WO2021098258A1 - 轴向驱动机构以及机电设备 - Google Patents

轴向驱动机构以及机电设备 Download PDF

Info

Publication number
WO2021098258A1
WO2021098258A1 PCT/CN2020/103662 CN2020103662W WO2021098258A1 WO 2021098258 A1 WO2021098258 A1 WO 2021098258A1 CN 2020103662 W CN2020103662 W CN 2020103662W WO 2021098258 A1 WO2021098258 A1 WO 2021098258A1
Authority
WO
WIPO (PCT)
Prior art keywords
drive mechanism
motor
motor shaft
axial drive
screw
Prior art date
Application number
PCT/CN2020/103662
Other languages
English (en)
French (fr)
Inventor
曹娟娟
周忠厚
王国元
Original Assignee
歌尔股份有限公司
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 歌尔股份有限公司 filed Critical 歌尔股份有限公司
Publication of WO2021098258A1 publication Critical patent/WO2021098258A1/zh

Links

Images

Classifications

    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F16ENGINEERING ELEMENTS AND UNITS; GENERAL MEASURES FOR PRODUCING AND MAINTAINING EFFECTIVE FUNCTIONING OF MACHINES OR INSTALLATIONS; THERMAL INSULATION IN GENERAL
    • F16HGEARING
    • F16H25/00Gearings comprising primarily only cams, cam-followers and screw-and-nut mechanisms
    • F16H25/18Gearings comprising primarily only cams, cam-followers and screw-and-nut mechanisms for conveying or interconverting oscillating or reciprocating motions
    • F16H25/20Screw mechanisms
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F16ENGINEERING ELEMENTS AND UNITS; GENERAL MEASURES FOR PRODUCING AND MAINTAINING EFFECTIVE FUNCTIONING OF MACHINES OR INSTALLATIONS; THERMAL INSULATION IN GENERAL
    • F16HGEARING
    • F16H25/00Gearings comprising primarily only cams, cam-followers and screw-and-nut mechanisms
    • F16H25/18Gearings comprising primarily only cams, cam-followers and screw-and-nut mechanisms for conveying or interconverting oscillating or reciprocating motions
    • F16H25/20Screw mechanisms
    • F16H25/22Screw mechanisms with balls, rollers, or similar members between the co-operating parts; Elements essential to the use of such members
    • F16H25/2204Screw mechanisms with balls, rollers, or similar members between the co-operating parts; Elements essential to the use of such members with balls
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F16ENGINEERING ELEMENTS AND UNITS; GENERAL MEASURES FOR PRODUCING AND MAINTAINING EFFECTIVE FUNCTIONING OF MACHINES OR INSTALLATIONS; THERMAL INSULATION IN GENERAL
    • F16HGEARING
    • F16H25/00Gearings comprising primarily only cams, cam-followers and screw-and-nut mechanisms
    • F16H25/18Gearings comprising primarily only cams, cam-followers and screw-and-nut mechanisms for conveying or interconverting oscillating or reciprocating motions
    • F16H25/20Screw mechanisms
    • F16H2025/2062Arrangements for driving the actuator
    • F16H2025/2075Coaxial drive motors
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F16ENGINEERING ELEMENTS AND UNITS; GENERAL MEASURES FOR PRODUCING AND MAINTAINING EFFECTIVE FUNCTIONING OF MACHINES OR INSTALLATIONS; THERMAL INSULATION IN GENERAL
    • F16HGEARING
    • F16H25/00Gearings comprising primarily only cams, cam-followers and screw-and-nut mechanisms
    • F16H25/18Gearings comprising primarily only cams, cam-followers and screw-and-nut mechanisms for conveying or interconverting oscillating or reciprocating motions
    • F16H25/20Screw mechanisms
    • F16H2025/2062Arrangements for driving the actuator
    • F16H2025/2075Coaxial drive motors
    • F16H2025/2078Coaxial drive motors the rotor being integrated with the nut or screw body

Definitions

  • the invention relates to the technical field of electromechanical equipment, in particular to an axial drive mechanism and electromechanical equipment.
  • the control of the axial movement of electromechanical equipment has always been a difficult point, especially the Z-axis control, such as power failure, high-frequency inertia, etc.
  • the axial drive mechanism for example, by setting it as a gas-liquid mechanical mechanism, a linear electrical structure, etc.
  • the gas-liquid mechanical mechanism has inertial resistance to limit the movement frequency, and the linear electrical
  • the power failure of the structure makes it impossible to calibrate the movement, and these structures require a large space to arrange related structures, including transmission mechanisms, braking structures, etc., so it is difficult to meet the low inertia and inertia of the axial drive mechanism. Occupies a small space demand.
  • the main purpose of the present invention is to provide an axial drive mechanism and electromechanical equipment, which aims to solve the difficulty in the prior art to meet the requirements of small inertia and small space occupied by the axial drive mechanism.
  • an axial drive mechanism which includes:
  • a driving motor the driving motor having a motor shaft extending along a first direction
  • the ball screw mechanism includes a screw extending in a first direction and a screw nut sleeved on the screw; and,
  • the load component is movably arranged along the first direction
  • one of the lead screw and the nut is provided on the motor shaft to rotate together with the motor shaft, and the other is fixedly connected to the load member to drive the load member to move along the first One direction activity.
  • At least one end of the motor shaft is hollow;
  • the lead screw extends into the motor shaft, and the screw nut is provided on the motor shaft;
  • the load component is fixedly installed on the lead screw.
  • the driving motor includes:
  • the inner rotor assembly is arranged on the inner side of the outer stator assembly
  • the motor shaft is connected to the inner rotor assembly.
  • the motor shaft passes through the inner rotor assembly, and the outer side of the motor shaft is fixedly connected to the inner side of the inner rotor assembly.
  • the nut and the motor shaft are arranged separately and fixedly installed on the motor shaft; or,
  • the nut and the motor shaft are integrally arranged.
  • the screw nut is arranged in the motor shaft and sleeved on the periphery of the screw.
  • the groove of the nut nut is set as a Gothic groove; and/or,
  • a mounting slide is defined between the outer side of the screw and the inner side of the nut, and the ball screw mechanism further includes load-bearing balls and floating balls arranged on the mounting slide, wherein the load-bearing balls and The installation slideway has an interference fit, and the floating ball is in clearance fit with the installation slideway.
  • the axial drive mechanism further includes a driver which is electrically connected to the drive motor to control the operation of the drive motor:
  • the axial drive mechanism further includes an encoder for detecting the rotation angle of the motor shaft of the motor.
  • the drive is electrically connected to the encoder and forms a closed-loop control loop with the encoder and the drive motor to Control the drive motor according to the rotation angle fed back by the encoder; and/or,
  • the axial drive mechanism further includes a voltage detection circuit that detects the voltage of the drive motor, the driver is electrically connected to the voltage detection circuit, and forms a closed loop control loop with the voltage detection circuit and the drive motor to Control the drive motor according to the voltage value fed back by the voltage detection circuit; and/or,
  • the axial drive mechanism further includes a current detection circuit that detects the current of the drive motor, the driver is electrically connected to the current detection circuit, and forms a closed loop control loop with the current detection circuit and the drive motor to The drive motor is controlled according to the current value fed back by the current detection circuit.
  • the axial drive mechanism is a Z-axis drive structure, and correspondingly, the first direction is a vertical direction; and/or,
  • the drive motor is a three-phase permanent magnet synchronous AC servo motor.
  • the present invention also provides an electromechanical device, which includes an axial drive mechanism, and the axial drive mechanism includes:
  • a driving motor the driving motor having a motor shaft extending along a first direction
  • the ball screw mechanism includes a screw extending in a first direction and a screw nut sleeved on the screw; and,
  • the load component is movably arranged along the first direction
  • one of the lead screw and the nut is provided on the motor shaft to rotate together with the motor shaft, and the other is fixedly connected to the load member to drive the load member to move along the first One direction activity.
  • a ball screw mechanism is used as the transmission component, and one of the screw and the screw nut is directly arranged on the motor shaft to be directly driven by the motor, and the intermediate connection structure is omitted, which can simplify The structure of the axial drive mechanism, and reduce the weight of the axial drive mechanism, so that on the one hand, the space occupied by the axial drive mechanism can be saved, which is beneficial to the miniaturization of the axial drive mechanism, and on the other hand, the axial drive mechanism can be reduced.
  • the inertia of the driving mechanism improves the driving accuracy.
  • Figure 1 is a schematic cross-sectional view of an embodiment of an axial drive mechanism provided by the present invention
  • Figure 2 is a simplified schematic diagram of Figure 1;
  • Fig. 3 is a three-dimensional schematic diagram of the ball screw mechanism in Fig. 1;
  • FIG. 4 is a schematic cross-sectional view of the longitudinal section of FIG. 3;
  • Fig. 5 is a schematic diagram of a cross section of the ball screw mechanism in Fig. 3;
  • Fig. 6 is a three-dimensional schematic diagram of the nut in Fig. 3;
  • Figure 7 is a schematic plan view of the nut in Figure 6;
  • Fig. 8 is a schematic diagram of a longitudinal section of the nut in Fig. 6;
  • Figure 9 is a schematic cross-sectional view taken along A-A in Figure 8.
  • Fig. 10 is a schematic diagram of a partial structure of the nut in Fig. 3;
  • Fig. 11 is a schematic diagram of the control part of the axial drive mechanism of Fig. 1.
  • Label name 100 Axial drive mechanism 22a Groove 1 motor twenty three Install the slide 10 Motor shaft twenty four Bearing ball 11 Outer stator assembly 25 Floating ball 12 Inner rotor assembly 3 Load parts 2 Ball screw mechanism 3a Connector twenty one Lead screw 4 driver twenty two Silk mother 5 Encoder
  • the directional indication is only used to explain that it is in a specific posture (as shown in the drawings). If the specific posture changes, the relative positional relationship, movement, etc. of the components below will also change the directional indication accordingly.
  • the present invention relates to an electromechanical device with an axial drive mechanism for driving a load component of the electromechanical device moving in the axial direction.
  • the load component can be, but not limited to, the shaft of the electromechanical device. Obviously, it can also be other components.
  • electromechanical equipment has multiple axial activities, such as X-axis, Y-axis, Z-axis, and N-axis, where the N-axis is one that is different from the X-axis, Y-axis, and Z-axis. axis.
  • a motor is coupled with a coupling and a transmission mechanism to drive the load component, and to avoid difficulty in controlling the operation accuracy due to inertia, the axial drive mechanism is usually equipped with a braking mechanism, which makes the prior art
  • the axial drive mechanism is usually more complicated in structure and takes up a lot of space.
  • Figures 1 to 11 are an embodiment of the axial drive mechanism provided by the present invention.
  • the axial drive mechanism 100 includes a drive motor 1, a ball screw mechanism 2 and a load component 3.
  • the drive motor 1 has a motor shaft 10 extending along a first direction, and the ball screw mechanism 2 It includes a lead screw 21 extending in a first direction, and a nut 22 sleeved on the lead screw 21, and the load member 3 is movably arranged along the first direction; wherein, the lead screw 21 and the One of the nut 22 is arranged on the motor shaft 10 to rotate together with the motor shaft 10, and the other is fixedly connected with the load member 3 to drive the load member 3 to move together in the first direction.
  • the first direction can be up and down, left and right, or forward and backward, of course, can also be other directions, depending on the actual situation, that is, correspondingly, the axial direction It is X-axis, Y-axis, Z-axis or N-axis.
  • the drive mechanism in the Z-axis direction has more stringent requirements for space and inertia.
  • the axial drive mechanism 100 is a Z-axis drive structure. Accordingly, the The first direction is up and down.
  • the ball screw mechanism 2 is used as the transmission component, and one of the screw 21 and the screw nut 22 is directly arranged on the motor shaft 10 so as to be directly driven by the driving motor 1 without saving
  • the intermediate connection structure can simplify the structure of the axial drive mechanism 100 and reduce the weight of the axial drive mechanism 100, so that on the one hand, the space occupied by the axial drive mechanism 100 can be saved, which is beneficial to the realization of the axial drive mechanism 100.
  • Miniaturization on the other hand, can reduce the inertia of the axial drive mechanism 100, and can achieve precise control of the movement of the load member in the first direction.
  • the drive motor 1 drives one of the lead screw 21 and the nut 22 through the motor shaft 10.
  • Both the motor shaft 10 and the lead screw 21 extend in the first direction.
  • the motor shaft 10 and the lead screw 21 are The first direction adopts at least partially overlapping arrangement.
  • at least one end of the motor shaft 10 is hollow, and the lead screw 21 extends into the motor shaft 10 to reduce the The size of the space occupied by the motor shaft 10 and the screw 21 in the first direction, the screw nut 22 is provided on the motor shaft 10, and the load member 3 is fixedly installed on the screw 21.
  • the drive motor 1 includes an outer stator assembly 11 and an inner rotation assembly 12, wherein the inner rotor assembly 12 is provided On the inner side of the outer stator assembly 11, the motor shaft 10 is connected to the inner rotor assembly 12 to drive the rotating shaft through the inner rotor assembly 12.
  • the motor shaft 10 in order to further reduce the size of the axial drive mechanism 100 in the first direction, the motor shaft 10 penetrates the inner rotor assembly 12, and the motor shaft 10 The outer side is fixedly connected to the inner side of the inner rotor assembly 12.
  • the drive motor 1 is a three-phase permanent magnet synchronous AC servo motor
  • the inner rotor assembly 12 of the three-phase permanent magnet synchronous AC servo motor is a moving magnet structure
  • the outer stator assembly 11 is an outer cogging and yoke sleeve design, which not only ensures the closure of the magnetic circuit, but also reduces the magnetic field. It also effectively reduces the starting torque and improves the running smoothness and control accuracy.
  • the nut 22 and the motor shaft 10 are arranged separately, and fixedly installed on the motor shaft 10, so that the nut 22 and the motor shaft 10 They can be manufactured separately to reduce manufacturing difficulty.
  • the nut 22 and the motor shaft 10 are integrally arranged. In this way, the weight of the axial drive structure 100 can be further reduced to reduce inertia.
  • the screw nut 22 is arranged in the motor shaft 10 and sleeved on the periphery of the screw 21, so that the screw 21, the screw nut 22 and The motor shaft 10 overlaps and distributes in the radial direction, so as to use the radial space to reduce the size in the first direction.
  • the nut 22 may be arranged on the motor shaft 10 The end.
  • the nut 22 and the screw rod 21 The relative movement between the nut 22 and the screw rod 21, the operation accuracy will be affected by the groove 22a of the nut 22 and balls, etc., for this reason, in the embodiment of the present invention, the nut The groove 22a of 22 and the ball are designed to be related:
  • the groove 22a of the nut 22 is set as a Gothic groove, that is, the groove 22a
  • the normal section is a double-arc shape, so that the ball and the groove 22a can reach the best contact, flexible rotation, and after pre-stretching (that is, adding pre-tightening force), the axial gap can be eliminated and the ball screw can be increased
  • the rigidity of the pair reduces the elastic deformation between the ball and the lead screw and the nut to achieve higher accuracy.
  • a mounting slide 23 is defined between the outer side of the screw 21 and the inner side of the screw nut 22, and the ball screw mechanism 2 is also It includes load-bearing balls 24 and floating balls 25 arranged on the mounting slide 23, wherein the load-bearing balls 24 are in interference fit with the mounting slide 23, and the floating balls 25 are in clearance fit with the mounting slide 23
  • the pre-tightening force is provided by the interference fit between the bearing ball 24 and the groove 22a, which eliminates the radial and axial clearance and increases the movement rigidity; at the same time, as the speed increases, the inertial centrifugal force of the floating ball 25 increases; further increases the bearing ball
  • the pre-tightening force of 24 increases the friction of the lead screw 21 system, improves the friction damping effect, and improves the positioning accuracy.
  • the specific structure of the load member 3 is not limited. In the embodiment of the present invention, please refer to FIG. 1.
  • the load member 3 extends along the first direction to be arranged in parallel with the lead screw 21, and the The load component 3 is connected to the lead screw 21 through a connecting piece 3a.
  • the axial drive mechanism 100 further includes a driver 4 which is electrically connected to the drive motor 1 to control the operation of the drive motor 1.
  • the type of the drive 4 and The signal is not limited.
  • the processor uses a digital signal processor (DSP) as the control core
  • the power device uses a driving circuit with an intelligent power module (IPM) as the core, and has overvoltage and overcurrent , Overheating, undervoltage and other fault detection and protection circuits, and have a soft-start circuit.
  • DSP digital signal processor
  • IPM intelligent power module
  • the driver 4 is not limited according to how to control the operation of the driving motor 1.
  • the driver 4 according to the rotation angle of the motor shaft 10 of the driving motor 1 and the voltage and current of the driving motor 1, respectively, To realize the closed-loop control of the driving motor 1 to improve the accuracy of the driving motor 1.
  • the axial drive mechanism 100 further includes an encoder 5 for detecting the rotation angle of the motor shaft 10 of the motor, and the driver 4 and The encoder 5 is electrically connected to form a closed loop control loop with the encoder 5 and the drive motor 1 to control the drive motor 1 according to the rotation angle fed back by the encoder 5.
  • the axial drive mechanism 100 further includes a voltage detection circuit that detects the voltage of the drive motor 1, and the driver 4 is electrically connected to the voltage detection circuit, and is electrically connected to the voltage detection circuit.
  • the voltage detection circuit and the drive motor 1 form a closed loop control loop to control the drive motor 1 according to the voltage value fed back by the voltage detection circuit.
  • the axial drive mechanism 100 further includes a current detection circuit that detects the current of the drive motor 1, and the driver 4 is electrically connected to the current detection circuit, and is electrically connected to the current detection circuit.
  • the current detection circuit and the drive motor 1 form a closed loop control loop to control the drive motor 1 according to the current value fed back by the current detection circuit.

Abstract

本发明公开一种轴向驱动机构和机电设备,所述轴向驱动机构包括驱动电机、滚珠丝杠机构和负载部件,所述驱动电机具有沿着第一方向延伸的电机轴,所述滚珠丝杠机构包括沿第一方向延伸的丝杠、以及套设在所述丝杠上的丝母,所述负载部件沿所述第一方向活动设置,其中,所述丝杠和所述丝母其中之一设于所述电机轴上,以与所述电机轴一同转动,另一与所述负载部件固定连接,以带动所述负载部件一同沿第一方向活动;本发明提供的轴向驱动机构一方面可以节约轴向驱动机构占据的空间大小,而有利于轴向驱动机构实现小型化,另一方面,可以减小轴向驱动机构的惯性大小而提高驱动精度。

Description

轴向驱动机构以及机电设备 技术领域
本发明涉及机电设备技术领域,特别涉及一种轴向驱动机构以及机电设备。
背景技术
机电设备的轴向(轴向包括x轴、y轴、z轴以及其他方向的轴)运动的控制一直是一个难点,尤以Z轴控制为甚,如断电失位、高频惯性等。现有技术中为解决该技术问题,对于轴向驱动机构设置为较为复杂,例如,通过设置为气液机械机构,线性电气结构等,然而,气液机械机构存在惯性阻力限制运动频率,线性电气结构断电失位使运动无法定标,并且该等结构都需要较大的空间去布置相关结构,该相关结构包括传动机构、制动结构等等,如此而难以满足轴向驱动机构惯性小和占据空间小的需求。
为此,实有必要设计一种新的轴向驱动机构,以克服现有技术之不足。
发明内容
本发明的主要目的是提出一种轴向驱动机构以及机电设备,旨在解决现有技术中难以同时满足轴向驱动机构惯性小和占据空间小的需求。
为实现上述目的,本发明提出一种轴向驱动机构,包括:
驱动电机,所述驱动电机具有沿着第一方向延伸的电机轴;
滚珠丝杠机构,包括沿第一方向延伸的丝杠、以及套设在所述丝杠上的丝母;以及,
负载部件,沿所述第一方向活动设置;
其中,所述丝杠和所述丝母其中之一设于所述电机轴上,以与所述电机轴一同转动,另一与所述负载部件固定连接,以带动所述负载部件一同沿第一方向活动。
可选地,所述电机轴至少一端呈中空设置;
所述丝杠延伸至所述电机轴内,所述丝母设于所述电机轴;
所述负载部件固定安装于所述丝杠。
可选地,所述驱动电机包括:
外定子组件;以及,
内转子组件,设于所述外定子组件的内侧;
所述电机轴连接于所述内转子组件。
可选地,所述电机轴穿设于所述内转子组件,所述电机轴的外侧与所述内转子组件的内侧固定连接。
可选地,所述丝母与所述电机轴分体设置,且固定安装于所述电机轴;或者,
所述丝母与所述电机轴为一体设置。
可选地,所述丝母设置在所述电机轴内且套设在所述丝杠的外围。
可选地,所述丝母的沟槽设置为哥德式沟槽;和/或,
所述丝杠的外侧与所述丝母的内侧之间限定出安装滑道,所述滚珠丝杠机构还包括设置在所述安装滑道的承载滚珠和浮动滚珠,其中,所述承载滚珠与所述安装滑道过盈配合,所述浮动滚珠与所述安装滑道间隙配合。
可选地,所述轴向驱动机构还包括驱动器,所述驱动器与所述驱动电机电性连接,以控制所述驱动电机工作:
所述轴向驱动机构还包括用以检测所电机的电机轴的转角的编码器,所述驱动器与所述编码器电性连接,与所述编码器和所述驱动电机形成闭环控制回路,以根据所述编码器反馈的转角控制所述驱动电机;和/或,
所述轴向驱动机构还包括检测所述驱动电机的电压的电压检测电路,所述驱动器与所述电压检测电路电性连接,与所述电压检测电路和所述驱动电机形成闭环控制回路,以根据所述电压检测电路反馈的电压值控制所述驱动电机;和/或,
所述轴向驱动机构还包括检测所述驱动电机的电流的电流检测电路,所述驱动器与所述电流检测电路电性连接,与所述电流检测电路和所述驱动电机形成闭环控制回路,以根据所述电流检测电路反馈的电流值控制所述驱动电机。
可选地,所述轴向驱动机构为Z轴驱动结构,相应地,所述第一方向为 上下向;和/或,
所述驱动电机为三相永磁同步交流伺服电机。
本发明还提供一种机电设备,包括轴向驱动机构,轴向驱动机构,包括:
驱动电机,所述驱动电机具有沿着第一方向延伸的电机轴;
滚珠丝杠机构,包括沿第一方向延伸的丝杠、以及套设在所述丝杠上的丝母;以及,
负载部件,沿所述第一方向活动设置;
其中,所述丝杠和所述丝母其中之一设于所述电机轴上,以与所述电机轴一同转动,另一与所述负载部件固定连接,以带动所述负载部件一同沿第一方向活动。
本发明的技术方案中,采用滚珠丝杠机构作为传动部件,并且,将丝杠和丝母其中之一直接设于电机轴,以通过电机直接驱动,而省去中间的连接结构,如此可以简化轴向驱动机构的结构,并且减轻轴向驱动机构的重量,从而一方面可以节约轴向驱动机构占据的空间大小,而有利于轴向驱动机构实现小型化,另一方面,可以减小轴向驱动机构的惯性大小而提高驱动精度。
附图说明
为了更清楚地说明本发明实施例或现有技术中的技术方案,下面将对实施例或现有技术描述中所需要使用的附图作简单地介绍,显而易见地,下面描述中的附图仅仅是本发明的一些实施例,对于本领域普通技术人员来讲,在不付出创造性劳动的前提下,还可以根据这些附图示出的结构获得其他的附图。
图1为本发明提供的轴向驱动机构的一实施例的剖视示意图;
图2为图1的简化原理示意图;
图3为图1中的滚珠丝杠机构的立体示意图;
图4为图3的纵截面的剖视示意图;
图5为图3中的滚珠丝杠机构的横截面的示意图;
图6为图3中的丝母的立体示意图;
图7为图6中的丝母的平面示意图;
图8为图6中的丝母的纵截面的示意图;
图9为图8沿A-A的剖视示意图;
图10为图3中的丝母局部结构示意图;
图11为图1的轴向驱动机构的控制部分的示意图。
附图标号说明:
标号 名称 标号 名称
100 轴向驱动机构 22a 沟槽
1 驱动电机 23 安装滑道
10 电机轴 24 承载滚珠
11 外定子组件 25 浮动滚珠
12 内转子组件 3 负载部件
2 滚珠丝杠机构 3a 连接件
21 丝杠 4 驱动器
22 丝母 5 编码器
本发明目的的实现、功能特点及优点将结合实施例,参照附图做进一步说明。
具体实施方式
下面将结合本发明实施例中的附图,对本发明实施例中的技术方案进行清楚、完整地描述,显然,所描述的实施例仅仅是本发明的一部分实施例,而不是全部的实施例。基于本发明中的实施例,本领域普通技术人员在没有作出创造性劳动前提下所获得的所有其他实施例,都属于本发明保护的范围。
需要说明,若本发明实施例中有涉及方向性指示(诸如上、下、左、右、前、后……),则该方向性指示仅用于解释在某一特定姿态(如附图所示)下各部件之间的相对位置关系、运动情况等,如果该特定姿态发生改变时,则该方向性指示也相应地随之改变。
另外,若本发明实施例中有涉及“第一”、“第二”等的描述,则该“第一”、“第二”等的描述仅用于描述目的,而不能理解为指示或暗示其相对重要性或者 隐含指明所指示的技术特征的数量。由此,限定有“第一”、“第二”的特征可以明示或者隐含地包括至少一个该特征。另外,全文中出现的“和/或”的含义,包括三个并列的方案,以“A和/或B”为例,包括A方案、或B方案、或A和B同时满足的方案。另外,各个实施例之间的技术方案可以相互结合,但是必须是以本领域普通技术人员能够实现为基础,当技术方案的结合出现相互矛盾或无法实现时应当认为这种技术方案的结合不存在,也不在本发明要求的保护范围之内。
本发明涉及一种机电设备,该机电设备带有轴向驱动机构,所述轴向驱动机构用以驱动机电设备沿轴向活动的负载部件,该负载部件可以但不限于为机电设备的轴,显然也可以是其他的部件,通常机电设备具有多个轴向活动,例如可以是X轴、Y轴、Z轴以及N轴,其中,N轴为区别于X轴、Y轴、Z轴的一轴。
现有技术中,有通过电机加上联轴器和传动机构来驱动负载部件,并且,避免因为惯性而导致运行精度难以控制,轴向驱动机构还通常设置制动机构,如此使得现有技术中的轴向驱动机构通常是结构较为复杂且占据的空间较大。
为此,本发明针对现有的轴向驱动机构的不足,提供了一种改进的轴向驱动机构,图1至图11为本发明提供的轴向驱动机构的一实施例,请参阅图1至图5,所述轴向驱动机构100包括驱动电机1、滚珠丝杠机构2和负载部件3,所述驱动电机1具有沿着第一方向延伸的电机轴10,所述滚珠丝杠机构2包括沿第一方向延伸的丝杠21、以及套设在所述丝杠21上的丝母22,所述负载部件3沿所述第一方向活动设置;其中,所述丝杠21和所述丝母22其中之一设于所述电机轴10上,以与所述电机轴10一同转动,另一与所述负载部件3固定连接,以带动所述负载部件3一同沿第一方向活动。
在本发明中,所述第一方向可以是上下向,也可以是左右向,亦或者是前后向,当然还可以是其他方向,具体实际情况而定,也即,相应的,所述轴向为X轴、Y轴、Z轴或N轴。相对于其他的轴而言,对于Z轴方向的驱动机构对于空间和惯性的要求更为苛刻,为此,在本实施例中,轴向驱动机构100为Z轴驱动结构,相应地,所述第一方向为上下向。
本发明的技术方案中,采用滚珠丝杠机构2作为传动部件,并且,将丝 杠21和丝母22其中之一直接设于电机轴10,以通过所述驱动电机1直接驱动,而省去中间的连接结构,如此可以简化轴向驱动机构100的结构,并且减轻轴向驱动机构100的重量,从而一方面可以节约轴向驱动机构100占据的空间大小,而有利于轴向驱动机构100实现小型化,另一方面,可以减小轴向驱动机构100的惯性大小,而能够实现对所述负载部件的第一方向活动地精确控制。
所述驱动电机1以通过所述电机轴10驱动所述丝杠21和所述丝母22其中的一个,所述驱动电机1的具体构造不做限制,后续部分有相关实施例做说明,所述电机轴10与所述丝杠21均是沿第一方向延伸,为了节约减小所述轴向驱动机构100在第一方向上占据的尺寸,所述电机轴10和所述丝杠21在第一方向上采用至少部分重叠设置,具体为,在本发明的实施例中,所述电机轴10至少一端呈中空设置,所述丝杠21延伸至所述电机轴10内,以减小所述电机轴10和所述丝杠21在所述第一方向上占据的空间尺寸,所述丝母22设于所述电机轴10,所述负载部件3固定安装于所述丝杠21。
由前述可知,所述驱动电机1的具体构造不做限制,具体在本实施例中,所述驱动电机1包括外定子组件11和内转动组件12,其中,所述内转子组件12设于所述外定子组件11的内侧,所述电机轴10连接于所述内转子组件12,以通过所述内转子组件12带动转轴。并且,在本实施例中,为了进一步减小所述轴向驱动机构100在所述第一方向上的尺寸,所述电机轴10穿设于所述内转子组件12,所述电机轴10的外侧与所述内转子组件12的内侧固定连接。
满足上述结构的驱动电机1的类型有许多种,然,考虑所述轴向驱动机构100具有较高的驱动控制精度,在本发明的实施例中,所述驱动电机1为三相永磁同步交流伺服电机,所述三相永磁同步交流伺服电机的内转子组件12为动磁结构,外定子组件11为外齿槽与轭部套装设计,既保证了磁路的闭合,减小了磁损,又有效的降低启动力矩,提高了运转平顺性和控制精度。
前述介绍所述驱动电机1的具体构造和类型,以及所述丝杆21与所述驱动电机1的关系,并且进一步介绍所述丝母22是设置在所述电机轴10,然而,对于所述丝母22具体如何设置在所述电机轴10以及设置在所述电机轴10的具体位置没有限定,后面结合附图进一步介绍所述丝母22与所述电机轴10的方位关系和安装关系:
具体参阅图1,在本实施例中,所述丝母22与所述电机轴10分体设置,且固定安装于所述电机轴10,如此使得,所述丝母22与所述电机轴10可以分别单独制造而减小制造难度。显然,在本发明的其他实施例中,所述丝母22与所述电机轴10为一体设置,如此,可以进一步减轻所述轴向驱动结构100的重量以减小惯性。
具体地,参阅图1,在本实施例中,所述丝母22设置在所述电机轴10内且套设在所述丝杠21的外围,如此使得所述丝杆21、丝母22和所述电机轴10在径向上重叠分布,以利用径向空间而减小第一方向上的尺寸,显然,在本发明的其他实施例中,所述丝母22可以设置在所述电机轴10的端部。
所述丝母22与所述丝杆21之间相对运动,运行精度会受到所述丝母22的沟槽22a和滚珠等等影响,为此,在本发明的实施例中,分别对丝母22的沟槽22a和滚珠做相关设计:
关于所述丝母22的沟槽22a,在本发明的实施例中,请参阅图6至图10,所述丝母22的沟槽22a设置为哥德式沟槽,也即沟槽22a的法向截形是双圆弧形,以使得使滚珠和沟槽22a能够达到最佳接触,旋转灵活,并且经过预拉伸(即加入预紧力),可消除轴向间隙,增加滚珠丝杠副的刚性,减少滚珠和丝杠及丝母之间的弹性变形,达到更高的精度。
关于滚珠,在本发明的实施例中,参阅图1至图5,所述丝杠21的外侧与所述丝母22的内侧之间限定出安装滑道23,所述滚珠丝杠机构2还包括设置在所述安装滑道23的承载滚珠24和浮动滚珠25,其中,所述承载滚珠24与所述安装滑道23过盈配合,所述浮动滚珠25与所述安装滑道23间隙配合,如此,通过承载滚珠24与沟槽22a之间的过盈配合提供预紧力,消除径、轴向间隙、增加运动刚性;同时随转速增加,浮动滚珠25惯性离心力增大;进一步增加承载滚珠24的预紧力,增大了丝杠21系统的摩擦力,改善了摩擦阻尼效果,提高定位精度。
所述负载部件3的具体构造不做限制,在本发明的实施例中,请参阅图1,所述负载部件3沿着第一方向延伸,以与所述丝杠21并行设置,且所述负载部件3通过一连接件3a与所述丝杠21连接。
在本发明的实施例中,所述轴向驱动机构100还包括驱动器4,所述驱动器4与所述驱动电机1电性连接,以控制所述驱动电机1工作,所述驱动器4 的类型和信号不做限制,在本发明的实施例中,处理器采用数字信号处理器(DSP)作为控制核心,功率器件采用以智能功率模块(IPM)为核心的驱动电路,且具有过压、过流、过热、欠压等故障检测保护电路,并具有软启动电路。
所述驱动器4具体根据如何控制所述驱动电机1工作不做限制,例如,在下述实施例中,分别根据所述驱动电机1的电机轴10的转角、所述驱动电机1的电压和电流,来实现闭环控制所述驱动电机1,以提高所述驱动电机1的精度。
具体地,在本发明的实施例中,如图1和图11所示,所述轴向驱动机构100还包括用以检测所电机的电机轴10的转角的编码器5,所述驱动器4与所述编码器5电性连接,与所述编码器5和所述驱动电机1形成闭环控制回路,以根据所述编码器5反馈的转角控制所述驱动电机1。
具体地,在本发明的实施例中,所述轴向驱动机构100还包括检测所述驱动电机1的电压的电压检测电路,所述驱动器4与所述电压检测电路电性连接,与所述电压检测电路和所述驱动电机1形成闭环控制回路,以根据所述电压检测电路反馈的电压值控制所述驱动电机1。
具体地,在本发明的实施例中,所述轴向驱动机构100还包括检测所述驱动电机1的电流的电流检测电路,所述驱动器4与所述电流检测电路电性连接,与所述电流检测电路和所述驱动电机1形成闭环控制回路,以根据所述电流检测电路反馈的电流值控制所述驱动电机1。
以上所述仅为本发明的优选实施例,并非因此限制本发明的专利范围,凡是在本发明的发明构思下,利用本发明说明书及附图内容所作的等效结构变换,或直接/间接运用在其他相关的技术领域均包括在本发明的专利保护范围。

Claims (10)

  1. 一种轴向驱动机构,其特征在于,包括:
    驱动电机,所述驱动电机具有沿着第一方向延伸的电机轴;
    滚珠丝杠机构,包括沿所述第一方向延伸的丝杠、以及套设在所述丝杠上的丝母;以及,
    负载部件,沿所述第一方向活动设置;
    其中,所述丝杠和所述丝母其中之一设于所述电机轴上,以与所述电机轴一同转动,另一与所述负载部件固定连接,以带动所述负载部件一同沿所述第一方向活动。
  2. 如权利要求1所述的轴向驱动机构,其特征在于,所述电机轴至少一端呈中空设置;
    所述丝杠延伸至所述电机轴内,所述丝母设于所述电机轴;
    所述负载部件固定安装于所述丝杠。
  3. 如权利要求2所述的轴向驱动机构,其特征在于,所述驱动电机包括:
    外定子组件;以及,
    内转子组件,设于所述外定子组件的内侧;
    所述电机轴连接于所述内转子组件。
  4. 如权利要求3所述的轴向驱动机构,其特征在于,所述电机轴穿设于所述内转子组件,所述电机轴的外侧与所述内转子组件的内侧固定连接。
  5. 如权利要求2所述的轴向驱动机构,其特征在于,所述丝母与所述电机轴分体设置,且固定安装于所述电机轴;或者,
    所述丝母与所述电机轴为一体设置。
  6. 如权利要求2所述的轴向驱动机构,其特征在于,所述丝母设置在所述电机轴内且套设在所述丝杠的外围。
  7. 如权利要求1所述的轴向驱动机构,其特征在于,所述丝母的沟槽设置为哥德式沟槽;和/或,
    所述丝杠的外侧与所述丝母的内侧之间限定出安装滑道,所述滚珠丝杠机构还包括设置在所述安装滑道的承载滚珠和浮动滚珠,其中,所述承载滚珠与所述安装滑道过盈配合,所述浮动滚珠与所述安装滑道间隙配合。
  8. 如权利要求1所述的轴向驱动机构,其特征在于,所述轴向驱动机构还包括驱动器,所述驱动器与所述驱动电机电性连接,以控制所述驱动电机工作:
    所述轴向驱动机构还包括用以检测所电机的电机轴的转角的编码器,所述驱动器与所述编码器电性连接,与所述编码器和所述驱动电机形成闭环控制回路,以根据所述编码器反馈的转角控制所述驱动电机;和/或,
    所述轴向驱动机构还包括检测所述驱动电机的电压的电压检测电路,所述驱动器与所述电压检测电路电性连接,与所述电压检测电路和所述驱动电机形成闭环控制回路,以根据所述电压检测电路反馈的电压值控制所述驱动电机;和/或,
    所述轴向驱动机构还包括检测所述驱动电机的电流的电流检测电路,所述驱动器与所述电流检测电路电性连接,与所述电流检测电路和所述驱动电机形成闭环控制回路,以根据所述电流检测电路反馈的电流值控制所述驱动电机。
  9. 如权利要求1所述的轴向驱动机构,其特征在于,所述轴向驱动机构为Z轴驱动结构,相应地,所述第一方向为上下向;和/或,
    所述驱动电机为三相永磁同步交流伺服电机。
  10. 一种机电设备,其特征在于,包括如权利要求1至9任意一项所述的轴向驱动机构。
PCT/CN2020/103662 2019-11-18 2020-07-23 轴向驱动机构以及机电设备 WO2021098258A1 (zh)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
CN201911139651.8 2019-11-18
CN201911139651.8A CN111219464A (zh) 2019-11-18 2019-11-18 轴向驱动机构以及机电设备

Publications (1)

Publication Number Publication Date
WO2021098258A1 true WO2021098258A1 (zh) 2021-05-27

Family

ID=70807943

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2020/103662 WO2021098258A1 (zh) 2019-11-18 2020-07-23 轴向驱动机构以及机电设备

Country Status (2)

Country Link
CN (1) CN111219464A (zh)
WO (1) WO2021098258A1 (zh)

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN111219464A (zh) * 2019-11-18 2020-06-02 歌尔股份有限公司 轴向驱动机构以及机电设备

Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS609342A (ja) * 1983-06-29 1985-01-18 Shinichi Watanabe 直線運動軸を持つモ−タ−
CN101083902A (zh) * 2006-05-29 2007-12-05 爱普斯有限公司 表面安装机
CN101318503A (zh) * 2007-06-05 2008-12-10 株式会社日立制作所 电动增力装置及其制造方法
CN101337302A (zh) * 2007-07-02 2009-01-07 小原株式会社 焊接装置的驱动单元
CN102483142A (zh) * 2009-09-01 2012-05-30 大陆-特韦斯贸易合伙股份公司及两合公司 线性单元
CN103545977A (zh) * 2013-09-22 2014-01-29 上海交通大学 高度集成机电作动器
CN111219464A (zh) * 2019-11-18 2020-06-02 歌尔股份有限公司 轴向驱动机构以及机电设备

Family Cites Families (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN201291387Y (zh) * 2008-08-15 2009-08-19 宁波海天精工机械有限公司 差动机构控制轴双驱动机构
CN101888137A (zh) * 2010-07-14 2010-11-17 哈尔滨工业大学 一种伺服直驱模块
CN102588543B (zh) * 2011-12-23 2015-04-15 上海三一精机有限公司 一种滚珠丝杠副支撑结构
JP5963311B2 (ja) * 2013-02-20 2016-08-03 日立Geニュークリア・エナジー株式会社 駆動ねじの隙間拡大方法及びそれら駆動ねじを用いた制御棒駆動機構
JP6301130B2 (ja) * 2013-12-27 2018-03-28 オリエンタルモーター株式会社 回転・直動アクチュエータ
CN104325341B (zh) * 2014-10-14 2017-04-12 沈阳盛京精益数控机械有限公司 一种数控平旋盘

Patent Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS609342A (ja) * 1983-06-29 1985-01-18 Shinichi Watanabe 直線運動軸を持つモ−タ−
CN101083902A (zh) * 2006-05-29 2007-12-05 爱普斯有限公司 表面安装机
CN101318503A (zh) * 2007-06-05 2008-12-10 株式会社日立制作所 电动增力装置及其制造方法
CN101337302A (zh) * 2007-07-02 2009-01-07 小原株式会社 焊接装置的驱动单元
CN102483142A (zh) * 2009-09-01 2012-05-30 大陆-特韦斯贸易合伙股份公司及两合公司 线性单元
CN103545977A (zh) * 2013-09-22 2014-01-29 上海交通大学 高度集成机电作动器
CN111219464A (zh) * 2019-11-18 2020-06-02 歌尔股份有限公司 轴向驱动机构以及机电设备

Also Published As

Publication number Publication date
CN111219464A (zh) 2020-06-02

Similar Documents

Publication Publication Date Title
US6841911B2 (en) Machine tool
JP2002262489A (ja) 風力発電システム
WO2021098258A1 (zh) 轴向驱动机构以及机电设备
US20210023700A1 (en) Planar articulated robot and inner rotor joint device
CN112602257A (zh) 具有电动马达和磁传动装置的电机
US10141823B2 (en) Motor, gimbal, and mechanical arm having the same
CN212278098U (zh) 一种高精密组合传动装置
CN2935612Y (zh) 汽车电动助力转向永磁无刷直流电动机
EP2479870B1 (en) Three-phase DC motor
CN105048713B (zh) 一种一体化的双转子丝杠机电惯容器
KR20160143925A (ko) 모터
CN104534041B (zh) 一种双余度直驱型滚柱丝杠副的电动执行装置
CN116101365A (zh) 一种用于全向移动机器人底盘的舵轮装置
KR20160139825A (ko) 모터
WO2021124703A1 (ja) 巻上機及びエレベーター
CN107154704A (zh) 一种电动推杆的电机刹车装置和电动推杆
CN206302228U (zh) 一种混合式步进电机
TWI466416B (zh) 新型軸向氣隙直流無刷馬達與軸向式磁性聯軸器之一體式機電裝置
CN108972022A (zh) 一种用于五轴联动机床的低速大扭矩稀土永磁直驱转台
CN213547289U (zh) 一种多自由度平移台
CN211820608U (zh) 一种滚珠丝杠和电机一体式的驱动电缸
JP2019058044A (ja) モータの制御装置およびアクチュエータ
CN215772890U (zh) 一种带有新型调速机构的磁力偶合器
CN218907359U (zh) 一种用于全向移动机器人底盘的舵轮装置
CN217029843U (zh) 一种双驱动源驱动的单轴两自由度执行器

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 20890316

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 20890316

Country of ref document: EP

Kind code of ref document: A1