WO2022083453A1 - 手术操作工具的校验方法及校验系统 - Google Patents

手术操作工具的校验方法及校验系统 Download PDF

Info

Publication number
WO2022083453A1
WO2022083453A1 PCT/CN2021/122727 CN2021122727W WO2022083453A1 WO 2022083453 A1 WO2022083453 A1 WO 2022083453A1 CN 2021122727 W CN2021122727 W CN 2021122727W WO 2022083453 A1 WO2022083453 A1 WO 2022083453A1
Authority
WO
WIPO (PCT)
Prior art keywords
tool
surgical operation
surgical
guide
coordinate system
Prior art date
Application number
PCT/CN2021/122727
Other languages
English (en)
French (fr)
Inventor
孙腾
马菁阳
宋雪迎
邵辉
何超
刘鹏飞
Original Assignee
苏州微创畅行机器人有限公司
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 苏州微创畅行机器人有限公司 filed Critical 苏州微创畅行机器人有限公司
Publication of WO2022083453A1 publication Critical patent/WO2022083453A1/zh

Links

Images

Classifications

    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61BDIAGNOSIS; SURGERY; IDENTIFICATION
    • A61B34/00Computer-aided surgery; Manipulators or robots specially adapted for use in surgery
    • A61B34/20Surgical navigation systems; Devices for tracking or guiding surgical instruments, e.g. for frameless stereotaxis
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61BDIAGNOSIS; SURGERY; IDENTIFICATION
    • A61B17/00Surgical instruments, devices or methods, e.g. tourniquets
    • A61B17/14Surgical saws ; Accessories therefor
    • A61B17/15Guides therefor
    • A61B17/154Guides therefor for preparing bone for knee prosthesis
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61BDIAGNOSIS; SURGERY; IDENTIFICATION
    • A61B17/00Surgical instruments, devices or methods, e.g. tourniquets
    • A61B17/14Surgical saws ; Accessories therefor
    • A61B17/15Guides therefor
    • A61B17/154Guides therefor for preparing bone for knee prosthesis
    • A61B17/155Cutting femur
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61BDIAGNOSIS; SURGERY; IDENTIFICATION
    • A61B17/00Surgical instruments, devices or methods, e.g. tourniquets
    • A61B17/14Surgical saws ; Accessories therefor
    • A61B17/15Guides therefor
    • A61B17/154Guides therefor for preparing bone for knee prosthesis
    • A61B17/157Cutting tibia
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61BDIAGNOSIS; SURGERY; IDENTIFICATION
    • A61B34/00Computer-aided surgery; Manipulators or robots specially adapted for use in surgery
    • A61B34/10Computer-aided planning, simulation or modelling of surgical operations
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61BDIAGNOSIS; SURGERY; IDENTIFICATION
    • A61B34/00Computer-aided surgery; Manipulators or robots specially adapted for use in surgery
    • A61B34/30Surgical robots
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61BDIAGNOSIS; SURGERY; IDENTIFICATION
    • A61B34/00Computer-aided surgery; Manipulators or robots specially adapted for use in surgery
    • A61B34/70Manipulators specially adapted for use in surgery
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61BDIAGNOSIS; SURGERY; IDENTIFICATION
    • A61B34/00Computer-aided surgery; Manipulators or robots specially adapted for use in surgery
    • A61B34/10Computer-aided planning, simulation or modelling of surgical operations
    • A61B2034/101Computer-aided simulation of surgical operations
    • A61B2034/102Modelling of surgical devices, implants or prosthesis
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61BDIAGNOSIS; SURGERY; IDENTIFICATION
    • A61B34/00Computer-aided surgery; Manipulators or robots specially adapted for use in surgery
    • A61B34/10Computer-aided planning, simulation or modelling of surgical operations
    • A61B2034/108Computer aided selection or customisation of medical implants or cutting guides
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61BDIAGNOSIS; SURGERY; IDENTIFICATION
    • A61B34/00Computer-aided surgery; Manipulators or robots specially adapted for use in surgery
    • A61B34/20Surgical navigation systems; Devices for tracking or guiding surgical instruments, e.g. for frameless stereotaxis
    • A61B2034/2046Tracking techniques
    • A61B2034/2055Optical tracking systems
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61BDIAGNOSIS; SURGERY; IDENTIFICATION
    • A61B34/00Computer-aided surgery; Manipulators or robots specially adapted for use in surgery
    • A61B34/20Surgical navigation systems; Devices for tracking or guiding surgical instruments, e.g. for frameless stereotaxis
    • A61B2034/2068Surgical navigation systems; Devices for tracking or guiding surgical instruments, e.g. for frameless stereotaxis using pointers, e.g. pointers having reference marks for determining coordinates of body points

Definitions

  • the invention relates to the field of robot-assisted surgery systems and methods, and in particular to a calibration method and calibration system for surgical operation tools.
  • an osteotomy guide tool is provided at the end of the mechanical arm, and the motion of the osteotomy guide tool is controlled by the mechanical arm to realize the positioning of the osteotomy guide tool during knee replacement surgery.
  • both the robotic arm system and the positioning system need to obtain the geometric center point of the osteotomy guide tool.
  • the transformation matrix obtained by the robotic arm registration is correct.
  • the positioning system cannot recognize the deformation, which will affect the accuracy of surgical positioning and thus affect the surgical results.
  • the structural features of the osteotomy guide tool (such as guide grooves or guide holes, etc.) are often contact-detected by a contact-type detection device. In this way, on the one hand, microorganisms such as bacteria may be introduced, which brings the risk of infection during the operation.
  • the contact detection device since the contact detection needs to interrupt the operation, it will affect the operation process, and the contact detection process itself will also cause wear on the guide groove or guide hole; on the other hand, the contact detection device often requires The configuration is based on the shape of the guide groove or the guide hole. Once the shape of the guide groove or the guide hole of the osteotomy guide tool is changed, the original contact-type detection device also needs to be changed, and its universality is poor.
  • the purpose of the present invention is to provide a calibration method and calibration system for a surgical operation tool, so as to solve the problems existing in the contact-type detection device in the existing robot-assisted surgery system.
  • a method for verifying a surgical operation tool which includes:
  • the non-contact device includes a scanning device
  • the step of using the non-contact device to acquire a virtual feature of a feature part of a surgical operation tool includes:
  • the virtual features of the characteristic parts of the surgical operation tool are obtained by fitting based on the three-dimensional reconstruction model.
  • the surgical operation tool includes an osteotomy guide tool
  • the characteristic part includes a guide groove or a guide hole of an osteotomy guide block of the osteotomy guide tool
  • the virtual feature includes an extension along the guide groove.
  • a first virtual plane set in the direction or a first virtual axis set along the axial direction of the guide hole.
  • the surgical operation tool includes an osteotomy guide tool
  • the feature portion includes a geometric outer contour of an osteotomy guide block of the osteotomy guide tool
  • the virtual feature includes a geometric center point of the geometric outer contour.
  • the tool target is set on the scanning device, and before using the scanning device to scan to obtain the three-dimensional reconstruction model of the surgical operating tool, the method for verifying the surgical operating tool further includes: scanning the scanning device.
  • the device is calibrated in the base coordinate system.
  • the non-contact device includes an opposite beam photoelectric module, and the opposite beam photoelectric module includes a transmitting end and a receiving end, and the step of using the non-contact device to obtain a virtual feature of a characteristic part of a surgical operation tool includes the following steps: :
  • the transmitting end and the receiving end of the opposing photoelectric module are respectively placed on both sides of the characteristic part of the surgical operation tool for the light of the opposing photoelectric module to pass through;
  • the surgical operation tool includes an osteotomy guide tool, at least the firing end has a target, the characteristic part includes a guide groove and/or a guide hole of an osteotomy guide block of the osteotomy guide tool, and the The dummy feature includes the penetration position of the opposite photoelectric module along the guide groove or guide hole.
  • both the transmitting end and the receiving end have targets, and the virtual feature further includes a relative distance between the transmitting end and the receiving end arranged along two sides of the guide groove or guide hole.
  • the feature portion includes a guide groove of an osteotomy guide block of the osteotomy guide tool
  • the step of using a non-contact device to acquire a virtual feature of a feature portion of a surgical operation tool further includes:
  • the transmitting end and the receiving end whose length is not less than the extension length of the guiding groove are placed on both sides of the guiding groove; or
  • the virtual feature further includes the midpoint of the guide groove or the guide hole; when the transmitting end and the receiving end of the paired photoelectric module are respectively placed on the characteristic part of the surgical operation tool for the pairing.
  • the method for verifying the surgical operation tool further includes: exchanging the positions of the transmitting end and the receiving end; The light signal emitted by the end is obtained to obtain the midpoint of the guide groove or guide hole.
  • the surgical operation is performed.
  • the verification method of the tool also includes:
  • a calibration system for a surgical operation tool which includes:
  • the non-contact device is used to acquire virtual features of the feature parts of the surgical operation tool
  • the tool target is provided on the surgical operation tool or on the non-contact device;
  • the navigation device is adapted to the tool target, so as to obtain the pose parameters of the tool target;
  • control device connected in communication with the non-contact device and the navigation device; the control device is configured to, based on the virtual feature of the characteristic part of the surgical operation tool acquired by the non-contact device, through the
  • the navigation device obtains the coordinates of the tool target in the base coordinate system, obtains the tool target coordinate system by fitting, and obtains the pose parameters of the virtual feature in the tool target coordinate system to obtain the characteristics of the surgical operation tool
  • the pose parameters that are located in the tool target coordinate system; if the error value between the pose parameters of the feature part located in the tool target coordinate system and the corresponding standard parameters is greater than the expected value, the surgical operation tool is determined deformed.
  • the non-contact device includes a scanning device, and the scanning device is used to obtain the three-dimensional reconstruction model of the surgical operation tool by scanning the surgical operation tool, and the control device is configured to obtain the obtained result by fitting the three-dimensional reconstruction model. Describe the virtual features of the feature parts of the surgical operation tool.
  • the non-contact device includes an opposite-to-beam optoelectronic module
  • the opposite-to-beam optoelectronic module includes a transmitting end and a receiving end
  • the transmitting end and the receiving end of the opposite-to-beam optoelectronic module are respectively used to be placed in the surgical operation.
  • the opposite photoelectric module is configured to obtain virtual features of the characteristic part of the surgical operation tool based on the optical signal received by the receiving end and transmitted from the transmitting end.
  • At least the transmitting end has a target.
  • both the transmitting end and the receiving end have targets.
  • the surgical operation tool includes an osteotomy guide tool
  • the characteristic part includes a guide groove of an osteotomy guide block of the osteotomy guide tool
  • the length of the transmitting end and/or the receiving end is smaller than the length of the The extended length of the guide groove.
  • a non-contact device is used to obtain the virtual features of a characteristic part of a surgical operation tool; the coordinates of the tool target in the base coordinate system are obtained; , and obtain the tool target coordinate system by fitting; obtain the pose parameters of the virtual feature in the tool target coordinate system to obtain the pose parameters of the feature part in the tool target coordinate system; compare the The error value between the pose parameter and the standard parameter where the feature part is located in the tool target coordinate system; if the error value is greater than the expected value, it is determined that the surgical operation tool is deformed.
  • the non-contact equipment since the non-contact equipment is used for detection, the steps of disinfection are omitted, the risk of infection during the operation is reduced, and the operation process is not affected. Due to the non-contact detection, there is no additional wear on surgical tools. In addition, the non-contact detection has good universality to various surgical operation tools, and can adapt to various surgical operation tools of different shapes, while the non-contact equipment itself can be adjusted.
  • Fig. 1 is the schematic diagram of using the orthopaedic surgery system involved in the present invention to perform knee joint replacement;
  • Fig. 2 is the flow chart of the verification method involved in the present invention.
  • FIG. 3 is a schematic diagram of a calibration system for a surgical operation tool provided in Embodiment 1 of the present invention.
  • FIG. 4 is a schematic diagram of an osteotomy guide tool provided in Embodiment 1 of the present invention.
  • 5a is a schematic diagram of a transmitter according to Embodiment 2 of the present invention.
  • FIG. 5b is a schematic diagram of a receiving end provided in Embodiment 2 of the present invention.
  • FIG. 6 is a schematic diagram of a calibration system for a surgical operating tool provided in Embodiment 2 of the present invention, wherein the length of the transmitting end and the receiving end is less than the length of the guide groove;
  • FIG. 7 is a schematic diagram of a calibration system for a surgical operating tool provided in Embodiment 2 of the present invention, wherein the length of the transmitting end and the receiving end is not less than the length of the guide groove;
  • Embodiment 8 is a schematic diagram of a receiving end provided in Embodiment 3 of the present invention.
  • FIG. 9 is a schematic diagram of a calibration system for a surgical operation tool provided in Embodiment 3 of the present invention.
  • features defined as “first”, “second”, “third” may expressly or implicitly include one or at least two of these features
  • the term “proximal” is generally the end close to the operator
  • the term “proximal” “Distal” is usually the end close to the patient, that is, close to the puncture object
  • "one end” and “the other end” and “proximal end” and “distal end” usually refer to the corresponding two parts
  • the terms “installed” and “connected” , “connection” should be understood in a broad sense, for example, it can be a fixed connection, a detachable connection, or an integrated; it can be a mechanical connection or an electrical connection; it can be directly connected or indirectly connected through an intermediate medium , which can be a connection within two elements or an interaction relationship between two elements.
  • the arrangement of an element on another element generally only means that there is a connection, coupling, cooperation or transmission relationship between the two elements, and the two elements may be directly or through intermediate elements.
  • Indirect connection, coupling, cooperation or transmission and should not be understood as indicating or implying the spatial positional relationship between two elements, that is, one element can be in any orientation such as inside, outside, above, below or on one side of the other element, unless The content is clearly stated otherwise.
  • the specific meanings of the above terms in the present invention can be understood according to specific situations.
  • the core idea of the present invention is to provide a calibration method and calibration system for a surgical operation tool, so as to solve the problems existing in the contact-type detection device in the existing robot-assisted surgery system.
  • FIG. 1 is a schematic diagram of knee joint replacement using an orthopedic surgery system provided by Embodiment 1 of the present invention
  • FIG. 2 is a flowchart of a calibration method provided by Embodiment 1 of the present invention
  • FIG. 3 It is a schematic diagram of a calibration system for a surgical operation tool provided in Embodiment 1 of the present invention
  • FIG. 4 is a schematic diagram of an osteotomy guide tool provided in Embodiment 1 of the present invention.
  • FIG. 1 shows a schematic diagram of using the orthopaedic surgery system for knee replacement.
  • the orthopaedic surgery system of the present invention has no particular limitation on the application environment, and can also be applied to other orthopedic surgery.
  • an osteotomy guide tool 4 is used as an example for knee joint replacement as an example of a surgical operation tool to describe the orthopaedic surgical system, but this should not be taken as a limitation of the present invention.
  • the orthopedic surgery system includes a control device, a navigation device, a robotic arm 2 and an osteotomy guide tool 4 .
  • the control device is actually a computer equipped with a controller, a main display 8 and a keyboard 10 , and more preferably an auxiliary display 7 .
  • the contents displayed on the auxiliary display 7 and the main display 8 are the same, for example, both are used to display the image of the osteotomy position.
  • the navigation device may be an electromagnetic positioning and navigation device, an optical positioning and navigation device, or an electromagnetic positioning and navigation device.
  • the navigation device is an optical positioning and navigation device. Compared with other navigation methods, the measurement accuracy is high, and the positioning accuracy of the osteotomy guide tool can be effectively improved.
  • an optical positioning and navigation device is used as an example for description, but it is not limited thereto.
  • the navigation device specifically includes a navigation marker and a tracker 6 (NDI navigation device), the navigation marker includes a base target 15 and a tool target 3, and the base target 15 is fixed, for example, the base target 15 is fixed on the
  • the operating trolley 1 is used to provide a base coordinate system (or a base target coordinate system).
  • the osteotomy guide tool 4 is installed at the end of the mechanical arm 2 , so that the osteotomy guide tool 4 is supported by the mechanical arm 2 and the spatial position and posture of the osteotomy guide tool 4 are adjusted.
  • the base coordinate system may also be provided by the navigation device, that is, the navigation device coordinate system is configured as the base coordinate system, or other reference coordinate systems.
  • the tracker 6 is used to capture the signal reflected by the tool target 3 (preferably an optical signal) and record the position of the tool target 3 (that is, the position and attitude of the tool target 3 under the base frame), and then stored in the controller.
  • the computer program calculates the desired position of the osteotomy guide tool 4 according to the current position and the desired position of the tool target 3, and then controls the movement of the manipulator 2.
  • the manipulator 2 drives the osteotomy guide tool 4 to move, and makes the osteotomy guide tool 4 move. reach the desired location.
  • the automatic positioning of the osteotomy guide tool 4 can be realized, and during the operation, the tool target 3 is tracked and the real-time pose parameters of the osteotomy guide tool 4 are fed back, and the movement of the manipulator can be controlled.
  • the adjustment of the position and posture of the osteotomy guide tool 4 not only has high positioning accuracy of the osteotomy guide tool 4, but also supports the osteotomy guide tool 4 through the mechanical arm 2 without fixing the guide tool on the human body, which can avoid damage to the human body. Inflict secondary damage.
  • the orthopedic surgery system further includes an operating trolley 1 and a navigation trolley 9 .
  • the control device and a part of the navigation device are installed on the navigation trolley 9, for example, the controller is installed inside the navigation trolley 9, the keyboard 10 is placed outside the navigation trolley 9 for operation, and the main
  • the display 8 , the auxiliary display 7 and the tracker 6 are all mounted on a bracket, the bracket is vertically fixed on the navigation trolley 9 , and the robotic arm 2 is mounted on the operating trolley 1 .
  • the use of the operating trolley 1 and the navigation trolley 9 makes the entire surgical operation more convenient.
  • the use process of the orthopaedic surgery system of this embodiment roughly includes the following operations:
  • the navigation markers also include the femoral target 11, the tibia target 13), the osteotomy guide tool 4 and other related components (such as sterile bags);
  • the operator 18 imports the bone CT/MR scan model of the patient 17 into the computer for preoperative planning to obtain an osteotomy plan, which includes, for example, the coordinates of the osteotomy plane, the model of the prosthesis, and the installation orientation of the prosthesis Specifically, create a three-dimensional knee joint digital model according to the patient’s knee joint image data obtained by CT/MR scan, and then create an osteotomy plan based on the three-dimensional knee joint digital model, so that the operator can perform preoperative evaluation according to the osteotomy plan.
  • an osteotomy plan which includes, for example, the coordinates of the osteotomy plane, the model of the prosthesis, and the installation orientation of the prosthesis Specifically, create a three-dimensional knee joint digital model according to the patient’s knee joint image data obtained by CT/MR scan, and then create an osteotomy plan based on the three-dimensional knee joint digital model, so that the operator can perform preoperative evaluation according to the osteotomy plan.
  • the osteotomy plan is determined, and the osteotomy plan is finally output in the form of an operation report, which records the cut Bone plane coordinates, osteotomy volume, osteotomy angle, prosthesis specification, prosthesis installation position, surgical aids and a series of reference data, especially a series of theoretical explanations, such as the reasons for selecting the osteotomy angle, etc.
  • the three-dimensional knee joint digital model can be displayed through the main display 8, and the operator can input surgical parameters through the keyboard 10 for preoperative planning;
  • the operator 18 uses the target pen to mark feature points on the patient's femur and tibia (that is, the operator marks multiple femoral anatomical feature points on the patient's femur entity, and multiple tibial anatomical features on the tibia entity). point), and use the base target 15 as a reference through the navigation device to record the positions of all feature points on the patient's tibia 14 and femur 12, and send the positions of all feature points to the controller, and then the controller passes the feature
  • the matching algorithm obtains the actual orientation of the femur 12 and the tibia 14, and corresponds to the orientation of the CT/MR images on the femur 12 and the tibia 14;
  • the actual position of the femur and tibia is linked with the corresponding targets installed on the femur and tibia through the navigation device, so that the femoral target 11 and the tibia target 13 can track the actual position of the bone in real time, and during the operation, as long as the target and the bone are The relative position between the two is fixed, and the movement of the bones will not affect the surgical effect;
  • the coordinates of the preoperatively planned osteotomy plane are sent to the robotic arm 2 through the navigation device, and after the robotic arm 2 locates the osteotomy plane through the tool target 3 and moves to a predetermined position, the robotic arm 2 enters the holding state (that is, does not move. ), after that, the operator can use a surgical tool 5 such as an oscillating saw or an electric drill to perform an osteotomy and/or drilling operation through the osteotomy guide tool 4 . After the osteotomy and drilling operations are completed, the operator can install the prosthesis and perform other surgical operations.
  • a surgical tool 5 such as an oscillating saw or an electric drill
  • the navigation markers further include a femoral target 11 and a tibial target 13 .
  • the femoral target 11 is used to locate the spatial position and posture of the femur 12
  • the tibial target 13 is used to locate the spatial position and posture of the tibia 14 .
  • the osteotomy guide tool 4 includes an osteotomy guide block 40 (as shown in FIG. 4 ), the osteotomy guide block 40 has a characteristic portion for positioning, and the characteristic portion includes a guide feature or a geometrical outer portion of the osteotomy guide block 40 .
  • the guide feature may include the guide groove 41, the guide hole 42, or the guide groove 41 and the guide hole 42, that is, the guide feature on the osteotomy guide block 40 may be the guide groove 41 and the guide hole 42.
  • One or more combinations to provide one or more guides for the osteotomy of the knee replacement preferably distal femur, anterior femoral, posterior femoral, anterior femoral chamfer, posterior femoral chamfering, trochlear groove ,
  • the femoral prosthesis installation hole, the tibial plateau, and the tibial keel handle the osteotomy and drilling operations to provide guidance, so that the same osteotomy guide tool can perform multiple functions of osteotomy and drilling operations.
  • the position of the osteotomy guide tool 4 is represented by the position of the tool target 3, for example, according to the position information of the guiding feature relative to the center point of the osteotomy guide block 40, and the center point of the osteotomy guide block 40 in the tool target coordinates.
  • the coordinate information (or pose parameters) under the system is obtained, and the pose parameters (including position and attitude) of the guiding feature in the tool target coordinate system are obtained, thereby forming the pose parameter mapping relationship of the guiding feature relative to the tool target 3 .
  • the guide groove 41 on the osteotomy guide block 40 includes 0° guide grooves ( 407 and 411 ) and 45° guide grooves ( 408 and 410 ) , the right leg trochlear osteotomy slot 405 and the left leg trochlear osteotomy slot 412, when cutting the front end of the femur, the front end of the femur, the rear end of the femur and the rear end of the femur, it is only necessary to translate the osteotomy guide block 40 to use the corresponding
  • the guide groove is used to complete these osteotomy operations, so that the tool target located on it will not undergo large changes in the pose parameters, thereby reducing the transmission error of the robotic arm and the target position tracking error, and improving the positioning accuracy.
  • the shape of the guide groove 41 is preferably a trumpet shape, so as to increase the swing range of surgical tools such as an oscillating saw in the guide groove, so
  • the orthopedic surgery system needs to be positioned based on the pose parameters of the characteristic parts on the osteotomy guide tool 4 for surgical operation, once the characteristic parts on the osteotomy guide tool 4 are deformed, the orthopaedic surgery The system will affect the positioning accuracy due to the inability to recognize the deformation of the feature on the osteotomy guide tool 4 .
  • the method of obtaining the pose of the characteristic part of the osteotomy guide tool 4 by using a contact method reference may be made to the patent application with publication number CN110811834A, the entire content of which is incorporated herein by reference in its entirety.
  • utilizing the contact type detection target to carry out the contact type detection has certain defects, thus, please refer to Fig. 2, the embodiment of the present invention provides a kind of verification method of the osteotomy guide tool, it comprises:
  • Step S1 using a non-contact device to acquire a virtual feature of a characteristic part of a surgical operation tool (such as the osteotomy guide tool 4);
  • Step S2 obtaining the coordinates of the tool target in the base coordinate system, and fitting to obtain the tool target coordinate system;
  • Step S3 obtaining the pose parameters of the virtual feature in the tool target coordinate system to obtain the pose parameters of the feature part in the tool target coordinate system;
  • Step S4 Compare the error value of the pose parameter of the feature part located in the tool target coordinate system and the standard parameter; if the error value is greater than the expected value, it is determined that the surgical operation tool is deformed.
  • an embodiment of the present invention provides a verification system for a surgical operation tool, which includes: a surgical operation tool (such as an osteotomy guide tool 4), a non-contact device, a tool target 3, a navigation device, and a control device, all of which are
  • the non-contact device is used to obtain the virtual features of the characteristic parts of the surgical operation tool;
  • the tool target 3 is set on the surgical operation tool or on the non-contact device;
  • the navigation device is connected to the The tool target 3 is adapted to obtain the pose parameters of the tool target 3;
  • the control device is connected in communication with the non-contact device and the navigation device;
  • the control device is configured to, based on the The virtual features of the characteristic parts of the surgical operation tool obtained by the non-contact device, the coordinates of the tool target in the base coordinate system are obtained through the navigation device, and the tool target coordinate system is obtained by fitting, and then the virtual features are The coordinates in the tool target coordinate system are converted into the base coordinate system, and the pose parameters of the virtual feature in the tool target
  • non-contact equipment since the non-contact equipment is used for detection, the steps of disinfection are omitted, the risk of infection during the operation is reduced, and the operation process is not affected. Due to the non-contact detection, there is no additional wear on surgical tools. In addition, non-contact detection has good universality for various surgical operation tools (such as osteotomy guide tool 4, guide block or target, etc.), and can adapt to various surgical operation tools of different shapes, while its own non-contact Equipment may not be adjusted.
  • surgical operation tools such as osteotomy guide tool 4, guide block or target, etc.
  • an osteotomy guide tool 4 is used as an example of a surgical operation tool for description, and the non-contact device includes a scanning device 100 for scanning
  • the osteotomy guiding tool 4 obtains its three-dimensional reconstruction model, and the control device is configured to obtain virtual features of the characteristic parts of the osteotomy guiding tool 4 by fitting based on the three-dimensional reconstruction model; the above step S1 includes:
  • Step S11 use the scanning device 100 to scan the osteotomy guide tool 4 and obtain its three-dimensional reconstruction model
  • Step S12 Based on the three-dimensional reconstruction model, the virtual features of the characteristic parts of the osteotomy guide tool 4 are obtained by fitting.
  • the scanning device 100 includes an image acquisition device such as a camera, a video collector, etc., which can acquire the image information of the osteotomy guide tool 4 in a non-contact manner, and then the scanning device 100 can obtain the image information of the osteotomy guide tool 4 according to the image information. 3D reconstructed model of bone guide tool 4. It should be understood that the three-dimensional reconstruction model of the osteotomy guiding tool 4 includes the characteristic parts on the osteotomy guiding tool 4 .
  • the scanning device 100 may be an independent device, or may be attached to the operating trolley 1 , the robotic arm 2 or the navigation trolley 9 .
  • the feature portion includes the guide groove 41 and/or the guide hole 42 of the osteotomy guide block 40 of the osteotomy guide tool 4
  • the virtual feature includes a guide groove 41 along the extending direction of the guide groove 41 .
  • the first virtual plane of , or the first virtual axis set along the axial direction of the guide hole 42 .
  • a virtual model of the guide groove 41 or the guide hole 42 can be obtained, so that the first virtual plane or the first virtual axis can be fitted therefrom, and then the first virtual plane or the first virtual axis can be used for the pose of the tool target.
  • the parameters are converted to obtain the pose parameters of the first virtual plane or the first virtual axis in the tool target coordinate system.
  • the pose parameter of the virtual feature in the navigation system is Rt W A
  • the pose parameter of the tool target 3 in the navigation system is Rt W B
  • the position of the virtual feature in the tool target coordinate system can be obtained by changing the coordinates.
  • Attitude parameter Rt B A Rt W A -Rt W B .
  • preset corresponding standard parameters such as preset guide groove plane or guide hole axis pose parameters
  • the feature portion includes the geometric outer contour of the osteotomy guide block 40 of the osteotomy guiding tool 4
  • the virtual feature includes the geometric center point of the geometric outer contour.
  • the intersection of the three intermediate planes is the geometric center point of the osteotomy guide block 40 .
  • the osteotomy guide block 40 is not limited to a cuboid, and those skilled in the art can determine the geometric center point of the osteotomy guide block 40 of other shapes according to the above-mentioned idea. Then, the geometric center point is transformed with the pose parameters of the tool target, and the pose parameters of the geometric center point in the tool target coordinate system are obtained.
  • the standard parameters of the first virtual plane, the first virtual axis or the geometric center point are the poses of the expected plane, axis or center point of the osteotomy guide block 40 determined by the three-coordinate calibration instrument under the tool target coordinate system.
  • parameter the standard parameter is the expected pose parameter in the ideal condition without any deformation of the osteotomy guide block 40 , which can be determined by a three-coordinate calibration instrument at the factory, or obtained from the design value of the osteotomy guide block 40 .
  • the expected value can be set according to actual needs. If the error value is greater than the expected value, it means that the deformation of the osteotomy guide block 40 is large and cannot meet the accuracy requirements of the operation, and it is determined that the osteotomy guide tool 4 is deformed.
  • the operator can replace the deformed osteotomy guide tool 4 or perform other treatments according to the actual situation. Further, if the error value is not greater than the expected value, it indicates that the deformation of the osteotomy guide tool 4 is small, which can meet the accuracy requirements of the operation, and the operator can further choose whether to update the standard parameters to the actually obtained osteotomy guide tool 4.
  • the pose parameter values of the characteristic parts of the so that the subsequent surgical operation can be more accurately performed.
  • the tool target 3 is arranged on the osteotomy guide tool 4 .
  • the osteotomy guide tool 4 includes a target installation position 30 fixedly connected to the osteotomy guide block 40, and the tool target 3 is connected to the target installation position 30, so that the tool target coordinate system and the posture of the osteotomy guide tool 4 have the same position. Fixed transformation relationship. Further, using the scanning device 100 to scan the osteotomy guide tool 4 and the tool target 3, a three-dimensional reconstruction model including the osteotomy guide tool 4 and the tool target 3 as a whole can be obtained, from which the position of the tool target 3 in the base coordinate system can be obtained. pose to obtain the tool target coordinate system.
  • the tool target 3 is arranged on the scanning device 100 , and the tool target 3 may not be arranged on the osteotomy guide tool 4 .
  • the method for calibrating the osteotomy guiding tool further includes: calibrating the scanning device 100 in a base coordinate system.
  • the calibration here can be, for example, a registration transformation matrix according to the coordinate transformation between the scanning device 100 and the navigation image coordinate system, so as to determine the transformation relationship between the coordinates of the object scanned by the scanning device 100 and the base coordinate system.
  • the three-dimensional reconstruction model of the osteotomy guide tool 4 can be scanned and reconstructed directly by the scanning device 100 , without scanning the tool target 3 , the characteristic parts of the osteotomy guide tool 4 can be obtained at the tool target coordinates Tie down pose.
  • Those skilled in the art can calibrate the scanning device 100 in the base coordinate system according to the prior art, which will not be described here.
  • this embodiment provides a non-contact method, in which the scanning device 100 is used to scan the surgical operation tool, so as to realize the detection of the deformation of the surgical operation tool. It eliminates the step of disinfection, reduces the risk of infection during surgery, and does not affect the flow of surgery. Due to the non-contact detection, there is no additional wear on surgical tools. In addition, the non-contact detection has good universality to various surgical operation tools, and can adapt to various surgical operation tools of different shapes, while the non-contact equipment itself can be adjusted.
  • FIG. 5a is a schematic diagram of a transmitting end provided by Embodiment 2 of the present invention
  • FIG. 5b is a schematic diagram of a receiving end provided by Embodiment 2 of the present invention
  • FIG. 6 is a surgical operation provided by Embodiment 2 of the present invention
  • the schematic diagram of the calibration system of the tool wherein the length of the transmitting end and the receiving end is less than the length of the guide groove
  • FIG. 7 is a schematic diagram of the calibration system of the surgical operation tool provided in the second embodiment of the present invention, wherein the length of the transmitting end and the receiving end is not less than The length of the guide groove.
  • the calibration method and calibration system for a surgical operation tool provided in the second embodiment of the present invention are basically the same as the calibration method and calibration system for the surgical operation tool provided in the first embodiment. The same parts will not be described, and only the differences will be described below. describe.
  • the non-contact device includes an opposite-to-beam optoelectronic module, as shown in FIG. 5a and FIG. 5b
  • the opposite-to-beam optoelectronic module includes a transmitting end 201 and a receiving end 202
  • the opposite-to-beam optoelectronic module transmits
  • the end 201 and the receiving end 202 are respectively used to be placed on the two sides of the characteristic part of the surgical operation tool for the light of the opposite photoelectric module to pass, and the opposite photoelectric module is configured to be based on the receiving end 202.
  • the received optical signal from the transmitting end 201 obtains the virtual feature of the characteristic part of the surgical operation tool.
  • the optical signal transmitted by the transmitting end 201 may be laser, infrared or visible light, etc.
  • the receiving end 202 is adapted to the type of the optical signal transmitted by the transmitting end 201 .
  • step S1 includes:
  • Step S13 placing the transmitting end 201 and the receiving end 202 of the opposite-light photoelectric module on both sides of the characteristic part of the surgical operation tool;
  • Step S14 Based on the optical signal received by the receiving end 202 and transmitted from the transmitting end 201, a virtual feature of the characteristic part of the surgical operation tool is obtained.
  • the surgical operation tool includes an osteotomy guide tool 4
  • at least the firing end 201 has a target 203
  • the characteristic portion includes the guide groove 41 of the osteotomy guide block 40 of the osteotomy guide tool 4 and/or Guide hole 42
  • the virtual feature includes the penetration position of the opposite-light optoelectronic module along the guide groove 41 or the guide hole 42 .
  • the target 203 of the transmitting end 201 can be positioned by the navigation device, and the navigation device can obtain the pose parameters of the transmitting end 201 in the tool target coordinate system through the target 203 of the transmitting end 201 .
  • the virtual feature here guides the penetration position of the guide groove 41 or the guide hole 42 .
  • the receiving end 202 can receive the optical signal from the transmitting end 201 , it can be determined that the photoelectric module is located in the guide groove 41 at this time. Or the through position of the guide hole 42, so as to confirm that the guide groove 41 or the guide hole 42 is straight, and then confirm whether the notch is worn. Further, by using the target 203 of the transmitting end 201, the pose parameters of the guide groove 41 or the guide hole 42 in the tool target coordinate system can be obtained.
  • the method for verifying the surgical operation tool further includes:
  • Step S13a Rotate the transmitting end along the notch of the guide groove 41 or the opening of the guiding hole 42;
  • Step S13b Identify the moment when the transmitting end 201 is facing the receiving end 202.
  • the optical signal emitted by the emitting end 201 is bundled into a plane shape (that is, the light beam emitting end can be abstracted as a line) or a line (that is, the light beam emitting end can be abstracted as a point), when it is used for the guide groove 41
  • the light signal emitted by the transmitting end 201 is bundled into a plane shape.
  • the transmitting end 201 rotates around the extending direction of the notch, the plane beam also rotates around the notch.
  • the planar light beam When it rotates to a certain angle. , when the planar light beam coincides with the extending direction of the guide groove 41, the planar light beam can be received by the receiving end 202, and if the transmitting end 201 continues to rotate, the light beam will be blocked by the side wall of the guide groove 41, and the receiving end 202 No reception signal.
  • the moment when the transmitting end 201 is facing the receiving end 202 can be identified, and based on the pose parameters of the target 203 of the transmitting end 201 in the base coordinate system at this moment , a tool target coordinate system can be obtained, so that the pose parameters of the guide groove 41 in the tool target coordinate system can be obtained, which can then be used to determine whether the guide groove 41 is deformed.
  • the optical signal emitted by the transmitting end 201 is concentrated into a plane or linear shape.
  • the transmitting end 201 By rotating the transmitting end 201 , the transmitting end 201 can be identified. The time when facing the receiving end 202 is used to know the pose parameters of the guide hole 42 in the tool target coordinate system.
  • the characteristic part includes the guide groove 41 of the osteotomy guide block of the osteotomy guide tool, and the length of the transmitting end 201 and/or the receiving end 202 is smaller than the length of the The extension length of the guide groove 41 .
  • the step S14 in the step S1 can be specifically implemented as: using the transmitting end and/or the receiving end whose length is smaller than the lateral extension length of the guide groove 41 to pass the light of the opposite photoelectric module in the guide groove 41
  • the two sides of the guide groove 41 ie, the upper and lower sides of the guide groove 41 in FIG. 6 ) move along the lateral extension direction of the guide groove 41 .
  • the length of the transmitting end 201 or the receiving end 202 can be smaller than that of the guide groove 41 .
  • the extension length of the guide groove 41 can be obtained, and then the pose parameters of the guide groove 41 in the tool target coordinate system can be obtained.
  • the lengths of the transmitting end 201 and the receiving end 202 are not less than the extension length of the guide groove 41 .
  • the lengths of the transmitting end 201 and the receiving end 202 are equal to the extension of the guiding groove 41 . length.
  • the step S14 in the step S1 can be specifically implemented as: using the transmitting end 201 and the receiving end 202 whose length is not less than the extension length of the guide groove 41 to be placed in the guide groove 41 for the light of the opposite photoelectric module to pass through (that is, the upper and lower sides of the guide groove 41 in FIG.
  • the pose parameters of the groove 41 in the tool target coordinate system are used to detect the penetration or deformation of the guide groove.
  • the virtual feature also includes the midpoint of the guide groove 41 or the guide hole 42;
  • the method for calibrating the osteotomy guide tool further includes: exchanging the positions of the transmitting end 201 and the receiving end 202;
  • the midpoint of the guide groove 41 or the guide hole 42 is obtained from the optical signal transmitted by the transmitting end 201 and received by the receiving end 202 .
  • the pose parameters of the two notches of the guide groove 41 or the guide hole 42 can be obtained respectively, so that the midpoint of the guide groove 41 or the guide hole 42 can be obtained for further judgment of the guide groove 41 or the guide hole 42 is deformed.
  • FIG. 8 is a schematic diagram of a receiving end provided by Embodiment 3 of the present invention
  • FIG. 9 is a schematic diagram of a calibration system of a surgical operation tool provided by Embodiment 3 of the present invention.
  • the calibration method and calibration system of the surgical operation tool provided by the third embodiment of the present invention are basically the same as the calibration method and calibration system of the surgical operation tool provided by the second embodiment, and the same parts will not be described, and only the differences will be described below. describe.
  • the contactless device includes an opposite-to-beam optoelectronic module
  • the opposite-to-beam optoelectronic module includes a transmitting end 201 and a receiving end 202.
  • the transmitting end 201 and the Each of the receiving ends 202 has a target 203 .
  • the virtual feature further includes the relative distance between the transmitting end 201 and the receiving end 202 arranged along two sides of the guide groove 41 or the guide hole 42 .
  • both the transmitting end 201 and the receiving end 202 have a target 203, and the navigation device can obtain the pose parameters of the transmitting end 201 and the receiving end 202 in the base coordinate system respectively, so as to obtain the distance between them, Thereby, the thickness of the guide groove 41 or the guide hole 42 can be known. It is used to further judge whether the guide groove 41 or the guide hole 42 is deformed. For example, when the error value of the known thickness of the guide groove 41 compared with the standard thickness is larger than the expected value, it can be determined that the guide groove 41 is worn and deformed.
  • a non-contact device is used to obtain virtual features of a characteristic part of a surgical operation tool; the coordinates of the tool target in the base coordinate system are obtained, and the Fitting to obtain the tool target coordinate system; obtaining the pose parameters of the virtual feature in the tool target coordinate system to obtain the pose parameters of the feature part in the tool target coordinate system; comparing the feature parts The error value between the pose parameter in the tool target coordinate system and the standard parameter; if the error value is greater than the expected value, it is determined that the surgical operation tool is deformed.
  • the non-contact equipment since the non-contact equipment is used for detection, the steps of disinfection are omitted, the risk of infection during the operation is reduced, and the operation process is not affected. Due to the non-contact detection, there is no additional wear on surgical tools. In addition, the non-contact detection has good universality to various surgical operation tools, and can adapt to various surgical operation tools of different shapes, while the non-contact equipment itself can be adjusted.

Landscapes

  • Health & Medical Sciences (AREA)
  • Surgery (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • General Health & Medical Sciences (AREA)
  • Animal Behavior & Ethology (AREA)
  • Nuclear Medicine, Radiotherapy & Molecular Imaging (AREA)
  • Veterinary Medicine (AREA)
  • Public Health (AREA)
  • Molecular Biology (AREA)
  • Biomedical Technology (AREA)
  • Heart & Thoracic Surgery (AREA)
  • Medical Informatics (AREA)
  • Robotics (AREA)
  • Physical Education & Sports Medicine (AREA)
  • Oral & Maxillofacial Surgery (AREA)
  • Orthopedic Medicine & Surgery (AREA)
  • Transplantation (AREA)
  • Dentistry (AREA)
  • Surgical Instruments (AREA)

Abstract

一种手术操作工具的校验方法及校验系统,利用非接触式设备获取一手术操作工具的特征部位的虚拟特征(S1);获取工具靶标于基坐标系中的坐标,并拟合得到工具靶标坐标系(S2);获取虚拟特征于工具靶标坐标系中的位姿参数,以得到特征部位于工具靶标坐标系中的位姿参数(S3);比较特征部位于工具靶标坐标系中的位姿参数与标准参数的误差值;若误差值大于预期值,则确定手术操作工具发生变形(S4)。如此配置,免除了消毒的步骤,降低了手术中的感染风险,也不会影响手术的流程。不会对手术操作工具产生额外的磨损,普适性好,可以适应不同形态的各种手术操作工具,而本身的非接触式设备可不作调整。

Description

手术操作工具的校验方法及校验系统 技术领域
本发明涉及机器人辅助手术系统和方法领域,特别涉及一种手术操作工具的校验方法及校验系统。
背景技术
人工关节置换手术中,需要使用各种定位器、导向器等,用于人工关节安装之前的截骨,以确保截骨操作的精度。现有已提出了不同的方法来帮助外科医生实现在全膝关节置换(TKA)手术过程中截骨导向工具的定位。一般地,现有的机器人辅助手术系统中,在机械臂末端设置截骨导向工具,通过机械臂控制截骨导向工具运动,实现膝关节置换手术过程中截骨导向工具的定位。在机械臂注册时机械臂系统和定位系统均需要获得截骨导向工具的几何中心点,只有保证机械臂系统和定位系统获得的导块几何中心点为同一点时,机械臂注册得到的转换矩阵才是正确的。当截骨导向工具发生变形时,定位系统无法识别该变形,这样会影响手术定位精度,进而会影响手术结果。现有技术常通过接触式的检测装置对截骨导向工具的结构特征(如导向槽或导向孔等)进行接触式地检测,如此,一方面可能引入细菌等微生物,带来手术中的感染风险;另一方面,由于接触式的检测需打断手术,会影响手术的流程,且接触式的检测过程本身亦会对导向槽或导向孔产生磨损;再一方面,接触式的检测装置常需要根据导向槽或导向孔的形状进行配置,一旦截骨导向工具的导向槽或导向孔的形状有变更,则原有的接触式的检测装置亦需要变更,其普适性差。
发明内容
本发明的目的在于提供一种手术操作工具的校验方法及校验系统,以解决现有的机器人辅助手术系统中接触式的检测装置所存在的问题。
为解决上述技术问题,根据本发明的第一个方面,提供了一种手术操作工具的校验方法,其包括:
利用非接触式设备获取一手术操作工具的特征部位的虚拟特征;
获取工具靶标于基坐标系中的坐标,并拟合得到工具靶标坐标系;
获取所述虚拟特征于所述工具靶标坐标系中的位姿参数,以得到所述特征部位于所述工具靶标坐标系中的位姿参数;
比较所述特征部位于所述工具靶标坐标系中的位姿参数与标准参数的误差值;若所述误差值大于预期值,则确定所述手术操作工具发生变形。
可选的,所述非接触式设备包括扫描设备,所述利用非接触式设备获取一手术操作工具的特征部位的虚拟特征的步骤包括:
利用扫描设备扫描所述手术操作工具,获取所述手术操作工具的三维重建模型;
基于所述三维重建模型拟合得到所述手术操作工具的特征部位的虚拟特征。
可选的,所述手术操作工具包括截骨导向工具,所述特征部位包括所述截骨导向工具的截骨导块的导向槽或导向孔,所述虚拟特征包括沿所述导向槽的延伸方向设置的第一虚拟平面或沿所述导向孔的轴向设置的第一虚拟轴线。
可选的,所述手术操作工具包括截骨导向工具,所述特征部位包括所述截骨导向工具的截骨导块的几何外轮廓,所述虚拟特征包括所述几何外轮廓的几何中心点。
可选的,所述工具靶标设置于所述扫描设备上,在利用扫描设备扫描以获取所述手术操作工具的三维重建模型之前,所述手术操作工具的校验方法还包括:对所述扫描设备于基坐标系中进行标定。
可选的,所述非接触式设备包括对射光电模块,所述对射光电模块包括发射端及接收端,所述利用非接触式设备获取一手术操作工具的特征部位的虚拟特征的步骤包括:
将所述对射光电模块的发射端和接收端分别置于所述手术操作工具的特征部位的供所述对射光电模块的光通过的两侧;
基于所述接收端所接收到的来自所述发射端所发射的光信号,得到所述 手术操作工具的特征部位的虚拟特征。
可选的,所述手术操作工具包括截骨导向工具,至少所述发射端具有靶标,所述特征部位包括所述截骨导向工具的截骨导块的导向槽和/或导向孔,所述虚拟特征包括所述对射光电模块沿所述导向槽或导向孔的贯通位置。
可选的,所述发射端和所述接收端均具有靶标,所述虚拟特征还包括所述发射端和所述接收端沿所述导向槽或导向孔的两侧布置的相对距离。
可选的,所述特征部位包括所述截骨导向工具的截骨导块的导向槽,所述利用非接触式设备获取一手术操作工具的特征部位的虚拟特征的步骤还包括:
利用长度不小于所述导向槽之延伸长度的发射端和接收端置于所述导向槽的两侧;或者
利用长度小于所述导向槽之延伸长度的发射端和/或接收端,于所述导向槽供所述对射光电模块的光通过的两侧沿所述导向槽的延伸方向移动所述发射端和/或接收端。
可选的,所述虚拟特征还包括所述导向槽或导向孔的中点;在将所述对射光电模块的发射端和接收端分别置于所述手术操作工具的特征部位供所述对射光电模块的光通过的两侧之后,所述手术操作工具的校验方法还包括:交换所述发射端和所述接收端的位置;基于交换前后所述接收端所接收到的来自所述发射端所发射的光信号,得到所述导向槽或导向孔的中点。
可选的,在将所述对射光电模块的发射端和接收端分别置于所述手术操作工具的特征部位供所述对射光电模块的光通过的两侧的步骤之后,所述手术操作工具的校验方法还包括:
于所述导向槽的槽口或所述导向孔的孔口转动所述发射端;
识别所述发射端正对所述接收端的时刻;
得到此时刻下所述导向槽或导向孔于所述工具靶标坐标系下的位姿参数。
为解决上述技术问题,根据本发明的第二个方面,还提供了一种手术操作工具的校验系统,其包括:
手术操作工具;
非接触式设备,所述非接触式设备用于获取所述手术操作工具的特征部位的虚拟特征;
工具靶标,所述工具靶标设置于所述手术操作工具上或设置于所述非接触式设备上;
导航装置,所述导航装置与所述工具靶标相适配,用以获取所述工具靶标的位姿参数;以及
控制装置,与所述非接触式设备和所述导航装置通信连接;所述控制装置被配置为,基于所述非接触式设备所获取的所述手术操作工具的特征部位的虚拟特征,通过所述导航装置获取工具靶标于基坐标系中的坐标,拟合得到工具靶标坐标系,并获取所述虚拟特征于所述工具靶标坐标系中的位姿参数,以得到所述手术操作工具的特征部位于所述工具靶标坐标系中的位姿参数;若所述特征部位于所述工具靶标坐标系中的位姿参数与对应的标准参数的误差值大于预期值,则确定所述手术操作工具发生变形。
可选的,所述非接触式设备包括扫描设备,所述扫描设备用于通过扫描所述手术操作工具获取其三维重建模型,所述控制装置被配置为基于所述三维重建模型拟合得到所述手术操作工具的特征部位的虚拟特征。
可选的,所述非接触式设备包括对射光电模块,所述对射光电模块包括发射端及接收端,所述对射光电模块的发射端和接收端分别用于置于所述手术操作工具的特征部位的两侧,所述对射光电模块被配置为基于所述接收端所接收到的来自所述发射端所发射的光信号,得到所述手术操作工具的特征部位的虚拟特征。
可选的,至少所述发射端具有靶标。
可选的,所述发射端和所述接收端均具有靶标。
可选的,所述手术操作工具包括截骨导向工具,所述特征部位包括所述截骨导向工具的截骨导块的导向槽,所述发射端和/或所述接收端的长度小于所述导向槽的延伸长度。
综上所述,在本发明提供的手术操作工具的校验方法及校验系统中,利 用非接触式设备获取一手术操作工具的特征部位的虚拟特征;获取工具靶标于基坐标系中的坐标,并拟合得到工具靶标坐标系;获取所述虚拟特征于所述工具靶标坐标系中的位姿参数,以得到所述特征部位于所述工具靶标坐标系中的位姿参数;比较所述特征部位于所述工具靶标坐标系中的位姿参数与标准参数的误差值;若所述误差值大于预期值,则确定所述手术操作工具发生变形。
如此配置,由于是利用非接触式设备进行检测,免除了消毒的步骤,降低了手术中的感染风险,也不会影响手术的流程。由于是非接触式的检测,不会对手术操作工具产生额外的磨损。此外,非接触式的检测对各种手术操作工具的普适性好,可以适应不同形态的各种手术操作工具,而本身的非接触式设备可不作调整。
附图说明
本领域的普通技术人员将会理解,提供的附图用于更好地理解本发明,而不对本发明的范围构成任何限定。其中:
图1是本发明所涉及的运用骨科手术系统进行膝关节置换的示意图;
图2是本发明所涉及的校验方法的流程图;
图3是本发明实施例一提供的手术操作工具的校验系统的示意图;
图4是本发明实施例一提供的截骨导向工具的示意图;
图5a是本发明实施例二提供的发射端的示意图;
图5b是本发明实施例二提供的接收端的示意图;
图6是本发明实施例二提供的手术操作工具的校验系统的示意图,其中发射端与接收端的长度小于导向槽的长度;
图7是本发明实施例二提供的手术操作工具的校验系统的示意图,其中发射端与接收端的长度不小于导向槽的长度;
图8是本发明实施例三提供的接收端的示意图;
图9是本发明实施例三提供的手术操作工具的校验系统的示意图。
附图中:
1-手术台车;2-机械臂;3-工具靶标;4-截骨导向工具;5-手术工具;6-跟踪仪;7-辅助显示器;8-主显示器;9-导航台车;10-键盘;11-股骨靶标;12-股骨;13-胫骨靶标;14-胫骨;15-基座靶标;17-患者;18-操作者;30-靶标安装位;40-截骨导块;41-导向槽;42-导向孔;405-右腿滑车截骨槽;407、411-0°导向槽;408、410-45°导向槽;412-左腿滑车截骨槽;
100-扫描设备;201-发射端;202-接收端;203-靶标。
具体实施方式
为使本发明的目的、优点和特征更加清楚,以下结合附图和具体实施例对本发明作进一步详细说明。需说明的是,附图均采用非常简化的形式且未按比例绘制,仅用以方便、明晰地辅助说明本发明实施例的目的。此外,附图所展示的结构往往是实际结构的一部分。特别的,各附图需要展示的侧重点不同,有时会采用不同的比例。
如在本发明中所使用的,单数形式“一”、“一个”以及“该”包括复数对象,术语“或”通常是以包括“和/或”的含义而进行使用的,术语“若干”通常是以包括“至少一个”的含义而进行使用的,术语“至少两个”通常是以包括“两个或两个以上”的含义而进行使用的,此外,术语“第一”、“第二”、“第三”仅用于描述目的,而不能理解为指示或暗示相对重要性或者隐含指明所指示的技术特征的数量。由此,限定有“第一”、“第二”、“第三”的特征可以明示或者隐含地包括一个或者至少两个该特征,术语“近端”通常是靠近操作者的一端,术语“远端”通常是靠近患者即靠近穿刺对象的一端,“一端”与“另一端”以及“近端”与“远端”通常是指相对应的两部分,术语“安装”、“相连”、“连接”应做广义理解,例如,可以是固定连接,也可以是可拆卸连接,或成一体;可以是机械连接,也可以是电连接;可以是直接相连,也可以通过中间媒介间接相连,可以是两个元件内部的连通或两个元件的相互作用关系。此外,如在本实用新型中所使用的,一元件设置于另一元件,通常仅表示两元件之间存在连接、耦合、配合或传动关系,且两元件之间可以是直接的或通过中间元件间接的连接、耦合、配合或传动,而 不能理解为指示或暗示两元件之间的空间位置关系,即一元件可以在另一元件的内部、外部、上方、下方或一侧等任意方位,除非内容另外明确指出外。对于本领域的普通技术人员而言,可以根据具体情况理解上述术语在本实用新型中的具体含义。
本发明的核心思想在于提供一种手术操作工具的校验方法及校验系统,以解决现有的机器人辅助手术系统中接触式的检测装置所存在的问题。
以下参考附图进行描述。
【实施例一】
请参考图1至图4,其中,图1是本发明实施例一提供的运用骨科手术系统进行膝关节置换的示意图;图2是本发明实施例一提供的校验方法的流程图;图3是本发明实施例一提供的手术操作工具的校验系统的示意图;图4是本发明实施例一提供的截骨导向工具的示意图。
本发明实施例提供一种骨科手术系统,图1所示为利用所述骨科手术系统进行膝关节置换的示意,然而,本发明的骨科手术系统对应用环境没有特别的限制,也可应用于其他的骨科手术。以下描述中,以用于膝关节置换为示例,并以一截骨导向工具4作为手术操作工具的示例,对骨科手术系统进行说明,但不应以此作为对本发明的限定。
如图1所示,所述骨科手术系统包括控制装置、导航装置、机械臂2以及截骨导向工具4。所述控制装置实际为一台计算机,该计算机配置了控制器、主显示器8和键盘10,更优选还包括辅助显示器7。本实施例中,所述辅助显示器7和主显示器8所显示的内容一致,例如均用于显示截骨位置图像。所述导航装置可以是电磁定位导航装置、光学定位导航装置或者电磁定位导航装置。优选的,所述导航装置为光学定位导航装置,相比于其他的导航方式,测量精度高,可有效提高截骨导向工具的定位精度。以下描述中,以光学定位导航装置作为示例进行说明,但不以此为限。
所述导航装置具体包括导航标志物和跟踪仪6(NDI导航设备),所述导航标志物包括基座靶标15和工具靶标3,基座靶标15固定不动,例如基座靶 标15被固定在手术台车1上而用于提供一个基坐标系(或称基座靶标坐标系)。所述截骨导向工具4安装在机械臂2的末端,从而通过机械臂2来支撑截骨导向工具4,并调整截骨导向工具4的空间位置和姿态。当然在其它的一些实施例中,基坐标系也可以是由导航装置提供,即将导航装置坐标系配置为基坐标系,或其它的参考坐标系。
实际中,利用跟踪仪6来捕捉工具靶标3反射的信号(优选光学信号)并记录工具靶标3的位置(即工具靶标3在基座标系下的位置和姿态),再由控制器内存储的计算机程序根据工具靶标3的当前位置和期望位置,计算得到截骨导向工具4的期望位置,进而控制机械臂2运动,机械臂2驱动截骨导向工具4运动,并使截骨导向工具4到达期望位置。
因此,对于骨科手术系统的应用,可实现截骨导向工具4的自动定位,且手术过程中通过跟踪工具靶标3并反馈截骨导向工具4的实时位姿参数,并通过控制机械臂的运动实现截骨导向工具4的位置和姿态的调整,不仅截骨导向工具4的定位精度高,而且通过机械臂2来支撑截骨导向工具4,而无需将导向工具固定在人体上,可避免对人体产生二次伤害。
一般的,所述骨科手术系统还包括手术台车1和导航台车9。所述控制装置和一部分所述导航装置安装在导航台车9上,例如所述控制器安装在导航台车9的内部,所述键盘10放置在导航台车9的外部进行操作,所述主显示器8、辅助显示器7和跟踪仪6均安装在一个支架上,所述支架竖直固定在导航台车9上,而所述机械臂2安装在手术台车1上。手术台车1和导航台车9的使用,使整个手术操作更为方便。
在执行膝关节置换手术时,本实施例的骨科手术系统的使用过程大致包括以下操作:
首先,将手术台车1及导航台车9移动至病床旁边合适的位置;
然后,安装导航标志物(导航标志物还包括股骨靶标11、胫骨靶标13)、截骨导向工具4以及其他相关部件(如无菌袋);
之后,操作者18将患者17的骨头CT/MR扫描模型导入所述计算机进行术前规划,得到截骨方案,该截骨方案例如包括截骨平面坐标、假体的型号 以及假体的安装方位等信息;具体地,根据CT/MR扫描得到的患者膝关节影像数据,创建三维膝关节数字模型,进而根据三维膝关节数字模型创建截骨方案,以便手术操作者根据截骨方案进行术前评估,更具体地,基于三维膝关节数字模型,并结合得到的假体的尺寸规格以及截骨板的安装位置等确定截骨方案,所述截骨方案最终以手术报告形式输出,其记录有截骨平面坐标、截骨量、截骨角度、假体规格、假体的安装位置、手术辅助工具等一系列参考数据,特别还包括一系列理论说明,如选取该截骨角度的原因说明等,以为手术操作者提供参考;其中,三维膝关节数字模型可通过主显示器8进行显示,且操作者可通过键盘10输入手术参数,以便进行术前规划;
术前评估后,操作者18再使用靶标笔在患者的股骨及胫骨上标定特征点(即操作者于患者的股骨实体上标定多个股骨解剖特征点,在胫骨实体上标定多个胫骨解剖特征点),并通过导航装置以基座靶标15为基准,记录患者胫骨14和股骨12上所有特征点的位置,并将所有特征点的位置发送给所述控制器,然后所述控制器通过特征匹配算法得到股骨12及胫骨14的实际方位,并与股骨12及胫骨14上的CT/MR图像方位相对应;
随后,通过导航装置将股骨及胫骨的实际方位与安装在股骨及胫骨上的相应靶标相联系,使得股骨靶标11和胫骨靶标13可以实时跟踪骨头的实际位置,且手术过程中,只要靶标与骨头间的相对位置固定,骨头移动不会影响手术效果;
进而通过导航装置将术前规划的截骨平面坐标发送给机械臂2,所述机械臂2通过工具靶标3定位截骨平面并运动到预定位置后,使机械臂2进入保持状态(即不动),此后,操作者即可使用摆锯或电钻等手术工具5通过截骨导向工具4进行截骨和/或钻孔操作。完成截骨及钻孔操作后,操作者即可安装假体及进行其他手术操作。
本实施例中,所述导航标志物还包括股骨靶标11和胫骨靶标13。其中股骨靶标11用于定位股骨12的空间位置和姿态,胫骨靶标13用于定位胫骨14的空间位置和姿态。基于上述骨科手术系统,可实现机器人辅助手术,帮助操作者定位需截骨的位置,以便于操作者实施截骨。
所述截骨导向工具4包括截骨导块40(如图4所示),该截骨导块40具有用于供定位的特征部位,特征部位包括导向特征或截骨导块40的几何外轮廓,导向特征可以包括导向槽41,也可以包括导向孔42,或者包括导向槽41和导向孔42,也就是说,截骨导块40上的导向特征可以是导向槽41与导向孔42的一种或多种组合,从而为膝关节置换的截骨操作提供一种或多种导向,优选为股骨远端、股骨前端、股骨后端、股骨前端斜切、股骨后端斜切、滑车槽、股骨假体安装孔、胫骨平台、胫骨龙骨处理工作定位孔的截骨及钻孔操作提供导向,从而使同一个截骨导向工具可以进行多种功能的截骨及打孔操作。实际中,通过工具靶标3的位置来表征截骨导向工具4的位置,如根据导向特征相对于截骨导块40的中心点的位置信息,以及截骨导块40的中心点在工具靶标坐标系下的坐标信息(或称位姿参数),获得导向特征在工具靶标坐标系下的位姿参数(包括位置和姿态),从而形成导向特征相对于工具靶标3的位姿参数映射关系。
为了增大截骨导向工具所适用假体的范围,如图4所示,截骨导块40上的导向槽41包括0°导向槽(407及411)、45°导向槽(408及410)、右腿滑车截骨槽405以及左腿滑车截骨槽412,在截取股骨前端、股骨前端斜切、股骨后端及股骨后端斜切时,仅需平移截骨导块40即可利用对应的导向槽来完成这些截骨操作,这样一来,不会使位于其上的工具靶标发生较大的位姿参数变化,从而可以减小机械臂的传动误差以及靶标位置跟踪误差,提高定位精度。导向槽41的形状优选为喇叭形,以此增大摆锯等手术工具在导向槽中的摆动范围,从而兼容更多型号假体的截骨操作。
然而如前所述,由于骨科手术系统需要基于截骨导向工具4上的特征部位的位姿参数进行定位,以供手术操作,故一旦截骨导向工具4上的特征部位产生变形,则骨科手术系统将由于无法识别截骨导向工具4上的特征部位的变形而影响定位精度。关于利用接触式的方式来获得截骨导向工具4的特征部位的位姿的方法,可以参考公开号为CN110811834A的专利申请,其全部内容通过引用整体并入本文。而如背景技术所述,利用接触式的检测靶标进行接触式的检测具有一定的缺陷,由此,请参考图2,本发明实施例提供一 种截骨导向工具的校验方法,其包括:
步骤S1:利用非接触式设备获取一手术操作工具(如截骨导向工具4)的特征部位的虚拟特征;
步骤S2:获取工具靶标于基坐标系中的坐标,并拟合得到工具靶标坐标系;
步骤S3:获取所述虚拟特征于所述工具靶标坐标系中的位姿参数,以得到所述特征部位于所述工具靶标坐标系中的位姿参数;
步骤S4:比较所述特征部位于所述工具靶标坐标系中的位姿参数与标准参数的误差值;若所述误差值大于预期值,则确定所述手术操作工具发生变形。
基于上述思想,本发明实施例提供一种手术操作工具的校验系统,其包括:手术操作工具(如截骨导向工具4)、非接触式设备、工具靶标3、导航装置以及控制装置,所述非接触式设备用于获取所述手术操作工具的特征部位的虚拟特征;所述工具靶标3设置于所述手术操作工具上或设置于所述非接触式设备上;所述导航装置与所述工具靶标3相适配,用以获取所述工具靶标3的位姿参数;所述控制装置与所述非接触式设备和所述导航装置通信连接;所述控制装置被配置为,基于所述非接触式设备所获取的所述手术操作工具的特征部位的虚拟特征,通过所述导航装置获取工具靶标于基坐标系下的坐标,拟合得到工具靶标坐标系,进而将所述虚拟特征于工具靶标坐标系中的坐标转换到基坐标系下,得到虚拟特征于工具靶标坐标系中的位姿参数,以得到手术操作工具的特征部位于所述工具靶标坐标系中的位姿参数;若所述特征部位于所述工具靶标坐标系中的位姿参数与对应的标准参数的误差值大于预期值,则确定手术操作工具发生变形。可以理解的,所述标准参数为与所述特征部位于所述工具靶标坐标系中的位姿参数能够直接比较以确定手术操作工具是否发生变形的参数。
如此配置,由于是利用非接触式设备进行检测,免除了消毒的步骤,降低了手术中的感染风险,也不会影响手术的流程。由于是非接触式的检测,不会对手术操作工具产生额外的磨损。此外,非接触式的检测对各种手术操 作工具(如截骨导向工具4、导块或靶标等)的普适性好,可以适应不同形态的各种手术操作工具,而本身的非接触式设备可不作调整。
请参考图3,在一个示范性的实施例中,以一截骨导向工具4作为手术操作工具的示例进行说明,所述非接触式设备包括扫描设备100,所述扫描设备100用于通过扫描所述截骨导向工具4获取其三维重建模型,所述控制装置被配置为基于所述三维重建模型拟合得到所述截骨导向工具4的特征部位的虚拟特征;上述步骤S1包括:
步骤S11:利用扫描设备100扫描所述截骨导向工具4并获取其三维重建模型;
步骤S12:基于所述三维重建模型拟合得到所述截骨导向工具4的特征部位的虚拟特征。
具体的,扫描设备100包括相机、视频采集器等图像采集装置,其可以通过非接触的方式获取截骨导向工具4的图像信息,进而扫描设备100可以根据截骨导向工具4的图像信息得到截骨导向工具4的三维重建模型。需要理解的,截骨导向工具4的三维重建模型包括了截骨导向工具4上的特征部位。可选的,扫描设备100可以是独立设置的设备,也可以附设在手术台车1、机械臂2或导航台车9上。
在一些实施例中,所述特征部位包括所述截骨导向工具4的截骨导块40的导向槽41和/或导向孔42,所述虚拟特征包括沿所述导向槽41的延伸方向设置的第一虚拟平面或沿所述导向孔42的轴向设置的第一虚拟轴线。通过三维重建,可以获得导向槽41或导向孔42的虚拟模型,从而可以从中拟合得到第一虚拟平面或第一虚拟轴线,进而将第一虚拟平面或第一虚拟轴线利用工具靶标的位姿参数进行转换,得到第一虚拟平面或第一虚拟轴线于工具靶标坐标系中的位姿参数。具体的,虚拟特征在导航系统中的位姿参数是Rt W A,工具靶标3在导航系统中的位姿参数是Rt W B,通过坐标变化进而可获得虚拟特征在工具靶标坐标系下的位姿参数Rt B A=Rt W A-Rt W B。进而在得到第一虚拟平面或第一虚拟轴线于工具靶标坐标系中的位姿参数后,与预设的对应标准参数(如预设的导向槽平面或导向孔轴线位姿参数)进行比较,若误差值大 于预期值,则确定所述截骨导向工具4发生变形。
在其它的一些实施例中,所述特征部位包括所述截骨导向工具4的截骨导块40的几何外轮廓,所述虚拟特征包括所述几何外轮廓的几何中心点。通过三维重建,可以获得截骨导块40的几何外轮廓的虚拟模型,即得到截骨导块40之所有表面的位姿参数,进而可获得相对的表面的中间平面。由于获取了截骨导块40之所有表面的位姿参数,每两个相对的表面可计算得到一个中间平面。以截骨导块40为长方体示例,则6个表面可获得3个中间平面。进一步,该3个中间平面的交点即为截骨导块40的几何中心点。当然截骨导块40并不限于为长方体,本领域技术人员可根据上述思想,实现确定其它形状的截骨导块40之几何中心点。进而将几何中心点利用工具靶标的位姿参数进行转换,得到几何中心点于工具靶标坐标系中的位姿参数。
进一步的,第一虚拟平面、第一虚拟轴线或几何中心点的标准参数为利用三坐标标定仪器确定出来的截骨导块40之预期平面、轴线或中心点在工具靶标坐标系下的位姿参数。亦即该标准参数为理想中,截骨导块40无任何变形的情况下的预期位姿参数,其可以在出厂时由三坐标标定仪器确定,或由截骨导块40的设计值获得。预期值则可根据实际需要进行设定,若误差值大于预期值,则说明截骨导块40的变形较大,已无法适应手术的精度要求,则确定所述截骨导向工具4发生变形,操作者可根据实际情况对发生变形的截骨导向工具4进行更换或进行其他处理。更进一步的,若误差值不大于预期值,则表明截骨导向工具4的变形较小,可以满足手术的精度要求,操作者可进一步选择是否将标准参数更新为实际获得的截骨导向工具4的特征部位的位姿参数值,以便后续更准确地实施手术操作。
在一些实施例中,工具靶标3设置于所述截骨导向工具4上。可选的,截骨导向工具4包括与截骨导块40固定连接的靶标安装位30,工具靶标3与靶标安装位30连接,以使工具靶标坐标系与截骨导向工具4的位姿具有固定的变换关系。进一步,利用扫描设备100对截骨导向工具4和工具靶标3进行扫描,可以得到包含截骨导向工具4和工具靶标3整体的三维重建模型,从中可以得到工具靶标3于基坐标系下的位姿,从而得到工具靶标坐标系。
而在其它的一些实施例中,工具靶标3设置于扫描设备100上,而截骨导向工具4上可不设置工具靶标3。在利用扫描设备100扫描获取所述截骨导向工具4的三维重建模型之前,所述截骨导向工具的校验方法还包括:对所述扫描设备100于基坐标系中进行标定。这里的标定,如可以是根据扫描设备100与导航图像坐标系之间坐标转换的配准转换矩阵,以确定扫描设备100所扫描的对象的坐标与基坐标系之间的转换关系。经过对扫描设备100的标定后,可以直接利用扫描设备100扫描重建截骨导向工具4的三维重建模型,而不需要扫描工具靶标3,就可以获得截骨导向工具4之特征部位在工具靶标坐标系下的位姿。本领域技术人员可根据现有技术对扫描设备100于基坐标系中进行标定,这里不再展开说明。
综上,本实施例提供了一种非接触式的方法,利用扫描设备100对手术操作工具进行扫描的方式,实现了对手术操作工具变形的检测。免除了消毒的步骤,降低了手术中的感染风险,也不会影响手术的流程。由于是非接触式的检测,不会对手术操作工具产生额外的磨损。此外,非接触式的检测对各种手术操作工具的普适性好,可以适应不同形态的各种手术操作工具,而本身的非接触式设备可不作调整。
【实施例二】
请参考图5a至图7,其中,图5a是本发明实施例二提供的发射端的示意图;图5b是本发明实施例二提供的接收端的示意图;图6是本发明实施例二提供的手术操作工具的校验系统的示意图,其中发射端与接收端的长度小于导向槽的长度;图7是本发明实施例二提供的手术操作工具的校验系统的示意图,其中发射端与接收端的长度不小于导向槽的长度。
本发明实施例二提供的手术操作工具的校验方法及校验系统与实施例一提供的手术操作工具的校验方法及校验系统基本相同,对于相同部分不再叙述,以下仅针对不同点进行描述。
在本实施例中,所述非接触式设备包括对射光电模块,如图5a和图5b所示,所述对射光电模块包括发射端201及接收端202,所述对射光电模块的 发射端201和接收端202分别用于置于所述手术操作工具的特征部位的供所述对射光电模块的光通过的两侧,所述对射光电模块被配置为基于所述接收端202所接收到的来自所述发射端201所发射的光信号,得到所述手术操作工具的特征部位的虚拟特征。需要说明的,发射端201所发射的光信号,可以是激光、红外线或可见光等,接收端202则与发射端201所发射的光信号的类型相适配。
在所述截骨导向工具的校验方法中,步骤S1包括:
步骤S13:将所述对射光电模块的发射端201和接收端202分别置于所述手术操作工具的特征部位的两侧;
步骤S14:基于所述接收端202所接收到的来自所述发射端201所发射的光信号,得到所述手术操作工具的特征部位的虚拟特征。
优选的,所述手术操作工具包括截骨导向工具4,至少所述发射端201具有靶标203,所述特征部位包括所述截骨导向工具4的截骨导块40的导向槽41和/或导向孔42,所述虚拟特征包括所述对射光电模块沿所述导向槽41或导向孔42的贯通位置。这里发射端201所具有的靶标203,能够被导航装置所定位,导航装置通过发射端201的靶标203,可以获知发射端201于工具靶标坐标系下的位姿参数。进一步的,虚拟特征在这里指导向槽41或导向孔42的贯通位置,实际中,当接收端202能够接收到来自发射端201的光信号时,可以确定此时对射光电模块处于导向槽41或导向孔42的贯通位置,从而确定导向槽41或导向孔42是直通的,进而确认槽口是否产生了磨损。进一步的,利用发射端201的靶标203,即可以得到导向槽41或导向孔42于工具靶标坐标系下的位姿参数。
进一步的,在步骤S13之后,所述手术操作工具的校验方法还包括:
步骤S13a:沿所述导向槽41的槽口或所述导向孔42的孔口转动所述发射端;步骤S13b:识别所述发射端201正对所述接收端202的时刻。在一个示范例中,发射端201所发射的光信号被集束为面状(即光束发射端可抽象为一线)或线状(即光束发射端可抽象为一点),当用于对导向槽41进行检测时,发射端201所发射的光信号被集束为面状,发射端201以槽口的延伸 方向为轴转动时,面状的光束亦随之围绕槽口转动,当转动到一定的角度,该面状光束与导向槽41的延伸方向重合时,该面状光束能够被接收端202所接收,而继续转动发射端201,该光束会被导向槽41的侧壁所遮挡,接收端202无接收信号。通过对接收端202所接收到的信号进行分析,可以识别所述发射端201正对所述接收端202的时刻,而基于此时刻下发射端201的靶标203于基坐标系下的位姿参数,可得到一工具靶标坐标系,从而可以获知导向槽41于工具靶标坐标系下的位姿参数,进而可用于判断导向槽41是否发生了变形。可以理解的,基于类似的方法,当用于对导向孔42进行检测时,发射端201所发射的光信号被集束为面状或线状,通过转动发射端201,可以识别所述发射端201正对所述接收端202的时刻,从而用于获知导向孔42于工具靶标坐标系下的位姿参数。
请参考图6,在一些实施例中,所述特征部位包括所述截骨导向工具的截骨导块的导向槽41,所述发射端201和/或所述接收端202的长度小于所述导向槽41的延伸长度。所述步骤S1中的步骤S14可具体实施为:利用长度小于所述导向槽41之横向延伸长度的发射端和/或接收端,于所述导向槽41供所述对射光电模块的光通过的两侧(即图6中导向槽41的上下两侧)沿所述导向槽41的横向延伸方向移动。发射端201或接收端202的长度可以小于导向槽41,通过沿导向槽41的移动,可以获得导向槽41的延伸长度,进而获知导向槽41于工具靶标坐标系下的位姿参数。
请参考图7,在其它的一些实施例中,发射端201和接收端202的长度不小于导向槽41的延伸长度,较佳的,发射端201和接收端202的长度等于导向槽41的延伸长度。所述步骤S1中的步骤S14可具体实施为:利用长度不小于所述导向槽41之延伸长度的发射端201和接收端202置于所述导向槽41供所述对射光电模块的光通过的两侧(即图7中导向槽41的上下两侧),此时即不需要移动发射端201和接收端202,而可以通过直接检测接收端是否能够接收到发射端信号的方式来获得导向槽41于工具靶标坐标系下的位姿参数,以检测导向槽的贯通或者变形。
可选的,所述虚拟特征还包括所述导向槽41或导向孔42的中点;在将 所述对射光电模块的发射端201和接收端202分别置于所述截骨导向工具4的特征部位供所述对射光电模块的光通过的两侧之后,所述截骨导向工具的校验方法还包括:交换所述发射端201和所述接收端202的位置;基于交换前后所述接收端202所接收到的来自所述发射端201所发射的光信号,得到所述导向槽41或导向孔42的中点。通过交换发射端201和接收端202,可以分别得到导向槽41或导向孔42两个槽口的位姿参数,从而可以得到导向槽41或导向孔42的中点,用于供进一步判断导向槽41或导向孔42是否产生变形。
【实施例三】
请参考图8和图9,其中,图8是本发明实施例三提供的接收端的示意图;图9是本发明实施例三提供的手术操作工具的校验系统的示意图。
本发明实施例三提供的手术操作工具的校验方法及校验系统与实施例二提供的手术操作工具的校验方法及校验系统基本相同,对于相同部分不再叙述,以下仅针对不同点进行描述。
在本实施例中,所述非接触式设备包括对射光电模块,所述对射光电模块包括发射端201及接收端202,如图8和图9所示,所述发射端201和所述接收端202均具有靶标203。所述虚拟特征还包括所述发射端201和所述接收端202沿所述导向槽41或导向孔42的两侧布置的相对距离。
请参考图9,发射端201和接收端202均具有靶标203,则导航装置可以分别获知发射端201和接收端202于基坐标系下的位姿参数,从而可以得到两者之间的距离,由此可以获知导向槽41或导向孔42的厚度。用于供进一步判断导向槽41或导向孔42是否产生变形,例如当获知的导向槽41的厚度与标准厚度相比,误差值大于了预期值,则可以确定导向槽41产生了磨损变形。
需要说明的是,本说明书中各个实施例采用递进的方式描述,每个实施例重点说明的都是与其他实施例的不同之处,各个实施例之间相同相似部分互相参见即可,此外,各个实施例之间不同的部分也可互相组合使用,本发 明对此不作限定。
综上,在本发明提供的手术操作工具的校验方法及校验系统中,利用非接触式设备获取一手术操作工具的特征部位的虚拟特征;获取工具靶标于基坐标系中的坐标,并拟合得到工具靶标坐标系;获取所述虚拟特征于所述工具靶标坐标系中的位姿参数,以得到所述特征部位于所述工具靶标坐标系中的位姿参数;比较所述特征部位于所述工具靶标坐标系中的位姿参数与标准参数的误差值;若所述误差值大于预期值,则确定所述手术操作工具发生变形。如此配置,由于是利用非接触式设备进行检测,免除了消毒的步骤,降低了手术中的感染风险,也不会影响手术的流程。由于是非接触式的检测,不会对手术操作工具产生额外的磨损。此外,非接触式的检测对各种手术操作工具的普适性好,可以适应不同形态的各种手术操作工具,而本身的非接触式设备可不作调整。
上述描述仅是对本发明较佳实施例的描述,并非对本发明范围的任何限定,本发明领域的普通技术人员根据上述揭示内容做的任何变更、修饰,均属于权利要求书的保护范围。

Claims (18)

  1. 一种手术操作工具的校验方法,其特征在于,包括:
    利用非接触式设备获取一手术操作工具的特征部位的虚拟特征;
    获取工具靶标于基坐标系中的坐标,并拟合得到工具靶标坐标系;
    获取所述虚拟特征于所述工具靶标坐标系中的位姿参数,以得到所述特征部位于所述工具靶标坐标系中的位姿参数;
    比较所述特征部位于所述工具靶标坐标系中的位姿参数与标准参数的误差值;若所述误差值大于预期值,则确定所述手术操作工具发生变形。
  2. 根据权利要求1所述的手术操作工具的校验方法,其特征在于,所述非接触式设备包括扫描设备,所述利用非接触式设备获取一手术操作工具的特征部位的虚拟特征的步骤包括:
    利用扫描设备扫描所述手术操作工具,获取所述手术操作工具的三维重建模型;
    基于所述三维重建模型拟合得到所述手术操作工具的特征部位的虚拟特征。
  3. 根据权利要求2所述的手术操作工具的校验方法,其特征在于,所述手术操作工具包括截骨导向工具,所述特征部位包括所述截骨导向工具的截骨导块的导向槽或导向孔,所述虚拟特征包括沿所述导向槽的延伸方向设置的第一虚拟平面或沿所述导向孔的轴向设置的第一虚拟轴线。
  4. 根据权利要求2所述的手术操作工具的校验方法,其特征在于,所述手术操作工具包括截骨导向工具,所述特征部位包括所述截骨导向工具的截骨导块的几何外轮廓,所述虚拟特征包括所述几何外轮廓的几何中心点。
  5. 根据权利要求2所述的手术操作工具的校验方法,其特征在于,所述工具靶标设置于所述扫描设备上,在利用扫描设备扫描以获取所述手术操作工具的三维重建模型之前,所述手术操作工具的校验方法还包括:对所述扫描设备于基坐标系中进行标定。
  6. 根据权利要求1所述的手术操作工具的校验方法,其特征在于,所述 非接触式设备包括对射光电模块,所述对射光电模块包括发射端及接收端,所述利用非接触式设备获取一手术操作工具的特征部位的虚拟特征的步骤包括:
    将所述对射光电模块的发射端和接收端分别置于所述手术操作工具的特征部位的供所述对射光电模块的光通过的两侧;
    基于所述接收端所接收到的来自所述发射端所发射的光信号,得到所述手术操作工具的特征部位的虚拟特征。
  7. 根据权利要求6所述的手术操作工具的校验方法,其特征在于,所述手术操作工具包括截骨导向工具,所述发射端具有靶标,所述特征部位包括所述截骨导向工具的截骨导块的导向槽和/或导向孔,所述虚拟特征包括所述对射光电模块沿所述导向槽或导向孔的贯通位置。
  8. 根据权利要求7所述的手术操作工具的校验方法,其特征在于,所述发射端和所述接收端均具有靶标,所述虚拟特征还包括所述发射端和所述接收端沿所述导向槽或导向孔的两侧布置的相对距离。
  9. 根据权利要求7所述的手术操作工具的校验方法,其特征在于,所述特征部位包括所述截骨导向工具的截骨导块的导向槽,所述发射端和接收端的长度不小于所述导向槽的延伸长度。
  10. 根据权利要求7所述的手术操作工具的校验方法,其特征在于,所述特征部位包括所述截骨导向工具的截骨导块的导向槽,所述发射端和接收端的长度小于所述导向槽的延伸长度;
    所述利用非接触式设备获取一手术操作工具的特征部位的虚拟特征的步骤包括:
    于所述导向槽供所述对射光电模块的光通过的两侧沿所述导向槽的延伸方向移动所述发射端和/或接收端。
  11. 根据权利要求7所述的手术操作工具的校验方法,其特征在于,所述虚拟特征还包括所述导向槽或导向孔的中点;在将所述对射光电模块的发射端和接收端分别置于所述手术操作工具的特征部位供所述对射光电模块的光通过的两侧之后,所述利用非接触式设备获取一手术操作工具的特征部位 的虚拟特征的步骤还包括:交换所述发射端和所述接收端的位置;基于交换前后所述接收端所接收到的来自所述发射端所发射的光信号,得到所述导向槽或导向孔的中点。
  12. 根据权利要求7所述的手术操作工具的校验方法,其特征在于,在将所述对射光电模块的发射端和接收端分别置于所述手术操作工具的特征部位供所述对射光电模块的光通过的两侧的步骤之后,所述手术操作工具的校验方法还包括:
    于所述导向槽的槽口或所述导向孔的孔口转动所述发射端;
    识别所述发射端正对所述接收端的时刻;
    得到此时刻下所述导向槽或导向孔于所述工具靶标坐标系下的位姿参数。
  13. 一种手术操作工具的校验系统,其特征在于,包括:
    手术操作工具;
    非接触式设备,所述非接触式设备用于获取所述手术操作工具的特征部位的虚拟特征;
    工具靶标,所述工具靶标设置于所述手术操作工具上或设置于所述非接触式设备上;
    导航装置,所述导航装置与所述工具靶标相适配,用以获取所述工具靶标的位姿参数;以及
    控制装置,与所述非接触式设备和所述导航装置通信连接;所述控制装置被配置为,基于所述非接触式设备所获取的所述手术操作工具的特征部位的虚拟特征,通过所述导航装置获取工具靶标于基坐标系中的坐标,拟合得到工具靶标坐标系,并获取所述虚拟特征于所述工具靶标坐标系中的位姿参数,以得到所述手术操作工具的特征部位于所述工具靶标坐标系中的位姿参数;若所述特征部位于所述工具靶标坐标系中的位姿参数与对应的标准参数的误差值大于预期值,则确定所述手术操作工具发生变形。
  14. 根据权利要求13所述的手术操作工具的校验系统,其特征在于,所述非接触式设备包括扫描设备,所述扫描设备用于通过扫描所述手术操作工 具获取其三维重建模型,所述控制装置被配置为基于所述三维重建模型拟合得到所述手术操作工具的特征部位的虚拟特征。
  15. 根据权利要求13所述的手术操作工具的校验系统,其特征在于,所述非接触式设备包括对射光电模块,所述对射光电模块包括发射端及接收端,所述对射光电模块的发射端和接收端分别用于置于所述手术操作工具的特征部位的两侧,所述对射光电模块被配置为基于所述接收端所接收到的来自所述发射端所发射的光信号,得到所述手术操作工具的特征部位的虚拟特征。
  16. 根据权利要求15所述的手术操作工具的校验系统,其特征在于,至少所述发射端具有靶标。
  17. 根据权利要求16所述的手术操作工具的校验系统,其特征在于,所述发射端和所述接收端均具有靶标。
  18. 根据权利要求15或16所述的手术操作工具的校验系统,其特征在于,所述手术操作工具包括截骨导向工具,所述特征部位包括所述截骨导向工具的截骨导块的导向槽,所述发射端和/或所述接收端的长度小于所述导向槽的延伸长度。
PCT/CN2021/122727 2020-10-22 2021-10-09 手术操作工具的校验方法及校验系统 WO2022083453A1 (zh)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
CN202011138715.5 2020-10-22
CN202011138715.5A CN112190332B (zh) 2020-10-22 2020-10-22 手术操作工具的校验方法及校验系统

Publications (1)

Publication Number Publication Date
WO2022083453A1 true WO2022083453A1 (zh) 2022-04-28

Family

ID=74012356

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2021/122727 WO2022083453A1 (zh) 2020-10-22 2021-10-09 手术操作工具的校验方法及校验系统

Country Status (2)

Country Link
CN (1) CN112190332B (zh)
WO (1) WO2022083453A1 (zh)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN115607283A (zh) * 2022-12-02 2023-01-17 杭州柳叶刀机器人有限公司 一种光学导航式双肩骨刀的位姿校准装置及方法

Families Citing this family (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN112190332B (zh) * 2020-10-22 2022-02-15 苏州微创畅行机器人有限公司 手术操作工具的校验方法及校验系统
CN112869824B (zh) * 2021-01-15 2022-06-03 苏州微创畅行机器人有限公司 手术工具引导装置、引导组件、手术系统和存储介质
CN114571507B (zh) * 2022-05-07 2022-07-19 北京长木谷医疗科技有限公司 骨科手术机器人的末端工具误差检测方法和装置
CN115068109B (zh) * 2022-06-13 2023-07-28 元化智能科技(深圳)有限公司 面向医疗手术导航的红外标靶识别方法和装置

Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20030229279A1 (en) * 2000-11-03 2003-12-11 Christoph Amstutz Determination of deformations of surgical tools
CN104869918A (zh) * 2012-12-21 2015-08-26 玛口外科股份有限公司 用于计划和执行截骨术的方法和系统
CN107590833A (zh) * 2017-08-23 2018-01-16 华南理工大学 一种基于等高线的人耳轮廓特征增强和生理参数提取方法
CN110811833A (zh) * 2019-11-21 2020-02-21 苏州微创畅行机器人有限公司 截骨校验方法、校验工具、可读存储介质及骨科手术系统
CN110811834A (zh) * 2019-11-22 2020-02-21 苏州微创畅行机器人有限公司 截骨导向工具的校验方法、校验系统及检测靶标
WO2020193256A1 (en) * 2019-03-22 2020-10-01 Brainlab Ag Method of calibrating a medical instrument
CN112190332A (zh) * 2020-10-22 2021-01-08 苏州微创畅行机器人有限公司 手术操作工具的校验方法及校验系统

Family Cites Families (11)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US9050131B2 (en) * 2008-06-18 2015-06-09 Mako Surgical Corp. Fiber optic tracking system and method for tracking a substantially rigid object
KR101089116B1 (ko) * 2008-10-21 2011-12-02 주식회사 휴먼스캔 환자 위치 감시 장치
CN202568456U (zh) * 2012-03-29 2012-12-05 深圳市泰乐康科技有限公司 一种诊疗床
US20180071031A1 (en) * 2015-03-26 2018-03-15 Biomet Manufacturing, Llc Alternative anatomic registration for navigation
CN204636326U (zh) * 2015-05-21 2015-09-16 陈海文 远程移动中医诊疗监测系统
CN105476720B (zh) * 2015-12-10 2017-09-22 中国人民解放军第四军医大学 一种判断picc置管异位的装置及方法
CN107510504A (zh) * 2017-06-23 2017-12-26 中南大学湘雅三医院 一种辅助骨科手术的非放射线透视视觉导航方法及系统
CN109965979A (zh) * 2017-12-27 2019-07-05 上海复旦数字医疗科技股份有限公司 一种无需标志点的稳健的神经导航自动注册方法
CN210130948U (zh) * 2019-04-29 2020-03-10 武汉大学 一种精密器械检查工作台系统
CN110103991B (zh) * 2019-05-10 2023-08-01 中铁第四勘察设计院集团有限公司 适用于轨道交通站台门的激光扫描防夹系统及其控制方法
CN113208689B (zh) * 2019-09-30 2022-08-02 苏州微创畅行机器人有限公司 截骨导向工具

Patent Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20030229279A1 (en) * 2000-11-03 2003-12-11 Christoph Amstutz Determination of deformations of surgical tools
CN104869918A (zh) * 2012-12-21 2015-08-26 玛口外科股份有限公司 用于计划和执行截骨术的方法和系统
CN107590833A (zh) * 2017-08-23 2018-01-16 华南理工大学 一种基于等高线的人耳轮廓特征增强和生理参数提取方法
WO2020193256A1 (en) * 2019-03-22 2020-10-01 Brainlab Ag Method of calibrating a medical instrument
CN110811833A (zh) * 2019-11-21 2020-02-21 苏州微创畅行机器人有限公司 截骨校验方法、校验工具、可读存储介质及骨科手术系统
CN110811834A (zh) * 2019-11-22 2020-02-21 苏州微创畅行机器人有限公司 截骨导向工具的校验方法、校验系统及检测靶标
CN112190332A (zh) * 2020-10-22 2021-01-08 苏州微创畅行机器人有限公司 手术操作工具的校验方法及校验系统

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN115607283A (zh) * 2022-12-02 2023-01-17 杭州柳叶刀机器人有限公司 一种光学导航式双肩骨刀的位姿校准装置及方法
CN115607283B (zh) * 2022-12-02 2023-03-14 杭州柳叶刀机器人有限公司 一种光学导航式双肩骨刀的位姿校准装置及方法

Also Published As

Publication number Publication date
CN112190332A (zh) 2021-01-08
CN112190332B (zh) 2022-02-15

Similar Documents

Publication Publication Date Title
WO2022083453A1 (zh) 手术操作工具的校验方法及校验系统
WO2021063023A1 (zh) 截骨导向工具的位置校正方法及骨科手术系统
WO2021098194A1 (zh) 截骨导向工具的校验方法、校验系统及检测靶标
US11918194B2 (en) Osteotomy calibration method, calibration device and orthopedic surgery system
AU2016277694B2 (en) Surgical alignment using references
US20190304602A1 (en) System and Method for Arranging Objects in an Operating Room in Preparation for Surgical Procedures
CN112155732B (zh) 可读存储介质、骨建模配准系统及骨科手术系统
US20200054421A1 (en) Methods for conducting guided oral and maxillofacial procedures, and associated system
US11653982B2 (en) Osteotomy calibration method, calibration tools and orthopedic surgery system
AU2020386613B2 (en) Osteotomy verification method and verification apparatus, readable storage medium, and orthopedic surgery system
US20220168048A1 (en) Autonomous robot tracking

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 21881871

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 21881871

Country of ref document: EP

Kind code of ref document: A1