WO2021097911A1 - 有机发光二极管显示器及其显示方法 - Google Patents

有机发光二极管显示器及其显示方法 Download PDF

Info

Publication number
WO2021097911A1
WO2021097911A1 PCT/CN2019/122644 CN2019122644W WO2021097911A1 WO 2021097911 A1 WO2021097911 A1 WO 2021097911A1 CN 2019122644 W CN2019122644 W CN 2019122644W WO 2021097911 A1 WO2021097911 A1 WO 2021097911A1
Authority
WO
WIPO (PCT)
Prior art keywords
terminal
voltage
operational amplifier
node
emitting diode
Prior art date
Application number
PCT/CN2019/122644
Other languages
English (en)
French (fr)
Inventor
杨波
Original Assignee
深圳市华星光电半导体显示技术有限公司
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 深圳市华星光电半导体显示技术有限公司 filed Critical 深圳市华星光电半导体显示技术有限公司
Priority to US16/625,171 priority Critical patent/US11263979B2/en
Publication of WO2021097911A1 publication Critical patent/WO2021097911A1/zh

Links

Classifications

    • GPHYSICS
    • G09EDUCATION; CRYPTOGRAPHY; DISPLAY; ADVERTISING; SEALS
    • G09GARRANGEMENTS OR CIRCUITS FOR CONTROL OF INDICATING DEVICES USING STATIC MEANS TO PRESENT VARIABLE INFORMATION
    • G09G3/00Control arrangements or circuits, of interest only in connection with visual indicators other than cathode-ray tubes
    • G09G3/20Control arrangements or circuits, of interest only in connection with visual indicators other than cathode-ray tubes for presentation of an assembly of a number of characters, e.g. a page, by composing the assembly by combination of individual elements arranged in a matrix no fixed position being assigned to or needed to be assigned to the individual characters or partial characters
    • G09G3/22Control arrangements or circuits, of interest only in connection with visual indicators other than cathode-ray tubes for presentation of an assembly of a number of characters, e.g. a page, by composing the assembly by combination of individual elements arranged in a matrix no fixed position being assigned to or needed to be assigned to the individual characters or partial characters using controlled light sources
    • G09G3/30Control arrangements or circuits, of interest only in connection with visual indicators other than cathode-ray tubes for presentation of an assembly of a number of characters, e.g. a page, by composing the assembly by combination of individual elements arranged in a matrix no fixed position being assigned to or needed to be assigned to the individual characters or partial characters using controlled light sources using electroluminescent panels
    • G09G3/32Control arrangements or circuits, of interest only in connection with visual indicators other than cathode-ray tubes for presentation of an assembly of a number of characters, e.g. a page, by composing the assembly by combination of individual elements arranged in a matrix no fixed position being assigned to or needed to be assigned to the individual characters or partial characters using controlled light sources using electroluminescent panels semiconductive, e.g. using light-emitting diodes [LED]
    • G09G3/3208Control arrangements or circuits, of interest only in connection with visual indicators other than cathode-ray tubes for presentation of an assembly of a number of characters, e.g. a page, by composing the assembly by combination of individual elements arranged in a matrix no fixed position being assigned to or needed to be assigned to the individual characters or partial characters using controlled light sources using electroluminescent panels semiconductive, e.g. using light-emitting diodes [LED] organic, e.g. using organic light-emitting diodes [OLED]
    • G09G3/3225Control arrangements or circuits, of interest only in connection with visual indicators other than cathode-ray tubes for presentation of an assembly of a number of characters, e.g. a page, by composing the assembly by combination of individual elements arranged in a matrix no fixed position being assigned to or needed to be assigned to the individual characters or partial characters using controlled light sources using electroluminescent panels semiconductive, e.g. using light-emitting diodes [LED] organic, e.g. using organic light-emitting diodes [OLED] using an active matrix
    • G09G3/3258Control arrangements or circuits, of interest only in connection with visual indicators other than cathode-ray tubes for presentation of an assembly of a number of characters, e.g. a page, by composing the assembly by combination of individual elements arranged in a matrix no fixed position being assigned to or needed to be assigned to the individual characters or partial characters using controlled light sources using electroluminescent panels semiconductive, e.g. using light-emitting diodes [LED] organic, e.g. using organic light-emitting diodes [OLED] using an active matrix with pixel circuitry controlling the voltage across the light-emitting element
    • GPHYSICS
    • G09EDUCATION; CRYPTOGRAPHY; DISPLAY; ADVERTISING; SEALS
    • G09GARRANGEMENTS OR CIRCUITS FOR CONTROL OF INDICATING DEVICES USING STATIC MEANS TO PRESENT VARIABLE INFORMATION
    • G09G3/00Control arrangements or circuits, of interest only in connection with visual indicators other than cathode-ray tubes
    • G09G3/20Control arrangements or circuits, of interest only in connection with visual indicators other than cathode-ray tubes for presentation of an assembly of a number of characters, e.g. a page, by composing the assembly by combination of individual elements arranged in a matrix no fixed position being assigned to or needed to be assigned to the individual characters or partial characters
    • G09G3/22Control arrangements or circuits, of interest only in connection with visual indicators other than cathode-ray tubes for presentation of an assembly of a number of characters, e.g. a page, by composing the assembly by combination of individual elements arranged in a matrix no fixed position being assigned to or needed to be assigned to the individual characters or partial characters using controlled light sources
    • G09G3/30Control arrangements or circuits, of interest only in connection with visual indicators other than cathode-ray tubes for presentation of an assembly of a number of characters, e.g. a page, by composing the assembly by combination of individual elements arranged in a matrix no fixed position being assigned to or needed to be assigned to the individual characters or partial characters using controlled light sources using electroluminescent panels
    • G09G3/32Control arrangements or circuits, of interest only in connection with visual indicators other than cathode-ray tubes for presentation of an assembly of a number of characters, e.g. a page, by composing the assembly by combination of individual elements arranged in a matrix no fixed position being assigned to or needed to be assigned to the individual characters or partial characters using controlled light sources using electroluminescent panels semiconductive, e.g. using light-emitting diodes [LED]
    • G09G3/3208Control arrangements or circuits, of interest only in connection with visual indicators other than cathode-ray tubes for presentation of an assembly of a number of characters, e.g. a page, by composing the assembly by combination of individual elements arranged in a matrix no fixed position being assigned to or needed to be assigned to the individual characters or partial characters using controlled light sources using electroluminescent panels semiconductive, e.g. using light-emitting diodes [LED] organic, e.g. using organic light-emitting diodes [OLED]
    • G09G3/3275Details of drivers for data electrodes
    • G09G3/3291Details of drivers for data electrodes in which the data driver supplies a variable data voltage for setting the current through, or the voltage across, the light-emitting elements
    • GPHYSICS
    • G09EDUCATION; CRYPTOGRAPHY; DISPLAY; ADVERTISING; SEALS
    • G09GARRANGEMENTS OR CIRCUITS FOR CONTROL OF INDICATING DEVICES USING STATIC MEANS TO PRESENT VARIABLE INFORMATION
    • G09G3/00Control arrangements or circuits, of interest only in connection with visual indicators other than cathode-ray tubes
    • G09G3/20Control arrangements or circuits, of interest only in connection with visual indicators other than cathode-ray tubes for presentation of an assembly of a number of characters, e.g. a page, by composing the assembly by combination of individual elements arranged in a matrix no fixed position being assigned to or needed to be assigned to the individual characters or partial characters
    • G09G3/22Control arrangements or circuits, of interest only in connection with visual indicators other than cathode-ray tubes for presentation of an assembly of a number of characters, e.g. a page, by composing the assembly by combination of individual elements arranged in a matrix no fixed position being assigned to or needed to be assigned to the individual characters or partial characters using controlled light sources
    • G09G3/30Control arrangements or circuits, of interest only in connection with visual indicators other than cathode-ray tubes for presentation of an assembly of a number of characters, e.g. a page, by composing the assembly by combination of individual elements arranged in a matrix no fixed position being assigned to or needed to be assigned to the individual characters or partial characters using controlled light sources using electroluminescent panels
    • G09G3/32Control arrangements or circuits, of interest only in connection with visual indicators other than cathode-ray tubes for presentation of an assembly of a number of characters, e.g. a page, by composing the assembly by combination of individual elements arranged in a matrix no fixed position being assigned to or needed to be assigned to the individual characters or partial characters using controlled light sources using electroluminescent panels semiconductive, e.g. using light-emitting diodes [LED]
    • G09G3/3208Control arrangements or circuits, of interest only in connection with visual indicators other than cathode-ray tubes for presentation of an assembly of a number of characters, e.g. a page, by composing the assembly by combination of individual elements arranged in a matrix no fixed position being assigned to or needed to be assigned to the individual characters or partial characters using controlled light sources using electroluminescent panels semiconductive, e.g. using light-emitting diodes [LED] organic, e.g. using organic light-emitting diodes [OLED]
    • G09G3/3266Details of drivers for scan electrodes
    • GPHYSICS
    • G09EDUCATION; CRYPTOGRAPHY; DISPLAY; ADVERTISING; SEALS
    • G09GARRANGEMENTS OR CIRCUITS FOR CONTROL OF INDICATING DEVICES USING STATIC MEANS TO PRESENT VARIABLE INFORMATION
    • G09G3/00Control arrangements or circuits, of interest only in connection with visual indicators other than cathode-ray tubes
    • G09G3/20Control arrangements or circuits, of interest only in connection with visual indicators other than cathode-ray tubes for presentation of an assembly of a number of characters, e.g. a page, by composing the assembly by combination of individual elements arranged in a matrix no fixed position being assigned to or needed to be assigned to the individual characters or partial characters
    • G09G3/22Control arrangements or circuits, of interest only in connection with visual indicators other than cathode-ray tubes for presentation of an assembly of a number of characters, e.g. a page, by composing the assembly by combination of individual elements arranged in a matrix no fixed position being assigned to or needed to be assigned to the individual characters or partial characters using controlled light sources
    • G09G3/30Control arrangements or circuits, of interest only in connection with visual indicators other than cathode-ray tubes for presentation of an assembly of a number of characters, e.g. a page, by composing the assembly by combination of individual elements arranged in a matrix no fixed position being assigned to or needed to be assigned to the individual characters or partial characters using controlled light sources using electroluminescent panels
    • G09G3/32Control arrangements or circuits, of interest only in connection with visual indicators other than cathode-ray tubes for presentation of an assembly of a number of characters, e.g. a page, by composing the assembly by combination of individual elements arranged in a matrix no fixed position being assigned to or needed to be assigned to the individual characters or partial characters using controlled light sources using electroluminescent panels semiconductive, e.g. using light-emitting diodes [LED]
    • G09G3/3208Control arrangements or circuits, of interest only in connection with visual indicators other than cathode-ray tubes for presentation of an assembly of a number of characters, e.g. a page, by composing the assembly by combination of individual elements arranged in a matrix no fixed position being assigned to or needed to be assigned to the individual characters or partial characters using controlled light sources using electroluminescent panels semiconductive, e.g. using light-emitting diodes [LED] organic, e.g. using organic light-emitting diodes [OLED]
    • G09G3/3275Details of drivers for data electrodes
    • GPHYSICS
    • G09EDUCATION; CRYPTOGRAPHY; DISPLAY; ADVERTISING; SEALS
    • G09GARRANGEMENTS OR CIRCUITS FOR CONTROL OF INDICATING DEVICES USING STATIC MEANS TO PRESENT VARIABLE INFORMATION
    • G09G2300/00Aspects of the constitution of display devices
    • G09G2300/04Structural and physical details of display devices
    • G09G2300/0421Structural details of the set of electrodes
    • G09G2300/0426Layout of electrodes and connections
    • GPHYSICS
    • G09EDUCATION; CRYPTOGRAPHY; DISPLAY; ADVERTISING; SEALS
    • G09GARRANGEMENTS OR CIRCUITS FOR CONTROL OF INDICATING DEVICES USING STATIC MEANS TO PRESENT VARIABLE INFORMATION
    • G09G2300/00Aspects of the constitution of display devices
    • G09G2300/04Structural and physical details of display devices
    • G09G2300/0439Pixel structures
    • G09G2300/0452Details of colour pixel setup, e.g. pixel composed of a red, a blue and two green components
    • GPHYSICS
    • G09EDUCATION; CRYPTOGRAPHY; DISPLAY; ADVERTISING; SEALS
    • G09GARRANGEMENTS OR CIRCUITS FOR CONTROL OF INDICATING DEVICES USING STATIC MEANS TO PRESENT VARIABLE INFORMATION
    • G09G2310/00Command of the display device
    • G09G2310/02Addressing, scanning or driving the display screen or processing steps related thereto
    • G09G2310/0235Field-sequential colour display
    • GPHYSICS
    • G09EDUCATION; CRYPTOGRAPHY; DISPLAY; ADVERTISING; SEALS
    • G09GARRANGEMENTS OR CIRCUITS FOR CONTROL OF INDICATING DEVICES USING STATIC MEANS TO PRESENT VARIABLE INFORMATION
    • G09G2310/00Command of the display device
    • G09G2310/02Addressing, scanning or driving the display screen or processing steps related thereto
    • G09G2310/0264Details of driving circuits
    • G09G2310/0278Details of driving circuits arranged to drive both scan and data electrodes
    • GPHYSICS
    • G09EDUCATION; CRYPTOGRAPHY; DISPLAY; ADVERTISING; SEALS
    • G09GARRANGEMENTS OR CIRCUITS FOR CONTROL OF INDICATING DEVICES USING STATIC MEANS TO PRESENT VARIABLE INFORMATION
    • G09G2310/00Command of the display device
    • G09G2310/02Addressing, scanning or driving the display screen or processing steps related thereto
    • G09G2310/0264Details of driving circuits
    • G09G2310/0291Details of output amplifiers or buffers arranged for use in a driving circuit
    • GPHYSICS
    • G09EDUCATION; CRYPTOGRAPHY; DISPLAY; ADVERTISING; SEALS
    • G09GARRANGEMENTS OR CIRCUITS FOR CONTROL OF INDICATING DEVICES USING STATIC MEANS TO PRESENT VARIABLE INFORMATION
    • G09G2310/00Command of the display device
    • G09G2310/02Addressing, scanning or driving the display screen or processing steps related thereto
    • G09G2310/0264Details of driving circuits
    • G09G2310/0297Special arrangements with multiplexing or demultiplexing of display data in the drivers for data electrodes, in a pre-processing circuitry delivering display data to said drivers or in the matrix panel, e.g. multiplexing plural data signals to one D/A converter or demultiplexing the D/A converter output to multiple columns
    • GPHYSICS
    • G09EDUCATION; CRYPTOGRAPHY; DISPLAY; ADVERTISING; SEALS
    • G09GARRANGEMENTS OR CIRCUITS FOR CONTROL OF INDICATING DEVICES USING STATIC MEANS TO PRESENT VARIABLE INFORMATION
    • G09G2310/00Command of the display device
    • G09G2310/08Details of timing specific for flat panels, other than clock recovery

Definitions

  • This application relates to the field of display technology, and in particular to an organic light emitting diode display and a display method thereof.
  • each sub-pixel of an organic light emitting diode display mainly includes a driving transistor that drives the organic light emitting diode, a switching transistor that transmits a data voltage to the gate node of the driving transistor, and a capacitor that maintains a preset voltage for one frame.
  • a driving transistor that drives the organic light emitting diode
  • a switching transistor that transmits a data voltage to the gate node of the driving transistor
  • a capacitor that maintains a preset voltage for one frame.
  • a traditional method is to detect and sample the electrical differences of the driving transistors in the organic light-emitting diode display before displaying the screen of the organic light-emitting diode display, and store the sampled data in the memory.
  • the sampling is performed
  • the data is called to the timing controller through the buffer module, and the compensation data of the driving transistor is calculated according to the sampled data.
  • the timing controller outputs the control signal to the source driver according to the compensation data, and the source driver outputs the compensated data to the sub-pixels to realize the compensation picture Display, improve the brightness uniformity of the picture, that is, the traditional method is to solve the problem of uneven brightness caused by the difference of the driving transistor through an external compensation method.
  • the traditional external compensation threshold voltage has the problems of long detection time and the need to add additional detection modules, storage modules, and cache modules.
  • Another traditional method is to internally compensate the threshold voltage of the driving transistor.
  • the threshold voltage of the driving transistor After internally compensating the threshold voltage of the driving transistor, there will be a leakage problem of the driving transistor, which affects the acquisition result of the driving threshold voltage.
  • the purpose of the present application is to provide an organic light emitting diode display and a display method thereof, which can reduce the acquisition time of the driving transistor while avoiding the problem of leakage of the driving transistor after the threshold voltage of the driving transistor is obtained.
  • the present application provides an organic light emitting diode display, wherein the organic light emitting diode display includes an organic light emitting diode display panel and a voltage follower, and the organic light emitting diode display panel includes a plurality of data lines and a plurality of scanning lines. Lines and multiple pixels,
  • Each of the pixels includes at least three sub-pixels, and each of the sub-pixels includes:
  • a light-emitting element one end of the light-emitting element is connected to the second node, and the other end is connected to the first common voltage terminal, and the light-emitting element is an organic light-emitting diode;
  • a driving transistor a control terminal of the driving transistor is connected to a first node, a first terminal is connected to a second common voltage terminal, and a second terminal is connected to the second node, the driving transistor has a threshold voltage;
  • a first switch the control terminal of the first switch is connected to the scan line, the first terminal is connected to the data line, and the second terminal is connected to the first node;
  • a capacitor the capacitor is connected between the first node and the second node, and the capacitor is used to store the threshold voltage of the driving transistor during the threshold voltage acquisition phase;
  • the output terminal of the voltage follower is electrically connected to the second node of at least one of the sub-pixels, and the voltage follower is used to maintain a preset period of time after the capacitor obtains the threshold voltage of the driving transistor For the voltage of the second node, the input terminal of the voltage follower is electrically connected to the preset voltage input terminal;
  • Each of the pixels includes a red sub-pixel, a blue sub-pixel, and a green sub-pixel.
  • the voltage follower includes a first operational amplifier and a second operational amplifier, and the positive input terminal of the first operational amplifier is connected to the input terminal of the voltage follower and the second operational amplifier.
  • the negative input terminal of the first operational amplifier and the output terminal of the second operational amplifier, the negative input terminal of the first operational amplifier is connected to the output terminal of the first operational amplifier, the positive input terminal of the second operational amplifier and the voltage
  • the output terminal of the follower, the negative input terminal of the second operational amplifier is connected to the output terminal of the second operational amplifier, and the output terminal of the first operational amplifier is connected to the positive input terminal of the second operational amplifier,
  • the positive input terminal of the second operational amplifier is connected to the output terminal of the voltage follower.
  • one voltage follower is electrically connected to the second node in at least three of the sub-pixels in the same pixel.
  • the organic light emitting diode display further includes a multiple output selector, and the multiple output selector includes at least three second switches and a first control corresponding to each of the second switches.
  • Signal line, the control end of each second switch is connected to the corresponding first control signal line, the first end of each second switch is connected to the output end of the voltage follower, and each second switch The second end of is electrically connected to the second node of one of the sub-pixels.
  • each of the sub-pixels further includes a third switch, the control terminal of the third switch is connected to the second control signal line, the first terminal is connected to the output terminal of the voltage follower, and the second terminal is connected to the output terminal of the voltage follower. The terminal is electrically connected to the second node.
  • the organic light emitting diode display further includes a fourth switch, the control terminal of the fourth switch is connected to the third control signal line, the first terminal is connected to the preset voltage input terminal, and the second terminal is Connect the input terminal of the voltage follower.
  • the first switch is a thin film transistor.
  • An organic light emitting diode display includes an organic light emitting diode display panel and a voltage follower, the organic light emitting diode display panel includes a plurality of data lines, a plurality of scan lines and a plurality of pixels,
  • Each of the pixels includes at least three sub-pixels, and each of the sub-pixels includes:
  • a light-emitting element one end of the light-emitting element is connected to the second node, and the other end is connected to the first common voltage terminal;
  • a driving transistor a control terminal of the driving transistor is connected to a first node, a first terminal is connected to a second common voltage terminal, and a second terminal is connected to the second node, the driving transistor has a threshold voltage;
  • a first switch the control terminal of the first switch is connected to the scan line, the first terminal is connected to the data line, and the second terminal is connected to the first node;
  • a capacitor the capacitor is connected between the first node and the second node, and the capacitor is used to store the threshold voltage of the driving transistor during the threshold voltage acquisition phase;
  • the output terminal of the voltage follower is electrically connected to the second node of at least one of the sub-pixels, and the voltage follower is used to maintain a preset period of time after the capacitor obtains the threshold voltage of the driving transistor For the voltage of the second node, the input terminal of the voltage follower is electrically connected to the preset voltage input terminal.
  • the voltage follower includes a first operational amplifier and a second operational amplifier, and the positive input terminal of the first operational amplifier is connected to the input terminal of the voltage follower and the second operational amplifier.
  • the negative input terminal of the first operational amplifier and the output terminal of the second operational amplifier, the negative input terminal of the first operational amplifier is connected to the output terminal of the first operational amplifier, the positive input terminal of the second operational amplifier and the voltage
  • the output terminal of the follower, the negative input terminal of the second operational amplifier is connected to the output terminal of the second operational amplifier, and the output terminal of the first operational amplifier is connected to the positive input terminal of the second operational amplifier,
  • the positive input terminal of the second operational amplifier is connected to the output terminal of the voltage follower.
  • one voltage follower is electrically connected to the second node in at least three of the sub-pixels in the same pixel.
  • the organic light emitting diode display further includes a multiple output selector, and the multiple output selector includes at least three second switches and a first control corresponding to each of the second switches.
  • Signal line, the control end of each second switch is connected to the corresponding first control signal line, the first end of each second switch is connected to the output end of the voltage follower, and each second switch The second end of is electrically connected to the second node of one of the sub-pixels.
  • each of the sub-pixels further includes a third switch, the control terminal of the third switch is connected to the second control signal line, the first terminal is connected to the output terminal of the voltage follower, and the second terminal is connected to the output terminal of the voltage follower. The terminal is electrically connected to the second node.
  • the organic light emitting diode display further includes a fourth switch, the control terminal of the fourth switch is connected to the third control signal line, the first terminal is connected to the preset voltage input terminal, and the second terminal is Connect the input terminal of the voltage follower.
  • the first switch is a thin film transistor.
  • the light emitting element is an organic light emitting diode.
  • each of the pixels includes a red sub-pixel, a blue sub-pixel, and a green sub-pixel.
  • a display method of the above organic light emitting diode display includes the following steps:
  • the voltage follower In the threshold voltage acquisition phase, the voltage follower outputs the preset voltage loaded by the preset voltage input terminal to the second node, and the first switch is turned on to load the reference of the data line A voltage is input to the first node, the voltage of the second node rises to the threshold voltage, the voltage difference between the first node and the second node is the threshold voltage, and the capacitor obtains the threshold voltage;
  • the first switch is turned on to load the data voltage loaded by the data line to the first node
  • the driving transistor is turned on to drive the light-emitting element to emit light.
  • the voltage follower includes a first operational amplifier and a second operational amplifier, and the positive input terminal of the first operational amplifier is connected to the input terminal of the voltage follower and the negative terminal of the second operational amplifier.
  • Input terminal and the output terminal of the second operational amplifier, the negative input terminal of the first operational amplifier is connected to the output terminal of the first operational amplifier, the positive input terminal of the second operational amplifier and the voltage follower
  • the negative input terminal of the second operational amplifier is connected to the output terminal of the second operational amplifier
  • the output terminal of the first operational amplifier is connected to the positive input terminal of the second operational amplifier
  • the positive input terminal of the second operational amplifier is connected to the output terminal of the voltage follower.
  • the present application provides an organic light-emitting diode display and a display method thereof.
  • a voltage follower electrically connected to a second node of a sub-pixel is provided.
  • the voltage follower is used to maintain the first time period after the capacitor obtains the threshold voltage of the driving transistor.
  • the voltage of the two nodes is used to avoid the problem of leakage of the driving transistor after the capacitor obtains the threshold voltage.
  • the present application compensates the threshold voltage internally without additional detection modules, storage modules, and cache modules, which can shorten the time for threshold voltage compensation.
  • FIG. 1 is a schematic diagram of the structure of an organic light emitting diode display according to an embodiment of the application
  • FIG. 2 is a schematic diagram of red sub-pixels of the organic light emitting diode display shown in FIG. 1;
  • Fig. 3 is a schematic diagram of the voltage follower shown in Fig. 1;
  • FIG. 4 is a timing diagram of the organic light emitting diode display shown in FIG. 1 during display.
  • FIG. 1 is a schematic structural diagram of an organic light emitting diode display according to an embodiment of the application.
  • the organic light emitting diode display 1000 includes an organic light emitting diode display panel 10, a timing controller 20, a source driver 30, a gate driver 40, and a voltage follower 50.
  • the source driver 30 drives the pixels on the organic light emitting diode display panel 10 to emit light by supplying data voltages to the plurality of data lines D.
  • the gate driver 40 sequentially provides scan signals through a plurality of gate lines to sequentially cause pixels on the organic light emitting diode display panel 10 to emit light.
  • the gate driver 40 may be located on one side of the organic light emitting diode display panel 10, and the gate driver 40 may also be located on opposite sides of the organic light emitting diode display panel 10.
  • the gate driver 40 may also be a gate driving circuit (Gate On Array, GOA) provided on the organic light emitting diode display panel 10.
  • the timing controller 20 receives timing signals (for example, a vertical synchronization signal, a horizontal synchronization signal, an input data enable signal, and a clock signal), and generates various control signals.
  • the control signal includes various gate control signals.
  • the gate control signal includes a gate start pulse signal, a gate shift clock signal, and a gate output enable signal.
  • the gate start pulse signal controls the gate driver 40
  • the operation start timing of the gate drive chip, the gate shift clock signal is a clock signal that controls the shift timing of the scan signal, and the gate output enable signal specifies the timing information of the gate drive chip in the gate driver.
  • Control signals include various data control signals, including source start pulses and source output enable signals.
  • the source start pulse controls the data sampling start timing of the source driver.
  • the source output enable signal controls the output timing of the source driver 30.
  • the timing controller 20 controls the source driver 30 and the gate driver 40 by providing control signals to the source driver 30 and the gate driver 40.
  • the organic light emitting diode display panel 10 includes a plurality of data lines, a plurality of scan lines, and a plurality of pixels P.
  • the multiple data lines include data line Dm+1, data line Dm+2, and data line Dm+3, where m is an integer greater than or equal to 0, multiple data lines are arranged vertically in parallel, and each data line is connected to a column of sub-pixels. connection.
  • the multiple scan lines include a first scan line G1_R(n), a first scan line G1_G(n), a first scan line G1_B(n), and a second scan line G2(n).
  • the first scan line G1_R(n) ), the first scan line G1_G(n) and the first scan line G1_B(n) are used to input scan signals that control the write data signals of each sub-pixel, and the second scan line G2(n) is used to input control and obtain each sub-pixel The scanning signal of the threshold voltage of the pixel driving transistor.
  • a plurality of scanning lines are arranged in parallel horizontally.
  • the first scanning line G1_R(n) is connected to the red sub-pixel R of the nth row, and the first scanning line G1_G(n) is connected to the green color of the nth row.
  • the sub-pixel G is connected, the first scan line G1_B(n) is connected to the blue sub-pixel B in the nth row, and the second scan line G2(n) is connected to all the sub-pixels in the nth row.
  • Each pixel P includes at least three sub-pixels. Specifically, each pixel P includes a red sub-pixel R, a blue sub-pixel B, and a green sub-pixel G. It can be understood that each pixel P may also include a white sub-pixel W.
  • the green sub-pixel G, the blue sub-pixel B and the red sub-pixel R are basically the same in structure, and will not be described in detail here.
  • FIG. 2 is a schematic diagram of the red sub-pixel of the organic light emitting diode display shown in FIG. 1.
  • the red sub-pixel includes a light-emitting element OLED, a driving transistor Td, a first switch T1, a capacitor C, and a third switch T3.
  • the light emitting element OLED emits light when current flows.
  • the light emitting element OLED is an organic light emitting diode.
  • One end of the light-emitting element OLED is connected to the second node s, and the other end is connected to the first common voltage terminal EVSS.
  • the first common voltage terminal EVSS is a ground terminal.
  • the driving transistor Td is used to control the magnitude of the current flowing into the light-emitting element OLED to control the light-emitting brightness of the light-emitting element OLED.
  • the control terminal of the driving transistor Td is connected to the first node g, the first terminal is connected to the second common voltage terminal EVDD, the second terminal is connected to the second node s, and the driving transistor Td has a threshold voltage Vth.
  • the voltage loaded on the second common voltage terminal EVDD is greater than the voltage loaded on the first common voltage terminal EVSS.
  • the first switch T1 is used to control the data signal transmitted by the data line to be transmitted to the first node g.
  • the control terminal of the first switch T1 is connected to the scan line G1_R(n), the first terminal is connected to the data line Dm+1, and the second terminal is connected to the first node g.
  • the control terminal of the third switch T3 is connected to the second control signal line, the first terminal is electrically connected to the output terminal OUT of the voltage follower 50, and the second terminal is connected to the second node s.
  • the second control signal line is the second scan signal line G2n.
  • the first end of the third switch T3 is connected to the signal transmission line Ri, and the signal transmission line Ri is electrically connected to the output terminal OUT of the voltage follower.
  • the capacitor C is connected between the first node g and the second node s, and the capacitor C is used to store the threshold voltage Vth of the driving transistor Td during the threshold voltage acquisition phase, so as to realize the internal compensation of the threshold voltage of the driving transistor Td.
  • the voltage follower 50 has an input terminal IN and an output terminal OUT.
  • the output terminal OUT of the voltage follower 50 is electrically connected to the second node s of at least one sub-pixel.
  • the voltage follower 50 is used to maintain the voltage of the second node s for a preset period of time after the capacitor C obtains the threshold voltage Vth of the driving transistor Td ,
  • the input terminal of the voltage follower 50 is electrically connected to the preset voltage input terminal VPRE.
  • the preset voltage loaded from the input terminal IN of the voltage follower 50 is equal to the voltage output by the output terminal OUT of the voltage follower 50, and the capacitor C obtains the driving transistor After the threshold voltage of Td, since the voltage follower 50 maintains the voltage of the second node s for a preset period of time, the driving transistor Td will not have a leakage problem and will not affect the driving transistor Td to obtain the threshold voltage Vth.
  • the preset time period is the time period between when the capacitor C obtains the threshold voltage and the data voltage is written to the first node g.
  • FIG. 3 is a schematic diagram of the voltage follower shown in FIG. 1.
  • the voltage follower 50 includes a first operational amplifier A1 and a second operational amplifier A2.
  • the positive input terminal of the first operational amplifier A1 is connected to the input terminal IN of the voltage follower 50, the negative input terminal of the second operational amplifier A2, and the second operational amplifier
  • the output terminal of A2 the negative input terminal of the first operational amplifier A1 is connected to the output terminal of the first operational amplifier A1, the positive input terminal of the second operational amplifier A2 and the output terminal OUT of the voltage follower 50, and the negative terminal of the second operational amplifier A2
  • the input terminal is connected to the output terminal of the second operational amplifier A2, the output terminal of the first operational amplifier A1 is connected to the positive input terminal of the second operational amplifier A2, and the positive input terminal of the second operational amplifier A2 is connected to the output terminal of the voltage follower 50 OUT.
  • the voltage follower 50 composed of the first operational amplifier A1 and the second operational amplifier A2 makes the voltage drop of the preset voltage for internal compensation transmitted from the input terminal IN to the output terminal OUT zero, and the first operational amplifier A1 and the second operational amplifier A1
  • the connection of the amplifier A2 constitutes a voltage feedback regulating circuit, after the capacitor C obtains the threshold voltage Vth of the driving transistor Td, the leakage of the driving transistor Td is avoided, and the voltage of the second node s is maintained.
  • the positive input terminal of the first operational amplifier A1 inputs the preset voltage for compensation and the high-impedance voltage H-Z according to the timing sequence.
  • one voltage follower 50 is connected to the second node s of at least three sub-pixels in the same pixel P. Specifically, one voltage follower 50 is connected to the red sub-pixel R, the blue sub-pixel B, and the green sub-pixel G in the same pixel P. It is understandable that one voltage follower 50 may also be connected to one sub-pixel (for example, the red sub-pixel R, the blue sub-pixel B, or the green sub-pixel G) in the same pixel P. One voltage follower 50 may also be connected to a plurality of sub-pixels in two adjacent pixels P. By making at least three sub-pixels in a pixel share a voltage follower 50, the driving circuit of the pixel is simpler, and power consumption and cost are reduced.
  • the organic light emitting diode display 1000 further includes a multiple output selector 60.
  • the multiplexer 60 is used to select and switch the internal compensation sub-pixels, so as to realize sequential internal compensation of the sub-pixels in the same row.
  • the multiplexer 60 includes at least three second switches and a first control signal line corresponding to each second switch.
  • the control terminal of each second switch is connected to a corresponding first control signal line.
  • the first terminal of the switch is connected to the output terminal OUT of the voltage follower 50, and the second terminal of each second switch is electrically connected to the second node s of a sub-pixel.
  • the at least three second switches include a second switch Tmux1, a second switch Tmux2, and a second switch Tmux3.
  • the first control signal line includes a first control signal line Mux1, a first control signal line Mux2, and a first control signal line Mux1. Control signal line Mux3.
  • the control terminal of the second switch Tmux1 is connected to the first control signal line Mux1, the first terminal is connected to the output terminal OUT of the voltage follower 50, and the second terminal is connected to the first terminal of the third switch T3 of the red sub-pixel R through the signal transmission line Ri;
  • the control terminal of the second switch Tmux2 is connected to the first control signal line Mux2, the first terminal is connected to the output terminal OUT of the voltage follower 50, and the second terminal is connected to the first terminal of the third switch T3 of the green sub-pixel G through the signal transmission line Ri+1.
  • the control terminal of the second switch Tmux3 is connected to the first control signal line Mux3, the first terminal is connected to the output terminal OUT of the voltage follower 50, and the second terminal is connected to the third switch of the blue sub-pixel B through the signal transmission line Ri+2 The first end.
  • the organic light emitting diode display further includes a fourth switch T4.
  • the control terminal of the fourth switch T4 is connected to the third control signal line SW, the first terminal is connected to the preset voltage input terminal VPRE, and the second terminal is connected to the input terminal IN of the voltage follower 50.
  • the fourth switch T4 is used to control the preset voltage value written in the preset voltage terminal VPRE to be input to the input terminal IN of the voltage follower.
  • first switch T1, the second switch, the third switch T3, the fourth switch T4, and the driving transistor Td are all thin film transistors. Specifically, the first switch T1, the second switch, the third switch T3, the fourth switch T4, and the driving transistor Td are all n-type thin film transistors, so the first terminal is the drain and the second terminal is the source. It can be understood that the first switch T1, the second switch, the third switch T3, and the fourth switch T4 may also be p-type thin film transistors.
  • the organic light emitting diode display in the embodiment of the present application is provided with a voltage follower electrically connected to the second node of the sub-pixel.
  • the voltage follower is used to maintain the voltage of the second node for a preset period of time after the capacitor obtains the threshold voltage of the driving transistor. Avoid the problem of leakage of the driving transistor after the capacitor obtains the threshold voltage.
  • the present application compensates the threshold voltage internally without adding additional detection modules, storage modules, and cache modules, which can shorten the time for compensating the threshold voltage.
  • the application also provides a display method of the above-mentioned organic light emitting diode display.
  • FIG. 4 is a timing diagram of the organic light emitting diode display shown in FIG. 1 during display.
  • the organic light emitting diode display includes the compensation and light-emitting phase of the red sub-pixel, the compensation and light-emitting phase of the green sub-pixel and the compensation and light-emitting phase of the blue sub-pixel.
  • the compensation and light-emitting stages of the red sub-pixel are as follows:
  • the voltage follower 50 outputs the preset voltage Vpre loaded by the preset voltage terminal VPRE to the second node s, and the first switch T1 is turned on to input the reference voltage Vpre loaded by the data line to the first node g, the voltage of the second node s rises to the threshold voltage Vth as the voltage difference between the first node g and the second node s, and the capacitor C obtains the threshold voltage Vth.
  • the preset voltage terminal VPRE is loaded with a preset voltage Vpre
  • the third control signal line SW is loaded with a high-level signal
  • the fourth switch T4 is turned on
  • the preset voltage Vpre is output to the input terminal IN of the voltage follower 50.
  • the voltage follower 50 transmits the preset voltage Vpre to the output terminal OUT of the voltage follower 50.
  • the first control signal line Mux1 is loaded with a high level signal
  • the second switch Tmux1 is opened
  • the second control signal line Mux2 and the second control signal line Mux3 are loaded with a low level signal
  • the second switch Tmux2 and the second switch Tmux3 are closed
  • the preset voltage Vpre is output to the first end of the third switch T3 of the red sub-pixel R via the second switch Tmux1.
  • the second control signal line G2n loads a high-level signal
  • the third switch T3 of the red sub-pixel R is turned on to write the preset voltage Vpre to the second node s of the red sub-pixel.
  • the first scan signal line G1_R(n) is loaded with a high-level signal, and the first switch T1 is turned on to write the reference voltage Vref loaded by the data line Dm+1 to the first node g, and the reference voltage Vref is greater than the preset voltage Vpre ,
  • the driving transistor Td is turned on, the second common voltage terminal VDD is loaded with a high-level signal to charge the second node s, and the voltage Vs-R of the second node s rises to a value between the first node g and the second node s
  • the voltage difference is the threshold voltage Vth of the driving transistor Td, that is, the voltage Vs-R of the second node s is Vref-Vth.
  • the capacitor C in the red sub-pixel R obtains the threshold voltage Vth of the driving transistor Td in the red sub-pixel R.
  • the first switch T1 is turned on to load the data voltage Vd-R loaded by the data line Dm+1 to the first node g.
  • the voltage of the first node g is Vd-R
  • the voltage difference between the voltage of the first node g and the second node s is Vd-R-Vref+Vth
  • K is the electron mobility of the driving transistor Td in the red sub-pixel
  • Vth is the threshold voltage of the driving transistor in the red sub-pixel
  • Vgs is the red sub-pixel
  • the voltage difference between the gate and source of the driving transistor, Vgs is equal to the voltage difference between the first node and the second node. It can be seen that the current flowing through the light-emitting element OLED in the red sub-pixel has nothing to do with the threshold voltage of the driving transistor Td, and the threshold voltage of the driving transistor Td is compensated.
  • the driving transistor Td is turned on to drive the light-emitting element OLED to emit light.
  • the driving transistor Td is turned on under the action of the data voltage, a current flows through the light-emitting element OLED, and the light-emitting element OLED of the red sub-pixel R emits light.
  • the compensation and light-emitting stages of the green sub-pixel are as follows:
  • the voltage follower 50 outputs the preset voltage Vpre loaded by the preset voltage terminal VPRE to the second node s, and the first switch T1 is turned on to input the reference voltage Vpre loaded by the data line to the first node g, the voltage of the second node s rises to the threshold voltage Vth as the voltage difference between the first node g and the second node s, and the capacitor C obtains the threshold voltage Vth.
  • the preset voltage terminal VPRE is loaded with a preset voltage Vpre
  • the third control signal line SW is loaded with a high-level signal
  • the fourth switch T4 is turned on
  • the preset voltage Vpre is output to the input terminal IN of the voltage follower 50.
  • the voltage follower 50 transmits the preset voltage Vpre to the output terminal OUT of the voltage follower 50.
  • the first control signal line Mux2 is loaded with a high level signal
  • the second switch Tmux2 is opened
  • the second control signal line Mux1 and the second control signal line Mux3 are loaded with a low level signal
  • the second switch Tmux1 and the second switch Tmux3 are closed
  • the preset voltage Vpre is output to the first end of the third switch T3 of the green sub-pixel G via the second switch Tmux2.
  • the second control signal line G2n is loaded with a high-level signal
  • the third switch T3 of the green sub-pixel G is turned on to write the preset voltage Vpre to the second node s of the green sub-pixel G.
  • the first scan signal line G1_G(n) is loaded with a high-level signal, and the first switch T1 is turned on to write the reference voltage Vref loaded by the data line Dm+2 to the first node g.
  • the reference voltage Vref is greater than the preset voltage Vpre ,
  • the driving transistor Td is turned on, the second common voltage terminal VDD is loaded with a high-level signal to charge the second node s, and the voltage Vs-G of the second node s is increased to a value between the first node g and the second node s
  • the voltage difference is the threshold voltage Vth of the driving transistor Td in the green sub-pixel, that is, the voltage Vs-G of the second node s is Vref-Vth.
  • the capacitor C in the green sub-pixel obtains the threshold voltage Vth of the driving transistor in the green sub-pixel.
  • the first switch T1 is turned on to load the data voltage Vd-G loaded by the data line Dm+2 to the first node g.
  • the voltage of the first node g is Vd-G
  • the voltage difference between the voltage of the first node g and the second node s is Vd-G-Vref+Vth
  • K is the electron mobility of the driving transistor Td in the green sub-pixel
  • Vth is the threshold voltage of the driving transistor in the green sub-pixel
  • Vgs is the green sub-pixel
  • the voltage difference between the gate and source of the driving transistor, Vgs is equal to the voltage difference between the first node and the second node. It can be seen that the current flowing through the light-emitting element OLED in the green sub-pixel has nothing to do with the threshold voltage of the driving transistor Td, and the threshold voltage of the driving transistor Td of the green sub-pixel G is compensated.
  • the driving transistor Td is turned on to drive the light-emitting element OLED to emit light.
  • the driving transistor Td is turned on under the action of the data voltage, a current flows through the light-emitting element OLED, and the light-emitting element OLED of the green sub-pixel G emits light.
  • the compensation and light-emitting stages of the blue sub-pixel are as follows:
  • the voltage follower 50 outputs the preset voltage Vpre loaded by the preset voltage terminal VPRE to the second node s, and the first switch T1 is turned on to input the reference voltage Vpre loaded by the data line to the first node g, the voltage of the second node s rises to the threshold voltage Vth as the voltage difference between the first node g and the second node s, and the capacitor C obtains the threshold voltage Vth.
  • the preset voltage terminal VPRE is loaded with a preset voltage Vpre
  • the third control signal line SW is loaded with a high-level signal
  • the fourth switch T4 is turned on
  • the preset voltage Vpre is output to the input terminal IN of the voltage follower 50.
  • the voltage follower 50 transmits the preset voltage Vpre to the output terminal OUT of the voltage follower 50.
  • the first control signal line Mux3 is loaded with a high level signal
  • the second switch Tmux3 is opened
  • the second control signal line Mux1 and the second control signal line Mux2 are loaded with a low level signal
  • the second switch Tmux1 and the second switch Tmux2 are closed
  • the preset voltage Vpre is output to the first end of the third switch T3 of the blue sub-pixel B through the second switch Tmux3.
  • the second control signal line G2n loads a high-level signal
  • the third switch T3 of the blue sub-pixel B is turned on to write the preset voltage Vpre to the second node s of the blue sub-pixel B.
  • the first scan signal line G1_B(n) is loaded with a high-level signal
  • the first switch T1 is turned on to write the reference voltage Vref loaded by the data line Dm+3 to the first node g, and the reference voltage Vref is greater than the preset voltage Vpre
  • the driving transistor Td is turned on, the second common voltage terminal VDD is loaded with a high-level signal to charge the second node s, and the voltage Vs-B of the second node s rises to a value between the first node g and the second node s
  • the voltage difference is the threshold voltage Vth of the driving transistor Td, that is, the voltage Vs-B of the second node s is Vref-Vth.
  • the capacitor C in the blue sub-pixel B obtains the threshold voltage Vth.
  • the first switch T1 is turned on to load the data voltage Vd-B loaded by the data line Dm+3 to the first node g.
  • the voltage of the first node g is Vd-B
  • the voltage difference between the voltage of the first node g and the second node s is Vd-B-Vref+Vth
  • K is the electron mobility of the driving transistor Td of the blue sub-pixel
  • Vth is the threshold voltage of the driving transistor of the blue sub-pixel
  • Vgs is blue
  • the voltage difference between the gate and the source of the driving transistor of the color sub-pixel, Vgs is equal to the voltage difference between the first node and the second node. It can be seen that the current flowing through the light-emitting element OLED in the blue sub-pixel B is independent of the threshold voltage Vth of the driving transistor Td, and the threshold voltage of the driving transistor Td of the blue sub-pixel B is compensated.
  • the driving transistor Td is turned on to drive the light-emitting element OLED to emit light.
  • the driving transistor Td is turned on under the action of the data voltage, a current flows through the light-emitting element OLED, and the light-emitting element OLED of the blue sub-pixel B emits light.
  • the red sub-pixels emit light after compensation
  • the green sub-pixels emit light after compensation
  • the blue sub-pixels emit light after compensation
  • the preset voltage input terminal VPRE inputs the preset voltage Vpre during the threshold voltage acquisition phase of each sub-pixel, and both the data voltage writing phase and the light-emitting phase of the sub-pixel are in a high-impedance state, so that the capacitor acquires the sub-pixel.
  • the voltage of the second node can be maintained after the threshold voltage of ⁇ , so as to avoid the leakage of the driving transistor Td before the data voltage is received by the driving transistor Td, which may affect the acquisition of the threshold voltage.

Landscapes

  • Engineering & Computer Science (AREA)
  • Physics & Mathematics (AREA)
  • Computer Hardware Design (AREA)
  • General Physics & Mathematics (AREA)
  • Theoretical Computer Science (AREA)
  • Electroluminescent Light Sources (AREA)
  • Control Of Indicators Other Than Cathode Ray Tubes (AREA)
  • Control Of El Displays (AREA)

Abstract

本申请提供一种有机发光二极管显示器及其显示方法,通过设置与子像素的第二节点电连接的电压跟随器,电压跟随器用于在电容器获取驱动晶体管的阈值电压后的预设时间段保持第二节点的电压,以避免电容器获取阈值电压后驱动晶体管出现漏电的问题。

Description

有机发光二极管显示器及其显示方法 技术领域
本申请涉及显示技术领域,尤其涉及一种有机发光二极管显示器及其显示方法。
背景技术
目前,有机发光二极管显示器的每个子像素主要包括驱动有机发光二极管的驱动晶体管、向驱动晶体管的栅极节点传送数据电压的开关晶体管以及使预设电压保持一帧时间的电容器。其中,由于每个子像素的驱动晶体管的阈值电压和电子迁移率由于制程而具有差异,且随着驱动周期的延长,驱动晶体管的电性能会恶化,进一步地使不同子像素的驱动晶体管的阈值电压和电子迁移率具有差异。然而,不同驱动晶体管之间的相互差异会产生亮度程度的差异,导致有机发光二极管显示器出现非均匀亮度。
传统的一种方法是在有机发光二极管显示器进行画面显示前,对有机发光二极管显示器中驱动晶体管的电性差异进行侦测采样,将采样数据存储于存储器中,待需要进行画面显示时,将采样数据通过缓存模块调用至时序控制器,根据采样数据计算驱动晶体管的补偿数据,时序控制器根据补偿数据输出控制信号至源极驱动器,源极驱动器将补偿后的数据输出至子像素以实现补偿画面显示,提升画面亮度均匀性,即传统方法是通过外部补偿的方法以解决驱动晶体管的差异导致的亮度不均匀问题。然而,传统的外部补偿阈值电压存在侦测时间长以及需要额外增加侦测模块、存储模块以及缓存模块的问题。传统的另一种方法是通过内部补偿驱动晶体管的阈值电压,然而内部补偿驱动晶体管的阈值电压后会存在驱动晶体管漏电问题而影响驱动阈值电压的获取结果。
技术问题
本申请的目的在于提供一种有机发光二极管显示器及其显示方法,能降低驱动晶体管的获取时间的同时,避免获取驱动晶体管的阈值电压后驱动晶体管漏电的问题。
技术解决方案
为实现上述目的,本申请提供一种有机发光二极管显示器,其中,所述有机发光二极管显示器包括有机发光二极管显示面板以及电压跟随器,所述有机发光二极管显示面板包括多条数据线、多条扫描线以及多个像素,
每个所述像素包括至少三个子像素,每个所述子像素包括:
发光元件,所述发光元件的一端连接第二节点,另一端连接第一公共电压端,所述发光元件为有机发光二极管;
驱动晶体管,所述驱动晶体管的控制端连接第一节点,第一端连接第二公共电压端,第二端连接所述第二节点,所述驱动晶体管具有一阈值电压;
第一开关,所述第一开关的控制端连接所述扫描线,第一端连接所述数据线,第二端连接所述第一节点;以及
电容器,所述电容器连接于所述第一节点和所述第二节点之间,所述电容器用于在获取阈值电压阶段存储所述驱动晶体管的所述阈值电压;
所述电压跟随器的输出端电连接至少一所述子像素的所述第二节点,所述电压跟随器用于在所述电容器获取所述驱动晶体管的所述阈值电压后的预设时间段保持所述第二节点的电压,所述电压跟随器的输入端电连接预设电压输入端;
每个所述像素包括一红色子像素、一蓝色子像素以及一绿色子像素。
在上述有机发光二极管显示器中,所述电压跟随器包括第一运算放大器和第二运算放大器,所述第一运算放大器的正极输入端连接所述电压跟随器的输入端、所述第二运算放大器的负极输入端以及所述第二运算放大器的输出端,所述第一运算放大器的负极输入端连接所述第一运算放大器的输出端、所述第二运算放大器的正极输入端以及所述电压跟随器的输出端,所述第二运算放大器的负极输入端与所述第二运算放大器的输出端连接,所述第一运算放大器的输出端与所述第二运算放大器的正极输入端连接,所述第二运算放大器的正极输入端连接所述电压跟随器的输出端。
在上述有机发光二极管显示器中,一个所述电压跟随器与同一个所述像素中至少三个所述子像素中的所述第二节点电连接。
在上述有机发光二极管显示器中,所述有机发光二极管显示器还包括多路输出选择器,所述多路输出选择器包括至少三个第二开关以及与每个所述第二开关对应的第一控制信号线,每个所述第二开关的控制端连接对应的第一控制信号线,每个所述第二开关的第一端连接所述电压跟随器的输出端,每个所述第二开关的第二端电连接一个所述子像素的所述第二节点。
在上述有机发光二极管显示器中,每个所述子像素还包括第三开关,所述第三开关的控制端连接第二控制信号线,第一端连接所述电压跟随器的输出端,第二端电连接所述第二节点。
在上述有机发光二极管显示器中,所述有机发光二极管显示器还包括第四开关,所述第四开关的控制端连接第三控制信号线,第一端连接所述预设电压输入端,第二端连接所述电压跟随器的输入端。
在上述有机发光二极管显示器中,所述第一开关为薄膜晶体管。
一种有机发光二极管显示器,所述有机发光二极管显示器包括有机发光二极管显示面板以及电压跟随器,所述有机发光二极管显示面板包括多条数据线、多条扫描线以及多个像素,
每个所述像素包括至少三个子像素,每个所述子像素包括:
发光元件,所述发光元件的一端连接第二节点,另一端连接第一公共电压端;
驱动晶体管,所述驱动晶体管的控制端连接第一节点,第一端连接第二公共电压端,第二端连接所述第二节点,所述驱动晶体管具有一阈值电压;
第一开关,所述第一开关的控制端连接所述扫描线,第一端连接所述数据线,第二端连接所述第一节点;以及
电容器,所述电容器连接于所述第一节点和所述第二节点之间,所述电容器用于在获取阈值电压阶段存储所述驱动晶体管的所述阈值电压;
所述电压跟随器的输出端电连接至少一所述子像素的所述第二节点,所述电压跟随器用于在所述电容器获取所述驱动晶体管的所述阈值电压后的预设时间段保持所述第二节点的电压,所述电压跟随器的输入端电连接预设电压输入端。
在上述有机发光二极管显示器中,所述电压跟随器包括第一运算放大器和第二运算放大器,所述第一运算放大器的正极输入端连接所述电压跟随器的输入端、所述第二运算放大器的负极输入端以及所述第二运算放大器的输出端,所述第一运算放大器的负极输入端连接所述第一运算放大器的输出端、所述第二运算放大器的正极输入端以及所述电压跟随器的输出端,所述第二运算放大器的负极输入端与所述第二运算放大器的输出端连接,所述第一运算放大器的输出端与所述第二运算放大器的正极输入端连接,所述第二运算放大器的正极输入端连接所述电压跟随器的输出端。
在上述有机发光二极管显示器中,一个所述电压跟随器与同一个所述像素中至少三个所述子像素中的所述第二节点电连接。
在上述有机发光二极管显示器中,所述有机发光二极管显示器还包括多路输出选择器,所述多路输出选择器包括至少三个第二开关以及与每个所述第二开关对应的第一控制信号线,每个所述第二开关的控制端连接对应的第一控制信号线,每个所述第二开关的第一端连接所述电压跟随器的输出端,每个所述第二开关的第二端电连接一个所述子像素的所述第二节点。
在上述有机发光二极管显示器中,每个所述子像素还包括第三开关,所述第三开关的控制端连接第二控制信号线,第一端连接所述电压跟随器的输出端,第二端电连接所述第二节点。
在上述有机发光二极管显示器中,所述有机发光二极管显示器还包括第四开关,所述第四开关的控制端连接第三控制信号线,第一端连接所述预设电压输入端,第二端连接所述电压跟随器的输入端。
在上述有机发光二极管显示器中,所述第一开关为薄膜晶体管。
在上述有机发光二极管显示器中,所述发光元件为有机发光二极管。
在上述有机发光二极管显示器中,每个所述像素包括一红色子像素、一蓝色子像素以及一绿色子像素。
一种上述有机发光二极管显示器的显示方法,所述显示方法包括如下步骤:
获取阈值电压阶段,所述电压跟随器将所述预设电压输入端载入的所述预设电压输出至所述第二节点,所述第一开关打开以将所述数据线载入的参考电压输入至所述第一节点,所述第二节点的电压抬升至所述第一节点和所述第二节点的电压差为所述阈值电压,所述电容器获取所述阈值电压;
数据电压写入阶段,所述第一开关打开以将所述数据线载入的数据电压载入至所述第一节点;
发光阶段,所述驱动晶体管打开以驱动所述发光元件发光。
在上述显示方法中,所述电压跟随器包括第一运算放大器和第二运算放大器,所述第一运算放大器的正极输入端连接所述电压跟随器的输入端、所述第二运算放大器的负极输入端以及所述第二运算放大器的输出端,所述第一运算放大器的负极输入端连接所述第一运算放大器的输出端、所述第二运算放大器的正极输入端以及所述电压跟随器的输出端,所述第二运算放大器的负极输入端与所述第二运算放大器的输出端连接,所述第一运算放大器的输出端与所述第二运算放大器的正极输入端连接,所述第二运算放大器的正极输入端连接所述电压跟随器的输出端。
有益效果
本申请提供一种有机发光二极管显示器及其显示方法,通过设置与子像素的第二节点电连接的电压跟随器,电压跟随器用于在电容器获取驱动晶体管的阈值电压后的预设时间段保持第二节点的电压,以避免电容器获取阈值电压后驱动晶体管出现漏电的问题。相对传统技术通过外部侦测阈值电压并通过侦测结果进行驱动电压补偿,本申请通过内部补偿阈值电压,不需要额外增加侦测模块、存储模块以及缓存模块,能缩短补偿阈值电压的时间。
附图说明
图1为本申请实施例有机发光二极管显示器的结构示意图;
图2为图1所示有机发光二极管显示器的红色子像素的示意图;
图3为图1所示电压跟随器的示意图;
图4为图1所示有机发光二极管显示器显示时的时序图。
本发明的实施方式
下面将结合本申请实施例中的附图,对本申请实施例中的技术方案进行清楚、完整地描述。显然,所描述的实施例仅仅是本申请一部分实施例,而不是全部的实施例。基于本申请中的实施例,本领域技术人员在没有作出创造性劳动前提下所获得的所有其他实施例,都属于本申请保护的范围。
请参阅图1,其为本申请实施例有机发光二极管显示器的结构示意图。有机发光二极管显示器1000包括有机发光二极管显示面板10、时序控制器20、源极驱动器30、栅极驱动器40以及电压跟随器50。
源极驱动器30通过向多个数据线D提供数据电压来驱动有机发光二极管显示面板10上的像素发光。
栅极驱动器40通过多个栅极线顺序地提供扫描信号来顺序地使有机发光二极管显示面板10上的像素发光。栅极驱动器40可以位于有机发光二极管显示面板10的一侧,栅极驱动器40也可以位于有机发光二极管显示面板10相对的两侧。栅极驱动器40也可以为设置于有机发光二极管显示面板10上的栅极驱动电路(Gate On Array, GOA)。
时序控制器20接收定时信号(例如垂直同步信号、水平同步信号、输入数据使能信号以及时钟信号),生成各种控制信号。控制信号包括各种栅极控制信号,栅极控制信号包括栅极起始脉冲信号、栅极移位时钟信号和栅极输出使能信号,其中,栅极起始脉冲信号控制栅极驱动器40中栅极驱动芯片的操作启动定时,栅极移位时钟信号是控制扫描信号移位定时的时钟信号,栅极输出使能信号指定栅极驱动器中栅极驱动芯片的定时信息。控制信号包括各种数据控制信号,包括源极启动脉冲和源极输出使能信号。源极启动脉冲控制源极驱动器的数据采样启动定时。源极输出使能信号控制源极驱动器30的输出定时。时序控制器20通过向源极驱动器30和栅极驱动器40提供控制信号来控制源极驱动器30和栅极驱动器40。
有机发光二极管显示面板10包括多条数据线、多条扫描线以及多个像素P。
多条数据线包括数据线Dm+1、数据线Dm+2以及数据线Dm+3,其中,m为大于或等于0的整数,多条数据线垂直平行设置,每条数据线与一列子像素连接。多条扫描线包括第一扫描线G1_R(n)、第一扫描线G1_G(n)、第一扫描线G1_B(n)以及第二扫描线G2(n),其中,第一扫描线G1_R(n)、第一扫描线G1_G(n)以及第一扫描线G1_B(n)均用于输入控制各子像素写入数据信号的扫描信号,第二扫描线G2(n)用于输入控制获取各子像素驱动晶体管阈值电压的扫描信号,多条扫描线水平平行设置,第一扫描线G1_R(n)与第n行的红色子像素R连接,第一扫描线G1_G(n)与第n行的绿色子像素G连接,第一扫描线G1_B(n)与第n行的蓝色子像素B连接,第二扫描线G2(n)与第n行的所有子像素均连接。
每个像素P包括至少三个子像素。具体地,每个像素P包括一红色子像素R、一蓝色子像素B以及一绿色子像素G。可以理解的是,每个像素P还可以包括一白色子像素W。
以下结合红色子像素R进行详述,绿色子像素G以及蓝色子像素B与红色子像素R的构成基本相同,此处不再详述。请参阅图2,其为图1所示有机发光二极管显示器的红色子像素的示意图。红色子像素包括发光元件OLED、驱动晶体管Td、第一开关T1、电容器C以及第三开关T3。
发光元件OLED在电流流过时发光。发光元件OLED为有机发光二极管。发光元件OLED的一端连接第二节点s,另一端连接第一公共电压端EVSS。第一公共电压端EVSS为接地端。
驱动晶体管Td用于控制流入至发光元件OLED的电流的大小,以控制发光元件OLED的发光亮度。驱动晶体管Td的控制端连接第一节点g,第一端连接第二公共电压端EVDD,第二端连接第二节点s,驱动晶体管Td具有一阈值电压Vth。第二公共电压端EVDD载入的电压大于第一公共电压端EVSS载入的电压。
第一开关T1用于控制将数据线传输的数据信号传输至第一节点g。第一开关T1的控制端连接扫描线G1_R(n),第一端连接数据线Dm+1,第二端连接第一节点g。
第三开关T3的控制端连接第二控制信号线,第一端电连接电压跟随器50的输出端OUT,第二端连接第二节点s。具体地,第二控制信号线为第二扫描信号线G2n。第三开关T3的第一端连接信号传输线Ri,信号传输线Ri电连接电压跟随器的输出端OUT。
电容器C连接于第一节点g和第二节点s之间,电容器C用于在获取阈值电压阶段存储驱动晶体管Td的阈值电压Vth,以实现内部补偿驱动晶体管Td的阈值电压。
电压跟随器50具有一输入端IN和一输出端OUT。电压跟随器50的输出端OUT电连接至少一子像素的第二节点s,电压跟随器50用于在电容器C获取驱动晶体管Td的阈值电压Vth后的预设时间段保持第二节点s的电压,电压跟随器50的输入端电连接预设电压输入端VPRE。由于电压跟随器50具有高输入电阻以及低输出电阻的特性,从电压跟随器50的输入端IN载入的预设电压等于电压跟随器50的输出端OUT输出的电压,且电容器C获取驱动晶体管Td的阈值电压后,由于电压跟随器50在预设时间段保持第二节点s的电压,使得驱动晶体管Td不会出现漏电问题,不会影响驱动晶体管Td获取阈值电压Vth。预设时间段为电容器C获取阈值电压以及数据电压写入至第一节点g之间的时间段。
具体地,结合图1和图3,图3为图1所示电压跟随器的示意图。电压跟随器50包括第一运算放大器A1和第二运算放大器A2,第一运算放大器A1的正极输入端连接电压跟随器50的输入端IN、第二运算放大器A2的负极输入端以及第二运算放大器A2的输出端,第一运算放大器A1的负极输入端连接第一运算放大器A1的输出端、第二运算放大器A2的正极输入端以及电压跟随器50的输出端OUT,第二运算放大器A2的负极输入端与第二运算放大器A2的输出端连接,第一运算放大器A1的输出端与第二运算放大器A2的正极输入端连接,第二运算放大器A2的正极输入端连接电压跟随器50的输出端OUT。
通过第一运算放大器A1和第二运算放大器A2组成的电压跟随器50使得内部补偿用预设电压从输入端IN传输至输出端OUT的压降为零,且第一运算放大器A1和第二运算放大器A2的连接方式构成一个电压反馈调节电路,在电容器C获取驱动晶体管Td的阈值电压Vth后,避免驱动晶体管Td漏电,保持第二节点s的电压。另外,第一运算放大器A1的正极输入端根据时序进行补偿用预设电压以及高阻态电压H-Z的输入。
在本实施例中,一个电压跟随器50与同一像素P中至少三个子像素的第二节点s连接。具体地,一个电压跟随器50的与同一像素P中的红色子像素R、蓝色子像素B以及绿色子像素G均连接。可以理解的,一个电压跟随器50也可以与同一个像素P中一个子像素(例如红色子像素R、蓝色子像素B或绿色子像素G)连接。一个电压跟随器50也可以与相邻两个像素P中的多个子像素连接。通过使一个像素中的至少三个子像素共用一个电压跟随器50,使得像素的驱动电路更简单,降低功耗和成本。
请继续参阅图1,有机发光二极管显示器1000还包括多路输出选择器60。多路输出选择器60用于进行内部补偿子像素的选择切换,以实现同一行子像素的依次内部补偿。多路输出选择器60包括至少三个第二开关以及与每个第二开关对应连接的第一控制信号线,每个第二开关的控制端连接对应的第一控制信号线,每个第二开关的第一端连接电压跟随器50的输出端OUT,每个第二开关的第二端电连接一个子像素的第二节点s。
具体地,至少三个第二开关包括第二开关Tmux1、第二开关Tmux2以及第二开关Tmux3,对应地,第一控制信号线包括第一控制信号线Mux1、第一控制信号线Mux2以及第一控制信号线Mux3。第二开关Tmux1的控制端连接第一控制信号线Mux1,第一端连接电压跟随器50的输出端OUT,第二端通过信号传输线Ri连接红色子像素R的第三开关T3的第一端;第二开关Tmux2的控制端连接第一控制信号线Mux2,第一端连接电压跟随器50的输出端OUT,第二端通过信号传输线Ri+1连接绿色子像素G的第三开关T3的第一端;第二开关Tmux3的控制端连接第一控制信号线Mux3,第一端连接电压跟随器50的输出端OUT,第二端通过信号传输线Ri+2连接蓝色子像素B的第三开关的第一端。
如图1所示,有机发光二极管显示器还包括第四开关T4。第四开关T4的控制端连接第三控制信号线SW,第一端连接预设电压输入端VPRE,第二端连接电压跟随器50的输入端IN。第四开关T4用于控制预设电压端VPRE写入的预设电压值输入至电压跟随器的输入端IN。
需要说明的是,第一开关T1、第二开关、第三开关T3、第四开关T4以及驱动晶体管Td均为薄膜晶体管。具体地,第一开关T1、第二开关、第三开关T3、第四开关T4以及驱动晶体管Td均为n型薄膜晶体管,故上述第一端为漏极,第二端为源极。可以理解的是,第一开关T1、第二开关、第三开关T3以及第四开关T4也可以为p型薄膜晶体管。
本申请实施例有机发光二极管显示器通过设置与子像素的第二节点电连接的电压跟随器,电压跟随器用于在电容器获取驱动晶体管的阈值电压后的预设时间段保持第二节点的电压,以避免电容器获取阈值电压后驱动晶体管出现漏电的问题。相对传统技术通过外部侦测并通过侦测结果进行驱动电压补偿,本申请通过内部补偿阈值电压,不需要额外增加侦测模块、存储模块以及缓存模块,能缩短补偿阈值电压的时间。
本申请还提供一种上述有机发光二极管显示器的显示方法。请参阅图4,其为图1所示有机发光二极管显示器显示时的时序图。有机发光二极管显示器显示时包括红色子像素的补偿以及发光阶段、绿色子像素的补偿以及发光阶段以及蓝色子像素的补偿以及发光阶段。
红色子像素的补偿以及发光阶段如下:
获取阈值电压阶段S10,电压跟随器50将预设电压端VPRE载入的预设电压Vpre输出至第二节点s,第一开关T1打开以将数据线载入的参考电压Vpre输入至第一节点g,第二节点s的电压抬升至第一节点g和第二节点s的电压差为阈值电压Vth,电容器C获取阈值电压Vth。
具体地,预设电压端VPRE载入预设电压Vpre,第三控制信号线SW载入高电平信号,第四开关T4打开,预设电压Vpre输出至电压跟随器50的输入端IN。电压跟随器50将预设电压Vpre传输至电压跟随器50的输出端OUT。第一控制信号线Mux1载入高电平信号,第二开关Tmux1打开,第二控制信号线Mux2和第二控制信号线Mux3载入低电平信号,第二开关Tmux2和第二开关Tmux3关闭,预设电压Vpre经第二开关Tmux1输出至红色子像素R的第三开关T3的第一端。第二控制信号线G2n载入高电平信号,红色子像素R的第三开关T3打开,以将预设电压Vpre写入至红色子像素的第二节点s。
第一扫描信号线G1_R(n)载入高电平信号,第一开关T1打开以将数据线Dm+1载入的参考电压Vref写入至第一节点g,参考电压Vref大于预设电压Vpre,驱动晶体管Td打开,第二公共电压端VDD载入高电平信号以对第二节点s进行充电,第二节点s的电压Vs-R提升至第一节点g与第二节点s之间的电压差为驱动晶体管Td的阈值电压Vth,即第二节点s的电压Vs-R为Vref-Vth。红色子像素R中的电容器C获取红色子像素R中的驱动晶体管Td的阈值电压Vth。
数据电压写入阶段S11,第一开关T1打开以将数据线Dm+1载入的数据电压Vd-R载入至第一节点g。
第一节点g的电压为Vd-R,第一节点g的电压和第二节点s的电压差为Vd-R-Vref+Vth,流过发光元件OLED的电流I=1/2×K(Vgs-Vth) 2=1/2×K(Vd-R-Vref) 2,K为红色子像素中驱动晶体管Td的电子迁移率,Vth为红色子像素中驱动晶体管的阈值电压,Vgs为红色子像素中驱动晶体管的栅极和源极之间的电压差,Vgs等于第一节点和第二节点的电压差。可知,红色子像素中流过发光元件OLED的电流与驱动晶体管Td的阈值电压无关,驱动晶体管Td的阈值电压得到了补偿。
发光阶段,驱动晶体管Td打开以驱动发光元件OLED发光。
具体地,驱动晶体管Td在数据电压的作用下打开,电流流过发光元件OLED,红色子像素R的发光元件OLED发光。
绿色子像素的补偿以及发光阶段如下:
获取阈值电压阶段S20,电压跟随器50将预设电压端VPRE载入的预设电压Vpre输出至第二节点s,第一开关T1打开以将数据线载入的参考电压Vpre输入至第一节点g,第二节点s的电压抬升至第一节点g和第二节点s的电压差为阈值电压Vth,电容器C获取阈值电压Vth。
具体地,预设电压端VPRE载入预设电压Vpre,第三控制信号线SW载入高电平信号,第四开关T4打开,预设电压Vpre输出至电压跟随器50的输入端IN。电压跟随器50将预设电压Vpre传输至电压跟随器50的输出端OUT。第一控制信号线Mux2载入高电平信号,第二开关Tmux2打开,第二控制信号线Mux1和第二控制信号线Mux3载入低电平信号,第二开关Tmux1和第二开关Tmux3关闭,预设电压Vpre经第二开关Tmux2输出至绿色子像素G的第三开关T3的第一端。第二控制信号线G2n载入高电平信号,绿色子像素G的第三开关T3打开,以将预设电压Vpre写入至绿色子像素G的第二节点s。
第一扫描信号线G1_G(n)载入高电平信号,第一开关T1打开以将数据线Dm+2载入的参考电压Vref写入至第一节点g,参考电压Vref大于预设电压Vpre,驱动晶体管Td打开,第二公共电压端VDD载入高电平信号以对第二节点s进行充电,第二节点s的电压Vs-G提升至第一节点g与第二节点s之间的电压差为绿色子像素中驱动晶体管Td的阈值电压Vth,即第二节点s的电压Vs-G为Vref-Vth。绿色子像素中的电容器C获取绿色子像素中驱动晶体管的阈值电压Vth。
数据电压写入阶段S21,第一开关T1打开以将数据线Dm+2载入的数据电压Vd-G载入至第一节点g。
第一节点g的电压为Vd-G,第一节点g的电压和第二节点s的电压差为Vd-G-Vref+Vth,流过发光元件OLED的电流I=1/2×K(Vgs-Vth) 2=1/2×K(Vd-G-Vref) 2,K为绿色子像素中驱动晶体管Td的电子迁移率,Vth为绿色子像素中驱动晶体管的阈值电压,Vgs为绿色子像素中驱动晶体管的栅极和源极之间的电压差,Vgs等于第一节点和第二节点的电压差。可知,绿色子像素中流过发光元件OLED的电流与驱动晶体管Td的阈值电压无关,绿色子像素G的驱动晶体管Td的阈值电压得到了补偿。
发光阶段,驱动晶体管Td打开以驱动发光元件OLED发光。
具体地,驱动晶体管Td在数据电压的作用下打开,电流流过发光元件OLED,绿色子像素G的发光元件OLED发光。
蓝色子像素的补偿以及发光阶段如下:
获取阈值电压阶段S30,电压跟随器50将预设电压端VPRE载入的预设电压Vpre输出至第二节点s,第一开关T1打开以将数据线载入的参考电压Vpre输入至第一节点g,第二节点s的电压抬升至第一节点g和第二节点s的电压差为阈值电压Vth,电容器C获取阈值电压Vth。
具体地,预设电压端VPRE载入预设电压Vpre,第三控制信号线SW载入高电平信号,第四开关T4打开,预设电压Vpre输出至电压跟随器50的输入端IN。电压跟随器50将预设电压Vpre传输至电压跟随器50的输出端OUT。第一控制信号线Mux3载入高电平信号,第二开关Tmux3打开,第二控制信号线Mux1和第二控制信号线Mux2载入低电平信号,第二开关Tmux1和第二开关Tmux2关闭,预设电压Vpre经第二开关Tmux3输出至蓝色子像素B的第三开关T3的第一端。第二控制信号线G2n载入高电平信号,蓝色子像素B的第三开关T3打开,以将预设电压Vpre写入至蓝色子像素B的第二节点s。
第一扫描信号线G1_B(n)载入高电平信号,第一开关T1打开以将数据线Dm+3载入的参考电压Vref写入至第一节点g,参考电压Vref大于预设电压Vpre,驱动晶体管Td打开,第二公共电压端VDD载入高电平信号以对第二节点s进行充电,第二节点s的电压Vs-B提升至第一节点g与第二节点s之间的电压差为驱动晶体管Td的阈值电压Vth,即第二节点s的电压Vs-B为Vref-Vth。蓝色子像素B中的电容器C获取阈值电压Vth。
数据电压写入阶段S31,第一开关T1打开以将数据线Dm+3载入的数据电压Vd-B载入至第一节点g。
第一节点g的电压为Vd-B,第一节点g的电压和第二节点s的电压差为Vd-B-Vref+Vth,流过发光元件OLED的电流I=1/2×K(Vgs-Vth) 2=1/2×K(Vd-B-Vref) 2,K为蓝色子像素的驱动晶体管Td的电子迁移率,Vth为蓝色子像素的驱动晶体管的阈值电压,Vgs为蓝色子像素的驱动晶体管的栅极和源极之间的电压差,Vgs等于第一节点和第二节点的电压差。可知,蓝色子像素B中流过发光元件OLED的电流与驱动晶体管Td的阈值电压Vth无关,蓝色子像素B的驱动晶体管Td的阈值电压得到了补偿。
发光阶段,驱动晶体管Td打开以驱动发光元件OLED发光。
具体地,驱动晶体管Td在数据电压的作用下打开,电流流过发光元件OLED,蓝色子像素B的发光元件OLED发光。
由上述可知,红色子像素补偿后发光、绿色子像素补偿后发光以及蓝色子像素补偿后发光依次进行,以实现有机发光二极管显示器的画面显示。
需要说明的是,预设电压输入端VPRE在各子像素进行阈值电压获取阶段输入预设电压Vpre,在子像素进行数据电压写入阶段以及发光阶段均处于高阻态,以使得电容器获取子像素的阈值电压后第二节点的电压能保持,避免驱动晶体管Td在接收数据电压之前驱动晶体管Td出现漏电而影响阈值电压的获取。
以上实施例的说明只是用于帮助理解本申请的技术方案及其核心思想;本领域的普通技术人员应当理解:其依然可以对前述各实施例所记载的技术方案进行修改,或者对其中部分技术特征进行等同替换;而这些修改或者替换,并不使相应技术方案的本质脱离本申请各实施例的技术方案的范围。

Claims (18)

  1. 一种有机发光二极管显示器,其中,所述有机发光二极管显示器包括有机发光二极管显示面板以及电压跟随器,所述有机发光二极管显示面板包括多条数据线、多条扫描线以及多个像素,
    每个所述像素包括至少三个子像素,每个所述子像素包括:
    发光元件,所述发光元件的一端连接第二节点,另一端连接第一公共电压端,所述发光元件为有机发光二极管;
    驱动晶体管,所述驱动晶体管的控制端连接第一节点,第一端连接第二公共电压端,第二端连接所述第二节点,所述驱动晶体管具有一阈值电压;
    第一开关,所述第一开关的控制端连接所述扫描线,第一端连接所述数据线,第二端连接所述第一节点;以及
    电容器,所述电容器连接于所述第一节点和所述第二节点之间,所述电容器用于在获取阈值电压阶段存储所述驱动晶体管的所述阈值电压;
    所述电压跟随器的输出端电连接至少一所述子像素的所述第二节点,所述电压跟随器用于在所述电容器获取所述驱动晶体管的所述阈值电压后的预设时间段保持所述第二节点的电压,所述电压跟随器的输入端电连接预设电压输入端;
    每个所述像素包括一红色子像素、一蓝色子像素以及一绿色子像素。
  2. 根据权利要求1所述的有机发光二极管显示器,其中,所述电压跟随器包括第一运算放大器和第二运算放大器,所述第一运算放大器的正极输入端连接所述电压跟随器的输入端、所述第二运算放大器的负极输入端以及所述第二运算放大器的输出端,所述第一运算放大器的负极输入端连接所述第一运算放大器的输出端、所述第二运算放大器的正极输入端以及所述电压跟随器的输出端,所述第二运算放大器的负极输入端与所述第二运算放大器的输出端连接,所述第一运算放大器的输出端与所述第二运算放大器的正极输入端连接,所述第二运算放大器的正极输入端连接所述电压跟随器的输出端。
  3. 根据权利要求1所述的有机发光二极管显示器,其中,一个所述电压跟随器与同一个所述像素中至少三个所述子像素中的所述第二节点电连接。
  4. 根据权利要求3所述的有机发光二极管显示器,其中,所述有机发光二极管显示器还包括多路输出选择器,所述多路输出选择器包括至少三个第二开关以及与每个所述第二开关对应的第一控制信号线,每个所述第二开关的控制端连接对应的第一控制信号线,每个所述第二开关的第一端连接所述电压跟随器的输出端,每个所述第二开关的第二端电连接一个所述子像素的所述第二节点。
  5. 根据权利要求1所述的有机发光二极管显示器,其中,每个所述子像素还包括第三开关,所述第三开关的控制端连接第二控制信号线,第一端连接所述电压跟随器的输出端,第二端电连接所述第二节点。
  6. 根据权利要求1所述的有机发光二极管显示器,其中,所述有机发光二极管显示器还包括第四开关,所述第四开关的控制端连接第三控制信号线,第一端连接所述预设电压输入端,第二端连接所述电压跟随器的输入端。
  7. 根据权利要求1所述的有机发光二极管显示器,其中,所述第一开关为薄膜晶体管。
  8. 一种有机发光二极管显示器,其中,所述有机发光二极管显示器包括有机发光二极管显示面板以及电压跟随器,所述有机发光二极管显示面板包括多条数据线、多条扫描线以及多个像素,
    每个所述像素包括至少三个子像素,每个所述子像素包括:
    发光元件,所述发光元件的一端连接第二节点,另一端连接第一公共电压端;
    驱动晶体管,所述驱动晶体管的控制端连接第一节点,第一端连接第二公共电压端,第二端连接所述第二节点,所述驱动晶体管具有一阈值电压;
    第一开关,所述第一开关的控制端连接所述扫描线,第一端连接所述数据线,第二端连接所述第一节点;以及
    电容器,所述电容器连接于所述第一节点和所述第二节点之间,所述电容器用于在获取阈值电压阶段存储所述驱动晶体管的所述阈值电压;
    所述电压跟随器的输出端电连接至少一所述子像素的所述第二节点,所述电压跟随器用于在所述电容器获取所述驱动晶体管的所述阈值电压后的预设时间段保持所述第二节点的电压,所述电压跟随器的输入端电连接预设电压输入端。
  9. 根据权利要求8所述的有机发光二极管显示器,其中,所述电压跟随器包括第一运算放大器和第二运算放大器,所述第一运算放大器的正极输入端连接所述电压跟随器的输入端、所述第二运算放大器的负极输入端以及所述第二运算放大器的输出端,所述第一运算放大器的负极输入端连接所述第一运算放大器的输出端、所述第二运算放大器的正极输入端以及所述电压跟随器的输出端,所述第二运算放大器的负极输入端与所述第二运算放大器的输出端连接,所述第一运算放大器的输出端与所述第二运算放大器的正极输入端连接,所述第二运算放大器的正极输入端连接所述电压跟随器的输出端。
  10. 根据权利要求8所述的有机发光二极管显示器,其中,一个所述电压跟随器与同一个所述像素中至少三个所述子像素中的所述第二节点电连接。
  11. 根据权利要求10所述的有机发光二极管显示器,其中,所述有机发光二极管显示器还包括多路输出选择器,所述多路输出选择器包括至少三个第二开关以及与每个所述第二开关对应的第一控制信号线,每个所述第二开关的控制端连接对应的第一控制信号线,每个所述第二开关的第一端连接所述电压跟随器的输出端,每个所述第二开关的第二端电连接一个所述子像素的所述第二节点。
  12. 根据权利要求8所述的有机发光二极管显示器,其中,每个所述子像素还包括第三开关,所述第三开关的控制端连接第二控制信号线,第一端连接所述电压跟随器的输出端,第二端电连接所述第二节点。
  13. 根据权利要求8所述的有机发光二极管显示器,其中,所述有机发光二极管显示器还包括第四开关,所述第四开关的控制端连接第三控制信号线,第一端连接所述预设电压输入端,第二端连接所述电压跟随器的输入端。
  14. 根据权利要求8所述的有机发光二极管显示器,其中,所述第一开关为薄膜晶体管。
  15. 根据权利要求8所述的有机发光二极管显示器,其中,所述发光元件为有机发光二极管。
  16. 根据权利要求8所述的有机发光二极管显示器,其中,每个所述像素包括一红色子像素、一蓝色子像素以及一绿色子像素。
  17. 一种如权利要求1所述有机发光二极管显示器的显示方法,其中,所述显示方法包括如下步骤:
    获取阈值电压阶段,所述电压跟随器将所述预设电压输入端载入的所述预设电压输出至所述第二节点,所述第一开关打开以将所述数据线载入的参考电压输入至所述第一节点,所述第二节点的电压抬升至所述第一节点和所述第二节点的电压差为所述阈值电压,所述电容器获取所述阈值电压;
    数据电压写入阶段,所述第一开关打开以将所述数据线载入的数据电压载入至所述第一节点;
    发光阶段,所述驱动晶体管打开以驱动所述发光元件发光。
  18. 根据权利要求17所述的有机发光二极管显示器的显示方法,其中,所述电压跟随器包括第一运算放大器和第二运算放大器,所述第一运算放大器的正极输入端连接所述电压跟随器的输入端、所述第二运算放大器的负极输入端以及所述第二运算放大器的输出端,所述第一运算放大器的负极输入端连接所述第一运算放大器的输出端、所述第二运算放大器的正极输入端以及所述电压跟随器的输出端,所述第二运算放大器的负极输入端与所述第二运算放大器的输出端连接,所述第一运算放大器的输出端与所述第二运算放大器的正极输入端连接,所述第二运算放大器的正极输入端连接所述电压跟随器的输出端。
PCT/CN2019/122644 2019-11-22 2019-12-03 有机发光二极管显示器及其显示方法 WO2021097911A1 (zh)

Priority Applications (1)

Application Number Priority Date Filing Date Title
US16/625,171 US11263979B2 (en) 2019-11-22 2019-12-03 Organic light-emitting diode display with voltage follower and display method thereof

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
CN201911154292.3A CN110827764B (zh) 2019-11-22 2019-11-22 有机发光二极管显示器及其显示方法
CN201911154292.3 2019-11-22

Publications (1)

Publication Number Publication Date
WO2021097911A1 true WO2021097911A1 (zh) 2021-05-27

Family

ID=69558222

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2019/122644 WO2021097911A1 (zh) 2019-11-22 2019-12-03 有机发光二极管显示器及其显示方法

Country Status (3)

Country Link
US (1) US11263979B2 (zh)
CN (1) CN110827764B (zh)
WO (1) WO2021097911A1 (zh)

Families Citing this family (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN111564137B (zh) * 2020-05-19 2021-06-01 深圳市华星光电半导体显示技术有限公司 发光二极管驱动电路及发光二极管显示装置
CN112037730A (zh) * 2020-10-12 2020-12-04 北京集创北方科技股份有限公司 驱动装置及电子设备
KR20220082559A (ko) * 2020-12-10 2022-06-17 엘지디스플레이 주식회사 표시 장치, 데이터 구동 회로 및 표시 장치 구동 방법

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN104637440A (zh) * 2013-11-06 2015-05-20 乐金显示有限公司 有机发光显示器和补偿其迁移率的方法
US20160163255A1 (en) * 2014-12-03 2016-06-09 Samsung Display Co., Ltd. Organic light-emitting display and method of driving the same
CN105788530A (zh) * 2016-05-18 2016-07-20 深圳市华星光电技术有限公司 Oled显示装置的阈值电压侦测电路
CN108257561A (zh) * 2016-12-29 2018-07-06 乐金显示有限公司 有机发光二极管显示装置及其驱动方法

Family Cites Families (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US10360826B2 (en) * 2015-10-09 2019-07-23 Apple Inc. Systems and methods for indirect light-emitting-diode voltage sensing in an electronic display
CN105427798B (zh) * 2016-01-05 2018-02-06 京东方科技集团股份有限公司 一种像素电路、显示面板及显示装置

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN104637440A (zh) * 2013-11-06 2015-05-20 乐金显示有限公司 有机发光显示器和补偿其迁移率的方法
US20160163255A1 (en) * 2014-12-03 2016-06-09 Samsung Display Co., Ltd. Organic light-emitting display and method of driving the same
CN105788530A (zh) * 2016-05-18 2016-07-20 深圳市华星光电技术有限公司 Oled显示装置的阈值电压侦测电路
CN108257561A (zh) * 2016-12-29 2018-07-06 乐金显示有限公司 有机发光二极管显示装置及其驱动方法

Also Published As

Publication number Publication date
CN110827764B (zh) 2021-07-06
US20210335279A1 (en) 2021-10-28
CN110827764A (zh) 2020-02-21
US11263979B2 (en) 2022-03-01

Similar Documents

Publication Publication Date Title
US10872570B2 (en) Electroluminescent display device for minimizing a voltage drop and improving image quality and driving method thereof
US11335241B2 (en) Sub pixel circuit, pixel circuit, driving method thereof, display module and display device
CN112150967A (zh) 一种显示面板、驱动方法及显示装置
JP4398413B2 (ja) スレッショルド電圧の補償を備えた画素駆動回路
CN103003864B (zh) 显示装置及其驱动方法
US11195466B2 (en) Display device having gate bridges connecting scan gate lines to pixels and method for driving the same
GB2589713A (en) Electroluminescent display panel having pixel driving circuit
CN107274830A (zh) 一种像素电路、其驱动方法及有机电致发光显示面板
CN102959609B (zh) 显示装置及其制造方法
US20080252217A1 (en) Pixel, organic light emitting display using the same, and associated methods
KR20030075946A (ko) 유기 전계발광 표시 장치 및 그 구동 방법
KR20130040475A (ko) 발광표시장치
KR101968117B1 (ko) 유기발광 표시장치 및 이의 구동방법
WO2021208729A1 (zh) 显示驱动模组、显示驱动方法和显示装置
WO2021097911A1 (zh) 有机发光二极管显示器及其显示方法
US11232741B2 (en) Pixel and display device having the same
KR20210011554A (ko) 화소 및 이를 포함하는 표시 장치
TW201333922A (zh) 顯示裝置及其驅動方法
JP2013222011A (ja) 駆動回路、電気光学装置、電子機器、および駆動方法
US10977997B2 (en) Pixel and organic light emitting display device including pixel
KR20190072200A (ko) 표시장치 및 그 구동 방법
US11410598B2 (en) Display device
JP2014228676A (ja) 画素回路及びその駆動方法
WO2021088106A1 (zh) 像素及其控制方法、有机发光二极管显示器
US9830862B2 (en) Display device and electronic apparatus

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 19953451

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 19953451

Country of ref document: EP

Kind code of ref document: A1