WO2021098194A1 - 截骨导向工具的校验方法、校验系统及检测靶标 - Google Patents

截骨导向工具的校验方法、校验系统及检测靶标 Download PDF

Info

Publication number
WO2021098194A1
WO2021098194A1 PCT/CN2020/095218 CN2020095218W WO2021098194A1 WO 2021098194 A1 WO2021098194 A1 WO 2021098194A1 CN 2020095218 W CN2020095218 W CN 2020095218W WO 2021098194 A1 WO2021098194 A1 WO 2021098194A1
Authority
WO
WIPO (PCT)
Prior art keywords
tool
osteotomy guide
osteotomy
target
guide
Prior art date
Application number
PCT/CN2020/095218
Other languages
English (en)
French (fr)
Inventor
孙腾
孙峰
邵辉
何超
刘鹏飞
Original Assignee
苏州微创畅行机器人有限公司
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 苏州微创畅行机器人有限公司 filed Critical 苏州微创畅行机器人有限公司
Priority to AU2020387746A priority Critical patent/AU2020387746B2/en
Priority to EP20891211.3A priority patent/EP4062856A4/en
Priority to JP2022529267A priority patent/JP7412557B2/ja
Publication of WO2021098194A1 publication Critical patent/WO2021098194A1/zh

Links

Images

Classifications

    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61BDIAGNOSIS; SURGERY; IDENTIFICATION
    • A61B34/00Computer-aided surgery; Manipulators or robots specially adapted for use in surgery
    • A61B34/20Surgical navigation systems; Devices for tracking or guiding surgical instruments, e.g. for frameless stereotaxis
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61BDIAGNOSIS; SURGERY; IDENTIFICATION
    • A61B17/00Surgical instruments, devices or methods, e.g. tourniquets
    • A61B17/14Surgical saws ; Accessories therefor
    • A61B17/15Guides therefor
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61BDIAGNOSIS; SURGERY; IDENTIFICATION
    • A61B17/00Surgical instruments, devices or methods, e.g. tourniquets
    • A61B17/16Bone cutting, breaking or removal means other than saws, e.g. Osteoclasts; Drills or chisels for bones; Trepans
    • A61B17/17Guides or aligning means for drills, mills, pins or wires
    • A61B17/1732Guides or aligning means for drills, mills, pins or wires for bone breaking devices
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61BDIAGNOSIS; SURGERY; IDENTIFICATION
    • A61B34/00Computer-aided surgery; Manipulators or robots specially adapted for use in surgery
    • A61B34/10Computer-aided planning, simulation or modelling of surgical operations
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61BDIAGNOSIS; SURGERY; IDENTIFICATION
    • A61B34/00Computer-aided surgery; Manipulators or robots specially adapted for use in surgery
    • A61B34/70Manipulators specially adapted for use in surgery
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61BDIAGNOSIS; SURGERY; IDENTIFICATION
    • A61B17/00Surgical instruments, devices or methods, e.g. tourniquets
    • A61B17/14Surgical saws ; Accessories therefor
    • A61B17/15Guides therefor
    • A61B17/154Guides therefor for preparing bone for knee prosthesis
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61BDIAGNOSIS; SURGERY; IDENTIFICATION
    • A61B17/00Surgical instruments, devices or methods, e.g. tourniquets
    • A61B17/16Bone cutting, breaking or removal means other than saws, e.g. Osteoclasts; Drills or chisels for bones; Trepans
    • A61B17/17Guides or aligning means for drills, mills, pins or wires
    • A61B17/1739Guides or aligning means for drills, mills, pins or wires specially adapted for particular parts of the body
    • A61B17/1764Guides or aligning means for drills, mills, pins or wires specially adapted for particular parts of the body for the knee
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61BDIAGNOSIS; SURGERY; IDENTIFICATION
    • A61B17/00Surgical instruments, devices or methods, e.g. tourniquets
    • A61B2017/00017Electrical control of surgical instruments
    • A61B2017/00199Electrical control of surgical instruments with a console, e.g. a control panel with a display
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61BDIAGNOSIS; SURGERY; IDENTIFICATION
    • A61B34/00Computer-aided surgery; Manipulators or robots specially adapted for use in surgery
    • A61B34/10Computer-aided planning, simulation or modelling of surgical operations
    • A61B2034/101Computer-aided simulation of surgical operations
    • A61B2034/102Modelling of surgical devices, implants or prosthesis
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61BDIAGNOSIS; SURGERY; IDENTIFICATION
    • A61B34/00Computer-aided surgery; Manipulators or robots specially adapted for use in surgery
    • A61B34/10Computer-aided planning, simulation or modelling of surgical operations
    • A61B2034/101Computer-aided simulation of surgical operations
    • A61B2034/105Modelling of the patient, e.g. for ligaments or bones
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61BDIAGNOSIS; SURGERY; IDENTIFICATION
    • A61B34/00Computer-aided surgery; Manipulators or robots specially adapted for use in surgery
    • A61B34/10Computer-aided planning, simulation or modelling of surgical operations
    • A61B2034/108Computer aided selection or customisation of medical implants or cutting guides
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61BDIAGNOSIS; SURGERY; IDENTIFICATION
    • A61B34/00Computer-aided surgery; Manipulators or robots specially adapted for use in surgery
    • A61B34/20Surgical navigation systems; Devices for tracking or guiding surgical instruments, e.g. for frameless stereotaxis
    • A61B2034/2046Tracking techniques
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61BDIAGNOSIS; SURGERY; IDENTIFICATION
    • A61B34/00Computer-aided surgery; Manipulators or robots specially adapted for use in surgery
    • A61B34/20Surgical navigation systems; Devices for tracking or guiding surgical instruments, e.g. for frameless stereotaxis
    • A61B2034/2046Tracking techniques
    • A61B2034/2051Electromagnetic tracking systems
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61BDIAGNOSIS; SURGERY; IDENTIFICATION
    • A61B34/00Computer-aided surgery; Manipulators or robots specially adapted for use in surgery
    • A61B34/20Surgical navigation systems; Devices for tracking or guiding surgical instruments, e.g. for frameless stereotaxis
    • A61B2034/2046Tracking techniques
    • A61B2034/2055Optical tracking systems
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61BDIAGNOSIS; SURGERY; IDENTIFICATION
    • A61B34/00Computer-aided surgery; Manipulators or robots specially adapted for use in surgery
    • A61B34/20Surgical navigation systems; Devices for tracking or guiding surgical instruments, e.g. for frameless stereotaxis
    • A61B2034/2046Tracking techniques
    • A61B2034/2055Optical tracking systems
    • A61B2034/2057Details of tracking cameras
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61BDIAGNOSIS; SURGERY; IDENTIFICATION
    • A61B34/00Computer-aided surgery; Manipulators or robots specially adapted for use in surgery
    • A61B34/70Manipulators specially adapted for use in surgery
    • A61B34/74Manipulators with manual electric input means
    • A61B2034/743Keyboards
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61BDIAGNOSIS; SURGERY; IDENTIFICATION
    • A61B90/00Instruments, implements or accessories specially adapted for surgery or diagnosis and not covered by any of the groups A61B1/00 - A61B50/00, e.g. for luxation treatment or for protecting wound edges
    • A61B90/39Markers, e.g. radio-opaque or breast lesions markers
    • A61B2090/3983Reference marker arrangements for use with image guided surgery
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61BDIAGNOSIS; SURGERY; IDENTIFICATION
    • A61B34/00Computer-aided surgery; Manipulators or robots specially adapted for use in surgery
    • A61B34/30Surgical robots

Definitions

  • the invention relates to the field of robot-assisted surgery systems and methods, in particular to a verification method, a verification system and a detection target of an osteotomy guide tool.
  • the purpose of the present invention is to provide a verification method, a verification system and a detection target of an osteotomy guide tool, so as to solve the problem that the deformation of the osteotomy guide tool cannot be recognized in the existing robot-assisted surgery system.
  • a method for verifying an osteotomy guide tool which includes:
  • the characteristic part includes the geometric center point of the osteotomy guide block of the osteotomy guide tool, and the characteristic part for acquiring an osteotomy guide tool is
  • the steps of the pose parameters in the tool target coordinate system include:
  • intersection of all the intermediate planes is determined as the geometric center point of the osteotomy guide block, and the pose parameters of the geometric center point of the osteotomy guide block in the tool target coordinate system are calculated.
  • the step of obtaining the pose parameters of all surfaces of the osteotomy guide block of an osteotomy guide tool in a tool target coordinate system includes:
  • the pose parameters of the surface are determined according to the pose parameters of the multiple feature points on each surface or the pose parameters of the feature line.
  • the characteristic line is a curve.
  • the characteristic part includes the inner surface of the guide groove and/or the guide hole of the osteotomy guide block of the osteotomy guide tool;
  • the steps of the pose parameters of the characteristic part of the bone guide tool in the tool target coordinate system include:
  • the detection target of the guide groove and/or the guide hole of the osteotomy guide block is obtained based on the detection target inserted into the guide groove and/or the guide hole of the osteotomy guide block.
  • the pose parameters of the surface in the tool target coordinate system is obtained based on the detection target inserted into the guide groove and/or the guide hole of the osteotomy guide block.
  • the characteristic part includes the guide groove of the osteotomy guide block, and after the detection end of the detection target is inserted into the guide groove ,
  • the step of obtaining the pose parameters of a characteristic part of an osteotomy guiding tool in a tool target coordinate system includes: obtaining the detection end of the detection target in the guiding groove along an extension direction of the guiding groove. Information sliding in the slot.
  • the step of obtaining information that the detection end of the detection target slides in the guide groove along an extension direction of the guide groove includes : Obtain the information that the detection end of the detection target slides once along the two open ends of each guide groove to obtain the position of the inner surface of each guide groove at the two open ends. Pose parameters.
  • the width of the detection end of the detection target is adapted to the width of the guide groove, and the detection end of the detection target is obtained along the guide
  • the step of sliding information of the extending direction of the groove in the guiding groove includes: obtaining information that the detection end of the detection target slides once along the extending direction of each guiding groove, so as to obtain each of the guiding grooves.
  • the pose parameters of the inner surface are not limited to: obtaining information that the detection end of the detection target slides once along the extending direction of each guiding groove, so as to obtain each of the guiding grooves.
  • the step of comparing the obtained pose parameters of the characteristic part of the osteotomy guide tool with corresponding standard values includes: judging the guide Whether the pose parameters of the inner surface of the groove at the two open ends are in the same plane;
  • the osteotomy guide tool is used to be arranged at the end of a mechanical arm, and the characteristic part includes the osteotomy guide block of the osteotomy guide tool.
  • the geometric center point; the step of obtaining the pose parameters of the characteristic part of an osteotomy guide tool in the tool target coordinate system includes:
  • the pose parameters of the geometric center point of the osteotomy guide block in the tool target coordinate system are calculated.
  • the The connection point between the manipulator and the osteotomy guide tool is a point of motion. All the points of motion move in a circle around a center of motion on a plane of motion, and any point of motion is connected to the preset geometric center point.
  • the line is a movement connection
  • the connection between the movement center and the preset geometric center point is a center connection
  • the included angle between the movement connection and the center connection is not less than 30°.
  • a detection target which includes:
  • a positioning target is connected with the detection end to provide the pose parameters of the characteristic part of the osteotomy guide tool in a tool target coordinate system.
  • the detection end includes a sharp portion, and the sharp portion is used to abut the characteristic part of the osteotomy guide tool.
  • the detection end includes a plunger whose width is adapted to the width of the guide groove of the osteotomy guide block of the osteotomy guide tool, and the plunger Used to insert the guide groove.
  • the detection end includes a plug-in card and/or a pin
  • the length of the plug-in card is adapted to the length of the guide groove of the osteotomy guide block of the osteotomy guide tool
  • the outer contour size of the pin is matched with the inner size of the guide hole of the osteotomy guide block of the osteotomy guide tool.
  • the detection end is detachably connected to the positioning target
  • a verification system which includes:
  • An osteotomy guide tool includes an osteotomy guide block and a target mounting part connected with the osteotomy guide block;
  • a navigation device for communicating with the tool target, and for acquiring the pose parameters of the characteristic part of the osteotomy guide tool in the tool target coordinate system;
  • the control device is used to communicate with the navigation device, and compare the obtained pose parameters of the characteristic part of the osteotomy guide tool in the tool target coordinate system with corresponding standard values to obtain the cut
  • the error value between the pose parameter of the characteristic part of the bone guide tool and the standard value
  • the verification system includes a detection target, and the detection end of the detection target includes a sharp portion, and the sharp portion is used to abut against all of the osteotomy guide tool.
  • the verification system includes a detection target, and the detection end of the detection target includes a plunger, and the width of the plunger is the same as that of the osteotomy of the osteotomy guide tool.
  • the width of the guide groove of the guide block is adapted, and the insertion rod is used for inserting into the guide groove.
  • the verification system includes a detection target, and the detection end of the detection target includes a plug-in card and/or a pin, and the length of the plug-in card is the same as that of the osteotomy.
  • the length of the guide groove of the osteotomy guide block of the guide tool is adapted, and the outer contour size of the pin is matched with the inner size of the guide hole of the osteotomy guide block of the osteotomy guide tool.
  • the verification method, verification system, and detection target of the osteotomy guide tool provided by the present invention, first obtain the pose parameters of a characteristic part of the osteotomy guide tool in the tool target coordinate system, and then The obtained pose parameter of the characteristic part of the osteotomy guide tool is compared with the corresponding standard value, and the error value of the pose parameter of the characteristic part of the osteotomy guide tool and the standard value is obtained, if the error If the value is greater than the expected value, it is determined that the osteotomy guide tool is deformed.
  • the osteotomy guide tool can be verified, and the osteotomy guide tool is prevented from deforming during repeated use or transportation, which affects its positioning accuracy and affects the operation.
  • Fig. 1 is a schematic diagram of knee joint replacement using an orthopedic surgery system according to the first embodiment of the present invention
  • FIG. 2 is a schematic diagram of the osteotomy guide tool provided in the first embodiment of the present invention.
  • Figure 3 is a cross-sectional view taken along the line A-A of the osteotomy guide tool shown in Figure 2;
  • Fig. 4 is a schematic diagram of the verification system of the osteotomy guide tool provided in the first preferred example of the first embodiment of the present invention
  • FIG. 5 is a schematic diagram of obtaining the geometric center point of the osteotomy guide block in the first embodiment of the present invention.
  • FIG. 6 is a schematic diagram of a verification system for an osteotomy guide tool provided in a second preferred example of Embodiment 1 of the present invention.
  • FIG. 7 is a schematic diagram of a verification system for an osteotomy guide tool provided in the first preferred example of the second embodiment of the present invention.
  • FIG. 8 is a schematic diagram of a verification system for an osteotomy guide tool provided in a second preferred example of the second embodiment of the present invention.
  • FIG. 9 is a schematic diagram of the verification system of the osteotomy guide tool provided by the third preferred example of the second embodiment of the present invention.
  • FIG. 10 is a schematic diagram of a verification system for an osteotomy guide tool provided in a fourth preferred example of the second embodiment of the present invention.
  • FIG. 11 is a schematic diagram of a verification system for an osteotomy guide tool provided in a fifth preferred example of the second embodiment of the present invention.
  • FIG. 12 is a schematic diagram of the verification system of the osteotomy guide tool provided by the sixth preferred example of the second embodiment of the present invention.
  • FIG. 13 is a schematic diagram of a verification system for an osteotomy guide tool provided in a seventh preferred example of the second embodiment of the present invention.
  • FIG. 14 is a schematic diagram of the verification system of the osteotomy guide tool provided by the third embodiment of the present invention.
  • 15 is a schematic diagram of the verification process of the verification system of the osteotomy guide tool provided in the third embodiment of the present invention.
  • the singular forms “a”, “an” and “the” include plural items unless the content clearly dictates otherwise.
  • the term “or” is usually used to include the meaning of “and/or” unless the content clearly indicates otherwise.
  • the term “several” is usually used to include “at least one” unless the content clearly indicates otherwise.
  • the term “at least two” is usually used to include “two or more” unless the content clearly indicates otherwise.
  • the terms “first”, “second” and “third” are only used for descriptive purposes, and cannot be understood as indicating or implying relative importance or implicitly indicating the number of indicated technical features. Therefore, the features defined with “first”, “second”, and “third” may explicitly or implicitly include one or at least two of these features.
  • the invention provides a verification method, a verification system and a detection target of an osteotomy guide tool, so as to solve the problem that the deformation of the osteotomy guide tool cannot be recognized in the existing robot-assisted surgery system.
  • the method for verifying the osteotomy guide tool includes: obtaining a pose parameter of a characteristic part of the osteotomy guide tool in the tool target coordinate system; and comparing the obtained pose parameter of the characteristic part of the osteotomy guide tool with the corresponding
  • the standard value of the osteotomy guide tool is compared to obtain the error value between the pose parameter of the characteristic part of the osteotomy guide tool and the standard value; if the error value is greater than the expected value, it is determined that the osteotomy guide tool is deformed.
  • the osteotomy guide tool can be verified, and the osteotomy guide tool is prevented from deforming during repeated use or transportation, which affects its positioning accuracy and affects the operation.
  • Figure 1 is a schematic diagram of a knee joint replacement using an orthopedic surgery system provided by Embodiment 1 of the present invention
  • Figure 2 is a schematic diagram of an osteotomy guide tool provided by Embodiment 1 of the present invention
  • Figure 3 It is a cross-sectional view taken along the AA line of the osteotomy guide tool shown in FIG. 2
  • FIG. 4 is a schematic diagram of the verification system of the osteotomy guide tool provided in the first preferred example of Embodiment 1 of the present invention
  • FIG. 5 It is a schematic diagram of obtaining the geometric center point of the osteotomy guide block in the first embodiment of the present invention
  • FIG. 6 is a schematic diagram of the verification system of the osteotomy guide tool provided in the second preferred example of the first embodiment of the present invention.
  • the first embodiment of the present invention provides an orthopedic surgery system.
  • Figure 1 shows a schematic diagram of knee joint replacement using the orthopedic surgery system.
  • the orthopedic surgery system of the present invention has no particular restrictions on the application environment and can also be applied to Other orthopedic surgery.
  • the orthopedic surgery system is explained by taking the knee joint replacement as an example, but this should not be used as a limitation to the present invention.
  • the orthopedic surgery system includes a control device, a navigation device, a mechanical arm 2 and an osteotomy guide tool 4.
  • the control device is actually a computer, which is equipped with a controller, a main display 8 and a keyboard 10, and more preferably also includes an auxiliary display 7.
  • the contents displayed on the auxiliary display 7 and the main display 8 are the same, for example, both are used to display an image of the osteotomy position.
  • the navigation device may be an electromagnetic positioning navigation device, an optical positioning navigation device or an electromagnetic positioning navigation device.
  • the navigation device is an optical positioning navigation device. Compared with other navigation methods, the measurement accuracy is high, and the positioning accuracy of the osteotomy guide tool can be effectively improved.
  • the optical positioning and navigation device is taken as an example for description, but it is not limited to this.
  • the navigation device specifically includes a navigation marker and a tracker 6.
  • the navigation marker includes a base target 15 and a tool target 3.
  • the base target 15 is fixed, for example, the base target 15 is fixed on the operating trolley 1 It is used to provide a base coordinate system (or called a base target coordinate system), and the tool target 3 is installed on the osteotomy guide tool 4 to track the position of the osteotomy guide tool 4.
  • the osteotomy guide tool 4 is installed at the end of the mechanical arm 2 so as to support the osteotomy guide tool 4 through the mechanical arm 2 and adjust the spatial position and posture of the osteotomy guide tool 4.
  • the tracker 6 is used to capture the signal reflected by the tool target 3 (preferably an optical signal) and record the position of the tool target 3 (that is, the position and posture of the tool target under the base frame system), which is then stored in the controller
  • the computer program controls the movement of the manipulator 2 according to the current position and the desired position of the tool target.
  • the manipulator 2 drives the osteotomy guide tool 4 and the tool target 3 to move, and makes the tool target 3 reach the desired position.
  • the desired position of the tool target 3 corresponds to The desired position of the osteotomy guide tool 4.
  • the automatic positioning of the osteotomy guide tool 4 can be realized, and the tool target 3 will track and feed back the real-time posture parameters of the osteotomy guide tool 4 during the operation, and this can be achieved by controlling the movement of the robotic arm.
  • the adjustment of the position and posture of the osteotomy guide tool 4 not only has a high positioning accuracy, but also supports the osteotomy guide tool 4 through the mechanical arm 2 without fixing the guide tool on the human body, which can avoid damage to the human body. Causes secondary damage.
  • the orthopedic surgery system further includes an operating trolley 1 and a navigation trolley 9.
  • the control device and a part of the navigation device are installed on the navigation trolley 9.
  • the controller is installed inside the navigation trolley 9, and the keyboard 10 is placed on the outside of the navigation trolley 9 for operation.
  • the display 8, the auxiliary display 7 and the tracker 6 are all installed on a bracket, the bracket is vertically fixed on the navigation trolley 9, and the mechanical arm 2 is installed on the operating trolley 1.
  • the operation trolley 1 and the navigation trolley 9 make the whole operation more convenient.
  • the control device is installed in the operating trolley 1.
  • the use process of the orthopedic surgery system of this embodiment roughly includes the following operations:
  • navigation markers also include femoral target 11 and tibia target 13), osteotomy guide tool 4, and other related components (such as sterile bags);
  • the operator 18 imports the CT/MR scan model of the bone of the patient 17 into the computer for preoperative planning, and obtains an osteotomy plan.
  • the osteotomy plan includes, for example, the coordinates of the osteotomy plane, the model of the prosthesis, and the installation position of the prosthesis.
  • the osteotomy plan is determined based on the three-dimensional digital knee joint model, combined with the dimensions of the prosthesis and the installation position of the osteotomy plate, and the osteotomy plan is finally output in the form of a surgical report, which records the cut
  • a series of reference data such as bone plane coordinates, osteotomy amount, osteotomy angle, prosthesis specification, prosthesis installation position, surgical aids, etc., in particular, also includes a series of theoretical explanations, such as the reason for selecting the osteotomy angle, etc.,
  • the three-dimensional knee joint digital model can be displayed on the main display 8, and the operator can input surgical parameters through the keyboard 10 for preoperative planning;
  • the operator 18 uses the target pen to mark the feature points on the patient's femur and tibia (that is, the operator marks multiple femoral anatomical feature points on the patient's femur and multiple tibial anatomical features on the tibia entity. Point), and use the base target 15 as the reference through the navigation device to record the position of all the feature points on the tibia 14 and femur 12 of the patient, and send the positions of all the feature points to the controller, and then the controller passes the feature
  • the matching algorithm obtains the actual position of the femur 12 and the tibia 14, and corresponds to the position of the CT/MR image on the femur 12 and the tibia 14;
  • the actual position of the femur and tibia is linked to the corresponding targets installed on the femur and tibia through the navigation device, so that the femur target 11 and tibia target 13 can track the actual position of the bone in real time, and during the operation, as long as the target and the bone The relative position between the two is fixed, and the bone movement will not affect the operation effect;
  • the preoperatively planned osteotomy plane coordinates are sent to the robotic arm 2.
  • the robotic arm 2 locates the osteotomy plane through the tool target 3 and moves to a predetermined position
  • the robotic arm 2 enters the holding state (ie, the robotic arm). 2 does not move)
  • the operator can use surgical tools 5 such as swing saws or electric drills to perform osteotomy and/or drilling operations through the osteotomy guide tool 4.
  • the operator can install the prosthesis and perform other surgical operations.
  • the navigation marker further includes a femur target 11 and a tibia target 13.
  • the femoral target 11 is used to locate the spatial position and posture of the femur 12, and the tibial target 13 is used to locate the spatial position and posture of the tibia 14.
  • the tool target 3 is mounted on the osteotomy guide tool 4, but in some embodiments, the tool target 3 is mounted on the end joint of the robotic arm 2.
  • the osteotomy guide tool 4 includes an osteotomy guide block 40 and a target mounting portion 30.
  • the target mounting portion 30 is used for supplying The tool target 3 is connected, and the osteotomy guide block 40 is provided with a guide feature.
  • the guide feature may include a guide groove 41, a guide hole 42, or a guide groove 41 and a guide hole 42, that is, an osteotomy guide block
  • the guide feature on 40 can be one or more combinations of guide groove 41 and guide hole 42, so as to provide one or more guides for osteotomy of knee replacement, preferably distal femur, front femur, posterior femur End, femoral front oblique cutting, femoral rear oblique cutting, trochlear groove, femoral prosthesis mounting hole, tibial platform, tibial keel processing work positioning hole osteotomy and drilling operations provide guidance, so that the same osteotomy guide tool can be used Perform multiple functions of osteotomy and perforation operations.
  • the position of the osteotomy guide tool 4 is characterized by the position of the tool target 3, and the position and posture parameter mapping relationship between the tool target 3 and the characteristic part of the osteotomy guide tool 4 is calibrated in advance, for example, according to the guide feature relative to the osteotomy
  • the position information of the center point of the guide block 40 and the coordinate information (or pose parameters) of the center point of the osteotomy guide block 40 in the tool target coordinate system are obtained to obtain the pose parameters of the guide feature in the tool target coordinate system ( Including position and posture), thereby forming a mapping relationship between the position and posture parameters of the guiding feature relative to the tool target 3.
  • the guide groove 41 on the osteotomy guide block 40 includes a 0° guide groove (407 and 411) and a 45° guide groove (408 and 410) , Right leg pulley osteotomy slot 405 and left leg pulley osteotomy slot 412, when cutting the front end of the femur, the front end of the femur, the rear end of the femur, and the rear end of the femur, only need to translate the osteotomy guide block 40 to use the corresponding The guide groove is used to complete these osteotomy operations.
  • the shape of the guide groove 41 is preferably a trumpet shape.
  • FIG. 3 illustrates a cross section of the 0° guide groove 411 along its extension direction. As can be seen in the figure, the two open ends of the 0° guide groove 411 (the upper and lower ends in the figure) ) Is different in size, and the entire 0° guide groove 411 is formed into a trumpet shape to increase the swing range of surgical tools such as a swing saw in the guide groove, so as to be compatible with osteotomy operations of more models of prostheses.
  • this embodiment provides a method for verifying an osteotomy guide tool, which includes:
  • Step S1 Obtain the pose parameters of the characteristic part of the osteotomy guide tool 4 in the tool target coordinate system
  • Step S2 Compare the obtained pose parameters of the characteristic parts of the osteotomy guide tool 4 with corresponding standard values, and obtain the error between the pose parameters of the characteristic parts of the osteotomy guide tool 4 and the standard value If the error value is greater than the expected value, it is determined that the osteotomy guide tool 4 is deformed. By verifying the posture parameters of the characteristic parts of the osteotomy guide tool 4, it can be avoided that the osteotomy guide tool 4 is deformed during repeated use or transportation, which affects its positioning accuracy and affects the operation.
  • this embodiment provides a detection target 100 for verifying an osteotomy guide tool 4.
  • the detection target 100 includes a detection end 101 and a positioning target 102.
  • the detection end 101 is used to contact the characteristic part of the osteotomy guide tool 4, and the positioning target 102 is connected to the detection end 101 to provide The pose parameters of the characteristic part of the osteotomy guide tool in the tool target coordinate system.
  • the positioning target 102 may be an optical reflective ball for the navigation device 6 to track and locate, and the navigation device 6 sends positioning information to the control device, and the control device calculates the pose of the characteristic part in the tool target coordinate system Parameter, if the error value between the pose parameter and the corresponding standard value is greater than the expected value, it is determined that the osteotomy guide tool 4 is deformed.
  • the detection end 101 includes a sharp portion, and the sharp portion is used to abut a characteristic portion of the osteotomy guide tool 4.
  • the characteristic part includes the geometric center point P of the osteotomy guide block 40 of the osteotomy guide tool 4, and the step S1 includes:
  • Step SA1 Obtain the pose parameters of all surfaces of the osteotomy guide block 40 of an osteotomy guide tool 4 in the tool target coordinate system;
  • Step SA2 According to the pose parameters of all the surfaces, the intermediate plane between the opposite surfaces is calculated;
  • Step SA3 Determine the intersection of all the intermediate planes as the geometric center point P of the osteotomy guide block 40, and calculate the geometric center point P of the osteotomy guide block 40 in the tool target coordinate system Pose parameters.
  • the step SA1 includes: using a detection target 100 to obtain a plurality of feature point pose parameters on each surface of the osteotomy guide block 40; According to the pose parameters of the multiple feature points on each surface, the pose parameters of the surface are determined.
  • step SA1 the sharp part of the detection end 101 of the detection target 100 is used to obtain multiple feature points on each surface of the osteotomy guide tool 4.
  • the navigation device 6 can detect To the tool target 3 and send the detected information to the control device.
  • the control device calculates the pose parameters of the feature point in the tool target coordinate system based on the information. Therefore, the surface of the osteotomy guide block 40 is in the navigation system.
  • the pose parameter of the tool target 3 in the navigation system is Rt W A
  • the pose parameter of the tool target 3 in the navigation system is Rt W B
  • At least three of the feature points are not collinear.
  • a plane can be determined by three non-collinear feature points. Therefore, in step SA1, it is preferable to obtain three feature points to determine a surface of the osteotomy guide block 40.
  • those skilled in the art can select more feature points according to actual needs, and there will be some redundant feature points among more feature points, which can further improve the accuracy of the surface obtained by calculation.
  • step SA2 according to the pose parameters of all surfaces of the osteotomy guide block 40 measured in step SA1, the median plane of the opposite surface is obtained. Since the pose parameters of all the surfaces of the osteotomy guide block 40 are acquired, a middle plane can be calculated for every two opposing surfaces. Taking the osteotomy guide block 40 as an example of a rectangular parallelepiped, 3 intermediate planes can be obtained from 6 surfaces. Further, in step SA3, the intersection of the three intermediate planes is the geometric center point P of the osteotomy guide block 40.
  • the osteotomy guide block 40 is not limited to a rectangular parallelepiped, and those skilled in the art can determine the geometric center point P of the osteotomy guide block 40 of other shapes according to the above-mentioned ideas. Since the transformation relationship of the pose parameters of the surface of the osteotomy guide block 40 in the tool target coordinate system has been determined in the previous step SA1, the pose parameters of the geometric center point P in the tool target coordinate system can also be easily obtained. .
  • the standard value is the pose parameter of the expected center point P'of the osteotomy guide block 40 determined by the three-coordinate calibration instrument in the tool target coordinate system. That is, the standard value is the expected center point P'when the osteotomy guide block 40 does not have any deformation, which can be determined by a three-coordinate calibration instrument at the factory or obtained from the design value of the osteotomy guide tool 40.
  • the expected value can be set according to actual needs. If the error value is greater than the expected value, it indicates that the deformation of the osteotomy guide block 40 is large and cannot meet the accuracy requirements of the operation. Therefore, it is determined that the osteotomy guide tool 4 is deformed. The operator can replace the deformed osteotomy guide tool 4 or perform other treatments according to the actual situation.
  • the error value is not greater than the expected value, it indicates that the deformation of the osteotomy guide tool 4 is small and can meet the accuracy requirements of the operation.
  • the operator can further choose whether to update the standard value to the actual cut obtained in step S1.
  • the position and posture parameter values of the characteristic parts of the bone guide tool 4 can be used for subsequent more accurate surgical operations.
  • the step SA1 includes: using a detection target 100 to obtain the pose parameters of the characteristic line on each surface of the osteotomy guide block 40;
  • the pose parameter of the characteristic line on each surface determines the pose parameter of the surface.
  • the characteristic line obtained on any one surface is a curve, and the curve may be, for example, an "S" shape.
  • the sharp part of the detection end 101 of the detection target 100 can be slid in an S-shape on each surface of the osteotomy guide tool 4. Since the characteristic line is a curve, a unique plane can be determined. Therefore, in step SA1, a surface of the osteotomy guide block 40 can be determined.
  • those skilled in the art can select other forms of characteristic lines, such as broken lines, according to actual needs.
  • the pose parameters of the geometric center point of the osteotomy guide block 40 can be calculated, and then the calculated pose parameters of the geometric center point can be compared with a standard The values are compared and an error value is obtained. If the error value is greater than the expected value, it is determined that the osteotomy guide tool is deformed. With this configuration, the osteotomy guide tool can be verified, and the osteotomy guide tool is prevented from deforming during repeated use or transportation, which affects its positioning accuracy and affects the operation.
  • Figure 7 is a schematic diagram of the verification system of the osteotomy guide tool provided in the first preferred example of the second embodiment of the present invention
  • Figure 8 is the second preferred embodiment of the present invention
  • FIG. 9 is a schematic diagram of the verification system of the osteotomy guide tool provided in the third preferred example of the second embodiment of the present invention.
  • FIG. 10 is the second embodiment of the present invention.
  • FIG. 11 is a schematic diagram of a verification system for an osteotomy guide tool provided in the fifth preferred example of the second embodiment of the present invention.
  • FIG. 13 is a schematic diagram of the verification system for the osteotomy guide tool provided by the seventh preferred example of the second embodiment of the present invention.
  • the verification method, verification system, and detection target of the osteotomy guide tool provided in the second embodiment of the present invention are basically the same as the verification method, verification system, and detection target of the osteotomy guide tool provided in the first embodiment. In the following, only the different points are described below.
  • the characteristic part includes the inner surface of the guide groove and/or the guide hole of the osteotomy guide block 40 of the osteotomy guide tool 4;
  • the step S1 includes: inserting the osteotomy into the osteotomy based on the detection end
  • the detection target 100 of the guide groove 41 and/or the guide hole 42 of the guide block 40 is used to obtain the pose parameters of the inner surface of the guide groove 41 and/or the guide hole 42 of the osteotomy guide block 40 in the tool target coordinate system .
  • step S1 may include:
  • Step SB1 Insert the detection end 101 of a detection target 100 into the guide groove 41 and/or guide hole 42 of the osteotomy guide block 40;
  • Step SB2 Obtain the pose parameters of the inner surface of the guide groove 41 and/or the guide hole 42 of the osteotomy guide block 40 in the tool target coordinate system based on the detection target 100.
  • the characteristic part includes the guide groove 41 of the osteotomy guide block 40.
  • the step S1 also includes : Obtain the information that the detection end 101 of the detection target 100 slides in the guide groove 41 along the extending direction of the guide groove 41.
  • the detection end 101 of the detection target 100 includes a sharp portion, as shown in FIG. 7, the sharp portion has a cone shape, and the size of the end connected to the positioning target 102 is preferably It is larger than the opening end of the guide groove 41 and configured in this way, the sharp head end of the sharp part can extend into the opening end of the guide groove 41, and the rest of the detection target 100 is stuck outside the opening end of the guide groove 41. Place the sharp part of the detection end 101 on the open end of the guide groove 41, and slide in the guide groove 41 along the extending direction of the guide groove 41. The navigation device 6 can obtain the position of the open end of the guide groove 41 through the positioning target 102. Pose parameters.
  • each guide groove 41 includes two open ends. Therefore, in practice, it is necessary to obtain the information that the detection end 101 of the detection target 100 slides along the two open ends of each guide groove 41, so as to The pose parameters of the inner surfaces of each of the guide grooves 41 at the two open ends are obtained respectively.
  • the osteotomy guide block 40 includes six guide grooves 41, and each guide groove 41 penetrates two opposite surfaces of the osteotomy guide block 40. In this way, the 12 open ends of the 6 guide grooves 41 need to be inspected separately.
  • the detection target 100 slides along the open ends on the same side of all the guide grooves 41 for detection, then slides along the open ends on the other side of all the guide grooves 41 for detection.
  • the detection target 100 may check the two opposite open ends of each guide groove 41 in pairs according to a preset sequence, or the positions of the open ends of all the guide grooves 41 may be acquired at one time.
  • the pose parameters are further classified by the feature points of all pose parameters to identify each corresponding guide groove 41.
  • each guide slot 41 it is determined in turn whether the pose parameters of each guide slot 41 relative to the two open ends are in the same plane. If the pose parameters of the two open ends of a guide slot 41 are not in the same plane, it means that the corresponding guide slot 41 is seriously deformed. , Prompting the operator that the osteotomy guide tool 4 has been deformed. If the pose parameters of the two opposite open ends of each guide groove 41 are in the same plane, the pose parameters of the open ends of each guide groove 41 are further compared with the corresponding standard values. It should be understood that the standard value corresponding to the pose parameter of the open end of the guide groove 41 should be the expected pose parameter of the open end of the guide groove 41, such as the design value preset at the factory.
  • the error value obtained by comparing the pose parameter of the open end of the guide groove 41 with the corresponding standard value is greater than the expected value, it indicates that the deformation of the guide groove 41 is relatively large, that is, it is determined that the osteotomy guide tool 4 is deformed, and the operator can follow In the actual situation, the deformed osteotomy guide tool 4 is replaced or other treatments are performed. Furthermore, if the error value is not greater than the expected value, the operator can further choose whether to update the standard value to the posture parameter value of the opening end of the guide groove 41 actually obtained in step S1, so that the subsequent operation can be performed more accurately.
  • the detection end 101 of the detection target 100 includes a plunger, and the width of the plunger is consistent with the guide of the osteotomy guide block 40 of the osteotomy guide tool 4
  • the width of the groove 41 is adapted, and the insertion rod is used for inserting into the guide groove 41.
  • the width of the insert rod is adapted to the width of the guide groove 41, and the height of the insert rod is preferably not less than the depth of the guide groove 41.
  • the step of acquiring the information that the detection end 101 of the detection target 100 slides in the guide groove 41 along the extending direction of the guide groove 41 includes: acquiring the detection end 101 of the detection target 100 along each of the guide grooves 41
  • the information of one sliding of the extending direction of the guide groove 41 is used to obtain the pose parameter of the inner surface of each guide groove 41.
  • Other structures and principles of this preferred example are similar to those of the first preferred example of this embodiment, and reference may be made to the description of the first preferred example of this embodiment.
  • the plunger cannot be inserted into the guide groove 41, it means that the guide groove 41 has been deformed. At this time, it can be considered that the position and pose parameters of the characteristic part of the osteotomy guide tool 4 in the tool target coordinate system cannot be obtained. It can be directly determined that the error value between the pose parameter of the characteristic part and the corresponding standard value is greater than the expected value, and the osteotomy guide tool 4 is determined to be deformed.
  • the detection end 101 of the detection target 100 includes more than two plungers, and the distribution of the two or more plungers is consistent with the distribution of the guide grooves 41 of the osteotomy guide block 40, and all the guide grooves 41
  • the lengths in the extension direction are the same, and all the plungers configured in this way can be inserted into the corresponding guide grooves 41 to slide at the same time, so that the pose parameters of more than two guide grooves 41 can be obtained by one sliding.
  • the detection end 101 of the detection target 100 includes a plug-in card, and the length of the plug-in card corresponds to the length of the guide groove of the osteotomy guide block of the osteotomy guide tool. Fit the length.
  • the osteotomy guide block 40 includes three linear guide grooves 41. The lengths of the three guide grooves 41 are different.
  • the lengths of the three plug-in cards are the same as those of the three guide grooves 41. Fit the length.
  • the detection end 101 of the detection target 100 is detachably connected to the positioning target 102.
  • the number of the guide groove 41 is not limited to three, and the shape is not limited to a linear shape, as long as the number and shape of the card correspond to the guide groove 41.
  • the pose parameters of the guide slot 41 can be obtained.
  • the detection end 101 of the detection target 100 includes more than two plug-in cards, and the distribution of the two or more plug-in cards is consistent with the distribution of the guide groove 41 of the osteotomy guide block 40, that is, all plug-in cards can be Insert into the corresponding guide groove 41 at the same time to obtain the pose parameters of more than two guide grooves 41 at the same time.
  • Other structures and principles of this preferred example are similar to those of the first preferred example of this embodiment, and reference may be made to the description of the first preferred example of this embodiment.
  • the detection end 101 of the detection target 100 includes a pin, and the outer contour size of the pin is the same as the osteotomy guide block 40 of the osteotomy guide tool 4
  • the inner size of the guide hole 42 is adapted.
  • the guide hole 42 is a round hole.
  • the pin is in the shape of a cylinder.
  • the outer diameter of the pin is adapted to the inner diameter of the guide hole 42.
  • the guide hole 42 is The axial length of the through hole and the pin is not less than the depth of the guide hole 42. With this configuration, the pin can be inserted from the open end on one side of the guide hole 42 and extend to the open end on the other side.
  • the pin forms a full coverage of the entire guide hole 42 in the axial direction.
  • the pose parameters of the guide hole 42 can be obtained.
  • the pin is detachably connected to the positioning target 102.
  • the detection end 101 of the detection target 100 includes more than two pins, and the distribution of the more than two pins is consistent with the distribution of the guide holes 42 of the osteotomy guide block 40, that is, all the pins can be Insert into the corresponding guide holes 42 at the same time to obtain the pose parameters of more than two guide holes 42 at the same time.
  • Other structures and principles of this preferred example are similar to those of the first preferred example of this embodiment, and reference may be made to the description of the first preferred example of this embodiment.
  • the pins are in the shape of a triangular prism and a quadrangular prism, respectively.
  • the pin can be cylindrical as described in the fourth preferred example of this embodiment, and the cross section of the pin can also be a polygon whose circumscribed circle diameter is the inner diameter of the guide hole 42.
  • the pin is not limited to triangular prism and quadrangular prism, and can also be other polygonal prisms.
  • the guide hole 42 is not limited to a round hole, and it can also be a shape that matches the outer contour of the pin, such as when inserted.
  • the guide hole 42 may be triangular or hexagonal, and those skilled in the art can adapt the needle to the guide hole 42 according to the above-mentioned idea.
  • the pins in the fifth preferred example and the sixth preferred example of this embodiment are also detachably connected to the positioning target 102.
  • the detection end 101 includes both a plug-in card and a plug-in pin, and the length of the plug-in card is equal to the length of the osteotomy guide block 40 of the osteotomy guide tool 4.
  • the length of the guide groove 41 is adapted, and the outer contour size of the pin is adapted to the inner size of the guide hole 42 of the osteotomy guide block 40 of the osteotomy guide tool 4.
  • the osteotomy guide block 40 includes three linear guide grooves 41 and a plurality of guide holes 42.
  • the detection end 101 includes three plug-in cards and a plurality of pins at the same time, and three The distribution of the plug-in card and the multiple pins is consistent with the distribution of the guide groove 41 and the guide hole 42 of the osteotomy guide block 40.
  • all the plug-in cards and pins can be inserted into the corresponding guide groove 41 and the guide hole 42 at the same time.
  • the pose parameters of all the guide grooves 41 and the guide holes 42 can be obtained at one time.
  • the other structures and principles of this preferred example are similar to the first preferred example of this embodiment, and the description of the first preferred example of this embodiment can be referred to.
  • the verification method, verification system, and detection target of the osteotomy guide tool provided in the second embodiment, by acquiring the position and posture parameters of the inner surface of the guide groove 41 and/or the guide hole 42 of the osteotomy guide block 40, The obtained pose parameter is compared with the corresponding standard value to obtain an error value. If the error value is greater than the expected value, it is determined that the osteotomy guide tool 4 is deformed. With this configuration, the guide groove 41 and/or the guide hole 42 of the osteotomy guide block 40 of the osteotomy guide tool 4 can be verified, and the guide groove 41 and/or guide hole 42 of the osteotomy guide tool 4 can be avoided during repeated use or transportation. The guide hole 42 is deformed, which affects its positioning accuracy and affects the operation.
  • FIG. 14 is a schematic diagram of the verification system of the osteotomy guide tool provided in the third embodiment of the present invention.
  • the verification method, verification system, and detection target of the osteotomy guide tool provided in the third embodiment of the present invention are basically the same as the verification method, verification system, and detection target of the osteotomy guide tool provided in the first embodiment. In the following, only the different points are described below.
  • the verification system of the osteotomy guide tool only includes the osteotomy guide tool 4, the tool target 3, the navigation device 6, and the control device, but does not include the detection Target 100.
  • the osteotomy guide tool is used to be arranged at the end of a mechanical arm 2, and the characteristic part includes the geometric center point of the osteotomy guide block 40.
  • step S1 includes:
  • Step SC1 Use the robotic arm 2 to drive the osteotomy guide tool 4 to rotate around the preset geometric center point of the osteotomy guide block 40; the coordinates of the preset geometric center point in the robotic arm coordinate system can be changed from three to three when leaving the factory.
  • the coordinate calibration instrument is determined, or obtained from the design value of the osteotomy guide tool 4.
  • Step SC2 Based on the point cloud information formed during the rotation of the tool target 3 connected to the osteotomy guide tool 4, the position of the geometric center point of the osteotomy guide block 40 in the tool target coordinate system is calculated. Pose parameters.
  • the control device can obtain the rotation trajectory (ie point cloud information) of the tool target 3 through the navigation device 6, and can further obtain the position of the rotation center of the osteotomy guide tool 4 in the tool target coordinate system through calculation, that is, the osteotomy is calculated The pose parameter of the geometric center point of the guide block 40 in the tool target coordinate system.
  • step S2 the obtained pose parameters of the geometric center point of the osteotomy guide block 40 of the osteotomy guide tool 4 and the corresponding standard value (such as the geometrical geometry of the osteotomy guide block 40 determined by a three-coordinate calibration instrument)
  • the position and orientation parameters of the center point in the tool target coordinate system are compared, and the error value of the geometric center point of the geometric center point of the osteotomy guide block 40 of the osteotomy guide tool 4 and the standard value is obtained; If the error value is greater than the expected value, it is determined that the osteotomy guide tool 4 is deformed.
  • the geometric center point of the osteotomy guide block 40 of the osteotomy guide tool 4 in the robot arm coordinate system can be calculated by means of motion trajectories, which can be compared with other implementations.
  • the structure detected by the detection target 100 is used to realize mutual verification.
  • the connection point between the robotic arm 2 and the osteotomy guide tool 4 is taken as the movement point, and all the movement points move in a circular motion around a movement center on a movement plane, and any one
  • the connection between the movement point and the preset geometric center point is a movement connection
  • the connection between the movement center and the preset geometric center point is a center connection
  • the movement connection and the center connection The included angle of is not less than 30°, as shown in Figure 15, the line A between the target ball of any tool and the center point of the guide block is taken as the current posture, and the included angle with a certain rotation axis R selected in the space is greater than or equal to Rotate at 30°, such as one revolution.
  • the motion mode of the robotic arm 2 driving the osteotomy guide tool 4 is abstracted, and the connection point between the robotic arm 2 and the osteotomy guide tool 4 is taken as the movement point.
  • the trajectory of the movement point can actually be around the preset geometric center.
  • the points are spherical.
  • the robot arm 2 can be set to drive the osteotomy guide tool 4 to rotate around a rotation axis passing through a preset geometric center point.
  • the movement point moves in a circle around a movement center on a movement plane.
  • the movement plane is perpendicular to the rotation axis, and the movement center is located on the rotation axis.
  • the connection between the movement point and the preset geometric center point is the movement connection
  • the connection between the movement center and the preset geometric center point is the center connection.
  • the angle between the movement connection and the center connection is limited to not less than 30°.
  • the accuracy of calculating the center of rotation can be improved. It is understandable that when the mechanical arm 2 drives the osteotomy guide tool 4 to rotate around a rotation axis passing through the preset geometric center point, the movement point and the preset geometric center point actually appear as a cone. If the angle is too small, the accuracy of the calculated rotation center is lower.
  • the verification method, verification system, and detection target of the osteotomy guide tool provided by the present invention, first obtain the pose parameters of a characteristic part of the osteotomy guide tool in the tool target coordinate system, and then obtain the The pose parameter of the characteristic part of the osteotomy guide tool is compared with the corresponding standard value, and the error value of the pose parameter of the characteristic part of the osteotomy guide tool and the standard value is obtained. If the error value is greater than Expected value, it is determined that the osteotomy guide tool is deformed. With this configuration, the osteotomy guide tool can be verified, and the osteotomy guide tool is prevented from deforming during repeated use or transportation, which affects its positioning accuracy and affects the operation.

Landscapes

  • Health & Medical Sciences (AREA)
  • Surgery (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Medical Informatics (AREA)
  • General Health & Medical Sciences (AREA)
  • Biomedical Technology (AREA)
  • Heart & Thoracic Surgery (AREA)
  • Nuclear Medicine, Radiotherapy & Molecular Imaging (AREA)
  • Molecular Biology (AREA)
  • Animal Behavior & Ethology (AREA)
  • Veterinary Medicine (AREA)
  • Public Health (AREA)
  • Robotics (AREA)
  • Dentistry (AREA)
  • Oral & Maxillofacial Surgery (AREA)
  • Orthopedic Medicine & Surgery (AREA)
  • Surgical Instruments (AREA)

Abstract

一种截骨导向工具的校验方法、校验系统及检测靶标,首先获取一截骨导向工具(4)的特征部位在工具靶标(3)坐标系中的位姿参数,进而将获得的截骨导向工具(4)的特征部位的位姿参数与对应的标准值进行比较,获得截骨导向工具(4)的特征部位的位姿参数与标准值的误差值,若误差值大于预期值,则确定截骨导向工具(4)发生变形。如此配置,可对截骨导向工具(4)进行校验,避免因截骨导向工具(4)在重复使用或运输过程中发生变形,影响其定位精度而影响手术。

Description

截骨导向工具的校验方法、校验系统及检测靶标 技术领域
本发明涉及机器人辅助手术系统和方法领域,特别涉及一种截骨导向工具的校验方法、校验系统及检测靶标。
背景技术
人工关节置换手术中,需要使用各种定位器、导向器等,用于人工关节安装之前的截骨,以确保截骨操作的精度。现有已提出了不同的方法来帮助外科医生实现在全膝关节置换(TKA)手术过程中截骨导向工具的定位。一般地,现有的机器人辅助手术系统中,在机械臂末端设置截骨导向工具,通过机械臂控制截骨工具导向运动,实现膝关节置换手术过程中截骨导向工具的定位。而在机械臂注册时机械臂系统和定位系统均需要获得截骨导向工具的几何中心点,只有保证机械臂系统和定位系统获得的导块几何中心点为同一点时,机械臂注册得到的转换矩阵才是正确的。当截骨导向工具发生变形时,定位系统无法识别该变形,这样会影响手术定位精度,进而会影响手术结果。
发明内容
本发明的目的在于提供一种截骨导向工具的校验方法、校验系统及检测靶标,以解决现有的机器人辅助手术系统中无法识别截骨导向工具发生变形的问题。
为解决上述技术问题,根据本发明的第一个方面,提供了一种截骨导向工具的校验方法,其包括:
获取一截骨导向工具的特征部位在一工具靶标坐标系中的位姿参数;
将获得的所述截骨导向工具的特征部位的位姿参数与对应的标准值进行比较,获得所述截骨导向工具的所述特征部位的所述位姿参数与所述标准值的误差值;
若所述误差值大于一预期值,则确定所述截骨导向工具发生变形。
可选的,在所述截骨导向工具的校验方法中,所述特征部位包括所述截骨导向工具的截骨导块的几何中心点,所述获取一截骨导向工具的特征部位在工具靶标坐标系中的位姿参数的步骤包括:
获取一截骨导向工具的截骨导块的所有表面在工具靶标坐标系中的位姿参数;
根据所有所述表面的位姿参数,计算得到所有所述表面中每两个相对的表面之间的中间平面;
将所有所述中间平面的交点确定为所述截骨导块的几何中心点,并计算得到所述截骨导块的所述几何中心点在所述工具靶标坐标系中的位姿参数。
可选的,在所述截骨导向工具的校验方法中,所述获取一截骨导向工具的截骨导块的所有表面在一工具靶标坐标系中的位姿参数的步骤包括:
利用一检测靶标在所述截骨导块的每个表面上分别获取多个特征点或特征线的位姿参数;
根据每个表面上的所述多个特征点的位姿参数或所述特征线的位姿参数,确定所述表面的位姿参数。
可选的,在所述截骨导向工具的校验方法中,在任一个表面所获取的所述多个特征点中,至少三个所述特征点不共线,或者,在任一个表面所获取的所述特征线为曲线。
可选的,在所述截骨导向工具的校验方法中,所述特征部位包括所述截骨导向工具的截骨导块的导向槽和/或导向孔的内表面;所述获取一截骨导向工具的特征部位在工具靶标坐标系中的位姿参数的步骤包括:
基于检测端插入所述截骨导块的所述导向槽和/或所述导向孔的检测靶标,来获取所述截骨导块的所述导向槽和/或所述导向孔的所述内表面在所述工具靶标坐标系中的位姿参数。
可选的,在所述截骨导向工具的校验方法中,所述特征部位包括所述截骨导块的所述导向槽,在所述检测靶标的所述检测端插入所述导向槽后,所述获取一截骨导向工具的特征部位在一工具靶标坐标系中的位姿参数的步骤包括:获取所述检测靶标的所述检测端沿所述导向槽的一延伸方向在所述导 向槽中滑动的信息。
可选的,在所述截骨导向工具的校验方法中,所述获取所述检测靶标的所述检测端沿所述导向槽的一延伸方向在所述导向槽中滑动的信息的步骤包括:获取所述检测靶标的所述检测端分别沿每个所述导向槽的两个开口端各滑动一次的信息,以分别获取每个所述导向槽于两个开口端处的内表面的位姿参数。
可选的,在所述截骨导向工具的校验方法中,所述检测靶标的检测端的宽度与所述导向槽的宽度相适配,所述获取所述检测靶标的检测端沿所述导向槽的延伸方向在所述导向槽中滑动的信息的步骤包括:获取所述检测靶标的所述检测端沿每个所述导向槽的延伸方向滑动一次的信息,以获取每个所述导向槽的所述内表面的位姿参数。
可选的,在所述截骨导向工具的校验方法中,所述将获得的所述截骨导向工具的特征部位的位姿参数与对应的标准值进行比较的步骤包括:判断所述导向槽于两个开口端处的内表面的位姿参数是否在同一平面内;
若否,则确定所述导向槽发生变形;
若是,则将所述导向槽于两个开口端处的所述内表面的所述位姿参数与所述导向槽的标准值进行比较。
可选的,在所述截骨导向工具的校验方法中,所述截骨导向工具用以设置于一机械臂的末端,所述特征部位包括所述截骨导向工具的截骨导块的几何中心点;所述获取一截骨导向工具的特征部位在工具靶标坐标系中的位姿参数的步骤包括:
以所述机械臂驱动所述截骨导向工具绕所述截骨导块的一预设几何中心点转动;
基于与所述截骨导向工具相连接的工具靶标在转动中形成的点云信息,计算得到所述截骨导块的所述几何中心点在所述工具靶标坐标系中的位姿参数。
可选的,在所述截骨导向工具的校验方法中,在所述机械臂驱动所述截骨导向工具绕所述截骨导块的预设几何中心点转动的过程中,以所述机械臂 与所述截骨导向工具的连接点为运动点,所有所述运动点在一运动平面上绕一运动中心呈圆周运动,任一所述运动点与所述预设几何中心点的连线为运动连线,所述运动中心与所述预设几何中心点的连线为中心连线,所述运动连线与所述中心连线的夹角不小于30°。
为解决上述技术问题,根据本发明的第二个方面,还提供了一种检测靶标,其包括:
一检测端,用以接触所述截骨导向工具的特征部位;以及
一定位靶,与所述检测端连接,用以提供所述截骨导向工具的所述特征部位在一工具靶标坐标系中的位姿参数。
可选的,在所述检测靶标中,所述检测端包括尖锐部,所述尖锐部用以抵靠所述截骨导向工具的所述特征部位。
可选的,在所述检测靶标中,所述检测端包括插杆,所述插杆的宽度与所述截骨导向工具的截骨导块的导向槽的宽度相适配,所述插杆用以插入所述导向槽。
可选的,在所述检测靶标中,所述检测端包括插卡和/或插针,所述插卡的长度与所述截骨导向工具的截骨导块的导向槽的长度相适配,所述插针的外轮廓尺寸与所述截骨导向工具的截骨导块的导向孔的内尺寸相适配。
可选的,在所述检测靶标中,所述检测端可拆卸地与所述定位靶连接
为解决上述技术问题,根据本发明的第三个方面,还提供了一种校验系统,其包括:
截骨导向工具,所述截骨导向工具包括截骨导块以及与所述截骨导块连接的靶标安装部;
工具靶标,用于与所述靶标安装部相连接;
导航装置,用于与所述工具靶标通信连接,并用以获取所述截骨导向工具的特征部位在所述工具靶标坐标系中的位姿参数;以及
控制装置,用于与所述导航装置通信连接,并将获得的所述截骨导向工具的特征部位在所述工具靶标坐标系中的位姿参数与对应的标准值进行比较,获得所述截骨导向工具的所述特征部位的所述位姿参数与所述标准值的 误差值,
若所述误差值大于一预期值,则确定所述截骨导向工具发生变形。
可选的,在所述校验系统中,所述校验系统包括检测靶标,所述检测靶标的所述检测端包括尖锐部,所述尖锐部用以抵靠所述截骨导向工具的所述特征部位。
可选的,在所述校验系统中,所述校验系统包括检测靶标,所述检测靶标的所述检测端包括插杆,所述插杆的宽度与所述截骨导向工具的截骨导块的导向槽的宽度相适配,所述插杆用以插入所述导向槽。
可选的,在所述校验系统中,所述校验系统包括检测靶标,所述检测靶标的所述检测端包括插卡和/或插针,所述插卡的长度与所述截骨导向工具的截骨导块的导向槽的长度相适配,所述插针的外轮廓尺寸与所述截骨导向工具的所述截骨导块的导向孔的内尺寸相适配。
综上所述,在本发明提供的截骨导向工具的校验方法、校验系统及检测靶标中,首先获取一截骨导向工具的特征部位在工具靶标坐标系中的位姿参数,进而将获得的所述截骨导向工具的特征部位的位姿参数与对应的标准值进行比较,获得所述截骨导向工具的特征部位的位姿参数与所述标准值的误差值,若所述误差值大于预期值,则确定所述截骨导向工具发生变形。如此配置,可对截骨导向工具进行校验,避免因截骨导向工具在重复使用或运输过程中发生变形,影响其定位精度而影响手术。
附图说明
本领域的普通技术人员将会理解,提供的附图用于更好地理解本发明,而不对本发明的范围构成任何限定。其中:
图1是本发明实施例一提供的运用骨科手术系统进行膝关节置换的示意图;
图2是本发明实施例一提供的截骨导向工具的示意图;
图3是沿图2所示的截骨导向工具的A-A线进行剖切得到的剖视图;
图4是本发明实施例一之第一个优选示例提供的截骨导向工具的校验系 统的示意图;
图5是本发明实施例一获取截骨导块的几何中心点的示意图;
图6是本发明实施例一之第二个优选示例提供的截骨导向工具的校验系统的示意图;
图7是本发明实施例二之第一个优选示例提供的截骨导向工具的校验系统的示意图;
图8是本发明实施例二之第二个优选示例提供的截骨导向工具的校验系统的示意图;
图9是本发明实施例二之第三个优选示例提供的截骨导向工具的校验系统的示意图;
图10是本发明实施例二之第四个优选示例提供的截骨导向工具的校验系统的示意图;
图11是本发明实施例二之第五个优选示例提供的截骨导向工具的校验系统的示意图;
图12是本发明实施例二之第六个优选示例提供的截骨导向工具的校验系统的示意图;
图13是是本发明实施例二之第七个优选示例提供的截骨导向工具的校验系统的示意图;
图14是本发明实施例三提供的截骨导向工具的校验系统的示意图;
图15是本发明实施例三提供的截骨导向工具的校验系统的校验过程示意图。
附图中:
1-手术台车;2-机械臂;3-工具靶标;4-截骨导向工具;5-摆锯;6-NDI导航设备;7-辅助显示器;8-主显示器;9-导航台车;10-键盘;11-股骨靶标;12-股骨;13-胫骨靶标;14-胫骨;15-基座靶标;17-患者;18-操作者;30-靶标安装部;40-截骨导块;41-导向槽;42-导向孔;405-右腿滑车截骨槽;407、411-0°导向槽;408、410-45°导向槽;412-左腿滑车截骨槽;
100-检测靶标;101-检测端;102-定位靶。
具体实施方式
为使本发明的目的、优点和特征更加清楚,以下结合附图和具体实施例对本发明作进一步详细说明。需说明的是,附图均采用非常简化的形式且未按比例绘制,仅用以方便、明晰地辅助说明本发明实施例的目的。此外,附图所展示的结构往往是实际结构的一部分。特别的,各附图需要展示的侧重点不同,有时会采用不同的比例。
如在本发明中所使用的,单数形式“一”、“一个”以及“该”包括复数对象,除非内容另外明确指出外。术语“或”通常是以包括“和/或”的含义而进行使用的,除非内容另外明确指出外。术语“若干”通常是以包括“至少一个”的含义而进行使用的,除非内容另外明确指出外。术语“至少两个”通常是以包括“两个或两个以上”的含义而进行使用的,除非内容另外明确指出外。此外,术语“第一”、“第二”、“第三”仅用于描述目的,而不能理解为指示或暗示相对重要性或者隐含指明所指示的技术特征的数量。由此,限定有“第一”、“第二”、“第三”的特征可以明示或者隐含地包括一个或者至少两个该特征。
本发明提供一种截骨导向工具的校验方法、校验系统及检测靶标,以解决现有的机器人辅助手术系统中无法识别截骨导向工具发生变形的问题。
所述截骨导向工具的校验方法包括:获取一截骨导向工具的特征部位在工具靶标坐标系中的位姿参数;将获得的所述截骨导向工具的特征部位的位姿参数与对应的标准值进行比较,获得所述截骨导向工具的特征部位的位姿参数与所述标准值的误差值;若所述误差值大于预期值,则确定所述截骨导向工具发生变形。
如此配置,可对截骨导向工具进行校验,避免因截骨导向工具在重复使用或运输过程中发生变形,影响其定位精度而影响手术。
以下参考附图进行描述。
【实施例一】
请参考图1至图6,其中,图1是本发明实施例一提供的运用骨科手术系统进行膝关节置换的示意图;图2是本发明实施例一提供的截骨导向工具的 示意图;图3是沿图2所示的截骨导向工具的A-A线进行剖切得到的剖视图;图4是本发明实施例一之第一个优选示例提供的截骨导向工具的校验系统的示意图;图5是本发明实施例一获取截骨导块的几何中心点的示意图;图6是本发明实施例一之第二个优选示例提供的截骨导向工具的校验系统的示意图。
本发明实施例一提供一种骨科手术系统,图1所示为利用所述骨科手术系统进行膝关节置换的示意,然而,本发明的骨科手术系统对应用环境没有特别的限制,也可应用于其他的骨科手术。以下描述中,以用于膝关节置换为示例对骨科手术系统进行说明,但不应以此作为对本发明的限定。
如图1所示,所述骨科手术系统包括控制装置、导航装置、机械臂2以及截骨导向工具4。所述控制装置实际为一台计算机,该计算机配置了控制器、主显示器8和键盘10,更优选还包括辅助显示器7。本实施例中,所述辅助显示器7和主显示器8所显示的内容一致,例如均用于显示截骨位置图像。所述导航装置可以是电磁定位导航装置、光学定位导航装置或者电磁定位导航装置。优选的,所述导航装置为光学定位导航装置,相比于其他的导航方式,测量精度高,可有效提高截骨导向工具的定位精度。以下描述中,以光学定位导航装置作为示例进行说明,但不以此为限。
所述导航装置具体包括导航标志物和跟踪仪6,所述导航标志物包括基座靶标15和工具靶标3,基座靶标15固定不动,例如基座靶标15被固定在手术台车1上而用于提供一个基坐标系(或称基座靶标坐标系),而工具靶标3安装在截骨导向工具4上而用于跟踪截骨导向工具4的位置。所述截骨导向工具4安装在机械臂2的末端,从而通过机械臂2来支撑截骨导向工具4,并调整截骨导向工具4的空间位置和姿态。
实际中,利用跟踪仪6来捕捉工具靶标3反射的信号(优选光学信号)并记录工具靶标3的位置(即工具靶标在基座标系下的位置和姿态),再由控制器内存储的计算机程序根据工具靶标的当前位置和期望位置,控制机械臂2运动,机械臂2驱动截骨导向工具4和工具靶标3运动,并使工具靶标3到达期望位置,工具靶标3的期望位置对应于截骨导向工具4的期望位置。
因此,对于骨科手术系统的应用,可实现截骨导向工具4的自动定位,且手术过程中由工具靶标3跟踪并反馈截骨导向工具4的实时位姿参数,并通过控制机械臂的运动实现截骨导向工具4的位置和姿态的调整,不仅截骨导向工具4的定位精度高,而且通过机械臂2来支撑截骨导向工具4,而无需将导向工具固定在人体上,可避免对人体产生二次伤害。
一般的,所述骨科手术系统还包括手术台车1和导航台车9。所述控制装置和一部分所述导航装置安装在导航台车9上,例如所述控制器安装在导航台车9的内部,所述键盘10放置在导航台车9的外部进行操作,所述主显示器8、辅助显示器7和跟踪仪6均安装在一个支架上,所述支架竖直固定在导航台车9上,而所述机械臂2安装在手术台车1上。手术台车1和导航台车9的使用,使整个手术操作更为方便。在一些实施例中,所述控制装置安装在手术台车1中。
在执行膝关节置换手术时,本实施例的骨科手术系统的使用过程大致包括以下操作:
首先,将手术台车1及导航台车9移动至病床旁边合适的位置;
然后,安装导航标志物(导航标志物还包括股骨靶标11、胫骨靶标13)、截骨导向工具4以及其他相关部件(如无菌袋);
之后,操作者18将患者17的骨头CT/MR扫描模型导入所述计算机进行术前规划,得到截骨方案,该截骨方案例如包括截骨平面坐标、假体的型号以及假体的安装方位等信息;具体地,根据CT/MR扫描得到的患者膝关节影像数据,创建三维膝关节数字模型,进而根据三维膝关节数字模型创建截骨方案,以便手术操作者根据截骨方案进行术前评估,更具体地,基于三维膝关节数字模型,并结合得到的假体的尺寸规格以及截骨板的安装位置等确定截骨方案,所述截骨方案最终以手术报告形式输出,其记录有截骨平面坐标、截骨量、截骨角度、假体规格、假体的安装位置、手术辅助工具等一系列参考数据,特别还包括一系列理论说明,如选取该截骨角度的原因说明等,以为手术操作者提供参考;其中,三维膝关节数字模型可通过主显示器8进行显示,且操作者可通过键盘10输入手术参数,以便进行术前规划;
术前评估后,操作者18再使用靶标笔在患者的股骨及胫骨上标定特征点(即操作者于患者的股骨实体上标定多个股骨解剖特征点,在胫骨实体上标定多个胫骨解剖特征点),并通过导航装置以基座靶标15为基准,记录患者胫骨14和股骨12上所有特征点的位置,并将所有特征点的位置发送给所述控制器,然后所述控制器通过特征匹配算法得到股骨12及胫骨14的实际方位,并与股骨12及胫骨14上的CT/MR图像方位相对应;
随后,通过导航装置将股骨及胫骨的实际方位与安装在股骨及胫骨上的相应靶标相联系,使得股骨靶标11和胫骨靶标13可以实时跟踪骨头的实际位置,且手术过程中,只要靶标与骨头间的相对位置固定,骨头移动不会影响手术效果;
进而通过导航装置将术前规划的截骨平面坐标发送给机械臂2,所述机械臂2通过工具靶标3定位截骨平面并运动到预定位置后,使机械臂2进入保持状态(即机械臂2不动),此后,操作者即可使用摆锯或电钻等手术工具5通过截骨导向工具4进行截骨和/或钻孔操作。完成截骨及钻孔操作后,操作者即可安装假体及进行其他手术操作。
本实施例中,所述导航标志物还包括股骨靶标11和胫骨靶标13。其中股骨靶标11用于定位股骨12的空间位置和姿态,胫骨靶标13用于定位胫骨14的空间位置和姿态。如前所说的,所述工具靶标3安装在截骨导向工具4上,但在一些实施例中,所述工具靶标3安装在机械臂2的末端关节上。
基于上述骨科手术系统,可实现机器人辅助手术,帮助操作者定位需截骨的位置,以便于操作者实施截骨。请参考图2和图3,其示意了本实施例提供的一种截骨导向工具4,所述截骨导向工具4包括截骨导块40和靶标安装部30,靶标安装部30用于供工具靶标3连接,该截骨导块40上设置有导向特征,导向特征可以包括导向槽41,也可以包括导向孔42,或者包括导向槽41和导向孔42,也就是说,截骨导块40上的导向特征可以是导向槽41与导向孔42的一种或多种组合,从而为膝关节置换的截骨操作提供一种或多种导向,优选为股骨远端、股骨前端、股骨后端、股骨前端斜切、股骨后端斜切、滑车槽、股骨假体安装孔、胫骨平台、胫骨龙骨处理工作定位孔的截骨及钻 孔操作提供导向,从而使同一个截骨导向工具可以进行多种功能的截骨及打孔操作。实际中,通过工具靶标3的位置来表征截骨导向工具4的位置,并事先标定工具靶标3与截骨导向工具4的特征部位间的位姿参数映射关系,如根据导向特征相对于截骨导块40的中心点的位置信息,以及截骨导块40的中心点在工具靶标坐标系下的坐标信息(或称位姿参数),获得导向特征在工具靶标坐标系下的位姿参数(包括位置和姿态),从而形成导向特征相对于工具靶标3的位姿参数映射关系。
为了增大截骨导向工具所适用假体的范围,如图2所示,截骨导块40上的导向槽41包括0°导向槽(407及411)、45°导向槽(408及410)、右腿滑车截骨槽405以及左腿滑车截骨槽412,在截取股骨前端、股骨前端斜切、股骨后端及股骨后端斜切时,仅需平移截骨导块40即可利用对应的导向槽来完成这些截骨操作,这样一来,不会使位于截骨导块40上的工具靶标3发生较大的位姿参数变化,从而可以减小机械臂2的传动误差以及靶标位置跟踪误差,提高定位精度。导向槽41的形状优选为喇叭形,图3示意了0°导向槽411沿着其延伸方向的剖面,如图可以看出,该0°导向槽411的两个开口端(图中上下两端)的大小不同,整个0°导向槽411形成喇叭形,以此增大摆锯等手术工具在导向槽中的摆动范围,从而兼容更多型号假体的截骨操作。
然而如前所述,由于骨科手术系统需要基于截骨导向工具4上的特征部位的位姿参数进行定位,以供手术操作,故一旦截骨导向工具4上的特征部位产生变形,则骨科手术系统将由于无法识别截骨导向工具4上的特征部位的变形而影响定位精度。由此,本实施例提供一种截骨导向工具的校验方法,其包括:
步骤S1:获取一截骨导向工具4的特征部位在工具靶标坐标系中的位姿参数;
步骤S2:将获得的所述截骨导向工具4的特征部位的位姿参数与对应的标准值进行比较,获得所述截骨导向工具4的特征部位的位姿参数与所述标准值的误差值;若所述误差值大于预期值,则确定所述截骨导向工具4发生变形。通过对截骨导向工具4的特征部位的位姿参数进行校验,可避免因截 骨导向工具4在重复使用或运输过程中发生变形,影响其定位精度而影响手术。
基于上述思想,本实施例提供一种检测靶标100,用以校验一截骨导向工具4。所述检测靶标100包括:检测端101以及定位靶102,所述检测端101用以接触所述截骨导向工具4的特征部位,所述定位靶102与所述检测端101连接,用以提供所述截骨导向工具的特征部位在工具靶标坐标系中的位姿参数。定位靶102如可为光学反光球,用以供导航装置6跟踪定位,并且所述导航装置6将定位信息发送给控制装置,控制装置计算得到所述特征部位在工具靶标坐标系中的位姿参数,若所述位姿参数与对应的标准值的误差值大于预期值,则确定所述截骨导向工具4发生变形。优选的,所述检测端101包括尖锐部,所述尖锐部用以抵靠所述截骨导向工具4的特征部位。
优选的,所述特征部位包括所述截骨导向工具4的截骨导块40的几何中心点P,所述步骤S1包括:
步骤SA1:获取一截骨导向工具4的截骨导块40的所有表面在工具靶标坐标系中的位姿参数;
步骤SA2:根据所有所述表面的位姿参数,计算得到相对的表面之间的中间平面;
步骤SA3:将所有所述中间平面的交点确定为所述截骨导块40的几何中心点P,并计算得到所述截骨导块40的几何中心点P在所述工具靶标坐标系中的位姿参数。
请参考图4,在本实施例第一个优选示例中,所述步骤SA1包括:利用一检测靶标100在所述截骨导块40的每个表面上分别获取多个特征点位姿参数;根据每个表面上的所述多个特征点的位姿参数,确定所述表面的位姿参数。
具体的,在步骤SA1中,利用检测靶标100的检测端101的尖锐部在截骨导向工具4每个表面上获取多个特征点,检测靶标100获取特征点的过程中,导航装置6可检测到工具靶标3并将检测到的信息发送给控制装置,控制装置根据该信息计算得到所述特征点在工具靶标坐标系中的位姿参数,因 此,截骨导块40的表面在导航系统中的位姿参数是Rt W A,工具靶标3在导航系统中的位姿参数是Rt W B,通过坐标变化进而可获得截骨导块40的表面在工具靶标坐标系下的位姿参数Rt B A=Rt W A-Rt W B
优选的,在任一个表面所获取的所述多个特征点中,至少三个所述特征点不共线。一般的,通过三个不共线的特征点即可确定一个平面,因此在步骤SA1中,优选获取三个特征点即可实现确定截骨导块40的一个表面。当然本领域技术人员可根据实际需要,选取更多的特征点,更多的特征点中会有一些冗余的特征点,能进一步提高计算得到的表面的精度。
请参考图5,在步骤SA2中,根据步骤SA1所测得的截骨导块40的所有表面的位姿参数,获得相对的表面的中间平面。由于获取了截骨导块40的所有表面的位姿参数,每两个相对的表面可计算得到一个中间平面。以截骨导块40为长方体示例,则6个表面可获得3个中间平面。进一步,步骤SA3中,该3个中间平面的交点即为截骨导块40的几何中心点P。当然截骨导块40并不限于为长方体,本领域技术人员可根据上述思想,实现确定其它形状的截骨导块40的几何中心点P。由于之前的步骤SA1中已经确定了截骨导块40的表面在工具靶标坐标系下的位姿参数的变换关系,因此也可以容易地得到几何中心点P在工具靶标坐标系下的位姿参数。
进一步的,在步骤S2中,标准值为利用三坐标标定仪器确定出来的截骨导块40的预期中心点P’在工具靶标坐标系下的位姿参数。亦即该标准值为截骨导块40无任何变形的情况下的预期中心点P’,其可以在出厂时由三坐标标定仪器确定,或由截骨导向工具40的设计值获得。预期值则可根据实际需要进行设定,若误差值大于预期值,则说明截骨导块40的变形较大,已无法适应手术的精度要求,则确定所述截骨导向工具4发生变形,操作者可根据实际情况对发生变形的截骨导向工具4进行更换或进行其他处理。更进一步的,若误差值不大于预期值,则表明截骨导向工具4的变形较小,可以满足手术的精度要求,操作者可进一步选择是否将标准值更新为在步骤S1中实际获得的截骨导向工具4的特征部位的位姿参数值,以便后续更准确地实施手术操作。
请参考图6,在本实施例第二个优选示例中,所述步骤SA1包括:利用一检测靶标100在所述截骨导块40的每个表面上分别获取特征线的位姿参数;根据每个表面上的所述特征线的位姿参数,确定所述表面的位姿参数。在一些实施例中,在任一个表面所获取的所述特征线为曲线,所述曲线例如可为“S”形等。实际中,可将检测靶标100检测端101的尖锐部在截骨导向工具4每个表面上呈S形滑动。由于特征线为曲线,故可确定唯一的平面,因此在步骤SA1中即可实现确定截骨导块40的一个表面。当然本领域技术人员可根据实际需要,选取其它形式的特征线,如折线等。本实施例第二个优选示例的其余方法步骤与本实施例第一个优选示例,可参考上述说明。
通过上述方法,通过获取截骨导块40的表面的位姿参数,可计算得到截骨导块40的几何中心点的位姿参数,进而将计算得到的几何中心点的位姿参数与一标准值进行比较并获得一误差值,若所述误差值大于预期值,则确定所述截骨导向工具发生变形。如此配置,可对截骨导向工具进行校验,避免因截骨导向工具在重复使用或运输过程中发生变形,影响其定位精度而影响手术。
【实施例二】
请参考图7至图13,其中,图7是本发明实施例二之第一个优选示例提供的截骨导向工具的校验系统的示意图,图8是本发明实施例二之第二个优选示例提供的截骨导向工具的校验系统的示意图,图9是本发明实施例二之第三个优选示例提供的截骨导向工具的校验系统的示意图,图10是本发明实施例二之第四个优选示例提供的截骨导向工具的校验系统的示意图,图11是本发明实施例二之第五个优选示例提供的截骨导向工具的校验系统的示意图,图12是本发明实施例二之第六个优选示例提供的截骨导向工具的校验系统的示意图,图13是是本发明实施例二之第七个优选示例提供的截骨导向工具的校验系统的示意图。
本发明实施例二提供的截骨导向工具的校验方法、校验系统及检测靶标与实施例一提供的截骨导向工具的校验方法、校验系统及检测靶标基本相同,对于相同部分不再叙述,以下仅针对不同点进行描述。
在本实施例中,所述特征部位包括所述截骨导向工具4的截骨导块40的导向槽和/或导向孔的内表面;所述步骤S1包括:基于检测端插入所述截骨导块40的导向槽41和/或导向孔42的检测靶标100,来获取所述截骨导块40的导向槽41和/或导向孔42的内表面在工具靶标坐标系中的位姿参数。具体的,步骤S1可包括:
步骤SB1:将一检测靶标100的检测端101插入所述截骨导块40的导向槽41和/或导向孔42;
步骤SB2:基于所述检测靶标100获取所述截骨导块40的导向槽41和/或导向孔42的内表面在工具靶标坐标系中的位姿参数。
请参考图7,在一些实施例中,所述特征部位包括所述截骨导块40的导向槽41,在步骤SB1中将检测靶标100插入所述导向槽41后,所述步骤S1还包括:获取所述检测靶标100的检测端101沿所述导向槽41的延伸方向在所述导向槽41中滑动的信息。
在本实施例第一个优选示例中,检测靶标100的检测端101包括一尖锐部,如图7所示,该尖锐部为一锥形,该尖锐部与定位靶102连接的一端的尺寸优选大于导向槽41的开口端,如此配置,尖锐部的尖锐的头端可伸入导向槽41的开口端,而检测靶标100的其余部分则被卡在导向槽41的开口端之外。将检测端101的尖锐部置于导向槽41的开口端,沿所述导向槽41的延伸方向在所述导向槽41中滑动,导航装置6即可通过定位靶102获得导向槽41的开口端的位姿参数。若导向槽41的开口端产生了歪曲等变形,即可通过检测靶标100的滑动而检测出来。实际中,每个导向槽41均包括两个开口端,因此实际中需获取所述检测靶标100的检测端101分别沿每个所述导向槽41的两个开口端各滑动一次的信息,以分别获取每个所述导向槽41于两个开口端处的内表面的位姿参数。在一个示范性的实施例中,截骨导块40包括6条导向槽41,每条导向槽41均贯通截骨导块40相对的两个表面。如此,则需要对该6条导向槽41的12个开口端分别进行检测。可选的,检测靶标100沿所有导向槽41的同侧的开口端滑动检测后,再沿所有导向槽41的另一侧的开口端滑动检测。可选的,在另一些实施例中,检测靶标100可 根据预设的顺序,成对地校验每个导向槽41的相对两个开口端,也可以一次获取所有导向槽41的开口端的位姿参数,进而通过所有位姿参数的特征点分类,识别各个对应的导向槽41。
进一步的,依次判断每个导向槽41相对两个开口端的位姿参数是否在同一平面内,若一个导向槽41的两个开口端的位姿参数不在同一平面,则说明对应的导向槽41变形严重,提示操作者所述截骨导向工具4已发生变形。而若每个导向槽41的相对两个开口端的位姿参数在同一平面内,则进一步对每个导向槽41的开口端的位姿参数与对应的标准值进行比较。需理解,这里导向槽41的开口端的位姿参数所对应的标准值,应为导向槽41的开口端预期的位姿参数,如出厂时所预设的设计值。若导向槽41的开口端的位姿参数与对应的标准值比较所得的误差值大于预期值,则说明导向槽41的变形较大,即确定所述截骨导向工具4发生变形,操作者可根据实际情况对发生变形的截骨导向工具4进行更换或进行其他处理。更进一步的,若误差值不大于预期值,操作者可进一步选择是否将标准值更新为在步骤S1中实际获得的导向槽41的开口端的位姿参数值,以便后续更准确地实施手术操作。
请参考图8,在本实施例第二个优选示例中,检测靶标100的检测端101包括一插杆,所述插杆的宽度与所述截骨导向工具4的截骨导块40的导向槽41的宽度相适配,所述插杆用以插入所述导向槽41。如图7所示,该插杆的宽度与导向槽41的宽度相适配,插杆的高度则优选不小于导向槽41的深度,如此配置,插杆可以从导向槽41一侧的开口端插入,并延伸至另一侧开口端,插杆在高度方向上形成对整个导向槽41侧壁的全面覆盖。实际使用中,获取所述检测靶标100的检测端101沿所述导向槽41的延伸方向在所述导向槽41中滑动的信息的步骤包括:获取所述检测靶标100的检测端101沿每个所述导向槽41的延伸方向滑动一次的信息,以获取每个所述导向槽41的内表面的位姿参数。实际中,将插杆插入导向槽41后,沿导向槽41的延伸方向从一端向另一端缓慢移动,如此配置,一个导向槽41的两个内表面可以在一次校验中获得。本优选示例的其它结构和原理与本实施例第一个优选示例类似,可参考本实施例第一个优选示例的说明。需要说明的,倘若插杆无法插入导 向槽41,则说明导向槽41已发生了变形,此时可认为截骨导向工具4的特征部位在工具靶标坐标系中的位姿参数获取不到,此时可直接认定该特征部位的位姿参数与对应的标准值的误差值大于预期值,而确定截骨导向工具4发生变形。在另外的一些示例中,检测靶标100的检测端101包括两个以上的插杆,且两个以上的插杆的分布与截骨导块40的导向槽41的分布一致,且所有导向槽41在延伸方向上的长度相同,如此配置所有插杆可同时插入对应的导向槽41内进行滑动,从而可以通过一次滑动获取两个以上导向槽41的位姿参数。
请参考图9,在本实施例第三个优选示例中,检测靶标100的检测端101包括一插卡,所述插卡的长度与所述截骨导向工具的截骨导块的导向槽的长度相适配。如图9所示,截骨导块40包括三个直线形的导向槽41,该三个导向槽41的长度不同,与其相对应的,三个插卡的长度分别与三个导向槽41的长度相适配。可选的,检测靶标100的检测端101可拆卸地与定位靶102连接。如此配置,在一次校验过程中,可根据所需要校验的不同的导向槽41,更换不同的插卡,而仅需对检测靶标100进行一次标定即可。可以理解的,在其它的一些实施例中,导向槽41的数量不限于三个,形状也不限于直线形,只要插卡的数量与形状与导向槽41相对应即可。实际使用中,将要插卡插入导向槽41后,即可获得导向槽41的位姿参数。在另外的一些示例中,检测靶标100的检测端101包括两个以上的插卡,且两个以上的插卡的分布与截骨导块40的导向槽41的分布一致,即所有插卡可同时插入对应的导向槽41内,以同时获取两个以上的导向槽41的位姿参数。本优选示例的其它结构和原理与本实施例第一个优选示例类似,可参考本实施例第一个优选示例的说明。
请参考图10,在本实施例第四个优选示例中,检测靶标100的检测端101包括一插针,所述插针的外轮廓尺寸与所述截骨导向工具4的截骨导块40的导向孔42的内尺寸相适配。如图10所示,导向孔42为一圆孔,与之相匹配的,插针为一圆柱体形,该插针的外径与导向孔42的内径相适配,优选的,导向孔42为通孔,插针的轴向长度不小于导向孔42的深度。如此配置,插 针可以从导向孔42一侧的开口端插入,并延伸至另一侧开口端,插针在轴向上形成对整个导向孔42的全面覆盖。实际使用中,将插针插入导向孔42后,即可获得导向孔42的位姿参数。可选的,插针可拆卸地与定位靶102连接。如此配置,当截骨导块40同时包括多个不同规格的导向孔42或者同时包括导向孔42与导向槽41时,可通过对不同规格插针的拆卸替换,或者通过插针与插卡的拆卸替换,实现在一次校验过程中,仅需对检测靶标100进行一次标定即可。在另外的一些示例中,检测靶标100的检测端101包括两个以上的插针,且两个以上的插针的分布与截骨导块40的导向孔42的分布一致,即所有插针可同时插入对应的导向孔42内,以同时获取两个以上的导向孔42的位姿参数。本优选示例的其它结构和原理与本实施例第一个优选示例类似,可参考本实施例第一个优选示例的说明。
请参考图11和图12,在本实施例第五个优选示例和第六个优选示例中,插针分别为三棱柱形和四棱柱形。当导向孔42为圆形时,插针除了可以为与本实施例第四个优选示例所述的圆柱形,插针的横截面还可以是外接圆直径为导向孔42内径的多边形,由此插针并不限于三棱柱形和四棱柱形,还可以是其它多边形棱柱,导向孔42也不局限于为圆孔,其也可以是与插针的外轮廓相适配的形状,如当插针为三棱柱形时,导向孔42可以为三角形或六边形等,本领域技术人员可根据上述思想对插针与导向孔42进行适配。与本实施例第四个优选示例同样的,本实施例第五个优选示例和第六个优选示例中的插针亦为可拆卸地与定位靶102连接。
请参考图13,在本实施例第七个优选示例中,所述检测端101同时包括插卡和插针,所述插卡的长度与所述截骨导向工具4的截骨导块40的导向槽41的长度相适配,所述插针的外轮廓尺寸与所述截骨导向工具4的截骨导块40的导向孔42的内尺寸相适配。如图13所示,截骨导块40包括三个直线形的导向槽41与多个导向孔42,与其相对应的,检测端101同时包括三个插卡和多个插针,且三个插卡和多个插针的分布与截骨导块40的导向槽41与导向孔42的分布一致,如此配置,所有插卡和插针可同时插入对应的导向槽41与导向孔42内,可以一次性获得所有导向槽41与导向孔42的位姿参数。本 优选示例的其它结构和原理与本实施例第一个优选示例类似,可参考本实施例第一个优选示例的说明。同样需要说明的,在本实施例第三个优选示例至第七个优选示例中,倘若插卡或插针中的任一个无法插入对应的导向槽41与导向孔42,则说明导向槽41或导向孔42已发生了变形,此时可认为截骨导向工具4的特征部位在工具靶标坐标系中的位姿参数获取不到,此时可直接认定该特征部位的位姿参数与对应的标准值的误差值大于预期值,而确定截骨导向工具4发生变形。
在本实施例二所提供的截骨导向工具的校验方法、校验系统及检测靶标中,通过获取截骨导块40的导向槽41和/或导向孔42的内表面的位姿参数,并将所获得的位姿参数与对应的标准值进行比较获得一误差值,若所述误差值大于预期值,则确定所述截骨导向工具4发生变形。如此配置,可对截骨导向工具4的截骨导块40的导向槽41和/或导向孔42进行校验,避免因截骨导向工具4在重复使用或运输过程中导向槽41和/或导向孔42发生变形,影响其定位精度而影响手术。
【实施例三】
请参考图14,其是本发明实施例三提供的截骨导向工具的校验系统的示意图。
本发明实施例三提供的截骨导向工具的校验方法、校验系统及检测靶标与实施例一提供的截骨导向工具的校验方法、校验系统及检测靶标基本相同,对于相同部分不再叙述,以下仅针对不同点进行描述。
如图14所示,与实施例一不同的,在本实施例中,截骨导向工具的校验系统仅包括截骨导向工具4、工具靶标3、导航装置6以及控制装置,而不包括检测靶标100。所述截骨导向工具用以设置于一机械臂2的末端,所述特征部位包括所述截骨导块40的几何中心点。
在本实施例中,截骨导向工具的校验方法中,步骤S1包括:
步骤SC1:以机械臂2驱动所述截骨导向工具4绕所述截骨导块40的预设几何中心点转动;该预设几何中心点在机械臂坐标系中的坐标可由出厂时由三坐标标定仪器确定,或由截骨导向工具4的设计值获得。
步骤SC2:基于与所述截骨导向工具4相连接的工具靶标3在转动中形成的点云信息,计算得到所述截骨导块40的几何中心点在所述工具靶标坐标系中的位姿参数。控制装置通过导航装置6可以获取工具靶标3的转动轨迹(即点云信息),通过计算可进一步即获得截骨导向工具4的旋转中心在工具靶标坐标系下的位置,亦即计算得到截骨导块40的几何中心点在工具靶标坐标系中的位姿参数。
进一步通过步骤S2,将获得的所述截骨导向工具4的截骨导块40的几何中心点的位姿参数与对应的标准值(如三坐标标定仪器确定出来的截骨导块40的几何中心点在工具靶标坐标系下的位姿参数)进行比较,获得所述截骨导向工具4的截骨导块40的几何中心点的位姿参数与所述标准值的误差值;若所述误差值大于预期值,则确定所述截骨导向工具4发生变形。在获得误差值与预期值的比较后,进一步的操作和方法请参考实施例一,本实施例不再赘述。
通过本实施例所提供截骨导向工具的校验方法,可以将机械臂坐标系中的截骨导向工具4的截骨导块40的几何中心点通过运动轨迹的方式计算出来,可以与其它实施例使用检测靶标100所检测得到的结构实现互相验证。
优选的,在步骤SC1中,以所述机械臂2与所述截骨导向工具4的连接点为运动点,所有所述运动点在一运动平面上绕一运动中心呈圆周运动,任一所述运动点与所述预设几何中心点的连线为运动连线,所述运动中心与所述预设几何中心点的连线为中心连线,所述运动连线与所述中心连线的夹角不小于30°,如图15所示,即以任一工具靶标球与导块中心点的连线A作为当前姿态,与空间中选定的某一旋转轴R夹角大于或等于30°进行旋转,例如旋转一周。为便于叙述,将机械臂2驱动截骨导向工具4的运动方式抽象化,以机械臂2与截骨导向工具4的连接点为运动点,该运动点的轨迹实际上可以围绕预设几何中心点呈球形。而为了提高计算旋转中心的精度,可设定机械臂2驱动截骨导向工具4绕一经过预设几何中心点的旋转轴转动,此时运动点在一运动平面上绕一运动中心呈圆周运动,该运动平面垂直于所述旋转轴,所述运动中心位于旋转轴上。运动点与预设几何中心点的连线为 运动连线,运动中心与预设几何中心点的连线为中心连线,此时限定运动连线与中心连线的夹角不小于30°,可提高计算旋转中心点的精度。可以理解的,当机械臂2驱动截骨导向工具4绕一经过预设几何中心点的旋转轴转动时,运动点与预设几何中心点实际上呈现为一圆锥体,当该圆锥体的顶角过小时,则计算得到的旋转中心的精度较低。
需要说明的是,本说明书中各个实施例采用递进的方式描述,每个实施例重点说明的都是与其他实施例的不同之处,各个实施例之间相同相似部分互相参见即可,此外,各个实施例之间不同的部分也可互相组合使用,本发明对此不作限定。
综上,在本发明提供的截骨导向工具的校验方法、校验系统及检测靶标中,首先获取一截骨导向工具的特征部位在工具靶标坐标系中的位姿参数,进而将获得的所述截骨导向工具的特征部位的位姿参数与对应的标准值进行比较,获得所述截骨导向工具的特征部位的位姿参数与所述标准值的误差值,若所述误差值大于预期值,则确定所述截骨导向工具发生变形。如此配置,可对截骨导向工具进行校验,避免因截骨导向工具在重复使用或运输过程中发生变形,影响其定位精度而影响手术。
上述描述仅是对本发明较佳实施例的描述,并非对本发明范围的任何限定,本发明领域的普通技术人员根据上述揭示内容做的任何变更、修饰,均属于权利要求书的保护范围。

Claims (20)

  1. 一种截骨导向工具的校验方法,其特征在于,包括:
    获取一截骨导向工具的特征部位在一工具靶标坐标系中的位姿参数;
    将获得的所述截骨导向工具的特征部位的位姿参数与对应的标准值进行比较,获得所述截骨导向工具的所述特征部位的所述位姿参数与所述标准值的误差值;
    若所述误差值大于一预期值,则确定所述截骨导向工具发生变形。
  2. 根据权利要求1所述的截骨导向工具的校验方法,其特征在于,所述特征部位包括所述截骨导向工具的截骨导块的几何中心点,所述获取一截骨导向工具的特征部位在一工具靶标坐标系中的位姿参数的步骤包括:
    获取一截骨导向工具的截骨导块的所有表面在一工具靶标坐标系中的位姿参数;
    根据所有所述表面的位姿参数,计算得到所有所述表面中每两个相对的表面之间的中间平面;
    将所有所述中间平面的交点确定为所述截骨导块的几何中心点,并计算得到所述截骨导块的所述几何中心点在所述工具靶标坐标系中的位姿参数。
  3. 根据权利要求2所述的截骨导向工具的校验方法,其特征在于,所述获取一截骨导向工具的截骨导块的所有表面在一工具靶标坐标系中的位姿参数的步骤包括:
    利用一检测靶标在所述截骨导块的每个表面上分别获取多个特征点或特征线的位姿参数;
    根据每个表面上的所述多个特征点的位姿参数或所述特征线的位姿参数,确定所述表面的位姿参数。
  4. 根据权利要求3所述的截骨导向工具的校验方法,其特征在于,在任一个表面所获取的所述多个特征点中,至少三个所述特征点不共线,或者,在任一个表面所获取的所述特征线为曲线。
  5. 根据权利要求1所述的截骨导向工具的校验方法,其特征在于,所述 特征部位包括所述截骨导向工具的截骨导块的导向槽和/或导向孔的内表面;所述获取一截骨导向工具的特征部位在一工具靶标坐标系中的位姿参数的步骤包括:
    基于检测端插入所述截骨导块的所述导向槽和/或所述导向孔的检测靶标,来获取所述截骨导块的所述导向槽和/或所述导向孔的所述内表面在所述工具靶标坐标系中的位姿参数。
  6. 根据权利要求5所述的截骨导向工具的校验方法,其特征在于,所述特征部位包括所述截骨导块的所述导向槽,在所述检测靶标的所述检测端插入所述导向槽后,所述获取一截骨导向工具的特征部位在一工具靶标坐标系中的位姿参数的步骤包括:获取所述检测靶标的所述检测端沿所述导向槽的一延伸方向在所述导向槽中滑动的信息。
  7. 根据权利要求6所述的截骨导向工具的校验方法,其特征在于,所述获取所述检测靶标的所述检测端沿所述导向槽的一延伸方向在所述导向槽中滑动的信息的步骤包括:获取所述检测靶标的所述检测端分别沿每个所述导向槽的两个开口端各滑动一次的信息,以分别获取每个所述导向槽于两个开口端处的内表面的位姿参数。
  8. 根据权利要求6所述的截骨导向工具的校验方法,其特征在于,所述检测靶标的检测端的宽度与所述导向槽的宽度相适配,所述获取所述检测靶标的检测端沿所述导向槽的延伸方向在所述导向槽中滑动的信息的步骤包括:获取所述检测靶标的所述检测端沿每个所述导向槽的延伸方向滑动一次的信息,以获取每个所述导向槽的所述内表面的位姿参数。
  9. 根据权利要求6所述的截骨导向工具的校验方法,其特征在于,所述将获得的所述截骨导向工具的特征部位的位姿参数与对应的标准值进行比较的步骤包括:判断所述导向槽于两个开口端处的内表面的位姿参数是否在同一平面内;
    若否,则确定所述导向槽发生变形;
    若是,则将所述导向槽于两个开口端处的所述内表面的所述位姿参数与所述导向槽的标准值进行比较。
  10. 根据权利要求1所述的截骨导向工具的校验方法,其特征在于,所述截骨导向工具用以设置于一机械臂的末端,所述特征部位包括所述截骨导向工具的截骨导块的几何中心点;所述获取一截骨导向工具的特征部位在一工具靶标坐标系中的位姿参数的步骤包括:
    以所述机械臂驱动所述截骨导向工具绕所述截骨导块的一预设几何中心点转动;
    基于与所述截骨导向工具相连接的工具靶标在转动中形成的点云信息,计算得到所述截骨导块的所述几何中心点在所述工具靶标坐标系中的位姿参数。
  11. 根据权利要求10所述的截骨导向工具的校验方法,其特征在于,在所述机械臂驱动所述截骨导向工具绕所述截骨导块的预设几何中心点转动的过程中,以所述机械臂与所述截骨导向工具的连接点为运动点,所有所述运动点在一运动平面上绕一运动中心呈圆周运动,任一所述运动点与所述预设几何中心点的连线为运动连线,所述运动中心与所述预设几何中心点的连线为中心连线,所述运动连线与所述中心连线的夹角不小于30°。
  12. 一种检测靶标,用以校验一截骨导向工具,其特征在于,包括:
    检测端,用以接触所述截骨导向工具的特征部位;以及
    定位靶,与所述检测端连接,用以提供所述截骨导向工具的所述特征部位在一工具靶标坐标系中的位姿参数。
  13. 根据权利要求12所述的检测靶标,其特征在于,所述检测端包括尖锐部,所述尖锐部用以抵靠所述截骨导向工具的所述特征部位。
  14. 根据权利要求12所述的检测靶标,其特征在于,所述检测端包括插杆,所述插杆的宽度与所述截骨导向工具的截骨导块的导向槽的宽度相适配,所述插杆用以插入所述导向槽。
  15. 根据权利要求12所述的检测靶标,其特征在于,所述检测端包括插卡和/或插针,所述插卡的长度与所述截骨导向工具的截骨导块的导向槽的长度相适配,所述插针的外轮廓尺寸与所述截骨导向工具的所述截骨导块的导向孔的内尺寸相适配。
  16. 根据权利要求12所述的检测靶标,其特征在于,所述检测端可拆卸地与所述定位靶连接。
  17. 一种校验系统,其特征在于,包括:
    截骨导向工具,所述截骨导向工具包括截骨导块以及与所述截骨导块连接的靶标安装部;
    工具靶标,用于与所述靶标安装部相连接;
    导航装置,用于与所述工具靶标通信连接,并用以获取所述截骨导向工具的特征部位在所述工具靶标坐标系中的位姿参数;以及
    控制装置,用于与所述导航装置通信连接,并将获得的所述截骨导向工具的特征部位在所述工具靶标坐标系中的位姿参数与对应的标准值进行比较,获得所述截骨导向工具的所述特征部位的所述位姿参数与所述标准值的误差值,若所述误差值大于一预期值,则确定所述截骨导向工具发生变形。
  18. 根据权利要求17所述的校验系统,其特征在于,所述校验系统包括检测靶标,所述检测靶标的所述检测端包括尖锐部,所述尖锐部用以抵靠所述截骨导向工具的所述特征部位。
  19. 根据权利要求17所述的校验系统,其特征在于,所述校验系统包括检测靶标,所述检测靶标的所述检测端包括插杆,所述插杆的宽度与所述截骨导向工具的截骨导块的导向槽的宽度相适配,所述插杆用以插入所述导向槽。
  20. 根据权利要求17所述的校验系统,其特征在于,所述校验系统包括检测靶标,所述检测靶标的所述检测端包括插卡和/或插针,所述插卡的长度与所述截骨导向工具的截骨导块的导向槽的长度相适配,所述插针的外轮廓尺寸与所述截骨导向工具的所述截骨导块的导向孔的内尺寸相适配。
PCT/CN2020/095218 2019-11-22 2020-06-09 截骨导向工具的校验方法、校验系统及检测靶标 WO2021098194A1 (zh)

Priority Applications (3)

Application Number Priority Date Filing Date Title
AU2020387746A AU2020387746B2 (en) 2019-11-22 2020-06-09 Calibration method, calibration system and detection target for osteotomy guide tool
EP20891211.3A EP4062856A4 (en) 2019-11-22 2020-06-09 CALIBRATION PROCEDURE, CALIBRATION SYSTEM AND DETECTION TARGET FOR OSTEOTOMY GUIDE TOOL
JP2022529267A JP7412557B2 (ja) 2019-11-22 2020-06-09 骨切りガイドのキャリブレーション方法、キャリブレーションシステムおよび検出用ターゲット

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
CN201911157719.5 2019-11-22
CN201911157719.5A CN110811834B (zh) 2019-11-22 2019-11-22 截骨导向工具的校验方法、校验系统及检测靶标

Publications (1)

Publication Number Publication Date
WO2021098194A1 true WO2021098194A1 (zh) 2021-05-27

Family

ID=69558772

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2020/095218 WO2021098194A1 (zh) 2019-11-22 2020-06-09 截骨导向工具的校验方法、校验系统及检测靶标

Country Status (6)

Country Link
US (2) US11413093B2 (zh)
EP (1) EP4062856A4 (zh)
JP (1) JP7412557B2 (zh)
CN (3) CN113243991B (zh)
AU (1) AU2020387746B2 (zh)
WO (1) WO2021098194A1 (zh)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN115624366A (zh) * 2022-09-21 2023-01-20 北京长木谷医疗科技有限公司 用于膝关节置换术的定位工具的检测系统、方法及装置

Families Citing this family (16)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN113243991B (zh) * 2019-11-22 2022-08-09 苏州微创畅行机器人有限公司 截骨导向工具的校验方法、校验系统及检测靶标
CN111345896B (zh) * 2020-03-13 2022-05-31 北京天智航医疗科技股份有限公司 截骨执行系统及定位、控制和模拟执行方法与电子设备
CN111345895B (zh) * 2020-03-13 2021-08-20 北京天智航医疗科技股份有限公司 全膝关节置换手术机器人辅助系统、控制方法及电子设备
CN111557736B (zh) * 2020-06-02 2021-03-12 杭州键嘉机器人有限公司 医疗机器人导航系统中截骨导板的标定方法
CN111772727A (zh) * 2020-07-01 2020-10-16 北京和华瑞博医疗科技有限公司 一种截骨锯片防抖动的控制方法和系统
CN112190332B (zh) * 2020-10-22 2022-02-15 苏州微创畅行机器人有限公司 手术操作工具的校验方法及校验系统
CN112932670B (zh) * 2020-11-07 2022-02-08 北京和华瑞博医疗科技有限公司 校准方法、机械臂控制方法及外科手术系统
CN112603544B (zh) * 2020-12-22 2023-05-02 佗道医疗科技有限公司 一种机械臂末端执行器校准系统及方法
CN112998802B (zh) * 2021-02-18 2022-03-01 杭州素问九州医疗科技有限公司 摆锯引导装置及手术机器人系统
CN113171176B (zh) * 2021-06-28 2021-10-01 北京纳通医学研究院有限公司 机械臂系统
CN113662665A (zh) * 2021-07-30 2021-11-19 北京天智航医疗科技股份有限公司 膝关节置换手术机器人系统的精度检测方法和装置
CN113942015A (zh) * 2021-11-23 2022-01-18 杭州柳叶刀机器人有限公司 切割工具活动空间限制方法、装置和终端设备
CN114271896B (zh) * 2021-12-06 2024-01-12 天衍医疗器材有限公司 一种膝关节置换手术机器人用截骨引导系统
CN113952032B (zh) * 2021-12-20 2022-09-02 北京诺亦腾科技有限公司 一种用于骨科手术的空间追踪设备
CN113974840A (zh) * 2021-12-29 2022-01-28 北京壹点灵动科技有限公司 示踪器安装组件、手术器械装置及手术用机械手
CN117067222A (zh) * 2023-10-16 2023-11-17 苏州康多机器人有限公司 手术机器人的位姿预警方法、装置、手术机器人及介质

Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN101267776A (zh) * 2005-06-09 2008-09-17 工业研究及发展有限责任公司 用于主体空间位置和/或空间定向的无接触地确定和测量的装置
CN109171962A (zh) * 2018-10-12 2019-01-11 北京和华瑞博科技有限公司 用于导航手术的手术器械标定系统及标定方法
CN109620348A (zh) * 2019-01-14 2019-04-16 艾瑞迈迪科技石家庄有限公司 一种截骨导块标定与跟踪方法及系统
CN109998682A (zh) * 2019-04-28 2019-07-12 北京天智航医疗科技股份有限公司 探针装置、精度检测方法、精度检测系统及定位系统
JP6578528B1 (ja) * 2019-03-08 2019-09-25 国立大学法人京都大学 骨切り矯正術において使用するガイド
CN110352042A (zh) * 2016-10-21 2019-10-18 医疗技术股份有限公司 用于对3d术中图像进行自动重新校准的装置和方法
CN110811834A (zh) * 2019-11-22 2020-02-21 苏州微创畅行机器人有限公司 截骨导向工具的校验方法、校验系统及检测靶标

Family Cites Families (28)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US5086401A (en) * 1990-05-11 1992-02-04 International Business Machines Corporation Image-directed robotic system for precise robotic surgery including redundant consistency checking
US6434507B1 (en) * 1997-09-05 2002-08-13 Surgical Navigation Technologies, Inc. Medical instrument and method for use with computer-assisted image guided surgery
WO2002036018A1 (en) * 2000-11-03 2002-05-10 Synthes Ag Chur Determination of deformation of surgical tools
US6932823B2 (en) 2003-06-24 2005-08-23 Zimmer Technology, Inc. Detachable support arm for surgical navigation system reference array
US20160098095A1 (en) * 2004-01-30 2016-04-07 Electronic Scripting Products, Inc. Deriving Input from Six Degrees of Freedom Interfaces
JP4741344B2 (ja) * 2005-11-07 2011-08-03 ダイハツ工業株式会社 形状認識装置及び歪評価装置
CA2647941C (en) * 2006-03-14 2014-03-18 Jason K. Otto Prosthetic device and system and method for implanting prosthetic device
WO2007136769A2 (en) * 2006-05-19 2007-11-29 Mako Surgical Corp. Method and apparatus for controlling a haptic device
US20080319491A1 (en) * 2007-06-19 2008-12-25 Ryan Schoenefeld Patient-matched surgical component and methods of use
CN201389080Y (zh) * 2009-02-25 2010-01-27 清华大学 手术导航器械的通用标定模块
EP2298223A1 (en) * 2009-09-21 2011-03-23 Stryker Leibinger GmbH & Co. KG Technique for registering image data of an object
CN102258399B (zh) * 2011-04-28 2012-11-28 上海交通大学 超声测距与光学定位耦合的无创实时跟踪器
EP2863820B1 (en) * 2012-06-20 2020-10-28 Intellijoint Surgical Inc. Method of manufacturing a system for guided surgery
US20180279993A1 (en) * 2012-06-21 2018-10-04 Globus Medical, Inc. Medical imaging systems using robotic actuators and related methods
JP2014097220A (ja) 2012-11-15 2014-05-29 Toshiba Corp 手術支援装置
CN103017702A (zh) * 2012-12-06 2013-04-03 山东捷众汽车零部件有限公司 一种三坐标测量方法及装置
US10470838B2 (en) * 2012-12-21 2019-11-12 Mako Surgical Corp. Surgical system for spatial registration verification of anatomical region
US11086970B2 (en) 2013-03-13 2021-08-10 Blue Belt Technologies, Inc. Systems and methods for using generic anatomy models in surgical planning
DE102013222230A1 (de) * 2013-10-31 2015-04-30 Fiagon Gmbh Chirurgisches Instrument
CN107920860B (zh) * 2015-03-26 2022-02-18 拜欧米特制造有限责任公司 解剖配准探针、系统及方法
JP6894431B2 (ja) * 2015-08-31 2021-06-30 ケービー メディカル エスアー ロボット外科用システム及び方法
CN107468350B (zh) * 2016-06-08 2020-12-08 北京天智航医疗科技股份有限公司 一种三维图像专用标定器、手术定位系统及定位方法
CN106344154B (zh) * 2016-09-14 2018-11-09 大连理工大学 一种基于最大相关熵的手术器械尖端点的标定方法
EP3551098B1 (en) * 2016-12-08 2024-03-20 Orthotaxy Surgical system for cutting an anatomical structure according to at least one target cutting plane
US11564768B2 (en) 2017-03-31 2023-01-31 Koninklijke Philips N.V. Force sensed surface scanning systems, devices, controllers and method
CN108627129A (zh) * 2018-04-28 2018-10-09 滨州职业学院 一种基于嵌入式的机械制造用三坐标测量方法
EP3569159A1 (en) * 2018-05-14 2019-11-20 Orthotaxy Surgical system for cutting an anatomical structure according to at least one target plane
CN108742841B (zh) * 2018-05-30 2020-11-06 上海交通大学 一种多位置跟踪仪的工具实时定位装置

Patent Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN101267776A (zh) * 2005-06-09 2008-09-17 工业研究及发展有限责任公司 用于主体空间位置和/或空间定向的无接触地确定和测量的装置
CN110352042A (zh) * 2016-10-21 2019-10-18 医疗技术股份有限公司 用于对3d术中图像进行自动重新校准的装置和方法
CN109171962A (zh) * 2018-10-12 2019-01-11 北京和华瑞博科技有限公司 用于导航手术的手术器械标定系统及标定方法
CN109620348A (zh) * 2019-01-14 2019-04-16 艾瑞迈迪科技石家庄有限公司 一种截骨导块标定与跟踪方法及系统
JP6578528B1 (ja) * 2019-03-08 2019-09-25 国立大学法人京都大学 骨切り矯正術において使用するガイド
CN109998682A (zh) * 2019-04-28 2019-07-12 北京天智航医疗科技股份有限公司 探针装置、精度检测方法、精度检测系统及定位系统
CN110811834A (zh) * 2019-11-22 2020-02-21 苏州微创畅行机器人有限公司 截骨导向工具的校验方法、校验系统及检测靶标

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
See also references of EP4062856A4 *

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN115624366A (zh) * 2022-09-21 2023-01-20 北京长木谷医疗科技有限公司 用于膝关节置换术的定位工具的检测系统、方法及装置

Also Published As

Publication number Publication date
CN113243991B (zh) 2022-08-09
EP4062856A1 (en) 2022-09-28
JP2023502410A (ja) 2023-01-24
CN113208729B (zh) 2022-08-02
US20220331010A1 (en) 2022-10-20
US11969220B2 (en) 2024-04-30
AU2020387746A1 (en) 2022-06-16
CN110811834A (zh) 2020-02-21
US20210153941A1 (en) 2021-05-27
AU2020387746B2 (en) 2023-12-07
CN113243991A (zh) 2021-08-13
JP7412557B2 (ja) 2024-01-12
EP4062856A4 (en) 2023-01-11
US11413093B2 (en) 2022-08-16
CN110811834B (zh) 2021-07-02
CN113208729A (zh) 2021-08-06

Similar Documents

Publication Publication Date Title
WO2021098194A1 (zh) 截骨导向工具的校验方法、校验系统及检测靶标
WO2021063023A1 (zh) 截骨导向工具的位置校正方法及骨科手术系统
US10952796B2 (en) System and method for verifying calibration of a surgical device
US20210153851A1 (en) Osteotomy calibration method, calibration device and orthopedic surgery system
CN107209003B (zh) 用于机器人校准和监测的激光测量仪
US11653982B2 (en) Osteotomy calibration method, calibration tools and orthopedic surgery system
WO2022083453A1 (zh) 手术操作工具的校验方法及校验系统
AU2020386613B2 (en) Osteotomy verification method and verification apparatus, readable storage medium, and orthopedic surgery system

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 20891211

Country of ref document: EP

Kind code of ref document: A1

ENP Entry into the national phase

Ref document number: 2022529267

Country of ref document: JP

Kind code of ref document: A

ENP Entry into the national phase

Ref document number: 2020387746

Country of ref document: AU

Date of ref document: 20200609

Kind code of ref document: A

NENP Non-entry into the national phase

Ref country code: DE

ENP Entry into the national phase

Ref document number: 2020891211

Country of ref document: EP

Effective date: 20220622