释为有助于理解本申请的各种实施例的示例。
扩瞳装置可以用于显示彩色图像,其中,彩色图像的显示宽度得到增加。彩色图像可以 是RGB图像,包含红(R)光,绿(G)光和蓝(B)光。
增加显示图像的宽度可能会导致显示图像角落点的蓝光和/或红光泄漏。换句话说,扩瞳装置的入瞳单元形成的红光或蓝光,它们不能全部通过全内反射被限制在波导板内。
扩瞳装置可以设计成包含两条不同的光路,以便克服波导板在传输宽图像时,对应的传导方向上不同颜色的光的限制。
扩瞳装置可以将输入光分开,分别以经由第一路径和经由第二路径传播到出瞳单元。第一路径可以通过第一扩瞳单元实现从入瞳单元到出瞳单元。第二路径可以通过第二扩瞳单元实现从入瞳单元到出瞳单元。通过优化第一路径,用于传播角落点的蓝光,同时通过优化第二路径,用于传播角落点的红光。因此,扩瞳装置可以使得显示图像的红色和蓝色,在所有角落点都显示正常。角落的红光至少可以通过一条路径被传导,并且角落的蓝光至少可以通过一条路径被传导。
当需要优化和显示图像的角幅度增大时,第一路径可能在所显示图像的角落点有红光损失,第二路径可能在所显示图像的角落点有蓝光损失。然而,沿第二路径传播的红光可以至少部分地补偿来自第一路径的红光的损失。沿着第一路径传播的蓝光可以至少部分地补偿来自第二路径的蓝光的损失。
入瞳单元可以包含第一衍射特征,以将光衍射到第一扩瞳单元。入瞳单元可以包含第二衍射特征,以将光衍射到第二扩瞳单元。所述第一衍射特征可以具有第一光栅周期,并且所述第二衍射特征可以具有不同的第二光栅周期。可以选择第一光栅周期以确保角落点的蓝色传导光被限制在波导板内。可以选择第二光栅周期以确保角落点的红色传导光被限制在波导板内。所述第一衍射特征可以具有第一方向,并且所述第二衍射特征可以具有不同的第二方向。
两条路径可以一起至少部分地补偿所显示图像的角落点的颜色偏差。两条路径可以减少或避免宽的彩色显示图像的角落点的颜色错误。两条路径可以改善宽的彩色显示图像的颜色均匀性。
出瞳单元可以通过衍射沿着第一路径传播的第三传导光,来形成第一输出光。被衍射的第三传导光来自第一扩瞳单元。出瞳单元可以通过衍射沿着第二路径传播的第四传导光来形成第二输出光。被衍射的第四传导光来自第二扩瞳单元。第一输出光可以在空间上与第二输出光重叠。通过将第一输出光与第二输出光组合,在出瞳单元处形成组合的输出光。
出瞳单元可以包含第一衍射特征,以衍射从第一扩瞳单元接收的传导光。出瞳单元可以包含第二衍射特征,以衍射从第二扩瞳单元接收的传导光。所述第一衍射特征可以具有第一光栅周期,并且所述第二衍射特征可以具有不同的第二光栅周期。可以选择第一光栅周期以确保角落点的蓝色传导光被限制在波导板内。可以选择第二光栅周期以确保角落点的红色传导光被限制在波导板内。所述第一衍射特征可以具有第一方向,并且所述第二衍射特征可以具有不同的第二方向。第一衍射特征对于从第二扩瞳单元接收的光的耦合出瞳效率,可能非常低或可忽略。第二衍射特征对于从第一扩瞳单元接收的光的耦合出瞳效率,可能非常低或可忽略。
附图说明
为了更清楚地说明本申请实施例技术方案,下面将对实施例描述中所需要使用的附图作简单地介绍,显而易见地,下面描述中的附图是本申请的一些实施例,对于本领域普通技术人员来讲,在不付出创造性劳动的前提下,还可以根据这些附图获得其他的附图。
图1为现有的一种扩瞳装置20的结构示意图;
图2a-图2e为以三维视图表示利用光学引擎形成入射光线的示例;
图2f为以三维视图表示虚拟图像的显示过程示例;
图2g为虚拟图像的水平角幅度(角宽度)示例;
图2h为虚拟图像的俯仰角幅度(角高度)示例;
图3a为对入瞳光线提供两条不同路径的扩瞳装置的正面视图示例;
图3b为扩瞳装置中出瞳单元的不同出瞳区域的正面视图示例;
图4a为以三维视图表示包含扩瞳装置的显示装置示例;
图4b为以三维视图表示通过第一输出光和第二输出光叠加形成组合输出光的示例;
图4c为以截面图表示包含扩瞳装置的显示装置示例;
图5为本申请实施例中扩瞳装置标注了相关尺寸和结构细节的正视图;
图6a为本申请实施例中沿扩瞳装置第一路径传播的蓝光波矢的矢量图示例;
图6b为本申请实施例中沿扩瞳装置第一路径传播的红光波矢的矢量图示例,
图6c为本申请实施例中图像角落点的蓝光波矢的矢量图示例;
图6d为本申请实施例中图像角落点的蓝光波矢的矢量图示例;
图6e为本申请实施例中图像角落点的红光波矢的矢量图示例;
图6f为本申请实施例中图像角落点的红光波矢的矢量图示例;
图6g为本申请实施例中通过将输入光束耦合到波导板中形成第一传导光,其中第一传导光的倾斜角接近全内反射的临界角;
图6h为本申请实施例中通过将输入光束耦合到波导板中形成第一传导光,其中第一传导光的倾斜角度接近90度;
图6i为本申请实施例中第一传导光的波矢角度与输入光的波矢角度之间的关系,
图7a为本申请实施例中沿扩瞳装置第二路径传播的蓝光波矢的矢量图示例;
图7b为本申请实施例中沿扩瞳装置第二路径传播的红光波矢的矢量图示例;
图7c为本申请实施例中图像角落点的蓝光波矢的矢量图示例;
图7d为本申请实施例中图像角落点的蓝光波矢的矢量图示例;
图8a为本申请实施例中扩瞳装置的第一角落点的光线传播方式示例;
图8b为本申请实施例中扩瞳装置的中心点的光线传播方式示例;
图8c为本申请实施例中扩瞳装置的第三角落点的光线传播方式示例;
图8d为本申请实施例中扩瞳装置的第二角落点的光线传播方式示例;
图8e为本申请实施例中扩瞳装置的第四角落点的光线传播方式示例。
具体实施方式
如图2a至2e所示,光学引擎ENG1可以由显示器DISP1和准直光学器件LNS1组成。显示器DISP1可以被设置为显示输入图像IMG0。显示器DISP1也可以被称为微型显示器或微显示器。显示器DISP1也可以被称为空间强度调制器。输入图像IMG0也可以被称为图像源。
输入图像IMG0可以包含中心点P0和四个角落点P1,P2,P3,P4。P1可以表示左上角落点。P2可以表示右上角落点。P3可以表示左下角落点。P4可以表示右下角落点。输入图像IMG0可以包含图形字符例如,“F”,“G”和“H”。
输入图像IMG0可以是彩色图像。输入图像IMG0可以是例如,RGB图像,其可以包含红色局部图像,绿色局部图像和蓝色局部图像。每个图像点可以提供例如红光,绿光和/或蓝光。红色光束的光可以具有红色,例如,波长650nm,绿色光束的光可以具有绿色,例如,波长510nm。蓝色光束的光可以具有蓝色,例如,波长470nm。特别是,彩色图像IMG0的角落点的光可以包含红光和蓝光。
光学引擎ENG1可以提供输入光IN1,其可以包含多个基本准直的光束(B0)。每个红色光束可以沿不同方向传播,并且可以对应于输入图像IMG0的不同点。例如,红色光束B0 P1,R可以对应于图像点P1,并且在波矢k0 P1,R的方向上传播。
而且,蓝色光束(B0 P1,B)可以对应于相同的图像点P1,并且在波矢(k0 P1,B)的方向上传播。
输入光IN1中,输入图像IMG0的第一角落点P1相对应的蓝色光束(B0 P1,B)的传播方向(k0 P1,B)可以平行于第一角落点P1相对应的红色光束(B0 P1,R)的传播方向(k0 P1,R)。
输入光IN1中,输入图像IMG0的第二角落点P2相对应的蓝色光束(B0 P2,B)的传播方 向(k0 P2,B)可以平行于第二角落点P2相对应的红色光束(B0 P2,R)的传播方向(k0 P2,R)。
红色光束B0 P2,R可以对应于图像点P2,并且在波矢k0 P2,R的方向上传播。红色光束B0 P3,R可以对应于图像点P3,并且在波矢k0 P3,R的方向上传播。红色光束B0 P4,R可以对应于图像点P4,并且在波矢k0 P4,R的方向上传播。红色光束B0 P0,R可以对应于中心图像点P1,并且在波矢k0 P0,R的方向上传播。
光的波矢(k)可以被定义为具有所述光的传播方向的矢量,并具有由2π/λ给出的幅度,其中λ是所述光的波长。
参照图2f,输出光OUT1(即组合输出光OUT1)可以包含多个输出光束,其可以对应于所显示的虚拟图像VIMG1。每个输出光束可以对应于图像的点。例如,在波矢k3 P0,R的方向上传播的红色光束可以对应于虚拟图像VIMG1的点P0'。在波矢k3 P1,R的方向上传播的红色光束可以对应于虚拟图像VIMG1的点P1'。沿波矢k3 P2,R的方向传播的红色光束可以对应于虚拟图像VIMG1的点P2'。在波矢k3 P3,R的方向上传播的红色光束可以对应于虚拟图像VIMG1的点P3'。在波矢k3 P4,R的方向上传播的红色光束可以对应于虚拟图像VIMG1的点P4'。
扩瞳装置EPE1可以通过扩展光学引擎ENG1的出射光瞳来形成输出光OUT1。输出光OUT1可以包含多个输出光束,其对应于所显示的虚拟图像VIMG1。输出光束OUT1可以照射在观察者的眼睛EYE1上,使得观察者可以看到显示的虚拟图像VIMG1。
显示的虚拟图像VIMG1可以具有中心点P0'和四个角落点P1',P2',P3',P4'。输入光IN1可以包含与输入图像IMG0的点P0,P1,P2,P3,P4相对应的多个光束。扩瞳装置EPE1可以通过衍射和传导来自输入图像IMG0的点P0的光以形成所显示的虚拟图像VIMG1的点P0'。扩瞳装置EPE1可以分别通过衍射和传导来自点P1,P2,P3,P4的光以形成点P1',P2',P3',P4'。
扩瞳装置EPE1可以形成输出光OUT1,其包含在由波矢k3 P0,R,k3 P1,R,k3 P2,R,k3 P3,R,k3 P4,R等指定的不同方向上传播的多个光束。
对应于所显示的虚拟图像VIMG1的点P0'的红色光束具有波矢k3 P0,R。对应于虚拟图像VIMG1的点P1'的红色光束具有波矢k3 P1,R。对应于虚拟图像VIMG1的点P2'的红色光束具有波矢k3 P2,R。对应于虚拟图像VIMG1的点P3'的红色光束具有波矢k3 P3,R。对应于虚拟图像VIMG1的点P4'的红色光束具有波矢k3 P4,R
扩瞳单元EPE1可以被设计成,使得波矢k3 P1,R与输入光IN1中的点P1的红色光束的波矢k0 P1,R平行。波矢k3 P0,R可以与输入光IN1中的点P0的波矢k0 P0,R平行。波矢k3 P2,R可以与输入光IN1中的点P2的波矢k0 P2,R平行。波矢k3 P3,R可以与输入光IN1中的点P3的波矢k0 P3,R平行。波矢k3 P4,R可以与输入光IN1中的点P4的波矢k0 P4,R平行。
在图2g和2h中,所显示的虚拟图像VIMG1具有角宽度
Figure PCTCN2021074585-appb-000001
和角高度Δθ。
显示的虚拟图像VIMG1可以具有例如在虚拟图像VIMG1的左侧的第一个角落点P1',以及例如在虚拟图像VIMG1的右侧的第二个角落点P2'。虚拟图像VIMG1的角宽度可以等于角落点P1',P2'的波矢k3 P1,R,k3 P2,R之间的水平夹角。
显示的虚拟图像VIMG1可以具有上方的角落点P1'和下方的角落点P3'。虚拟图像VIMG1的角高度Δθ可以等于角落点P1',P3'的波矢k3 P1,R,k3 P3,R之间的垂直夹角。
扩瞳装置EPE1的两条路径可以允许显示宽的彩色虚拟图像VIMG1。扩瞳装置EPE1的两条路径可以允许显示具有扩展的角宽度
Figure PCTCN2021074585-appb-000002
的彩色虚拟图像VIMG1。
可通过方位角
Figure PCTCN2021074585-appb-000003
和θ以指定波矢的方向。角度
Figure PCTCN2021074585-appb-000004
可以表示波矢与参考平面REF1之间的角度。参考平面REF1可以被定义为方向SZ和SY的平面。角度θ可以表示波矢与参考平面REF2之间的角度。参考平面REF2可以被定义为方向SZ和SX的平面。
参照图3a,扩瞳装置EPE1可以包含基本是平面的波导板SUB1,波导板SUB1又包含入瞳单元DOE1,第一扩瞳单元DOE2a,第二扩瞳单元DOE2b和出瞳单元DOE3。所用到的光栅单元可以在波导板SUB1的第一表面上或第二表面上。
入瞳单元DOE1可以接收输入光IN1,而出瞳单元DOE3可以提供输出光OUT1。输入 光IN1可以包含在不同方向上传播的多个光束。输出光OUT1可以包含由输入光IN1中的光束(B0)形成的多个扩展光束。
输出光OUT1的宽度w OUT1可以大于输入光IN1的宽度w IN1。扩瞳装置EPE1可以在二维上(例如,沿水平方向SX和沿垂直方向SY)扩展输入光IN1。扩展过程也可以称为扩瞳。扩瞳装置EPE1可以称为束扩瞳装置或出射光瞳扩瞳装置。
入瞳单元DOE1可以通过衍射输入光IN1来形成第一传导光B1a和第二传导光B1b。第一传导光B1a和第二传导光B1b可以在平面的波导板SUB1内传播。第一传导光B1a和第二传导光B1b可以通过全内反射限制在波导板SUB1内。
术语“传导”可以表示光在平面的波导板SUB1内传播,从而通过全内反射(TIR)将光束限制在波导板内。术语“传导”可以表示与术语“波导”相同的含义。
入瞳单元DOE1可以经由两个不同的路径,即经由第一扩瞳单元DOE2a和第二扩瞳单元DOE2b,耦合输入光IN1以传播至出瞳单元DOE3。通过光学耦合进入瞳单元DOE1再经由第一扩瞳单元DOE2a,最后到出瞳单元DOE3。同样可以通过光学耦合进入瞳单元DOE1再经由第二扩瞳单元DOE2b,最后到出瞳单元DOE3。扩瞳装置EPE1可以提供从入瞳单元DOE1经由第一扩瞳单元DOE2a到出瞳单元DOE3的第一路径。扩瞳装置EPE1可以提供从入瞳单元DOE1经由第二扩瞳单元DOE2b到出瞳单元DOE3的第二路径。第一路径可以表示从入瞳单元DOE1到出瞳单元DOE3,并且经过第一扩瞳单元DOE2a的光路。第二路径可以指的是从入瞳单元DOE1到出瞳单元DOE3,并且经过第二扩瞳单元DOE2b的光路。
第一传导光B1a可以主要沿着第一方向DIR1a,从入瞳单元DOE1传播到第一扩瞳单元DOE2a。第一扩瞳单元DOE2a可以通过使第一传导光B1a衍射而形成第三传导光B2a。第三传导光B2a的横向尺寸可以大于输入光IN1的相应横向尺寸。第三传导光B2a也可以被称为扩展的传导光B2a。
扩展的传导光B2a可以从第一扩瞳单元DOE2a传播到出瞳单元DOE3。可以通过全内反射将扩展的传导光B2a限制在波导板SUB1内。
出瞳单元DOE3可以通过衍射扩展的传导光B2a从而形成第一输出光OB3a。
第二传导光B1b可以主要沿着第二方向DIR1b,从入瞳单元DOE1传播到第二扩瞳单元DOE2b。第二扩瞳单元DOE2b可以通过使第二传导光B1b衍射而形成第四传导光B2b。第四传导光B2a的横向尺寸可以大于输入光IN1的相应横向尺寸。第四传导光B2b也可以被称为扩展的传导光B2b。
扩展的传导光B2b可以从第二扩瞳单元DOE2b传播到出瞳单元DOE3。可以通过全内反射将扩展的传导光B2b限制在波导板SUB1内。出瞳单元DOE3可以通过衍射扩展的传导光B2b来形成第二输出光OB3b。
出瞳单元DOE3可以对从第一扩瞳单元DOE2a接收的第三传导光B2a进行衍射,同时,出瞳单元DOE3可以对从第二扩瞳单元DOE2b接收的第四传导光B2b进行衍射。
第一方向DIR1a可以表示第一传导光B1a的平均传播方向。第一方向DIR1a也可以表示第一传导光B1a传播的中心轴。
第二方向DIR1b可以表示第二传导光B1b的平均传播方向。第二方向DIR1b也可以表示第二传导光B1b传播的中心轴。
第一方向DIR1a和第二方向DIR1b之间的角度γ 1ab可以是60°至120°范围内。
扩展的传导光B2a可以在第三方向DIR2a上传播,该第三方向可以是大致平行于第二方向DIR1b。扩展的传导光B2b可以在第四方向DIR2b上传播,该方向可以是大致平行于第一方向DIR1a。
波导板SUB1可以包含一个或多个光学隔离单元ISO1,以防止第一扩瞳单元DOE2a和第二扩瞳单元DOE2b之间的直接光学耦合。光学隔离单元ISO1,可以通过在波导板的表面上沉积(黑色)吸收材料,或(和)通过将(黑色)吸收材料添加到波导板的区域中,或(和)通过在波导板中形成一个或多个开口来实现。
SX,SY和SZ是正交的方向。波导板SUB1可以与SX和SY限定的平面平行。
参照图3b,第一扩瞳单元DOE2a可以被设置为,将第三传导光B2a分配到出瞳单元DOE3的第一出瞳区域REG3a。第一出瞳区域REG3a可以把第三传导光B2a从波导板SUB1中衍射出去。第二扩瞳单元DOE2b可以设置为将第四传导光B2b分配到出瞳单元DOE3的第二出瞳区域REG3b。第二出瞳区域REG3b可以将第四传导光B2b从波导板SUB1中衍射出去。
第一出瞳区域REG3a可以与第二出瞳区域REG3b重叠。第一出瞳区域REG3a和第二出瞳区域REG3b的公共重叠区域COM1可以将第三传导光B2a和第四传导光B2b从波导板SUB1中衍射出去。公共重叠区域COM1的面积可以大于出瞳单元DOE3的单侧面积的50%,大于70%则更好。
参照图4a至图4c,扩瞳装置EPE1可以通过衍射并传导从光学引擎ENG1获得的输入光IN1来形成输出光OUT1。显示装置500可以包含光学引擎ENG1和扩瞳装置EPE1。
输入光IN1可以包含在不同方向上传播的多个光束。输入光IN1的每个光束可以对应于输入图像IMG0的不同点。输出光OUT1可以包含在不同方向上传播的多个光束。输出光OUT1的每个光束可以对应于所显示的虚拟图像VIMG1的不同点。扩瞳单元EPE1可以由输入光IN1形成输出光OUT1,使得输出光OUT1的光束的方向和强度对应于输入图像IMG0的点。
输入光IN1的光束可以对应于显示图像的单个图像点(P0)。扩瞳装置EPE1可以从由输入光IN1的光束形成输出光束,使得输出光束的方向(k 3,P0,R)平行于相应输入光IN1的光束的方向(k 0,P0,R)。
显示装置500可以包含光学引擎ENG1,以形成主图像IMG0(即输入图像IMG0)并将主图像IMG0转换成输入光IN1的多个光束。光学引擎ENG1的光可以从扩瞳装置EPE1的入瞳单元DOE1耦入。输入光IN1可以从扩瞳装置EPE1的入瞳单元DOE1耦入。显示装置500可以是用于显示虚拟图像的显示设备。显示装置500也可以是近视眼光学设备。
扩瞳装置EPE1可以将虚拟图像的内容从光学引擎ENG1传播到用户的眼睛EYE1前面。扩瞳装置EPE1可以扩展视瞳,从而扩大了eyebox。
光学引擎ENG1可以包含微显示器DISP1以生成主图像IMG0。微型显示器DISP1可以包含发光像素的二维阵列。显示器DISP1可以产生例如主图像IMG0,分辨率为1280×720。显示器DISP1可以产生例如主图像IMG0,分辨率为1920×1080(Full HD))。显示器DISP1可以产生例如主图像IMG0,分辨率为3840×2160(4K UHD)。主图像IMG0可以包含多个图像点P0,P1,P2,...。光学引擎ENG1可以包含准直光学器件LNS1,以形成与每个图像像素不同的光束。光学引擎ENG1可以包含准直光学器件LNS1,以从图像点P0的光形成基本准直的光束。与图像点P0相对应的光束可以在波矢k0 P0,R指定的方向上传播。对应于不同图像点P1的光束可以沿与方向k0 P0,R不同的方向k0 P1,R传播。
光学引擎ENG1可以提供与所生成的主图像IMG0相对应的多个光束。由光学引擎ENG1提供的一个或多个光束可以耦合到扩瞳装置EPE1中,并作为输入光IN1。
光学引擎ENG1可以包含例如一个或多个发光二极管(LED)。显示器DISP1可以包含一台或多台微显示器成像仪,例如硅基液晶(LCOS),液晶显示器(LCD),数字微镜器件(DMD)。
出瞳单元DOE3可以通过衍射从第一扩瞳单元DOE2a接收的第三传导光B2a,来形成第一输出光OB3a。出瞳单元DOE3可以通过衍射第二扩瞳单元DOE2b接收的第四传导光B2b,来形成第二输出光OB3b。通过将第一输出光OB3a与第二输出光OB3b组合,在出瞳单元DOE3可以形成组合的输出光OUT1。
扩瞳装置EPE1可以被设置为成,使得第一输出光OB3a中的给定图像点(例如,P0)的光的方向与第二输出光OB3b中的给定图像点(P0)的光的方向平行。因此,将第一输出光OB3a与第二输出光OB3b组合,可以形成对应于给定像点(P0)的组合光束。
每个单元DOE1,DOE2a,DOE2b,DOE3可包含一个或多个衍射光栅,具有前面所述的衍射功能。
可以选择光学单元DOE1,DOE2a,DOE2b,DOE3的衍射周期(d)和衍射光栅的方向(β),使得输出光OUT1的每个光束的方向可以平行于输入光IN1的对应光束的方向。
光栅矢量的光栅周期(d)和方向(β)可以满足,对于预定整数m 1a,m 2a,m 3a,矢量和(m 1aV 1a+m 2aV 2a+m 3aV 3a)为零的条件。V 1a表示入瞳单元DOE1的光栅矢量。V 2a表示第一扩瞳单元DOE2a的光栅矢量。V 3a表示出瞳单元DOE3的光栅矢量。这些预定整数的值通常为+1或-1。整数m 1a的值可以是+1或-1。整数m 2a的值可以是+1或-1。整数m 3a的值可以是+1或-1。
光栅矢量的光栅周期(d)和方向(β)可以满足,对于预定整数m 1b,m 2b,m 3b,矢量和(m 1bV 1b+m 2bV 2b+m 3bV 3b)为零的条件。V 1b表示入瞳单元DOE1的光栅矢量。V 2b表示第二扩瞳单元DOE2b的光栅矢量。V 3b表示出瞳单元DOE3的光栅矢量。这些预定整数的值通常为+1或-1。整数m 1b的值可以是+1或-1。整数m 2b的值可以是+1或-1。整数m 3b的值可以是+1或-1。
波导板可以具有厚度t SUB1。波导板包含平面波导核心部分。在一个实施例中,波导板SUB1可以选择性的包含例如,一个或多个覆层,一个或多个保护层和/或一个或多个机械支撑层。厚度t SUB1可以指波导板SUB1的平面波导核心部分的厚度。
扩瞳装置EPE1可以在两个方向上扩展光束:在方向SX和在方向SY上。输出光OUT1的宽度(沿SX方向)可以大于输入光IN1的宽度,并且输出光OUT1的高度(沿SY方向)可以大于输入光IN1的高度。
扩瞳装置EPE1可以被设置为扩展虚拟显示装置500的视瞳,从而便于眼睛EYE1相对于显示装置500的定位。在输出光OUT1入射在观看者的眼睛EYE1上的情况下,观看者可以看到显示的虚拟图像VIMG1。输出光OUT1可以包含一个或多个输出光束,其中每个输出光束可以对应于所显示的虚拟图像VIMG1的不同图像点(P0',P1')。光学引擎ENG1可以包含用于显示主图像IMG0的微型显示器DISP1。光学引擎ENG1和扩瞳装置EPE1可以设置为把主图像IMG0转换成多个输入光束(例如,B0 P0,R,B0 P1,R,B0 P2,R,B0 P3,R,B0 P4,R,...,B0 P0,B,B0 P1,B,B0 P2,B,B0 P3,B,B0 P4,B,...),并通过扩大输入光束形成输出光OUT1。例如,符号B0 P2,R可以表示输入光束,其对应于图像点P2并且具有红色(R)。例如,符号B0 P2,B可以表示输入光束,其对应于图像点P2并且具有蓝色(B)。输入光束可以一起构成输入光IN1。输入光IN1可以包含多个输入光束(例如,B0 P0,R,B0 P1,R,B0 P2,R,B0 P3,R,B0 P4,R,...B0 P0,B,B0 P1,B,B0 P2,B,B0 P3,B,B0 P4,B,...)。
输出光OUT1可以包含多个输出光束,每个输出光束可以形成虚拟图像VIMG1的不同像点(P0',P1')。主图像IMG0可以表示为,例如图形和/或文字。主图像IMG0可以表示为,例如视频。光学引擎ENG1和扩瞳装置EPE1可以被设置为显示虚拟图像VIMG1,使得虚拟图像VIMG1的每个图像点(P0',P1')对应于主图像IMG0上的不同图像点。
波导板SUB1可以具有第一主表面SRF1和第二主表面SRF2。第一主表面SRF1,第二主表面SRF2可以与方向SX和SY限定的平面基本平行。
参照图5,每个单元DOE1,DOE2a,DOE2b,DOE3可以包含一个或多个衍射光栅,以如上所述地衍射光。例如,单元DOE1可以包含一个或多个光栅G1a,G1b。例如,单元DOE2a可以包含光栅G2a。例如,单元DOE2b可以包含光栅G2b。例如,单元DOE3可以包含一个或多个光栅G3a,G3b。
衍射光栅的光栅周期(d)和衍射光栅的衍射特征的方向(β)可以由所述衍射光栅的光栅矢量V确定。衍射光栅包含可以用作衍射线的多个衍射特征(F)。衍射特征可以是,例如微小的脊或凹槽。衍射特征也可以是,例如微观的突起(或凹陷),其中相邻的突起(或凹陷)可以作为衍射线。光栅矢量V可以定义为具有垂直于衍射光栅的衍射线的方向和由2π/d给出的幅度的矢量,其中d是光栅周期。
入瞳单元DOE1可以具有光栅矢量V 1a,V 1b。第一扩瞳单元DOE2a可以具有光栅矢量V 2a。第二扩瞳单元DOE2b可以具有光栅矢量V 2b。出瞳单元DOE3可以具有光栅矢量V 3a,V 3b
光栅矢量V 1a具有方向β 1a和大小2π/d 1a。光栅矢量V 1b具有方向β 1b和大小2π/d 1b。光栅矢量V 2a具有方向β 2a和幅度2π/d 2a。光栅矢量V 2b具有方向β 2b和大小2π/d 2b。光栅矢量V 3a具有方向β 3a和幅值2π/d 3b。光栅矢量V 3b具有方向β 3b和幅度2π/d 3b。光栅矢量的方向(β)可以被定义为光栅矢量和参考方向(例如方向SX)之间的夹角。
可以选择光学单元DOE1,DOE2a,DOE3的光栅周期(d)和衍射光栅的方向(β),使得在第一输出光OB3a中的中心点P0的光的传播方向(k3 P0,R)平行于输入光IN1中的中心点P0的光的传播方向(k0 P0,R)。
可以选择光学单元DOE1,DOE2b,DOE3的光栅周期(d)和衍射光栅的方向(β),使得第二输出光OB3b的中心点P0的光的传播方向(k3 P0,R)与输入光IN1中的中心点P0的光的传播方向(k0 P0,R)平行。
可以选择光学单元DOE1,DOE2a,DOE2b,DOE3的衍射周期(d)和衍射光栅的方向(β),使得在组合输出光OUT1的中心点P0的光的传播方向(k3 P0,R)与输入光IN1中的中心点P0的光的传播方向(k0 P0,R)平行。
入瞳单元DOE1的光栅矢量V 1a,V 1b的方向之间的夹角可以是,例如60°至120°的范围内。
入瞳单元DOE1的第一光栅周期d 1a可以不同于入瞳单元DOE1的第二光栅周期d 1b,以针对第一颜色优化第一路径,并且针对第二不同颜色优化第二路径。
出瞳单元DOE3的第一光栅周期d 3a可以不同于出瞳单元DOE3的第二光栅周期d 3b,以针对第一颜色优化第一路径,并且针对第二不同颜色优化第二路径。
入瞳单元DOE1的第一光栅周期d 1a可以不同于入瞳单元DOE1的第二光栅周期d 1b,例如,用于优化蓝色的第一路径,以及用于红色的第二路径。
出瞳单元DOE3的第一光栅周期d 3a可以不同于出瞳单元DOE3的第二光栅周期d 3b,例如,用于优化蓝色的第一路径,以及用于红色的第二路径。
光栅矢量的光栅周期(d)和方向(β)可以满足,对于预定整数m 1a,m 2a,m 3a,矢量和(m 1aV 1a+m 2aV 2a+m 3aV 3a)为零的条件。V 1a表示单元DOE1的光栅矢量。V 2a表示单元DOE2a的光栅矢量。V 3a表示单元DOE3的光栅矢量。这些预定整数的值通常为+1或-1。整数m 1a的值可以是+1或-1。整数m 2a的值可以是+1或-1。整数m 3a的值可以是+1或-1。
光栅矢量的光栅周期(d)和方向(β)可以满足,对于预定整数m 1b,m 2b,m 3b,矢量和(m 1bV 1b+m 2bV 2b+m 3bV 3b)为零的条件。V1b表示单元DOE1的光栅矢量。V 2b表示单元DOE2b的光栅矢量。V 3b表示单元DOE3的光栅矢量。这些预定整数的值通常为+1或-1。整数m1b的值可以是+1或-1。整数m 2b的值可以是+1或-1。整数m 3b的值可以是+1或-1。
入瞳单元DOE1可以具有第一光栅矢量V 1a以形成沿方向DIR1a的第一传导光B1a,以及第二光栅矢量V 1b以形成沿方向DIR1b的第二传导光B1b。入瞳单元DOE1可以具有第一衍射特征F1a以提供第一光栅,该第一光栅具有光栅周期d 1a和方向β 1a(相对于参考方向SX)。入瞳单元DOE1可以具有第二衍射特征F1b,以提供第二光栅,该第二光栅具有光栅周期d 1b和方向β 1b(相对于参考方向SX)。入瞳单元DOE1可以通过例如交叉光栅或两个线性光栅来实现。入瞳单元DOE1可以是,例如入瞳单元DOE1的第一区域包含衍射特征F1a,同时入瞳单元DOE1的第二区域包含衍射特征F1b。
具有衍射特征F1a的第一线性光栅可以被设置在波导板SUB1的第一主表面(例如在输入侧表面SRF1上),并且具有衍射特征F1b的第二线性光栅可以被设置在波导板SUB1的第二主表面(例如在输出侧表面SRF2上)。所述衍射特征可以是,例如微小的脊或微小的突起。
第一扩瞳单元DOE2a可以具有光栅矢量V2a,通过使第一传导光B1a衍射来形成第三 传导光B2a。第一扩瞳单元DOE2a可以具有衍射特征F2a,以提供光栅G2a,该光栅G2a具有光栅周期d 2a和方向β 2a(相对于参考方向SX)。
第二扩瞳单元DOE2b可以具有光栅矢量V2b,通过使第二传导光B1b衍射来形成第四传导光B2b。第二扩瞳单元DOE2b可以具有衍射特征F2b,以提供光栅G2b,该光栅G2b具有光栅周期d 2b和方向β 2b(相对于参考方向SX)。
出瞳单元DOE3可以具有第一光栅矢量V3a,以将扩展的第三传导光B2a耦合出波导板SUB1。出瞳单元DOE3可以具有第二光栅矢量V3b,以将扩展的第四传导光B2b耦合出波导板SUB1。出瞳单元DOE3可以具有衍射特征F3a,以提供具有光栅周期d3a和方向β3a(相对于参考方向SX)的光栅G3a。出瞳单元DOE3可以具有衍射特征F3b,以提供具有光栅周期d3b和方向β3b(相对于参考方向SX)的光栅G3b。出瞳单元DOE3可以通过交叉光栅或两个线性光栅来实现。具有衍射特征F3a的第一线性光栅G3a可以在波导板SUB1的第一主表面(例如,SRF1)上实现,并且具有衍射特征F3b的第二线性光栅G3b可以在波导板SUB1的第二主表面(例如,SRF2)上实现。
入瞳单元DOE1可以具有宽度w 1和高度h 1。第一扩瞳单元DOE2a可以具有宽度w 2a和高度h 2a。第二扩瞳单元DOE2b可以具有宽度w 2b和高度h 2b。出瞳单元DOE3可以具有宽度w 3和高度h 3
宽度可以表示方向SX上的尺寸,高度可以表示方向SY上的尺寸。出瞳单元DOE3可以是,例如大体上为矩形。出瞳单元DOE3的边沿可以,例如沿着方向SX和SY。
扩瞳单元DOE2a的宽度w 2a可以大幅大于入瞳单元DOE1的宽度w 1。扩展的第三传导光B2a的宽度可以大幅大于入瞳单元DOE1的宽度w 1
波导板SUB1可以包含或基本上由透明固体材料组成。波导板SUB1可包含例如玻璃,聚碳酸酯或聚甲基丙烯酸甲酯(PMMA)。衍射光学单元DOE1,DOE2a,DOE2b,DOE3可以通过例如模制,压花和/或蚀刻形成。单元DOE1,DOE2a,DOE2b,DOE3可以通过例如一个或多个表面衍射光栅或通过一个或多个体积衍射光栅实现。
衍射效率的空间分布可任意的被调整,例如通过选择微观衍射特征F的局部高度。因此,可以选择出瞳单元DOE3的微观衍射特征F的高度,以进一步使输出光OUT1的强度分布变得均匀。
图6a以示例的方式,画出了蓝光的波矢图,该蓝光波矢沿着第一路径在波导板SUB1内传播。第一路径可以是例如,顺时针方向。输入光IN1的波矢可以在由初始波矢k x和k y定义的波矢空间的区域BOX0内。区域BOX0的每个角可以表示输入图像IMG0(图7a)的角落点的光的波矢。
第一传导光B1a的波矢可以在区域BOX1a内。
第三传导光B2a的波矢可以在区域BOX2a内。
第一输出光OB3a的波矢可以在区域BOX3内。
入瞳单元DOE1可以通过衍射输入光IN1,来形成第一传导光B1a。可以通过将入瞳单元DOE1的光栅矢量m 1aV 1a与输入光IN1的波矢相加来表示衍射。可以通过将光栅矢量m 1aV 1a与输入光IN1的波矢相加来确定第一传导光B1a的波矢。第三传导光B2a的波矢可以通过将光栅矢量m 2aV 2a与第一传导光B1a的波矢相加来确定。可以通过将光栅向量m 3aV 3a加到第二传导光B2a的波矢来确定第一输出光OB3a的波矢。
BND1表示用于满足波导板SUB1中的全内反射(TIR)标准的第一边界。BND2表示波导板SUB1中的最大波矢的第二边界。最大波矢可以由波导板的折射率确定。仅当所述光的波矢在第一边界BND1与第二边界BND2之间的区域ZONE1中时,光才可以在波导板SUB1中波导。如果光的波矢在区域ZONE1之外,则光可能会泄漏出波导板或根本不传播。
可以选择入瞳单元DOE1的光栅周期d 1a,使得例如,蓝色的第一传导光B1a的所有波矢都在由边界BND1,BND2限定的区域ZONE1内。
图6b以示例的方式示出了红光的波矢图,该红光波矢沿着第一路径在波导板SUB1内 传播。
现在,如果已选择入瞳单元DOE1的光栅周期d 1a,以使蓝色的第一传导光B1a的所有波矢都在区域ZONE1内,那么某些角落点的红光的波矢可能会位于区域ZONE1外。换句话说,波导板SUB1不能限制或传导输入图像IMG0的某些角落点的红光。
落在区域BOX1a的子区域FAIL1内的波矢,对应的是输入单元DOE1不能通过衍射输入光来形成传导光的情况。换句话说,对于存在于区域BOX1a的子区域FAIL1内的波矢,衍射方程式没有正确的实际解决方案。因此,传导光的波矢在区域ZONE1之外的情况下,对于某些图像点,不可能将红光耦合到波导板中。
传导光的波矢在区域ZONE1之外的情况,对于某些(其他)图像点,红光的泄漏可能会限制所显示虚拟图像VIMG1的角度宽度。
因此,区域ZONE1的边界BND1,BND2可以限制所显示的虚拟图像VIMG1的角宽度
Figure PCTCN2021074585-appb-000005
在区域ZONE1之外形成波矢可能意味着光从波导板泄漏或光耦合失败。
k x表示波矢空间中的方向,其中方向k x与实际空间的方向SX平行。k y表示波矢空间中的方向,其中k y方向与实际空间的SY方向平行。符号k z(图中未示出)表示波矢空间中的方向,其中方向k z与实际空间的方向SZ平行。波矢k可以具有在方向k x,k y和/或k z上的分量。
图6c和6d通过示例,给出了在波矢空间中的图像点(P0,P1,P2,P3,P4)的蓝光的波矢。
图6e和6f通过示例,给出了在波矢空间中的图像点(P0,P1,P2,P3,P4)的红光的波矢。
图6g以横截面侧视图,给出了将输入光耦合到波导板中来形成第一传导光,其中第一传导光的倾斜角
Figure PCTCN2021074585-appb-000006
接近SUB1的全内反射的临界角
Figure PCTCN2021074585-appb-000007
图6g的情况对应于区域ZONE1的第一边界BND1附近的操作。
图6h以横截面侧视图,给出了将输入光耦合到波导板中来形成第一传导光,其中第一传导光的倾斜角
Figure PCTCN2021074585-appb-000008
接近90度。图6h的情况可以对应于区域ZONE1的第二边界BND2附近的操作。
图6i中的曲线CRV1给出了第一传导光B1a的波矢k1的倾斜角φ k1与输入光B0的波矢k0的输入角度φ k0之间的函数关系。倾斜角φ k1可以表示波矢和方向SZ与SY限定的参考平面REF1之间的夹角。通过使用衍射方程式,可以通过输入角
Figure PCTCN2021074585-appb-000009
入瞳单元DOE1的光栅周期以及波导板SUB1的折射率计算出倾斜角
Figure PCTCN2021074585-appb-000010
第一角度限制φ BND1可以对应于第一传导光的倾斜角φ k1等于全内反射的临界角度
Figure PCTCN2021074585-appb-000011
的情况。第二角度限制φ BND2可以对应于第一传导光的倾斜角φ k1等于90度的情况。
图7a通过示例给出了蓝光的波矢图,该蓝光沿着第二路径在波导板SUB1内传播。第二路径可以是例如,逆时针路线。
图7b通过示例给出了红光的波矢图,该红光沿着第二路径在波导板SUB1内传播。
图7c和7d通过示例示给出了在波矢空间中的图像点(P0,P1,P2,P3,P4)的蓝光的波矢。
可以选择耦合入瞳单元DOE1的光栅周期d 1b,使得例如,红色的第二传导光B1b的所有波矢都在由边界BND1,BND2限定的区域ZONE1内。
现在,如果已经选择了入瞳单元DOE1的光栅周期d 1b,使得红色的第二传导光B1b的所有波矢都在区域ZONE1内,那么某些角落点的蓝光的波矢可能会位于区域ZONE1外。换句话说,波导板SUB1不能限制输入图像IMG0的某些角落点的蓝光。蓝光的泄漏可能会限制显示的虚拟图像VIMG1的角度宽度。落在区域BOX2b的子区域LEAK1中的波矢,代表不被全内反射限制在波导板内的光。
然而,扩瞳装置EPE1可以被设置为提供第一路径和第二路径。第一路径可以提供蓝色的虚拟图像VIMG1的全宽度
Figure PCTCN2021074585-appb-000012
第二路径可以提供红色的虚拟图像VIMG1的全宽度
Figure PCTCN2021074585-appb-000013
因此,扩瞳装置EPE1可以被设置为显示具有全宽度
Figure PCTCN2021074585-appb-000014
的彩色虚拟图像VIMG1。
因此,扩瞳装置EPE1可以被设置为以红色和蓝色来显示彩色虚拟图像VIMG1的所有角落点(P1,P2,P3,P4),其中所述彩色虚拟图像VIMG1具有完整的颜色的全宽度
Figure PCTCN2021074585-appb-000015
因此,通过使用两条路径显示的彩色虚拟图像VIMG1的角宽度
Figure PCTCN2021074585-appb-000016
可以大幅大于其他不使用第二路径的扩瞳装置(EPE0)的最大角宽度(LIM1,预定限制)。
具有两条路径的扩瞳装置EPE1可以被设置为显示彩色虚拟图像VIMG1,其具有扩展的角宽度
Figure PCTCN2021074585-appb-000017
第一路径可以被设置为限制输入图像的蓝色分量,同时允许泄漏输入图像的一个或多个角落点的红光。第二路径可以被设置为限制输入图像的红色分量,同时允许泄漏输入图像的一个或多个角落点的蓝光。
例如,在输入光(IN1)对应于输入图像(IMG0)且输入图像(IMG0)的宽度
Figure PCTCN2021074585-appb-000018
大于预定限制(LIM1)的情况下,入瞳单元(DOE1)可以设置为提供:
-与输入图像(IMG0)的第一角落点(P1)对应的红光(B1a P1,R),
其中选择各单元(DOE1,DOE2a,DOE2b,DOE3)的光栅矢量(m 1aV 1a,m 2aV 2a,m 3aV 3a,m 1bV 1b,m 2bV 2b,m 3bV 3b),以便:
-第一角落点(P1)的红光通过第二扩瞳单元(DOE2b)从入瞳单元(DOE1)导向出瞳单元(DOE3),
-第一角落点(P1)的红光未通过第一扩瞳单元(DOE2a)从入瞳单元(DOE1)导向出瞳单元(DOE3)。
例如,在输入光(IN1)对应于输入图像(IMG0)且输入图像(IMG0)的宽度
Figure PCTCN2021074585-appb-000019
大于预定限制(LIM1)的情况下,入瞳单元(DOE1)可以设置为提供:
-与输入图像(IMG0)的第二角落点(P2)对应的蓝光(B1b P2,B),
其中选择单元(DOE1,DOE2a,DOE2b,DOE3)的光栅矢量(m 1aV 1a,m 2aV 2a,m 3aV 3a,m1bV 1b,m 2bV 2b,m 3bV 3b),以便:
-第二角落点(P2)的蓝光通过第一扩瞳单元(DOE2a)从入瞳单元(DOE1)导向出瞳单元(DOE3),并且
-第二角落点(P2)的蓝光未通过第二扩瞳单元(DOE2b)从入瞳单元(DOE1)导向出瞳单元(DOE3)。
例如,在输入光(IN1)对应于输入图像(IMG0)且输入图像(IMG0)的宽度
Figure PCTCN2021074585-appb-000020
大于预定限制(LIM1)的情况下,入瞳单元(DOE1)可以设置为提供:
-与输入图像(IMG0)的第一角落点(P1)对应的红光(B1a P1,R),
-与输入图像(IMG0)的第二角落点(P2)对应的蓝光(B1b P2,B),
其中选择各单元(DOE1,DOE2a,DOE2b,DOE3)的光栅矢量(m 1aV 1a,m 2aV 2a,m 3aV 3a,m 1bV 1b,m 2bV 2b,m 3bV 3b),以便:
-第一角落点(P1)的红光通过第二扩瞳单元(DOE2b)从入瞳单元(DOE1)导向出瞳单元(DOE3),
-第一角落点(P1)的红光未通过第一扩瞳单元(DOE2a)从入瞳单元(DOE1)导向出瞳单元(DOE3),
-第二角落点(P2)的蓝光通过第一扩瞳单元(DOE2a)从入瞳单元(DOE1)导向出瞳单元(DOE3),并且
-第二角落点(P2)的蓝光没有通过第二扩瞳单元(DOE2b)从入瞳单元(DOE1)导向出瞳单元(DOE3)。
例如,在输入光(IN1)对应于输入图像(IMG0)且输入图像(IMG0)的宽度
Figure PCTCN2021074585-appb-000021
大于预定限制(LIM1)的情况下,入瞳单元(DOE1)可以设置为提供:
-与输入图像(IMG0)的第一角落点(P1)对应的红光(B1a P1,R),
-与输入图像(IMG0)的第一角落点(P1)对应的蓝光(B1a P1,B),
-与输入图像(IMG0)的第二角落点(P2)对应的红光(B1b P2,R),
-与输入图像(IMG0)的第二角落点(P2)对应的蓝光(B1b P2,B),
其中选择各单元(DOE1,DOE2a,DOE2b,DOE3)的光栅矢量(m 1aV 1a,m 2aV 2a,m 3aV 3a,m 1bV 1b,m 2bV 2b,m 3bV 3b),以便:
-第一角落点(P1)的红光通过第二扩瞳单元(DOE2b)从入瞳单元(DOE1)导向出瞳单元(DOE3),
-第一角落点(P1)的红光未通过第一扩瞳单元(DOE2a)从入瞳单元(DOE1)导向出瞳单元(DOE3),
-第一角落点(P1)的蓝光通过第一扩瞳单元(DOE2a)从入瞳单元(DOE1)导向出瞳单元(DOE3),
-第一角落点(P1)的蓝光通过第二扩瞳单元(DOE2a)从入瞳单元(DOE1)导向出瞳单元(DOE3),
-第二角落点(P2)的红光通过第一扩瞳单元(DOE2a)从入瞳单元(DOE1)导向出瞳单元(DOE3),
-第二角落点(P2)的红光通过第二扩瞳单元(DOE2b)从入瞳单元(DOE1)导向出瞳单元(DOE3),
-第二角落点(P2)的蓝光通过第一扩瞳单元(DOE2a)从入瞳单元(DOE1)导向出瞳单元(DOE3),并且
-第二角落点(P2)的蓝光未通过第二扩瞳单元(DOE2b)从入瞳单元(DOE1)导向出瞳单元(DOE3)。
扩瞳装置EPE1可以被设置为如下操作,使得在蓝色传导光经由扩瞳装置EPE1的第一路径传播的情况下,蓝色传导光的波矢落在区域ZONE1内,并且扩瞳装置EPE1可以设置为,在红色传导光通过扩瞳装置EPE1的第二路径传播的情况下,红色传导光的波矢路在区域ZONE1内。
图8a以示例的方式,给出了角落点P1的光在波导板SUB1中的传播情况。
图8b以示例的方式,给出了中心点P0的光在波导板SUB1中的传播情况。
图8c以示例的方式,给出了角落点P3的光在波导板SUB1中的传播情况。
图8d以示例的方式,给出了角落点P2的光在波导板SUB1中的传播情况。
图8e以示例的方式,给出了角落点P4的光在波导板SUB1中的传播情况。
显示装置500可以是虚拟现实设备500。显示装置500可以是增强现实设备500。显示装置500可以是近眼设备。显示装置500可以是可穿戴设备,例如,耳机。显示装置500可以包含例如,头带,显示装置500可以通过头带佩戴在用户的头上。在显示装置500的操作期间,可以将出瞳单元DOE3定位在用户的左眼EYE1或右眼EYE1前面。显示装置500可以将输出光OUT1投射到用户的眼睛EYE1中。在一个实施例中,显示装置500可以包含两个光学引擎ENG1和/或两个扩瞳装置EPE1以显示立体图像。在增强现实设备500中,除了显示的虚拟图像之外,观看者还可以通过扩瞳装置EPE1看到真实的物体和/或环境。光学引擎ENG1可以被设置为生成静止图像和/或视频。光学引擎ENG1可以从数字图像生成真实的主图像IMG0。光学引擎ENG1可以从互联网服务器或智能手机接收一个或多个数字图像。显示装置500可以是智能手机。所显示的图像可以被人观看,还可以让动物或机器(可能包含例如照相机)观看显示的图像。
术语“k矢量”可与术语“波矢”相同。
对于本领域技术人员而言,清楚的是,根据本申请的装置和方法的修改和变化是可想到的。这些附图是示意性的。上面参考附图描述的特定实施例仅是说明性的,并不意味着限制本申请的范围,本申请的范围由所附权利要求限定。

Claims (12)

  1. 一种光学扩瞳装置(EPE1),包含波导板(SUB1),该波导板又包含:
    -入瞳单元(DOE1),通过衍射输入光(IN1)形成第一传导光(B1a)和第二传导光(B1b),
    -第一扩瞳单元(DOE2a),通过衍射第一传导光(B1a)形成第三传导光(B2a),
    -第二扩瞳单元(DOE2b),通过衍射第二传导光(B1b)形成第四传导光(B2b),以及
    -通过衍射第三传导光(B2a)形成第一输出光(OB3a),并通过衍射第四传导光(B2b)形成第二输出光(OB3b)的出瞳单元(DOE3),
    其中,所述出瞳单元(DOE3)被设置为通过将第一输出光(OB3a)与第二输出光(OB3b)组合而形成组合输出光(OUT1),
    其中,所述入瞳单元(DOE1)具有用于形成所述第一传导光(B1a)的第一光栅周期(d 1a),并且所述入瞳单元(DOE1)具有用于形成所述第二传导光(B1b)的不同的第二光栅周期(d 1b)。
  2. 根据权利要求1所述的光学扩瞳装置,其特征在于,所述第一扩瞳单元(DOE2a)具有用于形成所述第三传导光(B1a)的第三光栅周期(d 2a),所述第二扩瞳单元(DOE2b)具有用于形成第四传导光(B2b)的第四光栅周期(d 2b),其中第三光栅周期(d 2a)不同于第四光栅周期(d 2b)。
  3. 根据权利要求1或2所述的光学扩瞳装置,其特征在于,所述输入光(IN1)对应于输入图像(IMG0),并且所述输入图像(IMG0)的宽度
    Figure PCTCN2021074585-appb-100001
    大于预定限制(LIM1),所述入瞳单元(DOE1)被设置为提供:
    -对应于输入图像(IMG0)的第一角落点(P1)的红光(B1a P1,R),
    其中,选择各单元(DOE1,DOE2a,DOE2b,DOE3)的光栅矢量(m 1aV 1a,m 2aV 2a,m 3aV 3a,m 1bV 1b,m 2bV 2b,m 3bV 3b),以便:
    -第一角落点(P1)的红光通过第二扩瞳单元(DOE2b)从入瞳单元(DOE1)导向出瞳单元(DOE3),
    -第一角落点(P1)的红光未通过第一扩瞳单元(DOE2a)从入瞳单元(DOE1)导向出瞳单元(DOE3)。
  4. 根据权利要求1或2所述的光学扩瞳装置,其特征在于,所述输入光(IN1)对应于输入图像(IMG0),并且所述输入图像(IMG0)的宽度
    Figure PCTCN2021074585-appb-100002
    大于预定限制(LIM1),所述入瞳单元(DOE1)被设置为提供:
    -对应于输入图像(IMG0)的第一角落点(P1)的红光(B1a P1,R),
    -对应于输入图像(IMG0)的第二角落点(P2)的蓝光(B1b P2,B),
    其中,选择各单元(DOE1,DOE2a,DOE2b,DOE3)的光栅矢量(m 1aV 1a,m 2aV 2a,m 3aV 3a,m 1bV 1b,m 2bV 2b,m 3bV 3b),以便:
    -第一角落点(P1)的红光通过第二扩瞳单元(DOE2b)从入瞳单元(DOE1)导向出瞳单元(DOE3),
    -第一角落点(P1)的红光未通过第一扩瞳单元(DOE2a)从入瞳单元(DOE1)导向出瞳单元(DOE3),
    -第二角落点(P2)的蓝光通过第一扩瞳单元(DOE2a)从入瞳单元(DOE1)导向出瞳单元(DOE3),并且
    -第二角落点(P2)的蓝光未通过第二扩瞳单元(DOE2b)从入瞳单元(DOE1)导向出瞳单元(DOE3)。
  5. 根据权利要求1或2所述的光学扩瞳装置,其特征在于,
    -第一传导光(B1a)包含与输入图像(IMG0)的中心点(P0)相对应的光(B1a P0),
    -第二传导光(B1b)包含与输入图像(IMG0)的中心点(P0)相对应的光(B1b P0),
    -第三传导光(B2a)包含与输入图像(IMG0)的中心点(P0)相对应的光(B2a P0),
    -第四传导光(B2b)包含与输入图像(IMG0)的中心点(P0)相对应的光(B2b P0),
    其中,所述出瞳单元(DOE3)被设置为:
    -通过衍射对应于输入图像(IMG0)的中心点(P0)的光束形成第一输出光束(OB3a),
    -通过衍射对应于输入图像(IMG0)的中心点(P0)的光束形成第二输出光束(OB3b)
    其中,第一输出光束(OB3a)和第二输出光束(OB3b)沿与中心点(P0)相对应的方向(k0 P0)传播。
  6. 根据权利要求1或2所述的光学扩瞳装置,其特征在于,所述入瞳单元(DOE1)被设置为衍射输入光(IN1),使得所述第一传导光(B1a)包含输入图像(IMG0)的中心点(P0)的光,并且第二传导光(B1b)包含输入图像(IMG0)的中心点(P0)的光,
    其中,所述出瞳单元(DOE3)被设置为,将所述第一扩瞳单元(DOE2a)接收的第三传导光(B2a)衍射,使得第一输出光(OB3a)包含输入图像(IMG0)的中心点(P0)的光,
    其中,所述出瞳单元(DOE3)被设置为,将所述第二扩瞳单元(DOE2b)接收的第四传导光(B2b)衍射,使得第二输出光(OB3b)包含输入图像(IMG0)的中心点(P0)的光,
    其中,第一输出光(OB3a)中的中心点(P0)的光沿轴向(k3,P0)传播,其中,第二输出光(OB3b)中的中心点(P0)的光沿着相同的轴向(k3,P0)传播。
  7. 根据权利要求6所述的光学扩瞳装置,其特征在于,所述第一传导光(B1a)中的中心点(P0)的光沿着第一方向(k1a P0)传播,第二传导光(B1b)沿第二方向(k1b P0)传播,其中第一方向(k1a P0)与第二方向(k1b P0)之间的夹角(γ AB)在60°至120°的范围内。
  8. 根据权利要求6所述的光学扩瞳装置,其特征在于,所述出瞳单元(DOE3)的第一区域(REG3a)被设置为使从所述第一扩瞳单元(DOE2a)接收的中心点(P0)的光耦合输出,所述出瞳单元(DOE3)的第二区域(REG3b)被设置为将从第二扩瞳单元(DOE2b)接收的中心点(P0)的光耦合输出,其中第一区域(REG3a)和第二区域(REG3b)通过重叠,使得第一区域(REG3a)和第二区域(REG3b)的公共重叠区域(COM1)大于出瞳单元(DOE3)单侧面积的50%。
  9. 根据权利要求1或2所述的光学扩瞳装置,其特征在于,包含一个或多个光学隔离单元(ISO1),以防止所述第一扩瞳单元(DOE2a)和所述第二扩瞳单元(DOE2b)之间的直接光学耦合。
  10. 一种显示装置(500),其特征在于,包含光学引擎(ENG1),以形成输入图像(IMG0)并将输入图像(IMG0)转换为输入光(IN1)的多个输入光束,该显示装置(500)包含根据权利要求1至9中的任一项的光学扩瞳装置(EPE1),以使输入光(IN1)的输入光束通过衍射扩展来形成组合输出光(OUT1)的输出光束。
  11. 一种方法,其特征在于,包含使用根据权利要求1至9中的任一项所述的光学扩瞳装置(EPE1)来提供组合输出光(OUT1)。
  12. 一种方法,其特征在于,包含使用根据权利要求1至9中的任一项所述的光学扩瞳装置(EPE1)来显示虚拟图像(VIMG1)。
PCT/CN2021/074585 2021-01-05 2021-02-01 一种大视场角的光学扩瞳装置、显示装置及方法 WO2022147866A1 (zh)

Priority Applications (1)

Application Number Priority Date Filing Date Title
EP21916919.0A EP4239393A4 (en) 2021-01-05 2021-02-01 DEVICE FOR EXPANDING AN OPTICAL PUPIL WITH A LARGE FIELD OF VIEW, DISPLAY DEVICE AND METHOD

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
CN202110006780.0A CN112817153B (zh) 2021-01-05 2021-01-05 一种大视场角的光学扩瞳装置、显示装置及方法
CN202110006780.0 2021-01-05

Publications (1)

Publication Number Publication Date
WO2022147866A1 true WO2022147866A1 (zh) 2022-07-14

Family

ID=75857348

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2021/074585 WO2022147866A1 (zh) 2021-01-05 2021-02-01 一种大视场角的光学扩瞳装置、显示装置及方法

Country Status (4)

Country Link
US (1) US11624869B2 (zh)
EP (1) EP4239393A4 (zh)
CN (1) CN112817153B (zh)
WO (1) WO2022147866A1 (zh)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN115494578A (zh) * 2022-11-07 2022-12-20 杭州光粒科技有限公司 一种光波导器件和ar设备

Families Citing this family (11)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN113568178B (zh) * 2021-08-06 2023-06-23 深圳市光舟半导体技术有限公司 一种波导片模型及ar眼镜
WO2023021804A1 (ja) * 2021-08-18 2023-02-23 ナルックス株式会社 導光装置
CN113721362B (zh) * 2021-09-03 2023-01-31 深圳市光舟半导体技术有限公司 光学扩瞳装置、显示装置、光束扩展方法及图像显示方法
WO2023038280A1 (en) * 2021-09-13 2023-03-16 Samsung Electronics Co., Ltd. Diffractive optical elements-based waveguide architecture for augmented reality glasses with wide field of view
FI20216248A1 (en) * 2021-12-07 2023-06-08 Dispelix Oy DISPLAY CONSTRUCTION, DISPLAY DEVICE AND VEHICLES
CN114217436A (zh) * 2022-02-10 2022-03-22 深圳七泽技术合伙企业(有限合伙) 大出瞳的显示设备、显示方法、扩展方法及车用显示装置
CN114839765A (zh) * 2022-03-09 2022-08-02 深圳市光舟半导体技术有限公司 一种大视场角的光学扩瞳装置、显示装置及方法
CN115097631B (zh) * 2022-07-15 2023-10-17 友达光电股份有限公司 显示装置及其操作方法
GB2620634A (en) * 2022-07-15 2024-01-17 Envisics Ltd Waveguide manufacture
CN115079427B (zh) * 2022-07-26 2023-05-30 深圳市光舟半导体技术有限公司 一种显示设备和显示虚拟图像的方法
CN115793130B (zh) * 2022-10-21 2023-08-04 嘉兴驭光光电科技有限公司 用于图像显示的光学波导装置及具有其的显示设备

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2017062139A1 (en) * 2015-10-07 2017-04-13 Microsoft Technology Licensing, Llc Diffractive optical element with integrated in-coupling, exit pupil expansion, and out-coupling
CN107966819A (zh) * 2017-12-27 2018-04-27 北京灵犀微光科技有限公司 波导显示装置
CN110543022A (zh) * 2019-07-31 2019-12-06 华为技术有限公司 一种增强现实装置及穿戴设备
CN110809730A (zh) * 2017-06-30 2020-02-18 微软技术许可有限责任公司 在一块板上支持红色、绿色和蓝色的大视场波导
CN111880304A (zh) * 2020-08-06 2020-11-03 深圳市光舟半导体技术有限公司 光学扩瞳装置和显示设备及其输出光束和显示图像的方法

Family Cites Families (10)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP2076813B1 (en) * 2006-09-28 2017-12-20 Nokia Technologies Oy Beam expansion with three-dimensional diffractive elements
WO2011107831A1 (en) * 2010-03-04 2011-09-09 Nokia Corporation Optical apparatus and method for expanding an exit pupil
GB2529003B (en) * 2014-08-03 2020-08-26 Wave Optics Ltd Optical device
KR102417136B1 (ko) * 2014-09-29 2022-07-05 매직 립, 인코포레이티드 상이한 파장의 광을 도파관 밖으로 출력하기 위한 아키텍쳐 및 방법
FI128831B (en) * 2017-05-03 2021-01-15 Dispelix Oy Display element, personal display unit, procedure for producing an image on a personal display and use
US10725291B2 (en) * 2018-10-15 2020-07-28 Facebook Technologies, Llc Waveguide including volume Bragg gratings
US11307429B2 (en) * 2019-01-11 2022-04-19 Google Llc Single RGB combiner with large field of view
CN110764261B (zh) * 2019-09-18 2022-03-11 深圳市光舟半导体技术有限公司 一种光波导结构、ar设备光学成像系统及ar设备
CN111123524A (zh) * 2020-01-17 2020-05-08 北京枭龙科技有限公司 能扩瞳且出光均匀的衍射波导
CN111766704A (zh) * 2020-06-19 2020-10-13 深圳市光舟半导体技术有限公司 一种光学器件、显示设备及其输出光和显示图像的方法

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2017062139A1 (en) * 2015-10-07 2017-04-13 Microsoft Technology Licensing, Llc Diffractive optical element with integrated in-coupling, exit pupil expansion, and out-coupling
CN110809730A (zh) * 2017-06-30 2020-02-18 微软技术许可有限责任公司 在一块板上支持红色、绿色和蓝色的大视场波导
CN107966819A (zh) * 2017-12-27 2018-04-27 北京灵犀微光科技有限公司 波导显示装置
CN110543022A (zh) * 2019-07-31 2019-12-06 华为技术有限公司 一种增强现实装置及穿戴设备
CN111880304A (zh) * 2020-08-06 2020-11-03 深圳市光舟半导体技术有限公司 光学扩瞳装置和显示设备及其输出光束和显示图像的方法

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
See also references of EP4239393A4

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN115494578A (zh) * 2022-11-07 2022-12-20 杭州光粒科技有限公司 一种光波导器件和ar设备
CN115494578B (zh) * 2022-11-07 2023-10-13 杭州光粒科技有限公司 一种光波导器件和ar设备

Also Published As

Publication number Publication date
US20220214494A1 (en) 2022-07-07
US11624869B2 (en) 2023-04-11
EP4239393A4 (en) 2024-04-24
CN112817153B (zh) 2022-12-02
CN112817153A (zh) 2021-05-18
EP4239393A1 (en) 2023-09-06

Similar Documents

Publication Publication Date Title
WO2022147866A1 (zh) 一种大视场角的光学扩瞳装置、显示装置及方法
WO2023029360A1 (zh) 光学扩瞳装置、显示装置、光束扩展方法及图像显示方法
US7483604B2 (en) Diffractive grating element for balancing diffraction efficiency
WO2022227717A1 (zh) 显示彩色图像的光学扩瞳装置
US20190004321A1 (en) Exit pupil expanding diffractive optical waveguiding device
US11480722B2 (en) Optical expander device and its display device and method for outputting light and displaying image
KR20200002791A (ko) 증강 현실 또는 가상 현실 디스플레이를 위한 도파관
US11960087B2 (en) Optical device and display apparatus with same images for left and right eyes
US11994684B2 (en) Image light guide with zoned diffractive optic
EP2153266A1 (en) A diffractive beam expander and a virtual display based on a diffractive beam expander
US11119262B1 (en) Optical device, display device, and method for outputting light and displaying image thereof
CN111880304A (zh) 光学扩瞳装置和显示设备及其输出光束和显示图像的方法
WO2023169502A1 (zh) 一种大视场角的光学扩瞳装置、显示装置及方法
CN212647158U (zh) 光学扩瞳装置及其显示设备
US20230324595A1 (en) Low distortion imaging through a c-shape flat optical architecture
US20230296883A1 (en) Optical expander apparatus of large field of view and display apparatus
WO2021253385A1 (zh) 一种光学器件、显示设备及其输出光和显示图像的方法
CN213544957U (zh) 一种光学器件及其显示设备
US20230273449A1 (en) Full-color waveguide combiner with embedded metagrating
US20230134576A1 (en) Unpolarized light grating incoupler
US20240192423A1 (en) Image display device and image display method
EP4321909A1 (en) Light guide and near-eye display apparatus

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 21916919

Country of ref document: EP

Kind code of ref document: A1

ENP Entry into the national phase

Ref document number: 2021916919

Country of ref document: EP

Effective date: 20230530

NENP Non-entry into the national phase

Ref country code: DE