WO2021027841A1 - 用于呈现图像的装置和用于实现增强现实显示的系统 - Google Patents

用于呈现图像的装置和用于实现增强现实显示的系统 Download PDF

Info

Publication number
WO2021027841A1
WO2021027841A1 PCT/CN2020/108670 CN2020108670W WO2021027841A1 WO 2021027841 A1 WO2021027841 A1 WO 2021027841A1 CN 2020108670 W CN2020108670 W CN 2020108670W WO 2021027841 A1 WO2021027841 A1 WO 2021027841A1
Authority
WO
WIPO (PCT)
Prior art keywords
function structure
optical function
optical
grating
waveguide lens
Prior art date
Application number
PCT/CN2020/108670
Other languages
English (en)
French (fr)
Inventor
罗明辉
乔文
成堂东
李玲
李瑞彬
周振
陈林森
Original Assignee
苏州苏大维格科技集团股份有限公司
苏州大学
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 苏州苏大维格科技集团股份有限公司, 苏州大学 filed Critical 苏州苏大维格科技集团股份有限公司
Publication of WO2021027841A1 publication Critical patent/WO2021027841A1/zh

Links

Images

Classifications

    • GPHYSICS
    • G02OPTICS
    • G02BOPTICAL ELEMENTS, SYSTEMS OR APPARATUS
    • G02B27/00Optical systems or apparatus not provided for by any of the groups G02B1/00 - G02B26/00, G02B30/00
    • G02B27/01Head-up displays
    • G02B27/017Head mounted
    • G02B27/0172Head mounted characterised by optical features
    • GPHYSICS
    • G02OPTICS
    • G02BOPTICAL ELEMENTS, SYSTEMS OR APPARATUS
    • G02B27/00Optical systems or apparatus not provided for by any of the groups G02B1/00 - G02B26/00, G02B30/00
    • G02B27/01Head-up displays

Definitions

  • the present invention relates to image display technology, in particular to a device for presenting images and a system for realizing augmented reality display including the device.
  • Augmented reality (AR) technology is a new type of display technology that "seamlessly" integrates real world information and virtual world information. It not only displays real-world information, but also displays virtual information at the same time, so as to achieve mutual complement and superposition of the two types of information.
  • a head-mounted display is used to present a hybrid image in which the real world and a computer-generated virtual image are superimposed to the user.
  • the image on the micro-display spatial light modulator (such as LCOS) is coupled to the optical waveguide through three holographic gratings, and then transmitted through the three optical waveguides, and finally passes directly in front of the human eye.
  • the corresponding holographic grating is coupled out to project to the human eye.
  • a multilayer optical waveguide can be used.
  • the augmented reality display device based on the above working principle has many disadvantages. For example, it cannot solve the problem of sudden changes in visual brightness in the window.
  • An object of the present invention is to provide a device for presenting an image, which can provide a good balance of efficiency within the exit pupil range, thereby avoiding sudden visual brightness changes.
  • An apparatus for presenting an image according to an aspect of the present invention includes:
  • the first optical function structure, the second optical function structure, the third optical function structure and the fourth optical function structure arranged on the surface of the optical waveguide lens,
  • first optical function structure and the second optical function structure are located in the middle of the optical waveguide lens, and the third optical function structure and the fourth optical function structure are located on both sides of the surface of the optical waveguide lens,
  • the light is coupled into the optical waveguide lens through the first optical function structure, and then reaches the second optical function structure through total reflection, and under the action of the second optical function structure, first diffraction occurs
  • Light beam and second diffracted light beam, the first diffracted light beam and the second diffracted light beam reach the third optical function structure and the fourth optical function structure respectively after total reflection in the optical waveguide lens, and are separated from the third optical function
  • the third optical function structure and the fourth optical function structure have structural parameters that gradually change in distance from the second optical function structure.
  • the first optical function structure, the third optical function structure and the fourth optical function structure are one-dimensional gratings, and the second optical function structure is a two-dimensional grating.
  • the one-dimensional grating is one of the following: oblique grating, rectangular grating, blazed grating and volume grating.
  • the third optical function structure and the fourth optical function structure are one-dimensional gratings with gradual grating heights, wherein the height increases as the one-dimensional grating is relative to the second optical function The increase in the distance of the structure increases.
  • the third optical function structure and the fourth optical function structure are one-dimensional gratings with gradual duty cycles, wherein the duty cycle increases as the one-dimensional grating relative to the first Second, the distance of the optical function structure increases as the distance increases.
  • the first optical function structure in the first direction, is spaced apart from the second optical function structure, so that the light is in the optical waveguide lens along the first Direction from the first optical function structure to the second optical function structure, and in a second direction different from the first direction, the third optical function structure and the fourth optical function structure are located in the second optical function structure On both sides of the functional structure, the first diffracted light beam and the second diffracted light beam respectively reach the third optical function structure and the fourth optical function structure along the second direction in the optical waveguide lens.
  • the first direction is perpendicular to the second direction.
  • the first optical function structure, the second optical function structure, the third optical function structure and the fourth optical function structure are located on the same surface of the optical waveguide lens.
  • Another object of the present invention is to provide a system for realizing augmented reality display, which can provide good efficiency balance within the exit pupil range, thereby avoiding sudden changes in visual brightness.
  • the system for realizing augmented reality display includes:
  • At least one image presentation device each of the image presentation devices comprising:
  • the first optical function structure, the second optical function structure, the third optical function structure and the fourth optical function structure arranged on the surface of the optical waveguide lens,
  • first optical function structure and the second optical function structure are located in the middle of the optical waveguide lens, and the third optical function structure and the fourth optical function structure are located on both sides of the surface of the optical waveguide lens,
  • the light from the image source is coupled into the optical waveguide lens through the first optical function structure, and then reaches the second optical function structure through total reflection, and plays a role in the second optical function structure
  • a first diffracted light beam and a second diffracted light beam are generated.
  • the first diffracted light beam and the second diffracted light beam reach the third optical function structure and the fourth optical function structure respectively after being totally reflected in the optical waveguide lens, and from The third optical function structure and the fourth optical function structure exit,
  • the third optical function structure and the fourth optical function structure have structural parameters that gradually change in distance from the second optical function structure.
  • the third optical function structure and the fourth optical function structure are designed to have their structural parameters gradually change with respect to the distance of the second optical function structure, especially designed to make the third The farther the optical function structure and the fourth optical function structure are from the second optical function structure, the higher the diffraction efficiency, thereby achieving a balance of efficiency within the exit pupil range.
  • the third optical function structure and the fourth optical function structure are arranged on both sides of the surface of the optical waveguide lens, and the first optical function structure and the second optical function structure are arranged on the third optical Between the functional structure and the fourth optical functional structure or the center of the optical waveguide lens.
  • the size of the optical waveguide lens in the horizontal direction is larger than the size in the vertical direction. Therefore, the above arrangement method can significantly increase the area occupied by the third optical function structure and the fourth optical function structure, thereby increasing the exit pupil window. Furthermore, the image presentation device according to the above-mentioned embodiment of the present invention has a simple and compact structure, which is advantageous for reducing the overall size of the device.
  • FIG. 1A and 1B are respectively a top view and a perspective view of an apparatus for presenting an image according to an embodiment of the present invention.
  • FIGS. 2A-2C show schematic diagrams of optical diffraction of a one-dimensional grating applicable to the embodiment shown in Figs. 1A and 1B.
  • Fig. 3 shows an example of a holographic diffraction element applicable to the embodiment shown in Figs. 1A and 1B.
  • FIG. 4 is a schematic cross-sectional view of the apparatus for presenting images shown in FIGS. 1A and 1B, and the cross-section shown is in the Y-Z plane of FIG. 1B.
  • Fig. 5 is a schematic cross-sectional view of the apparatus for presenting images shown in Figs. 1A and 1B, and the cross-section shown is in the X-Z plane of Fig. 1B.
  • Fig. 6 shows the variation trend of the -1 order diffraction efficiency of the tilted grating with respect to the height of the grating.
  • FIG. 7 is a schematic diagram of a highly gradual inclined grating applicable to the above embodiment of the present invention.
  • Fig. 8 shows the variation trend of the -1 order diffraction efficiency of the tilted grating with respect to the duty ratio of the grating.
  • FIG. 9 is a schematic diagram of a tilted grating with gradual duty cycle that can be applied to the above embodiment of the present invention.
  • Fig. 10 is a schematic diagram of a system for realizing augmented reality display according to another embodiment of the present invention.
  • FIG. 1A and 1B are respectively a top view and a perspective view of an apparatus for presenting an image according to an embodiment of the present invention.
  • the device for presenting an image of this embodiment may take the form of spectacle lenses.
  • the apparatus 10 for presenting an image of this embodiment includes an optical waveguide lens 110 and a first optical functional structure 121, a second optical functional structure 122, and a third optical functional structure 123 disposed on the surface of the optical waveguide lens. And the fourth optical function structure 124.
  • the first optical function structure 121, the second optical function structure 122, the third optical function structure 123, and the fourth optical function structure 124 are nanostructures to form diffracted light.
  • these optical functional structures are located on the same surface or different surfaces of the optical waveguide lens 110.
  • the first optical function structure 121 is configured to couple incident light from an image source (not shown) into the optical waveguide lens 110 and propagate in the Y direction, so it can also be called coupling Into the area;
  • the second optical function structure 122 is configured to separate the light into two beams of light (hereinafter referred to as the first diffracted beam and the second diffracted beam) and respectively along the left and right directions (that is, along the directions in Figures 1A and 1B
  • the reverse and forward directions of the X-axis) lead to the third optical function structure 123 and the fourth optical function structure 124, so it can also be called a turning area;
  • the third optical function structure 123 and the fourth optical function structure 124 are configured to respectively
  • the first diffracted light beam and the second diffracted light beam are led out of the optical waveguide lens 110 along the Z direction, thereby presenting an augmented reality image to the user. Therefore, the optical functional structures 123 and 124 can also be called out-coupling regions.
  • the third optical function structure 123 and the fourth optical function structure 124 are located on both sides of the surface of the optical waveguide lens 110.
  • the first optical function structure 121 and the second optical function structure 122 are located in the middle of the optical waveguide lens 110, that is, between the third optical function structure 123 and the fourth optical function structure 124.
  • the third optical function structure 123 and the fourth optical function structure 124 can be designed to have their structural parameters gradually change with respect to the distance of the second optical function structure 122, so that the third optical function structure 123 and the The farther the four optical function structure 124 is from the second optical function structure 122, the higher the diffraction efficiency, thereby achieving a balance of efficiency within the exit pupil range.
  • the structural parameters mentioned here include, but are not limited to, the height and duty cycle of the grating, for example.
  • the first optical function structure 121, the third optical function structure 123, and the third optical function structure 124 are realized in the form of a one-dimensional grating, and the second optical function structure 122 adopts a holographic diffraction element.
  • the one-dimensional grating may be selected from one or more of the following groups: oblique grating, rectangular grating, blazed grating and volume grating.
  • Figures 2A-2C show schematic diagrams of optical diffraction of one-dimensional gratings applicable to the embodiment shown in Figures 1A and 1B, wherein Figure 2A shows a schematic diagram of optical diffraction of a rectangular grating, and Figure 2B shows the optical diffraction of a tilted grating Schematic diagram of diffraction. Figure 2C shows a schematic diagram of optical diffraction of a blazed grating.
  • a rectangular grating 221A is formed on the surface of the optical waveguide lens 210.
  • the diffracted light includes zero order diffracted light T 0 , -1 order diffracted light T -1 and first order diffracted light T 1 .
  • the 0th order diffraction efficiency is the highest
  • the -1st order diffraction is the second
  • the 1st order diffraction efficiency is the lowest.
  • the rectangular grating 221A shown in FIG. 2A can be used to form the ⁇ 1st order diffracted light, and then the propagation in the optical waveguide lens 210 is completed.
  • the inclined grating 221B is formed on the surface of the optical waveguide lens 210.
  • the diffracted light includes zero-order diffracted light T 0 , ⁇ 1st-order diffracted light T -1 and first-order diffracted light T 1 .
  • the -1 order diffraction efficiency is the highest
  • the zero order diffraction efficiency is the second
  • the first order diffraction efficiency is the lowest.
  • the wavelength selection function can be realized, that is, the diffraction efficiency of light in a certain wavelength range can be made higher, while the rest The diffraction efficiency of light in the wavelength range is low.
  • the blazed grating 221C is formed on the surface of the optical waveguide lens 210.
  • the diffracted light includes zero-order diffracted light T 0 , ⁇ 1st-order diffracted light T -1 and first-order diffracted light T 1 .
  • the -1 order diffraction efficiency is the highest, and the zero order diffraction and the first order diffraction efficiency are the lowest.
  • the wavelength selection function can be realized.
  • Fig. 3 shows an example of a holographic diffractive element or a second optical function structure applicable to the embodiment shown in Figs. 1A and 1B.
  • the holographic diffractive element 322 takes the form of a two-dimensional array. The light is coupled into the optical waveguide lens through the first optical function structure and propagates through the optical waveguide lens. When the transmitted light enters the holographic diffractive element 322, it will be diffracted and deflected at a certain angle.
  • the holographic diffractive element 322 is designed to form two diffracted rays, which are respectively transmitted to the third optical function structure 123 and the fourth optical function structure 124 in the left and right directions.
  • FIGS. 1A and 1B The working principle of the apparatus for presenting images shown in FIGS. 1A and 1B is described below.
  • FIG. 4 is a schematic cross-sectional view of the apparatus for presenting images shown in FIGS. 1A and 1B, and the cross-section shown is in the Y-Z plane of FIG. 1B.
  • the light emitted from the image source 20 reaches the first optical function structure 121.
  • the light After being diffracted by the first optical function structure 121, the light is introduced into the optical waveguide lens 110.
  • the first optical function structure 121 By selecting appropriate structural parameters for the first optical function structure 121, the light with the highest diffraction efficiency can be totally reflected inside the optical waveguide lens 110.
  • the first optical function structure 121 and the second optical function structure 122 are separated by a certain interval in the Y direction, and the totally reflected light from the first optical function structure 121 reaches the second optical function by means of total reflection. Function structure 122.
  • Fig. 5 is a schematic cross-sectional view of the apparatus for presenting images shown in Figs. 1A and 1B, and the cross-section shown is in the X-Z plane of Fig. 1B.
  • the second optical function structure 122 (for example, in the form of a holographic diffractive element) separates the light rays into the third optical function structure 123 and the fourth optical function structure 124 along the reverse and forward directions of the X axis. The first diffracted beam and the second diffracted beam.
  • the first diffracted beam and the second diffracted beam are then emitted from the optical waveguide lens 110 along the Z direction, thereby presenting an augmented reality image to the user.
  • Fig. 6 shows the variation trend of the ⁇ 1st order diffraction efficiency of the tilted grating with respect to the grating height, where the horizontal axis represents the grating height and the vertical axis represents the diffraction efficiency.
  • the tilt angle of the tilted grating is 30°
  • the grating period is 400 nm
  • the duty ratio is 0.5.
  • the diffraction efficiency increases from 43% to 95%.
  • FIG. 7 is a schematic diagram of a highly gradual inclined grating applicable to the above embodiment of the present invention. As shown in FIG. 7, the height of the inclined grating increases as the distance of the inclined grating relative to the second optical functional structure 122 (that is, the distance of the grating relative to the second optical functional structure in the X direction) increases.
  • FIG. 8 shows the variation trend of the ⁇ 1st order diffraction efficiency of the tilted grating with respect to the duty ratio of the grating, wherein the horizontal axis represents the duty ratio and the vertical axis represents the diffraction efficiency.
  • the tilt angle of the tilted grating is 30°
  • the grating period is 400 nm
  • the grating height is 300 nm
  • the duty cycle varies in the range of 0.2-0.55.
  • the duty cycle increases from 20% to 96%.
  • the third optical function structure 123 and the fourth optical function structure 124 may be designed as inclined gratings with gradual duty cycles.
  • FIG. 9 is a schematic diagram of a tilted grating with gradual duty cycle that can be applied to the above embodiment of the present invention. As shown in FIG. 9, the duty ratio of the inclined grating increases as the distance of the inclined grating relative to the second optical functional structure 122 increases.
  • the above-mentioned inclined gratings with gradual changes in height or duty cycle are only exemplary.
  • the height and duty cycle can also be changed at the same time, and the grating is not limited to oblique gratings.
  • the grating is not limited to oblique gratings.
  • the grating is not limited to oblique gratings.
  • the grating is not limited to oblique gratings.
  • the The structural parameters change with the distance to realize the equalization of the efficiency within the exit pupil range.
  • Fig. 10 is a schematic diagram of a system for realizing augmented reality display according to another embodiment of the present invention.
  • the system 1 shown in FIG. 10 includes image presentation devices 10A and 10B and an image source 20.
  • the image source 20 is configured to provide light including a first component and a second component to the image rendering devices 10A and 10B.
  • the image presentation devices 10A and 10B are configured to present augmented reality images to the user.
  • the image presentation apparatuses 10A and 10B can be implemented using the embodiments described above with reference to FIGS. 1A, 1B, 2A-2C, and FIGS. 3-9.
  • the image presentation device 10A includes an optical waveguide lens 110A and a first optical function structure 121A, a second optical function structure 122A, a third optical function structure 123A, and a fourth optical function structure 124A disposed on the surface of the optical waveguide lens.
  • the first optical function structure 121A, the second optical function structure 122A, the third optical function structure 123A, and the fourth optical function structure 124A are located on the same surface of the optical waveguide lens 110, wherein the first optical function structure 121A and the second optical function structure 122A is arranged in the middle of the surface of the optical waveguide lens, and the third optical function structure 123A and the fourth optical function structure 124A are arranged on both sides of the optical waveguide lens 110A.
  • the first optical function structure 121A is configured to couple incident light from the image source 20 into the optical waveguide lens 110, and make the light in the first direction (the Y direction in FIGS. 1A and 1B)
  • the optical waveguide lens 110A propagates. By making the light enter the optical waveguide lens at an appropriate angle, it can reach the second optical function structure 122A in a total reflection manner.
  • the first diffracted light beam propagates in the optical waveguide lens 110A along the reverse direction of the X axis, and reaches the fourth optical function structure 124A through total reflection.
  • the second diffracted light beam propagates in the optical waveguide lens 110A along the positive direction of the X axis, and reaches the fourth optical function structure 124A through total reflection.
  • the third optical function structure 123A and the fourth optical function structure 124A are configured to lead the first diffracted light beam and the second diffracted light beam out of the optical waveguide lens 110, thereby presenting an augmented reality image to the user.
  • the first optical function structure 121A, the third optical function structure 123A, and the fourth optical function structure 124A are realized in the form of a one-dimensional grating
  • the second optical function structure 122A is realized in the form of a two-dimensional grating
  • the one-dimensional grating may be selected from one or more of the following groups: oblique grating, rectangular grating, blazed grating and volume grating.
  • the image presentation device 10B includes an optical waveguide lens 110B and a first optical function structure 121B, a second optical function structure 122B, a third optical function structure 123B, and a fourth optical function structure 124B disposed on the surface of the optical waveguide lens, and its structure and working principle It is similar to the image presentation device 10A and will not be repeated here.
  • the system 1 for realizing augmented reality display further includes a connecting component 10C, which connects the optical waveguide lenses 110A and 110B together.

Landscapes

  • Physics & Mathematics (AREA)
  • General Physics & Mathematics (AREA)
  • Optics & Photonics (AREA)

Abstract

一种用于呈现图像的装置(10)和包含该装置(10)的用于实现增强现实显示的系统(1)。用于呈现图像的装置(10)包含:光波导镜片(110);以及设置于光波导镜片(110)表面的第一~第四光学功能结构(121,122,123,124),其中,第一和第二光学功能结构(121,122)位于光波导镜片(110)的中部,并且第三和第四光学功能结构(123,124)位于光波导镜片(110)的表面的两侧,其中,光线经第一光学功能结构(121)耦合进入光波导镜片(110)内,随后经全反射到达第二光学功能结构(122),并且在第二光学功能结构(122)的作用下,产生第一和第二衍射光束,第一和第二衍射光束在光波导镜片(110)内经全反射分别到达第三和第四光学功能结构(123,124)并且从第三和第四光学功能结构(123,124)出射,其中,第三和第四光学功能结构(123,124)具有相对于第二光学功能结构(122)的距离逐渐变化的结构参数。

Description

用于呈现图像的装置和用于实现增强现实显示的系统 技术领域
本发明涉及图像显示技术,特别涉及用于呈现图像的装置和包含该装置的用于实现增强现实显示的系统。
背景技术
增强现实(AR)技术是一种将真实世界信息和虚拟世界信息“无缝”集成在一起的新型显示技术。它不仅展现真实世界的信息,而且还将虚拟信息同时显示出来,从而实现两种信息的相互补充和叠加。在视觉化的增强现实中,利用头盔显示器将真实世界与计算机生成的虚拟图像叠加在一起的混合图像呈现给用户。
目前主流的近眼式增强现实显示设备大多采用光波导原理。例如,在典型的增强现实显示设备中,微显示空间光调制器(例如LCOS)上的图像经过三片全息光栅耦合至光波导,随后经三片光波导分别传输,最后在人眼正前方通过相应的全息光栅耦合输出以投影至人眼。为了实现彩色投影,可以采用多层光波导的方式。然而基于上述工作原理的增强现实显示设备存在多个缺点。例如,不能很好地解决视窗内视觉亮度突变的问题。
发明内容
本发明的一个目的是提供一种用于呈现图像的装置,其能够在出瞳范围内提供良好的效率均衡性,从而避免视觉亮度突变。
按照本发明一个方面的用于呈现图像的装置包含:
光波导镜片;以及
设置于所述光波导镜片表面的第一光学功能结构、第二光学功能结构、第三光学功能结构和第四光学功能结构,
其中,所述第一光学功能结构和第二光学功能结构位于所述光波导镜片的中部,并且所述第三光学功能结构和第四光学功能结构位于所述光波导镜片的表面的两侧,
其中,光线经所述第一光学功能结构耦合进入所述光波导镜片内,随后经全反射到达所述第二光学功能结构,并且在所述第二光学功能结构的作用下,产生第一衍射光束和第二衍射光束,所述第一衍射光束和第二衍射光束 在所述光波导镜片内经全反射分别到达所述第三光学功能结构和第四光学功能结构并且从所述第三光学功能结构和第四光学功能结构出射。
其中,所述第三光学功能结构和第四光学功能结构具有相对于所述第二光学功能结构的距离逐渐变化的结构参数。
优选地,在上述装置中,所述第一光学功能结构、第三光学功能结构和第四光学功能结构为一维光栅,所述第二光学功能结构为二维光栅。
优选地,在上述装置中,所述一维光栅为下列中的一种:倾斜光栅、矩形光栅、闪耀光栅和体光栅。
优选地,在上述装置中,所述第三光学功能结构和第四光学功能结构为光栅高度渐变的一维光栅,其中,所述高度随着所述一维光栅相对于所述第二光学功能结构的距离的增大而增大。
优选地,在上述装置中,所述第三光学功能结构和第四光学功能结构为占空比渐变的一维光栅,其中,所述占空比随着所述一维光栅相对于所述第二光学功能结构的距离的增大而增大。
优选地,在上述装置中,在第一方向上,所述第一光学功能结构相对于第二光学功能结构被间隔设置,以使所述光线在所述光波导镜片内,沿所述第一方向由所述第一光学功能结构到达所述第二光学功能结构,并且在不同于第一方向的第二方向上,所述第三光学功能结构和第四光学功能结构位于所述第二光学功能结构的两侧,以使所述第一衍射光束和第二衍射光束在所述光波导镜片内沿所述第二方向分别到达所述第三光学功能结构和第四光学功能结构。
优选地,在上述装置中,所述第一方向垂直于第二方向。
优选地,在上述装置中,所述第一光学功能结构、第二光学功能结构、第三光学功能结构和第四光学功能结构位于所述光波导镜片的同一表面。
本发明的还有一个目的是提供一种用于实现增强现实显示的系统,其能够在出瞳范围内提供良好的效率均衡性,从而避免视觉亮度突变。
按照本发明另一个方面的用于实现增强现实显示的系统包含:
图像源;以及
至少一个图像呈现装置,每个所述图像呈现装置包括:
光波导镜片;以及
设置于所述光波导镜片表面的第一光学功能结构、第二光学功能结构、第三光学功能结构和第四光学功能结构,
其中,所述第一光学功能结构和第二光学功能结构位于所述光波导镜片的中部,并且所述第三光学功能结构和第四光学功能结构位于所述光波导镜片的表面的两侧,
其中,来自所述图像源的光线经所述第一光学功能结构耦合进入所述光波导镜片内,随后经全反射到达所述第二光学功能结构,并且在所述第二光学功能结构的作用下,产生第一衍射光束和第二衍射光束,所述第一衍射光束和第二衍射光束在所述光波导镜片内经全反射分别到达所述第三光学功能结构和第四光学功能结构并且从所述第三光学功能结构和第四光学功能结构出射,
其中,所述第三光学功能结构和第四光学功能结构具有相对于所述第二光学功能结构的距离逐渐变化的结构参数。
在按照本发明上述实施例的图像呈现装置中,第三光学功能结构和第四光学功能结构被设计为其结构参数相对于第二光学功能结构的距离而逐渐变化,特别是设计为使第三光学功能结构和第四光学功能结构相距第二光学功能结构越远的区域,其衍射效率越高,由此实现出瞳范围内效率的均衡。此外,在本发明的实施例中,第三光学功能结构和第四光学功能结构设置于光波导镜片的表面的两侧,并且将第一光学功能结构和第二光学功能结构设置于第三光学功能结构与第四光学功能结构之间或者光波导镜片的中央。通常情况下,光波导镜片的水平方向的尺寸大于垂直方向的尺寸,因此上述设置方式可以明显增加第三光学功能结构和第四光学功能结构所占的面积,从而增大出瞳视窗。再者,按照本发明上述实施例的图像呈现装置结构简单、紧凑,这对于装置总体尺寸的缩小是有利的。
附图说明
图1A和1B分别为按照本发明一个实施例的用于呈现图像的装置的俯视图和立体图。
图2A-2C示出了可应用于图1A和1B所示实施例的一维光栅的光学衍射示意图。
图3示出了可应用于图1A和1B所示实施例的全息衍射元件的示例。
图4为图1A和1B所示的用于呈现图像的装置的剖面示意图,所示剖面位于图1B的Y-Z平面内。
图5为图1A和1B所示的用于呈现图像的装置的剖面示意图,所示剖 面位于图1B的X-Z平面内。
图6示出了倾斜光栅的-1级衍射效率相对于光栅高度的变化趋势。
图7为可应用于本发明上述实施例的高度渐变的倾斜光栅的示意图。
图8示出了倾斜光栅的-1级衍射效率相对于光栅占空比的变化趋势。
图9为可应用于本发明上述实施例的占空比渐变的倾斜光栅的示意图。
图10为按照本发明另一个实施例的用于实现增强现实显示的系统的示意图。
具体实施方式
下面将结合附图对本发明的具体实施方式作详细的描述。
图1A和1B分别为按照本发明一个实施例的用于呈现图像的装置的俯视图和立体图。示例性地,本实施例的用于呈现图像的装置可以采用眼镜镜片的形式。
参见图1A和1B,本实施例的用于呈现图像的装置10包括光波导镜片110和设置于光波导镜片表面的第一光学功能结构121、第二光学功能结构122、第三光学功能结构123和第四光学功能结构124。
可选地,第一光学功能结构121、第二光学功能结构122、第三光学功能结构123和第四光学功能结构124为纳米结构以形成衍射光线。此外,可选地,这些光学功能结构位于光波导镜片110的同一表面或不同表面。
在图1A和1B所示的实施例中,第一光学功能结构121配置为将来自图像源(未示出)的入射光线耦合进入光波导镜片110并沿Y方向传播,因此又可称为耦入区域;第二光学功能结构122被配置为将光线分离为两束光线(以下称为第一衍射光束和第二衍射光束)并且分别沿左右两个方向(也即沿图1A和1B中的X轴的反向和正向)引导至第三光学功能结构123和第四光学功能结构124,因此又可称为转折区域;第三光学功能结构123和第四光学功能结构124被配置为分别将第一衍射光束和第二衍射光束沿Z方向引出光波导镜片110,从而向用户呈现增强现实的图像,因此光学功能结构123和124又可称为耦出区域。
如图1A和1B所示,示例性地,第三光学功能结构123和第四光学功能结构124位于光波导镜片110的表面的两侧。与此同时,第一光学功能结构121和第二光学功能结构122则位于光波导镜片110的中部,也即第三光学功能结构123与第四光学功能结构124之间。
在本实施例中,第三光学功能结构123和第四光学功能结构124可以被设计为其结构参数相对于第二光学功能结构122的距离而逐渐变化,以使第三光学功能结构123和第四光学功能结构124相距第二光学功能结构122越远的区域,其衍射效率越高,从而实现出瞳范围内效率的均衡。这里所述的结构参数例如包括但不限于光栅的高度和占空比。
在本实施例中,示例性地,第一光学功能结构121、第三光学功能结构123和第三光学功能结构124以一维光栅的形式实现,而第二光学功能结构122采用全息衍射元件的形式实现。可选地,一维光栅可选自下列组中的一种或多种:倾斜光栅、矩形光栅、闪耀光栅和体光栅。
图2A-2C示出了可应用于图1A和1B所示实施例的一维光栅的光学衍射示意图,其中,图2A所示为矩形光栅的光学衍射示意图,图2B所示为倾斜光栅的光学衍射示意图,图2C所示为闪耀光栅的光学衍射示意图。
参考图2A,矩形光栅221A形成于光波导镜片210表面,通过选择光栅高度、宽度、周期等结构参数,使得以一定角度入射至光栅表面的光线经过矩形光栅形成衍射。衍射光线包括零级衍射光T 0、-1级衍射光T -1和1级衍射光T 1。在图2A所示的情形中,0级衍射效率最高,-1级衍射次之,1级衍射效率最低。可选地,可利用图2A所示矩形光栅221A形成-1级衍射光,继而完成其在光波导镜片210内的传播。
参考图2B,倾斜光栅221B形成于光波导镜片210表面,通过选择光栅高度、宽度、周期和倾斜角度等结构参数,使得以一定角度入射至光栅表面的光线经过倾斜光栅形成衍射。类似地,衍射光线包括零级衍射光T 0、-1级衍射光T -1和1级衍射光T 1。在图2B所示的情形中,-1级衍射效率最高,零级衍射次之,1级衍射效率最低。可选地,可利用图2B所示倾斜光栅形成-1级衍射光,继而完成其在光波导镜片210内的传播。此外,通过对光栅高度、宽度、周期和倾斜角度等结构参数中的一个或多个的优化,可实现波长选择功能,即,可以使某一波长范围内的光的衍射效率较高,而其余波长范围内的光的衍射效率较低。
参考图2C,闪耀光栅221C形成于光波导镜片210表面,通过选择光栅高度、周期和闪耀角度等结构参数,使得以一定角度入射至光栅表面的光线经过闪耀光栅形成衍射。类似地,衍射光线包括零级衍射光T 0、-1级衍射光T -1和1级衍射光T 1。在图2C所示的情形中,-1级衍射效率最高,零级衍射和1级衍射效率最低。可选地,可利用图2C所示倾斜光栅形成-1级衍 射光,继而完成其在光波导镜片210内的传播。此外,通过对光栅高度、周期和闪耀角度等结构参数中的一个或多个的优化,可实现波长选择功能。
图3示出了可应用于图1A和1B所示实施例的全息衍射元件或第二光学功能结构的示例。如图3所示,全息衍射元件322采用二维阵列形式。光线经第一光学功能结构耦合进入光波导镜片并且在光波导镜片传播,当传播的光线入射至全息衍射元件322时,将以某一角度衍射偏折。可选地,全息衍射元件322被设计为可以形成两条衍射光线,这两条衍射光线沿左右两个方向分别传导至第三光学功能结构123和第四光学功能结构124。
以下描述图1A和1B所示的用于呈现图像的装置的工作原理。
图4为图1A和1B所示的用于呈现图像的装置的剖面示意图,所示剖面位于图1B的Y-Z平面内。
参见图4,从图像源20射出的光线到达第一光学功能结构121。经过第一光学功能结构121的衍射,光线被引入光波导镜片110。通过为第一光学功能结构121选择合适的结构参数,可以使衍射效率最高的光线在光波导镜片110内部发生全反射。如图4所示,第一光学功能结构121与第二光学功能结构122在Y方向上相隔一定的间隔,发生全反射的光线从第一光学功能结构121处,借助全反射而到达第二光学功能结构122。
图5为图1A和1B所示的用于呈现图像的装置的剖面示意图,所示剖面位于图1B的X-Z平面内。
参考图5并结合图4可见,到达第二光学功能结构122在光波导镜片110内继续发生全反射,但是传播方向由沿Y方向变为沿X方向。如图5所示,第二光学功能结构122(例如采用全息衍射元件的形式)将光线分离为分别沿X轴的反向和正向传播至第三光学功能结构123和第四光学功能结构124的第一衍射光束和第二衍射光束。在第三光学功能结构123和第四光学功能结构124的衍射作用下,第一衍射光束和第二衍射光束随后沿Z方向从光波导镜片110出射,从而向用户呈现增强现实的图像。
图6示出了倾斜光栅的-1级衍射效率相对于光栅高度的变化趋势,其中,横轴表示光栅高度,纵轴表示衍射效率。在图6所示的情形中,倾斜光栅的倾斜角度30°,光栅周期为400nm,占空比为0.5。如图6所示,当光栅高度在200-400nm的范围内变化时,衍射效率从43%增大至95%。因此,为了实现出瞳范围内的效率均衡化,从而避免亮度渐变或突变带来的明暗视窗,第三光学功能结构123和第四光学功能结构124可以设计为高度渐变的倾斜 光栅。图7为可应用于本发明上述实施例的高度渐变的倾斜光栅的示意图。如图7所示,倾斜光栅的高度随着倾斜光栅相对于第二光学功能结构122的距离(也即光栅沿X方向上相对于第二光学功能结构的距离)的增大而增大。
图8示出了倾斜光栅的-1级衍射效率相对于光栅占空比的变化趋势,其中,横轴表示占空比,纵轴表示衍射效率。在图8所示的情形中,倾斜光栅的倾斜角度30°,光栅周期为400nm,光栅高度为300nm,占空比的变化范围为0.2-0.55。如图8所示,当占空比在0.2-0.55的范围内变化时,衍射效率从20%增大至96%。因此,为了实现出瞳范围内的效率均衡化,从而避免亮度渐变或突变带来的明暗视窗,第三光学功能结构123和第四光学功能结构124可以设计为占空比渐变的倾斜光栅。图9为可应用于本发明上述实施例的占空比渐变的倾斜光栅的示意图。如图9所示,倾斜光栅的占空比随着倾斜光栅相对于第二光学功能结构122的距离的增大而增大。
需要指出的是,上述高度或占空比渐变的倾斜光栅仅仅是示例性的。可选地,也可以使高度和占空比同时渐变,而且光栅也不局限于倾斜光栅,对于其它的一维光栅(例如前述的矩形光栅、闪耀光栅和体光栅)而言,也可以通过使结构参数随距离渐变而实现出瞳范围内效率的均衡化。
图10为按照本发明另一个实施例的用于实现增强现实显示的系统的示意图。
如图10所示的系统1包括图像呈现装置10A和10B和图像源20。图像源20配置为向图像呈现装置10A和10B提供包含第一分量和第二分量的光线。图像呈现装置10A和10B配置为向用户呈现增强现实图像。在本实施例中,示例性地,图像呈现装置10A和10B可以采用如上借助图1A、图1B、图2A-2C和图3-9所述的实施例来实现。
以图像呈现装置10A为例,其包括光波导镜片110A和设置于光波导镜片表面的第一光学功能结构121A、第二光学功能结构122A、第三光学功能结构123A和第四光学功能结构124A。第一光学功能结构121A、第二光学功能结构122A、第三光学功能结构123A和第四光学功能结构124A位于光波导镜片110的同一表面,其中,第一光学功能结构121A和第二光学功能结构122A设置在光波导镜片表面的中部,第三光学功能结构123A和第四光学功能结构124A则设置于光波导镜片110A的两侧。
在图10所示的系统中,第一光学功能结构121A配置为将来自图像源 20的入射光线耦合进入光波导镜片110,并且使光线沿第一方向(图1A和1B中的Y方向)在光波导镜片110A内传播。通过使光线以合适的角度入射光波导镜片,可以全反射的方式到达第二光学功能结构122A。
光线在到达第二光学功能结构122A后,在第二光学功能结构122A的作用下,将分离为第一衍射光束和第二衍射光束。第一衍射光束沿X轴的反向在光波导镜片110A内传播,经全反射到达第四光学功能结构124A。另一方面,第二衍射光束沿X轴的正向在光波导镜片110A内传播,经全反射到达第四光学功能结构124A。第三光学功能结构123A和第四光学功能结构124A被配置为将第一衍射光束和第二衍射光束引出光波导镜片110,从而向用户呈现增强现实的图像。
示例性地,第一光学功能结构121A、第三光学功能结构123A和第四光学功能结构124A以一维光栅的形式实现,而第二光学功能结构122A以二维光栅的形式实现。可选地,一维光栅可选自下列组中的一种或多种:倾斜光栅、矩形光栅、闪耀光栅和体光栅。
图像呈现装置10B包括光波导镜片110B和设置于光波导镜片表面的第一光学功能结构121B、第二光学功能结构122B、第三光学功能结构123B和第四光学功能结构124B,其结构和工作原理与图像呈现装置10A类似,此处不再赘述。
参见图10,用于实现增强现实显示的系统1还包含连接部件10C,其将光波导镜片110A和110B连接在一起。
上文描述了本发明的原理和较佳实施例。然而,本发明不应被解释为限于所讨论的具体实施例。上述较佳实施例应该被认为是说明性的,而不是限制性的,并且应当理解的时,本领域的技术人员在不偏离下面的权利要求书所限定的本发明的范围的前提下,可以在这些实施例中作出变化。

Claims (16)

  1. 一种用于呈现图像的装置,其特征在于,包含:
    光波导镜片;以及
    设置于所述光波导镜片表面的第一光学功能结构、第二光学功能结构、第三光学功能结构和第四光学功能结构,
    其中,所述第一光学功能结构和第二光学功能结构位于所述光波导镜片的中部,并且所述第三光学功能结构和第四光学功能结构位于所述光波导镜片的表面的两侧,
    其中,光线经所述第一光学功能结构耦合进入所述光波导镜片内,随后经全反射到达所述第二光学功能结构,并且在所述第二光学功能结构的作用下,产生第一衍射光束和第二衍射光束,所述第一衍射光束和第二衍射光束在所述光波导镜片内经全反射分别到达所述第三光学功能结构和第四光学功能结构并且从所述第三光学功能结构和第四光学功能结构出射。
    其中,所述第三光学功能结构和第四光学功能结构具有相对于所述第二光学功能结构的距离逐渐变化的结构参数。
  2. 如权利要求1所述的用于呈现图像的装置,其中,所述第一光学功能结构、第三光学功能结构和第四光学功能结构为一维光栅,所述第二光学功能结构为二维光栅。
  3. 如权利要求2所述的用于呈现图像的装置,其中,所述一维光栅为下列中的一种:倾斜光栅、矩形光栅、闪耀光栅和体光栅。
  4. 如权利要求2所述的用于呈现图像的装置,其中,所述第三光学功能结构和第四光学功能结构为光栅高度渐变的一维光栅,其中,所述高度随着所述一维光栅相对于所述第二光学功能结构的距离的增大而增大。
  5. 如权利要求2所述的用于呈现图像的装置,其中,所述第三光学功能结构和第四光学功能结构为占空比渐变的一维光栅,其中,所述占空比随着所述一维光栅相对于所述第二光学功能结构的距离的增大而增大。
  6. 如权利要求1所述的用于呈现图像的装置,其中,在第一方向上,所述第一光学功能结构相对于第二光学功能结构被间隔设置,以使所述光线在所述光波导镜片内,沿所述第一方向由所述第一光学功能结构到达所述第二光学功能结构,并且在不同于第一方向的第二方向上,所述第三光学功能结构和第四光学功能结构位于所述第二光学功能结构的两侧,以使所述所述 第一衍射光束和第二衍射光束在所述光波导镜片内沿所述第二方向分别到达所述第三光学功能结构和第四光学功能结构。
  7. 如权利要求6所述的用于呈现图像的装置,其中,所述第一方向垂直于第二方向。
  8. 如权利要求1所述的用于呈现图像的装置,其中,所述第一光学功能结构、第二光学功能结构、第三光学功能结构和第四光学功能结构位于所述光波导镜片的同一表面。
  9. 一种用于实现增强现实显示的系统,其特征在于,包含:
    图像源;以及
    至少一个图像呈现装置,每个所述图像呈现装置包括:
    光波导镜片;以及
    设置于所述光波导镜片表面的第一光学功能结构、第二光学功能结构、第三光学功能结构和第四光学功能结构,
    其中,所述第一光学功能结构和第二光学功能结构位于所述光波导镜片的中部,并且所述第三光学功能结构和第四光学功能结构位于所述光波导镜片的表面的两侧,
    其中,来自所述图像源的光线经所述第一光学功能结构耦合进入所述光波导镜片内,随后经全反射到达所述第二光学功能结构,并且在所述第二光学功能结构的作用下,产生第一衍射光束和第二衍射光束,所述第一衍射光束和第二衍射光束在所述光波导镜片内经全反射分别到达所述第三光学功能结构和第四光学功能结构并且从所述第三光学功能结构和第四光学功能结构出射,
    其中,所述第三光学功能结构和第四光学功能结构具有相对于所述第二光学功能结构的距离逐渐变化的结构参数。
  10. 如权利要求9所述的用于实现增强现实显示的系统,其中,所述第一光学功能结构、第三光学功能结构和第四光学功能结构为一维光栅,所述第二光学功能结构为二维光栅。
  11. 如权利要求10所述的用于实现增强现实显示的系统,其中,所述一维光栅为下列中的一种:倾斜光栅、矩形光栅、闪耀光栅和体光栅。
  12. 如权利要求10所述的用于实现增强现实显示的系统,其中,所述第三光学功能结构和第四光学功能结构为光栅高度渐变的一维光栅,其中,所述高度随着所述一维光栅相对于所述第二光学功能结构的距离的增大而 增大。
  13. 如权利要求10所述的用于实现增强现实显示的系统,其中,所述第三光学功能结构和第四光学功能结构为占空比渐变的一维光栅,其中,所述占空比随着所述一维光栅相对于所述第二光学功能结构的距离的增大而增大。
  14. 如权利要求9所述的用于实现增强现实显示的系统,其中,在第一方向上,所述第一光学功能结构相对于第二光学功能结构被间隔设置,以使所述光线在所述光波导镜片内,沿所述第一方向由所述第一光学功能结构到达所述第二光学功能结构,并且在不同于第一方向的第二方向上,所述第三光学功能结构和第四光学功能结构位于所述第二光学功能结构的两侧,以使所述第一衍射光束和第二衍射光束在所述光波导镜片内沿所述第二方向分别到达所述第三光学功能结构和第四光学功能结构。
  15. 如权利要求14所述的用于实现增强现实显示的装置,其中,所述第一方向垂直于第二方向。
  16. 如权利要求9所述的用于实现增强现实显示的装置,其中,所述第一光学功能结构、第二光学功能结构、第三光学功能结构和第四光学功能结构位于所述光波导镜片的同一表面。
PCT/CN2020/108670 2019-08-14 2020-08-12 用于呈现图像的装置和用于实现增强现实显示的系统 WO2021027841A1 (zh)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
CN201910748865.9A CN112394510A (zh) 2019-08-14 2019-08-14 用于呈现图像的装置和用于实现增强现实显示的系统
CN201910748865.9 2019-08-14

Publications (1)

Publication Number Publication Date
WO2021027841A1 true WO2021027841A1 (zh) 2021-02-18

Family

ID=74570522

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2020/108670 WO2021027841A1 (zh) 2019-08-14 2020-08-12 用于呈现图像的装置和用于实现增强现实显示的系统

Country Status (2)

Country Link
CN (1) CN112394510A (zh)
WO (1) WO2021027841A1 (zh)

Families Citing this family (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN113777707B (zh) * 2021-09-16 2024-02-13 Oppo广东移动通信有限公司 光学结构和光学装置
CN117148499A (zh) * 2023-09-15 2023-12-01 慕德微纳(杭州)科技有限公司 一种衍射光波导的设计方法

Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN1365016A (zh) * 2000-12-15 2002-08-21 三星电子株式会社 可佩戴的显示系统
US20090245730A1 (en) * 2008-01-24 2009-10-01 Carl Zeiss Ag Optical Display Device
CN108919493A (zh) * 2018-07-27 2018-11-30 京东方科技集团股份有限公司 一种ar显示装置及其控制方法、可穿戴设备
US10241332B2 (en) * 2015-10-08 2019-03-26 Microsoft Technology Licensing, Llc Reducing stray light transmission in near eye display using resonant grating filter
CN210136366U (zh) * 2019-07-01 2020-03-10 苏州苏大维格科技集团股份有限公司 用于呈现图像的装置和用于实现增强现实显示的系统
CN210401841U (zh) * 2019-08-14 2020-04-24 苏州苏大维格科技集团股份有限公司 用于呈现图像的装置和用于实现增强现实显示的系统

Family Cites Families (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP4655771B2 (ja) * 2005-06-17 2011-03-23 ソニー株式会社 光学装置及び虚像表示装置
CN106338832A (zh) * 2016-11-09 2017-01-18 苏州苏大维格光电科技股份有限公司 一种单片全息衍射光波导镜片及三维显示装置
CN106773057A (zh) * 2017-01-13 2017-05-31 苏州苏大维格光电科技股份有限公司 一种单片全息衍射波导三维显示装置
US10955668B2 (en) * 2017-02-14 2021-03-23 Optecks, Llc Optical display system for augmented reality and virtual reality
CN109239920A (zh) * 2017-07-11 2019-01-18 苏州苏大维格光电科技股份有限公司 一种全息波导镜片及增强现实显示装置
CN108873350A (zh) * 2018-07-24 2018-11-23 上海鲲游光电科技有限公司 一种波导显示装置

Patent Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN1365016A (zh) * 2000-12-15 2002-08-21 三星电子株式会社 可佩戴的显示系统
US20090245730A1 (en) * 2008-01-24 2009-10-01 Carl Zeiss Ag Optical Display Device
US10241332B2 (en) * 2015-10-08 2019-03-26 Microsoft Technology Licensing, Llc Reducing stray light transmission in near eye display using resonant grating filter
CN108919493A (zh) * 2018-07-27 2018-11-30 京东方科技集团股份有限公司 一种ar显示装置及其控制方法、可穿戴设备
CN210136366U (zh) * 2019-07-01 2020-03-10 苏州苏大维格科技集团股份有限公司 用于呈现图像的装置和用于实现增强现实显示的系统
CN210401841U (zh) * 2019-08-14 2020-04-24 苏州苏大维格科技集团股份有限公司 用于呈现图像的装置和用于实现增强现实显示的系统

Also Published As

Publication number Publication date
CN112394510A (zh) 2021-02-23

Similar Documents

Publication Publication Date Title
US10663734B2 (en) Image display system
JP6867999B2 (ja) 反射型転換アレイを有する結像光ガイド
CN110431471B (zh) 用于具有宽视野的波导投影仪的方法和系统
US11774765B2 (en) Method and system for dual projector waveguide displays with wide field of view
CN210136366U (zh) 用于呈现图像的装置和用于实现增强现实显示的系统
JP6171740B2 (ja) 光学デバイス及び画像表示装置
US11598970B2 (en) Imaging light guide with reflective turning array
KR20200002791A (ko) 증강 현실 또는 가상 현실 디스플레이를 위한 도파관
US20160234485A1 (en) Display System
WO2021027841A1 (zh) 用于呈现图像的装置和用于实现增强现实显示的系统
WO2021252672A1 (en) Image light guide with zoned diffractive optic
TW202020503A (zh) 用於擴增實境或虛擬實境顯示之裝置
US20230266599A1 (en) Image light guide with compound diffractive optical element and the head-mounted display made therewith
EP4226194A1 (en) Image light guide with zoned diffractive optic
CN115113323B (zh) 衍射光波导及显示设备
CN211928226U (zh) 一种光波导镜片及三维显示装置
KR20220005423A (ko) 음굴절 광학 소자를 이용한 컴팩트 증강 현실용 광학 장치
CN210720885U (zh) 用于增强现实显示的装置和用于实现增强现实显示的系统
CN210720886U (zh) 用于增强现实显示的装置和系统
CN210401841U (zh) 用于呈现图像的装置和用于实现增强现实显示的系统
CN114675421A (zh) 增强现实近眼显示装置
WO2021098503A1 (zh) 用于增强现实显示的装置和系统
CN112180593A (zh) 用于呈现图像的装置和用于实现增强现实显示的系统
US11994684B2 (en) Image light guide with zoned diffractive optic
CN116699751B (zh) 光波导及近眼显示设备

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 20852397

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 20852397

Country of ref document: EP

Kind code of ref document: A1